
Diss. ETH Nr. 20253 

 

 

Ubiquitous Computing Technologies 
for Residential Energy Conservation 

 

 

 

A dissertation submitted to 
ETH Zurich 

 

for the degree of 
Doctor of Sciences 

 

presented by 
Markus Weiss 

Diplom-Informatiker, Julius-Maximilians University Würzburg 
born May 08, 1981, citizen of Germany 

 

 

 

accepted on the recommendation of 
Prof. Dr. Friedemann Mattern, examiner 

Prof. Dr. Elgar Fleisch, co-examiner 
Prof. Dr. Hans Gellersen, co-examiner 

 

2012



  



Acknowledgements | 3 

Acknowledgements 
This dissertation has been created during my time as researcher at the 
Bits-to-Energy Lab, a joint initiative of the Institute of Pervasive Compu-
ting and the Information Management Group at ETH Zurich as well as the 
Institute of Technology Management at the University of St. Gallen. Parts 
of the work were conducted during a stay as visiting scholar at the Engi-
neering Systems Division, a part of the MIT Energy Initiative at the Mas-
sachusetts Institute of Technology in Cambridge, USA. 

I wish to express my gratitude to all who supported me over the past 
years. This work could not have been completed without your help. 

First, I want to thank my supervisor Prof. Dr. Friedemann Mattern for 
his great guidance, his inspiring thoughts, and the exceptional freedom 
that fostered creativity and made working a great pleasure. Further, I 
want to thank my co-supervisors Prof. Dr. Elgar Fleisch and Prof. 
Dr. Hans Gellersen for their valuable discussions and challenging feedback 
from different angles. I also want to thank my project manager Dr. Thor-
sten Staake for working close with me on each step along the way, for 
countless valuable and fun discussions, and for pushing at the right mo-
ments to proceed from initial ideas to tangible results.  

Of course, all my colleges at the Bit-to-Energy Lab and the affiliated in-
stitutes at ETH Zurich and the University of St. Gallen as well as the ones 
I cooperated with at the Massachusetts Institute of Technology deserve a 
big thank you. It is impossible to mention each of you, but being a mem-
ber of these groups and being in a team with you has been an incredible 
experience in an inspiring environment (be it during day or night times). I 
further want to thank my students for all their effort and enthusiasm they 
put into my project. Working with you always encouraged me in my work. 
Special thanks go to the industry partners that supported this work and 
helped realize an applicable system and enabled its evaluation in the field. 

Last, I want to thank my family, especially my parents Renate and Sieg-
fried, as well as my close friends for their support, encouragement, and for 
visiting me all over the world throughout my life – Danke, Ihr seid Hölle. 

Zurich, March 2012               Markus Weiss 



4 | Acknowledgements 

  



Abstract | 5 

Abstract 

Residential electricity consumption is continuously increasing and accounts 
now for about one third of the total electrical energy produced in Europe 
and the U.S. How much residential electricity is used depends primarily on 
the operated household appliances and the behavior of the residents. One 
major difficulty for individuals who are interested in saving energy in their 
household is the lack of information about their electricity consumption. 
Feedback on energy usage is typically only provided by a monthly (if not 
yearly) utility bill and thus remains rather vague and opaque to most resi-
dents. As a result, most individuals could reduce their electricity consump-
tion, but few know how much they consume and even fewer know how 
much energy they consume for a particular purpose (e.g., lighting). And 
even those who do have a fair understanding of their consumption patterns 
rarely receive guidance about the changes that will have the biggest im-
pact on their electricity bill. 

Through recent technological advances in terms of cost, size, and compu-
ting power, Information and Communication Technology can help in many 
ways to address the challenge of making residential electricity consumption 
visible to individuals. Embedding computing and communication devices 
in everyday objects, as advocated by Ubiquitous Computing, can help to 
communicate the consumption, but also the most energy-efficient usage of 
a particular smart appliance. Smart meters that enable capturing fine-
grained electricity consumption information at high frequency are current-
ly replacing traditional electricity meters. Smartphones have become ubiq-
uitous, powerful computing platforms that allow visualizing energy con-
sumption on the spot without the need for external wall displays. By digi-
tally enhancing physical devices that populate homes, Ubiquitous Compu-
ting is offering new possibilities to address the problem of residential ener-
gy conservation. 

Applying Ubiquitous Computing technologies for residential energy con-
servation raises research questions about the most suitable overall system 
design of energy feedback solutions and the most appropriate modality of 
communicating the consumption and guidance information to the consum-
er. This thesis addresses these research questions by examining how Ubiq-
uitous Computing can help provide effective feedback that goes beyond 
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mere consumption values and is at the same time integrated into daily life. 
Following a user-centric approach that combines the use of smartphones 
and smart meters, we tackle some of the open challenges in residential en-
ergy conservation. The contributions of this thesis are threefold.  

First, we design, develop, and evaluate an electricity sensing and feed-
back infrastructure that seamlessly integrates into the residential environ-
ment. It addresses the technical requirements that have been identified in 
previous research to enable users to better understand their energy con-
sumption (i.e., integration into daily life, real-time information provision-
ing, low usage barrier, and fine-grained consumption information). At the 
same time, the infrastructure serves as an easily extendible framework that 
can be used by other researchers (e.g., to develop and test visualization 
concepts, to realize further automated energy savings, or to design behav-
ioral science experiments). To demonstrate the feasibility of our approach, 
we implemented a prototype of the infrastructure and deployed and evalu-
ated it in a laboratory setting as well as in four households in Switzerland. 
The architecture supports the interaction capabilities of mobile phones 
together with the integration of smart electricity meters and is used as the 
base for most other work done in the context of this thesis.  

Second, we evaluate the potential of mobile phones to serve as portable 
electricity feedback monitors in two different experimental settings: a user 
study as well as a real-world deployment. In the user study, we analyze the 
perceived value of various feedback functionalities and identify which type 
of feedback is meaningful to users. Moreover, we evaluate the general usa-
bility, accuracy, and intention of use of such an electricity feedback appli-
cation. The real-world deployment aims at characterizing different user 
types and providing qualitative results gathered through the use of the 
application. It shows that to foster long-term application of the system 
motivational concepts are required that engage users once their initial cu-
riosity is satisfied. Overall, the results confirm the suitability of mobile 
phones as an energy feedback interface and provide insights for the design 
of future energy conservation applications. They outline that a clear and 
easy to explain use case scenario is key and that knowledge-increasing 
functionalities as well as those functionalities from which monetary savings 
can be directly implied are perceived as most important. To address tech-
nophobe users, action-guiding feedback that goes beyond displaying aggre-
gated information in mere numbers is required. 

 Third, we develop, implement, and evaluate an algorithm that disaggre-
gates the overall energy consumption to the consumption of individual 
devices. It enables users to link consumption with behavior and provides 
the base for automated energy recommendation systems. Compared to 
other load disaggregation approaches, our algorithm does not require addi-
tional hardware nor complex, time-intense calibration conducted by do-
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main experts. Moreover, our approach is able to easily take new appliances 
into account where other systems require recalibration. With a simple yet 
powerful feature provided by the user interface on the mobile phone, users 
can incrementally integrate additional appliances into the disaggregation 
process. This is particularly important in a fast changing home environ-
ment. We evaluated the performance of our system in a laboratory test 
study with eight simultaneously running devices, achieving recognition 
rates of almost 90%. 
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Kurzfassung 

Der Stromverbrauch privater Haushalte wächst kontinuierlich und macht 
heute bereits rund ein Drittel der gesamten elektrischen Energieproduktion 
in Europa und den USA aus. Die Strommenge, die ein Haushalt ver-
braucht, hängt in erster Linie von den betriebenen Geräten und von der 
Art und Weise, wie Bewohner diese Haushaltsgeräte verwenden, ab. Das 
Hauptproblem für Personen, die daran interessiert sind, in ihrem Haushalt 
Energie zu sparen, ist die fehlende Information über den individuellen 
Stromverbrauch. Die Rechnungsstellung mit zugehöriger Darstellung des 
Verbrauchs erfolgt heute höchstens monatlich (oft sogar nur jährlich) und 
lässt damit viele Haushalte über ihren Stromverbrauch lange im Unklaren. 
Grundsätzlich könnten viele Bewohner ihren Verbrauch reduzieren, aller-
dings wissen nur die wenigsten, wie viel und anteilmäßig für welchen Ver-
wendungszweck sie Strom nutzen. Selbst diejenigen, die bereits ein gewis-
ses Grundverständnis bezüglich ihres Verbrauchs besitzen, bekommen nur 
selten ausreichend Hilfe und Unterstützung, um konkrete Einsparpotentiale 
zu erkennen und auszunutzen. 

Die jüngsten Fortschritte im Bereich der Informations- und Kommunika-
tionstechnologie können diese Informationslücke im Haushalt schließen und 
die Bevölkerung bezüglich Energieverbrauch und Einsparmöglichkeiten 
sensibilisieren. Durch die Integration von Rechen- und Kommunikationsfä-
higkeiten in Alltagsgegenstände, wie es das Ubiquitous Computing propa-
giert, kann der Stromverbrauch erst erfasst und anschließend die Ver-
brauchsinformation, gemeinsam mit Hinweisen zur energieeffizienteren 
Verwendung eines Geräts, an den Benutzer kommuniziert werden. Intelli-
gente Stromzähler (Smart Meter) können den Stromverbrauch in hoher 
zeitlicher Auflösung messen und ersetzen derzeit klassische Stromzähler 
flächendeckend. Mobiltelefone stellen heute allgegenwärtige, leistungsstarke 
Rechenplattformen dar, die den Energieverbrauch direkt darstellen können, 
so dass nicht auf zusätzliche Hardware, wie beispielsweise Wandbildschir-
me, zurück gegriffen werden muss. Durch die digitale Anreicherung von 
Alltagsgegenständen mit Rechenleistung und Kommunikationsmodulen 
bietet das Ubiquitous Computing eine neue Möglichkeit, das Problem des 
Energiesparens im Privathaushalt in Angriff zu nehmen. 
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Der Einsatz von Ubiquitous-Computing-Technologien mit dem Ziel, das 
Energiesparen in Privathaushalten zu vereinfachen, wirft aber auch einige 
Forschungsfragen auf, etwa, welche Architektur für Systeme, die Feedback 
zum Energieverbrauch liefern, am besten geeignet ist oder welche Art und 
Weise der Informationsdarstellung für den Benutzer am verständlichsten 
ist. Die vorliegende Dissertation befasst sich mit diesen Forschungsfragen, 
indem sie untersucht, wie Ubiquitous Computing helfen kann, effektives 
Feedback, das über die Darstellung der reinen Verbrauchsinformation hin-
ausgeht, bereitzustellen und dieses dabei gleichzeitig im Alltag des Benut-
zers zu integrieren. Durch eine benutzerorientierte Herangehensweise, die 
den Gebrauch von intelligenten Stromzählern mit Mobiltelefonen verbin-
det, nimmt die Arbeit diese Herausforderungen an und liefert dazu die drei 
nachfolgend beschriebenen Hauptbeiträge. 

In einem ersten Teil der Dissertation wird eine Infrastruktur, die Feed-
back über Stromverbrauch liefert und nahtlos in das Haushaltsumfeld inte-
griert ist, auf Basis von Ubiquitous-Computing-Komponenten entworfen, 
entwickelt und evaluiert. Die Infrastruktur setzt dabei die aus der Litera-
tur bekannten technischen Anforderungen im Bereich des Verbrauchsfeed-
backs (wie Integration in den Tagesablauf, Bereitstellung möglichst fein-
granularer Verbrauchsinformation in Echtzeit und mit niedriger Nutzungs-
barriere) um und ermöglicht es Benutzern, so ihren Stromverbrauch besser 
zu verstehen. Gleichzeitig stellt die Infrastruktur ein leicht erweiterbares 
Framework dar, das anderen Wissenschaftlern die Möglichkeit bietet, eige-
ne Visualisierungskonzepte zu testen oder Verhaltensexperimente durchzu-
führen. Um die Umsetzbarkeit unseres Ansatzes zu demonstrieren, wurde 
ein Prototyp der Infrastruktur implementiert, in einer Laborstudie sowie in 
vier Haushalten installiert und anschließend evaluiert. Die Architektur 
setzt dabei auf die Interaktionsmöglichkeiten von Mobiltelefonen und die 
Integration von Smart Metern und dient damit als Basis für einen Großteil 
der weiteren Arbeit.  

Im zweiten Teil der Arbeit wird das Potential des Mobiltelefons als mög-
liche Benutzerschnittstelle eines Systems, welches Feedback zum Stromver-
brauch liefert, evaluiert. Zunächst wird in einer Benutzerstudie der wahr-
genommene Wert unterschiedlicher Feedback-Funktionen untersucht und es 
wird analysiert, welche Art von Feedback für Nutzer relevant ist. Des Wei-
teren werden die allgemeine Benutzbarkeit und Genauigkeit sowie die Nut-
zungsabsicht der entwickelten Benutzerschnittstelle untersucht. Durch den 
Einsatz des Systems in einer Langzeitstudie in vier schweizer Haushalten 
charakterisieren wir unterschiedliche Benutzertypen und zeigen, dass wei-
terführende Konzepte aus dem Gebiet der Verhaltensforschung notwendig 
sind, um eine dauerhafte Verwendung des Feedback-Systems, die über die 
Phase der ersten Neugier hinausgeht, zu garantieren. Insgesamt bestätigen 
die Resultate die Eignung des Mobiltelefons als Benutzerinterface für 
Feedback zum Energieverbrauch und liefern wichtige Einblicke für den 
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Aufbau zukünftiger Energiesparapplikationen. Sie zeigen, dass ein klarer 
und einleuchtender Anwendungszweck entscheidend für deren Verwendung 
ist und dass Funktionen, welche das Wissen seitens der Benutzer erhöhen, 
gemeinsam mit Funktionen, von denen sich direkte monetäre Einsparungen 
ableiten lassen, als am wichtigsten eingeschätzt werden. Um auch weniger 
technisch versierte Anwender anzusprechen, ist es wichtig, Funktionen zu 
integrieren, welche über die Visualisierung der reinen Verbrauchsinformati-
on hinausgehen und direkt handlungsleitende Maßnahmen bereitstellen.  

Schließlich wird im dritten Teil der Arbeit eine Methode vorgestellt, wel-
che es ermöglicht, den gemessenen Gesamtstromverbrauch eines Haushalts 
auf Geräteebene herunterzubrechen. Dies erlaubt es Benutzern, den Strom-
verbrauch einzelnen Geräten oder Handlungen direkt zuzuordnen und kann 
gleichzeitig als Basis für ein System dienen, welches automatisch Energie-
spartipps ableitet und Einsparmöglichkeiten aufgezeigt. Im Vergleich zu 
anderen Disaggregationsverfahren benötigt unser System keine zusätzlichen 
Systemkomponenten oder zeitintensive Kalibrierung durch Fachexperten. 
Die für die Disaggregation notwendige und sonst oft komplexe Aufzeich-
nung von Gerätesignaturen erfolgt im Hintergrund mit Hilfe von 
Ubiquitous-Computing-Technologien unter Einbezug des Benutzers. 
Dadurch ist es mit dem implementierten Verfahren möglich, auch Geräte 
zu erkennen, welche erst zu einem späteren Zeitpunkt nach der Systemin-
stallation im Haushalt verwendet werden. Dies ist besonders in einem sich 
ständig verändernden Umfeld wie dem Privathaushalt von großer Bedeu-
tung. Eine Evaluation in einem Labortest mit bis zu acht gleichzeitig be-
triebenen Haushaltsgeräten bestätigt mit einer für viele Zwecke ausrei-
chenden Erkennungsrate von fast 90% die Umsetzbarkeit des von uns ent-
wickelten Ansatzes. 
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1 Introduction 

1.1 Motivation 
The worldwide yearly energy consumption has been steadily increasing and 
reached ~143000TWh in 2008, of which approximately 17% (~17000TWh) 
is final electricity use [8]. With a share of 39.3% in 2007, electricity genera-
tion is the leading source of carbon dioxide emissions in the U.S., and it is 
expected to grow stronger than any other final form of energy [9, 10]. In 
particular, the electricity consumption of the residential and the commer-
cial sectors has been increasing over the last decades whereas the electrici-
ty use of the transportation and industry sectors has remained stable. In 
the U.S., residential and commercial electricity consumption now accounts 
for approximately 73% of total electricity use [11]. The residential sector 
alone has increased by 54% since 1991 [5], consuming 38% of final electrici-
ty use in the U.S. and 29% in the EU [11, 12].  

To a large extent, this increase in residential electricity consumption can 
be traced back to the growing number of electrical appliances. Despite 
considerable efficiency gains with respect to the large and omnipresent 
household appliances (e.g., refrigerators, freezers, washing machines, and 
dishwashers), the total electricity use for household appliances in the 
IEA191 grew by 57% from 1990 to 2005 [5]. Improved living standards re-
sulted in more households buying and using a growing pool of small appli-
ances (especially consumer electronics such as large TVs, PCs, audio and 
communication devices, etc.) that are consuming significantly more elec-
tricity [4, 13-15] (see Figure 1.1). Heating, ventilation, and air condition-
ing (HVAC) systems are another substantial contributor to the residential 
energy bill. Their market penetration has almost tripled over the past 30 
years. They account for 49% of the residential energy consumption in the 
U.S. and contribute even more significantly in Europe (e.g., 61% in the 

                                       

 
1 19 out of 22 countries covered by the International Energy Agency (IEA) provided de-
tailed insights into household energy use. 
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U.K. and 70% in Switzerland) [4, 16, 17]. Despite the rising permeation, 
HVAC systems have matured and the share in residential energy consump-
tion has been decreasing – in contrary to the consumption of electrical ap-
pliances whose share today is higher than ever (see Figure 1.2). 

This increase in residential energy consumption along with the yet un-
used saving potential are only two reasons that demonstrate the need to 
address energy conservation in the residential domain. One major difficulty 
for residents who are willing to save energy at home is the lack of infor-
mation about their energy consumption. Feedback on energy usage is typi-
cally only provided by a monthly (if not yearly) utility bill and thus re-
mains rather vague and opaque to most residents. As a result, most indi-
viduals could reduce their energy consumption, but few know how much 
they consume and even fewer know how much energy they use for a par-
ticular purpose (e.g., lighting) [18]. And even those who do have a fair un-
derstanding of their consumption only rarely receive guidance or meaning-
ful feedback for individual energy-saving actions that can be taken [19]. 

Ubiquitous and Pervasive Computing (Ubicomp), which advocates to 
digitally enhance physical objects that populate people’s everyday life with 
computing, sensing, and communication capabilities, has the potential to 
help overcome the lack of meaningful residential electricity information and 
thus contribute to residential energy conservation. Continuous technical 

FFiigguurree  11..11  Trends in residential electricity consumption: The efficiency of large 
appliances has been increasing over the past decades. Except for TVs, for which the 
screen size is overcompensating technological advances in efficiency (left). At the 
same time, the increasing share in electricity consumption of small appliances starts 
dominating over the consumption of large appliances (right) [5]. 
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advances regarding computing power, storage, sensing capabilities, com-
munication technologies, and size together with lower costs and energy 
usage have led to the rise of Ubicomp. In essence, Ubicomp enables merg-
ing the digital world of bits and bytes with the physical world. In contrast 
to the pre-internet era, where computers resided as standalone machines 
that filled rooms or people’s desks, today very small and low-cost micro-
processors and sensors integrate computing into every aspect of our envi-
ronment [20]. Examples of these novel computing technologies range from 
RFID tags to tiny sensors that are integrated into appliances to embedded 
computing platforms (Figure 1.3). Even latest generation smartphones to-
day incorporate a wide variety of sensing technology (e.g., a light sensor, 
an accelerometer, a gyroscope, a GPS module, etc.) that go far beyond 
what was originally necessary for communication.  

Ubicomp technologies make more fine-grained information – contextual, 
temporal, and spatial – easily available and provide everyday objects with 
integrated services like Mark Weiser and others pioneers envisioned more 
than a decade ago [20, 21]. As such, Ubicomp has permeated various ap-
plication areas across all domains [22]. For example, tagging objects with 
barcodes and sensors provides high-resolution data that increased trans-
parency and has led to more efficient operation and new services [23, 24]. 
In retail and wholesale, RFID tags help optimize operation along supply-
chains [25, 26], allow for assessing the ecological footprint [27, 28], and can 
be used to protect brands and trademarks [29, 30]. At home, Ubicomp 
technologies have created smart environments in which physical objects 

FFiigguurree  11..22  Development of the total energy used in households in quadrillion Brit-
ish thermal units (BTU) and percent in the U.S.  While the share of electrical appli-
ances has almost doubled,  the share of HVAC systems has decreased. However, 
HVAC systems are still the most energy consuming entity in homes [4].  
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automatically exchange information to collaborate and to offer a range of 
services [22, 31-33] that aim at making users’ daily life more comfortable, 
easier, and safer [34-37]. 

With its typically small size and relatively low cost, Ubicomp technolo-
gies are quite suitable for applications in the residential environment. It 
unobtrusively integrates computing into physical objects used in everyday 
life thereby enhances the home environment with new computational and 
sensing capabilities. Smartphones have become ubiquitous and powerful 
computing platforms that allow visualizing data on the spot. Smart meters 
that enable capturing fine-grained electricity consumption information at 
high frequency are currently replacing traditional electricity meters, and 
recent home appliances feature built-in wireless communication modules. 
Through the integration of such communication and computing capabili-
ties in everyday objects that populate homes, Ubicomp is offering new pos-
sibilities to address the problem of residential energy conservation. 

Conserving energy in residential environments comprises two different 
approaches: The use of automated savings wherever possible as well as the 
provisioning of behavior-changing information where necessary [38]. 
Ubicomp technologies can help contribute to both. They enable automated 
energy savings as well as support users by supplying meaningful infor-
mation that helps alter user behavior when purchasing and using the ap-
pliances (see Figure 1.4). Automated savings result from the coordinated 
control that helps to adapt to available resources and optimize consump-

FFiigguurree  11..33 Ubicomp technologies (from upper left to lower right): Tiny pressure 
sensors, an embedded device (Gumstix) that offers the computing power of a low-
end netbook at the size of a stick of a gum, a sensor node (Java Sun spot) offering 
various sensing and communication means, an RFID tag that enables the tracing of 
retail products, Adruino open-source prototyping platform, Plogg smart power out-
let, and smartphones that incorporate a wide variety of sensors (light, acoustic, 
location, acceleration, etc.). 

 



Introduction | 19 

tion [39, 40]. For example, information on location and velocity available 
from sensors integrated in mobile phones combined with the electricity 
data gathered by electricity meters can be used to automatically adjust 
heating to home occupancy and user preferences [41-43]. Automation can 
further enable the use of renewables whenever available, the immediate 
reaction to electricity pricing signals, and the integration of electric vehi-
cles into the smart grid [38, 44-52]. 

When automation is not a possible solution, Ubicomp helps to achieve 
savings by bringing consumers “in the loop”. Currently, most inhabitants 
lack meaningful information that would allow for taking effective measures 
to conserve electricity [53-55]. However, informed users, who understand 
the origin and the impact of their energy consumption, may act very 
differently [56]. User-induced saving effects mainly result from two factors: 
First, the energy usage of many appliances and systems is highly depend-
ent on how we operate them. Without the required information, energy 
consumption in identical homes can easily differ by a factor of two or 
more, depending on the inhabitants’ behavior [57]. Second, the decision to 
invest in efficient appliances and energy saving technologies is up to the 
user. Therefore, awareness and willingness to take action are crucial and 
can only be achieved with adequate information at hand. In addition, this 
can help to realize additional savings since users that often deal with their 
consumption are more likely to pay a premium for other energy-efficient 
products (e.g., an electric vehicle or solar cells) and services, and their will-

FFiigguurree  11..44 How can Ubicomp technologies potentially help increase energy efficien-
cy and conservation?  
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ingness to spread the word can help to positively influence decisions of 
others2 [58]. 

The recent move towards the smart grid is one important building block 
where Ubicomp can utilize its capabilities to contribute to residential ener-
gy efficiency. The requirement to conserve energy, the necessary moderni-
zation of the electrical grid infrastructure, and the integration of more sus-
tainable energy generation (e.g., residential installations of solar and wind 
power) have started paradigm shifts in the energy domain that offer new 
opportunities for energy conservation [38]. As one consequence, smart elec-
tricity meters are being widely deployed (they are becoming mandatory for 
many households in Europe and the U.S.) and soon are going to generate 
enormous amounts of electricity consumption data. Together with the 
broad availability of technologies from the Ubicomp domain (in particular 
cheap sensors, low-power processors, wireless proximity communication, 
spontaneous networking, touch screen displays, mobile Internet connectivi-
ty, etc.), it becomes possible to leverage this information to provide real-
time energy consumption feedback on the spot and further use the gener-
ated data to automatically optimize efficiency. Such energy consumption 
feedback systems, at least if designed appropriately, offer the potential to 
contribute considerably to a lower residential energy consumption (see 
Figure 1.5).  

Despite all new opportunities, however, energy consumption feedback 
systems can easily become complex. To foster adoption, they have to seam-
lessly integrate into users’ daily life and work reliably. At the same time, 
energy consumption feedback systems have to feature a low usage barrier 
to be utilized persistently, provide meaningful electricity feedback that 
goes beyond mere consumption values, and should be designed in a way 
that motivates users to engage themselves with their consumption over 
longer time periods. Furthermore, different users (e.g., technophiles com-
pared to technophobes) essentially require different feedback [59]. Thus, 
the effectiveness of residential electricity feedback not only depends on the 
modality of the presented information, but also on the interaction capabili-
ties and the functionality of a suited user interface. For that, different 
components (e.g., embedded systems, low-cost sensors, portable interfaces, 
and mobile phones) have to communicate amongst each other to gather 
and store data as well as present the information at a suitable user inter-
face. Gathering and communication data in the residential environment 
also introduces a potential threat to privacy and security [38, 51, 52]. All 
of this raises inherent challenges on how to design energy consumption 

                                       

 
2 This indirect effect of one person’s attitude on others is also known as spillover effect. 
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feedback systems without jeopardizing the ultimate goal of conserving res-
idential energy.  

In this thesis, we address some of these above-mentioned challenges. For 
that, we investigate how Ubicomp technologies such as embedded systems, 
low cost sensors, portable interfaces, and mobile phones can be applied as 
a means to foster residential energy conservation. To this end, we propose 
eMeter, a distributed electricity sensing and monitoring infrastructure 
based on Ubicomp components that seamlessly integrates into the residen-
tial environment and people’s daily life. It is designed so that it can help 
to foster energy efficiency through both user-induced energy saving effects 
through meaningful information while at the same time opening new pos-
sibilities for automatic energy conservation. By testing the system in a 
user study and a real-world deployment, we confirm the suitability of mo-
bile phones as energy feedback devices and the system’s potential to dis-
aggregate the overall electricity consumption to device-level information. 

1.2 Objective and Approach 
As outlined in the previous section, there exist various challenges that have 
to be addressed to contribute to the broader goal of long-term energy con-
servation at home. At first, only limited information was available and re-
search within the domain focused on ways to provide this consumption 
information. Stand-alone consumption feedback is helpful, but only offers 
limited potential for energy conservation if users are not taken into ac-

FFiigguurree  11..55 Traditional Ferraris electricity meter with limited consumption feed-
back capabilities (left) and Ubicomp-enabled consumption feedback on a mobile 
phone (right). 
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count from the beginning of the design process of energy monitoring sys-
tems. To foster adoption of such systems, the feedback has to be easily 
available on a suitable interface with engaging interaction capabilities. And 
at least as important, energy monitoring systems have to provide meaning-
ful information beyond mere usage data to support users’ efforts to derive 
direct conservation measures.  

In this work, we aim to address the need for meaningful electricity in-
formation through applying Ubicomp technologies to provide effective 
feedback beyond intangible consumption values. To do so, we pursue the 
following three steps: We first identify how Ubicomp technologies can help 
to create an electricity feedback system that drives adoption through a low 
usage barrier and helps users better understand where their energy use is 
occurring. Next, we seek to identify which information and functionality 
users require, and answer the question whether mobile phones are a suita-
ble interface when it comes to electricity monitoring. Last, we look how to 
further automatically leverage the developed infrastructure and the data 
gathered by developing algorithms that disaggregate the overall electricity 
consumption to device level.  

To achieve the goals of this thesis, our approach is twofold: We develop a 
prototypical implementation of the proposed system and together with 
that provide the infrastructure perspective. In addition, we pursue the 
human computer interaction perspective by comprising a user study and a 
real-world deployment using our system to obtain parts of the presented 
results. However, our prototypical implementation was not designed for 
energy-efficient and secure data communication nor trimmed to specifically 
use the least power-drawing hardware resources as possible to conserve 
energy (e.g., lowering CPU frequency or cutting Wi-Fi power when not in 
use). Nevertheless, all these are important aspects for larger trials that 
might follow up this work and as such remain future system optimization 
tasks. In addition, the integration of web services into the home, as pro-
vided by our prototype, raises the threat of privacy and security issues, 
which have to be taken seriously, but are beyond the context of this work. 

This thesis was conducted in the Bits to Energy Lab of ETH Zurich and 
the University of Sankt Gallen and partially at the Massachusetts Institute 
of Technology. The Bits to Energy Lab conducts research on consumption 
feedback, customer engagement, and data analytics in strong collaboration 
with industry partners. As such, this thesis was supported by different 
companies form the telecommunication, metering, and utility sector. 

Overall, this work is part of the more general theme of how to achieve 
sustainable long-term energy savings in residential environments. A future 
research goal would thus be the design of an experiment that aims at 
quantifying short-term and long-term energy savings and identifying what 
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further engagement strategies are necessary to induce a pro-environmental 
behavioral change of users. However, this is outside the scope of this work, 
which focuses on identifying and providing meaningful electricity feedback 
based on an applicable Ubicomp infrastructure. 

1.3 Contributions 
In the previous sections, we outlined the importance of saving energy in 
the residential sector and highlighted some of the opportunities and inher-
ent challenges that arise when applying Ubicomp technologies to the do-
main of residential energy management. In this section, we outline the 
three main contributions of this thesis, whose main goal is using Ubicomp 
technologies to leverage energy conservation in residential environments 
through meaningful information while providing a framework for further 
automated energy savings. In particular, the contributions are the follow-
ing. 

 

1.3.1 A Ubicomp Infrastructure for Providing Meaning-
ful Electricity Consumption Feedback in Residen-
tial Environments 

This thesis deals with the design, development, and evaluation of an ener-
gy sensing and feedback infrastructure. We focus on developing a system 
that features a low usage barrier and thus fosters the application of the 
resulting energy consumption feedback. For that, we investigate the poten-
tial of a diversity of Ubicomp technologies that can be applied to gather 
electricity consumption data and visualize feedback. As a result, we pro-
pose the eMeter infrastructure that fulfills the most important feedback 
criteria (e.g., in real-time, at hand when needed, allowing for a break-down 
of the overall energy consumption) and is unobtrusively integrated into 
users’ daily life. At the same time, the system is easily extendible and 
serves as an enabling framework for researchers who investigate further 
aspects of residential energy conservation (e.g., to realize further automat-
ed energy savings or for the design of behavioral science experiments). The 
system consists of three components: 

 A smart meter to acquire the electricity consumption data that 
compared to classical meters contains a communication interface 
for meter readings,  
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 a gateway implemented on an embedded device that takes care 
of data handling, storage, and processing, and 

 multiple user interfaces on different devices that go beyond mere 
consumption visualization and additionally enable users to inter-
act with the feedback system and the electricity usage of their 
appliances.  

The eMeter system is complemented by a central community-based elec-
tricity feedback platform called PowerPedia. It enables users to compare 
the consumption of their appliances with that of others and collaboratively 
share energy saving tips. PowerPedia thus provides behavior-influencing 
feedback beyond dry numbers and intangible units that helps users to bet-
ter understand the electricity consumption of individual appliances and 
take effective action to save electricity. 

To validate the design, we present a prototypical implementation of the 
architecture and several different demonstrator interfaces. As an architec-
tural style, we use the REST paradigm [60], which allows us to address the 
technical requirements the architecture should fulfill. In particular, it offers 
a lightweight access to data, which is important for resource-constrained 
devices (e.g., mobile phones, wireless sensor nodes, and embedded devices). 
In addition, relying on REST makes the system easily extendible by loose-
ly coupling the individual components. When developing the system, this 
is important because it simplifies the use of different sensors for data ac-
quisition, the development of different visualizations, and the connection of 
different user interfaces.  

To demonstrate the feasibility of our approach, we deployed the com-
plete infrastructure and evaluated it in a laboratory setting as well as in 
four private households in Switzerland. The architecture supports the in-
teraction capabilities of mobile phones and the integration of smart elec-
tricity meters. The system thus serves as the base for the following two 
contributions of this thesis. 

 

1.3.2 Evaluation of the Suitability of Mobile Phones as 
Electricity Feedback Devices  

We evaluate the suitability of mobile phones as electricity consumption 
feedback devices in a user study and in a real-world deployment. Based on 
the implemented infrastructure, we have specifically developed a mobile 
phone application for residential energy monitoring. In an iterative ap-
proach, we used paper prototyping, a user survey, and a focus group to 
step-wise implement and refine the mobile phone user interface. It is de-
signed to supply users with meaningful electricity consumption feedback 
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that goes beyond the mere visualization of consumption values and aims at 
bringing users into the loop. The final design of the user interface was then 
used in a user study with 25 participants. In the study, we analyzed the 
perceived value of various feedback functionalities as well as the general 
usability, accuracy, intention of use, and word of mouth of such an electric-
ity feedback application. The mobile phone application was also evaluated 
in a long-term real-world deployment in four households in Switzerland. 
The experiment aimed at characterizing different user types (e.g., number 
of sessions, average time spent per view) and qualitative insights gathered 
through the use of the application. In particular, this contribution confirms 
the suitability of mobile phones as energy consumption feedback devices.  

Our evaluation shows that: 

 Knowledge-increasing functionalities as well as those functionali-
ties from which monetary savings can be directly implied are per-
ceived as most important;  

 to address technophobe users, action-guiding feedback that goes 
beyond displaying aggregated information is required;  

 in comparison to different commercially available energy monitor-
ing devices, the implemented measurement feature enables users 
to interactively determine the electricity consumption of an appli-
ance and is easy to use, comfortable, and sufficiently accurate;   

 the mere consumption value of an appliance is not meaningful 
enough to let users draw effective energy conservation actions 
(e.g., classify whether the consumption of a device is high or low 
for that particular class of appliance) and thus has to be enriched. 
This has led to the implementation of PowerPedia – a communi-
ty-based electricity usage and saving tips platform for appliances 
that embeds residential electricity feedback in bigger, more tangi-
ble picture. 

 the user interface implemented on a mobile phone increases users’ 
electricity awareness and literacy, but different engagement strat-
egies have to be implemented to permanently involve users once 
their initial curiosity has been satisfied.    

 

1.3.3 An Algorithm for Automatically Disaggregating 
the Total Electrical Load to Device Level  

To allow users to link the operation of their home appliances to the indi-
vidual sources of electricity consumption, we developed and evaluated the 
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potential of an algorithm that detects switching events of individual appli-
ances. Based on the first contribution of this thesis, the eMeter electricity 
feedback system, the algorithm exploits the provided interaction capabili-
ties and offers a user-friendly incremental way to facilitate load disaggrega-
tion. That is, a measurement feature on the user interface is used to ac-
quire the required input knowledge, which enables the automatic recogni-
tion of load patterns of devices. The algorithm thus disaggregates the total 
electricity consumption and can serve as a basis for an automated recom-
mendation system on how to save electricity (e.g., this allows deriving in-
formation about the device’s energy efficiency and about conservation 
measures that can be applied).  

Compared to existing single sensor approaches, our system addresses 
open challenges (e.g., the recognition of smaller loads and overlapping 
on/off events of multiple appliances) and offers additional advantages in 
terms of usability. Rather than discouraging users through a time-intensive 
calibration or a long training period after the initial system deployment, 
the proposed algorithm does not require a signature of every appliance in 
advance, but can grow its signature database over time. In addition, the 
signatures can be gathered in a simple, explorative way with the developed 
user interface, and the signature acquisition does not require specific 
knowledge of domain experts nor additional custom hardware. This incre-
mental approach brings along another crucial benefit, which is particularly 
important in a fast changing home environment. It allows for easy integra-
tion of new appliances that are introduced at home. Where other systems 
need to completely recalibrate, our algorithm is able to incrementally inte-
grate new signatures of newly bought devices. 

In particular our contributions are as follows: 

 The design and prototypical development of an algorithm that 
recognizes switching events of appliances and thus facilitates load 
disaggregation, 

 the provision of a proof of concept implementation, and 

 an evaluation of the algorithm through experiments in a laborato-
ry study with eight simultaneously operating devices. 

The results of our laboratory study are promising and confirm the suita-
bility of the scheme. With a recognition rate of 87% in the laboratory en-
vironment, interesting applications, such as automatic recommendations 
for a more economic use of electricity in households, become possible. Fur-
thermore, the information about the operation of appliances can be used 
to realize automated energy savings on top of the eMeter system (e.g., 
through inferring home occupancy state and driving a smart heating con-
trol strategy).  
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1.4 Outline 
The remainder of the thesis is structured as follows: In Chapter 2, we pro-
pose the eMeter infrastructure for providing meaningful electricity feed-
back in residential environments. It is based on Ubicomp components and 
addresses some of the shortcomings of existing systems that are discussed 
and categorized first. We next focus on the functional requirements that 
are necessary to deliver the feedback features. We then present the system 
architecture and design in detail. That is, after providing a general over-
view, we elaborate on each of the three components that take care of data 
acquisition, data processing, and data visualization. We conclude this 
chapter with a section on the implementation details of the developed pro-
totypes and their evaluation in a lab and real-world setting. 

Chapter 3 deals with the evaluation of mobile phones as energy con-
sumption feedback devices. We first describe the process that led to the 
final design of the user interface, before we explain the experimental set-
ting. We conducted a user study in a laboratory environment with 25 par-
ticipants and a real-world deployment with four households to evaluate our 
prototype and confirm its suitability as an electricity feedback device. We 
then present the quantitative and qualitative results of the evaluation fol-
lowed by a general discussion on the perceived value of different feedback 
functionalities. As a direct outcome of the discussion, we complemented 
the eMeter system with PowerPedia – a community-based electricity usage 
and saving tips platform for appliances. Its functionality and integration to 
the eMeter system is described, followed by a summary of the chapter’s 
key results. 

In Chapter 4 we show how the developed architecture can be used to de-
tect switching events of appliances and thus facilitate automated load dis-
aggregation. After revisiting the architecture to highlight the relation of 
different physical quantities that are gathered by the system, we explain 
how load signatures can be used to classify appliances. We next introduce 
the key concept of the AppliSense load disaggregation algorithm and pro-
vide details on the algorithm design. We then report selected results of the 
algorithm evaluation that were obtained in a laboratory study. We con-
clude this chapter with a discussion of the results and existing limitations 
of the proposed disaggregation scheme. 

Finally, in Chapter 5 we provide a summary of the contributions of this 
thesis and discuss future directions of research that are enabled by this 
work.
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2 eMeter – A Pervasive 
Electricity Consumption 
Feedback System 

In this chapter, we describe the first contribution of this thesis: eMeter – a 
pervasive electricity consumption feedback system. After an introduction 
on electricity consumption feedback systems in general, we outline limita-
tions in terms of installation cost, usage barrier, and visualization capabili-
ties of existing approaches. From that, we derive the functional require-
ments for our eMeter electricity sensing and feedback infrastructure. We 
then take an in-depth look on the single components of the architecture, 
their provided functionality, and the communication flow. That is, the data 
acquisition layer that is responsible for gathering the data, the data pro-
cessing layer that analyzes and stores the electricity consumption data and 
handles incoming requests from the user interface, and the data presenta-
tion layer that takes care of interactively visualizing the consumption in-
formation. Last, we conclude this chapter with implementation details on 
the developed prototypes and results from our laboratory and real-world 
deployment that demonstrate the feasibility of our approach. Parts of this 
chapter were published in [1, 38, 61-64]. 

2.1 Electricity Consumption 
Feedback Systems 

The existence of many unnecessary electricity loads can be attributed to a 
lack of transparency in energy consumption [54]. This leads, at least part-
ly, to lost saving potentials, because users lack knowledge about their en-
ergy consumption in general as well as about the pool of devices used at 
home [18]. Electricity feedback systems aim at closing this gap. 
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Research on energy and electricity feedback dates back to the 1970s. Af-
ter the energy crisis of 1973 and the oil price shock research focused on 
energy conservation. To address the concern of a possible exhaustion of 
fossil fuel, research identified two possible solutions: the development of 
new sources of energy and the reduction of energy use through feedback [1, 
65]. More precisely, to maximize feedback researchers already envisaged an 
online meter that continuously reports the amount of energy used per day 
and month [65]. However, technical possibilities back then were rather lim-
ited. Kohlenberg et al. [66] were one of the first to design a very simple 
feedback device on electricity use. It consisted of a current-sensitive relay 
that used a dedicated light bulb to inform users when 90% of the previous-
ly recorded peak levels were reached. Their work provided first insights on 
electricity consumption feedback such as users started recognizing the high 
electricity consumption of a kettle when boiling water. Follow-up research 
provided first evidence that feedback can lead to energy reduction. Associ-
ating electricity consumption with cost (i.e., cents per hour) showed an 
electricity conservation effect and led to an average reduction of 12% in 
electricity use [67, 68]. 

 Since then technological progress enabled more sophisticated forms of 
feedback. Its effectiveness was intensively studied and an excellent over-
view is provided by [53, 69-72]. The authors come to the conclusion that 
direct feedback can enable savings in the range of 5%-15%. However, these 
potential savings are hard to quantify and depend on various variables in 
the experimental setting (e.g., weather, time of year, observation duration, 
recruited participants, etc.), which in many cases remained to a certain 
extent uncontrolled or were in favor of the conducted experiments. For 
that reason, real savings through pure electricity consumption feedback 
reside more likely in a range between 1% and 3% [38, 73, 74]. 

Feedback has been shown to be one of the most effective strategies in re-
ducing electricity usage in the home [75]. With the advent of low-cost sens-
ing technologies, fast computation, and advances in machine learning, we 
now have the potential to provide electricity consumption feedback in real 
time for a variety of consumption activities [76]. In the following, we focus 
on the technological perspective of systems that enable electricity con-
sumption feedback. Several electricity monitoring solutions already exist 
that can provide such feedback [77]. They aim to help users understand 
where energy wastage occurs and thus try to establish a basis for conscious 
energy usage. These electricity feedback solutions can broadly be classified 
into two categories according to the number (and type) of sensors used to 
acquire the electricity consumption information (see Figure 2.1) 
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2.1.1 Single Sensor Approaches 
The first category consists of single sensor solutions, which are primarily 
limited to displaying the aggregated consumption of a circuit or even the 
entire electricity demand of a household. There are several products com-
mercially available, such as Onzo3, Current Cost4, Power Cost Monitor5, 
Wattson6, and TED-10007 only to name a few. Once installed, they visual-
ize the overall electricity consumption on central a display unit (see Fig-
ure 2.2). The number of kilowatt-hours and cost equivalents often enrich 
the provided feedback. However, installation at circuit or household level is 
complex. Typically these solutions as well as other scientific work (e.g., 
that focus on design aspects) [78-80] require a current clamp to be at-
tached around the internal wiring of the electric mains (see Figure 2.2) and 
users are therefore often discouraged from installing such products. Fur-
thermore, these solutions suffer from the fact that, mainly for safety rea-

                                       

3 Onzo Ltd., www.onzo.co.uk 
4 Current Cost, www.currentcost.com 
5 Blue Line Innovations Inc., www.bluelineinnovations.com 
6 DIY Kyoto, www.diykyoto.com/uk/wattson/about 
7 Energy Inc., www.theenergydetective.com 

FFiigguurree  22..11 Overview of the two systematically different approaches to provide 
electricity feedback in residential environments. 
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sons, the wiring around household meters is inaccessible in many countries 
and modifications require a technician. Another drawback is that they are 
unsuitable for providing users with feedback on the consumption of indi-
vidual devices, which, from a feedback perspective, would be necessary to 
draw conclusions on how consumption and behavior relate to each 
other [53]. As a consequence of the latter, trials show that 50% of the en-
ergy monitors are no longer used once the battery is depleted, indicating 
that meanwhile users lost interest and that these overall electricity feed-
back solutions are not capable motivating users for a longer time 
period [81]. 

Some experimental systems attempt to disaggregate the total consump-
tion measured by a single sensor to provide more specific information 
about electricity consumption of individual devices [82]. The aim of these 
non-intrusive load monitoring systems is to keep equipment costs and in-
stallation effort to a minimum, but still provide detailed energy usage da-
ta. To determine which appliances are currently running, some of these 
systems simply measure the overall power difference from one point in time 

FFiigguurree  22..22 Single sensor solutions for providing electricity feedback at home. The 
Onzo smart energy kit consists of an external display unit and a current clamp that 
has to be installed at the main electricity supply (left side). The Wattson electricity 
monitor (upper right) and the Blueline Power Cost Monitor (lower right) require a 
likewise setup, but differentiate in the design. Source: Manufacturer (see footnote 
previous page). 
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to the next; a principle that has been investigated by several researchers in 
the past [83-86]. To infer device-level consumption information from a sin-
gle sensor, other more sophisticated approaches use statistical signature 
analysis and pattern detection algorithms to identify what appliances are 
currently operated from the current and voltage wave forms [87] or listen 
for unique noise changes on the power line that are caused by the abrupt 
switching of devices [88, 89]. To achieve disaggregation, these systems re-
quire either a priori knowledge about the household devices and their elec-
trical characteristics, or entail a complex calibration and training phase 
involving the user, in which the system learns about specific device charac-
teristics. However, a priori knowledge is difficult to obtain in a world of 
fast-changing small appliances, and manual training is a significant barrier 
to usage. Furthermore, appliances with varying power consumption that 
overlaps with the one of other devices pose a particular challenge for dis-
aggregation algorithms [90].  

 

2.1.2 Multiple Sensor Approaches 
Multiple sensor approaches can be subdivided into direct and indirect sys-
tems. Direct systems require an in-line sensor to be installed for every de-
vice or circuit. Indirect sensing systems use a central electricity meter to-
gether with additional context sensors to monitor energy consumption. 

Direct sensing systems mostly come in the form of smart power outlets 
(see Figure 2.3). They are relatively easy to deploy and several products 
exist8. Once installed, they measure the attached load and display the 
measurement data on the unit itself or transmit it wirelessly to a remote 
display. However, these systems are not able to aggregate consumption 
from multiple sensors and combine the different data to form a comprehen-
sive picture. 

To overcome this limitation, other work has focused on developing sys-
tems that integrate multiple individual power sensors. One way is to com-
bine the central electricity meter with several other in-line sensors that 
submeter individual major appliances [91]. The other way is to create an 
infrastructure that displaces the central electricity meter, but focuses on 
developing expandable systems that can integrate numerous individual 
sensors. Pioneer work from Lifton et al. incorporated various sensing and 
communication capabilities into a power outlet [92]. Similarly,  

                                       

 
8 For example “Kill a Watt”, www.p3international.com/products/special/P4400/P4400-
CE.htm 
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Paradiso [93] developed a wirelessly-networked electricity sensor was fol-
lowed up by Jiang et al. [2, 94]. They developed a system based on the 
Epic mote platform [95] where sensors measure power consumption direct-
ly at the outlets and communicate their readings over a wireless IPv6 net-
work to a server that populates a central database. An extension to the 
system was presented in [96]. The authors propose a method for decou-
pling of voltage and current measurements, but still being able to obtain 
real, reactive, and apparent power. Other work [97] takes this approach 
further and integrates sensor measurements directly into a 3D visualization 
in Second Life. Then, in [98] a system is presented that integrates commer-
cially available smart power sockets (“Ploggs”9) which communicate their 
measurements via Bluetooth or Zigbee. A gateway is responsible for identi-
fying smart sockets that are within range. It also makes their functionality 
available as resources on the Web and provides local aggregation of device-
level services (e.g., the accumulated consumption of all sockets). By 
providing this Web-API on top of an otherwise closed proprietary system 
the authors aim to open up the space to a broader community. A similar 
concept, but more in the context of automation and smart homes, comes 
from Jahn et al. [99]. The authors built a system on top of a middleware 
framework with an interactive user interface. It facilitates intelligent com-
munication with heterogeneous embedded devices through an overlay P2P 
network. One of the application scenarios that is being enabled is energy 
monitoring. Reinhardt et al. have focused on building a low-cost wireless 
sensor for distributed power metering that can be integrated into wireless 

                                       

 
9 Plogg, www.plogginternational.com 

FFiigguurree  22..33 Smart power outlets (Plogg (left) and AcMe (right) [2]) are the most 
common multiple sensor approaches. Devices are attached directly to the outlet, 
which incorporates a sensor and a communication module to transmit the measure-
ments to a display.  
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communication networks of smart homes. It features a reprogrammable 
(but also low-level compared to the just mentioned approaches) microcon-
troller, which allows developers to easily deploy new algorithms [100].  

Indirect sensing systems try to remedy the drawbacks of direct sensing 
systems by keeping intrusion into the electrical system at a minimum. 
While direct sensing systems all suffer from the fact that deploying a large 
number of electricity sensors (i.e., meters) throughout a house quickly be-
comes expensive, indirect systems combine one power sensor with multiple, 
low-cost context sensors. In [101], Kim et al. describe a system that uses a 
single electrical sensor to measure the entire electricity consumption of a 
household together with additional context sensors (such as light, sound, 
and electromagnetic sensors) that help to infer which appliance is currently 
operating from the measurable signals it emits. Within a defined set of 
appliances, the authors show that the system can estimate device-level 
power consumption within a 10% error range. However, the system’s per-
formance depends greatly on the correct calibration and placement of the 
distributed context sensors, which is not an easy task for the average user. 

2.2 Limitations of Existing 
Approaches 

In the last section, we had a look at different types of electricity feedback 
systems. We next characterize the systems in terms of installation com-
plexity, cost, usage barrier to apply the system, calibration effort, and the 
capability to provide overall and device-level usage information. Table 2.1 
summarizes the main advantages and disadvantages of the various electric-
ity consumption feedback systems.  

Since access to the electric mains and technical knowledge about wiring 
is required, single sensor systems are typically hard to deploy. However, to 
provide feedback they only rely on a single sensor, which makes them rea-
sonably priced. Once setup, these systems have a low usage barrier and 
since the single sensor is typically installed close to the household meter or 
in the fuse box, overall electricity consumption is easy to monitor. Howev-
er, to obtain information about the individual consumption at device level 
calls for more sophisticated approaches that require algorithms to be cali-
brated. This often involves a longer-term training period of the system or 
the submetering of the most important appliances for a limited time dur-
ing the system initialization period. In addition, due to the wide variety of 
electrical devices involved, the accuracy of these systems is somewhat lim-
ited and there currently does not exist a general solution [102-104].  
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In contrast, direct in-line electricity monitoring systems are very accu-
rate at device level since the electricity is measured at the device itself. 
However, this advantage comes at a high cost, as in principle every appli-
ance has to be equipped with a electricity sensor. At the same time this 
increases the usage barrier, since most users are not willing to install a 
large number of sensors or smart power outlets throughout the house. 
Some large household appliances that account for a significant part of the 
residential energy consumption can simply not be equipped with a sensor 
since their wiring is hard to reach or behind walls (e.g., lighting, oven, 
etc.). Therefore such systems will typically only cover a subset of all elec-
tricity consuming devices in a household. To capture the consumption of 
multiple outlets together, some of these devices can communicate with a 
gateway that offers a data aggregation layer that is responsible for pro-
cessing the consumption of multiple outlets. Another crucial issue is con-
nectivity among the individual sensors and their integration into home 
networks [100]. For non-technical users, setting up a multi-hop communica-
tion network throughout their home often poses problems. 

 

Table 2.1 Properties of different energy monitoring solutions 

Characteristics Single sensor Multiple sensors 
Direct in-line Indirect 

Installation Hard Medium Hard 
Cost Low High High 
Usage barrier Low High High 
Calibration Hard Easy Hard 
Device-level accuracy Low High Medium 
Household-level accuracy High Low High 
 

Finally, indirect systems are theoretically able to provide feedback both on 
overall electricity consumption and, to a certain extent, on device-level elec-
tricity usage. However, they require users to deploy various context sensors 
in the right places and necessitate complex calibration often through domain 
experts. This leads to both high costs and a high usage barrier. Moreover, 
such systems often require a recalibration when new devices are bought and 
connected to the electrical grid at home.  

The way forward for electricity monitoring systems involves a scenario in 
which household appliances, which today have only limited capabilities, 
become more powerful and smart. Through the integration of small, inex-
pensive embedded ICT components, they would sense and transmit their 
current energy usage together with other status information. Within the 
house, appliances could communicate with each other via an established 
protocol (e.g., powerline, Zigbee, WLAN), although dedicated new tech-
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nologies such as digitalSTROM10, rivaling traditional domestic network 
technologies (BACnet, EIB, KNX, etc.), might also feature. An more gen-
eral overview and detailed analysis of the capabilities of the individual pro-
tocols can be found in [34]. 

Moreover, the cost of integrating embedded Web servers (based on 
REST and IPv6 / 6LowPAN) into household appliances should in future 
be low. This would lead to a wide variety of application scenarios in which 
the smart domestic electricity meter (or a similar device) could serve as a 
central component for data aggregation and analysis. At the same time, 
embedding a Web interface into appliances would enable them to be fully 
integrated into the Internet. As well as the allocation of a device-specific 
Web page for status information, this would allow the device to be con-
trolled and its data to be processed using the full power of Web 2.0 
tools [31]. It is obvious, however, that with such possibilities we would 
need to pay serious attention to privacy and security issues, which is be-
yond the context of this work. 

2.3 Feedback Requirements 
We previously outlined the technical capabilities and limitations of energy 
monitoring systems. However, feedback has only proven to be effective if 
the right modality of electricity information is provided [53, 55, 105, 106]. 
Therefore, we discuss in the following what is necessary from a feedback 
perspective to get “users in the loop”. 

User-induced saving effects mainly result from two factors: First, the en-
ergy demand of many loads (including heating, air conditioning, ventila-
tion, warm water systems, driving habits, etc.) is highly dependent on how 
we operate them. Virtual identical households (same buildings, same num-
ber of inhabitants, identical age groups, same location etc.) can vary by 
factor 2.6 in energy usage [57]. Second, the decision to invest in efficient 
devices and energy saving technologies (including heat pumps, thermal 
insulation, etc.) is, within the limits set by the regulator, up to the user. 
Therefore, awareness and the willingness to take action are crucial. Feed-
back ideally has to address both short-term savings enabled through mean-
ingful information that helps adapting to more energy-efficient behavior as 
well as long-term conservation measures from sensitized users who know 
about their impact on the environment. 

                                       

 
10 www.digitalstrom.org 
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Changing user behavior in the domain of residential energy conservation, 
however, represents a major challenge since energy saving is often regarded 
as inconvenient and seen as more of a necessary constraint than a key ob-
jective [107]. Nevertheless, providing consumers with feedback on the ener-
gy consumption can increase awareness, strengthen energy literacy, and 
motivate – at least some addressee – to change their habits and ultimately 
save energy. It is generally expected that through detailed and immediate 
feedback, some of the residential electricity consumption can be con-
served [53, 69]. However, to maximize saving potentials, technology itself is 
not sufficient, nor is the mere visualization of consumption values in some 
“obscure” electrical measurement unit [106]. Feedback design should be 
centered on user preferences [108]. However, instead feedback on energy 
consumption is often presented in a rather technical and non-interactive 
way on somber devices that lack the ability to motivate users. According 
to literature, effective feedback has to feature the following [53-55, 102, 
109]: 

Low usage barrier. To be applicable by a large user base, systems ide-
ally should rely on the least special purpose hardware as possible and the 
amount of necessary installation to setup and maintain the system should 
be limited. However, many commercially available energy monitoring sys-
tems require either complex installation around the central fuse box or the 
use of many electricity sensors. These systems typically induce a high us-
age barrier because the electric wiring around the circuit breaker or the 
fuse box is – at least across Europe – only accessible to technicians, and 
because equipping most appliances throughout the house with a dedicated 
sensor is costly and rather burdensome. However, since energy monitoring 
is a low involvement topic for many people, systems should be designed to 
allow for easy interaction. 

Integrated in daily life. Integration of feedback into users’ daily life is 
important for long-term energy conservation. If not achieved, trials have 
shown a decline in involvement regarding the energy conservation [38]. 
When using an additive battery-dependent display for electricity feedback, 
in 50% of all cases users do not replace the battery once it is depleted [81]. 
This indicates a loss of interest after the users’ initial curiosity has been 
satisfied. Thus, since not being integrated into users’ daily life, these addi-
tive displays seem not capable to motivate users for longer time periods.  

Frequently, in real time, and at hand when needed. Feedback 
should be provided frequently and in real-time allowing for users to relate 
feedback to a certain behavior or device usage [56]. Continuous feedback 
has been proven to be most effective. The authors of [110] investigated the 
effects of continuous versus monthly feedback on gas usage. The results 
show that people confronted with continuous feedback save more (12.3%) 
than those who had received monthly feedback (7.7%). In addition, only 
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feedback that is at hand when needed (e.g., directly after a particular con-
trol action) is able to satisfy users’ spontaneous curiosity [111].  

Break down of the entire energy consumption. Besides visualizing 
the overall electricity consumption in real-time, it is important to provide 
the possibility for an apportionment of the overall consumption [102]. A 
breakdown, e.g., for specific rooms, appliances, or times of the day, is a 
powerful way of establishing a direct link between action and effect / re-
sult [112]. This considerably improves the intensity of reflection and inter-
pretation of a measure or omission [53] and should be ideally combined 
with tips for direct energy saving measures [108].  

2.4 eMeter System Requirements 
The before-mentioned characteristics – low usage barriers, high degree of 
integration in every day’s life, timeliness of informational support, and 
allocation to specific loads – are believed to be important for energy feed-
back systems to be effective. Due to their importance for adoption and 
application of the resulting electricity feedback system, we consider these 
user-centric feedback requirements as essential design criteria for the de-
velopment of our eMeter electricity feedback system. In the following, we 
explain how we took these into account in the design process of the eMeter 
system.  

We try to achieve a low usage barrier by utilizing components that are 
ubiquitous in the residential environment. We first considered using smart 
power outlets as electricity sensors and actually started developing our 
early feedback prototype utilizing commercially-available power outlets as 
data source [98]. However, the disadvantages regarding a high usage barri-
er and cost led to an alternative design at the end. By using a smart elec-
tricity meter as single data source, which is going to be installed in house-
holds throughout Europe by law anyhow and a mobile phone as user inter-
face, users’ effort to setup the system is limited to a minimum. Compared 
to other systems that require experts or domain knowledge for setup, all 
that users have to do, is install a mobile phone application that can easily 
be downloaded from the Internet. The eMeter system does not rely on fur-
ther special purpose hardware and requires no modification by users – nei-
ther to the electrical wiring, nor by deploying additional hardware at de-
vice level. The only additional component our system utilizes is based on a 
commercially available embedded device. It is integrated to the smart elec-
tricity meter as a clip-in module at the time of installation and thus does 
not bother users.  
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By using a mobile phone as user interface, the system features not only 
feedback on a device that is already part of users’ life, but also the ability 
to provide instantaneous feedback that is at hand when needed. Other po-
tentially suited technologies we considered as user interface were a picture 
frame, a TV, a web portal on a computer, and a dedicated stand-alone 
device. On some interface technologies, we partially started developing user 
interfaces to gather hands on experience that we took into account in our 
user interface assessment presented in Table 2.2. Picture frames are becom-
ing more and more popular in homes and are able to address a broad user 
base of all age groups. However, they are typically not used on a daily ba-
sis and offer hardly any interaction capabilities. Most of the currently 
available devices have a fixed power supply and portability as such is lim-
ited. TVs are even less portable, but feature a high integration into daily 
habits and probably address the largest user base among the considered 
technologies (on average there exist 2.5 TVs per household [4]). Some TVs 
started providing interactive features, such as the integration of RSS feeds 
or the possibility to play simple games, which makes them more engaging 
than the pure display of consumption on a picture frame. Computers in 
contrast offer typically high interaction capabilities and integration into 
daily routines, but lack the possibility to provide immediate feedback to 
satisfy initial curiosity. This may be better achieved with mobile phones. 
They are highly portable and used in daily life, but suffer from the fact 
that up to now smartphones are typically used by mostly tech-savvy peo-
ple. However, the penetration of smartphones is currently strongly rising, 
which should most likely result in a larger user base across different target 
groups as time progresses. Presenting the consumption on a dedicated in-
home display can address a wide user base. However, compared to 
smartphones, in-home displays lack the interaction capabilities, and since 
not yet being integrated into users’ daily life, these additional displays do 
not seem capable of motivating users for long periods of time [81]. Taking 
all the facts in to account, we decided to go with a mobile phone as user 
interface, which at the moment offers the highest benefits despite the 
smaller user base.  

 

Table 2.2 Comparison of potential electricity feedback technologies 

Characteristics User base Daily life 
integration 

Interaction 
capabilities Portability 

Picture frame High Medium Low Medium 
TV High High Medium Low 
Computer Medium High High Low 
Mobile phone Medium High High High 
Dedicated device High Low Medium Medium 
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Lastly, useful feedback has to link specific actions to their effects by 
providing the ability to disaggregate overall electricity consumption. In or-
der to take effective measures, it is vital to understand how much power 
individual devices consume in standby mode or while operating [80]. In fact, 
users have rather limited possibilities to investigate their household’s effi-
ciency with simple measures [110]. Although relying on a single sensor, the 
system as such has to provide a way to achieve a device-specific consump-
tion breakdown with simple means. We accomplish this by enriching the 
user interface with an interactive measurement feature that allows for users 
to determine the consumption of a switchable appliance just by turning the 
appliance on or off. 

Besides the described user-centric requirements, our system design has to 
meet several system-centric requirements that ensure the technical ability 
to deliver the feedback as well as the system’s applicability in the real 
world. In particular, this includes modularity, expandability, and future-
proofness, which we considered to a certain extent in our system design.  

Modularity. When developing an electricity feedback system, it is im-
portant to be able to exchange individual components. It allows the easy 
integration of different user interfaces and electricity sensors, and is typi-
cally enabled through standardized interfaces. This not only improves 
maintainability, but also makes the system far more reusable than a tradi-
tional monolithic (closed) design.  

Expandability refers to the possibility to extent the system by adding 
components, peripherals, or capabilities to it. For example, this allows in-
corporating new services or components that were not envisaged at the 
time of the system design. In the context of the smart grid, this ensures 
that residential energy feedback systems are ready to support features that 
are currently developed but not yet implemented.  

Future-Proofness. Compared to advances in information technology, 
buildings face a much longer life cycle. Where technological development, 
for instance, replaces consumer electronics within years, buildings typically 
remain more or less untouched for decades. Taking this into account, it 
becomes evident that systems integrated in the residential environment 
should ideally feature future-proofness that guarantees system’s operability 
over the lifetime of the building.   

The above-listed requirements do not present a complete list. Indeed, 
there exist further technical, behavioral, economic, and social factors that 
should be ideally met to foster adoption of energy feedback solutions [113]. 
For example, system-centric technical requirements also include privacy, 
security, communication efficiency, and energy-efficiency in terms of the 
system’s power usage. However, fulfilling all these requirements goes be-



42 | eMeter – A Pervasive Electricity Consumption Feedback System 

yond the scope of this work and is thus not an objective of our prototypi-
cal implementation. 

2.5 eMeter System Architecture 
In this section, we explain the architecture of the designed, developed, and 
implemented residential electricity feedback system in-depth. We first pro-
vide an overview on the system design and the communication flow be-
tween the individual components, before we explain the functionality of 
each of the three layers, i.e., data acquisition, data processing, and data 
visualization in detail. 

 

2.5.1 Overview 
The eMeter system consists of three loosely coupled components that take 
care of data acquisition, data handling, and data visualization (see Fig-
ure 2.4). The first component is a smart electricity meter that measures 
the total electrical load of all attached devices in a household. It logs the 
total electricity consumption at a frequency of one sample per second. The 
utilized smart meter has an integrated communication interface that is 
connected to a gateway, which is responsible for continuous data acquisi-
tion processing, and storage from the electricity meter, and also for the 
handling of the incoming requests of the user interface. The gateway itself 
contains an Ethernet and Wi-Fi module for communication purposes. The 

FFiigguurree  22..44 The eMeter system architecture consist of three loosely coupled compo-
nents: a smart meter for data gathering, a gateway on an embedded device for date 
processing, and a portable energy monitor on a smartphone that visualizes the elec-
tricity consumption.  
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third component of the system is the user interface that is implemented as 
a mobile phone application for iPhone, Android, and Windows Phone 7 
handsets. It provides users with portable real-time feedback on their elec-
tricity consumption and allows them to interactively explore from where 
their electricity demand is occurring. 

The system architecture is based on the REST (Representational State 
Transfer) paradigm [60]. REST is a resource-oriented approach that ena-
bles physical resources to be easily and seamlessly integrated into the 
Web [31]. For this purpose, REST proposes two basic principles. First, 
transferring the conventional operation-centric model view into a data-
centric view, which essentially means that services now become resources 
that can be identified and manipulated (i.e., transferred, indexed, put on 
Web pages etc.) by using URLs. Second, the only available operations to 
access, update, delete, and create resources are the four main operations 
provided by HTTP (GET, POST, DELETE, PUT).  

Consequentely, the communication between the three components is real-
ized using http over TCP/IP. The gateway provides a RESTful Web API 
to access its functionality and the meter’s resources. Compared to proprie-
tary protocols and to other existing communication standards in the build-
ing domain that come and go, we believe HTTP to be an established fu-
ture-proof protocol that might gain greater attention in future home ener-
gy management applications [34]. Following the concept of REST also de-
couples the three components, which benefits the overall system design 
because it makes the individual entities location-independent and easily 
exchangeable. Thus, the system does not rely on the meter of a particular 
manufacturer and can support different user interfaces and communication 
scenarios.  

In general, the proposed system design enables three different communi-
cation scenarios (e.g., all three components are operated on the same local 
area network), which are illustrated in Figure 2.5. First, the system can be 
setup to communicate within its own local area network. If done so, the 
gateway opens up an own wireless access point (WAP) and allows users to 
directly connect to its WIFI. The gateway is connected to the smart meter 
over the Ethernet interface and locally hosts all required data and services. 
Hence, all information stays local under the full control of the user. Se-
cond, the gateway can be connected to the user’s home area network. This 
approach is beneficial in case users have already established a wireless net-
work (e.g., operate a WIFI router). Instead of directly talking to the gate-
way, the communication is realized via the user’s home area network. The 
consumption data still remains local. However, users can enable the system 
for remote monitoring. Then the consumption data becomes accessible 
from locations outside the home and thus enables users to inspect their 
residential electricity consumption on the user interface from any location 
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that provides mobile Internet connectivity. This option essentially requires 
some consumption information to leave the residential network, which can 
potentially lead to the introduction of privacy threats. The third setup 
features full data sharing over the Internet. The meter itself is connected 
to the web, sending the data to the gateway that is located on a dedicated 
sever on the Internet and can be accessed from anywhere. In this scenario, 
all consumption data is first communicated over the Internet to the server 
that further processes the information and provides universal access. This
guarantees full access to all information at all times, which is important 
when first deploying and refining the prototypical implementation and 
when further developing algorithms on top of the electricity consumption 
data. 

  

2.5.2 Data Acquisition  
The first component of the eMeter infrastructure is the smart meter (mod-
el ZMK420/E750 by Landis + Gyr). The eMeter system uses it as a single 
sensor to gather the electricity consumption information of private house-
holds. Compared to a classical meter, it contains an Ethernet interface for 
remote meter readings and advanced capabilities in terms of sampling fre-
quency and physical quantities that are measured. Once installed it logs 
the electricity consumption of all residential appliances that are attached 
to the electric circuit of the household on a second by second basis.  

FFiigguurree  22..55 The design of the eMeter system supports three different operation 
modes: Local access, remote monitoring, and full data sharing. This is achieved 
through the loose coupling of the individual components that makes them location–
independent. 
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For communicating, the meter uses the Smart Message 
guage11 (SML) protocol, which is a non-proprietary communication proto-
col developed and applied by leading European utilities (e.g., RWE, E.ON, 
etc.). It is implemented in meters of various manufactures (e.g., Landis + 
Gyr, EDF Froeschl, Hager, etc.) and has been specifically developed to 
meet the requirements of smart grids and smart metering. Most important-
ly this includes the suitability for remote readings via IP-based connec-
tions.  

The smart meter records the electrical information as overall consump-
tion as well as individual values per electrical phase (i.e., two separate 
phases in the US and three in Europe). Table 2.3 provides an overview of 
the physical quantities that are directly available from the meter. Their 
name extensions L1, L2, or L3 indicate the phase to which the respective 
value corresponds (e.g., powerL1 represents the recorded power at the first 
electrical phase).  

 

Table 2.3 Measurement data directly acquired from the meter.  

Value Quantity Type Unit 
smartMeterId identifier int ID 
createdOn timestamp long Date 
powerL1, powerL2, powerL3  P1, P2, P3 double Watt 
currentNeutral Ineu double 

Ampere currentL1, currentL2, currentL3 Ieff1, Ieff2, Ieff3 double 

voltageL1, voltageL2, voltageL3 Ueff1, Ueff2, Ueff3 double Volt 
phaseShiftVL2L1,  
phaseShiftVL3L1 φ21, φ31 double 

Degree phaseShiftCVL1, phaseShiftCVL2,  
phaseShiftCVL3  φ1, φ2, φ3 double 

 

The attribute smartMeterId is a numerical number that identifies the 
smart meter, and createdOn holds the instant in time when the measure-
ment was recorded. 

PowerLx (Px). The real power Px on Lx is expressed in the derived SI 
unit Watt ([Px]SI = W). 

CurrentNeutral (Ineu) relates to the current on the wire which is connected 
to the neutral point ([Ineu]SI = A). 

                                       

 
11 www.t-l-z.org/docs/SML_080711_102_eng.pdf 
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CurrentLx (Ieffx). The quantity Ieffx denotes the current on circuit Lx, and is 
expressed in the SI unit Ampere ([Ieffx]SI = A). The following applies: 

𝐼𝐼 =    𝐼𝐼 . 

where I0 is the DC (direct current) component, I1 the current component of 
the fundamental frequency, and Ij(j > 1) the current component of the j-th 
harmonic. 

VoltageLx (Ueffx) corresponds to the voltage over Lx, and is expressed in the 
SI unit Volt ([Ueffx]SI = V). 

PhaseShiftVLyLx (φyx) denotes the phase shift between the voltage on Lx 
and the voltage on Ly. The unit is expressed in degree ([φyx]DIN1301 = °). 

PhaseShiftCVLx (φx) relates to the phase shift between the current compo-
nent of the fundamental frequency (I1) and the voltage Ueffx on Lx, and is ex-
pressed in degree ([φx]DIN1301= °). 

 

2.5.3 Data Processing 
The second component of the eMeter architecture is the gateway. It man-
ages and handles the captured data and is implemented on an embedded 
device. It is connected to the smart electricity meter to collect the con-
sumption information and handles the incoming request from the user in-
terface. For that, the gateway consists of an SML parser, a lightweight web 
server, a database, and auxiliary services, which are necessary for the 
gateway’s operation and administration (see Figure 2.6). The first three 
are described in detail in the following.  

 

2.5.3.1 SML Parser 
The SML parser provides four basic functionalities. It automatically col-
lects all available measurement data, preprocesses the received data into a 
JSON12 object, and thereafter stores the measurement in the database or 
on a backup server. Last, the parser is responsible for post processing (e.g., 
updating tables in the database that use the inserted measurement). JSON 
is a lightweight data exchange format – comparable to XML, but with a 
smaller message body – suited for simple data structures. It can be easily 

                                       

 
12JavaScript Object Notation, http://json.org 
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parsed by machines, but at the same time remains human-readable for 
developers. 

The SML parser consists of two modules to acquire and handle the me-
ter readings: the datalogger daemon and the eMeter SQLite Extension. 
The datalogger daemon first connects to the meter’s Ethernet interface and 
establishes a TCP/IP connection. To acquire all recent measurement in-
formation, it then sends a special data packet consisting of three SML 
messages (PublicOpenRequest, GetProcParameterRequest, Public 
CloseRequest). In return, the datalogger receives a 580 bytes large binary 
SML encoded data packet that contains the requested electrical infor-
mation. Using C, the response is translated into a JSON representation of 
the received measurement data. An example of such a binary encoded 
SML data packet and the respective JSON representation is illustrated in 
Figure 2.7. The JSON message with a size of approximately 450 bytes is 
then inserted in the database or transmitted to an external backup server. 
The code snippet for the overall power is highlighted in blue in both repre-
sentations to enable a better comparison of both formats. Since the smart 
meter measures the electricity consumption of the household in fixed inter-
vals, the performance of the SML parser is critical. Figure 2.8 illustrates 
an overview of the datalogger run loop that is executed to collect the 
measurement data. To guarantee real-time electricity consumption feed-

FFiigguurree  22..66 Overview of the main modules of the eMeter gateway that is pro-
grammed on the depicted development board for embedded devices. The SML par-
ser preprocesses and automatically stores the consumption data in the database that 
is accessed by the web server upon requests from the user interface.  
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back the parser has to ensure that the polling request is issued in synchro-
nized intervals with the meter logging and that the response can be pro-
cessed in the time a new measurement is recorded. We implemented a tim-
er-based approach that determines the time the parser has to fall asleep at 
the end of the run loop before issuing a new request. In case a measure-
ment cannot be processed in the meantime the current loop is aborted. 

The SQLite eMeter Extension updates the database upon arrival of a 
new measurement. It is used to calculate statistics of the stored historical 

FFiigguurree  22..77 Comparison of a SML encoded measurement directly available form the 
utilized smart meter and the resulting JSON output of the SML parser [1].  

 

FFiigguurree  22..88 UML activity diagram of the datalogger run loop [1].  
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electricity consumption data and to update cache tables that are required 
by the user interface. The benefit of moving this functionality into an ex-
ternal module – separate of the database and the datalogger process – is 
that the performed calculations and updates can be easily modified with-
out requiring a recompilation of the complete SML parser module.  

 

2.5.3.2 Database 
The second component of the gateway is the SQLite3 database that is used 
to store and administrate the data. It features the Write-Ahead-Logging 
(WAL) journaling mode control mechanism that enables having multiple 
database content readers and one writer at the same time. This most im-
portantly enables the web server to asynchronously read the database and 
still serve incoming requests from the user interface although a write pro-
cess might be currently ongoing. The SML parser inserts the acquired 
measurement directly into the database whereas almost all other database 
related operations are moved to the dynamically loadable eMeter SQLite3 
Extension. 

 

2.5.3.3 Web Server 
The third gateway component is the lighttp web server. In order to enable 
interoperability with other applications, such as the developed user inter-
face, we use a lightweight solution based on PHP. The web server provides 
access to the gateway’s functionalities and the smart meter’s sensor values 
using URLs. The benefit of making the meter application accessible 
through a simple web API is the direct integration of the smart electricity 
meter to the web, which eases the development of applications and proto-
types on top of the smart electricity meter. 

Such an approach that makes an application’s functionalities accessible 
through an interface respecting the core principles of the web is often re-
ferred to as RESTful. Traditionally, this type of approach is used to inte-
grate several websites together. However, in recent research [114-116] 
REST is used to seamlessly connect real-world objects, embedded devices, 
and sensor nodes to the web. Systems using the REST paradigm and 
HTTP as a basic architecture for communicating with smart objects are 
subsumed under the term Web of Things [31].  

In our case, the most interesting benefit of this approach is the seamless 
integration of the gateway functionality, the meter and its values to the 
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web. In fact, it allows us to monitor the sensor values and control the 
gateway components simply by calling the corresponding URL in a web 
browser. In response to the call, the RECESS-framework13 wraps the re-
sults in form of a JSON message. This is in contrast with the proprietary 
closed protocols used by most commercially available solutions that do not 
allow for easy integration. It is worth noting that for low-level solutions 
that require ultra lightweight data access, customized approaches might be 
better suited than REST. Using HTTP introduces an overhead when com-
pared to ultra-optimized proprietary solutions. Thus, systems relying on a 
very small latency or requiring efficient communication in terms of the da-
ta that is transmitted might require a different solution than our RESTful 
approach. However, for us the benefit of providing lightweight data access, 
which especially important for constraint devices and the greater ease of 
interaction outweigh this drawback [117].  

 While the gateway can support multiple formats, we decided to use 
JSON (as a lightweight alternative to XML) for interaction with other 
applications, and HTML for providing a human readable representation in 
a Web browser. Figure 2.9 shows the HTML representation of the last five 
measurements of the currently available monitoring data that can be re-
ceived in response to simply calling the following URL: 

 

                                       

 
13www.recessframework.org 

FFiigguurree  22..99 JSON and HTML representation of the GET request that obtains the 
last five measurements of smart meter number one from the database. 
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http://[serverAddress]/emeter/energyServer/smartMeter/1/measurements?
c=5

The JSON-data, which is processed by the user interface, can be ob-
tained by extending the URL with “.json” (see Figure 2.9). Thereby, the 
structure of the naming scheme we used to access the server and its com-
ponents can be specified as follows:  

http://[serverAddress]/emeter/energyServer/... 
…[gatewayControl] 
…smartMeter/[resourceControl] 
…smartMeter/[UID]/[measurementControl] 

Figure 2.10 provides an overview of the API EnergyServer. All resources 
can be represented in any of the following three formats: HTML, XML, or 
JSON. An exemplary selection of the functionality of the individual re-
sources is provided in Table 2.4. UID refers to the unique identifier of the 
particular smart meter. Note that the table does not provide a complete 
overview of all available commands; its goal is more to provide a general 
idea of the actual functionality. 

 

FFiigguurree  22..1100 RESTful Web API of the energyServer. Table 2.4 provides the corre-
sponding command overview.  
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Table 2.4 Control command overview provided by the RESTful gateway Web API. 

Component Keyword Action 

gatewayControl status shows the status of the gateway 
components 

restart restarts the gateway 

resourceControl * lists all smart meters  
new creates a new resource 

measurement 
Control 

kWh?timespan kWh per timespan 
measurements?c/* c last/all measurements 

measurements?d/m/y/avg measurements of the day 
/month/year/average 

 

2.5.4 Data Visualization 
The third component of the eMeter system is the user interface. It uses the 
functionality provided by the gateway to access the database and to dy-
namically present real-time information on the electricity consumption of 
the household. Besides the possibility to follow the consumption and con-
trol the gateway using any web browser, we developed a content-rich user 
interface as a smartphone application for different mobile platforms, i.e., 
iPhone OS, Android, and Windows Phone 7.  

To provide the important feedback features mentioned in Section 2.3, the 
eMeter user interface consists of the following five main views (Fig-
ure 2.11): Live visualization of current electricity consumption (a), a his-
torical view of electricity consumption (b, c), a device inventory view that 
displays energy usage and costs per measured device (d), a measurement 
view (e) which enables the user to interactively measure the consumption 
of almost any switchable electrical appliance in the house, and an engage-
ment view (f) which aims at involving users to learn more about their elec-
tricity consumption. 

The current consumption view (Figure 2.11a) shows current consumption 
in real time. The color-coded, self-learning scale – it automatically adopts 
colors and range – allows users to assess how their current consumption 
compares to their historical consumption (green to red). The blue part of 
the scale depicts the level of electricity base load in the home, i.e., the us-
age that is still active when the user is not at home. It is determined by a 
weighted moving average of the consumption values measured between 
2am and 4am. The weight for each new value taken into account thereby 
corresponds inversely proportional to the difference between the new value 
and the previous average consumption value. This allows us to assure that 
atypically high consumption values during night time – which in most cas-
es are not caused by the standby consumption – have little influence, while 
small changes – e.g., due to a new device attached to electric circuit – 
cause fast adoption of the scale. 
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FFiigguurree  22..1111 eMeter iPhone user interface (from upper left to lower right): current 
consumption view, history view (aggregated consumption), history view (budgeting 
snapshot), device inventory view, measure view, and engagement view. 
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 The history view (Figure 2.11b, 2.11c) shows a line chart of historical 
consumption. Users can choose between different time periods, e.g., previ-
ous hour, previous day, etc. Together with the chart, this view displays 
equivalents such as kWh and cost for the accumulated consumption over 
the last five selected periods (Figure 2.11b, lower part). The color-coded 
bars allow users to compare their historical consumption to that of a typi-
cal average household of the same size in the same location. To enable this 
comparison users have to detail characteristics of their household on the 
first start of the application (e.g., how many persons are living in the 
household, is cooking done with gas or electricity, etc.). The historical con-
sumption view also provides a snapshot on budget calculations and projec-
tions (Figure 2.11c lower part). When tapped, a new side view is opened 
that helps users better understand the impact of their energy consumption 
(Figure 2.12 left). Users can adjust their budget for different time spans by 
setting a saving target using the blue slider. The view directly visualizes 
the impact of the savings in terms of conserved electricity, money, and 
CO2. Users can also set a budget or saving target they want to achieve. If 
activated, an alarm reminds them once their defined budget is close to be-
ing empty or their saving target is projected to overshoot (Figure 2.12 
right).  

The device inventory view (Figure 2.11d) lists all previously measured 
devices. In addition, it allows users to view device details and assign a lo-
cation (e.g., a room) as well as a particular utilization scheme (upon which 
the device’s cost calculations are based) to the device. It also enables users 
to sort the readings by location or the amount of power used, so that the 
biggest energy guzzler appears at the top. 

The measurement view (Figure 2.11e) enables users to interactively 
measure the electricity consumption of most switchable appliances in the 
household. Figure 2.13 illustrates the measurement process from a user’s 
point of view. To perform a measurement, the user simply activates the 
process by pressing the start button and then turns the device being 
measured on or off. The corresponding result is shown on the display with-
in seconds (Figure 2.14). The necessary calculations for this are performed 
on the mobile phone – as soon as the user initiates the measurement, the 
current consumption value determined by the smart meter is stored, and 
the measurement algorithm on the phone then waits for a significant 
change in this value. It then calculates the difference between the two val-
ues. After the measurement, the user interface provides additional options 
for personalization and the possibility to store the measured appliance in 
the device inventory. 
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FFiigguurree  22..1122 Budget functionality (left) and alarm functionality (right) on the eMe-
ter Windows Phone 7 user interface. Users can set a saving target using the blue 
slider to adjust the targeted limit. Conserved energy, cost, and CO2 are automati-
cally reflected on the right. The alarm view provides an overview on activated alerts 
and allows activating new and editing old ones.  

 

FFiigguurree  22..1133 Measurement functionality on the eMeter Android user interface. Users 
first have to initialize the measurement by pressing the start button and thereafter 
turning the device of interest on/off. Within seconds the result gets displayed on the 
user interface. 
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larger than a predefined threshold value (dP > Threshold). The algorithm 
then assumes that the user has switched a device on/off, and in the follow-
ing, waits for the power to settle within a particular range (dP < Settle). 
Once this has happened, the algorithm stores the last measurement and 
checks the validity of the whole measurement. In case another device is 
incidentally switched on or off during the measurement interval the result 
may be incorrect. To detect this second simultaneous event, the algorithm 
takes besides the increase or drop in real power the different electric cir-
cuits and additional physical variables, such as apparent power and power 
factor, into account. This not only allows to determine on which line the 
switching event has occurred, but also enables detecting in case two appli-
ances that are attached to different lines are switched on at the same time. 
In that case, the algorithm detects an edge on two lines and users are 
prompted to repeat the measurement process. By comparing the value of 
the second measurement after normalization to the one of the previous 
measurement (compare (J1,J2)), the phase on which the switching event 
has occurred can be identified and the consumption of the device can be 
identified (compare dP(M1,M3)).  

 The engagement view (Figure 2.11f) automatically displays notifications 
and tips on how to conserve electricity. It aims at involving users with 
their electricity usage once their initial curiosity has been satisfied. Push 
notifications with quiz questions and competitions (e.g., find a device in 
your home that consumes 200W) are used to remind users of the applica-
tion and their energy consumption. Further meaningful feedback is provid-
ed through general, appliances-specific, and household-specific energy con-
servation tips.  

FFiigguurree  22..1144 Users measuring the power consumption of different appliances with 
the measurement functionality of the eMeter iPhone user interface. 
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FFiigguurree  22..1155 Flow diagram of the measurement algorithm that is used to determine 
the power consumption of individual switchable appliances.  
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2.6 eMeter Prototypes: Implemen-
tation Details and Evaluation 

In this section, we describe implementation details of our prototypical de-
velopment of the eMeter system and the laboratory setting as well as the 
real-world deployment we used to evaluate the full functionality of our pro-
totype.  

 

2.6.1 Implementation Details 
A detailed view on the composition of the eMeter infrastructure is given in 
Figure 2.16. We use the ZMK420 smart meter developed by Landis + Gyr 
(Figure 2.17 right), which is the successor of the ZMK40014 to measure the 
electricity consumption of the entire household. It is a SyM2 (Synchronous 
Modular Meter15) compatible device, a standard that was introduced by a 
consortium of mostly German electricity suppliers. It contains an Ethernet 
interface for remote meter readings based on the SML protocol. SyM2 de-
vices use a second counter to reliably maintain the correct time reference 
of the current measurement even in case of multiple power outages. As 
such, the ZMK420 logs the electricity consumption in one-second intervals. 
The communication capabilities of the meter can be extended with differ-
ent modules (e.g., a GSM/GPRS module for communication on mobile 
networks). 

The second component of the infrastructure, the embedded gateway 
(Figure 2.17 right), is implemented on a Gumstix Overo16, an embedded 
device that offers netbook-like computing power at the size of a chewing 
gum (Figure 2.17 left). It is based on a Texas Instruments System-on-a-
Chip (SoC) architecture with a 720MHz CPU and 256MB storage of RAM 
and flash memory. An Ethernet and a WIFI module enable communication 
and interconnectivity with the other eMeter system components. Besides 
the local flash storage, it also contains a microSD card slot that can be 
used to further extent local drive space (e.g., for hosting the database).  
The SML parser that is implemented in C, handles the communication to 
the smart meter via the Ethernet interface and to external backup servers 
 

                                       

 
14 Landis+Gyr. ZMK400. http://www.landisgyr.eu/apps/products/data/pdf1/ 
D000028192_en_E750.pdf 
15 SyM2. http://www.vde.com/de/fnn/extras/Sym2/Seiten/default.aspx 
16 Gumstix Overo. www.gumstix.com 
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FFiigguurree  22..1166 Detailed view of the eMeter gateway architecture. The SML parser 
handles all consumption data related processing and has write access to the data-
base. The lighttp web server and its PHP backend serve the incoming user interface 
requests. Auxiliary services handle services important for the gateway operation and 
remote administration.  

 

FFiigguurree  22..1177 Gateway hardware: Embedded device (Gumstix) that is used to host 
the different gateway software modules (left). It is incorporated in the developed 
smart meter clip-in module of the final eMeter prototype (right). 
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via its WIFI module. For that, the cURL17 library issues the respective 
HTTP requests. To handle the incoming user interface requests, we impel-
mented a full HTTP software stack using a lighttp (1.4.28) web server in 
combination with PHP (5.2.13) as backend. The server was built with the 
following four modules enabled:  

 mod_auth: limits the access to the available URLs of the API; 

 mod_fastcgi: enables running of PHP scripts via the FastCGI in-
terface; 

 mod_rewrite: rewrites the URLs of the RESTful-APIs; 

 mod_redirect: for request-handling between the Recess-API and 
the mobile-API. 

We use the Recess 0.12 PHP framework for the web user interface im-
plementation, which requires 5.2.x versions of PHP. Hence, PHP 5.2.13 
was built with FastCGI enabled, and a single child process and a main 
process for request management. The child process is restarted every 
10000 requests to ensure that all leaked resources are freed back to the OS. 
The web server communicates with the PHP process via a UNIX socket. 
However, using the implemented Recess-API led to performance problems 
with the mobile user interface, which requires the delivery of data in real 
time. For example, the measurement functionality requires the current 
electricity consumption value in less than a second, a fact that could not 
be met using the Recess framework. We solved this problem by implement-
ing a dedicated mobile-API for the mobile user interfaces (Figure 2.16) 
that uses plain PHP in combination with PDO (PHP Data Objects). Fig-
ure 2.18 shows a comparison of the performance of a RESTful-API call on 
the embedded gateway using a pure C implementation, PHP with PDO, 
and the Recess PHP framework. The results were obtained using the API 
call that is particularly critical since it is used by the measurement func-
tionality: /emeter/energyServer/currentPhases.php?sm=<SM_TOKEN>. 
We conducted 3000 consecutive calls per implementation with first a single 
and then ten concurrent requests at a time. We find that even in case only 
one client is present the median to process the call of the Recess-API is  
significantly higher than using plain C or PHP with PDO (755ms vs. 18ms 
vs. 23ms). The longest response time (after removing very few outliers) for 
Recess is 24.6 times longer than PHP and 37.5 longer than C respectively. 
Moreover, an internal processing time of above 700ms is already critical to 
deliver the feedback in time. Using ten concurrent connections (i.e., more 
users utilizing the system simultaneously), the response time strongly in-
                                       

 
17 cURL. http://curl.haxx.se/ 
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creases over all technologies. While the Recess framework cannot process 
the API call in less than the required one second, C and PHP both show 
better performance. However, the C implementation has a worse perfor-
mance for an increasing number of served requests and a worst-case re-
sponse time of over one second compared to significantly lower response 
time for PHP with PDO. As result, we implemented the mobile-API using 
PHP with PDO technology.   

Besides the RESTful-APIs, we developed a mini web shell that enables 
administration of the embedded gateway over the web browser. It allows 
executing simple Unix commands without the need to access the Gumstix 
via SSH. This is especially handy for small setting changes, bug fixes, or 
status retrieval with the smartphone, which usually does not feature SSH. 

The auxiliary services (see Figure 2.16) are important for the operation 
(e.g., WFI configuration, DHCP, etc.) and administration (e.g., SSH, Tun-
nel) of the embedded gateway. For example, the tokend process periodical-
ly sends a token (i.e., the MD5 encrypted MAC address of the connected 
smart meter) to the IPv4 multicast group. The user interfaces on the 
smartphones that are currently connected to the same network (i.e., the 
same IPv4 multicast group) listen for this token, and if detected automati-
cally pair the application with the gateway. This simplifies the setup pro-
cess for users because the setup effort on the first startup is limited to 
starting the application. Once the token is detected, access to the electrici-
ty consumption data of the meter is automatically granted.  

The user interface was developed as a native application for three differ-
ent mobile platforms: iPhone OS, Android, and Windows Phone 7. Since 
smart meters will be installed through the energy utility, user installation 
effort is limited to simply install a downloadable smartphone application. 
Figure 2.19 provides a top-level view of the implementation details of the 
user interface. On the first application start, the user is requested to speci- 

FFiigguurree  22..1188 Comparison of the API performance using different software imple-
mentations: Response time in ms for one connection (left) and ten concurrent con-
nections (right). 
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fy certain characteristics of the household that are later used for compar-
ing the electricity consumption to the one of other households for budget 
calculations etc. The user interface then automatically tries to identify a 
smart meter by listing for a token on the IPV4 multicast address. If such a 
token is discovered, the meter is added to the list of accessible data sources 
and the application continues in the current consumption view. From that 
view, users can switch to any of the other main views or add a new smart 
meter to its list of data sources. On the next application start, the applica-
tion automatically switches to the current consumption view with the last 
meter selected as data input. Each of the views contains several sub views 
that implement the functionality described in Section 2.5.4 and use the 
resources provided by the RESTful gateway API. Table 2.5 presents an 
overview of gateway URIs used by the smartphone applications. In order 
to get the required information in real-time (e.g., the current overall con-
sumption) the user interface issues a GET request to the corresponding 
gateway URI and converts the server-generated JSON response that con-
tains the requested values from the database (Figure 2.20). Using the same 
principle (i.e., PUT and POST verbs), it is also possible to store user-
generated content in the database. This enables the system to store data 
(e.g., household characteristics) in the database on the gateway.  

FFiigguurree  22..1199 SDL action diagram of the top layer of the mobile user interface. 
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Table 2.5 Resources of the mobile API of the gateway utilized by the mobile user inter-
faces. 

URI HTTP 
Method Description 

/emeter/energyServer/current
Phases.json?$sm_token GET Information used by the measurement 

functionality 
/emeter/energyServer/current
.json?$sm_token GET Current consumption details used in the 

corresponding view 
/emeter/energyServer/smart
Meter/$id/kWh.json GET Total kWh used in the history view 

/emeter/energyServer/smart
Meter/$id/projection.json GET Projections for the budget view 

/emeter/energyServer/smart
Meter/$id/watt.json?$time GET Returns electricity consumption for the 

line chart of the history view 
/emeter/energyServer/iPhone
/$phoneID/notifications.json GET Current notifications for the engagement 

view 
/emeter/energyServer/recogni
tion POST Send a measurement to the database on 

the gateway 
/emeter/energyServer/smart
Meter/$id.json GET Smart meter status information 

  

 

FFiigguurree  22..2200 To obtain the current consumption that is visualized in the respective 
view, the user interfaces issues a GET request to the mobile API (1), the web server 
processes the call and uses a SQLite query issued by PHP to get the requested data 
in response (2-3). Last, a JSON message containing the information is formed and 
transmitted back to the user interface (4). 
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2.6.2 Architecture Prototypes and Evaluation 
Based on the proposed design of the architecture, we used the discussed 
components and realized a prototype of the system in three steps. We first 
experimented with the implementation of the user interface on the iPhone. 
This enabled us to gather early feedback on the user interface design and 
the required electricity feedback functionalities. In order to quickly realize 
a working prototype that features feedback of real consumption data, we 
decided to connect the user interface to an existing RESTful API of a 
commercially available smart power outlet [118] (see Figure 2.3 left).  

We refined the user interface based on the first feedback from a focus 
group and a paper-based survey (see Section 3.2) and built the second pro-
totype that utilized a smart meter to log the electricity consumption. The 
meter and further hardware components required for operation and safety 
purposes were mounted to a portable wooden board (Figure 2.21 right). 
Besides better portability and demonstrability, this offers the benefit that 
individual components of the backend could easily be replaced if necessary. 
Figure 2.21 (left) depicts the front end of the demonstration setup of the 
eMeter system used at public demonstrations. It consists of a large LCD 
TV screen that shows the web user interface and the mobile phone user 
interface. The mobile phone user interface is running in the iPhone emula-
tor. In addition, multiple phones on stands were used to provide visitors a 
real look-and-feel experience of the eMeter system.  

Since developing on embedded devices is time-intense, the gateway logic 
that handles the communication to the meter and to the user interface was 
split into two locations at this point. The Gumstix hosted the SML parser, 
but transmitted the data over its WIFI interface to a dedicated machine 

FFiigguurree  22..2211 eMeter demo web user interface and mobile user interface used at 
larger public demonstrations and as permanent setup (left). First prototypical im-
plementation of the eMeter backend on a wooden board (right). 
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on the Internet (instead of directly storing and processing it internally). 
On that server, the remaining parts of the gateway (i.e., web server data-
base, etc.) were realized.  

To demonstrate the feasibility of our approach as well as to evaluate the 
correct functionality and stability of the system, this version of the proto-
type was deployed for several months in a laboratory on our group’s floor. 
Colleagues, visitors, and industry partners used the prototype daily and 
helped to further refine and improve the usability, stability, and functional-
ity of the eMeter feedback system.  

At the end, the system was running reliably for several months and led 
to the final prototypical implementation of the eMeter system, which is 
illustrated in Figure 2.22. The “demo case” consists of the smart meter 
that can be plugged into any electrical outlet to measure the electricity 
consumption of the attached devices. It communicates via its Ethernet 
interface with the Gumstix that hosts the full gateway functionality (i.e., 
web server, SML parser, and database). Its WIFI interface can be config-
ured to operate in different communication modes (see Section 3.5.1) al-
lowing direct or infrastructure-mediated access to the data through the 
RESTful API. 

FFiigguurree  22..2222 Final prototypical implementation of the eMeter architecture 
(backend only): It consists of the smart meter that records the electricity consump-
tion of all connected appliances. The gateway connects to the meter via Ethernet 
and serves the incoming user interface requests over the WIFI interface. 
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We evaluated the gateway performance based on the final prototype. 
The system was set up in the laboratory environment and the user inter-
face was constantly requesting data from the gateway for the observation 
period of one day. Over the whole period, we observed that the mobile user 
interface was constantly connected to the gateway’s WIFI interface and no 
loss in connectivity occurred. During operation all major processes, such as 
the SML parser, the web server, and PHP, all show stable process memory 
footprint, which is important to rule out memory leaks. The load averages 
in terms of CPU utilization of the system remain low for all observation 
periods (e.g., 15 min load averages: 0.05 minimum, 0.18 maximum, and 
0.066 average). Further in-depth evaluation shows that the SML parser 
that is continuously handling the data acquisition process causes most of 
the CPU load: 

 PHP CPU usage: min – 0%; max – 3.8%; avg – 0.96%. 

 SML parser CPU usage: min – 0%, max – 11.4%; avg – 3.13%. 

 web server CPU usage: min – 0%, max – 1.9%, avg – 0.46%. 

 overall CPU usage: min – 0%; max – 19%; avg – 4.96%. 

This behavior seems natural, since the SML parser contains the eMeter 
SQLite Extension module that is responsible for the management of the 
database. With a user interface constantly pulling, it has to perform a lot 
of modifications and updates to the database, which explains the relatively 
high load averages. Under constant strain from the user interface, we can 
confirm that the web server, PHP, and the database only cause a minimal 
load on the system. In summary, we can conclude that the CPU resources 
are more than sufficient for our gateway implementation.   

Another important performance aspect of the gateway is the disk usage 
of system. The Gumstix Overo is equipped with a 256MB flash memory 
that can be extended with up 8GB of storage using a micro SD-card. After 
the initial system setup 240MB are available for general system use. With 
full debug information of the most important system services enabled, 
drive space decreases at a rate of 29.8MB/h. However, this effect can be 
limited utilizing the “logrotate” package that limits the amount of the 
most recent debug information to fixed threshold (e.g., 24 to 48 hours). 
Then disk space highly depends on the size of the database that increases 
at rate of 2.4MB/h. This means that without further optimization on the 
database structure the gateway is capable of storing 7 days of real-time 
electricity consumption information on its internal file space. In case this is 
not sufficient, the corresponding database file could be moved to the exter-
nal SD-card that provides additional space.   
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Since the utilized smart meter records the electricity consumption infor-
mation on a second by second basis, one of the key criteria for the gateway 
is to retrieve the measurement, process it, and subsequently store it in the 
database in less than one second (i.e., the datalogger run loop (compare 
Figure 2.8)). We evaluated the performance of the measurement retrieval 
time over a 24h period. For multiple runs, we analyzed the syslog and da-
tabase log messages. Figure 2.23 depicts the measurement retrieval times 
for one typical run. Out of 86400 possible measurements we recorded 
85960 in the database. That corresponds to a loss of 439 measurements or 
0.51% respectively. 67.5% of all measurements were stored within 200ms, 
87.3% within 300ms. No successful retrieval process took longer than 
500ms; in fact, the number of measurements with a time to store of over 
400ms is negligible. This result is sufficient for providing users with real 
time feedback. 

We repeated that test a number of times. Taking all test runs into ac-
count, the loss rate varies between 0,5% and 0,75%. This loss is largely due 
to the small time difference between the measurement interval of the meter 
and the parser interval of the gateway (i.e. there is yet no synchronization 
implemented). In a few cases, the run loop of the datalogger has a slightly 
larger interval than one second, which causes the small loss of measure-
ments. Lower loss rates can be achieved through the implementation of the 
following two measures. The time overhead needed for initiating the 
TCP/IP connection to the meter is currently unknown. Measuring this 
overhead and incorporating it into the time calculation of the datalogger 
run loop could help to better calibrate the timing. Instead of measuring 
the overhead, TCP/IP connection keep alive could be used to achieve a 
persistent connection between the meter and the gateway. Alternatively, a 
message buffer that queues several measurements together with a shorter 
run loop interval could be implemented.  

FFiigguurree  22..2233 Measurement acquisition time corresponds to the time the datalogger 
module needs for requesting the data from the meter, parsing it into a JSON mes-
sage, and subsequently storing it in the database. 
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The evaluation shows that the performance of the designed infrastruc-
ture meets the technical requirements of an electricity consumption feed-
back system. The utilized hardware components together with the imple-
mented software modules are well suited to provide sufficient space for da-
ta hosting and are powerful enough for request handling and real-time in-
formation delivery. These results encouraged us to deploy the eMeter sys-
tem in four households in Zurich, Switzerland to demonstrate the real-
world feasibility of our approach. The system was rolled out together with 
industry partners, which took care of correct installation and ensured func-
tionality of the meter. In order to not interfere with the currently installed 
meter that had to remain active for billing purposes, the smart meter was 
installed parallel to the existing meter (Figure 2.24 left). The gateway was 
operated in full data sharing mode. That is, its internal WIFI was hooked 
up to the WIFI of the participants forwarding all data to our central serv-
er on the Internet.  

After the initial setup with the partners, we ensured the system was ful-
ly functional and showed the same behavior as in the laboratory environ-
ment. To do so, we spent several hours in the households operating (Figure 
2.24 middle) and measuring all kinds of different devices (Figure 2.24 
right). In order to be able to access the system from outside the local net-
work (e.g., in case of system failure or maintenance), we implemented a 
reverse SSH tunnel that auto-establishes a connection to our server. Since 
being initiated from inside the home area network, it was able to bypass 
existing firewalls.  

The system was running and permanently used from June 2010 until 
August 2011. During this period, we collected over 100 million measure-
ments and almost 400 user sessions of the smartphone application. While 
the deployment confirms the feasibility of our approach also in a real-world 
scenario, it also contributes to other findings discussed in course of this 
thesis: the evaluation of effective forms of meaningful electricity consump-
tion feedback and the design of an algorithm that disaggregates the overall 
energy consumption to the consumption of individual devices. 
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2.7 Summary and Discussion 
In this chapter, we presented one of the three main contributions of this 
thesis: the design and implementation of a pervasive electricity sensing and 
feedback system. It consists of three components – a smart meter, an em-
bedded gateway, and a user interface on a mobile phone – and provides 
ground for the other contributions of this thesis. The developed architec-
ture shows a possibility how future electricity monitoring systems can be 
composed to provide real-time and fine granular electricity feedback while 
respecting user-centric and system-centric design criteria. By developing a 
portable user interface on a mobile phone, we provide the electricity feed-
back on a device that is already integrated in many users’ daily life. The 
feedback itself comes in a way literature suggests it is ideally desired by 
users to better understand the origin of their consumption. That is, in re-
al-time, on device level, and at hand when needed.  

To overcome the limitations of electricity existing monitoring solutions 
(e.g., battery dependency, complex installation, etc.), our architecture uses 
components that will be integrated in many households in the course of 
smart meter implementation. Moreover, through the development of a 
RESTful API, the gateway integrates the readings of the smart meter into 
the Web and makes them easily accessible for humans through a web 
browser or a mobile phone application. Following the REST paradigm, this 
also decouples the individual components of the architecture, while relying 
on HTTP as a future-proof communication protocol. Furthermore, through 
the use of JSON, other applications can be easily developed on top of the 
system [31, 98]. We have demonstrated this by the development of user 
interfaces on three different mobile platforms as well as a web user inter-

FFiigguurree  22..2244 Real-world deployment of the eMeter system. The smart meter was 
installed next to the existing meter (left); demonstration of the current consump-
tion view with the stove running (middle); utilization of the measurement function-
ality to determine the consumption of a LCD TV (right). 
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face. The system can thus serve as an enabling framework for other re-
searchers that can easily develop and test their own visualization concepts 
(e.g., for investigating behavioral change effects through different visualiza-
tions or forms of engagement) or to investigate automated energy saving 
applications on top of it [42, 61]. Instead of developing ever more proprie-
tary solutions and wireless protocols, the developed eMeter system shows a 
way of how future energy monitoring system can be implemented more 
efficiently.  

Using a smart meter as single data source, the system not only visualizes 
mere consumption data in real time, but also helps users to put their con-
sumption in a bigger picture (e.g., comparison to others, budgeting). How-
ever, the system’s device-level accuracy, suffers from the single sensor ap-
proach. We try to surpass this by integrating a power measurement func-
tionality for appliances into the user interface. This simple yet powerful 
tool allows users to interactively explore their electricity consumption. It 
aims at providing users with an initial idea how much different devices 
consume. Provided that the small measurement interval is representative, 
it enables users to measure the electricity consumption of any switchable 
or pluggable device. However, there also exist some devices in the house-
hold that consume a non-negligible amount of energy, such as the washing 
machine or the freezer, which usually cannot just be turned on or off. For 
such devices that cannot easily be measured by users, automatic device 
identification methods could be envisaged that automatically detect and 
match the electricity patterns in the overall electricity consumption to the 
device that caused the load [90, 119]. Alternatively, we suggest combining 
the eMeter system with the use of a smart power outlet [98, 118]. This 
would enable users to gather device-level electricity consumption infor-
mation for both switchable and non-switchable appliance without tremen-
dously increasing the complexity of the eMeter system. 

To validate the design, we presented a prototypical implementation of 
the whole infrastructure that was deployed and evaluated in in a laborato-
ry setting. Our results show that the system is well dimensioned for its 
purpose and functions reliably as originally intended for several months. 
This encouraged us to deploy the system in practice in four households to 
gather data and further make use of the infrastructure in our other contri-
butions. In the following two chapters, the proposed eMeter system is ap-
plied to evaluate the designed user interface as well as to investigate the 
potential of using this infrastructure to facilitate the automated detection 
of appliance switching events.  
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3 Evaluating Mobile Phones 
as Energy Feedback 
Devices 

In this chapter, we evaluate the suitability of mobile phones as energy 
feedback devices. The work of this chapter was partly published in [63, 98, 
120, 121]. In Section 3.1, we start by reviewing relevant work in terms of 
information provisioning on mobile phones and its evaluation. We then 
describe the goal-driven development of a mobile phone application for 
residential energy monitoring based on electricity consumption data ac-
quired by the eMeter infrastructure in Section 3.2.  

Next, Section 3.3 explains the user study we conducted with 25 partici-
pants to evaluate the designed user interface and the perceived value of 
various feedback functionalities. After elaborating on the experimental set-
ting, we present selected study results. Section 3.4 reports on the experi-
mental setting and findings obtained form the long-term real-world de-
ployment of the eMeter infrastructure in four households in Switzerland. 
Both sections show how mobile phones can help users monitor and control 
their energy consumption and confirm the suitability of mobile phones as 
energy feedback devices. 

Section 3.5 follows with a discussion on the results of the conducted user 
study and the real-world deployment. After that, Section 3.6 describes 
PowerPedia that was implemented as direct measure of the results of the 
preceding evaluation. It aims at putting the electricity consumption in a 
bigger, more tangible picture beyond mere numbers by providing meaning-
ful feedback on the consumption of electrical appliances. Last, this chapter 
concludes with a summary in Section 3.7.  
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3.1 On the Information Provisioning 
on Mobile Phones and its 
Evaluation 

With the rise of Ubicomp, data about real-world events is being captured 
at an increasingly detailed level. Together with the rapid growth of the 
mobile phone market and mobile Internet access, this has led to a large 
number of mobile applications, which aim to support users’ daily life in a 
wide range of areas. To name a few, this ranges from insurance claims as-
sistance [122] over shopping assistance [123] to emergency response [124]. 

A relatively new direction focuses on providing information about the 
personal environmental impact of travel, shopping, and residential resource 
consumption [125]. Ecorio18 and Carbon Diem19 for example allow for 
tracking the personalized carbon footprint with the help of the 
smartphone´s GPS sensor. The GreenMeter20 aims at reducing the fuel 
consumption and resulting cost by using the mobile phone’s internal accel-
erometer to measure forward acceleration and calculate fuel economy as 
well as carbon footprints. The Carbon Tracker21 application serves a simi-
lar purpose, but bases the calculation mainly on self-reporting. Another 
mobile application semi-automatically senses and reveals information 
about personal transportation behavior and tries to motivate users to 
choose green forms of transportation [6].  

Information provisioning with respect to residential resource consump-
tion has received considerable attention lately. There exist numerous mo-
bile phone applications that allow users to monitor the electricity con-
sumption of individual household devices. These solutions are often based 
on smart power outlets, like Tendril22 or the Energy UFO23. Once installed, 
they record the attached load and are capable of transmitting the meas-
urement data wirelessly to a remote user interface.	
  However, these prod-
ucts typically lack the possibility to aggregate the consumption of multiple 
sensors and to fuse the different data into a comprehensive picture. To 
surpass this limitation, different projects worked on integrating data from 
multiple sensors into one mobile application [7, 98, 99, 126]. The developed 
                                       

 
18 Ecorio. http://www.ecorio.org 
19 Carbon Diem. http://www.carbondiem.com 
20 Green Meter. http://hunter.pairsite.com 
21 Carbon Tracker. http://www.clearstandards.com/carbontracker.html 
22 Tendril Inc. http://www.tendril.com 
23 Energy UFO. http://www.visiblenergy.com 
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mobile prototypes are targeted to establish easier access to energy con-
sumption data for users and allow developers to easily build their own ap-
plication on top. While the concept is interesting and helps to provide im-
portant findings for future work, one has to keep in mind that deploying a 
large number of sensors in a residential environment is cumbersome and 
expensive. This implies a high usage barrier that typically hinders adop-
tion. 

Besides the work that focus on the technical progress to deliver feedback 
on portable devices, other research investigates the modality how energy 
consumption data should be presented [53, 55, 69, 108, 127-130]. For ex-
ample, the choice of measurement unit strongly influences the comprehen-
sion of feedback, as some units (e.g., kWh or carbon dioxide emissions) are 
more difficult to understand than others (e.g., money). Although kWh is 
often not thoroughly understood [129], this unit has established a sense of 
trust due to its scientific basis. Money as a unit is easier to understand, 
but is only suitable if potential savings are large. Otherwise, people might 
consider their energy expenditure as a minor and less important part of 
their total expenditure. Data granularity with regard to for example a spe-
cific source or source category enables users to prioritize their energy sav-
ing effort. To direct the consumers’ focus towards saving energy, push mes-
sages or prompts can be a helpful tool, but one has to assure that users 
are not flooded with messages. Even lightweight push mechanisms have 
proven to be effective [128]. To be able to judge whether one’s consump-
tion is either high or low, current consumption has to be contrasted with 
past performance. For that purpose, bar charts or line charts have been 
proven to be most effective [106]. To display development there have also 
been attempts to use artistic visual designs instead of pragmatic (numeric) 
designs [128]. Research on the modality of energy feedback has helped to 
better understand what works in terms of data representation, however, it 
is important to note that there does not exist a “one-size-fits-all” solution. 
That is, different feedback has to be presented to differently motivated 
people in order to be effective and target a wide user base [59]. 

In order to evaluate the usability of mobile phone applications as feed-
back technology, different methodologies are applied in the mobile Human-
Computer-Interaction domain (i.e., case studies, field studies, laboratory 
experiments, applied research, action research, surveys, basic research, and 
normative writings). Applied research builds on trial and error on the basis 
of researchers’ capabilities of reasoning through intuition, experience, de-
duction, and induction is used most often (42%) to evaluate mobile phone 
applications. It is followed by laboratory experiments (24%) and 15% field 
studies. Only 6% of the work report from surveys, 5% are normative writ-
ings (concept development writings), and 5% report from case studies. 
Hardly any work based on action or basic research could be identi-
fied [131].  
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The evaluation of mobile phone applications is usually done with regard 
objective criteria as well as subjective performance criteria. For example, 
[132] compares 11 state-of-the-art barcode scanners in a laboratory study 
with 20 participants focusing on objective performance criteria such as 
time per scan and reliability. The authors found that the reliability ranges 
between 50 and 100% and the average time per scan lies between 3.5 and 
10.4 seconds with the most reliable scanners having the shortest time per 
scan. The authors of [122] conducted a survey study with a commercial 
sample of 2000 people to find out how people rate a mobile claim assis-
tance application with regard to subjective criteria only. Participants were 
asked to judge the applications’ usefulness, ease of use, credibility, and 
their intention to use. UbiGreen [6] is a mobile application that targets 
environmental aspects and has been evaluated in a user study. The devel-
oped prototype semi-automatically senses and reveals information about 
the user’s transportation behavior. In a field study, the authors tested how 
two kinds of eco-feedback (representing carbon dioxide emissions with a 
tree gaining or loosing leaves and an ice bear sitting on melting or growing 
ice floes) were perceived by 14 participants (Figure 3.1 left).  

In terms of portable energy feedback, there exist few practical evalua-
tions of user interfaces. One notable is the evaluation of Energy Life (Fig-
ure 3.1 right), a mobile phone application that can give feedback on the 
electrical consumption of individual devices. To do so, the mobile phone 
user interface is being connected to a server, which in turn is wirelessly 
linked to a variety of plug sensors. The mobile application aims at helping 
users to monitor their consumption and quality of their implemented con-
servation practices by providing feedback and so called awareness tips. The 
latter are meant to increase the users’ knowledge on the consequences of 
their electricity consumption in general and of that of specific devices in 
particular. In a laboratory study, objective and subjective criteria were 
evaluated with 20 users. Participants were asked to fulfill several different 
tasks (e.g., identify the highest consumption in the past). On average 8.6 
out of 12 tasks were performed successfully, and the average number of 
errors for each task was 18.8. After the practical part, a 41-item question-
naire was used to evaluate Energy Life with regard to the following quali-
tative subjective criteria: navigation, comprehensibility, structural clarity, 
pleasantness, satisfaction, learnability, feedback, consistency, control, and 
usefulness [108].  

The applied methodology of the last-mentioned work inspired us for the 
design of our own study that is discussed later in this chapter. In contrast 
to the wide amount of research that has been conducted on data represen-
tation, we aim at contributing on the usability and the required functional-
ity of portable energy feedback systems. Compared to other work within 
the usability and functionality domain, our applied methodology for evalu-
ating the suitability of mobile phones as energy feedback devices uses pa-
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per based prototypes and surveys only to achieve better results during the 
design process of the application. The final evaluation then is based on a 
user study and a long-term field test where users get in touch with the 
look and feel of a real prototype application (including a fully functional 
backend) and compare it to commercially available energy monitoring 
products.  

3.2 From Paper to Practice 
Before designing and developing the user interface of our electricity con-
sumption feedback prototype, we conducted a survey to provide us with an 
idea what functionalities users would expect. The survey design was devel-
oped in three steps. First, we initiated and led a discussion with industry 
experts in order to identify two applications where the participants were 
confident that these were easy to explain in a paper-based survey and 
offered varying degrees in terms of their feedback characteristics to obtain 
two diametric applications. Applications, which were found to be suitable, 
were: 

FFiigguurree  33..11  Examples of information provisioning on mobile phones with respect to 
green applications: UbiGreen (left) is an application that provides green travel infor-
mation on its mobile phone user interface. A filed test has been used to evaluate the 
prototypical implementation. The Energy Life application (right) provides electricity 
feedback on individual appliances and has been evaluated through a user study. Source: 
UbiGreen [6], BeAware [7]. 
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1) A mobile phone application that utilizes a smart metering infra-
structure that allows users to get feedback on the consumption of 
individual appliances (high timeliness of informational support, 
suitable for investigation of specific loads, high degree of interac-
tion, and portability). 
 

2) A washing machine with a simple display, which provides feedback 
on energy consumption of specific programs and information on the 
energy that is saved by choosing eco-programs (low timeliness of in-
formation, low degree of interaction, and no portability). 

In a second step, we extended the question catalogue by a set of con-
structs to evaluate general functionalities of consumption feedback. We 
used established constructs taken from the Technology Acceptance Mod-
el (TAM) [133], constructs on the word of mouth, and questions concern-
ing the willingness to pay. To evaluate the validity of the reported willing-
ness to pay, we used a technique called framing. Framing means that in-
formation can be presented in different contexts, which affect the percep-
tion of the information [134]. In a third step, we evaluated the comprehen-
sibility by reviewing the constructs of the questionnaire with non-experts. 

The survey was conducted at lively points throughout the city center of 
Zurich, Switzerland. 185 persons participated in the survey (50.3% male) 
with all age groups evenly represented. The sample was slightly biased as 
respondents with a higher education degree and an above–average income 
were overrepresented. However, we do not expect this to considerably re-
duce the validity of the findings. In the following, selected results of the 
survey that lead to the design of the prototype are presented. Regarding 
the general attitude towards conserving energy, roughly 50% of the partic-
ipants think it is currently  rather cumbersome to save energy and not fun. 
In doing so, 89% like to be supported by innovative technology. 

The left side of Figure 3.2 depicts the comparison of the perceived use-
fulness and the intention to use of the mobile phone application with the 
washing machine display. The figure shows the mean as well as the stand-
ard deviation (as black error bars). The ratings for both applications are 
above average, with the mobile phone application performing worse over 
all the ratings. It was surprising to us that the washer application per-
formed better than the mobile device with regard to the likelihood to rec-
ommend the application to a friend, the likelihood to use the application, 
and the expectation that the information would lead to energy savings. A 
potential explanation for this unexpected outcome is that the washer ap-
plication had an inherent use case (the application domain “washing” and 
saving by selecting an “eco-program” was clear), while the innovative 
phone application had a more general and not very obvious use case (“you 
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can follow your energy consumption and measure how much energy your 
devices consume, which can help you save”).

In order to conserve energy at home, it is important to be aware of how 
much particular appliances consume as well as of effective measures that 
increase the energy-efficiency. Thus, we asked users with what information 
they would like to be provided on a mobile phone application. The right 
part of Figure 3.2 shows the participants’ assessment of the different func-
tionalities. Besides depicting the overall mean of the whole sample and the 
standard deviation in error bars, the figure provides a more in-depth view 
on the mean of participants that regard energy conservation as their own 
responsibility (N=65) and those that believe it is industry’s responsibility 
(N=120). Those who strongly or slightly disagreed on the statement “The 
industry is primarily responsible for saving energy” (1 or 2 points on the 
four point Likert scale) belong to the first group. The second group con-
sists of people who slightly or strongly agreed with the statement men-
tioned above (3 or 4 points). Overall, we find that participants prefer to be 
provided with the yearly cost of single appliances followed by the last 
month consumption and the biggest energy guzzlers of the household. 
However, users do not want to compare their consumption to the one of 
their friends or family. A closer look on the attitude of the participants 
reveals that participants who regard saving electricity as their own respon-
sibility rate the identification of the biggest energy guzzlers significantly 
higher than others. We assume this goes along with their higher involve-
ment and interest for both, their personal energy efficiency and defined 
measures that allow for conserving energy. 

 In addition, we investigated the self-reported willingness to pay for a 
mobile application that allows for measuring the electricity consumption 

FFiigguurree  33..22  User assessment of the usefulness and intention to use of two future energy 
saving technologies (left). Evaluation of the desired functionalities of such an applica-
tion (right). 
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only. Knowing of the difficulty to obtain a reasonable indicator for a sales 
price with this method, we used the findings to get an indication for the 
relative price range, and for developing a better understanding on how 
stable the perceived value is. For that, we used two different, slightly mod-
ified versions of the questionnaire and distributed them half-half amongst 
the participants. The first version asked people for their willingness to pay, 
not indicating the possible saving potential of such a technology measure. 
The second version indicated the monetary amount of potential savings 
(85$), thereafter asking for the amount people would spend. Figure 3.3 
illustrates the results. While the mean values do not vary significantly be-
tween both versions, the median increases from 16$ to 30$ when presented 
the version with frame. Thus, by providing an annual saving value, partic-
ipants were willing to pay a higher price for the application. This effect is 
referred to as framing effect and highlights that the expectations towards 
the pricing of such an innovative energy feedback application are only 
vague. From these results, we can conclude that the price regarding such a 
mobile phone application is not yet set. Participants have a general under-
standing that mobile phone applications are low-priced. On the other 
hand, the results also show that it is hard to determine the price for an 
innovative product that is not yet touchable and the price can be varied 
according to the context the application is presented. 

The survey results served as an indicative basis for our prototypical de-
velopment. It encouraged us to offer a simple use case that makes the val-
ue of an innovative energy consumption feedback application clear even to 
individuals who are not familiar with the system. As an easy to explain 
use case, we identified a measurement function that can be explained as 
“learn how much a device consumes by just switching it on or off”. On that 
basis yearly costs can be calculated and the biggest energy guzzlers can be 
identified.  

a) without frame     b) with frame 

FFiigguurree  33..33 User Assessment: Willingness to pay for an electricity monitoring 
application on a mobile phone. 
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However, the results on willingness to pay, perceived usefulness, and the 
intention to use the system also showed us that innovative services seem to 
go beyond the imagination of users. Thus, it is necessary to investigate 
possibilities of electricity consumption feedback on mobile phones in a con-
trolled environment, ideally in a user study where users can get in touch 
with the application and where the understanding of the application`s 
functionalities can be guaranteed.  

For that, we started prototypically developing our electricity feedback 
user interface as a native application on a smartphone. Paper-prototypes 
were used to present first ideas on the visualization and possible function-
alities to industry and research experts. Paper-prototypes are a known 
concept in user interface design and usability engineering that is typically 
used at an early stage of the design process of applications [135]. It helps 
to quickly visualize design ideas that result in a prototype drawing which 
is simple and whose development does not need a lot of time [136]. The 
benefit of being able to quickly incorporate changes into the prototype 
design is supposed to achieve better results when later designing the full 
application in the interface builder of the mobile phone development 
framework.  

We draw paper prototypes of all views to determine the functionality 
and the amount of information that could be visualized as well as the nec-
essary controls that are adequate to quickly navigate in the application. 
The upper part of Figure 3.4 illustrates the initial design ideas of the four 
main views of the user interface that were influenced by the survey results 
and thereafter iteratively reshaped through expert discussions. The current 
consumption view is designed in the style of a speedometer similar to the 
one known from vehicles. The evolvement of the view over different stages 
of the design process is documented in Figure 3.5. The discussion with 
industry experts resulted after several iterations in a more simplistic view 
that is easily readable. It focuses on the overall electricity consumption 
and on how it compares to the household’s typical usage. While the first 
implementation was hard to read and understand, the second design was 
considered too dark and still too complex. The third implementation had 
all buttons removed and offered a much clearer design (i.e., more contrast 
and larger numbers). It automatically updates the current consumption 
and auto-adapts the color-coding of the scale. The final version sticks to 
the design and additionally offers a zoom-in feature (see magnifying glass 
in the rightmost picture of Figure 3.5) that enables users to have a more 
precise look on their consumption. Similar refinements were conducted for 
the other three main application views. The history view is based on the 
standard stocks application of the iPhone, while the design of the device 
inventory uses a customized iPhone list view. As a direct result of the user 
survey, the measurement view was incorporated as one of the main fea-
tures of the smartphone application.  
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After several rounds of feedback and follow-up refinements of the design 
and the functionality of the user interface, this process led to the final im-
plementation of the prototype (see lower part of Figure 3.4). It was used in 
the following in a user study and a real-world deployment in four house-
holds. Both experiments aim at confirming the suitability of electricity 
feedback on mobile phones. We next report on the conducted user study 
and selected results, before presenting findings from the real-world de-
ployment. 

FFiigguurree  33..44 From paper prototypes to practice implementation: Development of 
the eMeter user interface as mobile phone application. Current consumption view, 
history view, device inventory view, and measurement view (left to right) [1]. 

 

FFiigguurree  33..55 Refinement of the current consumption view: Different stages of the 
user interface when designing the application in iterative feedback rounds with 
industry and research experts [1]. 
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3.3 User Study 
In the following, we focus on the user study we conducted to evaluate the 
suitability of mobile phones as energy feedback devices. We first report on 
the sample that participated and the setting that was used to evaluate the 
eMeter electricity consumption feedback. We then briefly discuss the ener-
gy monitoring products used to provide users a general idea of what avail-
able solutions look and feel and to compare their potential to determine 
the electricity consumption of individual appliances. Last, we explain the 
procedure of the experiment and the tasks users had to accomplish during 
the study, before we report on selected study results with respect to the 
application and the perceived value of different feedback functionalities.  

 

3.3.1 Sample and Setting 
To evaluate the general usability of the mobile phone user interface and 
which feedback functionalities are perceived as most valuable on a mobile 
phone, we conducted a user study with 25 participants. Their different 
background ranged from students over marketing and sales persons to in-
dustry experts. Twelve of the participants were male (48%). We covered all 
age groups: 32% were between 18 and 25 years old, 28% between 26 and 35 
years, 36% between 36 and 49 years, and 4% between 50 and 70 years.  

The study took place in a neutral environment meaning that there were 
no disturbing factors like colleagues watching the experiment or noise. The 
appliances used during the study were chosen with regard to two criteria: 
Firstly, we were looking for appliances that are well known in a residential 
environment and thus integrated into the daily life and secondly cover the 
most important categories (kitchen equipment, office use, and consumer 
electronics). Thus, we selected a kettle, an office lamp (standard light 
bulb), a computer screen, a game console (Nintendo Wii), and an energy 
saving lamp (Figure 3.6). For the study, we set up the prototypical imple-
mentation of the eMeter architecture and placed the appliances on a table 
in a row with each one being plugged in separately below the table.  

The iPhone eMeter user interface and two other electricity measurement 
technologies that were used to compare the eMeter prototype with com-
mercially available products were placed on a second table opposite to the 
appliances. In order to guarantee a reproducible procedure with each par-
ticipant, we fixed the distance between the measurement technology and 
the appliances at three meters. Hence, we were able to rule out that differ-
ences in measurement time are actually due to distance effects instead of 
technology effects. Apart from the participants two other people were in 
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the room: the experimenter provides instructions regarding the study and 
a second person measures and notes the objective performance criteria. 

 

3.3.2 Utilized Energy Monitors 
In order to familiarize participants with the features of electricity monitor-
ing solutions, we selected two popular energy monitoring solutions that at 
the same time can be used to evaluate the measurement function (eMeas-
ure) of the eMeter user interface.   

The first technology, the Wattson (Figure 3.7 right), consists of a display 
unit and a single sensor that communicates wirelessly and is used to derive 
information on the entire energy consumption of a household in near real 
time. The sensor is rather difficult to install. It has to be clipped around a 
single phase of the electric mains or around a circuit in the fuse box. This 
modification around the electric wiring is in many countries inaccessible 
mainly for safety reasons. The battery powered display unit is portable, but 
it can also be connected to the residential power circuit. The overall con-
sumption load is relatively easy to determine directly from the display 
unit. To derive the actual consumption of individual devices further manu-
al calculations by the user are required. Besides indicating the level of con-
sumption as ambient light, no further functionality is present on the device 
itself. 

The second technology, the Click (Figure 3.7 left), is a commercially 
available smart power outlet. It has to be installed in-line with the applica-
tion which electricity consumption should be measured, and it aims at 

FFiigguurree  33..66  User study setting: The eMeter architecture was set up together with 
different household appliances in a controlled, neutral environment.  
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monitoring, controlling, and automating the attached device. Once a de-
vice is connected, the Click allows for direct feedback on the attached load 
within seconds. The portable display unit is solar powered and enables 
users to remotely switch the device on or off within close distance (e.g., the 
same room). However, to measure the electricity consumption of multiple 
devices, the user has to attach these separately or attach a multi-outlet 
power strip, which can be rather cumbersome in a residential environment 
with power supply cables of different consumer electronics twisting around 
each other. 

 

3.3.3 Experimental Design: Procedure and Tasks
In this section, we describe the experimental design we used to evaluate 
the suitability of electricity consumption feedback on mobile phones. The 
user study was divided up into two parts. The first part aimed at interac-
tively evaluating eMeasure using the iPhone eMeter user interface and the 
two above-introduced electricity monitoring systems. The second part of 
the study was designed to provide insights on the general performance of 
the user interface and on the perceived value of different feedback func-
tionalities of portable electricity monitors.  

3.3.3.1 Part 1: Evaluation of eMeasure 
During the first part of the study, each participant first had to estimate 
the energy consumption of different appliances before confirming the esti-
mate utilizing different measurement technologies (i.e., Wattson, Click, and 

FFiigguurree  33..77 Commercially available energy monitoring solutions used in the user 
study to determine the consumption of individual appliances. Display unit and sen-
sor of Click (left) and Wattson (right). 
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eMeasure24). This enables us to check whether the participants already 
have a vague impression of the electricity consumption of each appliance.
Hence, the participants estimated the consumption of the office lamp, the 
kettle, and the computer screen as well as the accumulated consumption of 
the game console and the energy saving lamp. Thereafter, users were asked 
to verify their estimate by determining the consumption utilizing the three 
above-mentioned technologies (see Figure 3.8). To prevent an order effect, 
we alternated the sequence participants were using the three measurement 
technologies. That is, a third of the participants started to measure devices 
with the iPhone, followed by the Wattson and finally the Click, the second 
group started with the Wattson, then Click, and then iPhone, and the 
third group started with the Click, then iPhone, and last Wattson. The 
order in which the appliances had to be measured was kept constant.  

Before starting the measurement process, we explained the procedure to 
the participants and told them that both speed and accuracy of the meas-
urement are of special interest. We then gave participants an instruction 
for each measurement technology to ensure a common understanding and 
comparable actions. Before starting the study, we asked the participants to 
read the manual carefully and pose questions, if they do not understand 
the procedure. To ensure that the measurement procedure was really un-
derstood, participants had to briefly summarize their task. That is, partic-
ipants had to perform the different measurement tasks one by one with 
each technology. To do so, they had to walk over to the table with the five 
devices, measure electricity consumption of the appliance, and finally loud-
ly indicate their determined result.  

                                       

 
24 Note that during part one of the user study the eMeter user interface was limited to the 
measurement view to avoid confusion among the participants. 

FFiigguurree  33..88 Participants measuring the electricity consumption of different residen-
tial appliances by utilizing different technologies. 
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We started to count the measurement time exactly when “start” was 
pronounced and stopped the time as soon as the participants indicated the 
measured result. Apart from measuring the time needed to complete the 
single tasks of determining the consumption of the individual appliances, 
we noted measurement mistakes and other relevant observations like the 
participants’ spontaneous reactions. 

After this interactive start, we handed the participants a questionnaire, 
which was designed to reveal how the measurement technologies are per-
ceived regarding subjective evaluation criteria such as fun of use, attrac-
tiveness, comfort, and comprehensibility25. The participants had to rank 
the three technologies regarding each criterion and we used the borda 
count ranking method to analyze the questionnaires [137, 138]. To validate 
and better understand the results, we additionally asked to rate the im-
portance of the subjective evaluation criteria and additional criteria like 
price, time delay in feedback, accuracy, and availability. This allowed us to 
obtain a list with general requirements regarding energy measuring devic-
es. Besides, people were asked which measurement technology they would 
actually buy and what their willingness to pay is like.  

 

3.3.3.2 Part 2: Evaluation of the eMeter user interface and functionality 
The second part of the study consisted of a guided interview to explore 
and discover the different functionalities of the eMeter user interface and 
their meanings. For that, each user had to accomplish different tasks, 
which involved various implemented features (e.g., determine highest his-
torical consumption or current consumption, how current consumption 
compares to historical, standby consumption, etc.) and aimed at gaining a 
solid understanding of the application.  

Then, we handed participants a questionnaire that aimed at a general 
evaluation of the application and at assessing the functionalities that are 
perceived most valuable from a user perspective. Again, the questionnaire 
was anonymously completed in an unobserved environment. We asked the 
participants to rate the importance of implemented as well as possible fu-
ture functionalities. Moreover, users had to rate the complexity, usefulness, 
ease of use, ease of learning, and satisfaction of the mobile phone applica-
tion. The latter four factors are taken from the USE, an established ques-
tionnaire for measuring the usefulness, satisfaction, and ease of learning of 
a user interface by Lund [139]. Additionally, we asked the participants to 

                                       

 
25 The criteria were previously obtained in discussion of a focus group that consisted of 3 
experts from academia, 4 industry experts, and 1 employee of consumer organizations. 
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indicate their intention to use (once a week, once a month, or never), and 
the willingness to tell their friends (word of mouth). All items were rated 
on a five-point Likert scale. 

The questionnaire closed with items regarding age, sex, and technologi-
cal affinity. Technological affinity was assessed based on four items [140]: 
1) my friends and colleagues often ask me what I think about new tele-
communication technologies, 2) my friends and colleagues are better in-
formed about new technologies than me (inverse), 3) I am always up on 
the latest technologies in my area, and 4) I think it is fun to test new 
technologies.  

 

3.3.4 Selected Study Results 
The conducted user study aimed at evaluating mobile phones as energy 
feedback devices. In this section, we focus on selected results of the evalua-
tion and discuss them with regard to general requirements people have 
concerning energy feedback systems. We first present results directly relat-
ed to the eMeter user interface and its measurement functionality eMeas-
ure. Thereafter, we report on results concerning the general functionality 
and the design of energy monitors. 

 

3.3.4.1 Evaluation of eMeasure 
The first task of the study consisted of estimating the consumption of 
different appliances typically used in a residential environment. The results 
show that users have only limited understanding regarding the consump-
tion of household appliances. These findings are in line with [141]. The 
consumption and the difference of standard light bulbs and energy saving 
lamps seems well known (error of ~10% and ~25% respectively), the con-
sumption of other electronics is estimated well of the mark (error of ~55%, 
~1100%, and ~1400% for the kettle, the aggregated consumption, and the 
game console respectively). Due to the limited knowledge about energy 
consumption, people are not able to tell whether the gathered measure-
ment result utilizing one of the three different energy monitoring technolo-
gies was right or wrong. The spontaneous reactions of the participants in-
dicated that they were often surprised by the small energy consumption of 
the game console and the kettle. 
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During the study, we measured different objective performance criteria 
for the three energy monitoring tools and differentiated between the re-
quired time to perform a measurement, the number of wrong measure-
ments, and the measurement accuracy user achieved utilizing the different 
technologies. Figure 3.9 shows the mean time in seconds participants need-
ed to determine the electricity consumption for each technology as well as 
the percentage difference compared to the fastest technology. The iPhone 
application eMeasure performs best over all measurements and for single 
measurements. Participants needed on average 27 seconds to perform a 
measurement whereas it took 33% (36 seconds) longer utilizing Wattson 
and over twice as long (78 seconds) utilizing Click. As expected, Click also 
performs worst regardless of the task (i.e., measuring the power consump-
tion of an individual or consecutive appliances). A more detailed look on 
the tasks performed reveals that participants were faster using Wattson 
when determining the consumption of two devices in a row. This is due to 
the problems users experienced with the mobile phone application when 
measuring the second appliance. Then, participants often forgot the proce-
dure or did not know how to continue with the second measurement. This 
is also reflected in the high number of measurement failures. In roughly 
one third of the cases (8/25) participants could not complete the task of 
measuring the consumption of two appliances with eMeasure. Over all 125 
measurements per technology, users were not able to determine the con-
sumption utilizing Click twice, made ten errors using Wattson, and con-
ducted 19 errors when measuring with eMeasure. Additionally, we asked 
participants whether they had used an energy measurement technology 
before and could confirm that this item has no influence on the measure-
ment duration. 

FFiigguurree  33..99 Measurement duration participants required for determining the elec-
tricity consumption for the three different energy monitoring solutions utilized in 
the user study.  
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Figure 3.10 shows the measurement error, which is an admeasurement 
for the accuracy of the technology. For each technology, the depicted bars 
indicate the difference between the consumption determined by the partic-
ipants and the real consumption verified with an electricity meter before 
the study was conducted. For all tasks, participants achieved the best re-
sults using Click slightly ahead of eMeasure and Wattson. For the first two 
technologies the measurement error resides within 5% for individual meas-
urements. Utilizing Wattson the error ranges from 5% to 16%. This is 
mainly due to the continuously fluctuating consumption on the display 
unit. The high error (~15%) of the iPhone application when measuring the 
aggregated consumption of two devices originates from the difficulties users 
experienced with built-in support for subsequent measurements and the 
measurement procedure. The users’ consumption estimate shows that they 
were not able to justify whether their determined result is incorrect and 
thus requires repeating the measurement.  

 

3.3.4.2 Evaluation of the eMeter user interface 
The general evaluation of the mobile application is depicted in Figure 3.11. 
It shows that participants had understood the user interface and the un-
derlying functionalities. On a scale from one (lowest) to five (highest), par-
ticipants rated the ease of use (4.04), ease of learning (4.04), and satisfac-
tion with the application (4.16) all significantly above average (means in 
brackets). Taking into account that we covered a wide age range (18 to 
51 years) and only five participants were iPhone users, we regard this as a 

FFiigguurree  33..1100 Measurement accuracy achieved by participants utilizing Wattson, 
Click, and eMeasure relative to the actual consumption of the appliance verified 
before the experiment.  
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very positive response for a prototypical application. General results also 
indicate that the feedback latency was perceived as more than satisfactory, 
the measurement functionality as easy to handle, and the individual views 
as easy to understand.  

The left of Figure 3.12 illustrates the results for the mobile application 
assessment in terms of usefulness, intention to use, and word of mouth. 
Besides depicting the overall mean of the whole sample and the standard 
deviation in error bars, the figure provides a more in-depth breakdown in 
terms of technological affinity. It was assessed based on four items men-
tioned in Subsection 3.3.3.2. People with a scale mean of 3.64 or less were 
grouped to “not technological affine” (N=10), whereas people with a high-
er mean were assigned to the group “technological affine” (N=15). The 
evaluation on the perceived usefulness, the intention to use, and the word 
of mouth was only marginally affected by the technology affinity (except 
for the frequency of use where the technophile users indicated higher 
scores). The application reached high scores especially for positive expecta-
tions towards saving effects and knowledge gains. The word of mouth effect 
is significantly high. It thus offers potential for utilities or smart meter 
manufactures to positively influence their image providing such an applica-
tion. A large part of the participants agrees that the application is useful. 
The prime use of the application – especially with technophobe partici-
pants – is seen in increasing the knowledge about the electricity consump-
tion of individual devices. In consistence with the survey results, the 
claimed external social motivation (“demonstrate good behavior to oth-
ers”) to use such a mobile application remains low. Users in general do not 
feel the need to express their pro-environmental behavior to others (or are 
not willing to admit it), but technophile users would rather do than tech-
nophobe. 

 

FFiigguurree  33..1111 General evaluation results of the eMeter user interface. 
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3.3.4.3 Evaluation of Objective Performance Criteria and Functionalities of 
Portable Energy Monitors 

Figure 3.13 illustrates the results of the importance of the different per-
formance criteria on a scale from 1 – most important to 9 – least im-
portant. Besides depicting the overall mean of the whole sample and the 
standard deviation in error bars, the figure provides a more in-depth split 
up on the sex. Overall participants perceive comprehensibility, comfort, 
and ease of learning to be the most important characteristics. Less im-
portant are design and fun of use. Women show a slightly different percep-
tion than men. The top two items remain, but then price, availability, and 
feedback time become slightly more important factors.  

FFiigguurree  33..1122 Mobile application assessment: Usefulness, intention to use, and word 
of mouth. 
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In order to evaluate which functions with respect to energy consumption 
feedback are perceived as most valuable on a mobile phone, we asked the 
participants to indicate their impressions on the following functionalities: 
Real-time visualization of the total consumption; visualization of the 
household’s standby consumption; comparison of the current consumption 
with the historic consumption; costs of recent months; consumption of in-
dividual devices; consumption of recent months; projections of yearly cost 
on device level; efficiency grade of appliances; overview of biggest energy 
guzzlers; comparison of the consumption with the one of friends; possibility 
to show others my appliance pool; possibility to set a saving target.  

Figure 3.14 provides an overview of the assessment of mobile electricity 
consumption feedback features. It depicts an in-depth view on the rating 
per functionality sorted in an ascending order according to the overall 
mean value (shown on the right). Overall, we find that participants value 
at-a-glance-feedback on their most prominent energy guzzlers most (mean 
of 4.72), followed by those functionalities that increase the knowledge 
about consumption or cost. The real-time view of the entire consumption 
achieves similar ratings with a mean of 4.6. For both, 96% of the partici-
pants indicated the importance of these functionalities. Down to a mean 
value of 4.16, still 80% of the participants perceive functionalities such as 
standby consumption and consumption of an individual device important. 
All these functionalities have in common that they provide an action-
guiding feedback from which users can directly draw effective measures to 

FFiigguurree  33..1133 Performance criteria of portable energy feedback systems.  
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lower their electricity usage. Surprisingly, cost of the recent months re-
ceives a high importance ranking of 84%, although the feature itself is not 
action-guiding. Below a mean value of 4.16 the picture changes. Those 
functionalities that present aggregated information from which people can-
not imply a direct action (e.g., consumption of recent months, comparison 
of the current vs. historical consumption) receive significantly lower ratings 
and reside in the bottom half of the ranking. Functions aiding users 
through motivational support (e.g., set a saving target) are not perceived 
as important, nor are those that deal with social aspects (e.g., compare to 
others). They reside in the bottom third and especially the latter two re-
ceive a low importance rating of 16% and 0% respectively. A closer look on 
the technological affinity reveals that in general technophiles rate the func-
tionalities higher. However, technophobes value features that present ac-
tion-guiding (e.g., energy guzzlers) and device-level information (e.g., con-
sumption of an individual device) over aggregated information (Fig-
ure 3.15). 

 

 

 

 

FFiigguurree  33..1144 Evaluation of the functionalities provided by portable energy feed-
back systems. 
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3.4 Real-world Deployment  
In this section, we explain the experimental setting of the real-world de-
ployment we used to gather further insights on the long-term use and usa-
bility of the e Meter smartphone application. Thereafter, we report on se-
lected quantitative and qualitative deployment results. 

 

3.4.1 Experimental Setting 
We installed the eMeter system in different households throughout Zurich, 
Switzerland (see Section 2.6.2). The participants for the real-world de-
ployment were employees (and their families) of a local utility. Four house-

FFiigguurree  33..1155 Evaluation of the functionalities provided by portable energy feedback 
systems. 
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holds with different characteristics were selected. Table 3.1 provides an 
overview of the type of participating household as well as the major elec-
trical appliances that characterize the electricity consumption of the 
household.  

 

Table 3.1 Overview of the participating households of the real-world deployment. 

Num-
ber Type Inhabit-

ants Washer Water 
heater 

Dish-
washer Stove 

1 House 2 Yes Yes Yes Yes 
2 Apartment 1 Yes Yes Yes Yes 
3 Apartment 1 Yes No Yes Yes 
4 Apartment 4 Yes No Yes Yes 

 

The eMeter system setup period dated from April to June 2010. After 
the initial installation, the system kept running in every household for at 
least one month before the experiment started. During this time, we en-
sured the backend of the system and the user interface were operating cor-
rectly. The experiment started in the middle of July 2010 and lasted for 
105 days until November 2010. On the first day, we held an introductory 
workshop, in which participants installed the eMeter iPhone application 
and were briefed on the upcoming experiment. In addition, we asked users 
to complete a questionnaire to reveal their expectations of the application 
and the experiment, their intention to use as well as to check their current 
knowledge about the electrical consumption of their household. Note, at 
the time of the real-world deployment the engagement view of the user 
interface was not yet fully developed and thus had been removed to avoid 
confusion.  

During the whole time of the experiment, users were free to use the ap-
plication to get aware of their electricity consumption. In addition, we 
asked the participants to solve one given task per month of which they 
were informed one week ahead of time via email. We thus ensured partici-
pants had sufficient time to understand the task or ask questions if neces-
sary. The following three tasks had to be conducted during the experiment: 

 Device Hunt: Participants had to explore their house in order to 
discover how many electrical devices they own. 

 Meter Sleep: Participants had to try to switch off as many electri-
cal appliances as possible or even disconnect them form the mains 
in order to determine the lowest possible power consumption of 
their household. 
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 Daily Routines: On one typical weekday morning and one even-
ing, participants had to log in a notebook all operation events of 
every appliance that was used during that time in the household. 

In November 2010, we concluded the experiment with a result workshop. 
First, we conducted a guided interview for one member of each household. 
For roughly 30 min participants, for instance, reported on technical diffi-
culties and their typical uses cases of the eMeter application. We further 
asked about experienced any changes in their energy literacy. As final task 
of the interview, participants had to try to identify their household out of 
a set of different electricity load profiles. Last, the interviewees had to 
complete a questionnaire, which aimed at identifying how far their original 
expectations were met, and further whether their consumption awareness 
had increased over the time of the experiment. The whole interview and 
questionnaire was conducted in a neutral environment. Apart from the 
interviewee only the experimenter who was leading the interview and a 
second person who was taking notes were present. The workshop conclud-
ed with a general presentation of the results in front of a bigger audience.  

In order to be able to measure participants’ use of the eMeter user inter-
face, we slightly modified the mobile phone application. That is, we incor-
porated timers and counters in the background of the application and in-
visible for users that measured the use of the application and its different 
views (e.g., time spend in a view, number of application starts, number of 
conducted device measurements, etc.). At the end of the experiment, this 
data was collected and used for the quantitative analysis of the application 
use.  

 

3.4.2 Selected Deployment Results 
In the following, we report on selected quantitative and qualitative results 
of the real-world deployment. The numeration of the households corre-
sponds to Table 3.1. Over the course of the experiment (105 days), partici-
pants accounted for 318 application sessions that resulted in a total appli-
cation use of roughly 16 hours (955 minutes). One of the tasks (namely the 
device hunt) provided insights on the amount of electrical appliances oper-
ated in the households. The number varied between 37 (household four) to 
64 (household one). Table 3.2 provides an overview on the electricity use of 
the participating households. Besides the consumed electricity over the 
duration of the experiment, it shows the projected yearly consumption and 
the comparison to the consumption of an average household. It is interest-
ing to see that all households are most likely to consume more electricity 
than the average Swiss household of corresponding characteristic (i.e., 
same size range, persons, etc.). The base load that has been determined by 
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the eMeter system varies between 73W and 299W. The latter translates to 
costs up to 524CHF just for the electricity use of appliances when occu-
pants are not at home or sleeping. In particular, the base load of house-
hold three accounts for 98% of the total consumption of the household.  

The second task of the experiment aimed at lowering the electricity con-
sumption in the household as much as possible. We find that the consump-
tion of all households can be significantly reduced when switching all ma-
jor appliances off. For example, household three lowered its base load to 
25W. The lower boundary for the other households resided in the same 
range between 20W and 30W, which represents a large electricity conser-
vation potential.  

 

Table 3.2 Comparison of the electricity use of the participating households. 

Num-
ber 

Observ. 
Period 

Projection 
Year 

Average 
Use26 

Base  
Load 

Meter 
Sleep 

Cost 
CHF 

1 1429 kWh 4954 kWh 2900 kWh 295W/49% - 517 
2 892 kWh 3091 kWh 2550 kWh 73W/19% 32W 128 
3 714 kWh 2476 kWh 1550 kWh 299W/98% 25W 524 
4 1116 kWh 3868 kWh 3300 kWh 178W/37% 20W 312 
 

Having a closer look on the daily consumption, Figure 3.16 illustrates a 
comparison for weekdays and weekends of the average consumption of the 
participating households. The black bar indicates the base load of the cor-
responding household. The family house (H1) uses most electricity with an 
average weekday consumption of just under 14kWh and 16.6kWh on week-
ends respectively. Each household shows an increase in consumption on 
weekends between 9.6% and 43.1%, which is a typical behavior due to 
higher occupancy compared to weekdays. It is worth noting the high 
difference regarding the contribution of the base load to the overall elec-
tricity use. Household two has the lowest base load and hence seems to 
have energy conservation measures (e.g., switchable power plugs) in place. 
Its higher average consumption compared to household three can be ex-
plained through the electrical water heater that is in charge for the warm 
water supply.  

                                       

 
26 Source: http://www.ckw.ch/internet/ckw/de/privatkunden/service/tipps/stromver 
brauch.html 
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Figure 3.17 illustrates the evolution of the utilization of the eMeter user 
interface. The figure shows the time in seconds individually for each view 
and calendar week aggregated over all participants. We see that partici-
pants were using the smartphone application a lot at the beginning of the 
experiment. However, usage already decreased rapidly after the first week 
and after the first 1.5 months the application was only used occasionally to 
monitor the electricity consumption. We further find that the current con-
sumption view and the history view were used most frequently and contin-
uously. They also account for the largest absolute share of time.  

Figure 3.18 shows a more in-depth view on the utilization of the applica-
tion. The left part of the figure depicts the average time per session in se-
conds over the total number of sessions per individual household. The ra-
dius of the circle provides a measure for the number of appliances that 
have been measured with the user interface. The average usage time of the 
application varies between 100 and 525 seconds. Household three measured 
most devices out of all participants. While roughly accounting for the same 
amount of appliance sessions than household three, household two spent 
significantly more time using the application (524s compared to 221s per 
session). Household four was most actively using the application and ac-
counted for more sessions the rest of the participants together. However, 
the energy monitor is used more for quicker checks on the electricity con-
sumption (e.g., to determine the power consumption of a device), while the 
other households took more time per session to explore what is going on in 
the household. Note, that household one only accounted for 19 sessions
and stopped using the application due to personal reasons.  

FFiigguurree  33..1166 Electricity use details of the individual households (H1 to H4 from 
left to right) participating in the real-world deployment. Comparison of weekday 
and weekend use shows a higher consumption for all households (increase outlined 
in per cent). The black bar indicates the base load of the household. 
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On the right of Figure 3.18, an analysis of the average time spent per 
view and individual household is visualized. Out of all participants, house-
hold four spent most time in the measurement view, which confirms the 
previous finding. We further find that there is no single view dominating 
over all households, but each household is using the application differently. 
Household two and four spend roughly the similar time using the applica-
tion, but show diverging usage profiles. Household two mainly uses the 
current consumption view (~70% of the time) whereas household uses the 
historic electricity consumption feedback most. For household three, the 
use of the historic feedback also dominates over the use of the other views. 

The general evaluation of the complexity of the mobile application was 
evaluated in a questionnaire at the result workshop. It confirms the previ-
ous results of the user study. On a scale from 1 (lowest) to 5 (highest), 

FFiigguurree  33..1177 Evolution of the utilization of the different application views (aggre-
gated sum over all participants per calendar week).  

 

FFiigguurree  33..1188 eMeter user interface utilization details: Frequency of use (left) and 
average time per view (right). 
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participants rated the ease of use (4.5) and the simplicity to learn how to 
use the application (4.5) well above average (means in brackets). The cur-
rent consumption view was perceived as simple to understand (4.25), but 
participants indicated they had problems relating the historic consumption 
to the incurred cost (2.5). In addition, participants thought it took too 
long to measure the consumption of individual appliances (4.25). However, 
compared to the user study, participants had no direct comparison for the 
time it typically takes to get feedback on the consumption of an individual 
appliance.  

The concluding interview was designed to provide further insights on the 
purpose of application use, eye openers participants experienced over the 
course of the experiment, and general improvements of the application. 
Besides the general use case of monitoring their residential electricity con-
sumption and increasing consumption awareness, participants reported 
they used the application to identify the power consumption of individual 
appliances, often demonstrated the application to colleagues and friends, 
and used the application to observe what was going on at home at time 
the participant was not present. 

 One participant explicitly stated: ”I also used the application to check 
my electricity consumption when I was not at home. I like that I can see 
whether my kids are home yet or whether they have already left home and 
even if the lights are still burning. When they forgot to switch them off, I 
immediately called them to enforce that they switch lights off. […] In this 
context, an alert functionality would be helpful that notifies me in case my 
current consumption is above my base load at a specified point in time”. 
Another participant acknowledged, “the application increases the aware-
ness tremendously at first, but after two weeks, it needs further mecha-
nisms that motivate me to engage with my electricity consumption”.  

The survey and the interview show that participants improved their en-
ergy literacy through the application, although they already had a pro-
found knowledge compared to average users because of their profession 
(i.e., employees of a local utility). In the interview, we presented all partic-
ipants four typical load profiles. Out of these load profiles one belonged to 
their individual household. All participants were able to identify their 
household based on different characteristics. Some were looking for the 
typical time they get up or leave the house, other recognized specific loads 
of appliances in the load curve that allowed them to identify the correct 
profile (Figure 3.19).  
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Participants also reported on specific eye openers that occurred during 
the experiment. Household four identified its fridge to be inefficient. In the 
history view, the participant observed the duty cycle of the appliance, 
which appeared to be atypically long. Household two identified an auxilia-
ry water heater under the kitchen sink to contribute considerably to the 
overall energy consumption. It kicks in every hour consuming a significant 
amount of electricity that was unknown before (Figure 3.19). Household 
three realized its particularly high base load that resides above the one 
typical for a one-person household. Various IT equipment is known to be 
the cause, but the participant claims the PC, router, etc. are required to 
operate 24/7. Thus, although the potential to save energy was realized, no 
direct conservation measure was applied. 

FFiigguurree  33..1199 Typical load profile of one of the test households on a weekday. The 
participant is getting up at around 5am, leaving the house at 6am, and is returning 
from work at 5.30pm. The small peaks were identified to originate from the auxilia-
ry water heater, which was unknown before the experiment and is kicking in almost 
every hour.  
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3.5 Discussion 
The evaluation of the user interface that uses real-time data from the eMe-
ter system in a user study and in the real-world deployment in four house-
holds confirms the suitability of mobile phones as energy feedback devices. 
Exposing people to a functioning prototype was crucial for us to gather 
experience with the application, while at the same time participants better 
understood the usefulness of the application. Our results thus extend the 
body of work on energy feedback systems and can serve as a starting point 
for further application development in this field. In particular, our findings 
that directly relate to the developed smartphone application are the fol-
lowing: 

 In a pretest, before the development start, we found that the exist-
ence of a clear and simple to explain use case behind energy con-
sumption feedback systems is a key success factor, whereas when 
left to the imagination of potential users, energy consumption 
feedback applications receive only medium ratings.  

 Overall, the eMeter application receives positive ratings regarding 
general subjective performance criteria (e.g., complexity, usability, 
and understandability). Participants perceived the application as 
more than satisfactory for an energy feedback monitor and the in-
dividual views as easy to understand. These results are very 
affirmative for a prototypical application and confirm the suitabil-
ity of the eMeter user interface as electricity feedback monitor. 

 We could further confirm the functionality of the measurement fea-
ture eMeasure and suitability of the measurement process by com-
paring eMeasure to two other commercially available energy meas-
urement solutions in terms of different objective performance crite-
ria. Our results show that to determine the consumption of indi-
vidual appliances, participants were fastest using the smartphone 
application, while the error margin (~5%) resided within the same 
range of applications that have been specifically developed for that 
use case. Moreover, eMeasure is perceived as simple and intuitively 
useable. We assume this is sufficient to increase the transparency 
when it comes to the energy usage of individual devices and pro-
vide users with a general understanding on the consumption of ap-
pliances. 

 The user study revealed that users experienced problems using 
eMeasure to consecutively determine the consumption of multiple 
appliances. This was partly due to unclear instructions provided in 
the user study manual before the experiment, but also because the 
designed measurement flow turned out to be misleading. To pre-
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vent these errors, we redesigned the eMeasure and simplified the 
corresponding view of the user interface to just provide one meas-
urement option at a time.  

 The application helps people to achieve a better understanding of 
their electricity consumption and the consumption of individual 
devices. Participants reported that their energy literacy has in-
creased through using the application in the real-world deploy-
ment. After the experiment, participants were able to specify their 
base load, the consumption of individual devices (e.g., hair drier, 
fan, and TV) and could identify the load profile of their household. 

 The real-world deployment showed the lower use of the application 
as time of the experiment progressed. At the start of the experi-
ment, participants were using the application on a daily basis. 
However, usage decreased fast once the initial curiosity of the par-
ticipants had been satisfied. This fact is a known problem of mo-
bile applications and highlights the need for concepts that aim at 
engaging the user over extended periods of time [142, 143].  

We implemented the most promising feedback features and evaluated 
the perceived usefulness of the different functionalities with our application 
in a user study. Moreover, to address different target groups appropriately, 
we focused on the individual difference between technologically and non-
technologically oriented people. In the real-world deployment we monitored 
the use of the application and the different application views. Findings 
related to the individual functionalities of energy monitoring applications 
are: 

 The real-world deployment confirmed that participants use the ap-
plication for different use cases. This is reflected by the time par-
ticipants were utilizing the different views of the application. We 
conclude that different user types have to be addressed with differ-
ent functionalities. This goes along with the results of [59], which 
clearly state there exists no one-size-fits-all solution for energy 
feedback systems.  

 In the user study, we found that the knowledge-increasing func-
tionalities as well as those from which monetary savings can be di-
rectly implied are perceived as most useful. In contrast, functional-
ities that present aggregated information receive lower scores. 

 The survey results of the pretest as well as the user study indicate 
that social motivation is so far not an important factor – at least 
not consciously – in terms of energy consumption feedback.  
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 To target technophobe users, a closer look revealed that it is im-
portant to implement simple, easy to understand, and action-
guiding feedback that goes beyond aggregated information, such as 
a list of energy guzzlers. 

 The measurement functionality that enables users to interactively 
determine the consumption of switchable appliances received good 
ratings. However, when compared to the other functionalities, its 
perceived value was not ranked amongst the top features. In the 
interview, participants of both the user study and the real-world 
deployment revealed that they think the interactivity introduced 
through the measurement feature makes it one of the key compo-
nents of the eMeter user interface. However, being only provided 
with the mere consumption value at the end of the measurement 
process is neither meaningful nor action-guiding, which led to lower 
scores for the feature.   

3.6 PowerPedia – A Collaborative 
Platform for Providing 
Meaningful Appliance Feedback 

When it comes to conserving electricity, it is crucial for users to know how 
much energy is consumed by individual appliances [53]. For this reason, we 
equipped the user interface of the eMeter system with a measurement 
functionality. The simple feature enables users to determine the power con-
sumption of individual appliances. However, the user study showed and the 
real-world deployment confirmed that the technical feedback (i.e., the mere 
consumption value that is displayed at the end of the measurement pro-
cess) provided by the application is too dry and intangible for most users. 
Participants lacked the ability to position the consumption of an appliance 
in a bigger picture that would allow them to draw conclusions and take 
effective measures. 

The comment of one participant clearly describes the situation: “The 
measurement functionality is a nice interactive feature that helped me to 
realize there is quite a difference in the consumption of electrical applianc-
es. However, it would be very helpful to have a measure for the efficiency 
of a particular device compared to similar devices of the same type.”  

To address this shortcoming, we extended the eMeter system and devel-
oped PowerPedia. It aims at providing behavior-influencing feedback over 
and above mere consumption values. By integrating a community platform 
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– a Wikipedia for electrical appliances – PowerPedia enables users to iden-
tify and compare the consumption of their residential appliances with that 
of others. It thus helps users to better understand their electricity con-
sumption and take effective action to save electricity. 

In the following, we first describe the general concept of PowerPedia be-
fore presenting its architecture and finally the extensions to the user inter-
face. The key idea is that PowerPedia continues to support users after the 
measurement process is completed. Then, users can upload the measured 
device to PowerPedia and compare the consumption against the consump-
tion of other devices in the same device category that have been previously 
published by other users. PowerPedia provides an efficiency ranking based 
on the device category and specific energy-saving possibilities of devices. 
The content is thereby generated through the collaboration of users. For 
example, device and category-specific energy-saving measures as well as 
product ratings can be uploaded and thus shared with others. As add-on 
functionality, PowerPedia offers users direct integration into social net-
working platforms such as Facebook and Twitter. In order to keep track of 
the most energy-efficient devices in each category, PowerPedia embeds a 
harvester module that automatically updates the appliance efficiency rank-
ing by incorporating the best-performing devices gathered from different 
consumer organizations27. The harvester also initializes PowerPedia with a 
first set of energy-efficiency measures.  

The integration of PowerPedia in the eMeter architecture is illustrated in 
Figure 3.20. The platform is realized as an additional component to the 
eMeter system, which we described in full detail in Chapter 2. PowerPedia 
runs as a central entity on a dedicated server on the Internet. It consists of 
the SignatureServer that stores information about residential appliances, a 
lightweight harvester module that is used to automatically update 
PowerPedia, and an user interface to access the provided functionality.  

The harvester is used to initialize PowerPedia with a first set of devices 
and energy-saving measures as well as to update the database on a month-
ly basis with the most energy-efficient appliances in each category. To do 
so, the harvester scans dedicated external consumer organization websites 
to acquire and extract the data before translating it into JSON. The result 
of the scan is then passed to the SignatureServer, which updates its list of 
devices in the database. 

                                       

 
27 e.g., Top10, www.top10.ch; EnergyStar, www.energystar.gov. 
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The SignatureServer incorporates the main functionality of PowerPedia. 
It follows the RESTful system design of the eMeter architecture, and is 
written in PHP using the same Recess framework as the eMeter system. 
Table 3.3 provides an overview of the most important functionality that is 
provided by the RESTful PowerPedia API. It details the URI that can be 
called, together with the corresponding HTTP verb to perform the action 
indicated. As an example, Figure 3.21 shows the JSON representation of 
device number 96 that is stored on the SignatureServer. It is the response 
to the following GET request: http://[IP]/powerPedia/device/96.json. 

The architectural structure of the SignatureServer is shown in the UML 
diagram in Figure 3.22. The following object models are implemented: 

 User: The user model is used to store user authentication information. This 
includes user name and password as well as first and last name. Each user 
can have multiple smartphones that are linked to the user’s id. 

FFiigguurree  33..2200 System overview of the eMeter system after the extension through 
PowerPedia. The mobile user interface and the web user interfaces access the 
PowerPedia directly. The PowerPedia consists of the SignatureServer that hosts all 
functionality and the harvester that automatically updates the SignatureServer with 
the most energy efficient devices and conservation tips gathered from consumer 
platforms in the Internet. 
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 Category: The categories are used to group appliances of the same catego-
ry (e.g., lights). Categories are structured hierarchically, meaning that a 
category can have multiple sub-categories. 

 Device: The device model contains fields for the device name and descrip-
tion, a picture, the manufacturer, the type, the consumption value, time 
information, and an efficiency rating (see Figure 3). Each device is linked 
to exactly one category. 

 Recognition: The recognition model is used to store the data that is 
collected when users measure electricity consumption and subsequently 
upload it to PowerPedia. A recognition is linked to a particular device, to 
the meter providing the information, and to the model of the user who 
uploaded the recognition. 

 

Table 3.3 Overview of the RESTful API of PowerPedia. 

URI HTTP 
Method Description 

/powerpedia/category/ GET, POST Get index, insert new category 

/powerpedia/category/$id GET, PUT, 
DELETE Modify category 

/powerpedia/category/$id 
/allDevices(Details) GET Get information on all devices 

(details) in the selected category 

/powerpedia/category/$id/allSub GET List all sub categories of catego-
ry id 

/powerpedia/device/ GET, POST Get index, create new device 

/powerpedia/category/$id GET, PUT, 
DELETE Modify category 

/powerpedia/device/$id/compare/ 
$category GET Compare whether device is al-

ready existing 
/powerpedia/device/$id/rate/$watt GET Get the efficiency of a device 
/powerpedia/recognition/addToDe
vice/$deviceId POST Add a recognition to an existing 

device 

/powerpedia/recognition/$id GET, PUT, 
DELETE Modify existing category 

/powerpedia/smartmeter GET, POST Get index, add smart meter 

/powerpedia/smartmeter/$id GET, PUT, 
DELETE Modify smart meter information 

/powerpedia/tip/ GET, POST Get index, insert new energy 
conservation tip 

/powerpedia/tip/$id GET, PUT, 
DELETE Get tip or modify tip 

/powerpedia/user GET Index of all users 

/powerpedia/user/$id GET, PUT, 
DELETE User management 
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{
     "device":{ 
  "id":"96", 
  "name":"Osram - Mini Globe", 
  "description":"Power (Watt)", 
  "picture":"www.topten.ch/[...]/mglobe-e27.jpg", 
  "manufacturer":"Osram", 
  "type":"Mini Globe", 
  "categoryId":"19", 

"createdOn":1272312189,
  "avgWatts":"7.0000", 
  "efficiencyrating":{ 
  "count":4, 
  "position":1, 
  "best":7W, 
  "worst":9W, 
  }, 
  "userId":"5" 

},
     "user":{ 
 "id":"5", 
 "username":"m", 

"password":"x", 
 "createdOn":1273790766 
     } 
} 
 

FFiigguurree  33..2211 JSON representation of device number 96 stored on the Signature-
Server. 

 

FFiigguurree  33..2222 UML object model of the SignatureServer. 
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 Tip: The tip model contains energy conservation tips that consist of a tip 
name and source information. It is linked to different device categories and 
tips categories. Tips categories are used to group different energy saving 
tips (e.g., all tips from a particular user).  

PowerPedia offers a stand-alone web user interface that enables users to 
browse through the different appliance categories and check for the most 
energy-efficient appliances. It requires creating an account before users can 
contribute to the platform. To make full use of the functionality provided 
by PowerPedia, we extended the mobile user interface and incorporated 
features of PowerPedia into the eMeter system. Let us briefly recall the 
process for measuring the power consumption of an appliance, to see how 
PowerPedia is supporting users with meaningful information within this 
process (Figure 3.23). Users initialize the measurement by pressing the 
start button in the measurement view. After switching the appliance under 
measurement on or off, its power consumption is displayed on the user in-
terface within two to ten seconds. Where users before were confronted with 
the mere power value of the appliance, we now integrated the functionality 
of PowerPedia. When storing the measured device in the device inventory, 
users are now offered the possibility to upload the measured appliance to 
PowerPedia in exchange for an efficiency ranking and specific energy con-

FFiigguurree  33..2233 Measurement process for determining the power consumption of an 
appliance and its subsequent publication on PowerPedia using the eMeter Android 
user interface. The integration of the functionality offered by PowerPedia supports 
users with meaningful information beyond the mere consumption value after the 
measurement is completed.  
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servation tips. Moreover, users can publish their measurement including 
the device specifcs on Facebook or Twitter, given their credentials were 
provided when setting up the application.  

After initiating the publishing process by pressing the corresponding 
green button (Figure 3.24 left), users have to specify the device category 
and manufacturer. In order to simplify the process for users, location, cat-
egories, and device names are downloaded from PowerPedia in the back-
ground and made available through an auto-completion feature (Figure 
3.24 middle). For example, the feature leads users through the hierarchical-
ly structured device categories (e.g., consumer electronics, TV, LCD, 34-
inch, Samsung, model type). By uploading the device to PowerPedia (Fig-
ure 3.24 right), users can compare their consumption against the consump-
tion uploaded by other users as well as the consumption of the most ener-
gy-efficient appliances in the category harvested from consumer organiza-
tion websites. The more precisely the information is provided when up-
loading the device, the more specific is the reflected information from 
PowerPedia. For example, if users detail the model of the measured appli-
ance, PowerPedia is able to show an efficiency ranking of the selected de-
vice category together with category and appliance specific energy saving 
tips as well as all measurements of the device conducted by other users. 
The efficiency ranking based on all PowerPedia’s community entries aims 
at placing the consumption within a more tangible context (Figure 3.25 
left). It shows users the efficiency of their uploaded device together with 
information on the best and worst performing devices and the total num-
ber of uploaded devices in the selected category. In addition, users can 
share their information on popular social networks such as Facebook and 
Twitter.  

The tips view (Figure 3.25 right) displays energy-saving measures down-
loaded from PowerPedia. It consists of tips that can be applied in general 
as well as tips relating to specific device categories. In addition, users can 
publish energy-saving tips on PowerPedia and so share their experiences 
with other users. Tips can be flagged to indicate that they have been ap-
plied. This allows PowerPedia to indicate the percentage of users who have 
already applied a particular measure. In a similar manner, users can also 
use the publish feature to share their experiences directly with their 
friends on their preferred social network. 
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FFiigguurree  33..2244 PowerPedia integration in the Windows Phone 7 eMeter user interface. 
After pressing the green publish button, users are provided with an auto-completion 
feature that supports them in finding the correct device category and model. Once 
selected, the conducted measurement is published on PowerPedia and others can see 
the measurement. 

 

FFiigguurree  33..2255 PowerPedia integration in the eMeter Android client. After publishing 
the measurement the device inventory reflects an efficiency ranking (left) and an 
additional view with further energy conservation tips (right). Both help users to put 
the consumption in a bigger picture.  
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3.7 Summary  
In this chapter, we confirmed the suitability of mobile phones as energy 
feedback devices. We consider the applied methodology to develop a proto-
type application based on preliminary interviews and a survey with dia-
metric application scenarios to be well suited for application development 
at an early stage. It helped us to critically assess the user requirements 
and to extend the application’s functionalities. Exposing people to a func-
tioning prototype was crucial for us to gather experience with the applica-
tion, while at the same time participants better understood the usefulness 
of the application. In order to get users in the loop, we implemented the 
most promising feedback features and evaluated the different functionali-
ties with our application.  

We first presented the goal–driven design of a user interface as portable 
energy monitor on a mobile phone. In the conducted user survey, we found 
that the existence of a clear and simple to explain use case behind energy 
consumption feedback systems is a key success factor. However, when left 
to the imagination of the potential users, energy consumption feedback 
applications receive only medium ratings. Based on that finding, we devel-
oped a user interface that is supported by live data from the eMeter infra-
structure. It implements a variety of other promising feedback features 
including a measurement functionality (eMeasure), which enables users 
determining the consumption of individual switchable appliances. The ap-
plication thus offers the clear use case: “Learn how much a device con-
sumes by just switching it on or off”.  

In a user study with 25 users, we evaluated the user interface with re-
spect to its general usability (e.g., ease of use, understanding, etc.) and the 
perceived value of different feedback functionalities. In particular, we eval-
uated the performance of eMeasure in comparison with two other commer-
cially available energy monitoring solutions. The results confirm that the 
interactive feature of the eMeter user interface allows users to quickly de-
termine the consumption of electrical appliances with in an acceptably 
small error margin. We further tested the benefits and capabilities, con-
firmed the suitability of such a mobile phone application to serve as an 
energy feedback system, and identified the functionalities that are per-
ceived most valuable by users, in general and with regard to individual 
differences concerning technological affinity. Tailoring energy feedback 
functionalities to different user groups is important to achieve effective and 
encouraging energy feedback applications [103, 107, 144]. It allows address-
ing a wide user base (beyond typical green users), which is doubtless key 
for the large-scale success of energy feedback systems.  
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The long-term deployment in four households showed that different users 
use the application for different use cases. It confirmed the application’s 
ability to raise consumption awareness and energy literacy, but also clearly 
showed that the usage decreases once the user’s initial curiosity is satisfied. 
Most energy feedback applications acutely suffer from the fact that their 
rate of use drops significantly soon after their initial installation and user 
behavior relapses [145]. Thus, it will be crucial to embed the eMeter sys-
tem in a broader context as well as to develop concepts that aim at keep-
ing users in the loop [72, 146, 147].  

This confirms our expectation that not only differently motivated users 
expect different functionality, but also that research on engagement con-
cepts (e.g., rewards, games, coupons, competitions, etc.) for energy saving 
applications is required [148, 149]. Such engagement strategies counter user 
fatigue and motivate long-term use of an energy feedback application. 
They thus foster behavior change that ultimately leads to energy conserva-
tion [150]. These concepts are without doubt important, however they 
mainly reside outside the computer science domain (e.g., behavioral sci-
ence) and thus go beyond the scope of this work.  

Another important aspect is the interactivity of energy consumption 
feedback that is introduced through the mobile phone application. We be-
lieve that this is key to get users involved into energy conservation. eMeas-
ure is a good example how interactivity can be used in this context. It eas-
ily enables users to familiarize with their energy consumption. However, 
both experiments, the user study as well as the real-world deployment, 
revealed that mere power consumption values are not meaningful enough 
for most users.  

To surpass this drawback, we implemented PowerPedia and integrated 
its functionality into the eMeter user interface. In a collaborative manner, 
PowerPedia aims at putting the electricity consumption in a bigger, more 
tangible picture that enables users to derive direct measures to reduce 
their consumption. Designing a game around eMeasure (e.g., “find an ap-
pliance in your house that consumes 100W”) is another potential applica-
tion where interactivity could help increase residential energy awareness 
and if devised properly (e.g., in a fun and competitive way), motivate users 
to conserve electricity [151].  

The presented results show that Ubicomp can help to foster energy effi-
ciency in residential environments. The developed mobile phone applica-
tion is based on loosely coupled components that are already integrated in 
the daily life or will become ubiquitous in the course of smart metering. 
We confirm the suitability of mobile phones as energy feedback devices and 
as a technology to measure the electricity consumption of residential appli-
ances. This should help to drive adoption of such energy monitoring sys-
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tems. However, the results also reveal that different functionalities are re-
quired to target different user groups and long-term application of energy 
monitoring systems requires concepts that motivate people after their ini-
tial curiosity has been satisfied. These aspects should be confirmed and 
further investigated from a behavioral science perspective in a larger ex-
periment, which allows for controlled study conditions (e.g., has a control 
group). 
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4 Leveraging Smart Meter 
Data to Recognize Home 
Appliances 

The requirement to conserve energy, the modernization of the electrical 
grid infrastructure, and the growing share of electricity from intermittent 
sources (e.g., wind and photovoltaics) gave rise to paradigm shifts in the 
energy domain [38]. One building block of the move towards smart grids is 
the worldwide adoption of smart meters that measure and communicate 
residential electricity consumption. Originally intended to simplify the me-
ter reading processes for energy utilities, smart meters are nowadays seen 
as an enabler for new energy efficiency services, flexible tariffs, and de-
mand response programs. 

In this chapter, we present a set of algorithms that make use of smart 
meters and together with the interaction capabilities of smartphones to 
leverage residential electricity data to recognize home appliances. Based on 
the eMeter infrastructure, we show the potential of applying Ubicomp 
technologies for residential load disaggregation. The disaggregation of indi-
vidual appliances within a particular household in terms of their energy 
demand enables several particularly promising applications in the residen-
tial domain, be it for delivering itemized electricity bills or for providing 
targeted energy saving advice.  

In Section 4.1 we first review related work with respect to residential 
load disaggregation that help set the context for our proposed disaggrega-
tion scheme AppliSense. Next, Section 4.2 revisits the architecture to recall 
the physical quantities that are important for the disaggregation process. 
Thereafter, Section 4.3 presents the fundamentals that can be used to clas-
sify electrical home appliances, before Section 4.4 explains the AppliSense 
disaggregation scheme in detail. Section 4.5 reports on the evaluation of 
AppliSense that was tested in a laboratory study with eight simultaneous 
running devices, achieving recognition rates almost 90%. In Section 4.6 we 
discuss the results and the limitations of the proposed disaggregation 
scheme, before we last conclude this chapter with a summary and a brief 
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outlook in Section 4.7. Parts of the work of this chapter have been recently 
published in [152]. 

4.1 On Residential Load 
Disaggregation 

Device‐level electricity consumption information is essential for users to 
establish the link between consumption and device utilization, to enable 
sophisticated energy efficiency services (e.g., targeted, automated recom-
mendations), and to reduce residential electricity consumption by provid-
ing users with direct conservation measures. Depending on the applied 
modeling approach, different data input is required to provide users with 
disaggregated electricity use in the residential domain [153]. We can broad-
ly differentiate between offline and online techniques to disaggregate over-
all electricity use to device level (see Figure 4.1). 

A traditional way derives household energy models based on offline data 
from field surveys using Conditional Demand Analysis (CDA). The meth-
od was invented by [154] on a detailed data set of 5000 households and 
later similarly applied by [155, 156]. By comparing the load profiles of 
households with known appliances gathered from a survey to those without 
a statistical analysis can be computed. The strength of this method is the 
ease to obtain the data input required for the analysis [157]. However, the 
accuracy of CDA is limited because of the diversity of devices and appli-
ances in homes and because many end-uses share temporal load profiles, 
making aggregate load profiling relatively inaccurate. Furthermore, CDA 
has traditionally relied on self-report surveying for load disaggregation, 
which provides a relatively sparse dataset containing various self-reporting 
biases [119]. Different modifications of the approach have been proposed to 
surpass the above-mentioned limitations (e.g., subjective appliance usage 
estimation) [158-160] and shaped the technique in a way that it is used 
more for the extrapolation of household energy use to regional or country-
wide energy use [161, 162].  

In contrast to offline-based methods, online approaches disaggregate the 
electricity consumption based on sensor data. They can be classified into 
two different domains: Distributed direct sensing and single-point sensing. 
While a detailed overview of the distributed sensing systems is provided in 
Section 2.1.2, we only mention these approaches here briefly for the sake of 
completeness, before we focus on single sensor approaches that are im-
portant in the context of our developed disaggregation scheme. A large 
variety of distributed sensing approaches provide device-level consumption 
information by deploying sensors at each appliance or power outlet. Having 
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a sensor installed directly at the appliance enables the accurate measure-
ment and feedback of the electricity consumption and offers the benefit of 
being able to directly control the appliance (e.g., a relay that allows 
switching the appliance on or off). While the concept seems straight for-
ward, it is costly and the installation of a large number of sensors imposes 
a high usage barrier. The sensor deployment at each appliance is not only 
difficult and discouraging for users, but also often not feasible for large 
household appliances in the residential environment that consume a signifi-
cant amount of residential energy because they are hard-wired (e.g., light-
ing or hot water heaters) or difficult to reach (e.g., refrigerator, dryer, or 
washer) [119]. Another burdensome drawback of distributed sensing meth-
ods is the communication network that has to be established between the 
individual sensors located throughout the house.  

Single sensor approaches are typically subsumed under the concept of 
Nonintrusive Appliance Load Monitoring (NALM). These techniques dis-
aggregate overall electricity use of a household by extracting characteristic, 
observable features from the recorded signal of a single sensor. The input 
data signal and the applied methodology differ by approach. Typically 
overall power consumption, current measurements, or voltage fluctuations 
are used to facilitate the disaggregation process with the help of hidden 
Markov models, wavelets, neural networks, and support vector 
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machines [104]. Only recently a number of papers have been published that 
provide a great overview on the research that has been conducted in the 
field of load disaggregation [90, 104, 119, 163].  

 The initial work dates back to the 1980ies, where Hart [164] tried first 
to match a-priori known appliance signatures to the step change in the 
overall power signal by using real and reactive power measurements at a 
rate of 1Hz. The concept proved to be effective in various field tests – at 
that time especially for the disaggregation and fault detection of larger 
loads [165-169] – and paved ground for various other works in that field. 
Hart’s method can detect on and off events of steady-state appliances (e.g., 
lights) that consume a relatively constant load, but faces difficulties detect-
ing multi-state appliances (e.g., laptops) that have a varying power con-
sumption. Note that appliances also change their resistance after startup, 
which can affect the power consumption by as high as 10% [170]. Another 
downside is that two appliances that are operated at the same time might 
be classified as one appliance, which is especially crucial when detecting 
smaller loads. Moreover, when two identical devices are operated in the 
home (e.g., lights) in different locations, this approach is not able to identi-
fy which of the two is appliances is currently operated.  

A lot of work has been done to overcome some of the outlined limita-
tions. Norford and Leeb introduced transient event detection at high sam-
pling rates to disaggregate devices with similar power consumption [171, 
172], and follow-up work by Laughman et al. [173] explained how to use 
current harmonics for detecting continuous variable loads. However, to 
disaggregate the overall load the power consumption of the detected device 
has to be estimated, which is a non-trivial, recently addressed 
problem [174-176]. A variant of Hart’s scheme focused on the separation 
between simultaneous on/off events of appliances. The same authors also 
proposed an extension to the original algorithm that focuses on disaggre-
gating large power drawing appliances such as heat pumps. Instead of only 
regarding the step change to identify an appliance, they suggest using an 
appliance signature that consists of an edge as the appliance is turned on 
and a slope as the appliance operates [177-179]. Marchiori et al. propose 
decreasing the complexity by using one sensor per circuit. Their developed 
scheme combines on a heuristic and a Bayesian approach that disaggregate 
electricity consumption using historical steady-state energy use pattern for 
each device [180, 181]. While all proposed concepts so far seem promising 
to solve some of the problems, they all suffer from several drawbacks. All 
approaches require excessive training before the disaggregation start, their 
performance has not been tested in practical scenarios and hardly anything 
is known about their accuracy. Last, the robustness of these methods is 
unknown (e.g., how is the presence of new appliances affecting the previ-
ously recorded signatures, etc.) [90]. 



Leveraging Smart Meter Data to Recognize Home Appliances | 119 

Other work utilizes rule-based algorithms and neural networks to dis-
aggregate overall residential energy consumption data. Early approaches 
were typically bound to low-resolution data. Powers [182] iterative algo-
rithm is based on real power only. It tries to analyze the energy consump-
tion top-down at a low sampling interval of 15 minutes. However, his ap-
proach is based on a large a-priori known reference database that requires 
monitoring of each appliance in the home for several days. Prudenzi dis-
aggregated consumption data for large loads at the same sampling rate by 
using a neural network approach [86]. Ruzzelli et al. used a special purpose 
sensor that has to be installed at the circuit breaker. The consumption 
information is post-processed in an artificial neural network that requires a 
lengthy training process to achieve the appliance break down [183]. Other 
rule-based work focuses on the possibility to differentiate between appli-
ances with similar power consumption by taking into account their fre-
quency of use [184], on disaggregation in the industrial domain [185], and 
on using pattern recognition methods to disaggregate the overall electricity 
consumption into major energy end-uses [85]. The latter were one of the 
few to report explicit results. Namely, large loads (washer, dryer, etc.) 
could be detected with an accuracy of up to 90%. However, the necessity 
to develop appliance-specific decision rules and the extended training peri-
od (i.e., all appliances had to be continuously monitored for one week), 
which is characteristic for most approaches, makes the technique hardly 
applicable in practice.  

Later, more sophisticated approaches dealt with the analysis of data 
sampled at higher frequency using wavelets. Wavelets allow simultaneous 
time and frequency location, which is a significant advantage over ap-
proaches that use Fast Fourier Transformation [171, 186] where time local-
ization is not possible. The authors of [187] started experimenting with 
fuzzy numbers that are used for harmonics signature recognition. They 
found that each type of current waveform polluted with power harmonics 
could be represented by a five level wavelet decomposition. Based on that 
finding, the authors developed an algorithm that uses discrete wavelet 
transforms to identify the harmonics signature of non-linear loads. Howev-
er, harmonics pollution in the electric system through the diversity of 
home appliances makes this approach difficult. Instead of using discrete 
wavelets, Norman’s disaggregation approach [188] relies on continuous 
wavelet transforms were claimed to perform better compared to the previ-
ous approach. Other authors explored statistical signature analysis to infer 
the devices operating from the current and voltage waveforms [87, 189]. 
This is beneficial because the resulting waveform is not a function of time. 
This may allow identifying two devices that have similar current/voltage 
waveforms because their current-voltage curve might be different. Alt-
hough appliance signatures based on time independent current-voltage 
curves of appliances seem promising, this approach like the ones for wave-
lets have never resulted a working disaggregation algorithm. Srinivasan 
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combined harmonic signature analysis with neuronal networks. In his work, 
several different classification models for signature extraction and device 
identification were developed and tested. For a set of appliances, a detec-
tion accuracy of around 80% was reported [190]. The authors of [191] pro-
pose a combination of three optimization algorithms and a neural network. 
In a second work, the same authors propose a household simulator that 
generates data that can be used to test disaggregation algorithms. The 
simulator allowed the authors to assess many different situations and con-
firmed that the disaggregation performance can benefit from the fusion of 
different techniques [192]. However, to detect appliances based on any kind 
of signature the strongest drawback remains: significant exploratory work 
is required to gather the signatures in the first place.  

In contrast to these high frequency sampling approaches that usually re-
ly on special purpose sensors, Kolter et al. [193] recently investigated the 
possibility of disaggregation using discriminative sparse coding based on 
hourly consumption data of over 10000 appliances from different homes. 
While the approach is performing better than other sparse coding tech-
niques, its accuracy suffers from the low frequency despite the extremely 
rich training set. The authors try to predict the share of ten appliance cat-
egories over one week given only the signal that contains the aggregated 
consumption of all devices of one home and achieve an accuracy of around 
50%. In addition, the authors released a rich data set containing detailed 
power usage information from several homes. It contains the overall home 
electricity consumption recorded at a high frequency (15kHz) and sub me-
tered data from individual circuits in the home, each labeled with its cate-
gory of appliance or appliances, recorded at 0.5Hz as well as up to 20 plug-
level monitors that directly monitor the connected appliances at sampling 
frequency of 1Hz, with a focus on logging electronics devices where multi-
ple devices are grouped to a single circuit. The data set is freely available 
and should boost further research in the domain of energy disaggrega-
tion [194]. First applications of the data set have recently been published. 
Kolter used Hidden Markov Models to break the electricity consumption 
down into different use categories. At this aggregated level, the approach 
achieved an accuracy of 82%. Parson [195] uses the same technique for dis-
aggregation. General models of appliance types are tuned to specific appli-
ance instances using only signatures extracted from the aggregate load. 
Their evaluation is limited on to the three highest energy-consuming ap-
pliances of the above-mentioned data set showing that it can disaggregate 
35% of the total energy consumption to an accuracy of 83%. 

Alternatively, some recent work has advocated unsupervised approaches 
that do not rely on a long and complex training period. Clustering meth-
ods are applied to automatically classify appliances and their correspond-
ing power consumption. Goncalves et al. published first results that indi-
cate the potential of their linear blind source separation strategy. The 
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small number of existing large household appliances with a power con-
sumption of above 400W could easily be classified, but small appliances 
were typically clustered together and were difficult to separate [196]. Kim 
et al. [197] propose three new unsupervised Markov models that are tested 
on data from seven small households with four to ten appliances. Their 
findings indicate that the proposed methods can potentially outperform 
standard Factorial Hidden Markov Model approaches for appliances with 
easy load profiles, but disaggregation becomes challenging as the number 
of devices increases and the signatures of appliances become more com-
plex. More research is required to fully evaluate the potential of the pro-
posed techniques as well as to develop a method that estimates the num-
ber of operated appliances at home making unsupervised clustering algo-
rithms more accurate. 

Instead of unsupervised learning, Berges et al. propose a user-centered 
high-frequency disaggregation approach. Their system builds upon a com-
mercially available oscilloscope that samples current and voltage at fre-
quency of 15kHz. Their signature-based decomposition method is based on 
real and reactive power as well as on transients that can be gathered at 
these high sampling frequencies. The recognition strategy for predeter-
mined signatures follows the classical decomposition chain: Event detec-
tion, feature extraction, and matching based on nearest neighbor and 
Bayes. The system was tested in a lab setting with nine devices and 
achieved an accuracy of 85%. The authors further envision that un-
matched, but correctly detected events are forwarded to the user, who can 
label the event as a new signature [198-200]. 

 Another high frequency idea (i.e., up to 500kHz sampling rate), but 
based on voltage sensing instead of current, has been explored by the au-
thors of [88] and [89]. They developed and combined two complementary 
approaches in a system that relies on a single sensor that can be plugged-
in anywhere to the electric circuit of a household. It listens on the residen-
tial power line to detect unique noise changes [201] and electromagnetic 
interference that occur through the abrupt switching of devices and switch 
mode power supplies respectively. Mechanical switches produce electrical 
noise [202], which varies significantly by appliance [91], and the electro-
magnetic interference is caused by switch mode power supplies incorpo-
rated in many modern consumer electronics. The system can be used to 
infer about appliance operation which in combination with the measure-
ments of an electricity meter can reveal the consumption of particular de-
vices. An evaluation of the concept in sample households shows an accura-
cy of to 94%. Although the method seems superior compared to previous 
approaches, the same drawbacks such as complex and time-intense training 
remain and the overlapping of noise signals. In addition, new open ques-
tions are introduced: It is unclear how the correlation to the power signal 
exactly achieved; not all devices are causing a noise or interference; and 
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the recorded noise signatures depend on the location of the appliance rela-
tively to the location of sensor. A relocation of either as well as the pres-
ence of new devices inevitably requires a complete recalibration of the sys-
tem.  

Baranski and Voss use an inexpensive optical sensor that is attached to a 
traditional utility meter to disaggregate the consumption [203]. Their 
scheme combines different concepts such as clustering, finite state ma-
chines, and heuristics [83, 84]. The method of detecting on/off events is to 
some extent similar to the approach by Hart. But instead of trying to 
match every individual event, the authors incorporate an optimization al-
gorithm that tries matching a largest possible set of events. Unlike most 
other approaches so far, their method does not rely on complex training. 
However, traditional meters nowadays become more and more obsolete and 
are currently replaced by smart meters.  

Summarizing the related work, existing approaches can be broadly divid-
ed in online and offline-based techniques. Offline approaches use surveys to 
discover what appliances are operated at home. Originally intended to sta-
tistically compare load profiles of households with known appliances to 
those without, offline methods have become more and more obsolete due to 
the rise metering and sensing technology that made real consumption data 
available. Such online methods for consumption disaggregation do not rely 
on self-reporting and can potentially provide extremely rich end-use da-
tasets [119]. They consist of distributed and single-sensing techniques: Dis-
tributed approaches can rather easily achieve a consumption breakdown, 
but these systems typically suffer from complex calibration procedures and 
deploying a large number of sensors in the residential environment quickly 
leads not only to high cost but also to a discouraging high usage 
barrier [183]. In contrast, single sensor systems represent a more cost-
effective solution, but often rely on custom hardware (e.g., for high sam-
pling rates) and presuppose either a-priori knowledge about the household 
devices and their electrical characteristics, or require a complex training 
phase involving the user where the system learns about the specific device 
characteristics.  

However, a global signature database is difficult to obtain in a world of 
fast changing small appliances, and training procedures at the initial de-
ployment are discouraging users and hinder adoption [204]. To address this 
problem, recent research has focused on intelligent training methods and 
building large signature databases that can ideally be shared across 
homes [205-207]. But appliance signatures are often influenced by the local 
environment and are thus to a certain extent bound to the system they 
were recorded (e.g., sampling frequency, physical quantities, etc.). These 
limitations increase the complexity and might make a central appliance 
signature database impossible [82]. In addition, current disaggregation ap-
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proaches cannot take devices into account that are introduced into the 
residential environment and were not present at the initial calibration of 
the system. Overall, we find that no disaggregation method currently ex-
ists that is easily deployable, highly accurate for all household appliances, 
and cost-effective, and most existing approaches fail to meet usability re-
quirements that are essential for fast adoption. Lastly, but most im-
portantly, there is a great need for improved user interfaces, which effec-
tively improve the algorithms by utilizing user-feedback. This feedback 
mechanism should be non-intrusive and must be designed to easily blend 
with the resident’s normal daily activities [82, 206]. 

The approach presented in this thesis addresses this need for improved 
user interfaces and demonstrates the potential of Ubicomp to facilitate load 
disaggregation in a simpler and user-friendlier way. The proposed disaggrega-
tion scheme AppliSense is an integrated solution to disaggregate the electricity 
consumption of households to device level. It uses a single sensor and builds 
on the early principles described by Hart [164] to not only address some of 
the above-mentioned shortcomings in terms of usability, but also remaining 
technical challenges (e.g., the recognition of smaller loads and overlapping 
on/off events of multiple appliances). For this, we use the eMeter system 
that does not rely on custom hardware and on top designed AppliSense, a 
Ubicomp-enabled disaggregation scheme that utilizes user feedback to 
avoid complex training. More concretely, we make use of smart electricity 
meters, which are going to be installed in large numbers in the U.S. and 
Europe over the next years, together with a user interface on a mobile 
phone, which much simplifies the appliance signature acquisition process be-
cause this is done as a side effect, invisible to users. Our approach thus shows 
how Ubicomp can enable load disaggregation in a more applicable, simpler, and 
user-friendlier way. 

4.2 Revisiting the Architecture 
In this section, we briefly revisit the data acquisition component of the 
eMeter infrastructure because the physical quantities directly available 
from the meter as well as those that can be derived thereof are important 
for the later on presented disaggregation approach.  

We use a smart meter as a single sensor to log the total electricity con-
sumption of the household. The utilized meter measures the following 
physical quantities at phase level, i.e., each quantity has one representation 
per connected phase Lx:  

 Effective voltage Ueff in Volt and effective current Ieff in Ampere;  
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 Phase shift φ between current and voltage in degrees; 

 Real power P in Watt; 

 Neutral conductor current Ineu in Ampere for grounding the meter. 

From the measured quantities, further information such as apparent, re-
active, and distortion power can be derived. These characterize the electri-
cal load behavior of appliances and can be used to differentiate between 
different device categories detailed in the next section. The following ex-
plains how these quantities are derived. 

 PowerAllPhases (Pall) represents the aggregated sum of real power 
of all three electrical phases L1 – L3, and is expressed in Watt 
([Pall]SI = W). 

 Apparent power on line Sx, ([Sx]SI = VA), is the product of the 
effective values of current (Ieffx) and voltage (Ueffx): 
Sx  =  Ueffx  ×  Ieffx. 
For the absolute value of apparent power S, the real power P, and the 
total of reactive power Qtot the following holds: 

 𝑆𝑆 =    𝑃𝑃   +  𝑄𝑄 . 

Qtot consists of two components, the reactive power Qtrans and the dis-
tortion power D: 

𝑄𝑄 =   𝑄𝑄   +  𝐷𝐷 . 

 Total reactive power. The absolute value of the total reactive power 
Qtotx on Lx, [Qtotx]SI = Var, can be computed with the measured value 
Px as follows: 

𝑄𝑄 =   𝑆𝑆   − 𝑃𝑃 . 

 Translative reactive power. Through nonlinear consumers, such as 
inverters, power supplies, or inductivities, non-sinusoidal currents Ieff 
can occur at sinusoidal voltages Ueff. These non-sinusoidal currents 
are composed of sinusoidal parts of different frequencies (I). If I1eff is 
the sinusoidal current part of the fundamental frequency and φ the 
phase shift between current and voltage, then for real power P and 
reactive power Q the following equations hold: 

S′ = Ueff × I1eff 

P = S′ × cos(φ)     =   ×     ( )
  ×     ( )

= tan  (φ). 

Qtrans = S′ × sin(φ) 
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This allows computing the translative reactive power Qtransx on Lx 
([Qtransx]SI = Var) from Px and φx even if the current curve is non-
sinusoidal: 

Qtransx = Px × tan(φ x). 

 Distortive reactive power. The value of distortion power on Lx (Dx, 

([Dx]SI = Var) caused through nonlinear consumers (such as inverters, 
power supplies, or inductivities), can be computed as:  

𝐷𝐷 =   𝑄𝑄   −  𝑄𝑄 . 

4.3 Classification of Residential 
Appliances 

In the following, we explain how domestic appliances can be classified ac-
cording to their characteristic load signatures based on the above-
mentioned physical quantities measured by the smart meter. Depending on 
its characteristic electric and electronic, an appliance can be of resistive, 
inductive, or capacitive nature. For example, a standard light bulb is pure-
ly resistive whereas a vacuum cleaner is predominantly inductive. In gen-
eral, incandescent appliances (e.g., a kettle or a light bulb) are mostly re-
sistive (ohmic), motors (e.g., a fan or a heater) predominantly inductive, 
and devices containing a power supply or electronic frequency converters 
(e.g., laptops) mainly capacitive. Figure 4.2 illustrates the resulting signa-
ture space for residential electric appliances. Resistive appliances typically 
reside on the x-axis whereas predominantly inductive appliances have a 
positive, predominantly capacitive a negative ordinate. Since the power 
consumption of appliances crucially depends on the utilized internal com-
ponents, it can vary quite strongly between different models of the same 
appliance category (e.g., TVs). For that reason, the depicted boundaries 
for the individual appliances are fuzzy and only provide an indicative over-
view on the situation.  

Figure 4.3 illustrates exemplary appliance power signatures at the 
standard sampling frequency for different appliance categories over differ-
ent operation lengths. The signatures were recorded with our system in a 
controlled environment at a rate of f_s = 1 sample/sec, i.e., f_s = 1Hz. If 
the load is purely resistive, then the voltage and current are in phase (e.g., 
the iron (Figure 4.3 (lower left)). The reactive component Q of the appar-
ent power is zero, meaning all power is transferred to the load. While ap-
pliances work through the real (active) power, the reactive (passive) power 
caused by inductors and capacitors does not drive the load, but heats 
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wires and thus wastes energy. However, capacitors and inductors affect the 
power consumption of a device by shifting the current with respect to the 
voltage. In case the electric load is completely reactive, voltage and current 
are 90 degrees out of phase. This leads to the fact that per cycle the prod-
uct of voltage and current is positive for one half, but negative for the oth-
er half. This results in a net energy flow of zero as on average exactly the 
same amount of energy flows towards the appliance as flows back. A con-
sumer with reactive components is either of type ohmic-inductive (e.g., 
Figure 4.3 (middle)) with a typical phase shift of 0 < φ < π between cur-
rent and voltage or ohmic-capacitive (e.g., Figure 4.3 (lower right)) charac-
terized by a negative phase shift (0 > φ > -π). In addition, in electrical 
networks there may exist non-sinusoidal currents and voltages (e.g., caused 
by inverters in switching events) that result in harmonics. These harmonics 
cause an additional reactive component, the so-called distortion power 
(Figure 4.4).  

In mathematical terms this can be expressed as: 

𝑆𝑆 = 𝑃𝑃 + 𝑄𝑄 + 𝐷𝐷 ,

where S is the apparent power, P is the real power, Q the translative com-
ponent, and D the distortive component of the total reactive power.  

 

FFiigguurree  44..22  Signature space of residential appliances: Resistive appliances typically 
reside on the real power axis because their reactive power is typically zero. Appli-
ances with a dominant inductive component are characterized by a positive reactive 
power whereas predominantly capacitive devices show a negative reactive power.  
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FFiigguurree  44..33  Power signatures of three different residential devices from different 
appliance categories and for different operation periods. The iron (left) is a ohmic 
device, which is characterized by a translative reactive power Qtrans equal to zero. 
The vacuum cleaner (middle) features a positive translative reactive power Qtrans, 
which is typical for predominantly inductive appliances. The power consumption of 
a TV (right) shows a negative translative power component characteristic for pre-
dominantly capacitive appliances. 

FFiigguurree  44..44  Relation between different power quantities that can be derived using 
the eMeter system.   
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Based on its internal composition and its possible modes of operation 
(e.g. static, multi-level, or variable), an appliance imposes a characteristic 
load profile on the electric circuit. This signature depends on the relation 
of the different power components and can be used to discriminate be-
tween appliances when disaggregating the total consumption. Our proto-
type system measures these parameters either directly or indirectly. In ad-
dition to these physical quantities, the signature length, peak voltage, and 
current are also important in terms of the appliance signature. 

4.4 The AppliSense Disaggregation 
Algorithm 

The AppliSense algorithm uses electricity consumption data recorded by 
the smart electricity meter to detect switching events of appliances to au-
tomatically break down the total electricity consumption to device level. In 
the following, we first outline the basic idea of our system that is based on 
the early principles of Hart and pays particular respect to usability. We 
then explain how we use Ubicomp to much simplify the process of record-
ing appliance signatures on which the algorithm crucially depends is ac-
quired. Last, we discuss details of the algorithm design, such as the applied 
filtering and the technique used for matching detected switching events to 
existing appliance signatures. 

 

4.4.1 Key Concept 
The electricity consumption of a household fluctuates over time based on 
the operation of individual devices used by the residents (see Figure 4.5 
(left)). For example, switching on a light induces the depicted change in 
the load curve. Having a more detailed look on the consumption data, the 
figure shows that there exist intervals where the load remains more or less 
constant on a stable level. A black bar marks two of these levels. The 
difference in real power (dP) between these levels indicates the change in 
electricity consumption due to the operation of the light. Our system not 
only measures the total load of the household, but the load characteristics 
(i.e., apparent power, real power, etc.) of each of the three phases separate-
ly. This phase-level data allows us to split up the overall electricity to get 
an even more detailed view.  

These considerations lead to the following key concept of AppliSense, 
which is a variant of the Hart scheme to recognize device switching events 
in the load curve based on an appliance signature database: First, we iden-
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tify points in time where significant changes between two levels of power con-
sumption in the load curve occur. Second, once such an edge is detected, we 
compute the differences of the different physical quantities between these two 
consecutive levels and classify the change as a potential appliance switching 
event. And third, we compare each of these differences with a known set of 
differences from an appliance signature database and map the edge to an indi-
vidual device according to its load characteristics. 

The right of Figure 4.5 illustrates these steps. It shows the electricity 
consumption (red) at a certain time interval in which five load levels (black 
bars) were identified. For simplicity, only the real power is visualized in 
this example. From this we can compute four deltas: dP1, dP2, dP3, and 
dP4. Each of these deltas corresponds to a potential on/off event of a de-
vice. The algorithm tries to match these with a known device signature 
from the signature database. For that, each entry dPi in a column of the 
matrix on the left symbolizes a delta which was extracted from the load 
curve at time i. The operator represents a detector logic that compares the 
rows of the matrix to the signature vector with the known deltas. The re-
sulting vector holds the best matching entry, in case a matching appliance 
could be identified. In the example, two matching signatures of a known 
device (a turning on and a turning off event) are detected for dP2 and 
dP3. However, no signature is matching the switching events at time in-
stants one and four.  

After having explained the basic concept of the AppliSense algortihm, 
we now focus on how Ubicomp technologies can be used to simplify the 
appliance signature acquistion process in the next subsection.	
   

FFiigguurree  44..55  Key idea of the AppliSense algorithm. A switching event of an appli-
ances cause a change in power consumption (left). The signal is divided into an 
alternating sequence of levels and edges. Then features are extracted to detect 
switching events and match them to a known appliance signature (right).  
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4.4.2 Signature Database 
In contrast to other load disaggregation systems, which often discourage 
users by requiring a long training period or complex calibration at the 
time of system installation, we wanted to develop a system that is easy to 
use. This is particularly important for the generation of the signature da-
tabase that is used to identify a detected appliance switching event. Hence, 
our system makes use of Ubicomp technologies to offer a user-friendly way 
for signature recording. For that, we use the measurement functionality 
embedded in the eMeter user interface. It allows users to identify the con-
sumption of an individual appliance in a simple, explorative way while at 
the same time logging the signature in the background, invisible to the 
user. This also facilitates the easy integration of new appliances that are 
introduced at home (i.e., appliances that were not present at the time of 
the initial system setup). Whereas other systems need to completely recal-
ibrate, our approach is able to incrementally acquire signatures and thus 
integrate new devices. In particular this means that it is not necessary to 
take signatures of every appliance in advance, but the signature database 
is established with simple means over time, which is crucial in a fast 
changing home environment. Moreover the signatures can be recorded with 
the user interface of an existing energy monitoring system and load dis-
aggregation becomes an add-on feature. 

The measurement process from a user’s perspective is illustrated in Fig-
ure 4.6. To measure the consumption of a device, users initialize the meas-
urement by pressing the start button on the user interface. After operating 
the selected appliance (either on or off), the system then computes the 
power consumption of the appliance based on the measurement algorithm 
within a few seconds (see Subsection 2.5.4). During the measurement, the 
signature acquisition process (see Figure 4.7) runs in the background (only real 
power depicted for clarity reasons). Every appliance switching event causes a 
change in power consumption that is measured by the smart meter. It logs the 
whole appliance signature (i.e., change in apparent, reactive, and distortion 
power, power factor, voltage, etc.) that is stored in the appliance signature da-
tabase. In addition, we can classify whether an on (dP>0) or off (dP<0) appli-
ance switching event has occurred. AppliSense uses this information later as 
input knowledge to match detected edges with operated appliances.  

The idea of our approach is to systematically improve the detection algo-
rithm. Through user feedback the number of signatures in the database is in-
creased while the system is being used. This leads to higher precision in recog-
nizable operation events over time, and at the same time avoids a time intense 
training period at the beginning.  
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4.4.3 Algorithm Design 
In this subsection, we explain the algorithm design of the AppliSense load 
disaggregation algorithm. The algorithm is implemented in Matlab and 
takes csv-flies as input that contain electricity consumption data extracted 
from the MySQL database with a Python script. Next, the AppliSense 
core algorithm is running, before the results are visualized by ePlot. Fig-
ure 4.8 depicts the just-described AppliSense tool chain, which individual 
components we describe next.  

 

FFiigguurree  44..66  User-friendly signature acquisition process: From a user point of view, 
appliance signatures are recorded invisible in the background as part of the meas-
urement functionality embedded in the eMeter user interface.  

 

FFiigguurree  44..77  While users are utilizing the eMeter smartphone application to learn 
more about the power consumption of their individual home appliances, the eMeter 
backend records the appliance signature in the background and stores the in the 
appliance signature database [3]. 
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4.4.3.1 Data Extraction 
AppliSense takes a time slot (i.e., begin and end time) and a smart meter 
id as input. Originally, the AppliSense core algorithm was accessing the 
MySQL database directly via Microsoft’s Open Database Connectivity 
(ODBC28), but over time the archive table that holds all the measurements 
of all connected meters in data sharing mode (see Section 2.5.1) grew to 
over 13 million entries. This makes data retrieval at run time through the 
corresponding SQL queries slow and locks the database while the query is 
processed. Hence, we separated the data retrieval process. A Python script 
now is responsible for extracting the measurement data from the database 
offline. The output is stored in CSV formatted files that serve as input for 
the AppliSense core algorithm. The data is split into different files accord-
ing to a user-defined time period (e.g., calendar days) and smart meter ID. 
The files hold all corresponding measurements in ascending order. The 
script can be called from the command line with the following parameters: 

 

                                       

 
28 Microsoft Open Database Connectivity: http://msdn.microsoft.com/en-
us/library/windows/desktop/ms710252%28v=vs.85%29.aspx. 

Figure 4.8 AppliSense tool chain. A Python script is responsible for data extrac-
tion from the MySQL database. The AppliSense algorithm takes csv-files as input 
and produces an output stream that consists of electricity consumption data and 
event labels that correspond to identified device switching events. The ePlot visual-
ization framework is responsible for depicting the results. 

 

Figure 4.8 AppliSense tool chain. A Python script is responsible for data extrac-
tion from the MySQL database. The AppliSense algorithm takes csv-files as input 
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 --user USER: MySQL server user    

 --host HOST: MySQL server hostname  

 --port PORT: MySQL server port (optional)  

 --passwd PASSWD: MySQL server password    

 --db DB: MySQL database    

 --sm SM: Smart Meter number (ID)    

 --fromdate FROMDATE: Starting date (optional) 

 --todate TODATE: Finishing date (optional) 

 --period <day|week|month|year> (default: day) 

 

4.4.3.2 AppliSense Algorithm 
The AppliSense load disaggregation algorithm itself consists of six steps 
that are subsequently discussed in the remainder of this subsection. The 
algorithm follows the early principles discovered by Hart, but much sim-
plifies the signature acquisition process for users. Figure 4.9 provides an 
overview on the individual steps. After the retrieval and normalization of 
the electricity consumption data, the algorithm requires three steps for 
feature extraction (depicted in orange) and then tries to match detected 
events to known signatures from the appliance signature database.  

1) Normalization: In power circuits, load-dependent voltage drops can 
occur (e.g., in reaction to a switching event of an appliance). From 

𝐼𝐼 =   
𝑈𝑈
𝑅𝑅   𝑎𝑎𝑎𝑎𝑎𝑎  𝑆𝑆 = 𝑈𝑈×𝐼𝐼 

for apparent power S and effective values of voltage U and current I, a 
quadratic relation arises: 

𝑆𝑆 =    . 

Hence, voltage drops can lead to large differences in power consumption, 
which we have to account for by normalizing the all measured and calcu-
lated power values to a constant voltage (of 230 V):  

𝑆𝑆 =   
230
𝑈𝑈 ×  𝑆𝑆. 

The eMeter system measures the electricity consumption data for each 
electrical phase separately. In the following, each of the remaining steps of 
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the AppliSense algorithm is performed for each electric phase individually. 
Instead of analyzing the high level overall power consumption, this enables 
AppliSense to use more fine-grained data to recognize appliance switching 
events. 

2) Edge Detection: In order to identify edges in the recorded electricity 
consumption data that correspond to switching events of appliances, we 
use the normalized apparent power 𝑆𝑆  as input vector. The algorithm 
computes the absolute values of the differences between two consecutive 
values of normalized apparent power 𝑆𝑆  in the data series. If the absolute 
value of such a difference is larger than a predefined threshold f_th, then 
the value potentially belongs to an edge. However, depending on the ap-
plied strategy for detecting appliance switching events, there typically exist 
more potential edges than real appliance switching events. The threshold 
f_th is to be chosen carefully. It has to be sufficiently large to guarantee 
robustness against small changes in apparent power that occur due to 
noise on the electric power line. However, if the value is chosen too large, 
real appliance switching events might be missed.  

Figure 4.10 depicts the apparent power of a Nintendo Wii usage cycle 
over a time span of 180 seconds. The two distinctive edges are related to 
operating the game console. It was turned on after 22 seconds and off after 
106 seconds. The figure also shows the relatively strong fluctuations in ap-
parent power during the device start phase compared to the relative 

FFiigguurree  44..99  Overview of the individual steps of the AppliSense load disaggregation 
algorithm. 
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constant load during standby (from 0s to 22s). These fluctuations should 
ideally be filtered because they do not belong to a device switching event. 
The left of Figure 4.11 shows a histogram that depicts the difference of two 
subsequent apparent power values over the same duty cycle and time 
frame of the game console. We find larger changes in apparent power when 
turning the application on/off compared to times of operation or standby. 
We experimented with different thresholds and generally achieved best 
results applying a filter with a threshold f_th of 2VA. This removes a large 
number of time steps that do not correspond to a switching event (Figure 
4.11 right). However, due to the transient behavior of the particular appli-
ance, there persist some peaks (e.g., between 24 to 45 seconds) in the 
graph although no switching event occurred. In general, such oscillations 
during operation can be even stronger and more frequent in real-world 
scenarios, which would result in a high number of spurious events. Apply-
ing a smoothing filtering mechanism can help remove these false positives. 
However, the filter application also bears the risk of cancelling out edges 
(typically small ones) that correspond to real device switching events. 
Consequently, these switching events would not be identified and the oper-
ation of the corresponding appliance would be missed.  

In order to decrease the number of spurious events, we investigated 
different smoothing filters. We tested a median filter, a mean filter, a ker-
nel-weighted average filter (Nadaraya-Watson filter with Gaussian kernel), 
and different combinations of these on the apparent power signal. An ad-
vantage of a median filter is the ability to remove outliers. However, peri-
odic curves (e.g., sine, triangle, saw tooth, square, etc.) could be removed. 

  FFiigguurree  44..1100  Apparent power for a 180 second duty cycle of a game console. 
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On the other hand, a mean filter which computes equally weighted averag-
es of a sliding window of values has the ability to smoothen periodic oscil-
lations, but may not always remove large outliers. Even worse, it might 
erase edges which correspond to an actual on/off switching of a device. A 
kernel-weighted average filter adds more complexity compared to the pre-
viously mentioned filters. Different kernel functions can be applied for sig-
nal filtering. We experimented with different ones and observed best re-
sults when applying a Gaussian kernel [208]. It allows preserving edges 
while attenuating oscillations of the original signal. The extent to which 
the filter smoothens the signal is determined by the kernel bandwidth, 
which relates to the window size.  

In order to evaluate the influence of the filters on the edge detection and 
to find the most appropriate combination of filtering, we simulated a typi-
cal household usage scenario over 30 minutes in a controlled lab environ-
ment. During that period appliances of different characteristics were used 
and 12 appliance switching events occurred. Table 4.1 shows the results 
when applying the above-mentioned filters to the signal. The number in 
brackets corresponds to the window size/kernel bandwidth of the respec-
tive smoothing filter. The table displays the number of changes of apparent 
power values larger than 2VA, the achieved percentage in reduction com-
pared to the original, and the number of missed appliance on/off events. 
Overall, the original signal contained 709 changes in apparent power S 
with a delta larger than 2VA.  

Using a median filter or a mean filter alone reduces the number of poten-
tial edges by 74% and 70% respectively without missing a device switching 
event. The performance of kernel smoothening strongly depends on the 
bandwidth of the kernel. The potential reduction varies between 35% and 
94% depending on the kernel bandwidth. A combination of mean and me-
dian filter achieves slightly better results (76%) than the two filters sepa-

FFiigguurree  44..1111  Resulting absolute differences in apparent power for the same duty 
cycle as in Figure 4.10 (left). An application of a filter of 2VA helps narrowing 
down the number of potential switching events (right). The red circle marks the 
turn on event whereas the green circle indicates the turn off event [3]. 
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rately at no extra cost in terms of computation complexity. The reason for 
this relatively small improvement is due to the fact that the possibility to 
remove outliers is constrained by the small window size used during the 
evaluation. We experimented with different windows sizes and ultimate 
choose a window size of 5. Adding a kernel filter to the smoothening strat-
egy leads to higher reduction in potential edges (between 3% and 17%). 
From a bandwidth of 60 on, we observe that the smoothening starts can-
celing out true switching events. Independent of the bandwidth parameter, 
however, using a kernel filter increases the computational complexity sig-
nificantly. 

 

Table 4.1 Performance comparison of different smoothening filters. 

Filtering Method ∆S > 2VA Reduction Missed 
Median(5) 185 73.9% 0 
Mean(5) 218 69.2% 0 
Kernel(3) 459 35.3% 0 
Kernel(100) 46 93.5% 0 
Median(5), Mean(5) 174 75.5% 0 
Median(5), Mean(5), Kernel(3) 151 78,7% 0 
Median(5), Mean(5), Kernel(60) 78 89% 1 
Median(5), Mean(5), Kernel(70) 52 92.7% 4 
 

Overall, we achieved best results using a kernel filter. However, this 
comes at high computational cost due to the quadratic complexity of the 
filter. Hence, we decided to go for a more efficient solution that performs 
close to optimum. It combines a median filter that removes outliers with a 
mean filter that further smoothens the signal (see line 5 of Table 4.1). The 
result of this smoothening strategy is illustrated in Figure 4.12. In our 
evaluation scenario, we used a notebook, several different lights, and a ket-
tle to obtain the original power signal (blue). The blue markers correspond 
to the 709 points in time where the absolute difference of two subsequent 
apparent power values are greater than 2VA. Applying a median filter of 
five followed by a mean filter of the same size results in the green markers. 
The reduction gain (75.5%) of the filter can be seen by comparing the red 
with the green markers. The edge detection interprets the remaining 174 
green markers as a binary vector which indicates at position i that the 
smoothed estimate of the apparent power at time step i differs by more 
than 2VA from the value at position i-1. Hence, the corresponding meas-
urement at time i belongs to a potential device switching event. 
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3) Power Level Computation: Having identified the relevant edges, the 
next step of the algorithm extracts power levels that connect two edges in 
the smoothened signal. An overview of the relation between the key classes 
is provided in Figure 4.13. The sequencer uses the binary output of the 
edge detection to compute the individual levels including their particular 
characteristics (i.e., standard deviation, mean values, etc.).  

FFiigguurree  44..1122  Evaluation of different filter strategies. Depicted is the application of 
a combination of a median/mean filter with a window size of 5 (see line 5 of Ta-
ble 4.1).  

 

FFiigguurree  44..1133  UML class diagram illustrating the key components of the AppliSense 
algorithm. 
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Each power level consists of a start and an end time, a vector with com-
ponent-wise means of real, reactive, and distortion power for the first five 
measurements at the start and the last five measurements at the end of 
the interval (start mean (sm) vector and end mean (em) vector, respective-
ly), and a three-by-five matrix which holds the real, reactive, and distor-
tion power values for the start and the end of the interval. The compo-
nent-wise standard deviation of all power values is also calculated.  

4) Delta Level Computation: From two consecutive power levels, the al-
gorithm computes the difference vector for real, reactive, and distortion 
power. These vectors are used for matching the edge to a particular device 
in the recognition step that follows thereafter. To take oscillations during 
start up and shut down of an appliance (e.g., due to heating up at the 
start of a kettle) into account, we not only calculate one difference vector 
for level i to i+1 (e.g., end of level i (emi) – start of level i+1 (smi+1)), but 
four difference vectors di,j that include the start and the end values of both 
levels (see Figure 4.14): 

𝑑𝑑 _ , _   =    𝑠𝑠𝑠𝑠   −  𝑠𝑠𝑠𝑠 , 

𝑑𝑑 _   , _   =    𝑠𝑠𝑠𝑠   − 𝑒𝑒𝑒𝑒 , 

𝑑𝑑 _   , _   =    𝑒𝑒𝑒𝑒   − 𝑠𝑠𝑠𝑠 , and 

𝑑𝑑 _   , _   =    𝑒𝑒𝑒𝑒   − 𝑒𝑒𝑒𝑒 . 

For each edge, we add these four vectors to a result matrix that is used as 
input for matching the device signatures in the next step.  

FFiigguurree  44..1144  Computation of the difference vectors of two consecutive levels. Four 
vectors are extracted for each edge and compared to existing signatures. 
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5) Recognition: The recognition step of the algorithm tries to match 
known appliance signatures 𝑘𝑘  from the signature database with extracted 
delta vectors 𝑑𝑑   of the delta matrix D obtained as a result in the previous 
step. In order to identify an appliance on/off event, we perform a nearest 
neighbor search in the two-dimensional dQ/dP space (see Figure 4.15). 
First, the algorithm computes for every 𝑑𝑑   its Euclidean distance to every 𝑘𝑘  in 
the two-dimensional vector space. If this is smaller than a predefined value (r) 
of the length of 𝑘𝑘  plus an oscillation value (osc), a potential matching is identi-
fied:  

𝑑𝑑 − 𝑘𝑘 < 𝑟𝑟   ∙ 𝑘𝑘 + 𝑜𝑜𝑜𝑜𝑜𝑜  
𝑖𝑖𝑖𝑖  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑘𝑘   𝑖𝑖𝑖𝑖  𝑎𝑎  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  𝑓𝑓𝑓𝑓𝑓𝑓  𝑑𝑑   
𝑖𝑖𝑖𝑖  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑘𝑘   𝑖𝑖𝑖𝑖  𝑛𝑛𝑛𝑛𝑛𝑛  𝑎𝑎  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  𝑓𝑓𝑓𝑓𝑓𝑓  𝑑𝑑

 

The oscillation term (osc) is the length of a vector which consists of the 
maximum of the standard deviation in the real power at level i or i+1 as 
first component, and of the maximum of the standard deviation in reactive 
power at level i or i + 1 as second component: 

𝑜𝑜𝑜𝑜𝑜𝑜 =   
max  (𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃  𝑎𝑎𝑎𝑎  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃 𝑎𝑎𝑎𝑎  𝑙𝑙𝑙𝑙𝑙𝑙e𝑙𝑙  𝑖𝑖 + 1 )
max  (𝑠𝑠𝑠𝑠𝑠𝑠 𝑄𝑄  𝑎𝑎𝑎𝑎  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠(𝑄𝑄 𝑎𝑎𝑎𝑎  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖 + 1 )  

After this, every 𝑑𝑑   contains a set of associated possible recognition can-
didates 𝑘𝑘  from the signature database. Note that this set of possible asso-
ciated recognitions could also be empty. In such a case, the corresponding 
𝑑𝑑   could not be related to a known signature. This could be caused for ex-
ample by a detected edge which does not correspond to an appliance 
switching event, or by the non-existence of a corresponding signature in 
the database that matches 𝑑𝑑 . Second, for each 𝑑𝑑 , a nearest neighbor match 

FFiigguurree  44..1155  In the recognition step, known appliance signatures kj are compared to 
extracted deltas dj in the dQ/dP space. 
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is performed over all potentially matching signatures 𝑘𝑘   that have been associ-
ated with 𝑑𝑑 . In case the Euclidian distance of two candidates resides within an 
uncertainty range, it can eventually help to take the distortion power into ac-
count when conducting the nearest neighbor match. Finally, the algorithm 
writes the disaggregation results into a text file (see Figure 4.16) and launches 
the visualization process through the ePlot framework. The text file contains a 
human-readable output of the detected appliances in the load profile. It speci-
fies the time, the event (i.e., either on (1) or off (0)), the phase the appliance 
was detected and the appliance name. 

 

4.4.3.3 ePlot Visualization Framework 
The goal of the ePlot framework is to provide a flexible way for visualizing 
electricity consumption data recorded by the eMeter system. The frame-
work takes the extracted and processed electricity consumption data that 
is passed along the tool chain as input vector and supports two different 
functionalities for visualization (see Figure 4.17).  

FFiigguurree  44..1166  Sample of the human-readable output of the AppliSense recognition 
step. 
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First, direct data plotting allows directly plotting the electricity con-
sumption information in a flexible way. Users can arbitrarily choose from 
all physical quantities that are available in the eMeter system and limit 
the visualization to individual phases, to the aggregated consumption of all 
phases, or to any combination of the just-mentioned. Additional parame-
ters easily enable to change the style of the presentation. For example, the 
figure can be automatically saved, the color of individual data plots can be 
changed, or the x-axis can be transformed to rather display the date than 
continuous seconds, which is useful when analyzing behavior of inhabit-
ants. The second functionality – labeling – works after the same principle, 
but additionally assigns the results of the AppliSense algorithm as labels 
to the plotted load curve. For each detected switching event the corre-
sponding edge in graph is associated with the corresponding device that 
caused the switching event. An example of this visualization is depicted in 
the next section as part of the evaluation of the AppliSense algorithm. The 
functionality of the ePlot framework is implemented in Matlab and can be 
called within the workspace of the program.  
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FFiigguurree  44..1177  Overview of the ePlot functionalities. For the two different modes – 
Direct Data and Labeling – the options Data, Phase, and Parameters can be used to 
flexibly specify how the corresponding data should be plotted. 
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4.5 Evaluation 
In the following we describe the evaluation we conducted to assess the per-
formance of the AppliSense disaggregation scheme. Thereafter, we con-
clude this section with a brief discussion on the steps we took to prepare 
AppliSense for the real world. 

 

4.5.1 Laboratory Study 
In order to analyze the performance of the AppliSense algorithm, we in-
stalled the eMeter system in a laboratory environment (see Figure 4.18). 
For the evaluation, we used a controlled set of appliances, which typically 
occur in a student’s household. Table 4.2 provides an overview of the ap-
pliances, their real power consumption stated on the manufacturer label, 
their verified real power range in operation (measured by a separate power 
monitor), the appliance category (O for ohmic, I for ohmic-inductive, and 
C for ohmic-capacitive), and the real power that is obtained as part of the 
power signature using the eMeter smartphone application. All devices were 
connected to the same phase during the whole evaluation. Some of the ap-
pliances have power consumptions within the same range. However, if be-
longing to different appliance categories, we should still be able to differen-
tiate the corresponding events. 

FFiigguurree  44..1188  Laboratory setting for the evaluation of the AppliSense algorithm. We 
used different typical household appliances along with the eMeter system measure 
the performance of our proof of concept implementation.  
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During times when only a single appliance was active, the algorithm 
identified the on/off events of all devices except the CD player correctly. 
Every device was turned on and off at least three times. The edges caused 
by the CD player were not recognized neither when being turned on nor 
when being turned off. This can be explained through the limitations in-
troduced by the filtering. Using a window size of 5 in our test scenario 
leads to a lower boundary of 10VA for edges that can be recognized. The 
CD player has a relatively high standby consumption of 6W compared to 
its 3 – 7W in operation. While the median filter does not influence the 
signal, the constant 3W during operation result in a step-wise increase of 
0.6VA after application of the mean filter. This increase is too small 
(<<2VA) to be detected as an event by the algorithm using the chosen 
combination of the median/mean filter.  

 

Table 4.2 Appliances used for the evaluation of the AppliSense algorithm. 

Appliance Labeled Power Power Range Category Consumption 
Light bulb 75W 70W O 70W 
Kettle 2200W 1855 – 1933W O 1900W 
Heater 2000W 1619 – 1667W O 1635W 
CD player 13W 9 – 13W I 3W 
Fan 50W 45W I 45W 
Notebook 72W 30 – 35W C 35W 
Fluorescent lamp 35W 21 – 28W C 25W 
Wii 52W 10 – 45W C 15W 

 

Next, we combined the use of multiple devices in a random order. Alt-
hough the CD player cannot be recognized, we operated it and other de-
vices with unknown signatures from time to time to vary the base line con-
sumption and to have more appliances concurrently running. Over a time 
span of several hours, we documented 80 switching events. 77 times the 
algorithm detected a switching event correctly, which means that for the 
time stamp t an on/off switching was conducted on circuit i of appli-
ance X, the algorithm output corresponds (t, i, X, on/off). Figure 4.19 
shows a sample labeling output of the algorithm for a simulated office en-
vironment. After the notebook has been turned on, different devices were 
concurrently used and a kettle was operated. However, the red circle high-
lights a moment at which the office lamp is turned on but the event is not 
detected. This is due to the oscillations caused by a device that was oper-
ating at the same time. A second (not depicted) problem occurred when 
switching on and off the notebook. Due to the different battery levels, the 
power consumption had varied compared to the one registered in the ap-
pliance signature database. This led to the correct detection of the corre-
sponding edge, but no appliance signature was matching.  
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Overall, the evaluation shows promising results. We generated 144 device 
switching events in our test scenario. 16 of these came from devices with a 
small consumption so that the corresponding edges were cancelled out. 
When subtracting theses events, the algorithm identified 125 out of the 
remaining 128 events correctly, which results in a recognition rate of about
90%. In practice this enables interesting applications, such as automated 
recommendations for a more economic use of electricity in households. 

 

4.5.2 Preparing AppliSense for the Real World  
The results of the laboratory study encouraged us to investigate the real-
world applicability of our signature acquisition process and prepare Ap-
pliSense for the real world. We used two households (household number 
two and three (see Section 3.4.1)) of our running real-world deployment to 
test the appliance signature recording in a more dynamic residential envi-
ronment. Since people were permanently living in these homes, extended 
access was rather limited. We spent several hours in each of the two 
households taking signatures of various appliances.  

Overall, we the signature acquisition process was working reliably for 
most appliances even while other appliances were operated in different 
rooms. However, appliances with varying power consumption were tricky 
to capture. For example, a PC produced different signatures when waking 

FFiigguurree  44..1199  Labeled load curve as output of the AppliSense algorithm. 
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up from standby. We verified that in case two switching events occurred at 
the same time, but on two different electrical phases the measurement 
functionality on the mobile phone worked reliably. That is, it indicated 
that an error during the measurement had occurred and the user was 
asked to repeat the appliance switching event. On the second try, the sig-
nature acquisition process was then able two identify the correct switching 
event (for algorithm details see Section 2.5.4). We also discovered some 
anomalies that were not visible in the laboratory deployment. For example, 
the stove is using more than one electrical phase at all times. However, 
evidence from more households would be needed to draw conclusions on 
how to adapt the signature acquisition algorithm to record the signature of 
this device as well as on how appliance signatures fluctuate as new appli-
ances are introduced.  

Evaluating the performance of AppliSense in a real-world deployment al-
so requires ground truth information on the operation times on which de-
vices are running. Ideally, such an experiment should be conducted in a 
fully controlled environment (e.g., a living lab). Then every appliance 
could be equipped with a sensor (e.g., a smart power outlet) that individu-
ally monitors the consumption of the device. This information could then 
be compared to the recognition output of the AppliSense algorithm to ana-
lyze the energy identification ratio of the proposed disaggregation scheme. 

 We thought on less invasive alternatives that enable recoding ground 
truth information even in settings where equipping every appliance with an 
individual sensor is impracticable and not an option. One alternative that 
is often used but less precise is the use of logbooks in which residents 
manually keep track of the devices they operate [209]. Main drawbacks 
result form the lapse of time that occurs between the operation of an ap-
pliance and the manual entry in the logbook as well as from the time 
difference between the user and the system clock. This is a significant 
drawback in a dynamic environment in which time accuracy plays an im-
portant role.  

In order to make this process more convenient for users and at the same 
time more accurate, we developed an electronic logbook application on 
smartphones. The interface provides a list of the most common residential 
appliances together with on and off buttons on the left and right respec-
tively (see Figure 4.20). In case the utilized device is not yet listed, the 
application offers the possibility to add new appliances in a single step at 
the bottom of the application. A total count of appliances is displayed on 
the upper left. It is intended to inform users on the number of devices they 
operate in their household. Instead of manually recording an appliance 
switching event with pen and paper, users only have to press the corre-
sponding button on the mobile phone and an appliance switching record is 
generated in the database of the underlying eMeter system. This should 
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help mitigate the above-mentioned drawbacks. First, it improves the time 
accuracy, since the application uses the eMeter system clock. Second, it 
helps decrease the time between the event and the record entry since users 
can provide feedback on the spot.  

The residents of three different households tested the functionality of the 
logbook application. Figure 4.21 illustrates the results of an individual 
household that was tracking its appliance switching events with the appli-
cation. The figure depicts the overall real power consumption of the house-
hold over a duration of roughly 3 hours. The labels were extracted from 
the eMeter system database and correspond to appliance switching events. 
They were manually generated by the user utilizing the logbook applica-
tion when operating different appliances at home. Most of the time, the 
user was keeping track the individual switching events and the labels could 
easily be assigned to the corresponding edges. However, the figure also 
shows that there exist edges with no corresponding label (see yellow circles 
in Figure 4.20). These either originate from appliances that operate auto-
matically or were accidentally omitted by the user, and shows one of the 
drawbacks of this approach (another one arises from relying the user and 
the potential of user mistakes when handling the application). Overall, our 
insights demonstrate the correct operation of the developed logbook appli-
cation and outline such a Ubicomp-enabled logging approach is a well suit-

 

FFiigguurree  44..2200  User interface of the logbook application that can be used to track 
appliance switching events.  
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ed alternative for gathering ground truth information in real-world envi-
ronments in which equipping each appliance with an individual power sen-
sor is not an option. 

The system is thus prepared for a future evaluation in a real-world envi-
ronment. In order to measure the system accuracy and the energy identifi-
cation ratio our qualitative insights show that a more controlled environ-
ment is needed. To achieve this, we envision an experiment in which smart 
power outlets individually meter every appliance of the household or if this 
is not possible, the use of the logbook application to generate ground truth 
information (e.g., residents can be assigned designated days or time frames 
in which they use the logbook application to label each appliance switch-
ing event). The first option is without doubt preferable over relying on 
users to provide the ground truth information, but might be hard to real-
ize and most likely is not possible outside living lab environments.  

4.6 Discussion and Limitations 
The evaluation of AppliSense through the conducted laboratory study 
confirmed the operability of our proof of concept implementation. It shows 
a way a how Ubicomp can help simplify the signature acquisition process 
and as such contributes to the better applicability of load disaggregation 

FFiigguurree  44..2211  Appliance switching events labeled by the user utilizing the logbook 
application. 
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systems. However, the evaluation also shows that there exist different limi-
tations in the current implementation of AppliSense. Some are bound to 
the assumptions made during the design, some are due to the nature of the 
approach (i.e., recognizing device switching events), and others originate 
from the details of the current implementation of AppliSense itself. In the 
following, we are going to discuss the limitations and room for future im-
provements of AppliSense. 

The proposed AppliSense disaggregation scheme is based on the early 
principles of Hart. We use steady-state power draw levels to identify edges 
in the overall power signal and thereafter match these edges to previously 
recorded appliance signatures. For that, we designed a Ubicomp-enabled, 
incremental signature acquisition method, which is based on the assump-
tion of steady-state devices (i.e., devices that have discrete power states 
that can be measured with the measurement feature of the mobile phone 
application). As a result, users can train AppliSense with a portable mo-
bile application without the need for special-purpose hardware or complex 
calibration by domain experts. This simplifies the signature acquisition 
process and fosters the applicability of such disaggregation systems, but 
some limitations of the underlying principle remain:  

 Devices that have multiple power states (e.g., a hair drier with 
different fan speeds and heat options) require one recorded signa-
ture per state. Moreover, our evaluation showed that oscillations 
caused by operating devices can mask the switching event, par-
ticularly of low power drawing appliances. This could especially 
be a problem in larger households (e.g., family houses) with lots 
of appliances and activity.  

 Continuous variable loads (e.g., a personal computer or a washer) 
pose another significant problem. Like most other disaggregation 
approaches, AppliSense cannot detect devices that do not have 
well-defined operation states, but have a continuously changing 
consumption. This is due to the initial assumptions regarding the 
algorithm design and the tradeoff for relying on a single sensor 
system with a 1Hz sampling frequency.  

 Last, our disaggregation scheme is bound to switchable applianc-
es, which at the moment excludes non-switchable devices such as 
fridges or freezers from the disaggregation process.  

Different measures can be applied to overcome some of the above-
mentioned disadvantages and thus help enhance the disaggregation per-
formance of AppliSense. In particular, the improvements could consist of 
the following: 
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 AppliSense could be extended with a module for the recognition 
of non-switchable, hard-wired heating and cooling appliances, 
which account for a large portion of the residential electricity bill. 
The signatures of such appliances typically become particularly 
evident during nighttime. The module could filter these switching 
events and automatically (i.e., without relying on the user) at-
tribute them to respective appliances, since there only exist a lim-
ited number of such appliances in typical residential environments 
(i.e., one or two fridges, a freezer and eventually an electric water 
heater) and these devices usually contain different power-states 
and operating cycles. Since being based on the same edge detec-
tion principle, the extension could be integrated in the current 
disaggregation scheme and allow AppliSense to attribute another 
significant portion of residential electricity use. 

 We envision the just-described module as a first step towards a 
more sophisticated, unsupervised learning mechanism that aims 
at classifying reoccurring edges in the overall power signal. Reoc-
curring edges raise the probability level that they are related to a 
real appliance switching event. Once a certain probability thresh-
old for one particular event is reached, user could be prompted to 
confirm the operation and details of the utilized device on the 
portable user interface. Even more sophisticated, this prompt 
could suggest what device just has been used based on the appli-
ance signature´s characteristics right after the switching event oc-
curred. All this would help streamline the interaction and further 
minimize the burden for users.  

 With respect to continuous variable loads, we foresee extending 
the eMeter system a limited number (one to three) smart power 
outlets that could be used to individually monitor variable loads 
that have a significant impact on the residential electricity bill 
(e.g., washer, drier, etc.). This would potentially allow improve 
the disaggregation performance of AppliSense without much in-
creasing the complexity for users.  

Other drawbacks result directly from the implementation of the applied 
filter design and the clustering method for detecting edges in the overall 
power signal. Addressing these shortcomings would require changing the 
current implementation of the algorithm. The current thresholds for the 
utilized quantities have proven to be effective in the lab environment, but 
may require refinements in other settings (e.g., in real-world deployments), 
and as such have not been tested for their optimal effectiveness. Originally, 
we envisioned the distortion power to be a potential additional classifier 
for appliance switching events, but we observed that it is not a reliable 
feature that often depends on other appliances that are currently operated. 
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Thus, we developed the signature matching based on a nearest neighbor 
search in the dP/dQ-pane without further taking the distortion power into 
account. Limitations directly related to the current implementation are the 
following: 

 Devices that contain a relatively small power consumption are not 
detectable by AppliSense. The lower boundary of 2VA in the cur-
rent filter design for two consecutive power values together with a 
mean filter that is calculated of the last five values leads to a low-
er detection boundary of 10VA. This is sufficient for most home 
electronics, but not for low power-drawing equipment such as 
phone chargers, small radios, or LEDs. These devices are per se 
not detectable with the current design. 

 Short operating times of devices can lead to missed appliance 
switching events. Due to the current implementation of the power 
level computation, the load has to remain within a relatively sta-
ble interval for at least five seconds or more to be considered as a 
level. If not, the corresponding time span in the power signal 
might still be classified as potential edge and AppliSense does not 
detect the operation of the device. In practice, this should have a 
relatively low impact on the recognition performance, since most 
devices should be running for more than five seconds after their 
initial start. 

 Several devices that are switched on or off concurrently or within 
five seconds and that reside on the same electrical phase cannot 
be detected because AppliSense would interpret the two contigu-
ous switching events as one. This would result in an edge that 
cannot be matched to an existing appliance signature.  

 In the conducted laboratory study we observed that the appliance 
signatures recorded with the mobile phone application were very 
reliable. That is, the delta vectors obtained with the measurement 
function when turning an appliance on/off are stable and repro-
ducible over time. However, the measurements conducted during 
the limited time in the household provided first evidence that this 
may be different in a more dynamic home environment. In addi-
tion, the presence of new devices can have a disturbing effect on 
previously recorded signatures - there the AppliSense algorithm 
may need several (slightly different) signatures per device to reli-
ably recognize appliances.   
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4.7 Summary and Outlook 
In this chapter, we gave a detailed description and evaluation of the third 
contribution of this thesis: AppliSense, a Ubicomp-enabled disaggregation 
scheme that facilitates automatic recognition of switching events of electric ap-
pliances to disaggregate the total electrical load to device level. In contrast to 
existing approaches, our objective was to develop an applicable system that 
achieves this without requiring a complex training period and with minimal 
user involvement. AppliSense does not rely on special purpose hardware, 
instead it makes use of components that are becoming ubiquitous in home 
environments: a smart meter and mobile phones. It shows how Ubicomp-
enabled feedback systems can be used to much simplify the signature ac-
quisition process, which is mandatory for many load disaggregation sys-
tems while at the same addressing the great need for user interfaces, which 
effectively help improve disaggregation algorithms by utilizing user-
feedback [82, 206].  

A measurement feature on the mobile phone is used to acquire the ap-
pliance signatures. Its non-intrusive design easily blends with residents’ 
daily life. By utilizing the user input, AppliSense can incrementally estab-
lish its appliance signature database over time and avoid long and complex 
training at the beginning after the system setup. Moreover, where other 
systems require a complete recalibration, AppliSense enables to take new 
appliances into account that were not present at the initial setup of the 
system. This is particularly important in fast changing residential envi-
ronments where old devices are frequently replaced. 

Applying data analytics to the gathered metering data allows the system 
to raise energy awareness by providing better-tailored energy feedback. 
With a recognition rate of about 90% in the laboratory environment, the 
results of our evaluation study confirm the suitability of the general 
scheme of AppliSense and provide ground for many interesting applications 
on top of the system. An automated recommendation service could derive 
household-specific energy saving measures and provide residents with tips 
on the use of their appliances. In combination with actuation capabilities, 
we can foresee the information provided by AppliSense to be used to au-
tomatically optimize energy consumption and hence increase residential 
energy efficiency. For example, opportunistic sensing methods could be used 
to derive occupancy state from electricity and appliance use data, to use this 
information in a smart heating control strategy [41, 42, 210]. Not least, appli-
ance level consumption information can give rise to new business models 
(e.g., providing cross-selling offers for non-energy-efficient devices).  

The conducted test in the real-world deployment provided first qualita-
tive insights on the stability of the signature acquisition process in practice 



154 | Leveraging Smart Meter Data to Recognize Home Appliances 

and helped prepare the system for the real world. However, the dynamic 
residential environment also showed that a more controlled setting (e.g., a 
living lab or houses with individually submetered appliances) is ideally 
required for the further evaluation of AppliSense. Such a deployment would 
also allows analyzing the algorithm’s dependency on the number of manually 
recorded signatures and how the presence of new appliances is affecting these 
previously recorded signatures. This also includes the possibility to open the 
scheme for the combination with other disaggregation techniques, which is most 
likely to achieve better disaggregation results. As a first step to overcome exist-
ing limitations, we envision a module for auto-identification of hard-wired heat-
ing and cooling devices. Further improvements can result from using unsuper-
vised learning methods to attribute detected edges that do not yet correspond 
to an existing signature in the database to appliances [196, 197]. The applica-
tion of clustering concepts that automatically classify these events together 
with the possibility to prompt users for their confirmation on the portable user 
interface once a certain probability level is reached can help increase the elec-
tricity identification ratio (i.e., the amount of total electricity that can be classi-
fied by AppliSense). 

On a larger scale beyond household-level, combining the signatures 
identified by AppliSense in different households with PowerPedia can help 
building a central appliance signature database [205]. This database then 
can serve as a central repository of appliance signatures, and feedback the 
information as input knowledge for AppliSense itself or other 
disaggregation approaches.  
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5 Conclusion 

Residential electricity consumption has been continuously increasing over 
the past decades mainly for two reasons. First, the increasing number of 
electrical appliances in homes (especially due to the rising amount of small 
consumer electronics) and second, the behavior of residents and the way 
they operate their appliances. The lack of transparency regarding the resi-
dential electricity consumption means that even people that are willing to 
save electricity are not aware of possible electricity conservation measures. 
This motivates the need for meaningful residential electricity feedback and 
guidance on how to save electricity and money. To address this situation, 
we investigated how Ubicomp technologies, which enable to digitally en-
hance physical objects with computing, sensing, and communication capa-
bilities, can help provide meaningful electricity feedback that goes beyond 
the mere visualization of consumption values and at the same time is un-
obtrusively integrated into daily life. In the remainder of this chapter, we 
will first summarize the contributions of this thesis, and then we will dis-
cuss limitations and open challenges for future work.  

5.1 Contributions 
In this thesis, we presented a user-centric approach that combines the use 
of smartphones and smart meters to demonstrate how Ubicomp can help 
foster residential energy conservation. Applying Ubicomp in the residential 
domain raises inherent challenges on how to design applicable electricity 
feedback systems that provide meaningful information. This comprises the 
components that are used to integrate the electricity feedback into people’s 
daily lives as well as the modality of information and the functionality that 
support users in their conservation efforts. In particular, the individual 
contributions of this thesis can be summarized as follows: 

 We designed, developed, and evaluated a pervasive electricity sens-
ing and feedback infrastructure that makes use of Ubicomp technol-
ogies. The resulting eMeter system combines the use of a smart me-
ter and mobile phones to provide meaningful electricity feedback on 
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a portable device in a way literature suggests. At the same time, 
the eMeter system serves as an easily extendible framework that 
can be used by other researchers for their experiments. We demon-
strated its usefulness through the implementation of three different 
user interfaces and the integration of PowerPedia – a central collab-
orative platform for appliance-specific electricity consumption feed-
back. Our evaluation of the eMeter system in a laboratory study 
and in four Swiss households confirms the real-world applicability 
and feasibility of our approach. Overall, this contribution shows 
how Ubicomp can in the future help to realize electricity feedback 
systems that feature a low usage barrier and enable users to better 
understand effective measures for conserving electricity.  

 We confirmed the suitability of mobiles phones as energy feedback 
devices in a user study with 25 participants and in a long-term real-
world deployment. For that, we specifically developed a smartphone 
application which uses the data provided by the eMeter system. 
This Ubicomp-enabled electricity feedback features real-time infor-
mation provisioning on the spot and offers interaction possibilities 
that allow users to engage with their consumption. Using this feed-
back interface, we identified which electricity feedback functionali-
ties are perceived most valuable by users and what is necessary to 
address different user types. In the long-term study, we confirmed 
that there does not exist a one-size-fits-all feedback solution, moti-
vational concepts are required to address user fatigue once the ini-
tial curiosity with the application has been satisfied, and meaning-
ful feedback that enables users to derive direct measures is required 
to foster energy conservation. 

 We developed and evaluated AppliSense, a disaggregation scheme 
that leverages the total residential electricity load measured by a 
smart meter to automatically recognize home appliances. By mak-
ing use of the interaction capabilities of the mobile phone user in-
terface, we show how Ubicomp can help simplify the otherwise 
cumbersome (and often also costly) appliance signature acquisition 
process. The specifically designed measurement functionality that is 
used for the signature acquisition method is integrated in the resi-
dent’s normal daily life. We thus addressed the need for improved 
user interfaces that allow training of recognition algorithms based 
on user feedback. The proposed disaggregation scheme also allows 
addresses technical challenges. For example, it enables taking devic-
es into account that are introduced at home after the initial system 
setup without requiring a recalibration of the disaggregation sys-
tem. A laboratory study with up to eight consecutively running de-
vices was used to confirm our proof-of-concept implementation 
achieving recognition rates of almost 90%, which is sufficient for 
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many interesting applications (e.g., an automated recommendation 
service on how to conserve energy). 

5.2  Limitations and Future Work 
In this thesis, we pursued an applied approach that focused on identifying 
and providing meaningful electricity information based on an applicable 
electricity sensing and feedback infrastructure for residential environments. 
To do so, we focused on the infrastructure perspective during the first part 
and used human computer interaction methods in other parts of this work. 
This led to a number of open issues that remain unaddressed in the con-
text of this work, but nevertheless may be interesting for future work. In 
the following, we first explain how the eMeter system can help enable au-
tomatic energy conservation, before we discuss limitations and future work 
directly related to the three contributions of this thesis. 

 Leveraging energy conservation through automation. Ubicomp 
can contribute to energy conservation through supplying users with mean-
ingful information and supporting behavioral change, but also by enabling 
automated energy savings and resource optimization. Technical measures 
like automation are often preferred by users and offer significant energy 
saving opportunities [211] that have not been investigated in this thesis. 
Indeed, automated energy savings are a desirable form of energy conserva-
tion since it can be realized in the background so that it is mostly invisible 
for users. At the same time, such savings can be achieved even at times 
when users are not present, and neither rely on users’ knowledge on how to 
conserve energy nor require behavioral change, which is hard to induce [56, 
212]. We envision leveraging residential energy efficiency through combin-
ing the meaningful feedback of the eMeter system with automated energy 
conservation [61]. Ubicomp technologies incorporated into devices can form 
networks and make use of energy data (e.g., provided by the eMeter sys-
tem) that potentially help adapt to available resources and optimize con-
sumption [39, 40]. This becomes particularly relevant in the context of 
Heating, Ventilation, and Air Conditioning (HVAC) systems. Their pene-
tration has almost tripled over the past 30 years and they account for 49% 
of the residential energy consumption in the U.S. and contribute even more 
significantly in Europe (e.g., 61% in the U.K. and 70% in Switzerland) [4, 
16, 17]. Over the past decades, the share of energy consumption from 
HVAC systems is decreasing as the technology matures and efficiency in-
creases, but a lot of energy is still wasted because HVAC systems are typi-
cally not turned off or down when occupants are sleeping or away, which 
leaves a lot of room for automated optimization [213]. For example, infor-
mation on location and velocity available from sensors integrated in the 



158 | Conclusion 

eMeter mobile phone user interface combined with the electricity and ap-
pliance use data gathered by the eMeter backend system and AppliSense 
could be used to automatically adjust heating to home occupancy and user 
preferences [41-43].  

Moreover, combining the eMeter system with networked sensors inte-
grated into appliances that enable communication and automated control 
can be used to coordinate the decision making of when and how to operate 
these appliances (e.g., time to start and mode of operation). This can ena-
ble smart grid features such as the use of renewables whenever available, 
the immediate reaction to pricing signals, and the integration of electric 
vehicles [44-50]. However, savings through automation are difficult to 
achieve and not applicable for every household [34]. Barriers, among oth-
ers, include the large variety of appliances and communication standards 
that hinders adoption [34], the different personal preferences of inhabit-
ants, the physical limitations of the environment, and high upfront costs. 
Moreover, even in fully automated systems the human factor can lead to 
so-called rebound effects29 and thus should be taken into account when 
designing such systems. More globally, there additionally exists some risk 
that ICT has only a low overall effect because positive and negative envi-
ronmental impacts partially cancel each other out when aggregated [214]. 

Advancing the eMeter system. Designing an electricity feedback in-
frastructure for residential environments ideally should take the lifetime of 
buildings into account that is typically much longer (i.e., 40 – 50 years) 
compared to the innovation cycle of today’s information technology. Up-
dating components or exchanging hardware is rather difficult in typical 
homes with mostly non-techy residents. Energy consumption feedback sys-
tems, like the eMeter system developed in this thesis, thus have to be fu-
ture-proof with respect to the installed components and communication 
protocols. We only partly addressed this issue by relying on TCP/IP and 
HTTP over WIFI for communication, which are established protocols at 
the time of the system implementation. In addition, the ongoing miniaturi-
zation of information technology might lead to web servers being incorpo-
rated in many home appliances and thus these protocols might be used 
more widely in future smart home environment. However, this can be sub-
ject to change, as hardware components become obsolete and new technol-
ogies and communication standards arise (e.g., ones that are specifically 
designed for residential areas or even for the information flow along the 
electrical grid) [34]. Moreover, the eMeter system currently is not designed 
for energy efficient communication nor trimmed to use the least power-
                                       

 
29 E.g., a person with a fuel economic car, for example, might partly compensate the sav-
ings of the technology by simply driving more, because it is now cheaper. 
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drawing hardware resources to conserve energy whenever possible. While 
the energy use of the electricity feedback system itself is without doubt 
important for commercial products, it seemed impractical to pursue this 
issue (e.g., by designing an embedded device with the amount of resources 
specifically needed or by optimizing the systems internal energy usage by 
cutting back CPU frequency or WIFI power) in the context of this work.  

Future-proofness also has to be kept in mind with respect to security. In 
particular, when looking at data communication across the electrical infra-
structure, security becomes necessary through the recently started trans-
formation towards the smart grid. Like buildings, the electricity grid is 
intended to be operated for a long time, but network security concepts and 
means (e.g., key lengths or encryption algorithms) – and the possibilities of 
attackers – change at a much faster pace [38]. Through the use of smart 
meters and the potential extension of the information flow into the home, 
security issues have to be incorporated into the design process. In the fu-
ture, security leaks also might rise from devices that primarily had nothing 
to do with the stability of the electrical grid itself. At home, interconnect-
ed smart spaces are evolving in which devices such as televisions, digital 
picture frames, Wi-Fi-enabled radios, media centers, entertainment sys-
tems, and alarm clocks make use of integrated communication interfaces 
and computing power to offer a wide range of new services [22, 33, 34, 37]. 
A virus provoking malfunction of these interconnected devices or a denial 
of service attack could lead to serious damage not only at home, but also 
at the electrical grid level (e.g., cause an unexpected grid overload) [38].  

Gathering data in the residential environment also raises a potential 
threat to privacy and as such is a tradeoff. Knowing much about the elec-
tricity consumption and the appliances used within the home may reveal 
much about occupancy state and the standard of living, but also enables 
interesting opportunities for remote services, global optimization, and sta-
bility of the electrical grid [51, 52]. We did not specifically focus on privacy 
within this thesis, but the developed eMeter system offers different com-
munication modes that are useful in this context. For example, one leaves 
most of the recorded consumption information inside the home. Communi-
cating only data that is absolutely essential with respect to the application 
scenario in mind (e.g., for billing purposes only some of the collected data 
has to be exchanged with the energy utility) might be part of the solution. 
Establishing people’s trust in the individual entities that are most proba-
bly distributed across different industries might be another difficult chal-
lenge [38]. 

Utilizing eMeter for behavioral science research. Our evaluation 
of the user interface of the eMeter system confirmed the suitability of mo-
bile phones as energy feedback devices and shows what functionality is 
valued and required by different user types. The results from the conduct-
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ed user study and the long-term deployment thus provide insights for the 
design of future residential energy saving applications. It would further be 
interesting to confirm the results in a larger trial from a behavioral science 
perspective, which offers the possibility to control the accompanying study 
conditions (e.g., has a control group, can take weather effects into account, 
etc.). Such an experiment would also allow a more detailed identification of 
the feedback preference of different user types, which is crucial for the 
large-scale success of residential energy feedback systems. Since there ex-
ists a high diversity among the targeted user base, energy saving applica-
tions have to be able to address all users adequately, regardless of their 
doubtless different personal preferences in terms of provided functionality 
and design. Thus, to effectively encourage household energy conservation 
electricity, feedback has to be tailored to specific user groups and use case 
scenarios [144].  

In addition, the eMeter system is built as an easily extendible frame-
work. It enables exposing people to a fully functioning user interface with 
a rich set of functionalities instead of relying on paper prototypes or sur-
veys. As such, it would be interesting to make further use of the system to 
quantify achievable short-term and long-term energy savings, experiment 
with different forms of visualization and functionalities, and identify what 
further motivational concepts are necessary to not only counter user fa-
tigue and establish a permanent use of the system, but also induce a pro-
environmental behavioral change of users [72, 146, 147]. Moreover, the use 
of the system can be combined with flexible energy tariffs [215-217]. So far, 
research has lacked the ability to test how users react in response to differ-
ent price structures when being supported through a portable user inter-
face that is able to provide on the spot information and interaction capa-
bilities independent of the current location of users.  

Enhancing the AppliSense disaggregation scheme. The disaggre-
gation of the overall electricity consumption to specific end uses is an open 
challenge that has been around for more than 30 years. We contributed to 
this challenge with our own disaggregation concept AppliSense that shows 
how Ubicomp can help much simplify the appliance signature acquisition 
process required for most disaggregation approaches. We evaluate our con-
cept in a laboratory study and provide first insights on the real-world ap-
plicability. Thus, it would be interesting to follow up on the results by 
testing AppliSense’s real world energy identification ratio [200] in a con-
trolled experiment and thereafter implementing the necessary refinements. 
Such an experiment would also allow for further research on the appliance 
signatures and their characteristics in dynamic real-world scenarios. For 
example, recording multiple signatures of the same appliance could help 
increase the accuracy of AppliSense. Most likely, a successful load dis-
aggregation scheme will combine a number of different approaches in the 
end [82, 90]. Indeed, we envision the extension of AppliSense by a module 
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that is responsible for identifying non-switchable heating and cooling ap-
pliances (e.g., fridge, freezer, etc.) and the combination with smart power 
outlets that measure the consumption of individual appliances that con-
tribute significantly to the residential energy bill (e.g., washer or dryer). 
From a user perspective, this should not dramatically increase the com-
plexity of the system, but help to cover large, currently unattributed parts 
of the electricity disaggregation.  

In this thesis we showed a way of how utilizing Ubicomp technologies 
enables integrating the user and a portable user interface into the dis-
aggregation process. This offers new possibilities not only during the signa-
ture acquisition process, but also during the run time of the disaggregation 
system. Unsupervised learning could be used to classify appliance switch-
ing events and prompt users for their confirmation once a certain probabil-
ity level is reached. This could substantially enhance the disaggregation 
performance. We also believe that the proposed method for signature ac-
quisition is a significant improvement compared to traditional training 
methods and can help in building a central appliance signature database. 
For example, PowerPedia that has been developed as part of this thesis 
could serve as such a central database and signatures could be transmitted 
automatically when users upload their devices. At the same time, Ap-
pliSense and PowerPedia provide a framework for an automated recom-
mendation system that derives energy conservation measures upon the 
specific load profile of the household and the operated appliances.  
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6 Appendices 

6.1 Offline User Survey 
  

© Bits to Energy Lab ETH Zürich 
 

                     

 
  

Umfrage zu Energiespar-Technologien  
und Energiespar-Dienstleistungen 
 

Bits to Energy Lab 
Lehrstuhl für Informationsmanagement, ETH Zürich 
Institut für Technologiemanagement, Universität St. Gallen  
Institut für Pervasive Computing, ETH Zürich 
 
www.bitstoenergy.ch 

Liebe Teilnehmer 
 
Der verantwortungsvolle Umgang mit Energie wird immer wichtiger. Für 
viele gestaltet sich das Energiesparen jedoch schwierig, da oft nicht 
bekannt ist, welche Massnahmen wirkungsvoll sind und welche 
Einsparungen dadurch erzielt werden können. Moderne Technologien 
und intelligente Verbrauchsanzeigen können hierbei unterstützen. 
 
Mit dieser Umfrage wird das Interesse an Produkten und Dienstleistungen 
zum Energiesparen untersucht. Es gibt keine richtigen oder falschen 
Antworten – Ihre Meinung zählt! 
 
Vielen Dank für Ihre Unterstützung. 

Version A 
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Einstellung zum Energiesparen 
 

A1. Bitte bewerten Sie folgende Aussagen:  
 

Energiesparen  

 
 
A2. Welche Massnahmen haben Sie in den letzten fünf Jahren vorgenommen?  

(Mehrfachnennungen möglich) 
 

Stand-by Verbrauch vermieden  
Energiesparlampen gekauft  
Energieeffiziente Geräte gekauft   
Energieberatung in Anspruch genommen  
Solaranlage installiert  
Heizungsanlage optimiert  
Haus / Wohnung isoliert  
Ökostrom bezogen   
Energiekostenzähler gekauft   

 
 

A3. Welche Gründe halten Sie davon ab, zu Hause noch mehr Energie zu sparen? 
 
 
 

Ich habe nicht genügend Zeit      
Ich weiss nicht, wie ich sparen kann     
Ich möchte das Geld nicht ausgeben      
Ist mir zu viel Aufwand     
Mich interessiert das Thema nicht     

ist nötig, um die Klimaerwärmung einzu-
dämmen      

ist ein gutes Mittel um Geld zu sparen     
ist selbstverständlich     
 ist wichtig, um Kindern ein gutes Vorbild 
zu sein     

 kann Spaß machen     
 sollte durch technische Innovation ge-
schehen     

 wird von Familie oder Freunden als sehr 
wichtig angesehen     

 sollte primär durch die Industrie erfolgen     

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 

Weiss nicht 
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Technologien zum Energiesparen 
Im Folgenden werden verschiedene Produkte und Dienstleistungen beschrieben, die Sie beim Energiespa-
ren zu Hause unterstützen können.  
 

Visualisierung von Energieverbräuchen 
B1. Der Stromverbrauch Ihres Haushalts kann mit Hilfe eines neuen „intelligenten“ Stromzählers 

sehr genau gemessen und gespeichert werden. Die Messwerte können auf verschiedene Art und 
Weise in Ihrem Wohnbereich angezeigt werden. So bekommen Sie ein Bild, wie viel Strom aktuell 
verbraucht wird und welche Kosten daraus resultieren. 

 
 

 
B2. Im Durchschnitt sparen Haushalte mit intelligenten Stromzählern 52 CHF pro Jahr. 

Ich würde für diese Dienstleistung pro Jahr max.                             CHF bezahlen. 

 
B3. Wo würden Sie sich die Anzeige des aktuellen Stromverbrauchs wünschen? (Nur eine Nen-

nung) 
 

Separates Display  
(ähnlich 

 Wetterstation) 
Fernseher Im Internet Mobiltelefon 

    
 

Ich finde diese Dienstleistung sinnvoll     
Ich denke, dass man mit dieser Dienst-
leistung Energie sparen kann     

Ich würde diese Dienstleistung nutzen     
Ich würde diese Dienstleistung weiter-
empfehlen     

 

Interaktives Messen 
C1. Mit Hilfe einer Mobiltelefon Anwendung können Sie den Stromverbrauch einzelner Geräte mes-

sen und unmittelbar auf dem Display Ihres Mobiltelefons ablesen.  
 
 
 

 
C2. Im Durchschnitt sparen Haushalte mit einer solchen Anwendung 85 CHF pro Jahr. 

Ich würde für diese Anwendung pro Jahr max.                            CHF bezahlen. 

 

Ich finde diese Anwendung sinnvoll     
Ich denke, dass man mit dieser Anwen-
dung Energie sparen kann     

Ich würde diese Anwendung nutzen     
Ich würde diese Anwendung weiter-
empfehlen     
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Unterstützung beim Energiesparen 
D1. Um effektiv Energie zu sparen,  ist es hilfreich zu wissen, welche Geräte besonders viel Strom 

verbrauchen und welche Massnahmen (z.B. Austausch von Geräten) dazu beitragen, Energie 
einsparen.  
 
Welche Informationen möchten Sie zusätzlich auf Ihrem Mobiltelefon angezeigt bekommen? 
 
 

 
 

 Effizienzklasse (A++,  A, B, 
C ) eines Gerätes     
 Gesamtverbrauch mehrerer zeitgleich 
genutzter Geräte     
Jährlichen Kosten, die durch ein Gerät 
entstehen     
Top fünf Geräte, die am meisten Ener-
gie verbrauchen     

Gesamtverbrauch des letzten Monats      
Vergleich mit einem durchschnittlichen 
Haushalt     
Aktueller Energieverbrauch Ihrer Freun-
de / Bekannte 

    

 andere: ____________________     

 
 

Motivation zum Energiesparen 
E1. Geräte können so gestaltet werden, dass Sie zum Energiesparen motivieren. So könnte z.B. das 

Display Ihrer Waschmaschine anzeigen, wie viel Strom und Wasser Sie mit dem Öko-
Waschprogramm bisher schon gespart haben. 
 
 
 

 
 
E2. Im Durchschnitt sparen Haushalte mit solch einer Funktion 20 CHF pro Jahr. 

Ich würde für eine Waschmaschine (ca. 1200 CHF) mit dieser Zusatzfunktion  

max.                             CHF mehr bezahlen. 

 

Ich finde diese Zusatzfunktion sinnvoll     
Ich denke, dass man mit dieser Zusatz-
funktion Energie sparen kann     
Ich würde diese Zusatzfunktion nutzen     
Ich würde diese Zusatzfunktion weiter-
empfehlen     
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Unterstützung beim Energiesparen als Dienstleistung 
 

F1. Wie wollen Sie beim Energiesparen unterstützt werden?  

 

 

 

F2. Was denken Sie, wäre die Motivation eines Energieversorgers, Ihnen die vorher beschriebe-
nen Produkte / Dienstleistungen anzubieten? 

 

 

 
 
F3. Angaben zur Person  
(Sie helfen uns, Ihre Antworten besser zu verstehen) 

 
 
 
 

 
 
 
Möchten Sie über die Ergebnisse der Umfrage informiert werden?  
 
 
Name:    ________________________      Email oder Tel. Nr.:    __________________________ 

 
Kommentare:    
 
 
 

Durch individuelle Energiespartipps      
Durch unabhängige Experten     
Durch Freunde und Bekannte      
Durch innovative Messgeräte  und Tech-
nologien     
Durch effizientere Geräte     

Er will sein Image verbessern     
Er will Geld verdienen     
Er hat echtes Interesse, dass seine Kun-
den Strom sparen      

Geschlecht: 
weiblich männlich 

  Ich bin Mieter: 
ja nein 

  

Bildungsabschluss: 
Grund-
schule Lehre Matura Hoch-

schule 
    

Alter: 
unter 18 18-25 26-35 36-49 50-70 über 70 keine    

Angabe 
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Umfrage zu Energiespar-Technologien  
und Energiespar-Dienstleistungen 

Bits to Energy Lab 
Lehrstuhl für Informationsmanagement, ETH Zürich 
Institut für Technologiemanagement, Universität St. Gallen  
Institut für Pervasive Computing, ETH Zürich 
 
www.bitstoenergy.ch 

Liebe Teilnehmer 
 
Der verantwortungsvolle Umgang mit Energie wird immer wichtiger. Für 
viele gestaltet sich das Energiesparen jedoch schwierig, da oft nicht 
bekannt ist, welche Massnahmen wirkungsvoll sind und welche 
Einsparungen dadurch erzielt werden können. Moderne Technologien 
und intelligente Verbrauchsanzeigen können hierbei unterstützen. 
 
Mit dieser Umfrage wird das Interesse an Produkten und Dienstleistungen 
zum Energiesparen untersucht. Es gibt keine richtigen oder falschen 
Antworten – Ihre Meinung zählt! 
 
Vielen Dank für Ihre Unterstützung. 

Version B 



Appendices | 169 

  

© Bits to Energy Lab ETH Zürich 
 

Einstellung zum Energiesparen 
 

A1. Bitte bewerten Sie folgende Aussagen:  
 

Energiesparen  

 
 
A2. Welche Massnahmen haben Sie in den letzten fünf Jahren vorgenommen?  

(Mehrfachnennungen möglich) 
 
 
 

Stand-by Verbrauch vermieden  
Energiesparlampen gekauft  
Energieeffiziente Geräte gekauft   
Energieberatung in Anspruch genommen  
Solaranlage installiert  
Heizungsanlage optimiert  
Haus / Wohnung isoliert  
Ökostrom bezogen   
Energiekostenzähler gekauft   

 
 

A3. Welche Gründe halten Sie davon ab, zu Hause noch mehr Energie zu sparen? 
 
 
 

Ich habe nicht genügend Zeit      
Ich weiss nicht, wie ich sparen kann     
Ich möchte das Geld nicht ausgeben      
Ist mir zu viel Aufwand     
Mich interessiert das Thema nicht     

ist nötig, um die Klimaerwärmung einzu-
dämmen      

ist ein gutes Mittel um Geld zu sparen     
ist selbstverständlich     
 ist wichtig, um Kindern ein gutes Vorbild 
zu sein     

 kann Spaß machen     
 sollte durch technische Innovation ge-
schehen     

 wird von Familie oder Freunden als sehr 
wichtig angesehen     

 sollte primär durch die Industrie erfolgen     

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 

Weiss nicht 
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Technologien zum Energiesparen 
Im Folgenden werden verschiedene Produkte und Dienstleistungen beschrieben, die Sie beim Energiespa-
ren zu Hause unterstützen können.  
 

Visualisierung von Energieverbräuchen 
B1. Der Stromverbrauch Ihres Haushalts kann mit Hilfe eines neuen „intelligenten“ Stromzählers 

sehr genau gemessen und gespeichert werden. Die Messwerte können auf verschiedene Art und 
Weise in Ihrem Wohnbereich angezeigt werden. So bekommen Sie ein Bild, wie viel Strom aktuell 
verbraucht wird und welche Kosten daraus resultieren. 

 
 

 
B2. Ich würde für diese Dienstleistung pro Jahr max.                             CHF bezahlen. 

 
B3. Wo würden Sie sich die Anzeige des aktuellen Stromverbrauchs wünschen? (Nur eine Nen-

nung) 
 

Separates Display  
(ähnlich 

 Wetterstation) 
Fernseher Im Internet Mobiltelefon 

    
 

Ich finde diese Dienstleistung sinnvoll     
Ich denke, dass man mit dieser Dienst-
leistung Energie sparen kann     

Ich würde diese Dienstleistung nutzen     
Ich würde diese Dienstleistung weiter-
empfehlen     

 

Interaktives Messen 
C1. Mit Hilfe einer Mobiltelefon Anwendung können Sie den Stromverbrauch einzelner Geräte mes-

sen und unmittelbar auf dem Display Ihres Mobiltelefons ablesen.  
 
 
 

 
C2. Ich würde für diese Anwendung pro Jahr max.                            CHF bezahlen. 

 

Ich finde diese Anwendung sinnvoll     
Ich denke, dass man mit dieser Anwen-
dung Energie sparen kann     

Ich würde diese Anwendung nutzen     
Ich würde diese Anwendung weiter-
empfehlen     

 
 

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 
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Unterstützung beim Energiesparen 
D1. Um effektiv Energie zu sparen,  ist es hilfreich zu wissen, welche Geräte besonders viel Strom 

verbrauchen und welche Massnahmen (z.B. Austausch von Geräten) dazu beitragen, Energie 
einsparen.  
 
Welche Informationen möchten Sie zusätzlich auf Ihrem Mobiltelefon angezeigt bekommen? 
 
 

 
 

 Effizienzklasse (A++,  A, B, 
C ) eines Gerätes     
 Gesamtverbrauch mehrerer zeitgleich 
genutzter Geräte     
Jährlichen Kosten, die durch ein Gerät 
entstehen     
Top fünf Geräte, die am meisten Ener-
gie verbrauchen     

Gesamtverbrauch des letzten Monats      
Vergleich mit einem durchschnittlichen 
Haushalt     
Aktueller Energieverbrauch Ihrer Freun-
de / Bekannte 

    

 andere: ____________________     

 
 

Motivation zum Energiesparen 
E1. Geräte können so gestaltet werden, dass Sie zum Energiesparen motivieren. So könnte z.B. das 

Display Ihrer Waschmaschine anzeigen, wie viel Strom und Wasser Sie mit dem Öko-
Waschprogramm bisher schon gespart haben. 
 
 
 

 
 
E2. Ich würde für eine Waschmaschine (1200 CHF) mit dieser Zusatzfunktion max.                             

CHF mehr bezahlen. 

 

Ich finde diese Zusatzfunktion sinnvoll     
Ich denke, dass man mit dieser Zusatz-
funktion Energie sparen kann     
Ich würde diese Zusatzfunktion nutzen     
Ich würde diese Zusatzfunktion weiter-
empfehlen     

  

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 
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Unterstützung beim Energiesparen als Dienstleistung 
 

F1. Wie wollen Sie beim Energiesparen unterstützt werden?  

 

 

 

F2. Was denken Sie, wäre die Motivation eines Energieversorgers, Ihnen die vorher beschriebe-
nen Produkte / Dienstleistungen anzubieten? 

 

 

 
 
F3. Angaben zur Person  
(Sie helfen uns, Ihre Antworten besser zu verstehen) 

 
 
 
 

 
 
 
Möchten Sie über die Ergebnisse der Umfrage informiert werden?  
 
 
Name:    ________________________      Email oder Tel. Nr.:    __________________________ 

 
Kommentare:    
 
 
 

Durch individuelle Energiespartipps      
Durch unabhängige Experten     
Durch Freunde und Bekannte      
Durch innovative Messgeräte  und Tech-
nologien     
Durch effizientere Geräte     

Er will sein Image verbessern     
Er will Geld verdienen     
Er hat echtes Interesse, dass seine Kun-
den Strom sparen      

Geschlecht: 
weiblich männlich 

  Ich bin Mieter: 
ja nein 

  

Bildungsabschluss: 
Grund-
schule Lehre Matura Hoch-

schule 
    

Alter: 
unter 18 18-25 26-35 36-49 50-70 über 70 keine    

Angabe 
       

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme gar  
nicht zu 

Stimme  
voll zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 

Stimme eher  
nicht zu 

Stimme  
eher zu 
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User Study zu innovativen  
Strommesstechnologien und  
portablem Feedback zum Stromverbrauch 

Bits to Energy Lab 
Lehrstuhl für Informationsmanagement, ETH Zürich 
Institut für Technologiemanagement, Universität St. Gallen  
Institut für Pervasive Computing, ETH Zürich 
 
www.bitstoenergy.ch 

Liebe Teilnehmer 
 
In dieser Studie werden drei verschiedene Technologien zur Messung des 
Energieverbrauchs von Haushaltsgeräten getestet. 
 
Der Ablauf ist wie folgt: 

1) Zunächst werden Sie gebeten, den Verbrauch von verschiedenen 
Geräten mit Hilfe von drei unterschiedlichen Technologien zu messen. 
Danach bitten wir Sie, einen kurzen Fragebogen zur Bewertung der 
drei Technologien zu beantworten. 

2) Als nächstes werden Sie, anhand verschiedener Aufgaben, gebeten, 
einen mobilen Energiemonitor auf dem iPhone zu bewerten. 

3) Zum Schluss bitten wir Sie noch um einige persönliche Angaben 
 
Das genaue Vorgehen erklärt Ihnen der Versuchsleiter. 
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Teil 1: Vergleich von Technologien zur Messung  
des Energieverbrauchs 

 
 
 
A0 Bitte tragen Sie die Messergebnisse in folgende Tabelle ein: 
 
 
 
 

Technologie 1 
Verbrauch Gerät 1 Verbrauch Gerät 2 Standby – Verbrauch Kombinierter Verbrauch 

 
 
 

   

 
 
 
 

Technologie 2 
Verbrauch Gerät 1 Verbrauch Gerät 2 Standby – Verbrauch Kombinierter Verbrauch 

 
 
 

   

 
 
 
 

Technologie 2 
Verbrauch Gerät 1 Verbrauch Gerät 2 Standby – Verbrauch Kombinierter Verbrauch 
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A1. Bitte ordnen Sie die drei Technologien gemäss Ihres Gesamteindrucks, indem Sie Ihre 1. Wahl 
mit 1, Ihre zweite mit 2 und Ihre dritte mit 3 bewerten. 
 
 iPhone Applikation  
 Click 
 Wattson 

 
 
A2. Bitte ordnen Sie die drei Technologien nach ihrer Verständlichkeit (= Sie wussten zu jedem Zeit-

punkt, was zu tun ist), indem Sie Ihre 1. Wahl mit 1, Ihre zweite mit 2 und Ihre dritte mit 3 bewer-
ten. 

 
 Click 
 Wattson 
 iPhone Applikation  

 
 

A3. Bitte ordnen Sie die drei Technologien nach dem Komfort der Messung (= Der Aufwand für die 
Messung war gering), indem Sie Ihre 1. Wahl mit 1, Ihre zweite mit 2 und Ihre dritte mit 3 bewer-
ten. 
 
 Wattson 
 iPhone Applikation  
 Click 

 
 

A4. Bitte ordnen Sie die drei Technologien nach ihrer optischen Attraktivität, indem Sie Ihre 1. Wahl 
mit 1, Ihre zweite mit 2 und Ihre dritte mit 3 bewerten. 

 
 iPhone Applikation  
 Wattson 
 Click 

 
 

A5. Bitte ordnen Sie die drei Technologien nach dem Spass bei der Nutzung, indem Sie Ihre 1. Wahl 
mit 1, Ihre zweite mit 2 und Ihre dritte mit 3 bewerten. 

 
 Click 
 iPhone Applikation  
 Wattson 

 
 
A6. Haben Sie schon einmal einen Energiekostenzähler benutzt? 
  Ja, welchen ____________________ 
  Nein 
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A7 Stellen Sie sich vor, Sie messen nach dem Kauf eines Messgeräts die wichtigsten Verbraucher 
ihres Haushalts, um “Stromfresser“ zu finden und verwenden das Messgerät danach regelmäs-
sig (z.B. monatlich, um neu gekaufte Geräte zu inventarisieren). 

 
Bitte bewerten sie die folgenden Kriterien nach Ihrer persönlich wahrgenommenen Wichtigkeit! 
 
 
 

 
 
A8 Bitte ordnen Sie die oben genannten Kriterien noch nach ihrer Wichtigkeit (d.h. das wichtigste 

Kriterium bekommt eine 1, das zweite eine 2 etc.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
A9. Welche der drei Messtechnologien würden Sie kaufen? (nur eine Auswahlmöglichkeit) 
 
  Click 
  Wattson 
  iPhone Applikation 
  gar keine! 
  

Design      
Genauigkeit      
Verständlichkeit      
Verfügbarkeit      
Komfort der Messung      
Spass bei der Nutzung      
Erlernbarkeit      
Preis      
Zeit, bis Feedback angezeigt wird      

 Design 

 Genauigkeit 

 Verständlichkeit 

 Verfügbarkeit 

 Komfort der Messung 

 Spass bei der Nutzung 

 Erlernbarkeit 

 Preis 

 Zeit, bis Feedback angezeigt wird 

gar nicht 
wichtig 

sehr 
 wichtig 
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Teil 2: 
Leitfaden zur iPhone Applikation 
 
Nun möchten wir Sie bitten, eine Reihe von Aufgaben mit Hilfe der iPhone Applikation zu lösen um folgende 
Fragen zu beantworten. 
Die Applikation besteht aus 4 Hauptansichten. Die erste zeigt eine Übersicht über den aktuellen Verbrauch 
in Echtzeit, die zweite Ansicht stellt Historische Verbräuche dar und vergleicht diese mit den verursachten 
Kosten. Die dritte Ansicht gibt einen Überblick über die bereits gespeicherten Messerwert und die vierte 
Ansicht ermöglicht das Messen und abspeichern einzelner Geräte.  
 
1) Bestimmen Sie den aktuellen Gesamtverbrauch. 

 
____________________________________ Watt 
 
 

 
2) Wofür stehen Ihrer Meinung nach die Farben des Tachos? 
 

___________________________________________________________________________________ 
 
___________________________________________________________________________________ 
 
___________________________________________________________________________________ 
 
___________________________________________________________________________________ 

 
 
 

3) Wann war der Verbrauch innerhalb der letzten 5 Wochen am größten? 
 

___________________________________________________________________________________ 
 
 
 

4) Welche Kosten waren damit verbunden? 
 

___________________________________________________________________________________ 
 

 
 

5) Vergleichen Sie den Energieverbrauch der letzten Woche mit dem eines typischen Haushaltes 
ihrer Größe! 
 
___________________________________________________________________________________ 
 
___________________________________________________________________________________ 
 
 
 

6) Messen Sie einen beliebigen Verbraucher und speichern Sie ihn als neues Gerät mit Bild, Namen 
und geschätzter Nutzungsdauer ab. Schauen Sie in der Geräteübersicht nach ob Sie das Gerät 
abgespeicherte Gerät wieder finden.  
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Fragen zur Mobilfunk-Applikation 
 
 
B1.  Komplexität 

Bitte kreuzen Sie an. 
 
 
 
Die Applikation ist mir insgesamt 
technisch zu anspruchsvoll.      
Die Zeit, die bis zur Anzeige des 
Messwertes verstreicht, ist zu lang      
Die Anzeige des Gesamtverbrauch-
tachos ist verständlich.       
Es viel mir leicht die historischen 
Verbräuche den Kosten zuzuordnen.      
Die Messfunktion ist einfach und in-
tuitiv bedienbar.       
Das abspeichern eines Geräts fällt 
mir leicht.       
 
 
B2. Funktionen 

Bitte bewerten Sie, wie wichtig für Sie die folgenden Funktionen sind. 
 
 
 

Anzeige des Gesamtverbrauchs       
Anzeige des Standby-Verbrauchs des 
Haushalts       
Vergleich des aktuellen Verbrauchs 
mit dem historischen Verbrauch      
Übersicht über den Verbrauch der 
letzten Monate      
Kosten der letzten Monate      
Stromverbrauch einzelner Geräte      
Kosten einzelner Geräte      
Hochrechnung auf jährliche Kosten 
einzelner Geräte      
Effizienzklasse einzelner Geräte      
Übersicht über die größten Strom-
fresser      
Vergleich mit anderen(z.B. Freunden)      
Möglichkeit, anderen zu zeigen, wel-
che Geräte ich verwende      

Möglichkeit ein Sparziel zu setzen      
 
 
 
 

gar nicht 
wichtig 

sehr 
 wichtig 

stimme gar 
nicht zu 

stimme  
voll zu 
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B3. Angenommen, Sie dürften sich nur DREI Funktionen auswählen, welche wären dies? 
Bitte kreuzen Sie an. 
 

 Anzeige des Gesamtverbrauchs  

 Anzeige des Standby-Verbrauchs des Haushalts  

 Vergleich des aktuellen Verbrauchs (sekundengenau) mit dem 
historischen Verbrauchs 

 Übersicht über den Verbrauch der letzten Monate 

 Kosten der letzten Monate 

 Stromverbrauch einzelner Geräte 

 Kosten einzelner Geräte 

 Hochrechnung auf  jährliche  Kosten einzelner Geräte 

 Effizienz einzelner Geräte 

 Übersicht über die größten Stromfresser 

 Vergleich mit anderen (z.B. Freunden) 

 Möglichkeit, anderen zu zeigen, welche Geräte ich verwende 

 Möglichkeit ein Sparziel zu setzen 

 
 
B4. Welche Funktionen wünschen Sie sich noch zusätzlich? 

 
___________________________________________________________________________________ 
 
 

B5. Einstellung zur Applikation 
 Bitte bewerten Sie, wie wichtig für Sie die folgenden Funktionen sind. 

 
 
 
 

Die Applikation wird mir dabei helfen, 
Energie zu sparen.      
Die Applikation wird mir dabei helfen, Geld 
zu sparen.      
Die Applikation erhöht mein Wissen, über 
den Verbrauch einzelner Geräte      
Es macht Spaß, die Applikation zu nutzen.      
Mit der Applikation kann ich anderen zei-
gen, dass ich Gutes tue.      
Die Applikation ist nutzerfreundlich.      
Die Bedienung ist einfach zu lernen.      
Ich bin insgesamt sehr zufrieden mit der 
Applikation.      
Ich würde die Applikation gerne meinen 
Freunden zeigen.      

Stimme gar 
nicht zu 

Stimme voll 
zu 
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B6. Nutzungsabsicht 
 Bitte kreuzen Sie an. 
 
 
 
 
Ich würde die Applikation mindes-
tens einmal im Monat nutzen      
Ich würde die Applikation mindestens 
einmal in der Woche nutzen      
Ich würde die Applikation gar nicht 
nutzen      
Ich würde die Applikation eher als ein 
Webportal mit gleichen Funktionen 
nutzen 

     

 
 
B7. Stellen Sie sich vor, Ihr Energieversorger würde eine solche iPhone Applikation kostenfrei für 

ihre Kunden anbieten. Wie beurteilen Sie dazu die nachfolgenden Aussagen? 
 
 
 
 

 
 
B8. Wie viel würden Sie für die iPhone Applikation bezahlen? 
 
  gar nichts 
  bis 5 CHF 
  bis 10 CHF 
  bis 20 CHF 
  über 20 CHF 
  

Ich würde meinen Freunden und Kol-
legen von diesem Energieversorger 
erzählen. 

     

Ich würde bei dem  Energieversorger 
bleiben wollen, der mir derartige mo-
bile Services anbietet, selbst wenn er 
geringfügig teurer ist als die Konkur-
renz. 

     

Ich hätte Bedenken, dass diese An-
wendung meine Stromkosten unnötig 
erhöhen würde. 

     

Ich würde die Applikation gerne im 
Rahmen eines Servicepakets nutzen 
und wäre bereit einen kleinen monat-
lichen Aufpreis zu zahlen. 

     

Stimme gar 
nicht zu 

Stimme  
voll zu 

Stimme gar 
nicht zu 

Stimme  
voll zu 
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Teil 3: 
Angaben zur Person  
(Sie helfen uns, Ihre Antworten besser zu verstehen) 
 
 

 
 
 
 

 
 
C1.  Was ist Ihre Position? 
 
  selbstständig 
  Angestellte/r 
  leitende/r Angestellte/r 
  Rentner/in 
  Student/in 
 
 
C2.  Besitzen Sie ein iPhone? 
 
  Ja, seit __________ Monaten 
  Nein 
 
 
C3.  Besitzen Sie ein anderes Smart Phone? (HTC, Android, etc.) 
 
  Ja, seit ___________ Monaten 
  Nein  
 
 
C4.  Wie oft nutzen Sie Ihr Mobiltelefon? 
 
  Mehrmals pro Stunde  
  1 x pro Stunde  
  Mehrmals am Tag  
  1x pro Tag 
  Mehrmals pro Woche 
  1 x pro Woche 
  seltener 
 
 
 
 
 
 

Geschlecht: 
weiblich männlich 

  

Alter: 
unter 18 18-25 26-35 36-49 50-70 über 70 keine    

Angabe 
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C5.  Wie hoch sind im Schnitt Ihre monatlichen Handygebühren? 
 
  Weniger als 20 CHF 
  20 bis 50 CHF 
  50 bis 100 CHF 
  Mehr als 100 CHF 
 
 
C6. Wie gross ist Ihr Interesse an Ihrem Energieverbrauch auf einer 

Skala von 1 (wenig) - 10 (viel)? 
 
 ___________ 
 
 
C7.  Technologieeinstellung 
Bitte kreuzen Sie an! 
 
 
Freunde und Kollegen fragen mich oft 
nach meiner Meinung zu neuen Tele-
kommunikationstechnologien. 

     

Meine Freunde und Kollegen wissen 
meist besser über neue Technologien 
Bescheid als ich. 

     

Ich bin bei technologischen Neuent-
wicklungen in meinem Interessenge-
biet immer auf dem Laufenden. 

     

Es macht mir Spaß, neue Technolo-
gien auszuprobieren.      
 
 
C8. Wie oft haben Sie die folgenden Aktionen IM LETZTEN JAHR durchgeführt? 

Bitte kreuzen Sie an. 
 
 
 
Im letzten Jahr habe ich  

  

überlegt, wie man Dinge wiederver-
wenden kann       
Zeitungen recycled      
Dosen und Flaschen recycled      
Freunde und Familie ermutigt, zu 
recyceln      
Produkte mit recycelbaren Verpa-
ckungen gekauft      

fremden Müll aufgehoben      
Essensabfälle kompostiert      
Benzin gespart, indem ich gelaufen 
oder mit dem Fahrrad gefahren bin      

stimme gar 
nicht zu 

stimme  
voll zu 

 
nie 

 
sehr oft 
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