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Abstract

This paper provides a comparative study of state-of-the-art means of pre-
dicting occupancy for smart heating control applications. We focus on ap-
proaches that predict the occupancy state of a home using occupancy sched-
ules – i.e. past records of the occupancy state. We ran our analysis on actual
occupancy schedules covering several months for 45 homes. Our results show
that state-of-the-art, schedule-based occupancy prediction algorithms achieve
an overall prediction accuracy of over 80%. We also show that the perfor-
mance of these algorithms is close to the theoretical upper bound expressed
by the predictability of the input schedules. Building upon these results, we
used ISO 13790-standard modelling techniques to analyse the energy savings
that can be achieved by smart heating controllers that use occupancy predic-
tors. Furthermore, we investigated the tradeoff between achievable savings
(typically 6% to 17% on average) and the risk of comfort loss for household
residents.
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1. Introduction

The ability to detect whether or not a house is occupied – i.e. whether
residents are at home or not – represents a basic requirement for the operation
of many home automation systems. For instance, the presence of at least
one resident within a home might trigger the operation of a lighting control
system [1]. Similarly, the absence of all residents allows a heating control
system to automatically lower the temperature of the home [2, 3], thereby
saving energy that would have been unnecessarily used for heating. Since
space heating accounts for a large fraction of residential energy use (e.g.
68% in the European Union member states [4]), smart thermostats could
thus play an important role in reducing costs and carbon dioxide emissions.
Besides the ability to determine whether or not a house is occupied, many
home automation systems also need to be able to predict when a house is
going to be occupied. For instance, a heating control system may require
some time to heat a home to a comfortable temperature after its residents
have been out for the day. In order to avoid a loss of comfort for the residents
– i.e. the house being too cold when they return – the heating needs to be
triggered at the right time. However, preheating the house for too long in
advance will result in wasted energy.

Both occupancy detection and occupancy prediction can thus be regarded
as basic services upon which many home automation systems need to rely.
While such systems1 enable a large number of applications, this study fo-
cuses on the particular scenario in which such services support the operation
of “smart” heating control systems. Although several ways of supporting
such systems have been presented in the literature, no systematic review of
existing techniques has previously been conducted. In particular, notations
and terminology are often inconsistent across different contributions, making
it hard to compare existing approaches in a qualitative way. Quantitative
comparisons are also often impracticable due to the lack of both a common,
freely available dataset upon which to base a comparative study as well as
the wide variety of scenarios for which different approaches might need to be
tested.

In this paper, we address the above-mentioned issues by providing the

1Interestingly, a rather general patent “Occupancy pattern detection, estimation and
prediction” (US 8510255) has recently been granted to the home automation company Nest
– acquired by Google in 2014 and makers of stylishly designed self-learning thermostats.

2



following contributions: (1) A classification and review of state-of-the-art ap-
proaches that predict home occupancy. We outline different techniques used
in the literature and identify two main classes (schedule-based and context-
aware) into which existing approaches can be categorised. (2) A quantitative
comparison of the performance of selected schedule-based occupancy predic-
tion algorithms. The performance evaluation is based on actual occupancy
data for 45 individuals collected over several months. We derived this oc-
cupancy data by analysing mobile phone records collected as part of the
Lausanne Data Collection Campaign (LDCC) [5].

Several other studies have reviewed the existing literature on occupancy
detection and prediction. For instance, Nguyen et al. [6] provide an exten-
sive review of approaches that address the broad topic of “energy intelligent
buildings”. Guo et al. [7] focus on smart lighting control approaches. While
both these studies mention performance figures for the approaches they sur-
vey, the numbers in question originate from the papers being surveyed and
are thus typically obtained in very different experimental settings. Instead,
we provide a quantitative performance analysis based on a common dataset.
As all algorithms operate on the same data, the performance figures obtained
can be accurately compared.

In order to put our study into its proper context, Sections 2 and 3 provide
basic notions regarding smart heating and also occupancy detection and pre-
diction. Our review and classification of existing methods is then presented
in Section 4. Section 5 describes the experimental setup. Section 6 discusses
the results of our comparative performance analysis and Section 7 mentions
some limitations of the modelling technique. Finally, Section 8 summarises
the main findings of our study.

2. Smart heating control

The idea of using information and communication technology to auto-
matically and “intelligently” control heating systems has been investigated
for several years. Well-known examples of such smart heating approaches
include the Neurothermostat [1], the GPS Thermostat [8], the Smart Ther-
mostat [2] and several others [3, 9, 10, 11, 12, 13]. The first few commer-
cial products – such as the NEST learning thermostat, tado◦ and EcoBee’s
Smart-Si – have recently started to appear.2

2www.nest.com, www.tado.com/en/, www.ecobee.com/solutions/home/smart-si/.
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A smart heating system should meet two main requirements. First, it
should significantly reduce the amount of energy spent on heating (com-
pared with conventional room heating systems). Secondly, it must ensure
adequate thermal comfort – which the ANSI/ASHRAE Standard 55 defines
as “the condition of mind that expresses satisfaction with the thermal envi-
ronment” [2, 14].

The smartness of the system typically lies in its ability to adapt to cur-
rent environmental conditions, the specific household characteristics and the
behaviour of the occupants. The difference between a conventional auto-
matic (or programmable) heating system and a “smart” one is that while the
former operates according to a pre-defined and typically deterministic (e.g.
timer-based) schedule, the latter typically adapts its control strategy to the
user context. In both cases, though, the heating3 is controlled automati-
cally, i.e. with the aid of a thermostat that does not require explicit human
intervention.

An automatic heating control system can be seen as a regulator that
ensures that the (average) air temperature measured within a home is suf-
ficiently close to a given target value. To this end, the system controls the
activation and deactivation of the heaters available in the home (e.g. heat
pumps and/or electrical heaters). Typically, at least two different target tem-
peratures are defined: the setback temperature and the comfort (or setpoint)
temperature, indicated as Θsetb and Θcomf respectively. Θcomf is typically set
by household occupants depending on their personal preferences and indi-
cates the temperature at which they feel comfortable. The value of Θcomf

will typically be around 21 ◦C. The setback temperature Θsetb in contrast
is defined as the lowest (average) value at which the air temperature of the
household is permitted to fall when the occupants are out (or asleep). There
are several issues that need to be considered when setting suitable values
for the setback temperature. In particular, Θsetb must be sufficiently low
to allow for significant energy savings (as the heaters can be – at least tem-
porarily – be deactivated) but still high enough that the time needed to bring
the household back up to Θcomf does not exceed a reasonable value. For a

3Note that the assessment of thermal comfort according to the ANSI/ASHRAE Stan-
dard 55:2010 [14] requires parameters other than air temperature to be additionally con-
sidered, e.g. humidity. However, with respect to the discussion of occupancy detection
and prediction algorithms upon which this paper focuses, there is no loss of generality in
limiting our consideration to air temperature only.
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more detailed discussion of this issue, the interested reader is referred to [2]
and references therein. We will consider 10 ◦C as a typical value for a deep
setback Θsetb when a house is unoccupied.

An optimal heating system should thus be able to maintain the temper-
ature of a home at Θsetb for as long as possible, so as to reduce the amount
of energy spent on heating. At the same time, the system must ensure that
the temperature is close to Θcomf whenever at least one occupant is at home
(and awake) – so as to avoid any loss of comfort. However, the time needed
to bring the home from Θsetb to Θcomf (and vice versa) is typically non-
negligible (e.g. > 1 hour). An optimal heating system therefore needs to
be able to both immediately detect when the home becomes unoccupied –
so as to to turn off the heating – and also reliably predict when it will be
occupied again – in order to restore the temperature to Θcomf by the time
the occupants return.

Smart heating systems try to approximate this behaviour by putting in
place adequate procedures to both detect and predict the household occu-
pancy state. Different approaches can largely be differentiated on the basis
of the technique they use to implement such procedures and the sensor data
they require to do so. Before discussing state-of-the-art approaches in Section
4 we will therefore briefly summarise in the next section the basic concepts
used in the occupancy detection and prediction literature.

3. Occupancy detection and prediction

A house is said to be occupied at a time instant t if at least one of its
residents is at home; otherwise, it is said to be unoccupied. The occupancy
state of a house can thus be represented as a binary value (1 for occupied
and 0 for unoccupied).

The household occupancy state at any given time can be determined
by interrogating sensors deployed within the home, such as passive infrared
(PIR) or light sensors. Data from electricity meters can also provide clues
regarding human activity – and thus the presence of residents – within a
home [15, 16]. However, as outlined in [17], each type of sensor has its own
advantages and drawbacks and can only guarantee limited confidence in es-
timating the actual occupancy state. Also, the deployment and maintenance
of sensors within a home may generate significant costs and inconvenience
for residents.
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Another strategy for detecting household occupancy consists of interro-
gating sensors carried by the residents, such as RFID tags, dedicated wireless
transmitters or GPS modules embedded in mobile phones [3, 18]. For the
performance analysis presented in Sections 5 and 6, we used occupancy data
derived from the analysis of mobile phone records.

To represent the historical occupancy states of a home, it is usually con-
venient to divide the hours of the day in Ns equally spaced intervals – called
slots. An occupancy vector Γ is then a 1 × Ns vector of binary values in
which the ith element indicates whether the home was occupied or unoccu-
pied during slot i. More specifically, we use Γ1..96 to denote a 24-hour ground
truth occupancy vector based on 15-minute timeslots and γ1..96 to refer to a
24 hour predicted occupancy vector. Accordingly, an occupancy schedule is
a Nd × Ns matrix containing occupancy data for Nd consecutive days. To
accommodate slots for which no data is available, occupancy states can also
be represented using three – rather than two – symbols, where one symbol
is reserved to represent an unknown occupancy state.

Conventional programmable thermostats operate according to user-defined
schedules. Their settings need to be changed manually as the residents’ occu-
pancy schedules vary. Smart heating systems seek to overcome this need for
manual re-programming by predicting household occupancy and supplying
the control schedules to the thermostat without any direct user involvement.
So when the occupants leave the building, the heating may be switched off
automatically and the temperature allowed to drop to Θsetb. However, this
reactive strategy fails when the occupants return, as the thermal properties
of the house will result in a certain time lag until the comfortable temper-
ature Θcomf is reached again. The time lag describes the time taken by the
heating system to reach Θcomf from the current indoor air temperature Θair.
The longer the house has been left unoccupied and the temperature has been
allowed to drop, the greater the time lag will be. Therefore, at any given
time, if the occupants have left the household, the system needs to know how
long it would take to re-heat the property to Θcomf and whether the house is
likely to be occupied within this time span. We call the time slots involved
in this calculation the prediction horizon I∗. Amongst other variables, I∗
is determined by the current indoor air temperature Θair, the target com-
fort temperature Θcomf and the forecast for the outside temperature Θe. We
refer to the process of computing the future occupancy states within I∗ as
occupancy prediction.
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4. An overview of occupancy prediction algorithms

Several occupancy detection and prediction algorithms for smart heat-
ing control have been proposed in the literature [2, 3, 8, 9, 12, 18, 19, 20].
Occupancy detection algorithms rely on a relatively small number of basic
techniques. For instance, detection is performed using sensors installed in
the home – such as PIR, RFID or camera sensors [2, 3, 12, 19] or by leverag-
ing GPS modules, which can usually be found in smartphones carried by the
home’s occupants [8, 18]. For occupancy prediction, different mathematical
models – including artificial neural networks [1] and Markov chains [12] – are
used. In the following, we focus mainly on occupancy prediction algorithms;
a discussion of occupancy detection is provided by [7].

4.1. Schedule-based approaches
Several approaches compute occupancy predictions relying on past oc-

cupancy schedules only [2, 3, 18, 21]. Such approaches, which we refer to
as schedule-based algorithms, take as input historical data on the household
occupancy state. This data is typically collected over an extended period of
time (weeks to months).

The PreHeat (PH) algorithm presented by Scott et al. [3] is an example of
a schedule-based approach. PreHeat maintains a vector for storing the actual
occupancy state registered for the current day starting from midnight. Each
element of the vector represents the occupancy state of the home in a 15-
minute interval. An element is set to 1 or 0 depending on whether the house
is occupied or not during the relevant time interval. To compute an occu-
pancy prediction from a given time of day onwards, PreHeat first computes
the Hamming distance between the occupancy pattern thus far observed for
the current day and the corresponding segments of past occupancy vectors.
The k past vectors with the lowest Hamming distances are then selected (k is
fixed and equal to 5 in [3]) and averaged element-by-element. These averages
approximate to the probability for the home being occupied during the cor-
responding time interval. The actual prediction is computed assuming that
the house will be occupied during a future time interval if the correspond-
ing probability exceeds a given threshold α, or else unoccupied. In [3], the
value of α is fixed and equal to 0.5. Building upon this basic version of the
algorithm, Scott et al. introduce two additional features. The first consists
of differentiating between weekdays and weekends. The second is to pad the
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current occupancy vector with data for the 4 hours before and after mid-
night, taken from the previous and following day respectively. This helps the
algorithm to predict past midnight. Once the prediction is computed, the
algorithm decides whether to start heating. This control decision depends on
a number of factors including the current and desired temperatures as well
as the rate (in terms of degrees per hour) at which the house can actually be
heated.

The Presence Probabilities (PP) approach presented by Krumm and Brush
is another well-known schedule-based approach [18]. Household occupancy is
detected using a GPS device carried by the residents. The home is assumed
to be occupied if the device indicates that a resident is less than 100 meters
away from it. Using the GPS data, PP computes the probability for a home
being unoccupied – called paway – during any time slot of a day of the week.
The values of paway in slots are computed using the ratios between the num-
ber of GPS data points that lie outside the 100-meter radius of the home and
the total number of GPS data points available for the slot. The value of paway

for each time slot is stored in a vector called pweek containing 336 elements
(7 days a week, 48 slots a day). The probability within each slot is smoothed
using the values of the previous and subsequent slots. To adjust the values of
paway for weekdays, a generic vector pweekday that contains the average values
of paway for a “generic” weekday is used. Using a regularisation factor λwd

this vector can account for “greater or lesser variability on weekdays” [18].
The values of paway in each slot of the final probabilistic schedule p̃week are
then computed as the sum of the elements of pweek and the relevant elements
of pweekday. In our paper, we refer to the version of the Presence Probabilities
algorithm described above as PP and to a simplified version that does not
consider smoothing or the generic weekday schedule as PPS.

The Smart Thermostat (ST) by Lu et al. [2] also relies on historical
schedules to predict occupancy. The occupancy state of a home is determined
using a Hidden Markov Model. The model allows an estimate of whether the
home is occupied or not and in the former case also whether the occupants
are asleep or active. To compute the estimation, the Hidden Markov Model
takes as input both prior information derived from historical schedules and
actual data collected by several sensors deployed within the home (e.g. PIR
sensors). The model is trained using a set of actual past occupancy schedules
and sensor data traces. When the house is classified as unoccupied, ST
switches the heating system off and allows the temperature of the household
to fall to a “deep” setback temperature. If the occupants were to come back
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home unexpectedly while the house was at the deep setback temperature
they would experience a significant comfort loss. ST thus keeps records of
all previously observed arrival times (i.e. the time instants at which the
house became occupied again after a period of absence).4 The minimum of
such previous arrival times is set as the time by which the household must
be preheated to at least a “shallow” setback temperature. This mechanism
makes it possible to reduce the risk of comfort loss. ST also estimates the
optimal time instant t∗ – called the preheat time – at which the heating
system must be activated to preheat the house. The preheat time t∗ is chosen
so as to minimise the average amount of energy wasted to heat the household
and maintain it at the comfort temperature when the occupants are out.
To identify the preheat time for a given day, ST considers all arrival times
a = [a0, a1, . . . , an] observed on previous days. Then it considers all time
instants t ∈ [max(a),min(a)] for the current day as candidate preheat times.
For each ti ∈ [max(a),min(a)], the system computes the amount of energy
waste wj(ti) that would occur if ti were the preheat time and the household
were to be occupied again at arrival time aj. The expected average energy
waste that would occur if ti were the preheat time is then the average: w(ti) =∑n

j=1wj(ti). The preheat time is chosen as the time instant that minimises
the expected average energy waste: t∗ = argminti∈[max(a),min(a)]w(ti). The
occupancy prediction mechanism of ST thus requires the identification of
arrival times based on past schedules. Both the minimum of these arrival
times and their weighted average are used to trigger different stages of the
heating system. For the computation of the amount of energy waste, ST
assumes a three-stage heating system and the availability of knowledge about
the energy consumed by each stage.

Our comparative study focuses on schedule-based approaches and in-
cludes both the PP (or PPS) and PH algorithms. In place of ST itself
we instead considered two heuristic prediction strategies – called Mean Ar-
rival Time (MAT) and Minimum Distance Mean Arrival Time (MDMAT) –
which mimic the occupancy prediction algorithm used by ST. As described
above, ST uses the minimum of all previously observed arrival times as the
time instant at which the household has to change from deep to shallow set-
back. ST also heats the house to the comfort temperature using a policy

4Although this is not specified explicitly in [2], we assume that only one arrival event
per day is considered.
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that minimises energy waste. To this end, a three-stage heating system with
different efficiencies for each stage is assumed to be in place. In our study,
we analysed performance (e.g. efficiency gain) in terms of occupancy pre-
diction separately from that due to the specific heating strategy. Also, we
assume a single-stage heating system. Thus, ST would always choose the
latest observed arrival time as the preheat time. This is due to the fact that
heating reactively guarantees the lowest energy waste when comfort loss is
not considered and a single-stage heating system is in place.

We therefore introduce the MAT and MDMAT methods as adaptations
of ST’s preheating strategy. Like ST, the MDMAT algorithm records all n
observed arrival times in a vector a. For each ai ∈ a, i = 1, . . . , n, MDMAT
calculates the distance to all other arrival times aj ∈ a, j 6= i as d(ai) =∑
aj∈a,j 6=i

min(|ai − aj|, |ai − (a′j + 24)|). The most likely arrival time for the

current day is then chosen as a∗ = arg min
a∈a

d(a). MAT instead computes

the expected arrival time for each day as the arithmetic mean of the arrival
times recorded on all previous days. To this end, only one arrival time per
day is considered. This is selected as the first arrival event after 2 p.m.
and before 2 a.m. We impose this restriction to limit the effect of outliers
(e.g. unusual arrival events in the morning) and to avoid the computation
of the arithmetic mean of the arrival times causing misleading results due to
the use of a 24-hour interval.5 In contrast to ST’s original strategy, which
targets a reduction in energy consumption, MAT and MDMAT trade off
energy efficiency against comfort loss.

In this paper, we do not describe any other existing schedule-based occu-
pancy prediction algorithms in detail, but refer the interested reader to [1, 20,
21, 22, 23]. For the sake of completeness, however, we outline in the next sec-
tion selected approaches that detect and predict occupancy for smart heating
control using techniques other than those described above and summarised
in Table 1.

5For example, given two arrival events – one at 1:00 a.m. and one at 9:00 p.m. (21:00),
their arithmetic mean computed over a 24-hour interval (from 00:00 to 24:00) would return
the value 11 a.m., although the desired mean value would be 11 p.m.
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Table 1: Algorithms considered for the comparative performance analysis.

Acronym Name Source
PH PreHeat [3]
PP Presence Probabilities [18]
PPS Presence Probabilities Simplified [18]
MAT Mean Arrival Time Emulating ST [2]
MDMAT Minimum Distance Mean Arrival Time Emulating ST [2]

4.2. Other approaches
Several authors have proposed techniques that estimate the future occu-

pancy state of a home by observing the current context of its occupants. We
refer to these techniques as context-aware approaches, since they depend on
the current context (e.g. location or activity) of the user, rather than the
home’s historical occupancy schedule. One example of this is the algorithm
presented by Gupta et al. [8], which estimates the time at at which residents
will return home based on their current position and driving trajectory. The
position is determined using GPS modules embedded either in dedicated de-
vices or in occupants’ mobile phones. A web-based mapping service is used
to determine the distance from home and the corresponding remaining drive
time. The thermostat is then instructed to preheat the home if the remaining
drive time is less than a given threshold. In [18], Krumm and Brush show
how to combine their Presence Probabilities algorithm with Gupta et al.’s
drive time prediction approach. In contrast to [8], Krumm and Brush allow
drive times to be pre-computed, thereby increasing efficiency but reducing
accuracy, particularly in areas prone to congestion. In an earlier paper [24],
Krumm et al. also introduced a method called Predestination. This method
uses historical data along with information on a user’s driving habits to
obtain the most likely next destination. A similar system, TherML, is pre-
sented by Koehler et al. [25]. TherML utilises a hybrid prediction algorithm
that switches between predicting the next destination and static schedules
based on the user’s mode of travel (stationary, walking or driving). Other
approaches such as [21], [26] and [27] also use context information about the
user to predict where he/she is likely to go next.

A number of occupancy detection and prediction approaches focus not
only on heating but also on ventilation. For instance, Erickson et al. pro-
pose a system that controls both ventilation and heating/cooling in an office
building [12]. The system estimates the occupancy level of different rooms
– i.e. the number of people present in each room at any given time – using
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Figure 1: (a) Obtaining the homeset from a set of Wi-Fi access points in the vicinity of
the home access point APHS

0 and (b) classifying intervals based on the homeset data.

a Markov Model. The model takes as input both prior occupancy level data
and contextual information on movements between rooms. To detect such
transitions, a network of 16 cameras is used to monitor the so-called transi-
tion boundaries (e.g. corridors). As the probability of a transition occurring
correlates to the time of day, the transition probabilities between different
occupancy states are computed on an hourly basis.

5. Setting up the comparative performance analysis

Schedule-based algorithms represent an important category of approaches
for predicting occupancy. The goal of our comparative study is to evaluate
and discuss the performance of a representative subset of these algorithms.
We considered the algorithms listed in Table 1 and conducted our study using
the methodology described below.

5.1. Actual occupancy schedules
To compare the performance of different occupancy prediction algorithms

in a consistent manner, we evaluated them using a large dataset of actual
occupancy schedules. We inferred these schedules using sensor data collected
as part of the Nokia Lausanne Data Collection Campaign (LDCC) [5]. To the
best of our knowledge, no publicly available data existed on long-term, high-
granularity occupancy schedules, making it necessary to build such schedules
in order to conduct our evaluation.

The LDCC dataset contains about 18 months’ worth of traces of Wi-Fi
scans, GPS coordinates, accelerometer readings and several other sensors, as
well as demographic information from mobile phone users [5]. However, the
dataset does not contain any information concerning user-relevant locations,
i.e. it is not known where the user’s home, office, etc. are located. We
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therefore developed a technique, called the homeset algorithm [28], to infer
this information from the available LDCC data.

The goal of the homeset algorithm is to infer when each user was at
home and when they were not during the data collection period. Thus, the
algorithm computes the occupancy schedule of each user. To do so, it only
uses records of visible Wi-Fi access points. During the LDCC, mobile phones
were set to regularly scan for the presence of visible Wi-Fi access points
(APs) in the immediate vicinity of the phone (and therefore the user). After
each scan, the phone stored information about the detected APs along with a
corresponding timestamp. The input data for the homeset algorithm consists
of a list of these records, from which only the timestamps and the identifier
(MAC address) of the APs are used by the algorithm. A single Wi-Fi scan
is thus represented as a tuple < tk, AP0, AP1, . . . , APmk−1 > where tk is the
timestamp at which the k-th scan was performed, mk is the total number of
APs detected during the k-th scan and APi, i = 0 . . . ,mk − 1 are the MAC
addresses of the APs. The homeset algorithm uses these scans to identify a set
of access points that are located within, or in the immediate proximity of, the
mobile phone owner’s home. We call this set the homeset (HS) and assume it
contains n access points, such that HS = {APHS

0 , APHS
1 , ..., APHS

n−1}. Given
a Wi-Fi scan < tk, AP0, AP1, . . . , APmk−1 >, the homeset algorithm tests
whether {AP0, AP1, AP2, ..., APmk−1} ∩ HS 6= ∅. If this is the case, the
algorithm assumes the home to be occupied in the time slot identified by
the time-stamp tk. Figure 1(b) illustrates the rationale behind the homeset
algorithm.

To bootstrap the homeset algorithm, we determine for each user the AP
that has the highest empirical probability of being detected at least once
between 3 a.m. and 4 a.m. on any particular night. This AP is set to be
APHS

0 . This procedure assumes that typical users spend most of their nights
at home. Once APHS

0 has been identified, the homeset HS is constructed
by adding to HS any other APs that appear in a Wi-Fi scan together with
APHS

0 . Simple heuristics are used (e.g. the number n of APs in HS is
restricted) to improve the robustness and reliability of the algorithm [28].

5.2. Preparing the schedule
For the study presented in this paper we used only occupancy schedules

for users who had collected data for at least 100 days during the LDCC (i.e.
Nd > 100) and for whom the occupancy state could be inferred in at least
70% of the slots. This was done to ensure sufficiently large training and test
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Figure 2: Occupancy in hours for all 45 households in the dataset (identified by the unique
LDCC participant number).

sets. We also discarded the schedules of users whose probability of being
at home between 3 a.m. and 4 a.m. on weekdays was estimated to be less
than 60%. This ensured we considered in the study only users for whom the
homeset algorithm could reliably identify the home. This first data cleaning
phase enabled us to select 59 occupancy schedules.

The PreHeat algorithm by Krumm et al. imposes additional constraints.
For instance, daily schedules need to be padded with four hours from the pre-
vious day and four hours from the next day [18]. We consequently discarded
from the schedules all days for which this information was not available in
order to ensure all algorithms were trained and tested on the same data.
This left 45 schedules to be used for our evaluation. Figure 2 shows the av-
erage occupancy in hours per day for all the participants in the dataset. On
average, these schedules include 74 days’ worth of occupancy data, with the
participants staying at home for 17 hours and 40 minutes per day on average.

5.3. Building model and simulation setup
The algorithms analysed in this paper aim to predict occupancy for smart

heating control systems. The goal of such systems is to reduce the energy
consumed by heating, while at the same time avoiding any loss of comfort
for the residents. We therefore assessed the suitability of the prediction
algorithms in terms of their ability to save energy and ensure comfortable
temperatures when required. To this end, we built a predictive controller
to control the temperature of a building based on the current occupancy
state and the algorithms’ predictions of the future occupancy states of the
building. In order to analyse the performance of the controller under different
conditions, we ran simulations using the 5R1C thermal building model from
the ISO 13790 energy performance standard [29] on 32 different scenarios. In
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particular, we analysed the influence of different weather conditions, building
sizes and insulation levels.

The ISO 5R1C model simulates the transient heat conduction between
the property and its surroundings using an analogous electrical resistance-
capacitance (RC) circuit and thus offers a method of calculating the energy
required for heating and cooling while maintaining specified setpoint temper-
atures. This modelling principle was first introduced by Beuken in 1936 [30]
and has since been widely employed in building design [31]. In contrast to
simpler models [1], the ISO 5R1C model takes into account the heat transfer
by transmission and ventilation as well as solar and internal gains.

The response of the heating system was simulated for 32 different weather
and building settings. We considered two different building sizes – a 52 m2

studio flat (F) and a 176 m2 house (H). In order to measure the effect of the
building envelope on thermal performance, we also simulated the response
of the ISO 5R1C model for low and high U-values6. The U-value (W/m2K)
denotes the overall heat transfer coefficient of a building element. Elements
with high U-values conduct more heat per unit temperature difference be-
tween the inside and outside. A building with high U-values is considered
poorly insulated and thus leaking a significant amount of heat to the outside.
For each of the resulting four building configurations (flat F-Ulow, F-Uhigh;
house H-Ulow, H-Uhigh), the design heat load (maximum heat input) in watts
ΦH,max was determined using the DIN EN 12831 standard [33]. The internal
gains Φint were assumed to be 250W and 375W, whenever the house was
occupied, equivalent to the metabolic heat rate of two and three residents for
the flat and house respectively. Table 2 shows the parameters for the ISO
5R1C model for all the building variants we analysed.

The effect of different weather conditions on the heating load was cap-
tured by eight representative weather scenarios synthesised from real weather
data7 for the Lausanne (Switzerland) area where also the data used to derive

6The U-values for a well-insulated buildings (F-Ulow and H-Ulow) correspond to the
maximum allowed U-values for new properties in Germany according to EnEV’14 [32].
For the poorly insulated buildings (F-Uhigh and H-Uhigh), we used a list of high U-values
reported in http://en.wikipedia.org/wiki/Thermal_transmittance (accessed on May
8, 2014).

7Global solar radiation and outdoor temperature (2m above ground) were obtained
from MeteoSwiss; the global radiation was split into direct and indirect radiation using
the Reindl∗ method [34].
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Table 2: ISO 5R1C building model parameters for different building variants.

Building variant
Parameter F-Ulow F-Uhigh H-Ulow H-Uhigh Units
Thermal transmission coefficient for
opaque building elements – Htr,op

47.16 184.57 103.57 379.35 W/K

Thermal transmission coefficient for
windows and doors – Htr,w

12.68 31.50 33.07 102.06 W/K

Thermal transmission coefficient for
ventilation – Hve

47.33 47.33 161.57 161.57 W/K

Internal zone capacitance – Cm 8.51 8.51 29.04 29.04 MJ/K
Floor area – Af 51.56 51.56 176.00 176.00 m2

Design heat load according to [33] –
ΦH,max

2.80 6.86 7.78 16.75 kW

Table 3: Weather scenarios. For each of the 8 scenarios, the table shows the average daily
temperature Θe,d and the average daily global radiation Iavg for reference.

Θe,d (◦C) Iavg (W/m2)
Scenario Range clear cloudy clear cloudy
Very low temperature −6 ◦C ≤ Θe,d ≤ −4 ◦C -5.4 -4.7 142.9 35.5
Freezing temperature −1 ◦C ≤ Θe,d ≤ 1 ◦C 0.1 0.0 137.5 30.2
Low temperature 4 ◦C ≤ Θe,d ≤ 6 ◦C 5.1 5.1 148.5 26.1
Moderate temperature 9 ◦C ≤ Θe,d ≤ 11 ◦C 10.1 10.0 180.7 29.7

the occupancy schedules was gathered (cf. Section 5.1). Lausanne is situ-
ated within a transition zone between a humid oceanic climate zone and a
continental temperate zone.

Table 3 shows the eight weather scenarios used in the evaluation. The sce-
narios cover four different temperature levels under clear as well as cloudy sky
conditions. Each scenario consists of 24-hour vectors of the outside temper-
ature and the direct solar radiation, replicated n times to reflect the number
of days in the occupancy data. The vectors are the average of multiple days
fitting the temperature ranges shown in Table 3. We have not included a
detailed description of the methodology used to define the weather scenarios
and refer the interested reader to the supplementary technical report [35].

5.4. Heating controller
We implemented a predictive heating controller to translate the occu-

pancy schedules predicted by the algorithms into actual heating schedules.
A heating schedule defines the target indoor air temperature Θair,set at 15-
minute time intervals t. Given the predicted occupancy schedule and the RC
model, the heating controller sets Θair,set to Θcomf for t if: (1) The house
is occupied at time t (reactive policy); (2) The house is expected to become
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Figure 3: Typical behaviour of a heating system according to the ISO 5R1C model (F-Ulow,
very low temperature, clear sky) for a scenario where the house is unoccupied between
9 a.m. and 5 p.m. The upper part shows the inputs (solar gain Φsol, heat input ΦH

and internal gain Φint), the lower part the direct radiation Ib,{east,south,west} and outside
temperature Θe. Θair,crit denotes the critical temperature at which the preheating starts
to reach Θcomf at 5 p.m.

occupied between t+1 and t+I∗. The prediction horizon I∗ (cf. Section 3) is
the time needed to raise the indoor air temperature Θair to Θcomf (predictive
policy), starting from the temperature at time t + 1, using the maximum
available heating power ΦH,max (DIN EN 12831 design heat load) and as-
suming that the target temperature was Θsetb at time t. If neither of these
two conditions is fulfilled, the controller sets the target temperature to Θsetb

in order to save energy. The heat input ΦH at any point in time is directly
determined by the current setpoint temperature. In all cases, the controller
has perfect knowledge8 of the future weather.

The predictive heating controller is always in one of three different states:
the preheat state, the heating state or the cool down state. If the current
air temperature is below the setpoint temperature Φair,set, the controller is in
the preheat state where the system heats with ΦH,max, the maximum heating
power available. If the current air temperature is equal9 to the setpoint

8The alternative, predicting the future weather in order to determine when to heat,
would prevent us from isolating the performance of the occupancy prediction algorithm.

9In practice “equal” is often taken with a grain of salt: To avoid excessive switching
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temperature, the controller is in the heating state. Here the heating power
is lower than the maximum value and equivalent to the power needed to
maintain the setpoint. Otherwise, if the setpoint is lower than the measured
air temperature, the system is in cool down state and no heat is added to the
system (i.e. ΦH = 0).

The upper part of Figure 3 shows the behaviour of the controller and the
indoor air temperature Θair for a typical occupancy schedule and the F-Ulow,
freezing temperature, clear sky scenario. The lower part of the figure shows
the corresponding weather data (Ib,{east,south,west} indicating the direct solar
radiation and the outside temperature Θe) used in this scenario. When the
occupants leave at 9 a.m., the indoor air temperature is allowed to drop until
2.15 p.m. (from 20 ◦C to 13 ◦C), with no heat being added to the system.
The controller then preheats the property such that Θair = Θcomf = 20 ◦C
when the occupants return home at 5 p.m.

6. Results of the comparative performance analysis

This section presents the results of our study. We first report on the
prediction accuracy achieved by the MAT, MDMAT, PP, PPS and PH algo-
rithms for the occupancy schedules derived from the LDCC dataset. We then
show that they achieve a prediction accuracy close to the theoretical upper
bound defined by the predictability of the input schedules. We conclude by
highlighting the performance of the algorithms in terms of efficiency gain (as
a measure of the energy saved) and comfort loss.

6.1. Prediction accuracy
We say that a true positive prediction occurs when an algorithm pre-

dicts a house will be occupied during a time slot k and the house is indeed
occupied during that time slot. Likewise, correctly predicting the house to
be unoccupied corresponds to a true negative prediction. False positive and
false negative predictions occur when the household is incorrectly predicted
to be occupied or unoccupied, respectively. If, more formally, tp denotes the
number of time slots with a true positive prediction (and likewise for tn, fp
and fn), the prediction accuracy of an algorithm is defined as tp+tn

tp+tn+fp+fn
.

and to prevent wear of control equipment, controllers (in particular on-off systems) are
typically designed to include hysteresis, effectively substituting the setpoint with a delta
interval (the “comfort band”) around the setpoint.
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Figure 5: ROC curves of PPS and PH.
Crosses indicate α = 0.5.

To compare the considered algorithm against a baseline, we introduced a so-
called naïve predictor. Given the a priori probability pocc of the home being
occupied, the naïve algorithm always predicts it to be occupied if pocc ≥ 50%.
If pocc < 50% the naïve predictor always predicts the house to be unoccu-
pied. For our study, we computed pocc from the occupancy schedules as the
number of slots containing a 1 in the schedule divided by the total number
of slots.10

Figure 4 shows the prediction accuracy of all five algorithms considered
in this study along with that of the naïve predictor for the LDCC occupancy
schedules. For each prediction algorithm, the box plot indicates the median
as well as the 25th and 75th percentiles of the accuracy across all 45 house-
holds. The interquartile range between the top and the bottom of the box
thus represents the accuracy achieved in 50% of the homes. The whiskers
represent the extreme data points (within ±2.7σ).

The median accuracies in Figure 4 show that all surveyed algorithms im-
proved upon the baseline provided by the naïve predictor. The PP (or PPS)
algorithm achieved the highest prediction accuracy. Its median accuracy lies
at around 85%, which means that the algorithm achieves at least this accu-
racy in 50% of the homes in the dataset. It is also the only algorithm for
which the accuracy never dropped below 70%, which is the median value
of the naïve predictor. We used Tukey’s HSD test [37] at the 95% level in
conjunction with a one-way balanced ANOVA to establish that the mean
accuracy of the PP algorithm was significantly different to the accuracy of

10As noted in [36], the naïve predictor was often quite accurate since typical residents
spend a significant amount of their time (60% or more) at home.
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the other algorithms (except PPS). The ANOVA assumes the distribution
of the accuracy for each algorithm to be normal. Confirmation that this as-
sumption holds for the data under analysis was obtained using a two-tailed
Shapiro-Wilk test at the 99% confidence level (p-values between 0.23 and
0.75).

The PH algorithm also achieved a good median accuracy around 80% al-
though it exhibits larger deviations to both sides of the median. This shows
that for selected homes, PH can achieve a higher accuracy. For “typical”
homes, however, PP was the algorithm that performed best. In contrast, the
prediction performance of MAT and MDMAT, which are considered here as
representative of the basic techniques used by the ST algorithm was notice-
ably worse. The whiskers indicate that MAT and MDMAT are not suitable
for schedules resulting in high values for pocc (i.e. schedules for users who
are almost always or almost never at home). This is due to the fact that
for every day, MAT and MDMAT assume a period of absence between the
computed mean departure and mean arrival times. A single day containing a
9-hour absence may thus result in a predicted schedule with an implied 63%
probability of occupancy. In the case of a house otherwise occupied 90% of
the time (i.e. pocc = 90%), this results in a drop in accuracy of 27%.

Figure 5 shows the receiver operating characteristic (ROC) curves for
the PH and PPS algorithms. The curves highlight the tradeoff between
the true positive rate, defined as tp/(tp + fn) and the false positive rate,
defined as fp/(fp + tn). The gray dotted line shows the performance of the
random predictor (i.e. tossing a coin). The curves are obtained by varying
the value of the threshold α (cf. Section 4.1). The cross markers on the
curves show the data points corresponding to α = 0.5. For both PH and
PPS, setting α = 0.5 as done in [3] achieved a good balance between true
positive and false positive rates. The figure also shows how the performance
of the PH algorithm changes for different values of the parameter k (which
represents the number of nearest neighbours taken into account when making
the prediction). For α = 0.5 and k = 7, PH achieved a higher true positive
rate and a lower false positive rate than with other parameter configurations.
As mentioned above, this is the configuration we used for PH in this study
as well as the default choice proposed in [3]. For the PH algorithm we used
a prediction horizon of 90 minutes.
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Figure 6: Distribution of predictabilities Πmax over all participants.

6.2. Limits of predictability
The results presented above show that among the algorithms considered

in this study, the PP predictor achieved the highest median accuracy of 85%.
An obvious question to ask would be: Is it possible to do better? In other
words, how close is the performance of PP to that of an “optimal” predictor?
To answer this question, we built upon the results presented by Song et
al. [38]. Their work targets the problem of predicting the next place visited
by a person, given that the sequence of places visited thus far – referred to as
the mobility trace of this person – is known. In this context, they introduce
the concept of the predictability Πmax of a mobility trace L and show that it
represents the “upper bound that fundamentally limits any mobility prediction
algorithm in predicting the next location based on historical records” [39].

The predictability Πmax thus corresponds to the upper limit of the pre-
diction accuracy achievable by schedule-based predictors. If the focus is on
occupancy prediction, the next place visited by the participant in the LDCC
dataset can either be home or “any place but home.” We refer to these two
places as L1 and L0 respectively. The sequence of places visited by a partic-
ipant up to a time slot k can then be derived from the schedules. A value of
0 (or 1) in the schedule indicates that the place L0 (or L1) has been visited.
For instance, assuming 15-minute slots, an excerpt of a schedule indicating
a participant is at home for 1 hour and then away from home for 30 minutes
corresponds to the sequence L1L1L1L1L0L0. In this way, we can derive the
mobility trace for each participant and directly apply the method proposed
by Song et al. to compute predictability values.

Figure 6 shows the predictability values of the schedules for the 45 partic-
ipants considered in this study (left) along with the corresponding empirical
distribution (right). The predictability is computed for each participant over
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Table 4: ISO 13790 average efficiency gain for all experiments with low U-values (good
insulation). � and � denote clear and cloudy scenarios respectively. The rightmost
column shows the average total daily energy consumption when no occupancy prediction
and setback algorithm is applied.

Efficiency gain (%)
∑

kWh
OPT MAT MDMAT PP PPS PH REA NO SETB.

Weather � � � � � � � � � � � � � � � �
F-Ulow (well insulated flat)

Very low 5 4 4 2 4 2 4 2 4 2 4 3 13 14 51 55
Freezing 8 6 6 5 6 5 6 5 6 5 6 5 10 12 38 44
Low 10 9 8 8 8 8 8 8 8 8 8 8 10 12 27 32

Moderate 11 12 10 11 10 11 10 11 10 11 10 11 11 13 17 20
H-Ulow (well insulated house)

Very low 4 3 3 1 3 1 3 1 3 1 3 2 15 16 155 166
Freezing 6 5 4 4 4 3 5 3 4 3 5 4 10 12 119 134
Low 8 7 6 6 6 6 6 6 6 6 7 6 9 10 84 99

Moderate 9 10 8 8 8 8 8 8 8 8 8 8 9 10 53 65

the whole schedule. The participants are sorted in descending order of Πmax

from left to right. The maximum value of Πmax is 95% while the minimum
is 81%. The average of Πmax over all homes is 90%. This value is thus an
upper bound for the average prediction accuracy achievable by any predic-
tor. In Section 6.1 (see Figure 4) we observed that the median accuracy
of the PP algorithm was 85%, which is just 5% below the upper bound of
90%. This indicates that a fairly simple schedule-based approach such as PP
can in itself capture most of the predictability intrinsic in typical occupancy
schedules. Furthermore, this result indicates that the use of more sophis-
ticated schedule-based algorithms will provide a maximum improvement in
accuracy of about 5% only. Note, however, that the use of context-aware
algorithms may push the achievable accuracy above the 90% limit, as with
such algorithms information other than past occupancy schedules is used to
compute predictions.

6.3. Efficiency gain and comfort loss
Having discussed the accuracy of schedule-based occupancy prediction

algorithms, we now investigate the performance of a predictive heating con-
troller that uses the MAT, MDMAT, PP(S) and PH algorithms. For reference
purposes we have also included OPT, which uses an oracle to provide a per-
fect prediction of household occupancy. To measure the energy consumption
of the heating system, we built a simulation system [35] based on the ISO
5R1C model introduced in Section 5.3. We assumed the heating controller

22



Table 5: Same as Table 4, but with high U-values (poor insulation).

Efficiency gain (%)
∑

kWh
OPT MAT MDMAT PP PPS PH REA NO SETB.

Weather � � � � � � � � � � � � � � � �
F-Uhigh (poorly insulated flat)

Very low 10 9 9 9 9 9 9 9 9 9 9 9 11 11 123 124
Freezing 14 13 14 13 14 13 14 13 14 13 14 13 14 14 95 100
Low 16 17 16 17 16 17 16 17 16 17 16 17 16 17 69 74

Moderate 18 19 18 19 18 19 18 19 18 19 18 19 18 19 45 48
H-Uhigh (poorly insulated house)

Very low 7 6 6 6 6 5 6 5 6 5 6 5 12 12 328 332
Freezing 11 10 10 9 10 9 10 9 10 9 10 9 13 13 255 269
Low 14 14 13 13 13 13 13 13 13 13 13 13 14 14 186 200

Moderate 15 15 14 15 14 15 14 15 14 15 14 15 15 15 122 133

behaves as described in Section 5.4, irrespective of the algorithm used to
predict occupancy. We simulated the response of the controller for the four
building variants (F-Ulow, F-Uhigh, H-Ulow and H-Uhigh) and eight weather
scenarios introduced in Section 5.3, resulting in 32 different configurations.

We measured the performance of the controller for each algorithm in
terms of efficiency gain. Let Qpred be the heat injected by a predictive
heating controller into the home and Qno_setback the corresponding heat in-
jected by a controller that maintains the temperature of the home con-
stantly at Θcomf throughout the day. The efficiency gain is then defined
as (Qno_setback−Qpred)/Qno_setback. Defining and measuring thermal discom-
fort in an appropriate way is not easy. In 1970, Gupta proposed using “the
ratio of the temperature-time curve area outside the specified comfort zone
to that area of the comfort zone” as a “degree of discomfort” [40]. We used a
discretised variant of that measure which yields absolute values per day. Dis-
comfort degree hours as a measure of comfort loss are defined as the average
sum of hourly differences between the actual indoor air temperature Θair and
Θcomf for all occupied intervals, formally 1/4(ΘcomfΓ1..96 − Θair,1..96) · Γ1..96.
Here, Γ1..96 denotes the ground truth occupancy vector containing 1’s for
occupied intervals and 0’s for unoccupied intervals. Thus, if Θair = 17 ◦C
upon the arrival of the occupants at 5 p.m. and the heating system requires
1 hour to heat up to Θcomf = 20 ◦C (e.g. Θair,17:15 = 18 ◦C, Θair,17:30 = 19 ◦C,
Θair,17:45 = 19.5 ◦C and Θair,18.00 = 20 ◦C), then the discomfort degree hours
for this day will be 0.75.

Tables 4, 5 and 6 present the results for all 32 configurations. They show
the efficiency gain and discomfort degree hours for all analysed algorithms.
It is worth noting that the absolute values for the metrics reported clearly
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depend on the specific model, data and parameters used in this study. The
generalisability of these results is discussed at the end of this section.

A predictive heating system is able to achieve the highest efficiency gain
in poorly insulated buildings. The potential efficiency gain as determined by
OPT is 9% to 19% for the flat F-Uhigh and 6% to 15% for the house H-Uhigh

(Table 5). For well insulated buildings (low U-values), the efficiency gain
under optimal prediction is reduced to a value of 4% to 12% for the flat and
3% to 10% for the house (Table 4). Higher U-values mean that the buildings’
indoor temperature drops more quickly. At the same time, the prediction
horizon I∗ is reduced due to a higher design heat load ΦH,max (cf. Table 2
in Section 5.3) and the efficiency gain increases. This happens regardless of
the prediction algorithm. As I∗ approaches zero, the predictive controller’s
behaviour approaches that of the reactive controller. The reactive controller
(REA), which does not predict or preheat (i.e. only heats the building when
it is occupied), has the highest efficiency gain for all scenarios – 9% to 19%.
However, this also comes at the expense of the highest average discomfort
degree hours (i.e. a large loss of comfort). For this reason, REA is clearly not
a practical alternative in particular on very cold and freezing days. As the
difference between Θcomf and the outside temperature Θe becomes smaller,
OPT and the reactive strategy converge since it takes less time to heat up
the building.

The inability of the analysed algorithms to perfectly predict occupancy
has the largest impact on well-insulated buildings (i.e. F-Ulow and H-Ulow)
when solar gains and outdoor temperatures are low (i.e. very low tempera-
ture, cloudy scenario). In this case, when compared to the perfect prediction
OPT, the algorithms typically do not achieve much more than 50% of pos-
sible savings. This is due to the fact that this scenario requires prediction
over a longer prediction horizon I∗.

As Table 6 shows, none of the prediction algorithms (OPT, MAT, MD-
MAT, PP, PPS and PH) produced significant comfort loss in terms of dis-
comfort degree hours. Apart from the very low temperature scenario, where
the temperature sometimes dropped below −6 ◦C (the design temperature11
used for the calibration of ΦH,max), the average discomfort degree hours are
less than one for all scenarios and prediction algorithms. Moreover, even for

11The design temperature is defined as the minimum two-day average temperature that
was reached at least 10 times in the last 20 years [33].
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Table 6: Average discomfort degree hours per day (as a measure for comfort loss) for all
experiments. � and � denote clear and cloudy scenarios.

Discomfort degree hours per day
OPT, (MD)MAT, PP(S) PH REA OPT, (MD)MAT, PP(S), PH REA

Weather � � � � � � � � � �
F-Ulow (well insulated flat) F-Uhigh (poorly insulated flat)

Very low 0 17 22 0 1 1
Freezing 0 2 7 0
Low 0 0 1 0

Moderate 0 0
H-Ulow (well insulated house) H-Uhigh (poorly insulated house)

Very low 0 1 1 28 35 0 8 8
Freezing 0 5 12 0 1 2
Low 0 0 2 0

Moderate 0 0

the reactive controller (REA) there was no significant comfort loss for the
low and moderate temperature scenarios. We will discuss possible reasons
for this behaviour in Section 7.1.

One should realise that to achieve significant savings, the response of
the “standard” heating controller (cf. Section 5.4) to the algorithms’ pre-
dictions may be too conservative. Especially for lower temperatures and
well-insulated buildings, the additional efficiency gain of the reactive over a
predictive controller is substantial. This indicates that with some (negligi-
ble or at least acceptable) comfort loss or simply by defining a reasonable
temperature comfort bound around the setpoint, higher savings should be ob-
tainable by more “courageous” predictive controllers. A modified controller,
which not only optimises for zero miss-time (e.g. Θair = Θcomf±∆) upon the
arrival of the occupants) but also assigns a cost to discomfort degree hours
and balances this with the actual heating costs, may obtain a higher effi-
ciency gain while incurring only minimal additional discomfort degree hours
(and thus comfort loss) per day. This approach has already been suggested
by Mozer et al. in [1]. We leave the investigation of controllers that trade
comfort loss for efficiency gain to future work.

6.3.1. Annualised savings
So far, the results in this section have shown the efficiency gain for se-

lected weather scenarios. The annual efficiency gain is determined by the
number of occurrences of each of these scenarios per year. Thus, they can be
computed by weighting the efficiency gain of the weather scenarios by their
empirical probability as derived from historical weather data. Table 7 shows
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Table 7: ISO 13790 annual efficiency gains.

Efficiency gain (%)
OPT MAT MDMAT PP PPS PH REA

Building � � � � � � � � � � � � � �
H-Ulow 8 8 7 / 6 9 11
F-Ulow 10 10 8 9 8 8 9 8 9 8 9 9 11 12
H-Uhigh 13 14 13 14 15
F-Uhigh 16 17 16 / 17 16 17

Table 8: Average outside temperatures for selected cities and simulated efficiency gain for
January to March (F-Ulow).

Average temperature ( ◦C) Efficiency gain OPT (%)
City Jan Feb Mar Jan Feb Mar
Moscow -8.0 -7.0 -2.0 6 7 9
Toronto -5.8 -5.6 -0.4 7 7 9
Beijing -4.0 -1.0 6.0 5 6 11
Stockholm -2.8 -3 0.1 7 7 9
New York 0.5 1.8 5.7 8 8 11
Lausanne 1.3 2.8 5.5 6 7 9
Brussels 3.3 3.7 6.8 8 8 10
London 4.3 4.5 6.9 8 8 10
Seattle 5.6 6.3 8.1 10 11 12

the annualised efficiency gain for all four building scenarios. The weightings
for the weather scenarios were determined using the historical weather dis-
tribution of the 20 years from 1994 to 2014. The table shows that all the
prediction algorithms (MAT, MDMAT, PP(S) and PH) achieved the same
annual efficiency gain, close to OPT, ranging from 6% (well insulated house)
to 17% (poorly insulated flat).

6.3.2. Impact of climate conditions
Different climate zones may offer varying potential for energy savings.

To indicate how well our findings for Lausanne can be generalised to other
locations, Table 8 shows the efficiency gain achievable by OPT for the av-
erage weather conditions from January to March for selected cities12. For
these simulations, a simplified model of F-Ulow with no solar gains and con-
stant outside temperatures was applied, and the outside temperature equaled
the average temperature for the month in question. Further details can be
obtained from [35].

12Temperature data obtained from wikipedia.org, if available, otherwise from
weatherbase.com.
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Figure 7: Efficiency gain and comfort loss measured in discomfort degree hours per day
according to the ISO 5R1C model (F-Ulow, freezing temperature, cloudy).

Table 8 shows an increase in the efficiency gain of between 5% (Beijing)
and 10% (Seattle) in January to a range between 9% (Toronto) and 12%
(Seattle) in March. This pegs the efficiency gain closely to the annualised
figures obtained for the more detailed Lausanne simulation shown in Table 7.
Cities with larger differences in the average outside temperature (e.g. Beijing
has a difference of 10 ◦C between January and March), generally also have
a larger variance in efficiency gain. This is due to the fact that the heating
system is designed for the lowest temperatures. As the temperatures increase,
the additional power of the heating system can be used to heat up the building
more quickly.

6.3.3. Impact of the occupancy schedules
As one might expect, the potential for energy savings is highly correlated

to a home’s occupancy schedule. We analysed the impact of occupancy in the
freezing temperature, cloudy sky scenario weather scenario. Figure 7 shows
that for the well insulated flat F-Ulow, efficiency gain and discomfort degree
hours vary considerably between the participants. The bar plot shows the
median, quartiles and extreme values of metrics for each algorithm (outliers
have been removed). The left side of the figure shows the results for the
predictive controller in conjunction with the assessed prediction algorithms.
The right side shows the results for the reactive controller for comparison.
As noted previously, the discomfort degree hours induced by the prediction
algorithms are negligible. Overall, there are no significant differences be-
tween the algorithms and the distribution of their efficiency gain across the
participants.
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Figure 8: Efficiency gain / occupancy correlation: Freezing temperature, cloudy.

Figure 8 shows the correlation between average occupancy and the effi-
ciency gain that may be obtained by OPT for all 45 participants. Figures 8(a)
and 8(b) contrast this relationship between F-Ulow (good insulation) and
F-Uhigh (poor insulation). The figures show that the quarter of homes that
are least-occupied (25th percentile) outperformed the most-occupied homes
(75th percentile) by a factor of 4-5. Low occupancy houses are clearly much
better suited for installing smart heating systems than those with high oc-
cupancy.

The figures also show that for the 25% of homes with the lowest occu-
pancy, the efficiency gain almost doubled from 11% to 21% from the well in-
sulated to the poorly insulated flat. Not surprisingly, one can thus conclude
that smart heating systems yield the highest benefits in poorly insulated
buildings.

Figure 8(b) shows an almost linear relationship between occupancy and
efficiency gain. This relationship is less pronounced in Figure 8(a). Here, the
efficiency gain for the quarter of participants between the 25% quantile and
the median is almost constant. As OPT’s prediction is perfect, the reason
for this effect lies in the structure of the occupancy schedules in conjunction
with the increased prediction horizon due to the better insulation. The more
arrival and departure events a schedule contains, the more difficult it is for
the heating system to lower the temperature to a setback temperature.

7. Modelling limitations

Due to their novel nature, performance data from smart heating instal-
lations in domestic buildings is still sparse. However, to make substantiated
claims regarding the impact of different variables such as the building’s oc-

28



cupancy and insulation on the efficiency gain and comfort loss of a predictive
heating system, one must analyse each variable ceteris paribus. Thus, for
the time being, in order to analyse the specific impact of different variables,
one must resort to simulations. Simulation and modelling naturally involve a
trade-off between model complexity and simulation accuracy. In the follow-
ing, we will briefly discuss some of the shortcomings of the ISO 5R1C model
used in this report and analyse our choice of baseline strategy for computing
efficiency gain.

7.1. Building model
To simulate the heating system, we used the 5R1C model from the ISO

13790 standard [29]. In this model, the heat source is connected via the node
for the indoor air temperature. As such, even though it has been widely
adopted for building design in Europe [41, 42], the ISO 5R1C model more
closely resembles a forced-air heating system common in the US, rather than
the hydronic systems more typically encountered in Europe. A forced-air
heating system typically reduces the preheat time and lowers the penalty
for false predictions, thereby resulting in the low comfort loss exhibited by
the simulation results (cf. Table 6). From the variations between different
insulation levels (cf. Figure 8), we have already seen that shorter preheat
times induced by more powerful heating systems result in an almost reactive
strategy and thus in higher energy savings. As such, our evaluation hints at
an upper bound on the savings that can be achieved using predictive heating
systems and may lead to an underestimation of comfort loss.

7.2. Baseline metrics
We employed an always-on strategy as the baseline for evaluating the

predictive controller and the occupancy prediction algorithms. In practice,
households often use a (static) night-time setback. Allowing the temperature
to drop during the night by 4 ◦C to 6 ◦C has been shown to result in savings
between 4% and 7% [43, 44]. A baseline strategy using a night-time setback
thus lowers the overall energy consumption, thereby – assuming the predictive
setback generally occurs during the day – slightly increasing the efficiency
gain of the predictive controller. Using a night-time setback strategy as the
baseline, however, necessitates a clear separation between the efficiency gain
achieved by this setback and the predictive strategy.

Substituting the ISO 5R1C model with a more suitable and possibly more
detailed building model, and also considering night-time setback, could be a
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task for future work. While an even more realistic simulation model would
increase the confidence in the simulation results, we do not expect this would
significantly affect the outcome.

8. Conclusions and summary of results

The insights gained through our simulation-based performance analysis of
occupancy-based approaches for smart heating control, based on real-world
weather data and established building standards, can be summarised as fol-
lows:

• Among the considered algorithms, the Presence Probabilities (PP, PPS)
approach by Krumm and Brush [18] provides for the best overall per-
formance in terms of prediction accuracy for the dataset considered in
this paper. The approaches suggested by Lu et al. [2] and Scott et
al. [3] (MAT, MDMAT, PH) perform slightly worse, albeit not by a
large margin.

• The prediction accuracy of existing schedule-based algorithms is close
to the achievable theoretical upper limit ; this limit is expressed by the
predictability of the underlying occupancy schedules. Further perfor-
mance improvements can thus only be achieved by context-aware ap-
proaches that consider additional input information rather than occu-
pancy schedules only.

• Actual comfort loss in terms of discomfort degree hours is lower than
the values implied by the accuracy of the prediction algorithm. A
prediction accuracy of around 80% does not necessarily result in an
uncomfortable thermal environment for 20% of the time. This is mainly
due to the reactive nature of the heating scenario (e.g. heating is not
turned off prematurely based on a predicted state if the occupants are
still present). Moreover, the comfort loss is bounded by the time it takes
to heat from the current temperature to the comfort temperature.

• The efficiency gain achievable by occupancy prediction is dependent
on the structure of the building, its occupancy and the weather condi-
tions. Annual savings range from 6% to 17% depending on the type of
building (cf. Table 7). Savings are almost doubled for poorly insulated
buildings. The 25% of households with the lowest occupancy have a
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4-5 times higher potential for efficiency gains than the quarter of homes
with the highest occupancy. Lower temperatures and cloudy skies re-
duce efficiency gain and increase comfort loss as it takes longer to heat
the building. Our data confirms similar results by [43] and [44] which
showed energy savings of between 6% and 10% for cool and temperate
climates using setback thermostats.

• The algorithms’ inherent difficulty in correctly predicting the arrival
time of the occupants imposes a penalty on the efficiency gain. To save
more energy, additional intelligence could thus be incorporated into the
controller. One example would be to forgo heating if only a short period
of occupancy is predicted that would nevertheless result in significant
energy expenditure to heat up the property. A mobile application or
simple “override” button on the thermostat to enable the occupants to
control the smart thermostat in a simple and easy manner could deal
with exceptional cases and increase user acceptance.
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