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ABSTRACT
Regions in urban environments often afford a mixture of dif-
ferent utilities. Their identification allows urban planners to
leverage important insights on the emerging functional dy-
namics of cities. With the increasing availability of human
mobility data and other forms of online digital breadcrumbs,
we can now characterize urban regions with multi-source fea-
tures. In this work, we form a comprehensive view of urban
regions by fusing features depicting their temporal, spatial,
and demographic aspects. Aggregating 47K explicitly stated
trip purposes into their respective destination regions, we
obtain multi-dimensional ground-truths on the functionali-
ties of urban spaces. Given fused features and training la-
bels, we can perform supervised learning, via multi-output
regression, to estimate the functional composition of urban
spaces. With 14 functional dimensions, our approach using
crowd-augmented travel survey predictors delivers a mean
absolute error of 3.9, approximately half of the error result-
ing from a mean-based straw man approach (mean absolute
error of 7.9). Clustering estimated regional functionalities,
we find highly coherent cluster assignments (adjusted Rand
Index of 0.81) compared to clustering directly on regional
functionality labels. Finally, we provide an illustrative case-
study where clustering of estimated region functionalities
can be used to intuitively differentiate prototypical spatial
neighbourhoods of a large metropolitan.
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H.2.8 [Database Applications]: [Spatial Databases and
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1. INTRODUCTION
Affordances of urban space dictate how residents conduct

their day-to-day lives. To a great extent, much of people’s
travelling is motivated by a misalignment of their immedi-
ate needs and the affordances of their current space. From
home, employees travel to places affording work while stu-
dents travel to spaces affording education. Residents travel
back to residential spaces to end the day. Understanding
the inherent functionality of urban regions, or urban affor-
dances, forms the basis for many urban planning applica-
tions, such as designing more accessible spaces or suitably
distributing urban resources and amenities.

Recently, an increasing amount of research is beginning
to assess urban functionality through implicit observations
of human mobility. For example, the proliferation of GPS-
enabled ubiquitous computing devices [10], transit records
[23], or geo-tagged social media data [13], are all provid-
ing informative signals that hint at the functionality associ-
ated with fine-grained spatial regions. Compared to under-
standing functionalities through traditional methods such as
urban infrastructure analysis or purpose zoning, these im-
plicit observations yield a more natural representation as
they directly measures how the city is utilized. In addition,
they offer a dynamic view, allowing for longitudinal analy-
sis. While a large quantity of data can indeed be obtained
via implicit observations, ground-truth labels for why peo-
ple travel (consequently, the affordance of a space) is often
unavailable and difficult to infer. Therefore, objective and
quantitative evaluations are difficult to conduct and results
often require subjective interpretation.

In this paper, we leverage large-scale travel surveys to ob-
tain proxy labels for regional functionalities. Often contain-
ing tens of thousands of trips with explicitly stated travel
purposes (e.g. Shopping, Education, Go Home), substan-
tial area within municipal regions are often covered by these
trips. As a result, the explicitly stated purposes form a
multi-dimensional functional vector for their destination re-
gion. These labels allow us to utilize supervised learning
methodology to model functionality distributions from ob-
servable variables, such as temporal and demographic as-
pects of trips. To complement the who and when compo-
sition of an urban space, we also fuse in crowd-generated,
semantic venue labels to complement with what.

Our contributions beyond state-of-the-art work are:

• A supervised approach using multi-output regression
to capture the distribution and intensity of fine-grained



regional functionalities from fused travel survey and
crowd-generated data.

• Objective evaluations and analysis of our approach in
both estimating multi-dimensional functionalities and
clustering of spatial regions.

• An illustrative case-study with prototypical neighbour-
hoods of Seattle to demonstrate our pipeline’s ability
to grasp the dynamics of a city.

2. RELATED WORK
The use of human mobility to capture dynamics of ur-

ban spaces is currently an active area of research. Various
approaches have been investigated, including mining of taxi-
cab patterns [25, 15, 14], bike rental pick up/drop off loca-
tions [4], call detail records [17, 21], and web/social media
streams [13, 5, 22, 11, 3].
Of these studies, many employ unsupervised approaches

to extract significant mobility patterns, from which land us-
age patterns is subsequently interpreted by a handful of
local-knowledge experts. For example, a recent work by
Yuan et. al. [23] discovers urban functional zones by using
a novel topic model-based approach to fuse together points
of interests and mobility patterns extracted from taxi-cab
and public transit data. However, without a substantial
quantity of explicitly labelled regional purposes, objective
evaluation and comparison of methodologies yield to sub-
jective interpretations. Some studies have explored the use
of municipal land zoning as ground-truth labels to enable
supervised learning. For example, earlier work by Toole et.
al. [21] classify patterns in mobile call detail records to de-
termine land usage type as one of Residential, Commercial,
Industrial, Parks, or Others. More recent work, such as [24],
perform similar experiments with social media data as in-
put signals. Compared to municipal zoning or other types
of static single-purpose definition of urban spaces, our labels
are derived from individual travel purposes. As such, we
learn actual land usage as opposed to intended. In addition,
single-purpose space usage is not assumed as our approach
aggregates travel purposes to represent functionality as a
vector of different purposes. To the best of our knowledge,
this work is the first to employ a supervised approach to
simultaneously learn multi-dimensional functional intensity
of urban spaces by considering both dynamic human mo-
bility patterns as well as static regional attributes. We are
able to conduct supervised learning due to the availability
of regional purpose labelling from over 10K residents.
Other researchers have also leveraged this rich data source.

For example, Jiang et. al. [9] assesses the demographic pro-
file of individuals based on their travelling patterns. Krumm
and Rouhana [12] uses the 2006 Puget Sound Travel Survey
and American Time Use Study datasets to predict the se-
mantics of particular venues from people’s travel and demo-
graphic patterns. Recently, Kim et. al. [10] demonstrated
the collection and utilization of travel survey data to pre-
dict people’s activities based on their travel location. Our
work leverages travel survey data for a different purpose of
urban space characterization. By aggregating trip instances
into segmented spatial instances, we effectively model urban
spaces.

3. DATA AND FEATURES

3.1 Data Source
In this work, our primary source of data comes from the

Puget Sound Regional Council’s 2014 travel survey data
(PSRC)1. Available for public download, this large-scale travel
survey was conducted between April and mid-June 2014,
where 6,000 households composed of ∼10K people reported
∼47K trips as part of their weekday travel patterns. The
area surveyed composes of multiple counties in the Puget
Sound region, including King, Kitsap, Pierce, and Snohomish
counties. In addition to capturing detailed temporal and de-
mographic aspects of trips and the participants, this dataset
also provides the purpose of trips, as explicitly indicated by
participants. Categorized as one of 16 purpose categories
(e.g. Go Home, Shopping, Work, etc.) covering typical as-
pects of daily life, these labels provide a valuable perspective
into the functionality of the destination region. We slightly
reduce the number of categories to 14 by combining the cat-
egories of “Go to workplace” and “Go to other work-related
place (e.g. meeting, delivery)” as well as “Go grocery shop-
ping” and “Go to other shopping (e.g. mall, pet store)”.

We also collect crowd-generated data from the social me-
dia platforms Foursquare and Twitter to augment our char-
acterization of the Puget Sound region. As the leading
location-based social media platform in the United States,
Foursquare allows users to construct and categorize points
of interests as well as check into existing ones. Using the
Venues API service from the platform2, we populate corre-
sponding regions surveyed by the PSRC with 111,725 venues.
The venues captured are categorized into 580 semantically
meaningful categories, as defined by the Foursquare venue
hierarchy3. From Twitter, we use the Streaming API4 to
capture geo-tagged tweets generated in the Puget Sound re-
gion. We stream for approximately three weeks between
May and June of 2015. To boost the tweets we collect from
the Streaming API, we use the author IDs of the collected
tweets to back-search other geo-tagged tweets generated by
these authors. In total, we leverage 383,140 tweets from
12,228 authors in the Puget Sound region.

3.2 Spatial Segmentation
Given the entire region, a necessary initial step is to par-

tition for atomic units of analysis. A standard method is to
employ grid-based partitioning to divide an area into equal-
sized instances. However, such partitioning ignores the nat-
ural composition of the urban space for factors such as pop-
ulation density, geographical terrain, or urban artefacts with
divisive properties (e.g. roads).

To address these issues, previous work of Yuan et. al. [23]
proposes the use of road networks for a more natural parti-
tioning of the urban space. In this work, we employ census
cells to form atomic regions for analysis. Typically devel-
oped by national census departments, these cells represent
the basis for most geographic reporting. In their construc-
tion, both physical and non-physical factors are considered.
Considerations include streets, rail tracks, streams as well
as property lines, municipal limits, etc5. Within a densely

1http://www.psrc.org/data/transportation/
travel-surveys/2014-household
2https://developer.foursquare.com/overview/venues.
html
3https://developer.foursquare.com/categorytree
4https://dev.twitter.com/streaming/overview
5http://www.psrc.org/data/gis/shapefiles



Figure 1: Normalized co-occurrences of trip pur-
poses within individual destination cells. The colour
intensity of the off-diagonals represent the pro-
portion of co-occurrence with another functionality
within the same cell.

populated metropolitan, these cells often represent one city-
block. However, they may span larger areas to cover, for
example, an entire conservation area. In addition to the
wide range of factors considered in the construction of cen-
sus cells, we also utilize census cells as atomic regions of
analysis due to the obfuscation of trip coordinates in the
PSRC dataset, where origin and destination coordinates are
aligned to the centroids of census cells.

3.3 Co-occurrences of Functionalities
In Figure 1, we plot the co-occurrence rate of PSRC trip

purposes aggregated into their respective destination cells.
To better highlight the co-occurrence distribution, we con-
duct row-wise, l1-normalization. Of the 10610 cells contain-
ing at least one purpose, 64% contain one purpose while 36%
contain multiple purposes.
Given the 14 categories of purposes, we see reasonable

co-occurrences of functionalities. For example, Education
has a relatively high co-occurrence rate with Drop Off/Pick
Up Someone, likely arising from cells school children travel
to with their parents. Similarly, it is reasonable to en-
counter co-occurrences of Eat Out and Shopping, for ex-
ample, in shopping centres. Given the existence of numer-
ous off-diagonal entries, we substantiate the need for multi-
purpose learning to better reflect observed urban space us-
age.

3.4 Signals for Characterizing Regional Func-
tionalities

In this section, we visualize the signals we collect and pro-
vide an intuitive basis for our feature extraction process. We
select 8 characteristic regions from the city of Seattle (part of
King county) as case-studies for illustrative purposes. These
regions are briefly described as follows:

Figure 2: Temporal distribution of trips from the
PSRC dataset for 8 prototypical neighbourhoods of
Seattle.

Belltown: The most densely populated area in Seattle, it
is a city-core neighbourhood containing various residential
and office high-rises. A variety of restaurants, nightclubs,
and art galleries are also splattered in this neighbourhood.

Central Business District : Typical CBD containing var-
ious office buildings, complemented with restaurants and
other auxiliary amenities for day-time workers.

Industrial District : The principal industrial area in Seat-
tle, with heavy industry and railroad construction compa-
nies.

University District : The main campus of University of
Washington is here. This district also includes venues for
cultural life and recreation.

Wallingford : A classic residential suburb in Seattle, with
shops, restaurants, bars and movie theatres to complement
residential homes of middle and upper class families.

Capitol Hill ; A densely populated residential district in
Seattle with nightlife and entertainment.

Lake City : A relatively outlying suburban residential area
containing some retail commerce.

Ballard : A northwestern neighbourhood by the sea. It is a
residential region with various restaurants, retails, markets,
bars, etc.

3.4.1 Temporal Characterization
From the PSRC travel survey, we can derive the arriving

and leaving hours of trips aggregated for different census
cells. In Figure 2, we plot a heatmap based on the counts
of trips leaving, arriving, and staying in the different neigh-
bourhoods over the different hours of the day. We conduct
row-wise min-max normalization to scale data counts be-
tween [0, 1] for better visualization.

By chunking the data into hourly bins, we can spot in-
tuitive temporal patterns. For example, Belltown and CBD
areas have similar arriving and leaving time profiles: people
tend to come for work around 8 in the morning, leave and
arrive back around lunch time, and finally leave after 5pm.



Figure 3: Temporal distribution of tweets. Counts
of tweets sightings are scaled row-wise between [0, 1]
for visualization purposes.

Comparing Belltown with CBD, people tend to stay later
during the evening in Belltown, likely due to the restaurant
and nightlife amenities available. These two neighbourhoods
are markedly different than the suburban residential regions
of Wallingford, Capitol Hill, Lake City, and Ballard. Ex-
amining the stay hours, we see they are typically shifted
towards the evening hours, when people tend to be at home.
Finally, the temporal profile of the University District is also
quite intuitive, where the main hours of stay are during the
day (likely for working and going to school), while some stay
during the evening as there also exists a residential compo-
nent in this neighbourhood.

Therefore, for the temporal profiling of a census block cell,
Ci, we bin the hours of ingress and egress as Tin(i) = [t0, t1,
..., th, ..., t23] and Tout(i) = [t0, t1, ..., th, ..., t23], respectively,
where each element th represents the count of trips ingress-
ing or egressing during hour h. From the time of entry and
exit, we also derive the hours in which residents stayed in
the region: Tstay(i) = [t0, t1, ..., th, ..., t23] where, again, th
is a count of the number of residents staying during the hour
h in region i.

As an additional source of temporal characterization, our
geo-tagged Twitter dataset allows us to extract the number
of tweets generated for a given spatial-temporal context. In
Figure 3, we plot the scaled quantity of hourly tweet sight-
ings for the various neighbourhoods, during weekdays and
weekends. For weekdays, we observe a similar pattern to
that of stay hours captured from the travel survey, with
the exception of the Industrial District. We observe higher
variation between hours in the Twitter data compared to
the features extracted from the travel survey. The week-
end patterns are distinctively different, which is expected as
the travel survey was conducted for weekdays only. Similar
to the feature extraction method for travel survey data, we
construct two temporal vectors for each cell i to reflect the
raw quantity of tweet sightings: Tweekend(i) = [t0, t1, ..., t23]
and Tweekdays(i) = [t0, t1, ..., t23].

3.4.2 Spatial Attributes
We query the Foursquare platform to obtain the venues

contained within the Puget Sound region. Using crowd-
generated venue categories, we form a count distribution of
venue types for each region: V (i) = [v0, v1, ..., v579]. These
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Figure 4: Conceptual framework for functional
learning and aggregation of urban spaces. The
methodological flow and associated evaluations are
outlined in the three main phases of learning, esti-
mation, and aggregation. Their details are discussed
in Section 4.

venues contain a wide range of illustrative venues, such as
Residential Buildings, Office, Opera House, etc.

3.4.3 Demographic Signatures
Similar to temporal characterization, we aggregate the de-

mographic profiles of users travelling to each Ci based on
their age group and occupation. Following the categoriza-
tion used in the PSRC dataset, the age dimensions com-
posing the count vector Dage(i) are: Under 5 years old;
5-11; 12-15; 16-17; 18-24; 25-34; 35-44; 45-54; 55-64; 65-
74; 75-84; and 85 or older. The occupation count vector
Doccupation(i) contains the dimensions: Employed full-time
(paid); Employed part-time (paid); Self-employed; Unpaid
volunteer or intern; Homemaker; Retired; and Not currently
employed. For users without an employment specification,
we count their presence using their reported school cate-
gories instead: Daycare; Pre-school; K-12 public or pri-
vate school; K-12 home school (full-time or part-time); Col-
lege, graduate, or professional school; Vocational/technical
school; Other (school); and None (school).

Using the aforementioned feature sets, we can concate-
nate the spatial, temporal, and demographic aspects to form
a comprehensive view of atomic regions defined by census
block-based segmentation of the Puget Sound region. In ef-
fect, we capture both static attributes of the physical region
as well as dynamic resident-space interaction patterns.

4. MODELLING METHODOLOGY
In this section, we first describe our methodology for mod-

elling the mixture of functions afforded by various atomic re-
gions. Then, we describe a subsequent aggregation of these



regions to form spatial clusterings of similar functionalities.
A conceptual overview of our methodology is presented in
Figure 4. Section 4.1 corresponds to the learning and es-
timation sections of Figure 4 while Section 4.2 details the
aggregation component.

4.1 Functionality Learning from Trip Purposes
Aggregating the trip purposes of a spatial region, Ci, we

obtain the ground-truth functionality vector Yi. From the
spatial, temporal, and demographic features we extract (see
Section 3), our aim is to learn a statistical model capable

of accurately estimating an Ŷi given a fused feature vector
Xi for Ci. In other words, we aim to learn the mapping
from a multi-view characterization of a region to its multi-
dimensional functional mixture. Furthermore, we also esti-
mate the intensity of its functionalities to provide a more
fine-grained understanding of usage dynamics.
Without the loss of generality, for a dataset containing N

rows, L feature dimensions and K dimensions corresponding
with different regional functionalities, we require the map-
ping f(X) such that the error term, ε is minimized for unseen
testing instances:

Y = f(X) + ε (1)

where Y and ε are N×K matrices and X is an N×L feature
matrix.
For such regression problems, a common method is to

construct K, individual fk(X) mappings to estimate func-
tionalities independently. However, as urban functionali-
ties may be highly correlated (e.g. Eat Out and Shop-
ping), better testing accuracies and computational efficiency
can be achieved by estimating a single model capable of
simultaneously estimating the target dimensions [8]. One
class of methods capable of naturally conducting the nec-
essary multi-output regression is tree-based regression algo-
rithms. For regression purposes, this family of nonparamet-
ric models recursively make partitions in the feature space
to minimize sum of squares with respect to the training la-
bels. With considerations for overfitting, the estimation at
the final leaf nodes inherently contain distributions in the
multi-dimensional space of the response variable. In our im-
plementation, we leverage the ensemble method Extremely
Randomized Trees (ERTs) by Geurts et. al. [6] as imple-
mented in [16].

4.2 Functional Group Aggregation
Having estimated the functionality vectors of spatial in-

stances, an aggregation step would be helpful for two pur-
poses: to reduce the dimensionality for ease of interpretation
and provide robustness when comparing noisy functionality
estimations. In this aggregation step, we apply standard K-
Means clustering algorithm to Ŷ and obtain D clusters of
functionally similar regions. Later in Section 5.2, we show an
illustrative application of differentiating spatially contiguous
based on clustered regional functionalities.
One way to internally validate the results of cluster as-

signments is to use the Silhouette Index (SI) [19]. Ranging
between -1 and 1, the SI measures how compact clusters
are by computing the average intra-cluster and inter-cluster
distances. As such, positive SI indicates compact clustering
while loose clustering is indicated by negative SI. However,
a more objective validation of the clustering results could be
done with “ground-truth” cluster-assignment memberships.

As illustrated in Figure 4, the outcome of a clustering algo-
rithm applied to estimated regional purposes should be as
similar as possible to the clustering outcome of the same al-
gorithm applied to the labelled regional purposes. Therefore,
we can objectively validate our clustering results by calcu-
lating a clustering coherence measure between estimation-
based clustering and label-based clustering. One commonly
used metric to compare clustering results with an external
clustering is the Rand Index [18]. Acting as a type of accu-
racy measure, the Rand Index penalizes assignments where
a pair of data is assigned to different clusters by the model
while sharing the same cluster assignments in ground-truth
clustering. Similarly, pairs assigned to the same cluster by
the model, but exist in different clusters in the ground-truth,
are also marked as incorrect. In our experimentation, we
employ the Adjusted Rand Index (ARI) measure to also
discount for expected clustering coherence due to chance.

5. EXPERIMENTAL RESULTS
Given the methodology described above, we evaluate the

performance of our approach on two fronts: first, the mod-
elling of trip purposes afforded by atomic regions. Second,
we examine the clustering coherence of functional zones de-
rived from estimated purpose mixtures. We report results on
the 7218 out of 10610 census cells containing features from
all three data sources: 2014 PSRC travel survey, Foursquare
and Twitter. Consequently, we are leveraging approximately
80% of the trip purpose labels from the travel survey.

5.1 Regional Purpose Estimation

5.1.1 Model Fit and Interpretation
Having aggregated the various feature sets from the travel

survey, Foursquare and Twitter, we fit a multi-output re-
gression model to estimate yi using our approached based
on ERTs described in Section 4.1. To gauge the explana-
tory power of the fitted model for unseen data instances, we
conduct 10-fold cross-validation. As such, the mean perfor-
mance over the 10 testing folds are reported below.

To quantify the ability of our model to explain unseen
instances, we calculate the coefficient of determination on
unseen instances[7]. Intuitively, the coefficient of determi-
nation calculates the fraction of sum of squares of residuals
over the total sum of squares. To express the best model
as 1 and worst as 0, the coefficient of determination (R2)
is 1 subtract this fraction. Adapting this concept to our
multi-output case, we calculate R2 as follows:

R2 = 1−
∑Ntest

i=1

(∑K
k=1(ŷ

i
k − yi

k)
2
)

∑Ntest
i=1

(∑K
k=1(y

i
k − ȳk)2

) (2)

where Ntest is the number of testing instances unseen in
model training, K is the number of purpose dimensions for
each instance, ŷi

k is the model estimation of purpose k for Ci.
Corresponding to the PSRC travel purpose labels, yi

k and ȳk
are count of travel purposes in category k for region i and
mean of purpose k over all testing instances, respectively.

Clearly, a straw man model where the estimations are
simply the mean of each purpose dimension k, the R2 is
to be interpreted as 0. In Table 1, we tabulate the testing
R2 scores achieved with different combinations of the fea-
ture sets: travel survey demographic features (TrD), travel



MAE aRMSE R2 Coefficient

Mean Model 7.900 1.204 0.000
TrT 4.378 0.827 0.620

TrT + TrD 4.137 0.788 0.660
TrT + FsS 4.095 0.800 0.648
TrT + TwT 4.426 0.829 0.614

TrT + TrD + FsS 3.937 0.774 0.675
TrT + TrD + TwT 4.165 0.796 0.655

TrT + TrD + FsS + TwT 3.984 0.773 0.672

Table 1: Testing errors obtained with different fea-
ture sets: travel survey demographic features (TrD),
travel survey temporal features (TrT), Foursquare
spatial features (FsF), and Twitter temporal fea-
tures (TwT). A straw man approach of using the
mean of the dataset is used for comparison. All ap-
proaches significantly outperform the straw man ap-
proach while the combination of travel survey and
Foursquare features delivers the best performance.

survey temporal features (TrT), Foursquare spatial features
(FsF), and Twitter temporal features (TwT). The multi-
feature set models are trained by concatenating the individ-
ual feature sets. Using the travel survey data alone, with fea-
tures describing the temporal ingress/egress and stay times
of people along with their demographic profiles, our model
achieves a mean R2 of 0.6598. Coupling these features with
the Foursquare venue features describing the spatial aspect
of regions, we obtain an increased mean R2 value of 0.6750.
However, with the further addition of tweet sighting fea-
tures, the mean R2 value remains similar at 0.6721.
Aside from gauging the testing R2 of our model, our su-

pervised approach also allows us to gauge the importances
of features from the different feature sets in correctly esti-
mating regional purposes. We conduct feature importance
analysis by fitting ERTs on the entire dataset with all fea-
ture sets and rank according to their Gini importances [2].
In Figure 5, we plot the distribution of the ranks from most
important (rank of 0) to least important (rank of 869) on
the x-axis. On the y-axis, we plot the distribution of ranks
obtained for each grouping. From the distributions, we can
clearly see the dominating importance of travel survey fea-
tures. However, contributions from Foursquare features,
capturing the points of interests in regions, are also seen
in the top 100 most important features. On the other hand,
the most informative tweet sighting features contribute only
in the 100-200 ranks.
From the quantification via the R2 and the feature impor-

tance characterization, we see evidence that the travel sur-
vey data can be successfully complemented by Foursquare
venues in estimating purposes of regions. In addition to the
dynamic patterns of people-space interaction, static spatial
characteristics are useful in explaining the variance of unseen
data instances.

5.1.2 Quantification of Modelling Error
We use standard mean absolute error (MAE) to quan-

tify the deviation of model estimates and labelled regional

Figure 5: The importance of each feature is calcu-
lated according to its Gini importance [2] during the
fitting of the model. We rank and plot the distri-
bution of the ranks for each feature category (rank
0 is most important). The medians of the distribu-
tions are marked with the black dot while the boxes
and whiskers indicate the interquartile range and
1.5 times the interquartile range of the distribution,
respectively.

functionalities given by the PSRC dataset. Furthermore, we
evaluate the average root mean squared error (aRMSE) to
demonstrate the sample standard deviation of how predicted
functional intensities differ with travel survey labels. Given
our multi-output regression task, we adapt these two error
metrics, similar to [1], as follows:

MAE =
1

n

Ntest∑
i=1

( K∑
k=1

|ŷik − yi
k|
)

(3)

aRMSE =
1

K

K∑
k=1

√∑Ntest
i (ŷi

k − yi
k)

2

Ntest
(4)

From Table 1, we note the best performing combination
of features utilizes the travel survey demographic and tem-
poral features, coupled with Foursquare spatial features. On
the other hand, the straw man approach of using the mean
as an estimate results in almost double MAE. To assess the
significance of the different approaches, we conduct the two-
sample Kolmogorov-Smirnov test[20] on the distribution of
residuals. Compared to utilizing travel survey data with-
out augmentation, the residual distribution of the other ap-
proaches are all statistically significant (p < 0.01). We also
note that TrT+TrD+FsS results in significantly different
residuals than TrT+TrD+TwT (p < 0.01). However, the
residuals of TrT+TrD+FsS+TwT and TrT+TrD+FsS are
not significantly different (p = 0.036).

These results imply two things: first, we obtain superior
testing performance when augmenting travel survey with
Foursquare spatial features. Second, the addition of tem-
poral features extracted from Twitter delivers inferior per-
formance and the addition of these features do not make a
significant difference when Foursquare spatial features are
already added to the travel survey features.

5.1.3 Regression Error Analysis
Although the previous two subsections indicate that fea-

tures resulting from tweet sighting times are not particularly



Figure 6: Grouping instances by the number of la-
bels per instance, we plot the average difference of
deletion errors from insertion errors on the y-axis.
As the number of labels increases, insertion errors
are less dominant for regions with more labelling.

useful for explaining variances in regional purposes or esti-
mating them, we must point out that the labels are merely
a sampling of the entire population of purposes. While ap-
proximately 47K trips are recorded in the PSRC dataset,
the associated trip purposes are only a subset of all trip
purposes afforded by each region. Here, we conduct a closer
examination of the testing residuals to better understand
the estimation outputs.
Two forms of residuals exist when comparing the model

output to the trip purposes labelled in the PSRC dataset:
insertion errors and deletion errors. We refer to insertion
errors as cases where the model estimates existence of pur-
poses not contained in the PSRC labels. Contrarily, deletion
errors are where our model underestimates the existence of
purposes stated in the PSRC labels.
We can assess the contribution of the two types of resid-

uals by calculating the residual mass difference arising from
insertion errors and deletion errors. To do so, we first de-
termine the instance-specific sum of rposi and rneg

i from ri =
ŷi−yi, where r

pos
i indicates total residual for insertion errors

and rneg
i indicates total residual arising from deletion errors.

Then their difference can be calculated as rΔi = rposi − rneg
i .

Therefore, an rΔi ≈ 0 indicates similar error contribution
from insertion errors and deletion errors. A positive rΔi
implies stronger insertion error while it is negative when
a stronger deletion error component is present.
In Figure 6, we plot the mean of error mass differences

grouped by the number of PSRC trip labels per instance.
For all three approaches leveraging different feature sets, we
notice a common decline in the error mass difference as in-
stances contain an increasing number of PSRC trip labels.
In other words, insertion errors are less prevalent than dele-
tion errors when a higher number of labels are provided per
instance. One possible explanation for this phenomenon is
that our model is capable of identifying distinct patterns for
multiple regional purposes. However, as the PSRC travel
survey dataset does not capture all the activities afforded
within a region, our model may be inappropriately penalized

Figure 7: Comparing K-Means clustering on esti-
mated regional purposes and labelled regional pur-
poses, we quantify the performance of our approach
with the Adjusted Rand Index (ARI). Plotting the
resultant ARI on the left y-axis, a peak is found
at D = 4, where the ARI is 0.81. On the right y-
axis, we plot the Silhouette Index (SI) [19] of the
two clusterings, quantifying the compactness of the
resultant cluster shapes.

for correctly overestimating beyond the labels provided. We
discuss this point further in the discussion section.

5.2 Aggregating Estimated Functionalities
To leverage functionalities as input for understanding dy-

namics of urban neighbourhoods, the estimated functional-
ities need to be summarized for better interpretation and
to provide robustness against estimation errors. Below, we
show results for this aggregation step using TrT + TrD +
FsS + TwT regression estimates as input.

5.2.1 Clustering Output Coherence
In Figure 7, we plot the ARI obtained for different num-

bers of clusters, indicated by D. In addition to the ARI
measured by the left y-axis, we also plot internal validation
for the compactness of clusters on the right y-axis. Our re-
sults indicate that the ARI peaks at 0.81 for D = 4. In
Figure 8, we compare the clustering memberships of census
cells in three characteristic regions in Seattle. Comparing
the estimation-based clustering and label-based clustering,
we notice the majority of cells match in their cluster assign-
ments.

Also at D = 4, the SI achieved for estimation-based clus-
tering is also near its peak at 0.56, which indicates a reason-
ably compact clustering. Interestingly, the SI of estimation-
based clustering is almost always higher than that of label-
based clustering, even with high ARI values indicating sim-
ilar groupings. This shows that, while cluster assignment
stays relatively similar, more compact clusters are achieved
when grouping based on estimated regional purposes.

5.2.2 Semantic Interpretation of Clusters
By clustering from a semantically meaningful basis of func-

tionalities, we can provide concrete interpretations of the



Figure 8: Cluster membership are highly similar between estimation-based and label-based clusterings. Three
prototypical neighbourhoods of Seattle are illustrated. The colour scheme corresponds to the cluster centroids
depicted in Figure 9 as follows: Blue - mixture of various purposes with weak indications (Centroid D), Red
- predominantly residential areas (Centroid B), Purple - predominantly working (Centroid C), and Green -
Shopping and Going Out (Centroid A).

clusters obtained. In Figure 9, we plot the composition of
the inferred cluster centroids, with the 14 regional function-
alities as basis. For each centroid, we plot the raw intensity
of regional purposes as stacked bars. The legend selectively
plots 11 of the 14 purposes due to space constraints. As
can be expected from the high ARI, the centroids found be-
tween the estimation-based clustering and label-based clus-
tering have a one-to-one correspondence and demonstrate
high similarities between corresponding centroids (e.g. Cen-
troid C and Centroid 3).
Examining the centroids from estimation-based cluster-

ing, there exists three centroids with predominant function-
alities (Centroids A, B, and C) while Centroid D is low in
intensity and contain a relatively uniform distribution of
functionalities. The corresponding cluster, Cluster D (blue
in Figure 8), captures regions where the model makes an un-
clear estimation of purposes, which is likely due to weakly

indicative data collected for those cells. In Cluster A (green
in Figure 8), a strong functional component is Shopping,
coupled with the presence of Working and Personal Busi-
ness with less intensity. From Figure 8, these cells are found
more frequently in the downtown area. Upon examining
the individual cells, they contain landmark sites such as Pa-
cific Place, an upscale shopping centre in downtown Seat-
tle, Broadway Market in Capitol Hill, or University Village
Shopping Center in the University District. In Capitol Hill
and the surrounding areas of the University of Washington
campus, we notice a prevalent number of cells belong to
Cluster B (Figure 8, red). From the centroid composition
and the spatial distribution of Cluster B cells, we can easily
identify these as residential areas with suitable amenities,
such as Shopping. Finally, Centroid C captures many of-
fice buildings in downtown Seattle. Dominated by Working,
there also exists elements of Eat Out and Shopping, charac-
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Figure 9: The composition of the cluster centroids
are plotted as stacked bar graphs. A one-to-one cor-
respondence between the centroids of estimation-
based clustering and label-based clustering can be
seen.

teristic of cells in multi-functional downtown regions.
In Figure 10, we plot the distribution of cell memberships

of all 8 prototypical neighbourhoods we described initially
at the beginning of this paper. Using the three indicative
clusters (Clusters C, A, and B) described above, we see an
intuitive semantic grouping of these neighbourhoods via the
dendrogram calculated from the normalized cluster distribu-
tions. The four predominantly residential neighbourhoods
(Capitol, Wallingford, Lake City, and Ballard) are highly
similar to each other with a large proportion of Cluster B
cells. Although Belltown and University District also con-
tain significant Cluster B elements, the mixed-in Cluster C
and A cells give these neighbourhoods stronger work and
shopping/entertainment aspects. Belltown and University
District are further grouped with the CBD district, which
trades off residential elements for more working regions. Fi-
nally, a distinctively separate district from these previous
two groupings is the Industrial District, without any Clus-
ter B elements.

6. DISCUSSION & FUTURE WORK
From our results, we illustrate that trip purposes from

travel surveys can be used as an important source of ground-
truth labels to define functionalities afforded by specific ur-
ban spaces. Moreover, the availability of this ground-truth
opens up the possibility to conduct objective quantitative
model evaluation and interpretation of feature importances.
As the dataset used in our work covers multiple cities in
the Puget Sound area, we believe our model is capable of
generalization to other cities as long as similar travel survey
samples and social media data exist. One aspect of our fu-
ture work will explore generalization in two aspects: first,
how well do models generalize between cities (e.g. train in
Seattle and test in Chicago). Second, we will investigate the
use of semi-supervised methods to propagate accurate but
sparse labels from travel surveys to unlabelled but abundant
instances of social media data.
Our analysis also demonstrates that travel surveys only

represent a sampled representation of all functionalities. As
shown in Figure 6, we see evidence that the model does not
overestimate as much when more labels are present per in-

Figure 10: The distribution of (row-wise) normal-
ized counts of cluster members for each neighbour-
hood. From the dendrograms, an intuitive semantic
grouping of the neighbourhoods emerge: residential
areas (Capitol, Wallingford, Lake City, and Ballard),
working districts (Belltown, University District, and
CBD), and the Industrial zone.

stance. Partially due to the large regional coverage of travel
surveys, comprehensive coverage of regional functionality la-
belling is not always possible. Therefore, another aspect of
our future work will investigate amending this limitation in
two ways: first, modifications of the current modelling ap-
proach and corresponding metrics to handle the partial-label
problem. One possibility to mitigate the lack of labels is to
conduct spatial smoothing to gain additional labelling from
spatially near cells. Second, we will also further examine the
possibility of obtaining additional labels from geo-tagged,
crowd-generated data. One approach is to conduct textual
content analysis (e.g. Foursquare venue tips) to extract top-
ics to infer implicit urban functionalities.

7. CONCLUSION
In this work, we demonstrate the usefulness of travel sur-

vey data in providing both signals, indicating human-space
interactions, as well as labels, indicating the functionality
of a region. With this functional ground-truth, supervised
methods can then be applied to learn the mapping from tem-
poral, spatial, and demographic aspects of a region to the
mixture of functionalities that it affords. Utilizing multi-
output regression, we demonstrate that our approach strongly
outperforms a mean-based straw man approach in terms of
estimation error while the augmentation of travel survey fea-
tures with crowd-generated Foursquare data delivers a sta-
tistically significant boost in performance. For more inter-
pretability and robustness to estimation errors, we cluster
spatial regions based on model-estimated functionalities to
better grasp urban dynamics. Comparing estimation-based



clustering and clustering directly on ground-truth function-
alities, we see a high level of clustering coherence (ARI of
0.81). Based on these findings, we argue our work provides
an effective and novel approach for urban planners to gain
insight on the functional composition of their cities.
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