
WebPlug: A Framework for the Web of Things

Benedikt Ostermaier∗, Fabian Schlup∗, Kay Römer∗†
∗Institute for Pervasive Computing, ETH Zurich, Zurich, Switzerland

Email: ostermaier@inf.ethz.ch, fschlup@alumni.ethz.ch, roemer@inf.ethz.ch
†Institute for Computer Engineering, University of Luebeck, Luebeck, Germany

Email: roemer@iti.uni-luebeck.de

Abstract—We present WebPlug, a framework for the emerg-
ing Web of Things. It consists of several building blocks which
ease integration of things, including their sensors and actuators
with the Web. For example, WebPlug supports versioning of
and eventing for arbitrary Web resources, like sensor readings,
thus simplifying the process of creating physical mash-ups.
After providing an analysis that led to the development of
WebPlug, we present selected aspects of its design. We complete
the paper by presenting the application of our framework in
a real-world scenario.

I. INTRODUCTION

In the emerging Web of Things, the Web is extended from
its original document-centric design to an application layer
for the real world. In this yet-to-be-standardized concept,
real-world objects like consumer devices are integrated into
the WWW by representing them as Web resources, which
can be accessed using lightweight APIs based on the REST
principle [1]. Exposing real-world objects – including their
attached sensors and actuators – as URLs enables novel
application scenarios, like the search for real-world entities
by their current state [2].

In the Web of Things, sensors and actuators play a central
role, as they constitute the physical interface between the
digital and the real world: They enable us to capture and
change aspects of the real world, often in real time. The
idea of providing end-users the ability to compose personal
services based on physical objects, so-called physical mash-
ups, is addressed in this paper. To this end, we developed
a prototypical framework for the Web of Things which
does not rely on a centralized infrastructure but rather
introduces several building blocks. These components could
be distributed among connected devices but could also
be located in the cloud. The emphasis is on integrating
sensors and actuators with the Web of Things. Due to
space constraints, we can only cover selected aspects of our
framework. Therefore, although considered important and
also implemented in part, we have to omit aspects like self-
description, discovery and security. For more information we
refer to [3].

We start by providing a short analysis of the requirements
of such a framework in the next section. We then introduce
selected aspects of our framework in Sect. III and present
the application of our framework in a real-world scenario

in Sect. IV. The paper is completed with a brief survey on
related work in Sect. V and an outlook in Sect. VI.

II. ANALYSIS

The Web of Things should not be restricted to domain
experts of specific application areas, but rather be open to
the average user. We believe that looking at past or current
sensor readings (e.g., “Did I lock the garage door?”) and
creating personal mash-ups which include physical objects
(e.g., “I want to be alerted as soon as one of my plants is
in a critical condition.”) will be a commonplace operation.
By gently extending the Web to things, users could benefit
from their already acquired knowledge and things could be
integrated seamlessly with the existing Web infrastructure,
like cloud services.

As one might often be interested not only in the current
but also in past states of a sensor (e.g., “When was the
last time someone accessed my drawer?”), we argue that
there is a need to archive and make available past sensor
readings. Additionally, filtering or querying past sensor
states is required in order to be able to automate certain
processes. The effort required to automate a process has to
be minimized by providing a homogeneous resource-based
Web framework instead of requiring the user to learn yet
another Web API for the same purpose (e.g., retrieving past
sensor readings) or even switching to another concept (e.g.,
SOAP).

Instead of creating complex web services for each spe-
cialized requirement, more complex mash-ups should be
composed of simple building blocks, a concept which has
proven its benefits with Unix pipes, for example. To this
end, we believe that modelling everything as a resource is
a good strategy for modularization, as it eases access and
fosters the creation of mash-ups. URLs play an important
role in a future Web of Things – we see them as vectors
through information space, containing semantic hints for the
user.

III. DESIGN

We outline the most important concepts and design de-
cisions in WebPlug that were guided by the goal to enable
easy and safe composition of simple components (developed
by multiple, independent parties) into complex applications.



A. Basic Operations

In our system, we limit the use of HTTP verbs to PUT,
GET, POST and DELETE, which map to creating, read-
ing, updating, and deleting data (CRUD). Additionally, the
HEAD operation is supported as a reduced version of GET,
where only the headers of the corresponding GET response
are returned. PUT creates a new resource which is specified
by the supplied request URI and stores the enclosed data,
whereas POST updates an existing resource. If a resource
is versioned, each POST operation creates a new version of
the resource. We do not introduce additional HTTP verbs as
CalDAV [4] does, for example, in order to keep the system
open for all clients.

B. Typed Resources

In a modular system as WebPlug, explicit typing of com-
ponents helps to ensure meaningful compositions. Therefore,
each resource in our framework has an associated resource
type. It is not just descriptive, as in DCMI [5], but also
specifies semantics and provides support for ontologies. The
resource type specifies the behavior of the resource, its
interface and may also provide a description of the real-
world concept, if applicable. Resource types are identified
by URLs and included in the headers of an HTTP request or
response, specified by a header called Resource-type.
The resource type is orthogonal to the well-known content
type, which specifies only the type of representation of the
resource. The concept of typed resources has a broader
scope than HTTP’s OPTIONS method and is more flexible:
For example, one could imagine a service which would
consider the Resource-type header in a PUT request
and create a resource of the specified type at the given
location. We currently support objects, collections, atomic
values, text, quantities, references (URL pointer), and binary
data. Resource types are also utilized during discovery,
where the querying entity can automatically retrieve the
type specifications of discovered resources. Due to space
constraints, we omit the definition format of resource types.

C. Collections

Dealing with collections of values (such as sensor read-
ings) is a common task in WebPlug, which therefore offers
a collection resource that represents a set of items and can
contain resources of any type.

Collections may be represented in a variety of formats,
including Atom feeds, JSON arrays, HTML and CSV.
In addition, special-purpose representations are possible,
depending on the nature of the contained elements. For
example, collections of numeric values can be represented
graphically as a diagram depicting the values on a time axis
according to the time they have been created or inserted into
the collection, which is very helpful for sensor readings.

Each member of a collection is identified by a unique
string that can be used to build its individual URL by

appending the string as an additional segment to the col-
lection’s URL. Resources are added to the collection by
POSTing them to the collection URL, which will return the
newly created URL of the item in the Location header
of the HTTP response. Items of a collection can be fetched,
updated and deleted using GET, POST and DELETE with
the item’s URL. This is similar to the access patterns for
collections proposed as part of the Atom Publishing Protocol
(APP) [6]. GET and DELETE can also be used on the
collection URL.

For example, when adding the URL http://stuff/officekeys
to the collection http://drawer/contents, it could return
http://drawer/contents/23 as the URL for the item in the
collection.

There is also an index-based view on the items of a
collection, based on the order of their creation starting with
index 1. The special indices first and last are also supported,
each offering the possibility to be used with an optional
offset in the form first + n and last − n respectively. In
order to distinguish these special URLs from others, a prefix
i: is used, followed by the index. Finally, the special property
count can be accessed by adding the name as a segment to
the collection’s URL, yielding the number of items in the
collection.

Assuming we want to identify the nineteenth and the
penultimate item that have been added to a fridge, and the
total number of items, we would write:

http://my.fridge.net/contents/i:19
http://my.fridge.net/contents/i:last-1
http://my.fridge.net/contents/count

D. Meta-URLs

Resources are often intimately connected with each other.
For example, the history of a resource is intrinsically tied to
the original resource. To this end, we introduce the Meta-
URL concept to access such meta resources of a given
resource by appending a well-defined term to the URL of
the base resource, separated by the delimiter @, which acts
as escape character.

For example, by appending the term @history to a
given URL, we will address the list of past versions of
the resource denoted by the base URL. In our use case,
http://acme/lamp/power@history will provide the history of
http://acme/lamp/power, i.e., the usage history of the lamp.

While this conflicts with the opacity axiom of URIs, which
states that one should not interpret the internal contents of
the URI, it adds advantages over the usual approach (which
would be linking from the base resource). First, users can
instantly deduce the Meta-URL from a given base URL in
the browser. Second, and more importantly, Meta-URLs may
also be stacked: http://acme/lamp@accesscontrol@history
might provide a versioned list of past access control settings
for http://acme/lamp.



E. History

In sensor-based applications, keeping track of a history
of past sensor readings is a common task. Web feeds have
been proposed [7] to be used to represent streams of sensor
data. In our framework, this approach is taken one step
further by introducing a generic concept of history keeping
for any type of resource, whether it is a sensor measurement,
a picture, or other document. It is based on the idea of
each resource making available a list of its previous values
in form of a separate resource, addressed by the Meta-
URL composed of the base resource’s identifier and the
suffix @history. The history is a read-only collection
type resource and is represented and accessed like any other
collection in the system. For example, to access the penul-
timate reading of a temperature sensor, one could access
http://my.thermometer.net/temperature@history/i:last-1.

F. Observing Resources

POST /lightswitch/status@observers HTTP/1.1

Host: http://example.net

Content-Type: text/uri-list

http://example.net/light/power

POST /light/power HTTP/1.1

Host: http://example.net

Referer: http://example.net/lightswitch/status

Content-Type: text/plain

true

Figure 1. Example of how an observer is added to a resource (top) and
how that resource notifies its observers when its value changes (bottom).

A key mechanism to enable composition of components
is to inform a component about state changes (i.e., events) in
another component. Similar to the concept of webhooks [8],
our eventing mechanism is based on URL callbacks, where
a URL registered with a specific event is notified as soon as
this event occurs.

In our approach, an event is always the change of data
identified by a web resource. Observable resources are
resources which support subscriptions to changes in their
associated data. Observers are URL callbacks which are
subscribed to one ore more observable resources. Note that
any resource which supports the POST operation may act as
an observer and that multiple observers may be subscribed
to a single observable resource. As soon as the data of
an observable resources changes, all registered observers
are notified by sending a POST request to the respective
URLs. For each observable resource, there is an associated
resource which represents the list of registered observers.
The URL of this collection is a Meta-URL which can be
deduced by appending the term @observers to the URL of
the observable resource.

For example, consider an observable resource which re-
ports the state of a door, http://myhome.org/frontdoor/status.

As soon as the door is opened, the data asso-
ciated with this resource changes from “closed” to
“open” and all associated observers are notified. The
list of observers for this sensor can be accessed at
http://myhome.org/frontdoor/status@observers. As the list
of observers is a collection resource, the interaction is well-
defined: an observer is added by submitting its URL with a
POST request to the list, and removed again by sending a
DELETE to the URL of the entry (see Fig. 1 for an example
of a subscription and event call). One can also retrieve the
list of all observers using a GET request on the list.

Notifications come in two different forms, depending on
the type of the observed resource. Simple types (including
text and quantities) and references are passed by value,
sending the new value directly to the observer as payload of
an HTTP POST message. Objects, collections, and binaries,
where the actual value is potentially large, are passed by
reference by sending a URL pointer. The URL used for this
purpose is pointing to the corresponding record in the history
(e.g. http://example.net/p1@history/37845 for notifications
of a change in http://example.net/p1) because this is a stable
address identifying the exact version of the value.

When sending out notifications to observers, the URL of
the resource triggering the event is included in the message
in form of the standard Referer header. This gives observers
the possibility to determine where an update originates in
the case they are subscribed to multiple resources.

Note that by introducing intermediary hubs (as in [9],
for example), which relay a single notification to multiple
observers, we expect the concept of URL callbacks to scale
to large numbers of observers and notifications.

G. Expressions

Connecting components typically requires some glue
logic. Expressions provide a simple form of such glue logic
by enabling the evaluation of an arithmetic expression in
the context of an object. The URL of such an expression is
constructed appending the expression to the object URL. For
example, the resource http://my.fridge.net/temperature>10
will return true if http://my.fridge.net/temperature is cur-
rently above 10°C, false otherwise (the “>” sign needs to
be escaped, which is done automatically by most browsers).
Note that observers can also be registered with expressions.
Due to space constraints, we omit further details on expres-
sions.

H. Poller

In order to be able to provide push-functionality for non-
observable resources, i.e., resources outside of our frame-
work, we introduce a component called poller. A poller is
a virtual entity that fetches a specified resource in the Web
periodically and publishes its value as an own, observable
property. Every time the resource is retrieved, its value is
compared to the previous one and the registered observers



/source

Poller

/interval

/value /text

Display
pull

http://account.net/balance

5000

CHF 1’763.45

http://account.net/balance

CHF 1‘763.45

http://pollers.net/myBalancePoller http://home.net/display

push

Figure 2. Illustration of a poller.

are notified if it has changed in the meantime. Pollers are de-
signed as virtual objects with three properties corresponding
to the source to be fetched, the interval in which to do it and
the last value retrieved. Users interested in subscribing to a
given Web resource which does not support the registration
of observers, can use a poller to achieve their goal: they set
the source property to the URL of the resource of interest,
specify the desired polling interval in the interval property
and add their observer to the value property (Fig. 2).

Pollers are active components that produce new events
without receiving any from another component. In this sense,
they are much like sensors and – in fact – can be thought
of as virtual sensors that are ”sensing” a Web resource in a
given interval and make the result available as their output.

I. Evaluator

Raw sensor data typically needs to be processed to obtain
a derived value which is then used as the input to an-
other component. Examples include checking measurements
against a threshold or the detection of motion in a series of
images. Furthermore, there must be a way of combining
multiple inputs from different sources into one aggregated
result. The generic solution presented here is based on a vir-
tual component called evaluator, which takes one or multiple
inputs and produces a single output by evaluating an external
function. It is designed as a virtual object with at least three
properties: one or more inputs, one function reference, called
function, and one evaluation result, called value. As soon as
one of the input properties is updated with a new value, all
the inputs are taken to reevaluate the specified function and
the value of the result property is updated accordingly. As
illustrated in Fig. 3, the input properties are registered as
observers to the web data sources, the function is specified
by a URL, and the target resource subscribes to the output
of the evaluator.

Functions supported by the evaluator need to be stateless,
RESTful services producing a result from a set of arguments
without side effects. A function is evaluated by constructing
a URL including the input parameters and retrieving a
representation of this resource by an HTTP GET request.

An evaluator’s function property is used to specify the
template for the construction of the function URL. For this,
the format known as URI templates [10] is used, where
placeholders wrapped in curly brackets are included in a

URL string. Evaluators offer the possibility to use any of
its properties as a variable in the template by including a
placeholder with its local path name. The following example
illustrates a URL template for a service checking whether
the temperature input property exceeds a given threshold.
Every time the value of the temperature property changes,
the evaluator would replace the placeholder with the new
value and GET the constructed URL.

http://services/isOver?value={temperature}&threshold=23

Due to the possibility to use any property as a variable
in the template, it is even possible to include the previous
result, or a historic value of any property. The following
example shows how one could check whether the last two
versions of an input value named temperature are equal.

http://services.net/isEqual?a={temperature@history/last}
&b={temperature@history/last-1}

IV. IMPLEMENTATION

We implemented a prototype of our framework in Java,
using the RESTlet engine. Additionally, we implemented a
subset of the functionality on a Nokia N95 mobile phone,
using Python for S60 (PyS60) and the Nokia Mobile Web
Server.

Our framework supports resource factories, where an
entire pool of virtual components like pollers and evalua-
tors can be hosted. Such a pool behaves like a collection
containing only virtual components of a given type. For
example, in order to create a new poller, one POSTs its
desired configuration to http://wot/pollers and the new poller
might be created at http://wot/pollers/534, which is returned
to the user.

We will now demonstrate the usage of our framework for
a real-world example consisting of several components.

A. Application Example

Our objective is to create a simple motion detection
system, using a standard webcam with our framework. To
notify the user of any activity detected by the camera, his or
her cell phone should signal it with a short vibration. It is
obvious that in order to achieve the outlined functionality,
we cannot connect the camera directly to the mobile but
rather need some intermediary components.



/temp

Thermometer

temp1

Evaluator

function

value

Web Service

http://services.net/avg

13 °C

/temp

Thermometer

17 °C

http://sensors.net/temp2
http://evaluators.net/myAvgTempEvaluator

http://home.net/display

http://sensors.net/temp1

temp2

/temp1

/function

/value

/temp2

13 °C

http://services.net/avg?a={temp1}&b={temp2}

15 °C

17 °C

/text

Display

Figure 3. Illustration of an evaluator.

1) Components: The scenario consists of the following
components:

• A standard webcam, which publishes its current image
at a known URL.

• A poller, which creates an image sensor based on the
images of the webcam, adding observability and history
for its readings.

• An evaluator, which calls a RESTful web service with
two subsequent images of the webcam as soon as a new
image is present and publishes the result.

• A RESTful web service, which compares the similarity
of two images which are given as parameters using
URL-pointers. It returns a number between 0 (identical
images) and 1 (completely different images), which
serves as an activity metric.

• A RESTful mobile phone, which allows access to parts
of its functionality using RESTful services.

2) Setup: Let us assume the webcam publishes its
current image at http://webcam.org/image.jpg. At first,
we have to create an instance of a poller and set its
properties accordingly. Assuming the poller is located at
http://wot/pollers/001, we set http://wot/pollers/001/source
to http://webcam.org/image.jpg, and
http://wot/pollers/001/interval to 500, using POST
operations. The poller will then download the webcam
image every 0.5 seconds and publish the latest image at
http://wot/pollers/001/value. Additionally, observability and
versioning are provided for the value property.

Next, we have to set up an evaluator for
use with the image comparison service. Let us
assume that the comparison service is called with
http://services.net/imgcmp?a=<image1>&b=<image2>,
where a and b are assigned the URLs of the images
to compare. Let us further assume that the evaluator
is created at http://wot/evaluators/001. We need to set
its function property to a URI template which calls the

image comparison service using the URLs of the two
latest images of the webcam. This is done by setting
http://wot/evaluators/001/function to

http://services.net/imgcmp?a={picture}
&b={picture@history/i:last-1}.

The definition of the function template automatically cre-
ates an input property for the evaluator called picture,
which we connect to the output of the poller by register-
ing an observer: http://wot/evaluators/001/picture is added
to http://wot/pollers/001/value@observers. As soon as the
property picture of the evaluator is updated, the component
expands the URI template of the function and performs a
GET operation on the resulting resource.

Recall that when observing complex resource types like
images, notifications do not include serialized data but rather
a permanent URL to the corresponding data. Therefore, as
soon as the poller is publishing a new image, the evaluator’s
input property picture is updated with the URL of the latest
image. When this happens, the evaluator will then evaluate
the template, by replacing the template variables with the
current values. In our example, this might lead to a call like

http://services.net/imgcmp
?a=http://wot/pollers/001/value@history/7364

&b=http://wot/pollers/001/value@history/32734,

for example (URL encoding omitted for readability). The
evaluator’s value property is then updated with the cur-
rent activity measure of the webcam. In order to let the
mobile phone vibrate as long as an activity is detected,
we register an observer for the phone’s vibration actuator
by adding http://myphone/vibrating to the observer list at
http://wot/evaluators/001/value>0.1@observers. This way,
two events may be generated: one when the current output
value of the evaluator exceeds 0.1 – in this case, “true”, the
result of the expression, is sent to the URL of the phone’s



/source

Poller

/interval

/value

/picture

Evaluator

/function

/value

/name

N95

/vicinity

/vibrating

/saying

/playing

Image 

Comparison

> 0.1
polling

http://services.net/imgcmp?a={picture}&b={picture@history/i:last-1}

http://webcam.org/image.jpg http://wot/pollers/001 http://wot/evaluators/001

http://myphone

JPG

Figure 4. A physical mash-up which realizes a motion detection system based on a webcam.

vibration alert. As soon as the activity drops below the
threshold, the state of the expression changes and therefore
its result (“false”) is POSTed to the phone’s vibration
actuator, causing it to stop.

The complete setup is depicted in Fig. 4. Note that it
may be configured using the built-in web front-end of our
framework as well as its RESTful API. As we can see
from this example, the flexible use of observers allows a
piped, distributed execution of the given task “in the cloud”
– there is no central program which specifies this task,
instead both program flow and state are distributed among
the participating components.

V. RELATED WORK

We are aware that many of the concepts considered in this
paper have already been addressed by the Web community.
However, we believe that our uniform URL-based approach
provides significant benefits in the context of creating per-
sonal mash-ups in the Web of Things. For example, manipu-
lations of collections are addressed by WebDAV [11] and the
Atom Publishing Protocol [6]. Versioning is addressed by a
WebDAV extension [12] and an attempt based on the Atom
format [13]. However, we do not depend on an extension
of HTTP or a single serialization format such as Atom in
order to achieve this functionality. URL callbacks have been
promoted by [8] and [9], for example. Our concept extends
these approaches by enabling subscriptions on arbitrary
resources, including those containing expressions.

VI. CONCLUSION AND OUTLOOK

We presented WebPlug, a framework for the Web of
Things, which strives to provide unified concepts for inter-
acting with real-world objects. WebPlug is currently work
in progress, as we plan to implement and test additional
concepts. Security is an important issue – the traditional
username/password authentication scheme does seem ade-
quate for a Web of Things, where devices interact among

each another. Likewise, a discovery mechanism for elements
in the Web of Things is required.

REFERENCES

[1] E. Wilde, “Putting Things to REST,” UC Berkeley, Tech. Rep.
2007-015, November 2007.

[2] B. M. Elahi, K. Römer, B. Ostermaier, M. Fahrmair, and
W. Kellerer, “Sensor Ranking: A Primitive for Efficient
Content-Based Sensor Search,” in IPSN ’09, San Francisco,
CA, USA, 2009.

[3] F. Schlup, “Design and Implementation of a Framework for
the Web of Things,” Master’s thesis, ETH Zurich, September
2009.

[4] C. Daboo, B. Desruisseaux, and L. Dusseaul, “Calendaring
Extensions to WebDAV (CalDAV),” Internet RFC, March
2007. [Online]. Available: http://tools.ietf.org/html/rfc4791

[5] “DCMI Metadata Terms,” Homepage, January 2008. [Online].
Available: http://dublincore.org/documents/dcmi-terms/

[6] J. Gregorio and B. de hOra, “The Atom Publishing
Protocol,” Internet RFC, October 2007. [Online]. Available:
http://tools.ietf.org/html/rfc5023

[7] R. F. Dickerson, J. Lu, J. Lu, and K. Whitehouse, “Stream
Feeds - An Abstraction for the World Wide Sensor Web,” in
IOT, ser. Lecture Notes in Computer Science, 2008.

[8] J. Lindsay, “Webhooks,” Homepage. [Online]. Available:
http://www.webhooks.org/

[9] B. Fitzpatrick, B. Slatkin, and M. Atkins, “Pub-
SubHubbub Core 0.2,” Homepage, 2009. [Online].
Available: http://pubsubhubbub.googlecode.com/svn/trunk/
pubsubhubbub-core-0.2.html

[10] D. Orchard, “URI template,” Internet-Draft, Septem-
ber 2008. [Online]. Available: http://tools.ietf.org/html/
draft-gregorio-uritemplate-03

[11] C. Daboo, “Extended MKCOL for Web Distributed Authoring
and Versioning (WebDAV),” Internet RFC, September 2009.
[Online]. Available: http://tools.ietf.org/html/rfc5689

[12] G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. Whitehead,
“Versioning Extensions to WebDAV,” Internet RFC, March
2002. [Online]. Available: http://www.ietf.org/rfc/rfc3253.txt

[13] A. Brown, G. Clemm, and J. R. (Ed.), “Link
Relations for Simple Version Navigation,” Internet-
Draft, November 2009. [Online]. Available: http:
//tools.ietf.org/id/draft-brown-versioning-link-relations-03.txt


