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ABSTRACT
Audio augmented reality (AAR) applications need to render virtual
sounds with acoustic effects that match the real environment of
the user to create an experience with strong sense of presence.
This audio rendering process can be formulated as the convolu-
tion between the dry sound signal and the room impulse response
(IR) that covers the audible frequency spectrum (20Hz - 20kHz).
While the IR can be pre-calculated in virtual reality (VR) scenes,
AR applications need to continuously estimate it. We propose a
method to synthesize room IRs based on the corresponding IR in
the ultrasound frequency band (20kHz - 22kHz) and two parameters
we propose in this paper: slope factor and RT60 ratio. We assess the
synthesized IRs using common acoustic metrics and we conducted
a user study to evaluate participants’ perceptual similarity between
the sounds rendered with the synthesized IR and with the recorded
IR in different rooms. The method requires only a small number of
pre-measurements in the environment to determine the synthesis
parameters and it uses only inaudible signals at runtime for fast IR
synthesis, making it well suited for interactive AAR applications.
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1 INTRODUCTION
When we listen to the same sound in different environments, our
perception of the sound varies significantly due to the differing
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acoustic properties of these environments. For example, a voice in
a large space with reflective surfaces such as a church will sound
completely different in comparison to the same voice heard in
a small carpeted room with furniture in it. In augmented reality
(AR) and virtual reality (VR) applications, it is important that the
rendered audio signals sound like they "belong" in the environment.
This has been shown to improve a user’s sense of presence and
immersive experience [14].

A typical approach to capturing the "acoustic fingerprint" of a
space is to measure the impulse response (IR) and then compute the
convolution between the IR and the dry sound. To exactly replicate
how a space sounds, IRs from every point in the space are supposed
to be captured, because an IR is a function of room geometry, ma-
terials, and the positions of the source and the listener. However,
carrying out IR measurements for every source-receiver location
is laborious and time-consuming. To address this issue, some re-
searchers simulate IRs by modeling the sound propagation process
based on the 3D environment model and the acoustic properties of
the indoor materials [8]. In recent years, thanks to the development
in the field of computer vision, some researchers reconstruct the en-
vironment geometry and classify the surface materials using visual
inputs from cameras [20]. Some researchers also optimize simulated
IRs based on target acoustic parameters (e.g. reverberation time)
that are estimated using deep learning models [23].

We present a method to synthesize IRs for arbitrary listener po-
sitions. Unlike existing methods that model a sound propagation
process with detailed 3D geometry and material properties, our
method is based on a set of IR-related parameters proposed in this
work. Our method uses measurements in the ultrasound frequency
band (20kHz - 22kHz, referred to as ultra-IR in the following) as
input for "expansion" to the full IR that covers the audible frequency
spectrum. Given an ultra-IR, we detect the arrival time of the di-
rect sound, and use it to initialize IRs in each octave band (center
frequency from 63Hz to 16kHz, referred to as octave-IR in the fol-
lowing) with an exponentially decaying Gaussian white noise. The
early reflections and late reverberation parts of each initialized sig-
nal are then corrected to finalize the octave-IR. Finally, octave-IRs
are added up and normalized to generate the room IR in the full
frequency range. Rather than reconstructing a perfect room IR from
ultra-IR, our goal is to create convincing acoustic effects with the
well-enough approximated IR for AR applications.

The proposedmethod appears promising in the following aspects.
First, this method does not require the simulation of the entire
sound propagation process that relies on the environment geometry
and the material information. Secondly, machine learning-based
approaches usually require a large number of training samples,
while we only need a small number of pre-recorded IRs (16 in
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our examples) in the environment of interest to determine the IR
synthesis parameters: slope factor and RT60 ratios. Furthermore,
since the method requires to play and measure ultrasound signals
that are inaudible to most people, it will not disturb the user at
runtime of an application.

We evaluated the proposed method using both objective com-
parison and subjective user study. Objectively, we compared the
synthesized IR with the ground truth IR in terms of common acous-
tic metrics: reverberation time, early decay time, clarity 80, and
center time. Subjectively, we conducted a user study and found
that participants generally leaned towards similar auditory percep-
tion between the sounds rendered with the real IR and with the
synthesized IR from our method.

The main contributions of this work are: (1) a novel ultra-IR
to room IR synthesis method that creates perceptually adequate
acoustic effects for immersive auditory experience; (2) objective
and subjective evaluations of this IR synthesis method.

The proposed method has high potential to be applied in in-
teractive AR applications. The pre-computed room-dependent pa-
rameters can be stored in the cloud and retrieved for IR synthesis
when the user enters the space. Moreover, this parametric synthesis
approach runs significantly faster than modeling a complete sound
propagation process, making it well suited for real-time implemen-
tation as the user moves around in the space.

2 RELATEDWORK
Rendering a realistic acoustic environment in AR and VR applica-
tions is important to enhance a user’s sense of presence [27] and
has been a subject of research for several years [7, 21]. To this end,
a typical approach is to dynamically compute the IR of an environ-
ment based on the sound propagation path in the space given a
specific source-receiver position. This computation process usually
requires the 3D environment geometry and the acoustic properties
of the materials in the environment.

Hulusic et al. [8] provide a comprehensive overview of the ma-
jor techniques for modeling the sound propagation process given
the environment model and the material properties. Wave-based
techniques like the boundary element method (BEM) [11] aim to
solve the wave equations that describe the sound propagation pro-
cess very accurately, but require long processing time. Techniques
like the image source method (ISM) [2], volumetric methods [8],
and particle-based methods [8] simplify the modeling process by
excluding some properties of sound waves such as scattering and
diffraction. The modeling results are not as accurate as the wave-
based techniques, especially for some specific frequency bands,
but the computational requirement is lower. There also exist GPU
accelerated approaches [19, 24] and ray-based approaches [8] that
significantly save the simulation time. Although results may demon-
strate lower accuracy than the above approaches due to simplified
acoustic approximation, these methods still generate perceptually
satisfactory acoustic effects for AR and VR applications [10, 20].

In recent years, the development in the field of computer vision
has motivated researchers to use visual inputs from cameras for
3D environment reconstruction [10, 15, 20] and material classifica-
tion [9, 20]. Based on the modeled geometry and the classification
of materials, the above sound propagation modeling approaches

can be applied to generate the desired IRs. Alternatively, some re-
searchers use the 3D model and the material classification as inputs
for plugins that directly render the virtual sound with appropriate
acoustic effects for VR users [9]. Despite these advances, the po-
tential errors in the geometry modeling and material classification
may lead to unsatisfactory rendering of the acoustic environment.
To address this shortcoming, some researchers have attempted to
integrate an IR optimization step. This optimization process might
implement a solver system based on the ground truth IRs that have
been pre-recorded in the environment [20], or train a deep learning
network to estimate target acoustic parameters (e.g. reverberation
time) in the environment and use these target parameters to opti-
mize the sound rendering [23]. Deep learning-based approaches
usually require a large number of training samples. Due to the diffi-
culty of a large-scale in-situ IR measurement, researchers augment
existing IR datasets before training a deep network [23].

In addition to the geometry and material-based sound propaga-
tion modeling methods, some researchers propose to statistically
code a parametric sound wave field to simulate desired acoustic
environments [17, 18]. According to Raghuvanshi and Snyder [17],
much of the perceptual quality of a rendered sound can be captured
by a few acoustic parameters of an IR (e.g. decay time of the late re-
verberation). Therefore, they propose a method that codes the field
of time-varying IRs in terms of a few pre-computed parameters.
This parametric method runs significantly faster than the sound
propagation modeling approaches and it generates satisfactory
acoustic effects for VR applications where a user’s surroundings
dynamically change with the user’s movement.

Similar to Raghuvanshi and Snyder’s concept [17], we intend
to synthesize IRs for real-world environments based on several
target parameters instead of modeling a complete sound propa-
gation process. To determine the target parameters, our method
requires a small number of pre-recorded IRs (around 20) in the
real environment. Then, during the synthesis process, our method
creates perceptually adequate acoustic effects by only using ultra-
sonic measurements as input to approximate a complete room IR
for arbitrary listener positions.

3 FROM ULTRA-IR TO ROOM IR
In this section, we elaborate on the method of synthesizing a room
IR from its corresponding ultra-IR. Our goal is to approximate
a room IR that produces perceptually adequate acoustic effects
rather than reconstructing a perfect, original IR. The method first
synthesizes IRs in each octave band with center frequency 𝑓𝑐 ∈
[63Hz, 125Hz, 250Hz, 500Hz, 1kHz, 2kHz, 4kHz, 8kHz, 16kHz] based
on the ultra-IR, and then add up the octave-IRs to generate the room
IR. According to [12], it is common to segment an IR into three
parts in acoustic analysis: direct sound (DS), early reflections (ER),
and late reverberation (LR). As shown in Figure 1, the method of
constructing each octave-IR consists of four steps considering these
three parts: determining the arrival time of the DS, initializing
each octave-IR with exponentially decaying Gaussian white noise
(GWN), correcting the ER, and adjusting the LR. In this paper, the
sampling rate of IRs is 44.1kHz unless noted otherwise.
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Direct sound

Step 1: detect the arrival 
time of the direct sound 

from ultra-IR

Before the arrival of direct sound

Exponential envelope

(a). Gaussian white noise 
filtered in each octave band

(b). Initialize octave-IR with an 
exponential function

Step 2: initialize each octave-IR with a Gaussian white 
noise (GWN) filtered by an exponential function

Early reflections (200ms)

Step 3: correct the early 
reflections

Late reverberation (after 200ms)

Step 4: adjust the late 
reverberation

Figure 1: Four steps to generate an octave-IR based on an ultra-IR: the arrival time of the direct sound is detected from ultra-IR
and is used as the direct arrival time for each octave band (Step1). Given the direct arrival time, each octave-IR is initialized
with a Gaussian white noise filtered by an exponential function (Step2). After initialization, the early reflections consisting
of specular and diffuse components are corrected based on a target energy value (Step3). Finally, the late reverberation part is
adjusted based on a target energy value (Step4). Normalized octave-IRs are added up and normalized to generate the room IR.

(a). IR waveform in linear scale (b). IR waveform in dB logarithmic scale 

Figure 2: The waveform of an IR shown in linear scale and
in dB logarithmic scale. The envelope of the waveform can
be approximated by a straight line in logarithmic scale.

3.1 Arrival time of the Direct Sound
The arrival time of the direct sound indicates the onset of an IR. We
detect the arrival time in the ultra-IR (20kHz - 22kHz) and use it as
the onset time for each octave-IR.

The sample amplitudes 𝑎𝑠 in an ultra-IR signal are first normal-
ized to the range [−1, 1]. To detect the arrival time of the direct
sound, as commonly applied in audio signal processing [4, 13], we
shift a window across the ultra-IR and calculate the energy of each

segment 𝐸 (𝑤) = ∑
𝑎2𝑠 as well as the derivative of the energy

d𝐸 (𝑤)
d𝑤 .

We use a window size of 128 samples and a step size of 32 samples.
The first window where the derivative peaks, and the energy of the
window is above the set threshold, is selected as the window of the
direct sound. An energy threshold of 0.6 works robustly in all our
examples. We use the time-stamp of the first sample in the selected
window as the arrival time of the direct sound.

3.2 Initialization of Octave-IR
After the arrival time of the direct sound is detected, our next step
is to initialize an IR in each octave band. We will correct the ER
and LR parts in each octave-IR after the initialization.

Inspired by [17], we propose to initialize each octave-IR with
a Gaussian white noise (GWN) through the following processing
steps. As shown in Step 2 in Figure 1, a GWN of the same length
as the ultra-IR is first filtered into each octave band. The samples
before the arrival of the direct sound are set to 0 and the samples in
the direct arrival window remain unchanged. Then, an exponential

(a). IR of the octave band of 250Hz (b). IR of the octave band of 1kHz 

(c). IR of the octave band of 4kHz (d). Ultra-IR of 20kHz – 22kHz

Figure 3: When we split an IR into frequency bands, the
slope of the envelope may be different in each frequency
band.

function is applied on the GWN after the window of the direct
sound, initializing the octave-IR with an exponential envelope.

The exponential function can be formulated according to the
envelope of the target octave-IR in the dB logarithmic scale. As
shown in Figure 2, the envelope of an IR in the dB logarithmic
scale can be approximated by a straight line. Therefore, we need to
determine the slope 𝑆 of this line, and then the IR envelope in the
linear scale, i.e. the exponential function to filter the GWN, can be
formulated as 𝐸𝑙𝑖𝑛𝑒𝑎𝑟 = 10𝐸𝑑𝐵/20, where 𝐸𝑑𝐵 = 𝑆 ∗ 𝐼𝑛𝑑𝑒𝑥𝑠𝑎𝑚𝑝𝑙𝑒 .

To determine the slope 𝑆 for the exponential function in each
octave band, we assume that there exists a slope factor 𝑓𝑠𝑙𝑜𝑝𝑒 that
fulfills

𝑓𝑠𝑙𝑜𝑝𝑒 =
𝑆𝑢𝑙𝑡𝑟𝑎

𝑆𝑜𝑐𝑡𝑎𝑣𝑒
∗ 𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎
𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒

(1)

where 𝑆𝑢𝑙𝑡𝑟𝑎 and 𝑆𝑜𝑐𝑡𝑎𝑣𝑒 represent the slope of the envelopes of
the ultra-IR and each octave-IR in the dB logarithmic scale, and
𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎 and 𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 represent the reverberation time (RT60)
of the ultra-IR and each octave-IR. We propose this assumption
based on the fact that the decay of an IR varies across frequency
bands (as shown in Figure 3), which is related to the frequency-
dependent air attenuation and surface absorption in the environ-
ment, which leads to varying RT60 values in different frequency
bands.

We suppose that 𝑓𝑠𝑙𝑜𝑝𝑒 can be taken as a room constant and can
be determined by applying Eq(1) with 𝑆𝑢𝑙𝑡𝑟𝑎 , 𝑆𝑜𝑐𝑡𝑎𝑣𝑒 , 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎 ,
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and 𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 obtained from IRs that are pre-measured in the real
environment. We also assume that the ratio 𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒
can be determined from the pre-measured IRs and used as an octave
constant for each octave band. After the parameters 𝑓𝑠𝑙𝑜𝑝𝑒 and
𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 are determined, given a new input ultra-IR
(i.e. a new 𝑆𝑢𝑙𝑡𝑟𝑎) that can be live captured at runtime, 𝑆𝑜𝑐𝑡𝑎𝑣𝑒 can be
calculated using Eq(1) and then used to determine the exponential
function by 𝐸𝑙𝑖𝑛𝑒𝑎𝑟 = 10𝑆𝑜𝑐𝑡𝑎𝑣𝑒∗𝐼𝑛𝑑𝑒𝑥𝑠𝑎𝑚𝑝𝑙𝑒/20 for initializing the
octave-IR.

3.2.1 Determining the Slope Factor and the RT60 Ratios in Simu-
lated Rooms. The above discussion brought us to exploring the
slope factor and the RT60 ratios, and investigating whether these
parameters generally exist in different rooms.

We first explored the parameters using IRs simulated by the room
acoustics software ODEON1. It provides simulations of various de-
tailed 3D room models with parameters (e.g. absorption coefficient,
scattering coefficient) measured in the real world. We selected two
rooms: the PTB music studio of which the volume is approximately
400𝑚3 (8𝑚 ∗ 10𝑚 ∗ 5𝑚), and the Auditorium21 at Technical Uni-
versity of Denmark (DTU) of which the volume is approximately
1200𝑚3 (15𝑚 ∗ 12𝑚 ∗ 7𝑚). These two rooms are representative
and have been used in several acoustics projects [5, 6], and they fit
well the potential application environments where our method can
be used to create adequate room acoustic effects.

To gather a collection of high-quality IRs, we simulated 1000 IRs
with 25 omni-directional sources and 40 receivers in each room. We
set the source-receiver distances and the receiver-surface distances
according to ISO 3382 [1].We simulated the IRs without background
noise at a temperature of 20 ◦C and a relative humidity of 50%. The
other simulation parameters were set as default in ODEON2.

In order to investigate the relationships 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒
and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 after the IR simulation, we applied an octave
filter bank to filter the IRs into each octave band and we applied
a high-pass filter to obtain the ultra-IR (20kHz - 22kHz). We de-
termined the slopes of the IRs by fitting a straight line to the IR
waveforms in the dB logarithmic scale, and we determined the RT60
values using the well-known Schroeder method [22].

We calculated the ratio𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒
based on the set of 1000 simulated IRs in each room. In Table 1
and Table 2, we summarize the mean (M) and standard devia-
tion (SD) of these two ratios, and calculate the 𝑓𝑠𝑙𝑜𝑝𝑒 using Eq(1).
The mean values of 𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 vary
significantly across octave bands, but the standard deviation in
each octave band is small. This result indicates the rationality to
take 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 as an octave constant for each octave
band. Additionally, 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 are
inversely related, so the resultant 𝑓𝑠𝑙𝑜𝑝𝑒 values are similar in each
octave band, as shown in Table 1 and Table 2. Therefore, we com-
puted an average 𝑓𝑠𝑙𝑜𝑝𝑒 = 0.939 and an average 𝑓𝑠𝑙𝑜𝑝𝑒 = 0.915 as
the room constant for PTB music studio and for Auditorium21.

3.2.2 Determining the Slope Factor and the RT60 Ratios in Real
Rooms. In Section 3.2.1, we demonstrate the rationality of deter-
mining 𝑓𝑠𝑙𝑜𝑝𝑒 and 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 with a large amount of

1https://odeon.dk/
2https://odeon.dk/download/Version15/OdeonManual.pdf

Table 1: PTB Music Studio: The mean (M) and standard de-
viation (SD) of 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 across
1000 IRs. The 𝑓𝑠𝑙𝑜𝑝𝑒 is calculated using Eq(1) based on the
mean values of 𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 .

U/63 U/125 U/250 U/500 U/1k U/2k U/4k U/8k U/16k

RT60 M 0.558 0.504 0.431 0.447 0.486 0.463 0.533 0.707 0.956
RT60 SD 0.046 0.028 0.017 0.013 0.014 0.011 0.011 0.014 0.015

slope M 1.958 2.031 2.232 2.093 1.875 1.887 1.608 1.235 0.957
slope SD 0.160 0.148 0.146 0.111 0.079 0.061 0.040 0.028 0.018

𝑓𝑠𝑙𝑜𝑝𝑒 1.092 1.024 0.962 0.937 0.911 0.875 0.857 0.873 0.916

Table 2: Auditorium21: The mean (M) and standard devi-
ation (SD) of 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 across
1000 IRs. The 𝑓𝑠𝑙𝑜𝑝𝑒 is calculated using Eq(1) based on the
mean values of 𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 .

U/63 U/125 U/250 U/500 U/1k U/2k U/4k U/8k U/16k

RT60 M 0.708 0.696 0.463 0.344 0.311 0.334 0.434 0.642 0.938
RT60 SD 0.062 0.046 0.020 0.010 0.007 0.007 0.009 0.014 0.015

slope M 1.553 1.504 2.046 2.548 2.704 2.446 1.886 1.331 0.983
slope SD 0.120 0.102 0.125 0.145 0.124 0.082 0.050 0.029 0.015

𝑓𝑠𝑙𝑜𝑝𝑒 1.099 1.048 0.948 0.878 0.843 0.819 0.820 0.855 0.923

(a) classroom 
(about 10m*6.4m*3.4m)

(b) lounge 
(about 6m*6m*3.4m)

Figure 4: Two real rooms used in our study.

IRs in simulated rooms. In this section, we explore the feasibility of
this approach in real rooms with a small number of IRs (16 in our
case) for practical reasons. We chose two rooms in our institution
buildings as shown in Figure 4: a classroom of approximately 220𝑚3

and a lounge of approximately 125𝑚3. In each room, we placed a
FOCAL Shape 65 loudspeaker3 at one corner with source-surface
distances of approximately 1𝑚. The loudspeaker was put to face
the center of the room. We recorded 16 IRs using a Primo EM172
microphone module4 at 16 arbitrarily chosen locations with the
consideration of source-receiver distance and the receiver-surface
distance as recommended in [1].

Like in the case of simulations, we calculated𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 ,
𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 , and 𝑓𝑠𝑙𝑜𝑝𝑒 . Results are shown in Table 3 and Table 4.
As expected, the deviations from the average values are slightly
larger compared to the results from the simulations. Considering
the significantly smaller number of measured IRs, more complex
sound propagation and interaction processes in the real world, and

3https://www.focal.com/en/pro-audio/monitoring-speakers/shape/monitoring-
speakers/shape-65
4https://micbooster.com/audio-cable/127-primo-em172-with-35-mm-plug.html?
search_query=primo+EM172+3.5mm+plug&results=60

https://odeon.dk/
https://odeon.dk/download/Version15/OdeonManual.pdf
https://www.focal.com/en/pro-audio/monitoring-speakers/shape/monitoring-speakers/shape-65
https://www.focal.com/en/pro-audio/monitoring-speakers/shape/monitoring-speakers/shape-65
https://micbooster.com/audio-cable/127-primo-em172-with-35-mm-plug.html?search_query=primo+EM172+3.5mm+plug&results=60
https://micbooster.com/audio-cable/127-primo-em172-with-35-mm-plug.html?search_query=primo+EM172+3.5mm+plug&results=60
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Table 3: Real classroom: The mean (M) and standard devia-
tion (SD) of 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 across 16
IRs. The 𝑓𝑠𝑙𝑜𝑝𝑒 is calculated using Eq(1) based on the mean
values of 𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 .

U/63 U/125 U/250 U/500 U/1k U/2k U/4k U/8k U/16k

RT60 M 0.257 0.313 0.282 0.275 0.272 0.271 0.276 0.376 0.689
RT60 SD 0.023 0.026 0.019 0.018 0.019 0.018 0.018 0.024 0.028

slope M 2.815 2.452 2.383 2.742 2.387 2.224 2.038 1.498 0.956
slope SD 0.219 0.215 0.121 0.193 0.132 0.123 0.124 0.090 0.035

𝑓𝑠𝑙𝑜𝑝𝑒 0.726 0.769 0.673 0.756 0.650 0.604 0.563 0.564 0.659

Table 4: Real lounge: The mean (M) and standard deviation
(SD) of 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 across 16 IRs.
The 𝑓𝑠𝑙𝑜𝑝𝑒 is calculated using Eq(1) based on themean values
of 𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 and 𝑆𝑢𝑙𝑡𝑟𝑎/𝑆𝑜𝑐𝑡𝑎𝑣𝑒 .

U/63 U/125 U/250 U/500 U/1k U/2k U/4k U/8k U/16k

RT60 M 0.231 0.286 0.296 0.303 0.290 0.284 0.324 0.451 0.753
RT60 SD 0.018 0.027 0.023 0.024 0.019 0.019 0.021 0.031 0.037

slope M 2.824 2.431 2.180 2.085 1.964 1.838 1.652 1.180 0.804
slope SD 0.275 0.247 0.177 0.162 0.151 0.146 0.142 0.097 0.046

𝑓𝑠𝑙𝑜𝑝𝑒 0.653 0.697 0.646 0.632 0.571 0.522 0.535 0.533 0.606

the higher noise level than in the simulation, we argue that the re-
sults demonstrate the feasibility of using 𝑅𝑇 60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇 60𝑜𝑐𝑡𝑎𝑣𝑒 as
an octave constant and the feasibility of determining 𝑓𝑠𝑙𝑜𝑝𝑒 as a room
constant for real rooms. We computed an average 𝑓𝑠𝑙𝑜𝑝𝑒 = 0.663
for the classroom and 𝑓𝑠𝑙𝑜𝑝𝑒 = 0.600 for the lounge.

In summary, we proposed and demonstrated the feasibility of
calculating two parameters, the room constant 𝑓𝑠𝑙𝑜𝑝𝑒 and the octave
constants 𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 , from a small number of IRs that
are pre-measured in an environment. These parameters can then be
used to calculate 𝑆𝑜𝑐𝑡𝑎𝑣𝑒 using Eq(1) to determine the exponential
function for octave-IR initialization. For AR applications, these
room-dependent parameters can be stored online e.g. in the Open
AR Cloud5, and retrieved when a user enters the space for the
synthesis of room IRs at arbitrary locations in the space.

3.3 Correction of Early Reflections
Similar to the parametric wave field coding method [17], we take
200𝑚𝑠 after the window of the direct sound as the duration of the
early reflections (ER). The remaining section that follows the 200𝑚𝑠

period is considered the late reverberation (LR).
After the initialization, we first calculate the total energy of each

initialized octave-IR as the target energy of the finalized IR in each
octave band. Then, to determine the target energy of ER and LR,
we explored the energy ratio 𝑒𝑛𝑒𝑟𝑔𝑦𝐸𝑅/𝑒𝑛𝑒𝑟𝑔𝑦𝐿𝑅 in the simulated
and the real rooms. As before, we calculated the relationship of
the energy ratio between the ultra-IR and each octave-IR 𝑒𝑛𝑒𝑟𝑔𝑦 −
𝑟𝑎𝑡𝑖𝑜𝑢𝑙𝑡𝑟𝑎/𝑒𝑛𝑒𝑟𝑔𝑦 − 𝑟𝑎𝑡𝑖𝑜𝑜𝑐𝑡𝑎𝑣𝑒 . We found that in all four rooms,
the value 𝑒𝑛𝑒𝑟𝑔𝑦−𝑟𝑎𝑡𝑖𝑜𝑢𝑙𝑡𝑟𝑎/𝑒𝑛𝑒𝑟𝑔𝑦−𝑟𝑎𝑡𝑖𝑜𝑜𝑐𝑡𝑎𝑣𝑒 is approximately
1 with a small deviation for all octave bands: (1) PTB music studio
(𝑀 = 1.057, 𝑆𝐷 = 0.030); (2) Auditorium21 (𝑀 = 1.098, 𝑆𝐷 = 0.088);
(3) real classroom (𝑀 = 1.034, 𝑆𝐷 = 0.024); (4) real lounge (𝑀 =

5https://www.openarcloud.org/

1.009, 𝑆𝐷 = 0.006). Therefore, given a new input ultra-IR, we will
calculate its 𝑒𝑛𝑒𝑟𝑔𝑦𝐸𝑅/𝑒𝑛𝑒𝑟𝑔𝑦𝐿𝑅 , and use this ratio together with
the target total energy of the octave-IR to adjust the ER and LR.

As in [17], we regard the ER as a sum of specular and diffuse
components, and the total energy of these two components is sup-
posed to match the target ER energy. We take the initialized GWN
in the ER part as the diffuse component and scale the sample am-
plitudes to take only 10% of the total ER energy. Then, the specular
component will take 90% of the total ER energy.

Ideally, one could detect the occurrences and the amplitudes of
strong reflections in the ultra-IR and construct the specular compo-
nents in each octave band accordingly. However, given the difficulty
to accurately capture the reflection occurrences from an ultra-IR
due to the strong attenuation and absorption in the ultra-frequency
band, we use the technique described in [17]: generating a set of
250 peaks with prime number sample delays. We generate 250
prime number sample delays within the 200𝑚𝑠 period, and use the
same set of 250 delays for each octave band to create the specular
component. Different from Raghuvanshi and Snyder’s implementa-
tion [17] of assigning random amplitudes to these specular samples,
we first assign random amplitudes within the range [−1, 1] and
then apply the same exponential function as used for initialization
in order to maintain the envelope of the octave-IR. Finally, we scale
the specular samples to take 90% of the total ER energy.

After the above steps, the ER part of each octave-IR can be
considered "corrected".

3.4 Adjustment of Late Reverberation
The LR part of an IR can be taken as a pure diffuse process and
can be generated using a GWN with an exponentially decaying
envelope [25]. Our initialization has created such a LR for each
octave-IR. In this step, we scale the sample amplitudes in the LR to
meet the energy requirement as discussed in the previous section.
Summary: After the above four steps, each octave-IR is normal-
ized, summed, and finally normalized as the synthesized room IR
for the given source-receiver position. This IR synthesis method
has potential to be used for real-time interactive audio AR appli-
cations. First, as discussed before, the pre-calculated parameters
can be stored online and retrieved at runtime to synthesize IRs at
arbitrary user locations in an environment. Secondly, synthesizing
a room IR only takes around 100𝑚𝑠 with an un-optimized Python
implementation on a laptop (Intel Core i7-6700 2.6GHz CPU, 8G
RAM). This indicates the possibility of real-time IR synthesis with
low-level optimized code, which has potential even for wearable
implementation. Moreover, there is potential to capture ultra-IRs
using smartphones. The impulses can be played from an ultrasonic
loudspeaker that is physically placed at the location for the virtual
sound source in the AR application. The method is illustrated with
audio samples in the accompanying video6.

4 OBJECTIVE EVALUATION
To evaluate the proposed method, we compared the synthesized
IRs with the ground truth IRs with regard to four common [9, 20]
acoustic parameters: RT60, early decay time (EDT), clarity 80 (C80),
and center time (T𝑆 ). RT60 describes how a room would overall
6https://youtu.be/aOlUEW23T_A

https://www.openarcloud.org/
https://youtu.be/aOlUEW23T_A
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Figure 5: Differences between the synthesized IRs and the ground truth IRs with respect to the acoustic parameters RT60, EDT,
C80, and T𝑠 in the simulated rooms and the real rooms. In each plot, we show the difference for each octave-IR and for the
complete room IR (label: Full). According to literature, the JNDs were chosen to be relative 20% for RT60, relative 5% for EDT,
absolute 1𝑑𝐵 for C80, and absolute 10𝑚𝑠 for T𝑆 . In each plot, we highlight the JND value with a red line.

"color" a sound with its size, shape, and absorption. EDT relates to
the energy in the early reflections. C80 evaluates the clarity level of
a room. T𝑆 relates to the balance between clarity and reverberance.

Since human auditory perception is only sensitive to a certain
level of difference between two sounds, we compare the difference
between the synthesized IR and the ground truth IR according to
the just noticeable difference (JND) values. In literature, there exist
several JND standards as measurements were conducted under dif-
ferent conditions and for a range of parameters. In this evaluation,
we chose a relatively strict standard considering the acoustic envi-
ronment in the study and potential applications of the IR synthesis
approach: 20% for RT60 [16], 5% for EDT [1], 1𝑑𝐵 for C80 [1], and
10𝑚𝑠 for T𝑆 [1].

We conducted the objective evaluation with 1000 newly sim-
ulated IRs in PTB music studio and Auditorium21, and with 16
newly measured IRs in the real classroom and lounge as the ground
truth IRs, from which we extracted the octave-IRs and ultra-IRs.
Given the extracted ultra-IRs, we used the parameters 𝑓𝑠𝑙𝑜𝑝𝑒 and
𝑅𝑇60𝑢𝑙𝑡𝑟𝑎/𝑅𝑇60𝑜𝑐𝑡𝑎𝑣𝑒 as calculated before to synthesize IRs fol-
lowing the approach as described in Section 3. We calculated the
difference between each ground truth IR and the corresponding

synthesized IR in terms of the above four parameters. Figure 5
demonstrates all the differences in box plots.

The average RT60 values in each room are 1.02𝑠 (PTB music
studio), 1.02𝑠 (Auditorium21), 0.64𝑠 (real classroom), and 0.63𝑠 (real
lounge). Compared with the real rooms, simulated rooms in gen-
eral show a slightly more concentrated error distribution and most
errors are around or even smaller than the JND. For all four rooms,
the RT60 of most synthesized IRs are 0.1𝑠 − 0.3𝑠 shorter than the
RT60 of the ground truth IRs. This could be due to the insufficient
energy in the LR phase. As discussed in Section 3, with the 200𝑚𝑠

ER duration, the energy ratio between the ER and the LR was very
similar in different frequency bands. However, lower frequencies
tend to have a marginally higher proportion of LR energy. Corre-
spondingly, as shown in Figure 5, errors in lower frequency bands
are generally larger. A shorter RT60 might make a listener perceive
a smaller environment size than it is supposed to be.

Synthesized IRs generally have a longer EDT than the ground
truth IRs, which means that the synthesized IRs have a slower
energy decay until −10𝑑𝐵 in the Schroeder’s backward integral
compared with the ground truth IRs. For a continuous sound source
(e.g. a piece of music), a longer environmental EDT indicates that a
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sound incident might mask over the next sound incidents from the
source. This could influence the perceived clarity of the sound.

Most synthesized IRs have a smaller C80 value than the ground
truth IRs. This indicates that compared with the ground truth IRs,
synthesized IRs have less relative energy before 80ms. Considering
that our method takes 200ms as the ER duration and generates
specular components at prime number delays within this 200ms
time window, the IR synthesis process might produce more energy
between 80ms and 200ms than it is supposed to be. According to
the definition of C80 [1], a sound blurring effect will be stronger
with more reflections later than 80ms (i.e. smaller C80 value). There-
fore, we assume that the synthesized IRs will render sounds with a
marginally lower clarity.

T𝑆 is also a clarity parameter that describes the balance between
clarity and reverberation of a room. Small T𝑆 values indicate a clear
room while large T𝑆 values indicate a reverberant room. Compared
with the ground truth IRs, most synthesized IRs have a larger T𝑆
value. This indicates that the synthesized IRs might create a more
reverberant sound effect, which corresponds with the results of
EDT and C80 as discussed above.

So far, we have discussed the objective evaluation results in terms
of four acoustic parameters with their corresponding JND values.
We have also discussed possible reasons and potential effects of the
results. Since JND standards were obtained from previous research
under specific measurement conditions, the objective evaluation
results might not completely reflect a user’s auditory perception of
the sounds rendered with our synthesized IR. To evaluate a user’s
auditory experience, we present a user study in next section.

5 USER EVALUATION
We conducted an online user study to compare the synthesized IRs
with the ground truth IRs. In the following, we describe the study
design and discuss the study results.

5.1 Study Design
In each simulated and real room, we selected one synthesized IR
of which the results of objective evaluation were approximately at
the average level among all IRs in the room. We selected four dry
sounds to be augmented with the IRs – two music and two voice
samples: symphony 7 (duration: 28𝑠), guitar solo8 (duration: 9𝑠),
female voice9 (duration: 10𝑠), and male voice10 (duration: 10𝑠). Both
the symphony and the guitarmusic have awide frequency spectrum.
The female and the male voice delivers the same content. For each
dry sound, we implemented convolutions with the synthesized IRs
andwith their corresponding ground truth IRs (simulated/recorded).
Therefore, there was a total of 16 pairs of comparison, in which
the two sounds were labeled as Test1 and Test2. To avoid bias, we
shuffled the order of Test1 and Test2 in each pair, and the room
number was not shown to the participants. The dry version of each
sound was provided as a reference. For each pair of comparison,
participants were allowed to listen to the sounds as many times as
needed, and answered the following questions:

7https://users.aalto.fi/~ktlokki/Sinfrec/sinfrec.html
8http://www.lam.jussieu.fr/Projets/index.php?page=AVAD-VR
9http://www-mmsp.ece.mcgill.ca/Documents/Data/
10http://www-mmsp.ece.mcgill.ca/Documents/Data/

PTB music studio Auditorium21 Classroom Lounge

PTB music studio Auditorium21 Classroom Lounge
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Figure 6: Participants’ estimation of the room size in the
range [125𝑚3, 1200𝑚3]. Four red dash lines indicate the
ground truth size of the PTBmusic studio (P), Auditorium21
(A), classroom (C), and lounge (L).

(1) I can easily recognize the difference between the dry sound
and Test1 (Test2). Participants answered these two questions on a
5-point Likert scale from 1 (strongly disagree) to 5 (strongly agree).

(2) For Test1 (Test2), I feel the sound is played in a room of the
following size.We provided a 10-point linear scale from the smallest
size (6𝑚 ∗ 6𝑚 ∗ 3.4𝑚, the real lounge) to the largest size (15𝑚 ∗
12𝑚 ∗ 7𝑚, the simulated Auditorium21) of the four rooms.

(3) Compare Test 1 and Test 2, how similar are they? Participants
answered this question on a 5-point Likert scale from 1 (very dif-
ferent) to 5 (very similar).

The first two questions aimed to confirm that participants could
perceive the acoustic effects in the test sounds. The room size might
be difficult to estimate, but participantsmight perceive the room size
of Test1 and Test2 differently, according to the objective evaluation
results. The last question asked participants’ perceptual similarity
between the synthesized and the ground truth sound.

5.2 Results and Discussion
A total of 22 participants (7 female, 15 male, age ∈ [19, 37],𝑀 = 27.7,
𝑆𝐷 = 5.04) took part in the user study. Only one participant had
some acoustics knowledge, while all the others had no background
in acoustics or audio/music processing.

As for the first two questions, participants could easily recog-
nize the difference between the dry sound and the ground truth
sound (𝑀 = 4.698, 𝑆𝐷 = 0.671), or between the dry sound and the
synthesized sound (𝑀 = 4.659, 𝑆𝐷 = 0.718).

Figure 6 shows participants’ estimation of the room size. The
ground truth room sizes are 400𝑚3 (PTB music studio), 1200𝑚3

(Auditorium21), 220𝑚3 (classroom), and 125𝑚3 (lounge). Figure 6
shows a big deviation from the participants’ estimation to the cor-
rect size of each room. This could be because of two reasons. First,
according to participants’ feedback, this question was difficult since
they were not provided with auditory references for each scale
to calibrate their hearing. Secondly, the acoustic properties of the
materials in a room might cause an impression of the volume that
did not match the real size. We applied an Align Rank Transform
(ART) [26] before using a two-way repeated measures ANOVA.
The ANOVA test shows that participants’ estimation of the room
size significantly changed across rooms (𝑝 < 0.001), which indi-
cates that participants recognized some size differences in different
rooms. The ANOVA test also shows that participants’ estimation
based on the synthesized IRs was significantly smaller than the
corresponding estimation based on the ground truth IRs (𝑝 = 0.001).

https://users.aalto.fi/~ktlokki/Sinfrec/sinfrec.html
http://www.lam.jussieu.fr/Projets/index.php?page=AVAD-VR
http://www-mmsp.ece.mcgill.ca/Documents/Data/
http://www-mmsp.ece.mcgill.ca/Documents/Data/
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Figure 7: Participants’ perceptual similarity between the
ground truth and the synthesized sounds in each room for
each audio sample (1: very different, 5: very similar).

As discussed in Section 4, this could be because the synthesized
IRs generally had a shorter reverberation time, which could make
participants perceive a smaller space size.

As shown in Figure 7, participants overall leaned towards a sim-
ilar perception between the ground truth and the synthesized IRs
since all cases show an average similarity score over the neutral
scale 3. For each room, we conducted a Friedman test and found
that participants’ perceptual similarity did not vary significantly
across the four sound samples (all 𝑝 > 0.152). According to the
participants, they generally judged the similarity based on their
perception of bass, clarity, and reverberance in the rendered sounds.
Note that the perception of similarity was subjective, and this eval-
uation might be influenced by the audio interface, the headphone,
and the environment where the participant did the study. These
could be the reasons for the large deviations across individuals, but
the overall result shows a positive trend towards similar percep-
tion. This indicates that our method has the potential to produce
perceptually acceptable room acoustics. According to the previous
research [3], providing such a perceptually adequate representation
of the acoustic environment is likely to suffice in AR applications,
where a user’s visual sense works in concert with the auditory
sense to perceive a complete picture of the environment.

6 CONCLUSION AND FUTUREWORK
We proposed a fast parametric method to synthesize full-frequency
IRs from ultrasonic measurements to render perceptually adequate
acoustic effects for AR applications. Instead of modeling a complete
sound propagation process, our method approximates IRs using
measured ultra-IRs and a few parameters that can be determined
from pre-recorded IRs in the environment of interest. We evaluated
the synthesized IRs according to common acoustic parameters and
demonstrated the efficacy of this method in creating an adequate
acoustic environment by conducting a user study.We also discussed
the potential of using this method in interactive AR applications as
a user moves around in the space, since the IR synthesis runs fast
with pre-computed parameters that can be retrieved from online
storage at runtime, and the ultra-IRs can be measured live.

This work initiates several interesting directions for future ex-
ploration. First, this work shows the potential to create convincing
acoustic effects by measuring only ultra-IRs. We intend to further
explore how the movement of the user and objects influence the IRs,
and we also plan to implement this method on wearable devices in
order to test its applicability in real-time AR applications.
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