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Abstract
Over the last decades, embedded computer systems have become powerful and wide-
spread with remarkable success. Besides traditional computers, such as desktops, laptops,
smartphones, and servers, such systems have become part of nearly every technical appli-
ance, for example, cars, televisions, and washing machines and thereby, an essential part
of our lives. A common phrase for such appliances is “smart device”, a term which en-
compasses equipment to which one can digitally connect in order to exchange information
and commands. Further, it can potentially sense its environment and process as well as act
upon this measurement.

Although computers and the devices containing them play such an important role,
the way in which we interact with them has not changed much since the early days.
Humans are required to control them in a manner very different from human-to-human
communication. In particular, the possibilities to provide input to a smart device are
mostly limited to traditional interfaces, such as buttons, knobs, or keyboards; or graphical
representations thereof on displays.

Technological progress in recent years in hardware, as well as in algorithmic meth-
ods, e.g. in machine learning, enables novel solutions for human-computer (or in fact
human-device) interaction. Only recently, the use of speech has become practical and
is used on smartphones as well as for home devices, incorporating a modality in the
interaction process that is innate to humans and rich in expressiveness. However, for
natural communication, other modalities, such as gestures, complement speech and may
do so in human-computer communication, enabling simple and spontaneous interactions
and avoiding the known social awkwardness of having to talk to devices. The adoption
of speech and also other commonly used interaction methods, such as touch input on
smartphones, indicate the relevance of considering further modalities in addition to the tra-
ditional ones. This dissertation contributes to further bridging the interaction gap between
humans and smart devices by exploring solutions in the following areas:

(i) Wearable gesture recognition based on electromyography (EMG): The touch of
our fingers is widely used for interaction. However, most approaches only consider binary
touch events. We present a method, which classifies finger touches using a novel neural
network architecture and estimates their force based on data recorded from a wireless EMG
armband. Our method runs in real time on a smartphone and allows for new interactions
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with devices and objects, as any surface can be turned into an interactive surface and
additional functionality can be encoded through single fingers and the force applied.

(ii) Wearable gesture recognition based on sound and motion: Besides other sig-
nals, gestures might also emit sound. We develop a recognition method for sound-emitting
gestures, such as snapping, knocking, or clapping, employing only a standard smartwatch.
Besides the motion information from the built-in accelerometer and gyroscope, we exploit
audio data recorded by the smartwatch microphone as input. We propose a lightweight
convolutional neural network architecture for gesture recognition, specifically designed to
run locally on resource-constrained devices. It achieves a user-independent recognition
accuracy of 97.2% for nine distinct gestures. We find that the audio input drastically
reduces the false positive rate in continuous recognition compared to using only motion.

(iii) Device representations in wearable augmented reality (AR): While AR tech-
nology is becoming increasingly available to the public, ways of interaction in the AR
space are not yet fully understood. We investigate how users can control smart devices in
AR. Connected devices are augmented with interaction widgets representing them. For
example, a widget can be overlaid on a loudspeaker to control its volume. We explore
three ways of manipulating the virtual widgets in a user study: (1) in-air finger pinching
and sliding, (2) whole-arm gestures rotating and waving, (3) incorporating physical objects
in the surroundings and mapping their movements to interaction primitives. We find
significant differences in the preference of the users, the speed of executing commands,
and the granularity of the type of control. While these methods only apply to control of
a single device at a time, in a second step, we create a method which also takes poten-
tial connections between devices into account. Users can view, create, and manipulate
connections between smart devices in AR using simple gestures.

(iv) Personalizable user interfaces from simple materials: User interfaces rarely
adapt to specific user preferences or the task at hand. We present a method that allows
the quick and inexpensive creation of personalized interfaces from paper. Users can cut
out shapes and assign control functions to these paper snippets via a simple configuration
interface. After configuration, control takes place entirely through the manipulation of the
paper shapes, providing the experience of a tailored tangible user interface. The shapes,
which are monitored by a camera with depth sensing, can be dynamically changed during
use.

The proposed methods aim at a more natural interaction with smart devices through
advanced sensing and processing in the user’s environment or on his/her body itself. As
these interactions could be made ubiquitously available through wearable computers, our
methods could help to improve the usability of the growing number of smart devices and
make them more easily accessible to more people.
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Kurzfassung
In den letzten Jahrzehnten sind eingebettete Computersysteme sehr leistungsfähig gewor-
den und haben eine weite Verbreitung gefunden. Neben dem Einsatz in herkömmlichen
Datenverarbeitungs- und Kommunikationssystemen für Konsumenten, wie Desktops oder
Mobiltelefonen, finden Computer heutzutage in beinahe jedem technischen Gerät Ver-
wendung, beispielsweise in Autos, Unterhaltungs- und Haushaltsgeräten. Computer sind
dadurch zu einem festen Bestandteil unseres Alltags geworden. Eine geläufige Bezeich-
nung für solche Geräte mit eingebauten Computern ist “Smart Device”. Dieser Begriff
umfasst Apparate, mit denen man eine digitale Kommunikationsverbindung aufbauen
kann, um Daten austauschen und Kommandos absetzen zu können. Ein solcher Apparat
kann eventuell auch mittels eingebauter Sensoren relevante Zustandsinformationen messen
und aufgrund dieser Messung agieren.

Obwohl Computer und die Geräte, in welche diese verbaut sind, eine zunehmend
wichtigere Rolle spielen, hat sich die Art und Weise, wie wir mit ihnen interagieren, seit
Anbeginn ihrer Verwendung nur wenig geändert. Die Kommunikation zwischen Mensch
und Maschine findet auf eine Weise statt, die sich deutlich von zwischenmenschlicher
Kommunikation unterscheidet. Insbesondere sind die Möglichkeiten, Eingaben zu tätigen,
meist auf herkömmliche Schnittstellen wie mechanische Elemente, z.B. Knöpfe oder
Tastaturen, eingeschränkt, bzw. auf eine graphische Darstellung davon.

Der technische Fortschritt der letzten Jahre, sowohl im Hardwarebereich als auch bei
algorithmischen Methoden, beispielsweise im Bereich des maschinellen Lernens, er-
laubt neue Arten der Mensch-Maschine-Kommunikation. Sprachsteuerung beispielsweise,
ermöglicht durch automatische Spracherkennung, ist mittlerweile für viele Mobiltelefone
und verschiedene Heimsteuerungssysteme verfügbar. Sprache ist eine dem Menschen
angeborene Kommunikationsfähigkeit, die vielfältige Ausdrucksmöglichkeiten und eine
hohe Informationsdichte erlaubt. Jedoch gibt es neben gesprochener Sprache weitere
Modalitäten der menschlichen Kommunikation, die diese ergänzen, wie z.B. Gesten. Diese
können auch in der Mensch-Maschine-Kommunikation genutzt werden, um schnelle und
einfache Interaktionen zu ermöglichen. Die Verwendung von Spracherkennung, aber auch
von anderen Technologien wie berührungssensitiven Bildschirmen, deutet auf die Relevanz
der Verwendung weiterer Modalitäten zur Interaktion hin. Die vorliegende Dissertation soll
dazu beitragen, die Interaktionsmöglichkeiten zwischen Menschen und “Smart Devices”
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in diesem Sinne zu erweitern, insbesondere durch Lösungen in den folgenden Bereichen:

(i) Gestenerkennung mittels mobiler Elektromyographie (EMG): Viele Interaktio-
nen mit Geräten beruhen auf Berührungen mit den Fingern, sei es bei mechanischen
Schnittstellen oder beispielsweise berührungssensitiven Bildschirmen. Die meisten Me-
thoden zur Erkennung dieser Berührungen erfassen diese jedoch nur als binäre Ereignisse.
Wir stellen eine Methode vor, die unter Verwendung eines neuronalen Netzes bestimmt,
mit welchem Finger eine Berührung durchgeführt wird und wie viel Kraft durch den
Finger ausgeübt wird. Diese Klassifizierung und Kraftschätzung basiert auf Messungen
eines kabellosen EMG-Armbands. Unser Algorithmus läuft dabei in Echtzeit auf einem
handelsüblichen Mobiltelefon und ermöglicht neue Interaktionsmöglichkeiten mit Geräten
und Objekten, da jede Oberfläche ohne Notwendigkeit einer Veränderung zur Interaktion
genutzt werden kann und zusätzliche Funktionen durch die einzelnen Finger und die
ausgeübte Kraft kodiert werden können.

(ii) Gestenerkennung basierend auf Audio- und Bewegungsdaten mobiler Senso-
rik: Verschiedene Handgesten erzeugen neben reinen Bewegungen auch Geräusche,
wie z.B. Klatschen, Schnipsen oder Klopfen. Wir entwickeln eine Methode, die die-
se Geräusche zur Erkennung der Gesten nutzt. Dazu verwenden wir eine handelsübliche
Smartwatch, die neben Bewegungsdaten mittels eines eingebauten Intertialsensors auch
Audiodaten mittels eines Mikrofons aufnimmt. Die Daten werden direkt auf der Smart-
watch in Echtzeit durch ein neuronales Netz klassifiziert. Dieses erreicht eine nutzerun-
abhängige Erkennungsgenauigkeit von 97.2% für neun Gesten. Dabei zeigt sich, dass die
Audiodaten zu einer starken Reduzierung der Falschpositivrate beitragen.

(iii) Repräsentation von Geräteschnittstellen durch Augmented Reality (AR):
AR-Technologie wird durch die Entwicklung und den Vertrieb entsprechender Brillen in
immer weiteren Kreisen verfügbar. Dies eröffnet völlig neue Interaktionsmöglichkeiten
und es ist noch unklar, wie die Interaktion in AR am besten stattfinden soll. Wir untersu-
chen, wie Benutzer mittels AR mit “Smart Devices” interagieren können, indem wir deren
Benutzerschnittstellen in AR repräsentieren und verschiedene Interaktionsmöglichkeiten
in einer Nutzerstudie vergleichen: Eingaben durch (1) Gesten, mit denen man die visua-
lisierten Schnittstellenelemente virtuell greifen und verschieben kann, (2) rotieren des
Arms und Wischgesten, (3) Einbeziehung von physischen Objekten in der Umgebung, die
bewegt werden können, wobei die Bewegungen auf Veränderungen der virtuellen Elemen-
te abgebildet werden. Dabei finden wir signifikante Unterschiede in den Präferenzen der
Nutzer und der Geschwindigkeit und der Granularität der verschiedenen Methoden. Da
diese Methoden nur die Bedienung und Konfiguration eines einzelnen Geräts erlauben,
erweitern wir unser Konzept mit der Möglichkeit, in AR mittels Gesten Verbindungen
zwischen verschiedenen Geräten zu erzeugen, die dann direkt in der Systemkonfiguration
abgebildet werden.
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(iv) Personalisierbare Benutzerschnittstellen, erzeugbar aus einfachen Materiali-
en: Die meisten Benutzerschnittstellen passen sich weder an den Benutzer noch an die
gegenwärtige Aufgabe an. Wir stellen eine Methode vor, mit welcher der Benutzer selbst
aus einfachen und kostengünstigen Materialien in kurzer Zeit eine Benutzerschnittstelle
erstellen kann. Die gewünschten Interaktionselemente können frei aus Papier ausgeschnit-
ten werden und zur erdachten Schnittstelle zusammengestellt werden. Daraufhin kann
der Nutzer den einzelnen Papierformen Funktionen zuweisen. Die Formen, sowie die
Finger des Benutzers, werden durch eine Farb- und Tiefenkamera verfolgt, wodurch die
Bewegungen von unserer Methode wahrgenommen werden. Dadurch kann der Nutzer
nach der Konfiguration alle definierten Interaktionen auch tatsächlich durchführen. Neben
den vielfältigen Gestaltungsmöglichkeiten hat unsere Methode gegenüber herkömmlichen
graphischen Benutzerschnittstellen den Vorteil, dass sie dem Nutzer einen haptischen
Eindruck vermittelt.

Die vorgestellten Methoden zielen auf eine natürlichere Interaktion mit “Smart Devices”
ab, ermöglicht durch neuartige Sensorik mit Informationsverarbeitung in der Umgebung
des Nutzers oder in tragbarer Form beim Nutzer selbst. Da auf diese Weise die Interak-
tionen durch mobile, eingebettete Computer allgegenwärtig verfügbar gemacht werden
können, können unsere Methoden dazu beitragen, die Interaktionen mit der stetig wachsen-
den Anzahl von “Smart Devices” einfacher zu gestalten, die Benutzbarkeit dieser Geräte
zu verbessern und sie für eine grössere Zielgruppe zugänglich zu machen.
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Chapter 1
Introduction

In 1991, Marc Weiser published his article “The Computer for the 21st Century” [180],
coining the term “ubiquitous computing”. Therein, he propagates his vision of a system
of numerous computers incorporated in our environment or carried on our bodies, inter-
connected and working together to provide us with advanced services and utility in our
daily lives, rather than humans using the then common single powerful computer. With
their great success in recent decades, computers have indeed spread into all appliance
domains, often in the form of embedded systems. This dissemination brings us closer
to Marc Weiser’s vision of ubiquitous computing, in which many distributed computers
in our environment enhance our daily lives and help us to fulfil our tasks. Furthermore,
products become easier to produce and update, as control functions can be implemented
in software.

Embedded computers and communication technology have on the one hand turned
ordinary appliances in our daily lives such as washing machines or cars into “smart de-
vices”, and on the other, we use new devices which enable continuous and fast access to
and exchange of information. The rapid dissemination of smartphones and their adoption
as the most personal devices [220], which almost everyone carries with themselves at
nearly all times, are an evident example of these developments. A smart device is a device
containing a computer system, to which we can establish a digital communication con-
nection, which to some extent enables an interactive operation during which information
about the device’s state may be queried or commands transmitted to the device. Often,
this connection is provided by wireless communication. For example, a smart light can
usually be controlled via a smartphone and enables the changing of the brightness or
colour in a smartphone app. That means that a smart device does not have to have a user
interface of its own. The interface “may vanish altogether” and can be “exported” to
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another device [139]. Smart devices may contain sensors to measure the state of their
surroundings and may be able to process and act upon this measured information.

Although people like Weiser surely thought about computers being embedded in every-
day objects to enable the concept of ubiquitous computing [181], the term “smart device”
or synonyms such as “smart object”, “smart thing”, and “smart appliance” were probably
first used only several years later around the turn of the millennium [2, 3, 8, 36, 92, 107,
122, 139, 179]. Precursors to the term were expressions such as “computer-augmented
environments” [184], “informative things” [18], “intelligent device” [45], “proactive
systems” [164], and “things that think” [145].

While the term “smart” suggests an underlying concept of intelligence, smart devices
do not necessarily have to incorporate a form of artificial intelligence. It is instead the idea
that we can communicate with them, which lets them appear smart to us. A temperature
sensor with a Bluetooth module through which a smartphone app can query the current
temperature can be seen as a smart device without exhibiting any feature of intelligence.
Nevertheless, smart devices may provide advanced services to their users, for example, a
smart meter, an electricity meter which can be queried directly via the internet, can inform
the inhabitants about their current energy consumption [182]. Furthermore, it might even
estimate the occupancy state based on that consumption and control the heating to save
energy in times of absence [25, 26]. A car might immediately recognize, who is in the
driver’s seat and adjust the seat and driving settings. Besides these passive services, we can
also actively use our smart devices, such as smartphones to obtain access to information at
virtually any place and any time. A particular class of smart devices are wearables, such as
smartwatches or smart glasses. These can enhance the human’s abilities, as they can sense
the world from an egocentric perspective, thereby naturally perceiving what the human
perceives: cameras can see what the human sees, the human’s location and motion can be
measured, body sensors can potentially sense the mental and emotional state.

Besides devices which contain computers themselves, ordinary objects can also be
made “smart” by adding communication abilities to them [122]. These are then referred
to as smart objects. This “upgrade” can, for example, be achieved through RFID (radio-
frequency identification) tags or visual markers such as barcodes, which can be read using
another device such as a smartphone. The tags or codes convey information about the
object either directly or provide a link to a web resource with more information. While
the object itself may not incorporate any information processing capability itself, it still
appears smart to the user because of the possibility to interact and exchange information.
One might scan a barcode of a food item with a shopping app on one’s smartphone,
retrieving the nutrition and allergen information. Exploiting one’s preferences stored in the
app, e.g. about allergies to certain substances, it would then seem like the food item itself
was telling us whether it was fit for consumption. As such tags or markers are inexpensive,
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this concept allows us to make virtually any object smart. This implies that the number of
smart device instances which participate in the ubiquitous network of devices and objects,
also referred to as the “Internet of Things”, and the number of devices that we might
be interacting with in the future, could be much larger than the mere number of devices
containing actual information processing units.

Besides the mere dissemination of computers in our environment and the added utility
for their users through the provided services, Weiser also conveyed another, likely more
important message, which he states right in the beginning in the first two sentences of his
essay: “The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it.” The computing
technologies, which can be added or integrated to virtually any object as mentioned above,
should not be apparent to the user, they should rather be invisible in a sense that a user does
not realize he or she is actually interacting with a computer at all. The interaction should
be human-centred, not focusing on the interaction with a computer, i.e. “the challenge of
reducing the need for explicit human-computer interaction (HCI) becomes central.” [55].

While computers have often changed the nature of appliances completely, have mostly
replaced mechanical control systems, or have made the creation of certain systems possible
at all, reducing their price by orders of magnitude, the way we interact with these appli-
ances is still far from the notion of a seamless and natural, human-centred communication.
People still use buttons and knobs to specify their input, either on the devices themselves or
through remote controls. For traditional computers, we use keyboards for single character
input and mice for simple pointing and clicking. With newer touch-based displays, we
still control the devices through the use of virtual keyboards, buttons, sliders, and knobs.

The human often has to adapt to the device specification, making mistakes the human’s
fault, whereas, on the contrary, the computer should adapt to the human’s needs. Appli-
ances, or the set of appliances in our environment altogether, should provide a multi-modal,
natural, robust, and fault-tolerant way of interaction. They should adapt to the human’s
context, and in the future, allow closer collaboration between humans and machines.

Making human-computer interaction more similar to human-human interaction, so that
the human may not even notice that there is a computer, is a very challenging problem
because the computer system has to infer the human’s intention. The intention might be
expressed through a combination of multiple modalities, e.g. speech, gestures, eye gaze,
body pose, and emotional expressions, and depends on the human’s context. The human
brain undergoes a lot of learning in the area of observing and inferring the intention of
other humans and in the end is highly trained and skilled in this process [10,34,165]. This
ability not only facilitates interaction but was also essential for survival in the far past.
And it might still be nowadays, e.g. when a car driver realizes that a pedestrian intends to
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cross the street through an analysis of the pedestrian’s movements, facial expression, and
an anticipation of the pedestrian’s expectations towards the driver him- or herself, which
also links to the social and cultural context. This example is a complex task which still
constitutes a great challenge for autonomous vehicles.

In this dissertation, we investigate different methods to enable a more seamless process
of interacting with devices through advanced sensing and processing on and around the
user. In particular, we focus on a sub-area of the challenges mentioned above: how a
human can actively provide input to a smart device, for example, to issue commands.

In recent years, many device manufacturers have been providing smartphone apps to
control the devices, which also allows making the device’s physical interface as simple as
possible. For example, music players often have a very simplistic physical user interface
and are mainly controlled by apps, running on a smartphone, i.e. the device externalizes its
interface to the app. This idea of “beaming” a device’s interface to a smartphone has also
been explored in research [124]. Using a smartphone as a universal control is a reasonable
approach, as it provides a flexible framework for the design of graphical user interfaces,
moreover it is inexpensive and robust. However, being a remote control, the smartphone
constitutes an intermediary in the interaction of the human with the device. Instead of
interacting with the device directly, the human now interacts with his/her smartphone.

One of the most significant advances in the field of natural human-computer com-
munication has recently been made in the area of speech recognition and also dialogue
modelling. Speech is one of the primary means of communication in human-to-human
communication and has several advantages over other modes of communication: it can
encode very complex content, and it provides a high information throughput. Therefore,
it is undoubtedly desirable to enrich the space of interaction by speech recognition and
synthesis. Several commercial products based on speech recognition have emerged in
recent years, first on smartphones with Apple’s Siri [208] and Google’s assistant [223],
then home control systems, such as Amazon’s Alexa [206] and Google Home [224].
However, pure speech interaction systems have several shortcomings. First of all, people
feel a social awkwardness of speaking to no one in particular when controlling a device
through speech, epitomized by the phrase of feeling like “talking to a wall” [52]. When
being together with others, speaking with a device also appears unnatural. Besides, it is
prone to environmental noise. Most importantly, human communication is much richer
and comprises many more modalities than only speech. We also use gestures and implicitly
infer a lot of knowledge from the context we are in, both our internal context and that of
our counterpart, and the environmental context we are placed in. If speech is used as the
only modality, the user has to encode all the information usually conveyed through the
other modalities. For example, instead of being able to point at a device which should be
turned on, the user would have to select the device through spoken text, which is unnatural
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1.1 Overview of Interaction Modalities for Providing Input

and entails longer speech sequences than usually required.

We investigate several modalities for providing input to smart devices other than speech.
We begin by examining different methods for gestural input, for example how to sense
touch input on virtually every surface. Similarly to what the tags and markers do for the
smart objects, this turns any surface into an interactive surface. Besides merely adding
sensing and processing to recognize actions in the environment, we can also use augmented
reality (AR) technology to change the way we perceive the world. We can use AR to
display device representations in the user’s first-person view on the real devices, thereby
allowing for a form of direct interaction as the representations are collocated with the
device. Finally, we create a system, which allows the user to create his/her own functioning
interfaces from simple materials such as paper. Our approach enables improved interface
prototyping but might also lead to a new form of personalized interfaces, created on
demand by the users themselves in the future.

In all proposed methods in this thesis apart from the last one, we focus on making the
developed methods available through wearable computers (the last interaction method
could potentially be implemented using wearables). This has become feasible through
the spread of wearables with increased sensing and computation capabilities, such as
smartphones, smartwatches, fitness trackers, smart glasses, AR headsets, and many more.
Augmenting the human has the great advantage of taking an egocentric perspective.
Additionally, these wearables can recognize input from the human to control the device.
Finally, the devices themselves are not required to incorporate any sensing and intelligence
themselves, as the knowledge is acquired by the egocentric system directly. All that
remains on the device side is to offer an application programming interface (API) to
receive commands. Hence, the device can become as simple as possible. Examples
pointing in this direction are devices which export their user interfaces to smartphones
apps, such as music streamers controlled by an app as mentioned before or rental bicycles
for which the payment process is handled via the smartphone.

In the rest of this chapter, we first give a brief overview of methods and modalities for
providing input in human-computer interaction, before describing the contributions of this
thesis in more detail.

1.1 Overview of Interaction Modalities for Providing

Input

Human-computer interaction is a vast research field as such. It interweaves user-centred
research on user experience and user-centred design with technical research efforts in
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which the way to make interactions technically possible and improve them is investigated,
e.g. which and how specific modalities can be used for interaction. As the main con-
tributions in this dissertation are part of the latter area, we give a brief overview of the
different modalities that have been employed for human-computer interaction, in particular
concerning the issue of how the human can provide input. First of all, we want to give a
short overview of the history of user interfaces as an introduction to the topic.

1.1.1 A Very Short History of User Interfaces

User interfaces came into existence long before the invention of computers. As soon
as humankind invented tools and machinery, it was also necessary to be able to trigger
actions, which naturally took place through mechanical controls, such as levers or knobs.
Over time, the complexity of the interface increased with the complexity of the machines
because of the necessity for setting many system parameters. For example, as Figure 1.1a
shows, the controls of a steam train consisted of several knobs and levers. Interestingly,
modern train interfaces are not dissimilar in terms of their elements and complexity, as
Figure 1.1b shows. Many of these interfaces prevailed until today in household appliances,
such as ovens or radios.

Later, with the emergence of electrical systems, control interfaces became necessary as
the user could not interact with the electric current directly. Buttons and switches, e.g. for
turning devices on and off, or levers and knobs for setting continuous values, evolved as
the most common interfaces. When first communication and text processing systems, such

(a) Taken from [246]. (b) Taken from [250].

Figure 1.1: The user interfaces of a steam train and a modern train.
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as typewriters, were developed, electromechanical keyboards were introduced to achieve
higher throughput. The first patent for a typewriter was issued as early as 1714 in the UK.
Keyboards were then also later adopted for computers, as shown in Figure 1.2. They still
are one of the primary input devices for computer systems, also for touch devices, such as
smartphones, where the keyboard is graphically represented, and the optimization of the
layouts are an active area of research [89].

The emergence of computers changed the interaction paradigm for many tasks. All the
attention is focused on a single universal machine, which is in contrast to the usual usage
patterns, where every device has its dedicated function, and there are many devices in use.
As a consequence, the computer required a relatively large amount of configuration or
instructions to fulfil a specific task, which the users innately are not used to, especially
since early versions were purely text-based. In the 1960s and 1970s several improvements
to the interaction with a computer were made, e.g. the development of graphical user
interfaces and computer mice (cf. Figure 1.3). These interfaces took advantage of the
strong human capabilities in visual perception and fine-grained movements of the hand
and also afforded a simpler mental model of the interaction with a computer. Around
the same time, first touchscreens were developed, which enabled the direct interaction
with the hand and fingers. While these methods were mostly used for actual computers,
most other technical devices were controlled with ordinary buttons or switches, potentially
outsourced to remote controls, which were introduced in the late 1930s (at first for radios).
As envisioned and promoted by Marc Weiser’s group at Xerox PARC (cf. Figure 1.4),
the number, type, and use cases of computer devices have transitioned from one single
central computer to several, which also includes tablets and smartphones, which we can

Figure 1.2: An Apple II computer with an integrated keyboard (presented in 1977). Taken
from [240].
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(a) A prototype of a computer mouse built by William
English according to a design by Douglas Engel-
bart. Taken from [249].

(b) A computer mouse developed
by the German company AEG
Telefunken. Taken from [245].

Figure 1.3: Two computer mice independently developed and presented in 1968.

carry with us. In fact, smartphones have become the primary personal computing device at
least for young people [220], used as a mobile personal assistant and access point to many
services. In 2017 and 2018, mobile phones were responsible for around 50% of website
traffic [48].

Figure 1.4: Computer devices with different form factors and purposes used for work at
the Xerox PARC laboratory. Taken from [180].
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While other interaction techniques, such as speech, may have been under development
for a considerable amount of time, many of them have only recently become practically
usable through the advances in algorithmic methods in machine learning, hardware, and
higher communication bandwidths. Improvements in machine learning enable better
signal processing and recognition techniques. Advances in hardware do not only provide
more computing power, but also cheaper, smaller, and mobile devices, which we can carry
with us and that can sense their environment. Enhanced communication allows devices to
send data to more powerful servers for processing (which is becoming less important, as
the devices “on the edge” are becoming more computationally powerful themselves). The
following sections should give a brief overview of the main modalities which are being
used or are under research for providing input to computer systems today.

1.1.2 Speech

Speech is a skill innate to humans and one of the essential communication mechanisms
in human-to-human interaction. The processing of spoken language is a task the human
brain is highly trained to perform [84]. Interestingly, speaking and processing speech is a
distinctively human ability and is by far not as strongly developed even in the human’s
closest relatives, monkeys. Speech allows for a very high information throughput, which,
besides the innateness to humans, makes it a valuable modality for human-computer
interaction. Other advantages are that speech does not require the user to look at a specific
interface or employ his/her hands, which is important when performing activities such
as driving a car. However, due to the complexity of the speech signal, but also of the
meaning of the words, automatic speech recognition and the subsequent processing of
the natural language, i.e. the semantic understanding of the spoken information, is very
challenging. Research on automatic speech recognition began in the 1950s, yet with
limited success. It was only possible to recognize a few single words under lab conditions.
First commercial systems for dictating and automatically transcribing spoken text were
presented in the 1990s [226]. However, the recognition usually had to be adapted to
each speaker, and there was no semantic processing of the text. A speech recognition
system usually consists of an acoustic model, which is used to analyse the actual speech
signal, and a language model, which can compute the probability of hypothesized phrases.
Traditionally both of these parts were statistical models, such as Hidden Markov Models
used as acoustic models [57, 88, 117]. Later, these tasks have mostly been taken over
by neural networks, which led to significant performance improvements. Especially
modelling the temporal structure of speech in neural networks proved to be beneficial, e.g.
through the so-called time-delay neural networks [174], or different forms of recurrent
neural networks [54, 75, 146]. In recent years, more attention has been directed towards
end-to-end learning approaches, which combine acoustic and language modelling in a
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single component [7, 17, 40, 41, 44, 74]. Besides the recognition of spoken speech, there is
a smaller research community focusing on the recognition of silent speech by analysing
the movement of the lips and face, e.g. via electromyography [175, 176].

As computational resources become increasingly available, on the one hand, the recog-
nition performance is further improved, on the other speech recognition is increasingly
being introduced to the mass consumer market. Nowadays, most common computer and
smartphone operating systems incorporate a speech recognition component, e.g. Apple
Siri [208], Google Assistant [223], or Microsoft Cortana [232]. Besides, several companies
sell speech recognition components to control connected devices in one’s home, e.g. the
lights. In 2015, Amazon launched its Alexa system [206], soon followed by Google’s
Home control devices [224] in 2016. A great challenge besides the recognition of the
speech itself is the processing of the transcribed text, i.e. making sense of what the human
said and executing commands or retrieving information and giving appropriate replies. A
significant difficulty is that the meaning might depend on the context the speaker is in.

1.1.3 Gestures

Gestures are movements of the human body, which serve as a means of non-verbal
communication. While the term often relates to hand gestures, it includes all types of
movements of the body. Commonly, gestures are not used only by themselves, but in
conjunction with speech [173], where they may add additional information, e.g. through
pointing at something. The meaning of commonly known gestures strongly depends on
the cultural context [9]. The goal of using gestures for human-computer interaction is to
recognize gestures performed by the user, which are then mapped to specific commands.
The different types of gesture recognition mainly depend on the physical signal they use
and where the corresponding sensors are placed, in the environment surrounding the user
or on the user directly. Sensors in the environment are less obtrusive. However, the gesture
recognition ability may then only be available at the location of the sensor set-up.

One natural option to recognize hand gestures is to place sensors on the hand and fingers
directly to track the movements, which is often done in the form of a glove [100,160,163].
This approach allows for very exact measurements, may however be considered too
obtrusive to the user.

Another way to monitor the movement of the hand (or potentially also parts of the
body), is to observe the hand visually using a camera, e.g. employing a smartphone
camera [155, 156] or a head-mounted camera. The camera can also be placed in the
environment. This setting is also used in several commercial systems, e.g. the Leap
Motion [230] for close-range hand tracking, or the Microsoft Kinect [233]. An interesting
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technique is presented by Clarke et al. [46, 47], which correlates the motion of a displayed
target to the motion the user performs using a webcam. This way, the user is not bound to
a specific set of gestures but can follow the targets with any body part. A disadvantage of
visual tracking is that the hand (or the respective body part) has to be in the field of view
of the camera to be able to recognize the gestures. If the hand has to be held in mid-air
for an extended amount of time, this form of interaction might become very tedious. The
approach depicted in Figure 1.5 presented by Kim et al. [96], mounting a camera directly
on the wrist viewing the hand tackles this problem. However, this is relatively obtrusive.

For dynamic gestures, i.e. gestures which are performed by moving the respective
body part, motion sensors placed on that specific part can be used to infer the gesture.
The benefit is that motion sensors are relatively inexpensive and also small. Another
advantage is that many devices already contain motion sensors, e.g. smartphones or
smartwatches. Particularly on hand gesture recognition running on smartwatches, there
are several previous works [15, 161, 185, 197], as smartwatches are particularly useful
as they are placed close to the source of the relevant motion. A disadvantage is that the
motion sensors are not able to measure the finer-grained movement of the single fingers
unless sensors are placed there, which results in an approach similar to a data glove, as
mentioned above.

Besides measuring the effects of a gesture, either the visual changes or the motion, one
can also measure the source of the muscle contraction leading to the movement employing
electromyography (EMG). EMG measures the electrical activation of the muscle, which
results from a depolarization in the muscle cells caused by the incoming nerve signal.
This depolarization, in turn, causes the contraction of the muscle. While there are also
medical applications, e.g. detecting neuromuscular abnormalities, several researchers have
investigated the use of EMG for interaction [6, 42, 58, 64, 95, 127, 147–149, 151, 198].
Traditionally, EMG measurements require complex hardware. Only recently, different

Figure 1.5: The Digits system incorporates a camera mounted on the user’s wrist and
hence can recognize gestures in any pose of arm and hand. Taken from [113].
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companies have developed wearable and wireless components, which can be easily used
by end consumers [219, 243]. A great challenge when using EMG is that the signal is
influenced by noise caused by friction on the skin and its characteristics strongly depend
on the specific person.

Furthermore, there is a wide range of other methods which can be used to recognize
gestures, e.g. the distortion of an electromagnetic field [113, 140] caused by the gesture
motion which can be measured with antennas as shown in Figure 1.6, the reflection of
radar waves [177] or using sound. When employing sound as the signal the gestures are
recognized from, one can either actively emit signals and measure their change to infer the
gesture [77, 196], or passively listen to the sounds a gesture itself may generate [78, 108,
109, 194, 195]. The latter concept is included in one of our gesture recognition methods.

1.1.4 Tangibles

Tangible user interfaces (TUIs) are interfaces the user interacts with by touching them and
are usually manipulated employing the hand. As mentioned in Subsection 1.1.1, initially,
all user interfaces were tangible, as they relied on mechanical controls, such as buttons,
knobs, and levers. With the introduction of computer displays, more and more interface
functionality was transferred to graphical user interfaces, which have the advantage that
the same display can show arbitrarily many different interfaces, which can also easily be
updated. However, one loses the haptic feeling of touching an element, which suits the
highly advanced fine motor skills of the human hand and provides direct feedback. This
property is often valued by users [205]. For this reason, there has been a movement in
research back towards tangible interfaces which started several decades ago, and there
is continuous and increasing interest in this area. A common theme is to connect virtual

Figure 1.6: The WiFinger system recognizes gestures by measuring the distortion in the
electromagnetic field between an emitting and a receiving Wi-Fi antenna.
Taken from [113].
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objects to physical counterparts, described as Tangible Bits by Ishii et al. in 1997 [87].
Fitzmaurice et al. [67] presented an example of a tangible interface which incorporated
physical bricks. Moving them would lead to the corresponding manipulation of virtual
counterparts. A common problem with tangible interfaces is that they usually exhibit
a static shape and their representation capabilities are therefore limited. Solutions to
this problem entail relatively complex hardware, which can change shape. Examples
are an adjustable array of pins, presented by Follmer et al. [68] (cf. Figure 1.7a), which
can represent different outputs, but also be used for input by manipulating the pins, or a
shape-changing interface which can turn from a slider to a knob [98] (cf. Figure 1.7b).
An interesting idea to avoid the need for special-purpose hardware is to employ everyday
objects in the environment of the user for interaction. The objects are tracked and can be
used as input devices by manipulating them. For example, iCon [43] allows the user to
attach markers to physical objects, which are henceforth tracked by a camera, as shown in
Figure 1.8.

(a) Taken from [68]. (b) Taken from [98].

Figure 1.7: Two examples of shape-changing tangible user interfaces.

Figure 1.8: The iCon system allows a user to employ everyday objects as tangible user
interfaces by attaching markers to the objects through which they are then
tracked. Taken from [218].
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1.1.5 Gaze

Our eyes cannot only perceive our environment but also be used for outputting information.
In human-to-human communication, the eyes transmit important implicit cues, e.g. through
eye contact, but also explicit cues, e.g. one can “point” to a particular direction by looking
there, which is then observed by others [150]. For human-computer interaction, a natural
use case of the user’s gaze is object selection, as a human would also naturally look at
an object he/she intends to interact with. Eye tracking, i.e. inferring where the user is
looking, is a rapidly expanding research area. It can also be employed for psychological
analysis, e.g. for marketing purposes by examining how much time users spend looking at
different parts of an advert. Eye tracking can be achieved through different means, one of
the most common being mounting cameras on glasses, which observe the eye, as shown
in Figure 1.9a. Traditionally these systems incorporate infrared emitters directed at the
eye and track the reflections of the infrared beam. However, there are recent approaches
to estimate the gaze direction from standard camera images only [200, 201]. Another
possibility is to employ electro-oculography (EOG), which exploits the fact that the eye
is a dipole and changes the electric field around it when it moves, an effect which can
be measured with electrodes (cf. Figure 1.9b). Besides, there are stationary eye trackers,
which use cameras observing the user as depicted in Figure 1.9c.

In HCI, eye trackers can be used for selection tasks as mentioned above, a concept
which is also suitable for assistive applications, e.g. selecting characters on a screen. Such
selection schemes fundamentally suffer from a problem called the “Midas” touch, a term
which epitomizes the fact what everything one looks at could be selected. This is often
solved by a secondary confirmation mechanism such as a button or by waiting for a certain

(a) A wearable eye
tracker using in-
frared cameras to
observe the eyes.
Taken from [236].

(b) A wearable pair of EOG glasses.
Taken from [228].

(c) A stationary eye tracker
mounted on a computer screen.
Taken from [216].

Figure 1.9: Different eye tracking systems.
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“dwell time” before an object is selected. Besides pure direction-based approaches, it is
also possible to recognize patterns in the deliberate movement of the eyes, so-called eye
gestures, such as moving one’s eyes in a circle [13, 59, 128].

Eye motion can be divided into fixations and saccades, which are fast movement
between fixations. Another type of eye motion occurs when the user is following a moving
object. In this case, the eye smoothly follows the trajectory of the object. Hence this
movement is called smooth pursuits. These phases of smooth pursuit can be used for
selection. By displaying moving targets on a screen and measuring the eye movement,
one can correlate the eye movement to the object trajectories and find the target object as
the one with the highest correlation to the eye movement [65, 169].

1.1.6 Brain-Computer Interfaces (BCI)

Instead of observing human inputs from the outside, an intriguing idea is to measure the
intention underlying an interaction, i.e. the processes in the human brain. The phenomenon
of ongoing electrical processes in the brain was already observed in the late 19th century.
The primary measurement categories are divided into electroencephalography (EEG) and
the sensing of the hemodynamic activity in the brain. For the latter, there are two methods,
functional magnetic resonance imaging (fMRI) or near-infrared spectroscopy (NIRS).

EEG measures the electrical activity of the brain, which results from electrophysiologi-
cal processes in the neurons during information processing. EEG is usually performed
using surface electrodes attached to the user’s head. However, the challenge is that the
electrodes then only measure the sum of many electric potentials, i.e. the spatial resolution
is relatively poor. Moreover, an electrical event will be measured by several electrodes,
i.e. it is difficult to find the source. When using surface electrodes, EEG can be affected
by electrical fields caused by friction of the electrodes against the head, which creates
potentials possibly even higher than the brain signals being measured. Another option
is to use invasive electrodes implanted into the brain on the surface of the cortex, which
achieves a higher spatial resolution. However, this is currently only suitable for medical
purposes.

FMRI and NIRS methods rely on different physical properties of oxygenated and
deoxygenated blood. In the case of fMRI, the magnetic properties change, for NIRS the
optical properties are different. Changing cognitive loads in a certain brain region cause
a change in the ratio of oxygenated and deoxygenated blood in that region. This ratio
change makes it possible to infer cognitive activity. Since the response to higher cognitive
load in the form of blood flow is relatively slow (in the order of seconds), both methods
have a low temporal resolution.
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Many use cases of these measurement methods lie in the medical domain, e.g. in
the analysis of mental disorders such as epilepsy. Research on actual brain-computer
interfaces began in the 1970s. BCIs are often intended to restore capabilities of people
impaired by neuromuscular diseases, e.g. paralysis or amyotrophic lateral sclerosis (ALS).
A well-known example of a BCI is the P300 matrix speller, presented in 1988 [66]. The
letters of the alphabet are shown in the form of a matrix. Specific rows and columns are
highlighted in quick succession. The user focuses on the letter he/she wants to write. The
method exploits the fact that the highlighting of a row or column induces an event-related
potential (ERP), about 300 ms after the event, which can be measured with a surface EEG
device. By flashing rows and columns multiple times, the system can infer which letter
the user was focusing on. Naturally, a P300 system can also be used for other control
tasks than spelling. Other systems allow the user to control a cursor on a screen [126] or
even to decode spoken phrases from brain measurements [80]. A challenge with current
brain-computer interfaces is the low throughput rates which can be achieved. Nevertheless,
they might be useful for implicit interaction, e.g. by being able to measure the cognitive
workload as mentioned in the next section.

1.1.7 Passive Interfaces

Most of the interfaces mentioned up to now are active interfaces, through which the human
deliberately issues commands or provides input, i.e. interacts explicitly. Passive interfaces
try to measure and estimate the state of the human or his/her environment, either for mere
monitoring purposes or to adapt other interfaces, i.e. they enable an implicit interaction.
For this purpose, different modalities can be used, some of which are discussed above.
For example, activity recognition can help inform the user about his/her physical activity,
or a smartphone which realizes its owner has returned home might automatically send a
message to the home management system to turn the lights on. Human activity recognition
has undergone thorough research in the past years [172]. Other use cases are health and
fitness tracking through wearable sensors, which can measure the heart rate, electrodermal
activity, and oxygen saturation [4]. Many such trackers are already available on the
consumer market. Potentially even more interesting for the future are passive interfaces
which try to estimate the mental state of the human [105]. For example, the workload (the
ratio of cognitive resources employed for a specific task and available cognitive resources)
of a user could be measured using electroencephalography (EEG) [20]. As a consequence,
working environments could be adjusted, such as changing the complexity of the task
representation, to accommodate for a dynamically changing workload. Further possibilities
include electro-oculography (EOG) to measure eye movements and for example, to
estimate the fatigue of a user [162] or the measurement of the facial temperature to assess
the workload level as high workload increases the blood flow to the brain [204].
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1.2 Contributions, Positioning, and Outline of the

Thesis

Each of the following chapters, except the last, concluding chapter, describes a main con-
tribution of the author. We begin with gesture recognition as a more common interaction
modality and continue with more progressive and forward-looking methods of interaction,
such as interacting in augmented reality. Each chapter is a self-contained part of the
thesis, which may be read independently of the others. The following paragraphs briefly
summarize each of the contributions, which are presented in more detail in the single
chapters later.

Wearable Gesture Recognition based on Electromyography We start by describ-
ing TouchSense in Chapter 2, a method employing electromyography to identify the finger
used in touches and to estimate the force applied. The reason this is so interesting is that
the problem does not concern recognizing standard hand gestures but an action which
every one of us does very often every day, touching something, and using this as an
opportunity for providing input. If these touches could be measured, they could, on the
one hand, be used for active interactions, similar to standard hand gestures to control a
device. On the other, we could passively collect information on the user, which might lead
to insights on his/her mental state etc.

One option to measure the force of finger touches (however not the specific finger being
used) would be to augment the environment and all possible interaction surfaces with force
sensors. This augmentation would require a high investment in hardware and installation
effort, and in the end, would still limit the interaction surface to a confined space.

For a wearable system, an option to identify the finger used while touching something
and measure the force would be to attach force sensors to the user’s fingers. However, this
is a rather obtrusive method. Instead, we can examine the source of the finger movement,
the muscle activation of the forearm. This activation triggers the contraction of the muscles
and thereby controls which finger is flexed, and also how strongly. Electromyography
(EMG), the measurement of the muscle activation, more precisely the measurement of the
electrical potentials which are trigged by so-called motor neurons and in turn trigger the
muscle contraction, is usually performed with expensive, stationary hardware, either with
needle electrodes penetrating the muscle or surface electrodes applied to the skin.

As it is our intention to create a wearable system usable by the typical user, we employ
a recently developed EMG armband, the Myo, containing surface electrodes. The Myo
can stream the EMG data to a connected device via Bluetooth, for example, a smartphone.
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The Myo itself can recognize five standard gestures and has further been used in research
for standard gesture recognition. The question we posed was whether relatively simple
hardware such as the Myo could be used to identify finger touches and estimate the force
applied in real time, in the light of the few previous research works using traditional
complex hardware showing that this was a difficult problem.

We created a hardware set-up with force sensors to measure finger presses with the
thumb, the forefinger, and the middle finger and combinations of the three and collected
data with this force ground truth from 18 participants. Then, we designed an efficient
neural network for classification of the EMG data, which runs in real time on a standard
smartphone. While a general user-independent model showed poor performance due to
the inter-personal differences in EMG data, we could show that it is feasible to train a
user-dependent model for finger identification and provide a method for force estimation.
We demonstrate our approach through four applications, which show that it can transform
any surface into an interactive surface. It can thereby extend the interactive surfaces of
conventional devices, such as tablets, but also create virtual controls where there were
none before, e.g. on bicycle handlebars as demonstrated in Figure 1.10.

Figure 1.10: A user controlling the zoom setting of a map application with TouchSense
without having to let go of the handlebars.

Wearable Gesture Gecognition based on Motion and Sound Sensing Instead
of focusing on special kinds of sensor hardware, in Chapter 3, we present GestEar.
GestEar runs on standard smartwatches, relies on their motion sensors and microphone
and combines motion and sound information for gesture recognition (the name stems
from the fact that an ear also contains audio and motion senses). Motion measurement
on wearable devices by itself has often been employed in previous research for gesture
recognition. Some gestures, such as snapping, knocking onto something or clapping, also
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emit a sound signal along with a motion signal. Interestingly, some of these gestures have
been or are still used in many cultures to issue commands, i.e. they could also be used for
device control at least for quick and straightforward commands as shown in Figure 1.11. A
smartwatch is well suited for the measurement of both signals as it is close to the hand, the
signal source, and smartwatches usually contain motion sensors as well as a microphone,
which is intended for speech recognition but can naturally be used for our purpose. The
question is if and how much the audio information helps the recognition process or whether
it may even contribute additional capabilities such as recognizing gestures performed by
the hand not wearing the smartwatch just from the sound of that gesture. We collected
data from 16 participants for snapping, knocking, and clapping, including samples from
both hands for snapping and knocking, and repeated gestures for knocking and clapping,
such as clapping twice in quick succession, to also evaluate the recognition performance
for these types of gestures. Using recordings from non-gesture activities, we are able to
train a robust neural network for gesture recognition, which also inherently fuses the audio
and motion information. The model proves to be user-independent with high accuracy,
robust to noise, and also runs in real time on a standard smartwatch. When compared to a
model which only uses motion, we can observe that the particular advantage of the version
with sound is a significantly lower rate of false positive predictions.

Interaction Enabled through Wearable Augmented Reality In Chapter 4, we
move from distinct methods for providing input for interaction through gestures to a
modality which may also change how the user perceives the smart device. Through
augmented reality (AR) provided by head mounted augmented reality displays, we can
add interfaces directly in the user’s first-person view. We examine how we can use these
augmented interfaces for interaction. Physical objects are augmented with interaction

Figure 1.11: A user controlling a light by clapping with a smartwatch running GestEar.
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widgets which the user can directly manipulate. For example, a lamp may be augmented
with controls for brightness and colour, which the user can modify directly in his/her
egocentric view, as shown in Figure 1.12. A practical benefit of this concept is that all the
user interfaces can be outsourced to the wearable augmented reality representation, i.e. the
devices themselves can become simpler. Moreover, each user could personalize their AR
representation.

Of particular interest within this interaction concept is how the users can provide input
to such a system. We created a prototype implementing our concept, which allows a user
wearing a Microsoft Hololens to select a device using his/her gaze, which is approximated
by the head pose. Devices are then recognized by their individual markers, and a user
interface is generated on demand upon selection and recognition. We carried out a study
with 25 participants and studied three different ways of providing input: (1) simple in-air
finger pinching and sliding, (2) whole arm gestures such as rotating the arm and waving,
and (3) using a physical object as interaction proxies and mapping their movements to
interaction primitives.

Especially the third option presents an intriguing opportunity. As we can generate
visual widgets on any surface or object, we can augment simple objects with such widgets,
instructing the user how he/she may use them for interaction. For example, we can
augment a tea mug with the controls for a sound system, informing the user that a rotation
of the mug will alter the volume, and linear movements change the track. By tracking
the movement of the object, we can then translate the user’s actions to device primitives.
The fascinating implication is that through the use of AR, we can incorporate simple,
non-smart objects into the world of smart devices. Besides, the physical objects allow us
to make the interaction tangible.

Figure 1.12: A device’s controls are directly shown in the egocentric perspective of the
user through the use of augmented reality.
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Despite this exciting property, we find that the first option is the one preferred by
participants, which is founded on a specific characteristic made possible through our
concept of interacting in AR: the direct interaction with the devices. The participants
felt that in comparison to a standard remote control, for example, they could control the
devices directly, because they were constantly looking at the widgets placed on or around
the devices instead of a proxy controller such as a remote control or the physical object in
the third scenario. This finding reinforces the general idea we propagated at the beginning
and which motivates our work, that we should enable an interaction that moves away
from proxy controls and enables a more direct interaction. Our AR prototype enables
this property. In comparison to our works above which deal only with providing input,
it spans several interaction stages: the selection and recognition of devices through the
user’s gaze and individual device markers and providing input through one of the three
mentioned options. Finally, it also avoids having to perform a command inference (i.e.
mapping the user’s action to a device command) as the user is presented with all interaction
choices visually and makes the decision him-/herself. Thus, our work provides a valuable
application of AR for interaction.

Besides using AR for interaction with the devices directly, we can also use it to enable
easy reconfiguration of smart environments. A typical set-up in the future could be
as follows: there are multiple control elements and multiple devices available in the
environment which are able to communicate via a common API. The connections between
the controllers and devices are not hard-wired (such as it is still common in buildings) but
can be reconfigured to the personal preference of the user. We extend our work on AR
interactions and enable the user to configure these connections by selecting controllers
and devices which should be connected. At the same time, connections are visualized to
allow the user to easily understand the control flow (cf. Figure 1.13).

Personalizable Tangible User Interfaces from Simple Material The most signif-
icant benefit that the third interaction method using physical objects for interaction in
the AR project offered and what participants specifically mentioned is the haptics of
the object, which allowed them to perform more fine-grained adjustments. Providing
interfaces which are tangible can greatly enrich the interaction experience, as humans are
innately used to tangible interactions and also obtain direct feedback through the tangible
interface, which enables natural and precise handling. Many research efforts are moving
in the direction of tangible interactions, for example, by connecting physical objects to
graphically represented virtual counterparts. However, tangible user interfaces rarely adapt
to the specific use case or user as the hardware is fixed to a single configuration. There
are recently developed shape-changing tangible interfaces, yet these require complex and
costly hardware constructions.
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Figure 1.13: We create a system which allows the user to configure device connections in
AR.

In Chapter 5, we hence present our approach Tailored Controls, which allows users to
build their personalized tangible interfaces, created for their current needs from simple
materials, such as paper. User can cut out shapes from paper using a pair of scissors,
potentially assemble them to more complex groups. Then, they can virtually add specific
interaction properties to the shapes, such that a paper snippet is clickable or rotatable (i.e.
that rotation is tracked). We carried out a first user study to find the relevant properties,
which we call touchets (e.g. rotation or that a shape should behave like a button). We
developed computer vision algorithms to track the shapes and the user’s hand with an
RGBD (colour and depth) camera mounted above the interaction surface, as illustrated
in Figure 1.14. Thereby, we can observe when a user touches a shape and subsequently
enact the interactive properties assigned to that shape. For example, if it is a button and
rotation-sensitive, and the user touches a shape, we forward the click event and by how
much the shape was rotated to the connected application.

The proposition of our approach is that it enables the user to create universal interfaces
for any application, by combining any number of touchets, i.e. interaction patterns, with
arbitrary shapes, and connecting them to the application via HTTP requests. Moreover,
the user does not require any markers attached to the shapes, which is the case in previous
works, and can reconfigure the interface at any time.

In a second study, participants successfully built interfaces for several real applications.
A great benefit of our approach is that it enables users to directly see their interfaces in
action, which spurs creativity and facilitates fast iterations on interface designs, which
was the case for many of our participants. We see interface prototyping, which relies on
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this behaviour and usually uses paper but without augmenting it with functionality, as one
compelling application area of our approach. Furthermore, a similar system could be used
to create more dynamic environments, e.g. for building control. Users could easily create
dynamic control interfaces for lights, blinds, the heating etc. without requiring changes
in the wiring of the building. Another application area could be factory workers who
assemble their personalized interface for machines they work with.

The system we present here is different from our other work mentioned above as it is not
wearable and requires a hardware sensor in the user’s environment. However, it still follows
the general theme of bringing together human users and smart environments by providing
accessible interactions, which are comparably easy to use. Moreover, we envision that the
concept could also be implemented in a wearable system, as head-mounted displays for
augmented reality contain depth cameras to perceive the environment in 3D, which could
be used to implement our approach only using wearable cameras.

We conclude this dissertation in Chapter 6, summarizing our contributions, giving an
outlook on potential future directions in this and related fields of research.

We want to point out that we acknowledge that our work does not solve the problem of
providing humans with natural and intuitive interactions in its entirety. From a schematic
point of view, the interaction with a smart device can be understood as a process with sev-
eral stages, from selecting an interaction target to providing raw input, and understanding
the human’s intention and inferring an action from the context and that input. This division
implies that a solution does not result from a single separate and constrained research field

Figure 1.14: Tailored Controls recognizes the shapes the users produced and hand interac-
tions upon them. These interactions can be forwarded to any application.
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but from a potentially complex combination of results of different contributions. Rather
than aiming to resolve the problem in its entirety (which will require many more research
efforts), our goal was to provide solutions for sub-problems, e.g. recognizing gestures for
providing input. Our solutions could be integrated as a component in a larger system, or
to explore paradigms which enable novel ways of interaction such as augmented reality.

Nevertheless, we believe that our research, on the one hand, advances the state-of-the-art
by providing novel solutions in areas such as touch recognition and employing augmented
reality for direct interaction. On the other, we hope that it inspires future work in particular
in the domain of wearable computing and applications thereof by proving that we can run
our solutions in real time and use them in real-world applications with the demonstrators
we created.

1.3 Contribution Statement

The contributions presented in this dissertation partly rely on work done by other people,
who are also co-authors of the corresponding papers. The areas which others contributed
to are listed in the following, which mainly consist of implementation work in student
projects. The algorithms and concepts implemented are the work of the author. Otherwise,
the work presented is also the original work of the author.

Chapter 2: Pietro Oldrati created the hardware measurement set-up for the finger force
data collection and collected the EMG data from participants as part of his Bachelor’s
thesis.

Chapter 3: Linus Fessler implemented the first data collection application for the
GestEar project, partly collected the gesture data, and built the first gesture recognition
prototype in his Bachelor’s thesis. The applications were later reimplemented in an
optimized fashion by the author, including the processing and gesture recognition (which
also entailed significant changes of the model).

Chapter 4: Felix Rauchenstein implemented the prototype of the AR interaction system
and collected the participant data. He also implemented the prototype for configuring
device connections, which the author reimplemented later.
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Chapter 5: Sandro Kalbermatter implemented the prototype for Tailored Controls as
part of his Master thesis. He also collected the participant data during his project.

Furthermore, the co-authors of the publications mentioned below gave feedback on the
concepts, ideas, and evaluations presented in the papers.

1.4 Publications

The research presented in this dissertation has also been published in the following research
papers.

2019 [24] Vincent Becker, Sandro Kalbermatter, Simon Mayer, Gábor Sörös. Tailored
Controls: Creating Personalized Tangible User Interfaces from Paper. ISS

’19.
2019 [23] Vincent Becker, Linus Fessler, Gábor Sörös. GestEar: Combining Audio

and Motion Sensing for Gesture Recognition on Smartwatches. ISWC ’19.
2019 [29] Vincent Becker, Felix Rauchenstein, Gábor Sörös. Connecting and Control-

ling Appliances through Wearable Augmented Reality. Augmented Human
Research, 2019, Springer.

2019 [30] Vincent Becker, Felix Rauchenstein, Gábor Sörös. Investigating Universal
Appliance Control through Wearable Augmented Reality. AH ’19.

2018 [28] Vincent Becker, Pietro Oldrati, Liliana Barrios, Gábor Sörös. TouchSense:
Classifying Finger Touches and Measuring their Force with an Electromyo-
graphy Armband. ISWC 2018.

2018 [21] Vincent Becker. Augmented Humans Interacting with an Augmented
World. MobileHCI ’18 Doctoral Consortium.

2018 [27] Vincent Becker, Pietro Oldrati, Liliana Barrios, Gábor Sörös. TouchSense:
Classifying and Measuring the Force of Finger Touches with an Electromyo-
graphy Armband [poster]. AH ’18.

Besides the papers named above, I authored or co-authored papers during my doctoral
studies, which are not part of this dissertations. These are listed below.
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2020 [12] Mihai Bâce, Vincent Becker, Chenyang Wang, Andreas Bulling. Combin-
ing Gaze Estimation and Optical Flow for Pursuits Interaction. ETRA ’20.
The first three authors contributed equally.

2018 [26] Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mat-
tern. Automatically Estimating the Savings Potential of Occupancy-based
Heating Strategies. Energy Informatics 2018.

2017 [25] Vincent Becker, Wilhelm Kleiminger. Exploring zero-training algorithms
for occupancy detection based on smart meter measurements. Computer
Science - Research and Development, 2017, Springer.

2017 [22] Vincent Becker, Mihai Bâce, Gábor Sörös. Wearable machine learning for
recognizing and controlling smart devices. MobileHCI ’17 Workshop.

2017 [14] Mihai Bâce, Philippe Schlattner, Vincent Becker, Gábor Sörös. Facilitat-
ing Object Detection and Recognition through Eye Gaze. MobileHCI ’17
Workshop.

Two of the earlier publications [25, 26] are related to a project carried out in the area
of “smart energy” at the beginning of the doctorate, which also serves as an example
for a possible service enabled by ubiquitous computing. A general assumption is that
the incorporation of information and communication technology in building control can
save a lot of energy. We focused on heating control, as heating has the highest energy
consumption for residential households. Furthermore, it is rather challenging to control
predictively, due to the significant time difference between control setting and consequence,
e.g. setting the thermostat to a higher temperature until the outcome, a higher temperature,
is reached, especially when compared to other building control components, such as
lighting. The basic idea of how to save energy is to turn off the heating whenever the
inhabitants are absent by employing an automatic occupancy control system. However, for
some groups of people, it might not be worth the cost of having such a system installed
due to no or only short absences. In this case, the household would have to be heated even
during the absences to preheat the dwelling for the return of the inhabitants. Besides, very
well insulated houses also do not benefit from such a control system as much as houses
with little insulation. The goal of our project was to provide a method to automatically
estimate the utility of a heating control system for a specific household without installing
any additional hardware except a smart meter, which many households already have
installed anyway. We detect the occupancy pattern from the smart meter data [25] and
based on this schedule we use a heating simulation parametrized to the specific household’s
characteristics to estimate the heating energy consumption [26].

Another early workshop paper [22] describes a prototype to detect smart devices visually
using a smartphone camera and subsequently being able to use gestures to control the
device. This prototype is the beginning in the line of work described in this thesis and
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an example for the first necessary step in the interaction process, identifying the device
the user intends to interact with. This work is not part of the thesis as the thesis focuses
on how to provide input to a smart device and not how to identify it. Furthermore, the
approach employing visual object recognition has several shortcomings, such as not being
able to distinguish different objects of the same kind, e.g. several lights. A similar problem
occurs when two users want to interact with two devices of the same type at the same
time. There are other solutions available avoiding these problems, such as marker- or
barcode-based recognition, or using infrared emitters on the humans and receivers on the
devices to exchange identifying information. Nevertheless, these have the disadvantage of
requiring the instrumentation of the environment.

Our latest paper [12] deals with a gaze interaction method called pursuits (which is also
shortly mentioned in Subsection 1.1.5). When the human eye follows a moving object, it
carries out a smooth movement, called smooth pursuit, in contrast to the usual saccadic
movements. These pursuits can be employed for interaction by displaying moving targets
on a screen, measuring the eye motion with a tracking device, and finally correlating this
motion to the motion of the targets to select the target the human was following as the
target with the highest correlation. One advantage in comparison to other gaze-based
interaction methods is that it does not require any calibration (e.g. of an eye tracker), as
long as the relative movements of the eye are captured. The interaction technique was
presented in 2013 by Vidal et al. [169] and has since then spurred further research both in
improving the method itself but also in applications. However, all previously presented
works required either a dedicated eye tracker or a camera placed very close to the eye. We
propose a method that only requires a standard webcam, which is placed at a distance
from the user, for example, mounted on a computer screen. On the camera frames, we
find and crop the face and run two algorithms independently from one another. The first is
a state-of-the-art gaze estimation algorithm to infer the user’s gaze direction, which we
translate to the point of regard on the computer screen. These points are then correlated to
the positions of the targets. The target with the highest correlation is selected as a first
candidate. The second algorithm is an optical flow algorithm, applied to consecutive pairs
of image frames, which computes the motion between the frames, in our case, the motion
inside the cropped eye patch. This eye motion is compared to the targets’ motion (the
difference between two target positions in time) employing the cosine similarity. Similarly
to the first part, we select the target with the highest similarity as the second candidate. We
finally merge the two candidates using a voting strategy. Through this combination, we
exploit both the direct gaze information as well as the dynamic information provided by
the optical flow. In experiments, our method is competitive with a commercial eye tracker
for a small number of targets and certain target trajectories. We believe that our approach
can inspire new pursuit interaction approaches which only requires hardware as simple as
an RGB camera, which is already available in a large number of devices.
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Chapter 2
Classifying Finger Touches and
Measuring their Force with an
Electromyography Armband

2.1 Introduction

Finger touches, presses, and grasps are among the most important ways humans interact
with their surroundings. Evolutionary biologists speculate that the ability to manipulate
objects is to a large extent the reason for the remarkable development of primates’ brains,
which ultimately made humans the dominant species of the planet [63]. Tools built
throughout human history take advantage of the broad spectrum of human touch. A piano,
for example, can only be meaningfully played with several fingers at once, and its keys
react to the force applied with differently loud tones. This richness of human touch,
however, is only poorly represented in most technological devices. A traditional light
switch, for example, is insensitive to both the pressure of the touch, and to the finger(s)
used in the process. It will uniformly turn on the light, with the same colour and brightness.
Taking the pressure of the touch gesture into account already yields more sophisticated
devices, such as dimming light switches. Considering also the specific finger used in the
interaction can add new and more features, and perhaps open entirely new interaction
possibilities as additional information can be encoded through the specific fingers.

The lack of adaptation leaves space to explore the use of techniques that identify the
finger and estimate the force (or pressure) of finger touches. Such techniques would enable
both explicit and implicit input. Explicitly by actively modulating one’s finger force when
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(a) (b)

(c) (d)

Figure 2.1: We propose a method that allows determining the finger and the force applied
in touches. We present several applications using this method to enrich the
interaction with devices.

controlling appliances, for example, by determining the brightness of a light by the force
of the finger pressing when turning it on. Implicitly by gathering information about the
user’s state, such as him/her being in a particular mood which can be inferred from the
force he/she applies.

Nevertheless, even amongst the newer touch-based devices such as tablets and smart-
phones only very few feature a pressure-sensitive input surface which does not have the
means of identifying the finger either. Apple’s newer products incorporate the technology
“Force Touch” [247], which can distinguish between different degrees of force being
applied to the screen, thereby adding an input dimension.

Instead of augmenting specific devices with such sensing capabilities, it is beneficial to
augment the humans themselves to sense the fingers used and the corresponding force of
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their touches. That would allow any surface on any object in the environment to act as an
input interface and enrich the human’s interaction capabilities. For example, one could
turn on the lamp by pressing on a surface nearby, such as a wall or a table, or control the
TV from the sofa by touching the armrest. For such a system augmenting the human to
work, there are two options. One would either have to augment the user’s fingertips with
force sensors, which is rather obtrusive or measure the contraction of the muscles in the
forearm to infer the finger used and estimate the force exerted by that finger, since the
muscles in the forearm control the fingers. The latter is possible using electromyography
(EMG), the measurement of muscle activation potentials. EMG devices are usually costly
and require large amplifiers; however, in recent years, an inexpensive and wireless EMG
armband, the Thalmic Labs Myo [243], has become commercially available1. Figure 2.2
shows the difference between the Myo and a traditional EMG recorder.

(a) (b)

Figure 2.2: The wireless Thalmic Labs Myo (picture taken from [238]) compared to a
traditional EMG recording set-up.

We present TouchSense, a system for classifying finger touches of the thumb, forefinger,
and middle finger and estimating the exerted force. We only utilize the Thalmic Lab’s Myo
EMG armband and a standard Android smartphone which continuously receives the EMG
signal via Bluetooth, making our system wireless and mobile. For finger identification,
we use a light-weight neural network running on the smartphone with a short average
inference time of under 10 ms, thus fulfilling real time requirements. Furthermore, the
network has a model size of less than 140 KB. Subsequently, the force is estimated and
output on a continuous scale. We collected the necessary data from 18 participants and
measured force ground truth values with a self-built hardware set-up. This ground truth

1At the time of writing of the thesis, the production of the Myo has been discontinued. Nevertheless, other,
more advanced products are becoming available, such as the CTRL-kit from CTRL-labs [219].

31



Chapter 2 Classifying Finger Touches and Measuring their Force with an
Electromyography Armband

enables us to train a regressor for actual force values. We evaluate our system in several
experiment designs, including a user-independent design, a user-dependent but session-
independent design, and a session-dependent design. Moreover, we demonstrate its use in
four demo applications. Overall results show that a user-independent system is difficult to
achieve, however, a user-dependent, but session-independent system is possible, i.e. our
system has to be trained once for every user.

2.2 Background and Related Work

Electromyography (EMG) measures the electrical activation of a muscle. Motor neurons
control muscle fibres by electrical impulses. In order to command a muscle to contract,
the brain sends an electrical impulse to the motor neuron, which in turn transmits an
electrical impulse to the muscle it controls. Following the activation, ion channels open
and create a measurable difference in the potential of the muscle cells. Thereby, each
muscle contraction can be associated with an EMG signal. A strong muscle contraction
is accompanied by a strong EMG signal, i.e. stronger presses should be distinguishable
from lighter presses. EMG can be performed invasively, applying needle electrodes to
penetrate the muscle, an accurate but impractical way of measurement, or using surface
electrodes, which are easier to use but more imprecise. We use the Myo armband, a surface
EMG device applied to the forearm, thereby measuring the muscles controlling hand and
fingers. A significant challenge when performing EMG analysis is the substantial variation
between people due to interpersonal differences in anatomical properties, such as muscle
strength, the position of bones, and skin conductance. Furthermore, the measurements
of two sessions for the same person may differ because of the exact placement of the
electrodes changes.

Most previous work using EMG in the HCI domain has been done in the area of hand
and finger gesture recognition [1, 5, 6, 31, 32, 38, 42, 58, 64, 72, 73, 94, 95, 114, 127, 130,
137, 144, 147, 151, 168, 198, 199] and it has been shown that this can be performed at high
accuracy using machine-learning techniques. However, the mentioned works investigate
only full-hand gestures or coarse-grained finger gestures. Moreover, many previous works
differ from ours by either using mostly expensive, specialized, wired, or custom-built
hardware for measurement, some with a high number of channels, performing an offline
analysis, and not being able to run in real time, or combining EMG with other sensors.

Previous Work on Touch and Force from EMG There is relatively little work
considering finger touches and the applied force. In the following, we briefly discuss
previous research concerning finger touching gestures and the estimation of applied force.
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DiDomenico et al. show the feasibility of using EMG for finger strength regression for
the purpose of evaluating the ergonomics of finger-intensive tasks [56]. They collect force
ground truth in an experiment, including 30 participants performing finger gestures (e.g.
pinches) simulating hand-intensive tasks. The EMG data were gathered using three wired
electrodes attached to the forearm. For regression, they fit linear models and show that
this results in an acceptable error. However, they do not use the models on unseen data in
a test case and only perform an offline analysis.

Saponas et al. [148] classify finger gestures engaging the fore- and middle finger,
extended or curled, tap, and lift and also classify finger strength into hard and light. They
show that it is possible to determine the finger which is used for pressing and distinguish
the two pressure classes with high accuracy. However, they trained and tested with
data from the same session. When performing a cross-user-validation, the performance
decreases significantly. While they only classify into two force levels, we envision a
system which estimates a continuous force level. Their EMG electrodes are wired to
an expensive measurement set-up with a high sampling rate of 2048 Hz (more than ten
times higher than for our device). Moreover, they only perform an offline analysis. They
continued their work and also built an online system for pinching gestures [149] using a
custom-built wireless EMG armband. They show that it is possible to obtain over 70%
accuracy in a two-session experiment design for pinching gestures using the fore-, middle,
and ring finger. We go further and perform the analysis directly on a smartphone, thereby
creating a completely mobile system using off-the-shelf hardware.

Benko et al. have built on the work done in [148] to perform finger identification
and additionally estimate the finger pressure by using a smoothed average of all EMG
channels [32]. They use this pressure estimate in combination with the touch-sensing
capabilities of a tabletop computer to allow extended input, such as adapting the width of
a stroke in a painting application according to pressure. However, as they use the same
system as in [148], their set-up is also static and processed on a desktop machine. Fur-
thermore, their design is session-dependent (i.e. it needs to be trained for each participant
before every use and not only once per participant). As they never collected force ground
truth, it is also not possible to say how well their estimate correlates to the actual force
exerted by the finger onto the screen. In contrast, we collect ground truth data using our
hardware set-up and fit a regressor to the EMG data and the ground truth.

Touch and Force through other Modalities Various other modalities have been
examined for achieving finger identification. Vision-based approaches employ cameras
viewing the scene from above tracking the users’ fingers [50, 119, 129, 203]. Others view
transparent displays from below and recognize individual fingerprints [85]. While these
approaches have the benefit of not having to augment the users with any sensors, the
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interaction is limited to a fixed space. Furthermore, it is not possible to determine the
applied force.

Contrarily, other researchers attached sensors directly to the fingers or integrate them in
a glove to identify which finger is used in an interaction [70, 76, 120, 121]. This method
allows for highly accurate finger identification. However, the force of touch interactions
is not estimated. Most importantly, they are rather obtrusive systems in terms of finger
interaction. Another solution is to incorporate RFID tags into fake fingernails, which are
detected by RFID readers in the interaction devices [166]. While this provides a method
which does not interfere with the finger interaction, it requires the interaction surfaces to
contain an RFID reader. Besides, force estimation is not possible.

Concerning the measurement of force, manufacturers of commercial products focus on
hardware solutions in touch screens, as the aforementioned ForceTouch from Apple, or
touchpads, such as Synaptics’ Force pad [241], a laptop touchpad which is able to measure
the force applied by the fingers. However, the input surface is confined to the relatively
small size of the touch screen or touchpad, whereas our system can turn any surface or
object into an input surface.

In conclusion, the main differences to previous work are the following: we use an
inexpensive, wireless, off-the-shelf EMG armband with a low sampling rate for finger
classification and force estimation; we collect force-ground truth for finger presses and
are thereby able to evaluate our force estimation and finally we run an online, real-time
analysis on a smartphone, through which our system becomes mobile.

2.3 The TouchSense System

2.3.1 Data Collection

To record EMG data, we use the Myo armband from which we deliver the EMG data
to an Android smartphone via Bluetooth. Additionally, we collect ground truth force
data using a measurement set-up shown in Figure 2.3. This ground truth allows us
to train regressors for the exerted strength and the force values also serve as labels for
classification (then reduced to zeros and ones). The set-up consists of a measurement
circuit using three adjustable force-sensitive resistors wired to an Arduino Yún, which
is itself connected to a computer. The force-sensitive resistors are fixed to a board by
Velcro pads, in order to adjust them to each participant’s hand anatomy. A diagram of the
set-up and the schematics are depicted in Figure 2.4a and Figure 2.4b. The smartphone
and the Arduino are synchronized via an NTP time server. Note that we only require the
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Figure 2.3: Our hardware set-up for collecting force ground truth consisting of a force-
sensitive resistor for each of the three fingers (thumb, forefinger, and middle
finger) and an Arduino.

(a) (b)

Figure 2.4: A diagram and the schematics of the hardware set-up for measuring the force
values of finger presses showing the connections between the force-sensitive
resistors and the Arduino.
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measurement set-up for collecting training data and not at test time or in a real application.
We convert the force signal to Newtons (resolution 0.01 N). Typical pressing forces that
can be comfortably exerted range from 0 to 12 N. The Myo samples at a rate of 200 Hz
from eight channels (i.e. eight sensors) in a value range from -128 to 127 (unitless). The
Myo’s sampling rate is relatively low when compared to standard EMG measurement
devices (sampling rate commonly around 2 kHz). Potential line noise interference at the
frequencies 50 Hz and 60 Hz is automatically filtered. We also set the sampling rate of our
force ground truth measurement set-up to 200 Hz.

Each session consists of a series of presses, with soft (around 2 N to 4 N) and strong
presses (around 8 N to 12 N), and a period where the participant modulates the pressing
force from low to high (i.e. from 0 N to 12 N). This is done for the thumb, the forefinger, the
middle finger, and also all combinations of the three. Because we also record combinations,
we only included three digits in the data collection in order to keep sessions short. A single
session takes around five to seven minutes. We segment every recording in time windows
with a length of 10 EMG samples with an overlap of 9, i.e. every window represents a
period of 50 ms over eight EMG channels and for every 5 ms of recording we produce a
new window. This way, we generate a high number of training samples, even for short
data collection trials.

We collected data from 18 participants (six females, 20 to 66 years old, average age 27
years). During data collection, the participants were sitting at a table. We tried to keep the
placement between different sessions and participants as similar as possible by placing
the Myo notification light on the upper side of the forearm as recommended by the Myo
developers. In total, we gathered 1,819,846 samples. All our participants wore the armband
on the right arm. However, it should be simple to integrate also the left-handed case by
mirroring the EMG channels [95]. For fifteen participants, we collect a second EMG
session for a user-dependent, but session-independent experiment design. For two of these,
we recorded another seven sessions, i.e. nine in total, to examine the effect of utilizing an
increasing amount of training data. For all the participants with at least two sessions, the
recordings were carried out at least one day apart from each other. As mentioned above,
our dataset also includes touch and force data for any combinations of thumb, forefinger,
and middle finger which were collected in the same sessions and the same way as the
single touch gestures. As the finger identification task is very challenging even for single
fingers, the data for the finger combinations are not used here. A preliminary evaluation
including all combinations of the three fingers resulted in a relatively low accuracy of
46.1% for a user-dependent, but session-independent experiment. Nevertheless, the data
are included in the dataset we publish for potential future use.
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2.3.2 Finger Classification and Force Estimation

As dataset for the classification task, we use all samples with forces over 2 N for a
single finger and under 1 N for the other two fingers to remove finger combinations and
converted the force values into classification labels. In most previous works based on
EMG, researchers have used hand-crafted features for classifiers such as Support Vector
Machines. In the first experiments using the data of all participants, we evaluated several
approaches with several different sets of features gathered from the literature. However,
although we tested a vast set of combinations of features, we could not exceed a test
accuracy of around 65% on our dataset. Thus, we decided to design a neural network
for finger classification with the intention that the network would learn the best features,
relieving us from the requirement of performing feature engineering and selection, an
approach recently also followed by other researchers [60, 61].

Our architecture is depicted in Figure 2.5. Since hand-crafted features are mostly
computed per EMG channel, we decided to do the same. The first network layer learns
features per channel. Since we want it to learn the same features for each channel, the
weights of the corresponding neurons are shared. This procedure has the beneficial
property of being the same as a convolution over an image with a 1×w filter without
padding, where w is the width of the image. In our case, the “image” consists of eight EMG
channels with a window of 10 values each. Hence the filters have the shape 1×10. The
result of this first layer is k 8×1 feature maps, where k is the number of filters. Keeping k
variable allows controlling the complexity of the network. To reduce the number of feature
maps, we add a convolutional layer with l 1×1 filters (l should be smaller than k). These
take all k features from the previous layer into account and produce l higher-level features.

The feature maps are then reshaped into a single vector which is the input to the rest
of the network. It consists of a fully connected layer with m units, three fully connected
LSTM (Long Short Term Memory) cells, also with m units each, and a softmax layer to
output the probabilities for each finger. In the fully connected layer, we use dropout with
a dropping probability of 0.5. The fully connected layer can take every combination of
features resulting from the convolutional layers into account. Being able to learn these
combinations automatically is a great advantage compared to other classifiers, where
these combinations of channel features have to be encoded in specific multi-channel
features (c.f. for example [58]). The motivation for the LSTMs is that they allow us to take
information over several windows into account, thus allowing to exploit both temporally
local information from single windows as well as longer dependencies. We train the LSTM
cells on sequences of five windows and during testing also feed sequences of five windows.
The number of outputs of the softmax layer corresponds to the number of fingers taken
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Figure 2.5: Our architecture for finger classification consisting of two convolutional layers
with k and l filters, one fully-connected layer with m units, three stacked LSTM
cells with m units each, and finally a softmax layer. The LSTM cells take five
consecutive windows into account.

into account in the specific experiment, i.e. there are either two or three. The number of
feature maps in the convolutional layers and the number of units in the LSTM cells are
given as variables to control the complexity of the network to adapt to different amounts
of available training data. We use a cross-entropy loss function, an Adam optimizer with
a learning rate of 0.0025 and a batch size of 200. The number of training epochs varies
for the different experiments, to control for overfitting. We implemented the network in
TensorFlow [242], trained it on a computer and exported the model file to our Android
application. The model size is only about 140 KB. The runtime for all our models is
below 10 ms on average on an LG Nexus 5X and hence fulfils real time requirements for
human-computer interaction. We smooth the predictions using a majority vote over the
last five predictions to make the results more stable. In the evaluation, this is only done
when we test on whole sessions (either in the user-independent or the user-dependent,
session-independent setting), as the smoothing requires time-continuous sequences.

To obtain a force value for the finger press, we use the mean absolute value over all
channels and the whole window (MAV) as calculated by MAV = 1

8∗w ∑
8
1 ∑

w
1
∣∣vi j

∣∣ where i
indexes one out of the eight channels and j indexes one out of the w samples per window.
This is a good indicator of force (cf. Section 2.4), which does not have to be learnt. As
the predictions, we also smooth the MAV to make the values more stable. If we allow
user-dependent calibration, we can also fit a regression function. We use a linear regression
model solely based on the MAV to map the MAV to actual force values. The code and
data are available on GitHub [214].
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2.4 Evaluation

2.4.1 Finger Classification

We carry out several experiments, including mixing all data and performing cross-
validation, a user-independent, and a session-independent design. For all our experi-
ments, the description, including the network configuration, the evaluation method, and
the average accuracy is given in Table 2.1. Whenever applicable, we perform 30-fold
cross-validation. Otherwise, we apply cross-validation across participants or multiple
sessions of the same participant. For the user-independent (no. 2 and 5) and the session-
independent experiments (no. 3 and 6), we apply prediction smoothing as mentioned in
Subsection 2.3.2. For the other experiments, the data is shuffled; hence it loses its sequen-
tial character and smoothing is not applicable. We always balance the data for training,
i.e. we use the same number of samples per class to avoid skewed data proportions in the
training process. Whenever possible, we also give more detailed performance figures in the
form of confusion plots and accuracy charts. The confusion plots display the normalized
confusion matrix (all numbers divided by the total number of samples), which in case of
experiments no. 2, 3, 5, and 6 is the average of the normalized confusion matrix for each
participant (no. 2 and 5) or session (no. 3 and 6). The accuracy charts display the accuracy
when testing on a single participant in the user-independent experiments (no. 2 and 5) or
the average test accuracy per participant for the session-independent experiments (no. 3
and 6).

Expt. Setting Cross-validated Fingers Configuration Accuracy

1 All data mixed 30-fold t, f, m 64, 8, 256 97.4%
2 User-independent Across users t, f, m 64, 8, 256 48.4%

3
User-dependent,
session-independent

Across sessions
per participant t, f, m 32, 4, 32 72.6%

4 All data mixed 30-fold t, m 64, 8, 256 98.7%
5 User-independent Across users t, m 64, 8, 256 70.1%

6
User-dependent,
session-independent

Across sessions
per participant t, m 32, 4, 32 86.8%

Table 2.1: The description of the experiments including the cross-validation, which fingers
were included (t: thumb, f: forefinger, m: middle finger), and the network
configuration (k, l, m). The results are given as the average accuracy over all
folds and participants.
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Classification with Three Fingers

First of all, we perform our evaluation on all the data (excluding finger combinations as
mentioned above), including the thumb, the forefinger, and the middle finger.

Experiment 1 In a first experiment, we evaluated the setting of mixing the samples of
all users and performing cross-validation. Due to the large number of samples, we deploy
a relatively complex network. We train for 100 epochs and obtain a test accuracy of 97.4%.
The confusion plot in Figure 2.9a shows how few misclassifications there are. This proves
that our neural network is able to capture the characteristics of the EMG signals.

Experiment 2 In a second experiment, we attempted the most challenging setting, cross-
validation on users, i.e. excluding a single participant’s data from the training set and testing
on this data to evaluate how user-independent our system is. Unfortunately, we obtain poor
results for most participants, as shown in Figure 2.6, and confirmed by the confusion matrix
(c.f. Figure 2.9c). This outcome is a result of the inter-personal anatomical differences and
that the sensors are placed a little differently for every participant. It shows how individual
the EMG data of each participant is. The user-independent design is generally a challenge
in previous literature as well. The performance is generally poor; however, our primary
goal and measure is high performance in the session-independent experiments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Participant

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

All fingers

No forefinger

Figure 2.6: Accuracies for participants in experiments 2 and 5.
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Experiment 3 As a consequence of experiment 2, we moved to a user-dependent, but
session-independent design in the third experiment, which resembles a real-world scenario
where the system has to be trained once per user. For this purpose, we recorded at least
two sessions for fifteen participants. We perform cross-validation on the sessions, i.e. we
test on each session, after having trained on all the others. Note that for this experiment,
we have much less training data, so we reduced the training epochs to 20 and also the layer
sizes as shown in Table 2.1 to avoid overfitting. The results (c.f. Figure 2.7 and confusion
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Figure 2.7: Accuracies for participants in experiments 3 and 6.

matrix 2.9e) are much improved from the user-independent setting, as the variance now
is only caused by differences between sessions, but not between people. As the sessions
were at least a day apart, this proves that we can generalize over a longer time period. As
our evaluation for the limited set of two participants with nine sessions each show (cf.
Section 2.4.1), we can expect to obtain better results with more data per participant.

Classification with two fingers, experiments 4 to 6

A problem we identified and which is shown clearly by the confusion matrices in Fig-
ures 2.9a, 2.9c, and 2.9e is that the forefinger is often confused with either the thumb
or the middle finger. We thus also investigated the case of only classifying thumb and
middle finger and reran all our previous experiments. We show the result in the confusion
matrices in Figures 2.9b, 2.9d, and 2.9f and as second bars in the accuracy figures. As
expected, the results for this case are better than in the three-finger case for all experi-
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ments. Especially experiment 6, with over 86%, shows that our system can be valuable for
real-world applications.

Finger Classification with more Data

As mentioned above, for two participants, we collected nine sessions to investigate the
effect of training with more data on the classification accuracy in the session-independent
case. In Figure 2.8, we show the accuracy when training on an increasing amount of
sessions and performing cross-validation for each of the two participants (including all
three fingers, i.e. resembling experiment 3). With more sessions used for training, the
performance significantly increases for both participants. We believe that we could achieve
higher overall performance with more training data for each participant.

2.4.2 Force Estimation

As mentioned in Subsection 2.3.2, we use the mean absolute value over all channels
and the whole window (MAV) as default force estimation. The Pearson’s correlation
coefficient of the force ground truth value and the MAV for all participants is 0.86 on
average, which proves that the MAV is a good proxy for the force and changes in the MAV
correspond to changes in the force. The individual correlation values for each participant
are given in Table 2.2. For participants with more than one session, we average the results
over all of them.
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Figure 2.8: The accuracies in the session-independent experiment for two participants
when increasing the number of sessions for training.
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Figure 2.9: Confusion plots for all the experiments.
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Table 2.2: The Pearson’s correlation coefficient between the MAV and the force ground
truth for each participant. The high correlation proves that the MAV is a good
proxy for the applied force.

Participant 1 2 3 4 5 6

Pearson c. c. 0.86 0.83 0.83 0.91 0.92 0.84

Participant 7 8 9 10 11 Mean

Pearson c. c. 0.88 0.87 0.77 0.85 0.91 0.86

Nevertheless, if data for calibration is available, e.g. in the multi-session setting, we
can fit a regression function. For each participant, we fit a linear regression model based
on the MAV and cross-validate it (10-fold). For participants with multiple sessions, we
average their results again. The average mean absolute error (MAE) across all participants
is 1.26 N, i.e. roughly 10% of the usual force range, which reaches up to 12 N. When
smoothing the results over five predictions, as we do it also for the classification, the MAE
decreases to 1.22 N. Figure 2.10 depicts the ground truth force values, the MAV (scaled by
a factor of 50), and the predicted force values from a linear regression model for a segment
of a session with 10,000 samples. It exemplifies that the MAV reflects changes in the
force well. Nevertheless, the regression model performs better, especially in areas where
no force is applied. Here the MAV is still positive, which results from sporadic EMG
activation. For all participants with two sessions, we fit a linear regression function on one
session and applied it on the other (and vice versa) without smoothing. The average MAE
for this session-independent scenario is 1.28 N, which shows that the calibration of the
regression system works across multiple sessions. The results of this evaluation are given
in Figure 2.11.

2.5 Limitations

The user-dependence still is a strong limitation, i.e. our system has to be trained per user.
Besides, to be able to train the force regression, ground truth force values are necessary,
which we measure with our hardware set-up. However, this is not available everywhere,
and it does not appear reasonable for every user to have one. Nevertheless, the finger
classification could be trained without the exact force information only by instructing the
user to perform a series of finger presses and recording the data. This approach would not
require any hardware apart from the smartphone and the Myo, which are anyway needed
for the normal use. Furthermore, the user could still obtain a force estimate through the
MAV, which does not have to be learnt from training data. The user-dependence might
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Figure 2.10: An example of the ground truth force values, the MAV, and the predictions of
a linear regression model for 10,000 samples.
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be solved by using more data for training, as the original Myo gestures also work user-
independently. A further practical limitation is that the Myo is not particularly comfortable
to wear, especially after a longer period of time. However, we expect there to be lighter
and more comfortable device developments in the future, maybe even sewn into clothing
garments.

2.6 Applications

We created several demo applications employing our system. They show that it is possible
to use TouchSense in real-world scenarios. A visual overview of all the applications
is shown in Figure 2.1. It is important to note that for all the demos, we use the same
model, i.e. did not finetune the model to the specific use case. Furthermore, in none of
them, the system was calibrated during the demo session, i.e. our system can be used
immediately without recording session-dependent training data. The model file is less
than 140 KB large, i.e. a more general application for multiple users could easily contain
several individually trained models. A video of our demos is available on YouTube [215].

The first application (cf. Figure 2.1a) demonstrates how any surface can be used as an
input surface in order to control smart devices without them being required to have an
interaction surface of their own. Here, a smart lamp can be controlled by pressing on any
surface around it. Pressing with the forefinger decreases the brightness, pressing with the
middle finger increases it. The magnitude of the change adapts to the force applied by
the finger, i.e. strong presses change the brightness quickly while soft presses change it
slowly.

The second application we created is a tablet app for marking text (cf. Figure 2.1b). On
the screen, any finger can be used for marking the text in a semi-transparent colour. We
extend the interaction surface of the tablet by an imaginary colour palette controlled by
finger presses. Pressing outside of the tablet screen, e.g. on a table, controls the palette.
It includes three options: Pressing with the thumb changes the colour to the next colour,
pressing with the forefinger sets the stroke width according to the strength of the touch,
and pressing with the middle finger reverts the last stroke. By employing this concept, we
can mitigate the size limitations of the display.

We realized that our system also works for objects held in hand without further training.
We took advantage of this and created a tablet drawing application using a stylus (cf.
Figure 2.1c). The drawing behaviour adapts to the way the stylus is pressed with the
fingers and provides a new drawing interface. When pressing with the thumb on the stylus,
the colour is changed to the next colour, as before. Pressing strongly with all fingers
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activates an erase function. This application shows that TouchSense cannot only enhance
the interaction with smart devices such as tablets but also extend the functionality of usual
“non-intelligent” objects such as the stylus.

In our last demo, we present an outdoor use case (cf. Figure 2.1d). We create an
Android map application for cycling, showing a map and the current position, which
can be controlled by pressing on the bicycle’s handlebar without letting it go, strongly
facilitating the control of the map. While riding the bicycle, the cyclist can change the map
type by pressing the thumb on the handlebar, zoom out by pulling on his/her forefinger,
and zoom in by pulling on his/her middle finger.

As shown with the stylus and the bicycle handlebar, TouchSense not only works on
a flat surface but also on other objects. This way, our system could be used to control
devices by externalizing functionality to arbitrary objects if it was possible to identify
the objects through other means, such as visual recognition. For example, a mug could
be responsible for controlling the volume of a sound system, a sofa for changing the TV
channels, and so on.

2.7 Conclusion

In this chapter, we presented TouchSense, a mobile system to augment a human with
a sensing mechanism to classify touch gestures including the thumb, the forefinger,
and the middle finger and estimating the force of the touch from EMG data. Through
TouchSense, all surfaces in the environment are turned into interaction areas. Besides,
existing interaction paradigms can be enriched with additional features.

To gather the EMG data, we employ an inexpensive, wireless EMG armband. The
EMG data is then processed on a smartphone in real time to classify the finger used in
the interaction and estimate the force applied. Moreover, for training, we collect ground
truth force data in order to provide labels and enable us to fit regression models for force
estimation. The classification is done by a convolutional neural network we specifically
designed for the purpose of EMG analysis. It runs on a standard smartphone in under
10 ms per inference and is at most 140 KB large. The evaluation showed that, as also
expected from previous works, a user-independent setting is challenging, and the results
are insufficient for a real application. Nevertheless, in a user-dependent, but session-
independent setting our network produces satisfying results, especially when being trained
and tested for only two fingers, which could be sufficient for many applications. We
furthermore showcased several demos, which prove our system’s real-world value.
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For future improvements, one could collect more data to tackle the challenging user-
independent scenario. Furthermore, one could design more sophisticated force regression
methods, such as a regression network running in parallel to the classification or a unified
architecture for both tasks.

48



Chapter 3
Combining Audio and Motion Sensing for
Gesture Recognition on Smartwatches

3.1 Introduction

Gestures form an essential part of human-to-human communication. But also in human-
to-computer interactions, gestures become a viable input method, besides traditional
keyboard- or touch-based input, or recent speech recognition. This is particularly true
for hand gestures. In comparison to speech, gestures have the advantage of being more
intuitive for some interactions and avoiding the awkwardness of speaking to no one
particular [52].

A large number of different methods for hand gesture recognition have been proposed in
the literature, both based on wearable as well as external sensors. In the previous chapter,
we presented a gesture recognition method based on electromyography (EMG) using a
wearable EMG armband. Another common approach is to use computer vision methods
to classify images from a camera stream. This image-based recognition can either be
performed from external or body-worn cameras, for example, mounted onto eyeglasses.
The disadvantages of vision-based methods are that the hand has to be in the field of view
of the camera, the camera itself is a rather expensive piece of hardware, and naturally, they
cannot be used in poor lighting conditions. A prevalent line of methods use motion data
from inertial measurement units (IMU) usually mounted on the wrist. Previous research has
shown that this works well for several different types of gestures [161, 185, 197]. Besides
the motion signals, some common gestures emit a mostly unused, but rich physical signal:
sound. Gestures such as snapping or clapping, produce a distinct sound, for example,
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(a) (b)

(c) (d)

Figure 3.1: An overview of several applications we created around our gesture recognition
method. (a) using GestEar for device control, e.g. sound or light systems;
(b) music control while on the go; (c) unlocking a personal smartphone; (d)
replacing the doorbell button by simply knocking at the door.

shown in the spectrogram in Figure 3.2. The features extracted from the sound signal
could be beneficial for the recognition of such gestures. Recently, other researchers have
explored the potential of sound-only recognition and showed that sound could be used for
activity, context, and gesture classification [78, 108, 153, 192, 195].

We focus on recognizing gestures from motion and audio signals together and build
a gesture set around the following gestures: snapping, clapping, and knocking. The
advantage of these gestures is that they are common in most cultural regions. Snapping, for
example, was already used in Ancient Greece by musicians [186]. We believe they could
be used for a multitude of applications such as smart device control. Such applications
have attracted notable attention in the past. Already in 1985, the “Clapper” [248], a
sound-activated electrical switch, was first released (which only detects signal peaks,
however, and does not recognize particular gestures). Our gesture set is further extended
by additionally distinguishing which hand the gesture was performed with when snapping
or knocking, and whether a clapping or knocking gesture was repeated.

Similar to the TouchSense system presented in the previous chapter, one particular goal
is to achieve the recognition with minimal computational resources. Here we additionally
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focus on using standard hardware without relying on specialized equipment such as an
EMG armband. We develop a gesture recognition method that we can run on a smartwatch
in order to create a mobile system ubiquitously available to the user. Smartwatches
have the benefit that they are subject to the motion of the wrist, which captures most
of a gesture’s motion, and are very close to the sound source a gesture may constitute.
Besides, most standard smartwatches already incorporate IMUs for activity tracking and
microphones for speech recording but are naturally able to record hand movements and
gesture sounds as well.

In this chapter, we present GestEar (gesture-ear), a method to classify sound-emitting
gestures based on motion and audio together, two signals also captured by the ear. GestEar
runs in real time solely on a smartwatch. The motion and audio data is recorded on a
smartwatch and processed locally on the smartwatch, i.e. an off-the-shelf smartwatch is
the only hardware element required. Other wrist-worn devices, such as fitness trackers,
could be used as well if they feature an IMU and a microphone. Our main contribution and
the core of our gesture classification method is a lightweight neural network architecture
which takes care of both gesture detection and gesture classification. After a preprocessing
step, the network receives the audio, acceleration, and gyroscope data as separate inputs,
computes individual features for each, and fuses them within the network. This procedure
frees us from the need of incorporating explicit sensor fusion without giving up the benefit
of end-to-end training. For training our network and improving its robustness, we heavily
employ data augmentation, i.e. we generate a large corpus of synthetic training data from
the recorded real samples. Our network runs on an ordinary and inexpensive smartwatch
with a short average inference time of under 11 ms at a high classification performance
of 97% achieved in a user-independent experiment with 16 participants. Furthermore,
the model file size is only 50 KB, which could easily be downloaded onto a smartwatch.
We thoroughly evaluate the proposed method, also under the influence of environmental
noise. We find that the particular benefit of sound lies in the detection of gestures, i.e.
determining whether a segment contains a valid gesture or not, resulting in a significant
decrease in the false positive rate. Based on our method, we created a working app adding
fast and straightforward gesture interaction functionality to a smartwatch, which we also
demonstrate in possible applications as depicted in Figure 3.1.

3.2 Related Work

There is a wide range of approaches to gesture recognition. An obvious but difficult
one is to rely on external or body-worn cameras to recognize the shape of the hand
visually [155]. A disadvantage is that the hand has to be in the field of view of the observing
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Figure 3.2: A spectrogram for snapping, knocking, and clapping (in that order). The
frequency characteristics are different for each gesture.

camera. Besides, many other phenomena can be exploited for gesture recognition, such
as the reflection of radar waves [177], electromyography [28], or the distortion in the
electromagnetic field between a sending and a receiving antenna [113, 140]. All of these
methods rely on sensors not available in nowadays common consumer devices such as
smartwatches. We focus on technology that is already in use today.

Gesture Recognition from Motion Several methods use orientation and acceleration
gathered from an IMU, mostly on smartwatches. For example, Serendipity [185] processes
the recordings from the accelerometer and the gyroscope of a smartwatch to classify five
finger gestures. Bâce et al. [15] employ dynamic time warping on motion sequences to
distinguish eight greeting gestures based on IMU recordings from a smartwatch. Motion
data has also successfully been used for touch-free target selection [161] or extending the
input interface by recognizing taps around the watch [197]. Winkler et al. [187] developed
a multimodal approach to recognize hand interactions with projections on a surface by
visually tracking the fingers and detecting finger touches from the surface’s vibrations
employing a smartphone’s accelerometer. These works show that it is very well possible to
perform accurate gesture recognition based only on motion. The benefit of using motion
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information alone is that it is less prone to environmental noise when compared to sound,
but detecting gestures is difficult. We aim to show that sound can be beneficial as an
additional input signal for the classification of gestures which inherently emit sound, and
moreover, that recognition is possible on a smartwatch alone.

Gesture Recognition from Sound Sound has been used for many other classification
problems before, most importantly, in speech recognition. Besides, it has been used in
systems to help deaf people to sense their environment [116], to sense emotions and
stress [106], or to perform human activity recognition [133, 190]. One option for gesture
recognition is to emit inaudible tones and sense the reflection of the sound wave [77] or to
inject sound chirps into the hand and measure the frequency response along the hand and
wrist [196]. We do not rely on actively induced sounds, but instead, recognize gestures
from the natural sounds they emit.

In recent years, several researchers proposed gesture recognition approaches that use
sound directly, e.g. for recognizing handwriting [153, 192]. For hand gesture recognition,
FingerSound [195] employs a microphone incorporated in a ring for the thumb to sense
unistroke gestures of the thumb scratching against the inner side of the hand. Similar to
our goal, SoundCraft [78] aims at classifying audio signatures from natural hand gestures
such as snapping or clapping using a smartwatch. Furthermore, by incorporating four
microphones, it can determine the angle of the direction the gesture was performed in,
which provides an interesting interaction possibility. In both cases, the approach requires
custom hardware, and the processing only runs on a computer. Laput et al. present
ViBand [109], which uses a custom smartwatch kernel to increase the sampling rate of
the accelerometer, enabling the sensing of bio-acoustic signals, which are transmitted
through the body. It is not only able to reliably detect gestures in a user-dependent
setting, but also to distinguish objects the user touches based on their vibration pattern.
In comparison, we aim at a method which leaves the smartwatch completely unmodified.
Continuing their work on sound recognition, they also present Ubicoustics [108], a
method for human activity recognition. Ubicoustics segments the incoming sound signal
into windows and extracts Mel-frequency cepstral coefficients from each of them. The
resulting two-dimensional features (coefficients over time) are interpreted as an image
and classified using a computer vision approach, a large pre-trained neural network which
is fine-tuned to activity classes. This approach thereby takes advantage of robust feature
detectors intensively pre-trained on a large amount of image data, which only requires
an adaptation to the sound dataset. For training, audio clips of common activities from
sound effect libraries are utilized, which are additionally augmented with audio from
different contexts and environments. Both of these ideas inspired our augmentation
method. The first difference to our work is that Ubicoustics focuses on recognizing human
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activity and its context, e.g., car driving. Furthermore, it employs a large neural network
for classification, which leads to high processing requirements. In contrast, we aim at
lightweight computation besides high accuracy. Finally, we also include IMU sensor data
for higher accuracy.

Gesture Recognition from Sound and Motion As we do, others have combined
motion and sound sensing for gesture recognition. TapSkin [194] recognizes taps on up to
eleven locations around the wrist when wearing a watch, based on data from the micro-
phone, accelerometer, and gyroscope. It processes the data on a smartphone and achieves
high accuracy in a user-dependent setting. In contrast to TapSkin, we aim at recognizing
hand gestures instead of taps around the wrist. We design a lightweight neural network
for classification, which reduces the amount of necessary feature engineering and enables
fast inference even on a smartwatch. Ward et al. [178] use a wrist-mounted accelerometer
and microphone to distinguish several wood workshop activities and combine motion and
audio data for gesture detection and classification. In an offline evaluation, the authors find
that the recognition using a single sensor alone works only poorly; however, when taking
both into account, the performance strongly improves. In comparison, we do not rely on
custom hardware, and we develop an online system. Nevertheless, their work provides
valuable insights into the task of gesture detection, a problem we also tackle here.

3.3 The GestEar Method

Our goal is to classify nine different gesture classes: no (null) gesture, snap left, snap
right, knock left, knock right, clap, knock left twice, knock right twice, and clap twice.
The null class incorporates all samples which do not belong to any of the other classes,
left and right refer to the hand the gesture is performed with. All gestures (except the
null class) emit sound, which contains information about the performed gesture. For
example, Figure 3.2 shows the spectrogram of an audio recording during which three
different single gestures were performed. We show how this audio information can be
used for gesture recognition together with data from the gyroscope and accelerometer
directly on a smartwatch.

3.3.1 Data Collection

On the smartwatch, we record mono audio from the microphone at a sampling rate of
22,050 Hz and a bit depth of 16, and three-axis measurements from the gyroscope and
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the accelerometer (with gravity subtraction) at a sampling rate of 200 Hz (the maximum
sampling rate provided by the smartwatch we used). As the microphone samples at
22,050 Hz, we can take frequencies up to 11,025 Hz into account according to the Shannon-
Nyquist theorem. To prove this is sufficient, we calculated the Fast Fourier transform (FFT)
for all recorded gestures and summed up the resulting magnitudes for each frequency
across all participants and gestures. The result, depicted in Figure 3.3, shows that the great
majority of the signal energy lies in the frequencies below 8 kHz, hence our sampling rate
is sufficient.

In order to record labelled training data, we created a companion smartphone application
for the smartwatch, which displays the gesture the user has to perform, e.g. a single knock
with the left hand (note that at the time of application only the smartwatch is required). Per
gesture, the smartwatch records for a duration of 2 s. To collect samples for the null class,
we let the participant perform two additional gestures: staying still and not doing anything,
and ’randomly’ moving the arm and hand. Consequently, our recorded gesture set contains
ten gestures (eight actual gestures and two for the null class). In a single session, each of
these ten gestures is repeated five times in random order. The smartwatch is always worn
on the left wrist as watches usually are. Nevertheless, we could also train a classifier for
the right hand by mirroring the motion data through the plane orthogonal to the forearm in
order to transform the measurements to the new coordinate system on the right wrist (and
changing the labels accordingly). The user could then select the appropriate classifier by a
position setting.
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Figure 3.3: The sum of all amplitude spectra over all recorded gestures. The majority of
the signal energy resides in the frequencies below 8 kHz.

3.3.2 Preprocessing

We first segment the streams of audio, gyroscope, and acceleration data into windows, and
then generate features per window for each input independently. These features are then

55



Chapter 3 Combining Audio and Motion Sensing for Gesture Recognition on
Smartwatches

taken as inputs by the network separately and are then combined within the network.

Segmentation We segment the incoming signals into windows of 300 ms. This window
size was chosen because all of the single gestures fit into this window, and it also provides
a good fit for the gestures with repetition when placing two windows after each other.
Since our gesture set contains double gestures and we want to be able to classify these
reliably as well, a single sample cannot only consist of a single window but must contain
two of them in order to fit a double gesture. Hence, we concatenate two consecutive
windows to form a sequence. This approach is different from simply choosing a window
size of 600 ms, as we obtain two feature sets, one per window, representing the temporal
structure of the input. At inference time, when we do not know the point of time a gesture
is performed, we let the segmented windows overlap by half a window, i.e. the sequences
overlap by 1.5 windows, as illustrated in Figure 3.4. As a result, we return a classification
output from a sequence every 150 ms. This procedure ensures that a gesture fits into a
sequence at inference time. As exemplified in the figure, we can take advantage of the
fact that a window is part of two sequences (a sequence and the next but one), i.e. we only
have to preprocess one window per sequence, except for the very first sequence.

Window 1

t [ms]

Window 3Sequence 1

Sequence 2

Sequence 3

0

Window 2 Window 4

Window 3 Window 5

Sequence 4 Window 4 Window 6

150 300 450 600 750 900 1050

Figure 3.4: An illustration of how we segment the sequences (two consecutive windows)
over time.

To segment the training data, we search for the signal’s peak in each of the 2 s audio
recordings and segment a window of 300 ms around the peak. The second window of the
sequence is placed directly after the first, forming a valid sequence. For double gestures,
which contain two peaks, we selected the first peak for the first window. We then find the
corresponding window bounds in the gyroscope and acceleration recordings.

An alternative would be to classify single windows, obtain labels for single gestures,
and afterwards combine consecutive labels to potential double gestures. However, we
evaluated this approach and found that the recognition performance is worse, especially
since consecutive windows might contain only parts of gesture signals, causing a single
gesture to be recognized as a double gesture. Our approach is more robust against such
mistakes, as the network learns explicitly to distinguish single and double gestures.
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Preprocessing the Motion Data For the measurements from the gyroscope and the
accelerometer, we do not calculate any specific features as we want the network to learn the
relevant features from the motion data itself. As the single readings from the accelerometer
and gyroscope usually do not arrive at exactly the same point in time, we merely resample
the IMU recordings at joint time steps which correspond to a sampling rate of 200 Hz
by linear interpolation. In the end, a window contains 60 (200Hz ∗ 300ms) gyroscope
readings and 60 accelerometer readings.

Preprocessing the Audio Data After segmentation, a single window contains 6,615
(22,050Hz∗300ms) audio readings. We could feed these directly to the network; however,
due to the large input size, this would result in a large number of parameters. Hence,
we extract features from each window’s audio data by calculating the spectrum of each
window using an FFT. The spectrum reveals relevant information from audio signals in a
compact representation and can be calculated relatively fast even on a resource-constrained
device; for some models even in hardware. Before the FFT, we apply a Hann window
to avoid spectral leakage and then we zero-pad the signal to have a length of 8192 (next
power of 2) so that the FFT can be performed more efficiently. Our final audio features
are the magnitudes of the FFT, i.e. the amplitude spectrum. The magnitudes for the
single frequencies are binned into 128 bins of equal size. We empirically evaluated that
128 bins provide a sufficient resolution for accurate classification as well as a compact
representation.

As mentioned in Subsection 3.3.1, the majority of the signal energy lies below 8 kHz,
i.e. the higher frequencies are less relevant and can potentially be discarded, which would
help to reduce the dimensionality of the data. We evaluated keeping different numbers of
bins and discarding the rest with the network we designed as described in Subsection 3.3.4.
With the first 96 out of 128 bins (which corresponds to a frequency range up to 8,268 Hz),
we reach the same classification performance as with the full number of bins. Hence we
discard the last 32 bins. This is beneficial, as with fewer bins, there are fewer network
calculations at inference time and at the same time, the classifier is less prone to high-
frequent noise.

After preprocessing, a single sample is a sequence consisting of two windows, each
window containing a 96-dimensional FFT magnitude vector, 60 gyroscope and 60 accel-
eration readings for each of the three axes (x, y, and z), i.e. the shapes of the resulting
tensors are (2,96), (2,60,3), and (2,60,3).
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3.3.3 Data Augmentation

In order to train a more robust network, we augment the data in several ways, as depicted
in Figure 3.5, inspired by [108]. In the recordings, we first shift the window around the
peak up to 75% of the window length and create ten sequences from a single 2 s-recording.
Thereby, on the one hand, we increase the number of training samples and on the other
reflect the fact that windows will most probably not perfectly fit the gesture performed at
inference.

Sound signals have the beneficial property, that scaling the amplitude, as well as adding
other sounds, creates a valid signal. In a second step, we create additional samples by
scaling the audio signals with factors of 0.25, 0.5, and 0.75. Finally, we add environmental
noise to our recordings to train the network to be more robust against such noise. We
downloaded over 10 hours of freely available soundtracks from an online platform [221]
recorded from many different noisy environments: city streets with people talking, from
inside buildings, or even aeroplanes. For each sample generated up to this step, we produce
five additional samples by adding five randomly chosen environment sound segments. We
could also multiply the frequency of the audio signal by a certain factor, which would
increase or decrease the speed of the audio recording. However, we do not apply this here,
as we believe the speed of the gestures does not vary much, for example, one cannot clap
“slowly”, because then there would be no clap at all. Overall, from a single recording, we
generate 240 (10 (shifts)∗4 (scales)∗ (5 (augmentations)+1)) samples.

We also require more samples belonging to the null class. As simply recording audio
and motion data in the wild, e.g. by walking through a city, would breach the privacy of
other non-involved passers-by around the participant, we instead only collected the IMU
data in this manner and randomly supplemented the audio from the downloaded noise
sound clips to create a large set of null samples.

3.3.4 Gesture Classification

The crucial step is the joint classification of the audio and motion sequences with the design
goals of high accuracy as well as fast inference time directly on a smartwatch. Ward et
al. [178] performed activity recognition based on sound and motion, employing traditional
learning approaches for which they achieve an accuracy of 70%. We also first evaluated
more traditional methods, an SVM and a Random Forest, for which we calculated sets of
typical features from the IMU data, such as the moments and spectral features, and used
the FFT features from the audio. However, we could not surpass an accuracy of 70% in a
user-independent setting. Hence, attempting to reach a higher recognition performance,
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Figure 3.5: We create additional samples by shifting the segmentation window, amplifying
the signal, and augmenting it with noise from sound clips. Besides, we add
null samples by combining segments from the sound clips and IMU data
from recordings of non-gesture activities.

we decided to create a neural network, which has the benefit of freeing us of feature
engineering and selection, as the features are learnt within the network. We thereby can
achieve an accuracy of over 97% (cf. Section 3.4). We designed the network taking into
account the limited resource capabilities, i.e. it should have as few parameters as possible
while achieving a high classification performance. The full architecture is depicted in
Figure 3.6. An evaluation of different network designs is provided in Section 3.4.

As mentioned above, the network receives sequences of two windows each for audio,
gyroscope, and acceleration. A first convolutional part, containing one-dimensional
convolutional filters and max-pooling layers, extracts features from each input, followed
by fully connected layers which combine these features and finally make a decision on the
gesture class. The one-dimensional convolutional filters (with 16 channels and a stride
of 1) detect salient features in the data, for both the FFT and the motion input, such as
dominant frequency bins or certain local motion patterns. An advantage of convolutions is
that they require relatively few parameters. Each convolution is followed by a max-pooling
layer with a width and stride of 2, which halves the output and selects the most salient
activation. We thereby obtain a very compact feature representation after this step. By
repeating the convolutions and the pooling, we obtain more and more abstract features,
which are also more compactly represented. These layers are applied to each of the two
windows of the sequence independently. However, the weights are shared between the
operations, i.e. the same features are extracted from both windows. Note that we do not
interpret the two windows as an image and do not perform two-dimensional convolutions
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across the windows, as done in [108].

Afterwards, we add a fully connected layer (10 units) to each of the three convolutional
parts applied to audio, gyroscope, and acceleration input in order to combine the learnt
features and create a final individual representation of that input. These representations
are then stacked and fed to another fully connected layer (20 units) which now takes all
features into account. Up to this step, all operations are still applied to each of the two
sequence components separately, but with weight-sharing. Finally, we flatten the tensors
along the temporal axis and apply another fully connected layer, which evaluates the
temporal relationship. At this point, we could include a recurrent layer like an LSTM
(Long Short Term Memory). However, an LSTM requires a high number of parameters
relative to the little number of two windows handled here. Thus, we decided to follow the
simpler version of flattening the tensors and employing a fully connected layer. The final
classification takes place in a softmax fully connected layer. We use ReLU (rectified linear
unit) as the activation function in every layer except the last one.

3.3.5 Gesture Detection

In order to detect whether a sequence contains a gesture, we can first check if there is
significant energy in the sound signal. We only submit the sequence for classification if
the sum of the FFT magnitudes in the sequence is greater or equal to 0.15 (arbitrary unit
after FFT). Otherwise, we drop the sequence. We determined this threshold by averaging
all magnitudes from valid gesture sequences obtained in the collection trial, which results
in an average magnitude of 0.591 and choosing the threshold to be roughly 25% of that.
However, in the first experiments, we found that our network and this threshold work well
in case the sequences were valid gestures, or there was little audio noise. Nevertheless,
we also obtained many false positives from environmental noise which surpassed the
threshold criterion. To counter this, we introduce a gesture/no gesture-classifier besides
the classification of the gesture type, which determines whether a sequence represents a
valid gesture or not. In previous works, this is a separate step, for example, using a binary
SVM, which increases the processing time for a single sample as it has to run through
two classifiers. On the contrary, if we regard our network as a feature detector (the part
up to the last layer), the extracted features would also be useful for the gesture detection
classifier and it seems an unnecessary loss of resources to compute additional features for
it in a separate detection process. Hence, we incorporate gesture detection in the neural
network by adding a softmax output layer with two units, which uses the same network
body, as shown in Figure 3.6. The result of the classification at inference time is only
accepted if the detection is positive.
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Another advantage of incorporating gesture detection is that we can use a pretraining
scheme. The data available for training are the set from the collection trials, which contains
roughly the same number of samples for each gesture class and the supplementary set of
null samples resulting from the sound clip audio data and additionally collected motion
samples. If we were to train only the gesture classification, we would have to balance the
dataset to have an equal number of samples for each class, leaving many of the additional
null samples unused. However, if we first train the gesture detector, we balance all null
samples and all valid gestures. Thereby, we obtain an accurate gesture detector and at
the same time, a network body which has already seen many null samples and valid
gestures and thereby learnt relevant features for gesture recognition. This network body
now serves as initialization for training the gesture classifier. We now balance the dataset
for all nine classes. To maintain the gesture detection performance, we jointly train both
outputs during this phase by backpropagating the errors from both outputs through the
network.

For both training phases, we use an Adam optimizer [101] with a learning rate of 0.001,
a batch size of 100, and we control for overfitting. For the gesture detection, we train for
five epochs. For the second step, we train for 15 epochs.

In total, our network only has 9,989 parameters, which enables a fast execution. In
comparison, Ubicoustics [108] uses a deep convolutional network (VGG16 architec-
ture [154]) with over 138 million parameters, which consequently takes significantly more
computation resources.

3.3.6 Post-processing at Inference Time

At inference time, the sequences overlap by 1.5 windows to increase the chance that a
gesture falls into a sequence completely. For a double gesture, e.g. clapping twice, the
first clap could lie in the second window of a first and in both windows of the following
sequence resulting in the output of “Clap” for the first and the expected “Double clap”
for the second sequence. To avoid this, we defer the output of a gesture until three more
(overlapping) sequences are classified and select the gesture with the highest average
probability (from the softmax layer) over the four votes.

3.3.7 Implementation

The smartwatch used throughout this work is a Sony Smartwatch 3, an inexpensive model
with Wear OS. At the time of writing, the release date of this smartwatch lies over four

62



3.4 Evaluation

years in the past; hence we demonstrate that running our method does not require the latest
hardware. We implemented the processing pipeline in Python and a corresponding pipeline
in Java to run on the Android smartwatch. To perform the FFT on the smartwatch, we use
the Noise library [207]. The neural network is implemented in TensorFlow [242], trained
on a desktop, converted to the TFLite model format, and transferred to the smartwatch.
The model file size is only 50 KB, so it can easily be shipped within a mobile application.
The code is available on GitHub [209].

3.4 Evaluation

For training and testing our system, we collected data from 16 participants (20 to 55 years
old, 25.75 years old on average, five females, four left-handed). In a single session, we
recorded each gesture five times in a randomized order. For each participant, we recorded
five sessions.

3.4.1 Recognition Performance

In a first experiment using all data to perform 10-fold cross-validation, we achieve a high
average accuracy of 96.9% (F1 score: 96.9%), which shows that our network is able to
capture the characteristics of the input signals. In a second experiment, we attempt the most
challenging setting, cross-validation on participants. We exclude a single participant’s
data from the training set and test on this data. We repeat this for each participant. Here,
we achieve an average accuracy of 97.2% (F1 score: 97.2%), which proves that our
classifier also generalizes across users and implies that it has to be trained only once and
can consequently be used by anyone. For all participants, we achieve an accuracy above
95%. The confusion plot is given in Figure 3.7. Most errors happen for similar gestures,
such as “Snap right” and “Knock right”. These two are harder to distinguish from another
than their left counterparts, as there is no IMU data available for them.

3.4.2 Comparison of Network Architectures

We evaluated different network designs in order to justify the choice of our network
(training and testing the same way as before). The results, together with the total number
of parameters for each network, are visualized in Figure 3.8, denoted by the abbreviations
used in the following. Table 3.1 specifies the different models in more detail.
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Figure 3.7: The normalized confusion plot for the cross-validation across participants.

First, we create variations of our default network by changing its width, i.e. multiplying
the number of units in each layer by a factor ranging from 0.25 to 1.5 (denoted by
w=factor). For convolutional layers, this means to scale the number of filters, for fully
connected layers to scale the number of units (we round down any non-integer). We also
change the depth of the network, e.g. by reducing the number of convolutional levels (a
one-dimensional convolution followed by a max-pooling layer) or altering the number of
dense layers. Note that with less convolutional levels, the number of parameters increases,
as the internal representation after the convolutions will be larger. Thus the following fully
connected layers will have more weights (wdl: without last dense layer, adl: additional
dense layer, c=n: number of convolutional levels). We believe that among all these
variations, our default network (w=1) offers a good trade-off in terms of accuracy and the
number of parameters, i.e. runtime.

For comparison, we also trained a simple dense network (d) consisting only of two
fully connected layers with a similar number of parameters as our default network. Our
network shows a higher performance when compared to this simple network. We also
implemented a recently popular mechanism, attention, proposed by Bahdanau et al. [16]
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for machine translation. The term encompasses a range of mechanisms, which learn to
emphasize a certain input, both on a feature (spatial) level or in a temporal context. First,
we replace the last fully connected layer in our network by a spatial attention module
(sa), which learns to generate a weight vector from the input and element-wise multiplies
the weight vector and the input. Second, we apply a temporal attention mechanism (ta),
which replaces the flattening of the sequence tensors and learns a weighted combination
of the sequence tensors. Finally, we combine both parts (sta). However, neither of these
approaches showed any benefit.

3.4.3 Importance of the Audio Features (Ablation Study)

Since previous works have shown that gesture recognition from motion alone works well,
one might pose the question of how much the sound input actually contributes. First of
all, it enables the recognition of the purely right-handed gestures, i.e. for three out of
nine gesture classes, as there is no motion information available for these. Nevertheless,
the question still remains concerning the six classes including the left hand (and the
null class). The following experiments all apply only to this reduced set of six left-
hand classes. The accuracy for our network including all features on this subset of
gestures in the user-independent setting is 98.1%. We remove the audio input (and all
directly following layers) and rerun this experiment (including training). Remarkably,

Table 3.1: The different network designs in our comparison. The specifiers relate to the
abbreviations used in Figure 3.8.

Specifier Description

w=0.25 Default network, width=0.25
w=0.5 Default network, width=0.5
w=0.75 Default network, width=0.75
w=1 Default network
w=1.25 Default network, width=1.25
w=1.5 Default network, width=1.5
d Only dense network part on concatenated input
c=1 Default network with one convolutional level
c=2 Default network with two convolutional levels
wdl Default network without the last dense layer
adl Default net with an additional dense layer (20 units)
sa Default network with spatial attention
ta Default network with temporal attention
sta Default network with both attention mechanisms
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Figure 3.8: The accuracy of different networks w.r.t. to their number of parameters, la-
belled with the abbreviation of the design. Our default network is marked by
the red cross.

the accuracy is only marginally worse (97.8%). However, up to this point, we classified
the preprocessed well-segmented samples (cf. Subsection 3.3.2). In a more practical
and also more challenging setting, we would run our method on a continuous stream of
overlapping sequences, most likely containing many more sequences from the null class.
Therefore, in a new experiment, we replicate our application pipeline and use our full
2 s recordings gathered during data collection as real-world stream samples instead of
only employing the segments containing the gestures. As for the real application, we
continuously segment the 2 s recordings from the beginning to the end and classify the
resulting stream of sequences (including post-processing). The ideal outcome would be a
single, correct label for each recording (except for null recordings). As before, we train
and test in a leave-one-participant-out manner. We measure the recall (was the correct
label predicted?) and the false positive rate (how many incorrect or additional “correct”
labels were delivered?). Including sound and motion as features, we achieve a high average
recall of 94.4% and a low average false positive rate of 5.5%. When training and testing
without sound, the recall is still high (87.8%), however, the false positive rate rises to
45.5%, i.e. the detection of gestures is much more reliable with sound.

3.4.4 Performance in Noisy Environments

To evaluate our method’s performance not only with the audio noise which we added to
the training data but also with real noise, we recorded five additional sessions for five of
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our participants while playing white Gaussian audio noise at increasing noise levels. The
decibel levels resemble noise ranging from little noise to louder traffic. We train on all
the other data as usual and test on the noisy sessions. For these sessions, we did not add
any noise augmentations during preprocessing to not further alter the audio noise. The
accuracy decreases with increasing environmental noise (cf. Table 3.2). This, in particular,
affects the right-handed gestures, e.g. “Snap right”, as these cannot be recognized from
motion. For louder noise, they are more often assigned to the null class, as the recordings
then resemble null samples with noise augmentation used for training. Nevertheless, the
classifier proves to be relatively robust against noise.

Table 3.2: Testing on different levels of environmental noise.

Noise level [dB] 50 55 60 65 70
Avg. accuracy 94.1% 95.6% 94.7% 91.1% 91.2%

3.4.5 Runtime

We also investigate the time requirements for running our method on the smartwatch,
including the preprocessing steps as well as running the network for inference. We let the
app process 1,000 sequences and calculate the average runtime per sequence. Note that the
network is only run if the sum of the FFT magnitudes in a sequence is high enough, i.e. only
for a fraction of the recorded sequences. For this experiment, we removed the magnitude
threshold so that every sequence is classified to calculate the correct average. Overall,
processing a single sequence (600 ms) takes 64.08 ms. The shares of the runtime for the
specific processing steps are depicted in Figure 3.9. The effort for running the network
inference is low at 10.56 ms on average. The greatest effort is spent on calculating the
FFT (43.47 ms). Performing the resampling of the motion data takes 10.05 ms. Note that
the two preprocessing steps and the inference are pipelined. We believe that both network
inference and FFT could be accelerated by dedicated hardware in the future. Nevertheless,
this evaluation shows that regular use is possible even without further optimization.

3.5 Applications

We believe our method provides a fast, simple, and intuitive way to interact with the
smartwatch itself, but also with other devices. We created several applications to demon-
strate GestEar in real-world settings. Figure 3.1 shows an overview of all demos (we also
published a video on YouTube [210]). We always used the same network model, which
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Figure 3.9: A plot showing how the different components of our algorithm contribute to
the total runtime.

we did not tune to any specific user or application. The first demo shows device control in
an environment consisting of a sound system and a smart lamp. We show how the user can
give commands easily and quickly, such as turning the music on and off, changing tracks,
turning the lamp on and off, and changing its colour. We believe that there are also many
other devices which could be controlled this way, such as the television or even cleaning
robots; the two devices here should only highlight the potential. We extended this scenario
to a mobile setting, for controlling the music on the smartphone while walking or running.
This could also be used for accepting or declining incoming calls.

In the second application, we take advantage of the fact that some of the gestures cannot
be reproduced by people other than the user him-/herself. For example, the “Snap left”
gesture is only recognized if the corresponding motion of the wrist also occurs. Potential
adversaries cannot provide that. We can hence use “Snap left” as a command to unlock a
companion smartphone in an easy and simple manner.

Finally, we believe that GestEar can enable novel interactions. We created a demo that
shows how our system could replace the button of a doorbell. When a user knocks at the
door, a message is sent to the flat’s home control system, which then rings the bell, without
the user ever having to touch the door bell button itself.

3.6 Conclusion

In this chapter, we presented GestEar, a fast and robust method for real-time recognition of
eight sound-emitting gestures using the microphone and motion sensors of an unmodified
smartwatch. We designed an efficient neural network to jointly perform gesture detection
and recognition; we showed how to train the network for both of these tasks, and how
to create a large training dataset from a relatively small number of recordings. Besides
different gesture types, we were also able to distinguish whether the gesture was performed
with the right or the left hand, or whether it was performed twice in quick succession to

68



3.6 Conclusion

form a double gesture. The resulting model is lightweight; it has a size of only 50 KB and
requires only 10.6 ms for inference on average directly on the smartwatch. Our method
achieves a high accuracy of 97.2% in a user-independent setting with 16 participants,
indicating that the method would only have to be trained once to work even for unknown
users. GestEar demonstrates the advantage of combining readily-available sound and
motion input on smartwatches for enhanced gesture recognition. We also created a
working app enabling fast and simple gestural interactions, which could easily be added to
existing smartwatches as a software update, and showed several smart home applications
employing these interactions.
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Chapter 4
Connecting and Controlling Appliances
through Wearable Augmented Reality

4.1 Introduction

The number of interconnected devices around us is continuously growing, and it may
become challenging for users to control all these devices when control interfaces are
distributed over mechanical elements, apps, and configuration webpages. If devices
are even supposed to be connected and work together, this challenge is intensified. As
mentioned in Chapter 1, new ways of interaction between humans and appliances have
gained significant interest with the emergence of networked smart appliances. Since
the times appliances could be operated only by hard-wired knobs and buttons, we have
witnessed the inventions of a number of convenience features. Remote controls were
introduced in the late 1930s, allowing to comfortably control a single appliance from
a distance. Since then, we reached the point that home systems allow almost universal
device control via smartphone apps or partly even via speech and gesture recognition
systems. This process can be described by the term user interface externalization. The
physical user interface of an appliance is externalized from the appliance to the remote
control, to a companion smartphone app, or in an abstract sense to the speech or gesture
command language.

As appliances in our homes are becoming smarter with improved sensing, actuation, and
computing capabilities as well as connectivity to other devices and cloud services [122],
there are new opportunities for more advanced interaction and also for externalizing the
appliances’ user interface to other devices. Besides the ability to control things remotely,
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further advantages of such “outsourced” user interfaces are smaller cost, overcoming the
lack of display space, and simpler UI feature updates via software.

In this thesis, we present different concepts of externalizing user interfaces of appliances
to personal wearable computers. More generally, we show different concepts of how a
network of smart things worn on our body allows universal interaction with a network
of smart things in our environment. In the two preceding chapters, we focused on
gestural interface methods, and the following chapter is about tangible user interfaces the
users can create themselves. In this chapter, we employ visual representations of device
characteristics and actions in augmented reality (AR) and allow the user to interact with the
devices through this AR interface. For example, a digital colour lamp may be represented
by its brightness and colour values, which can be manipulated via one-dimensional sliders.
As we make use of a head-mounted AR display, all representations appear in the user’s
egocentric view, i.e. allow the direct interaction with an appliance, without an intermediary
remote control device. Furthermore, we can create one unified interface for all devices
and, in particular, the devices themselves are not required to have a display or exhibit any
kind of direct input and output.

This concept holds great potential for the future, especially as AR headsets will become

(1) (2) (3)

Figure 4.1: We present a concept and a prototype system for universal control of net-
worked smart appliances. The appliances externalize their user interfaces to
networked wearable computers. More specifically, a head-mounted display
renders automatically generated digital user interface primitives overlaying
the physical objects. We compare three ways of manipulating the primitives:
(1) a pinching gesture, (2) other natural gestures like arm rotations, and (3)
utilizing tangible physical objects at hand. The images in the top row show
the outside view while the images in the bottom row show the AR view at the
same moment in time during the different modes of interaction.
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smaller, and we believe it is necessary to study the user’s behaviour in such an environment
as well as the different possible interaction modalities. For this reason, we built a working
prototype of the described concept with a Microsoft HoloLens for displaying the visual
AR representation, and various techniques for input. Devices are recognized via visual
markers, and the user can select a specific smart thing with his/her gaze, i.e. by looking at
them. Then, the supported interaction primitives (knobs, sliders, etc.) overlay the devices
in the AR view. In the spatially registered AR view, the visual content describes the
appliance’s capabilities, and the interaction primitives are represented depending on how
they can be manipulated.

For actuating the smart objects, i.e. providing input to modify the primitives and thereby
the device parameters, we design three different possibilities which we enable by em-
ploying different wearable computers, e.g. a Thalmic Lab’s Myo or the HoloLens itself:
first, using a simple pinching gesture to adjust virtual sliders and click on buttons (Fig-
ure 4.1(1)), second, using a larger gesture set recognized by an electromyography armband
(Figure 4.1(2)), and third, by displaying the representations on a physical object, which
allows controlling an appliance by moving or rotating the physical object (Figure 4.1(3)).
The third option can be seen as an extreme form of externalization, which even allows
embedding “dumb”, unconnected objects in the space of smart, connected appliances. We
compare the three possibilities as interaction scenarios in a study with 25 participants.

Besides the one-to-one control relationship between a user and an appliance, many
relationships between devices are only configured by a human user, and the further
interaction between the devices may be automatic. For example, a light sensor might
be connected to a smart light, thereby controlling its brightness. The concept described
above does not reflect these (potential many-to-many) relationships as it only allows the
interaction with a single device at a time. In comparison to configuring single devices
alone, it is usually considerably more cumbersome to connect devices to work together, as
the control of the devices is distributed over several interfaces. Often, these connections
are simply fixed, for example, there usually is a dedicated remote control for the television,
another for the sound system, and the connection between switches and specific lights are
hard-wired. Being able to configure these connections dynamically has the great benefit
that devices can be reused for different purposes, and the collective functions can be
changed and set to one’s current preferences. With a steadily growing number of devices,
the management of the connections is an important problem to consider, as there is a
quadratic number of potential connections between devices.

A solution which allows the simple configuration of device connections would not
only make it easier for users to understand and manipulate combined devices but also
set all dedicated controllers, such as remote controls and switches, free to be used to
control potentially any smart device. Therefore, we build upon our work on the control of

73



Chapter 4 Connecting and Controlling Appliances through Wearable
Augmented Reality

single appliances in AR and present ConnectAR, an approach to visualize and configure
connections of appliances and controllers in augmented reality using a head-mounted
AR display as depicted in Figure 4.2. Devices and controllers are selected by looking
at them and then provide a virtual button the user can click on employing the simple
pinching gesture we found as the best interaction method in the first part to select them
for connection. Consequently, the counterpart is selected in the same way. We then show
the connection as a virtual line in the 3D space and at the same time, create a logical
control connection between the controller and the device. Henceforth, the user can employ
the configured controller and controlled device independently of our AR system, i.e. the
head-mounted display (HMD) only has to be worn when the connections are to be checked
or configured. The only requirement is that all devices are connected to a server via
Wi-Fi. By using the HMD and a wireless connection, our system is mobile and spatially
unlimited; devices could even be located in different rooms.

4.2 Related Work

A recurring term in our work is the aforementioned externalisation of a user interface.
Here we externalize interfaces to an AR representation. One way of externalization
deployed nowadays is the use of handheld devices such as smartphones or tablets to

Controllers

Device

Connection
settings

Figure 4.2: We present a second prototype for fast and simple configuration of device
connections, such as between a common controller and a light, using simple
gestures. The connections are visualized in augmented reality making it easy
for the user to understand existing connections and to configure them. For
simplicity, we use Android smartphones running an app as controllers.
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display information and controls of other devices. This is also a common solution for
many commercial products. Interesting in the scope of our work are approaches which also
facilitate the selection of a device. Several researchers explored this by combining device
recognition and device control. Mostly, devices are recognized visually from camera
images [53, 124], but also other modalities such as visual codes [102] or electromagnetic
signatures are used [189]. Some works additionally take the user’s location, i.e. the
proximity to the devices, into account for the selection process [53, 111]. Subsequently,
user interfaces on the handhelds provide visual control elements to actuate the devices.
While these works approach the same problem as we do, they require the user to interact
with the handheld, i.e. a proxy device in between. In contrast, we provide a direct
interaction interface in the AR space observed from the user’s egocentric perspective.

Improving on the works mentioned above, several researchers employ visual AR on
handhelds for device control [82, 90]. This allows the user to interact with the visual
counterpart of the real device in the camera image after the device has been recognized
and not only with a simple UI representation consisting of buttons and sliders. Huo et
al. [86] enhanced this method in Scenariot by locating the devices through ultra-wide-band
RF units, so that the application always knows the position of the devices even if they
are outside of the camera’s view. Nevertheless, the user still requires a handheld and
merely interacts with a visual representation of the device. In our approach, the user can
directly interact in the mixed reality space “on the device” itself without having to look
back and forth from the remote control to the device. PICOntrol [152] is also based on
a handheld device but uses an incorporated projector to display a graphical interface on
the controllable appliances and employs visible light communication to transmit control
information. Actions are selected using buttons on the handheld and by the transmission of
the corresponding light patterns. Thereby, the visual UI elements augment the real device
and not a virtual counterpart. Nonetheless, the user still has to hold a handheld device.

Finally, only a few researchers have used head-mounted displays for interaction in the
AR space. Sorgalla et al. [157] recently proposed a system called ARGI, which uses the
HoloLens to augment the user’s view with interaction widgets placed on controllable
devices. While the basic concept is similar to ours, the interaction possibilities do not go
beyond the standard pinching gestures provided by the HoloLens. Going further, we create
three different ways of interacting with the devices and conduct a user study to investigate
the use of the AR system and the interaction methods. Another system, Ubii [115] uses a
Google Glass to represent digital devices such as computers or smartphones and the files
they contain in the glass’ view and supports two main operations through simple pinching
and dragging gestures: the transfer of files between two devices or to a device such as
a printer and the pairing of devices. Ubii is different from our system by only targeting
digital devices and supporting only two specific operations for these and not allowing
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device control in a general sense. AmbiGaze [167] employs a wearable eye tracker to
allow device interaction using a target selection method called pursuits, which correlates
eye movements to the movements of targets displayed on the device (cf. Subsection 1.1.5).
By following the target, the user can select certain actions. However, this only works
if the device has a display to show targets or exhibits mechanical movement itself. All
other devices require a stationary projector displaying the targets, i.e. in comparison to our
concept, it requires an additional augmentation of the devices.

Further interesting in the scope of our effort are works which externalize interfaces
to physical elements, which were not deliberately designed to act as a controller. One
possibility to do this is to reuse existing controls, e.g. use the switch of a light to play
or pause a sound system [37, 83], as we expand upon below. On the other hand, one
could use simple physical objects available in the environment, as we intend to do. This
was already proposed by Ishii et al. [87] more than two decades ago. Recently, Pohl et
al. [138] explored the space of everyday objects potentially useful for control and found
that there is both a diverse set of objects available and potential use for them. Henderson et
al. [79] proposed so-called Opportunistic Controls, a system to support the use of tangible
elements, e.g. bolts of a machine, for input when using a head-mounted AR display.
They found that the opportunistic controls support faster completion times than a baseline
technique, which uses simple virtual buttons in AR. Several previous approaches which
allow using simple objects as control elements, instrument a space which is observed by
cameras from above or below [11, 33, 43, 71]. The cameras can recognize the movement
of the objects within the scene. Some also use projectors to display information on the
objects. The concept of these works is very similar to one of our approaches. We, however,
build a system which only requires a HoloLens instead of an instrumented workspace;
hence, our approach is mobile and potentially unbounded.

We further discuss works concerning the configuration of appliances, as already shortly
highlighted above. Heun et al. [82, 83] present the Reality Editor, a tablet AR application
allowing the configuration of controls and devices. Both the controllers and the objects
are recognized by the tablet camera through the use of visual markers. After recognition,
an AR overlay is shown. Subsequently, the user can not only control and configure the
discovered appliances one by one but also simply draw a line in between them to connect
controls and devices in the field of view of the camera. The device can then be operated
via the connected controls. This is similar to what we envision for the configuration of
devices: visualizing the connections by lines shown in AR and allowing their simple
modification. Nevertheless, the Reality Editor is still limited to the tablet screen, and the
user is not interacting with the devices themselves but with the tablet, a proxy object acting
as a remote control. We intend to overcome this limitation by using a head-mounted AR
display and the spatial mapping of the environment space. This also allows the user to
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directly interact with the physical devices themselves from his/her egocentric point of
view. Moreover, our approach makes it easy to configure devices in a large space.

Instead of employing a tablet, the InSight system [37] dynamically links two devices
based on the user’s gaze. It uses an eyewear-mounted infra-red (IR) laser emitter and IR
sensors attached to the smart devices. This makes it possible to detect the devices the
user’s gaze falls upon. The user can look at an input device and an actuator device to
establish a link between the two.

Park et al. [135] present a prototype system to define inter-device rules in a head-
mounted AR display using gestures. However, their system applies only to abstract virtual
devices and not to real physical devices.

Kubitza et al. [103, 104] approach the connection of smart devices by providing a
physical hub which the devices connect to wirelessly and through which the user can set
up device rules. They offer an API to a wide range of devices and allow their configuration
with Java script in a website providing unified access to the devices and their sensors.
While this significantly simplifies setting up an environment of smart devices for expert
users, it is questionable how easy this is for inexperienced users. We provide an easily
understandable method by allowing the user to view and modify the connections of devices
in AR by using simple gestures.

The idea to visualize connected devices has already been proposed in previous work.
Mayer et al. [123] create a so-called magic lens, a tablet AR application to show web
communication links between smart devices. A software logging agent running on each
device collects the connection information sent between the devices and forwards this
information to a back-end server which provides the information to the tablet application.
The devices are recognized by the tablet camera, and the camera preview is overlaid with
the virtual connections. We build upon this idea; however, we intend not to focus on pure
information exchange between devices, but visualizing control links and also allowing the
user to manipulate these links. Moreover, by using a head-mounted AR display, we free
the view from the limited screen size of a tablet.

4.3 Universal Appliance Control through Wearable

Augmented Reality

We propose a concept to enable direct interaction with appliances through head-mounted
AR. As mentioned in Section 4.1, we represent the devices by widget representations in
the egocentric AR view. We designed and implemented three different ways to provide
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input, interaction scenarios, which are described in the following, and compare these
scenarios in a user study. Our general interaction paradigm is to visually augment an
appliance with a representation of its parameters and the way to apply modifications to
them (see the bottom row of Figure 4.1). We recognize the devices with an egocentric
camera and by their individual visual markers. The user sees the point of his/her gaze
in AR, which is approximated by the head pose and can select an appliance by looking
at it, more precisely at its marker. This procedure is the same for all three scenarios.
However, each scenario adopts a different type of user input to change the parameters
of a connected appliance and thus also incorporates a different state visualization of the
appliance. Our intention was to find out how users would interact in the AR space. Hence
we only choose scenarios within this space. Since visual AR is able to show interaction
elements, we allow direct interaction with these elements. We want to compare this to the
use of natural gestures. Finally, we also include a tangible object. We do not include a
control device like a connected knob, as this would defy the idea of a wearable system
that can always be with us. We furthermore do not include speech commands, as we
use visual elements to represent the appliances, which provide the ability to not only
show state information but also allow their manipulation by moving and clicking them.
In terms of this representation, it appears more reasonable to manipulate the elements
and their underlying states using gestures than speech, similar to how we use gestures for
manipulation with ordinary computer environments such as with a mouse for a desktop, or
a touchpad or screen for tablets and laptops. Moreover, speech interaction with appliances
is known to have acceptance problems due to social awkwardness, especially in public [52].
In the following, we describe the three scenarios in more detail. A demonstration of each
scenario is included in a demo video we created [211].

4.3.1 Interaction Scenarios

Scenario 1 In the first scenario, we aim at a simple mode of control, composed of
simple gestures and simple widgets, which allows for direct interaction with the devices,
i.e. the user will also look at the devices while interacting because the widgets are placed
on the devices themselves. We use the predefined HoloLens gesture, pinching thumb
and forefinger as depicted in Figure 4.3, as the only option for user input. The gesture is
recognized by the HoloLens based on visual recognition. It can be used to click on an AR
element by simply tapping as well as dragging an element by holding the closed form of
the gesture, as shown in Figure 4.1(1). This enables us to use virtual sliders and buttons
as AR representations augmenting the real appliance, which the user can directly interact
with. For example, we show a volume slider above a sound system. The user can select
the volume level by looking at it and then employ the pinch gesture to hold and drag the
slider and alter the volume level.
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(a) (b)

Figure 4.3: Left: The beginning of the pinching gesture. Right: The gesture while holding
a control element, e.g. a slider.

Scenario 2 Our second scenario is also based on the direct manipulation of the AR
controls by employing gestures. However, we allow for potentially more freedom in the
way the gestural interaction takes place by utilizing a broader and more natural gesture set.
We chose an electromyography (EMG) armband, the Thalmic Labs Myo (cf. Figure 4.4),
for this purpose. The advantage of EMG over other forms of gesture tracking is that the
arm and hand can be in any pose and do not have to be in the field of view of any camera.
We chose the Myo because it recognizes gestures user-independently, i.e. without having to
train the recognition per user. It is worn on the forearm, measuring the activation potential
of the muscles controlling the hand and fingers, thereby being able to distinguish different
hand and finger gestures. The Myo can recognize five predefined, user-independent
gestures: Waving one’s hand to the inside (wave in) or to the outside (wave out), making a
fist (fist), spreading one’s fingers (spread), and double-tapping thumb and middle finger
(double tap). Furthermore, it contains motion sensors to measure acceleration and rotation
around all axes. We use the fist gesture to activate the parameter control. The user can then
set values by rotating his/her arm. We also use the waving gestures for discrete input. Our
representation informs the user, which gesture he/she may use to perform which action.
For example, Figure 4.5 shows the AR view instructing the user that he/she can either wave
to the right to play the next song or make a fist to set the volume. Upon performing the
fist gesture, a continuous value setting appears as shown in Figure 4.1(2), telling the user
that a clockwise rotation of the arm increases the volume level and a counter-clockwise

Figure 4.4: A user wearing the Myo and currently holding a control by making a fist and
adjusting it by rotating the arm.
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rotation decreases it.

(a) (b)

Figure 4.5: An AR representation augmenting a sound system, informing the user about
possible gestures and corresponding actions.

Scenario 3 In the third scenario, we explore the idea of using objects in the user’s
environment to control devices. These potentially simple, unconnected objects can be
moved or rotated by the user. The movement is registered by our system and thereby
allows input by simply manipulating the object, now providing a tangible user interface.
In comparison to the two other scenarios which allow the direct control of the devices, the
object becomes a remote or proxy control which additionally allows us to evaluate the
influence of this characteristic on the participants’ perception of the system. For our study,
we use a simple tea mug, to which we attached a visual marker to be tracked with the
HoloLens’ camera as depicted in Figure 4.6. The mug has a circular shape and naturally
can be rotated to change the volume of a sound system, for example. Additionally, it can
be moved in several directions which might be used for other triggers. As we do for the
Myo gestures in Scenario 2, we inform the user about the possible interactions through AR
visualizations, i.e. which movement of an object will cause which effect. Moreover, we
show the current state of the appliance in AR overlayed on the mug. Figure 4.1(3) shows
a user adjusting the volume of a loudspeaker by rotating the mug. Note that in order to
track the movement of the mug, its marker has to be in the field of view of the HoloLens
camera, which is a limitation as a user might rather want to look at the appliance he/she is
currently controlling than at the mug. This is a general limitation, as either the object has
to be tracked by an external camera, or contain motion sensors itself.

4.3.2 Implementation

The main component of our system is a Microsoft HoloLens, which tracks the three
appliances and the mug used in Scenario 3 by detecting visual markers attached to them.
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Figure 4.6: The tea mug with a visual marker for recognition used in the third scenario.

We chose the HoloLens because, at the time of the study, it was the only high-quality HMD
which fulfilled our requirements of having a see-through display and robust and accurate
inside-out tracking to place the interaction elements in space. For recognition and tracking,
we use the Vuforia SDK [235]. All the visual AR representations are implemented in
Unity. In our prototype, the primitives are fixed for the specific devices. However, they
could be described in an abstract form in an XML document, downloaded from a web
server on demand and parsed in order to automatically create the representation of the
appliance as Mayer et al. have shown [125]. The HoloLens controls all the appliances by
sending commands via a Wi-Fi network. For the purpose of exchanging state information
and commands, we implemented a simple message protocol based on JSON. To simplify
the control of the appliances, we use an Android smartphone (a Nexus 5X running
Android 8.1), which receives the commands from the HoloLens and forwards them to
the devices. The smartphone itself also acts as a sound system by being connected to
speakers (the smartphone is not visible to the participants). The smart lamp, produced by
LIFX [231], can be directly controlled by sending UDP packages over the Wi-Fi network.
The smartphone is also used to receive the gestures from the Myo armband via BLE in
Scenario 2. These are in turn forwarded to the HoloLens. As we only carry out mockup
calls, the telephone merely has to be recognized, but not controlled here. A schematic
diagram of all the devices and their information flows is given in Figure 4.7. A desirable
property of the prototype is that it only utilizes the head-worn computer and smart things
connected over a Wi-Fi network. Therefore it is mobile and not confined to a restricted
space.

4.3.3 Evaluation

Study Design

We compare the three interaction methods in an appliance environment consisting of a
smart lamp, a sound system, and a landline telephone in an office, as shown in Figure 4.8.
The lamp can change its colour in the HSV colour space, i.e. the adjustable parameters
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Optical tracking BLE

Communication 
over WebSockets

Controlling

Figure 4.7: The HoloLens tracks the appliances and the mug (in Scenario 3). It communi-
cates to the appliances and the Android smartphone via a Wi-Fi network. The
Myo is connected to the smartphone via BLE.

are the hue colour angle, the saturation, and the brightness. It can be turned off by setting
the brightness to zero. For the sound system, we preselected a set of three songs. The
user can switch to the previous or the next song in the list and adjust the volume level.
Similar to the lamp, the sound system can be turned off by setting the volume to zero.
When selecting the telephone, the user can select a contact from a predefined list of five
imaginary contacts and then start a call. Instead of actually calling someone, we provide
visual feedback in AR by a telephone icon, that the call is in progress. During a call, the
user has the option to hang up, which is also confirmed by visual feedback. This means
the telephone is the only appliance which is actually not connected and actuated but only
allows a mock-up call, which are shown in AR. Note that in our prototype implementation,
the set-up is fixed to these appliances for this experiment; nevertheless, our concepts
generalize to arbitrary appliances, which may even be located in different places.

At the start, each participant signed a consent form and was instructed about the purpose
of the study by the investigator. Each participant carried out a fixed series of appliance
interactions in each of the three scenarios. The interactions series were embedded into a
story told by the investigator and included the following steps in the given order:
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Smart lamp

Sound system

MugTelephone

Figure 4.8: The set-up of connected smart devices we ue for our prototype implementation
consisting of a lamp, a sound system, and a phone. The mug used in Scenario
3 is also shown. All have an individual marker attached for visual recognition.

1. Changing the light colour to green, setting the brightness to 30% and the saturation
to 80%.

2. Turning on the sound system, setting the volume to 20, and choosing either the next
or previous song.

3. Turning off the music.
4. Making a phone call (initiating the call).
5. Terminating the call.
6. Resuming the music player, switching to another track. Then the participants

should change to another chair standing at a different position to the set-up (this is
particularly interesting in Scenario 3 because they have to take the mug with them).

7. Increasing the volume of the music. Afterwards,
8. They sit back at the table and stop the music player.
9. Turning the brightness of the lamp to 50%.

10. Switching off the lamp.

Every participant carried out ten interactions per scenario, i.e. 30 in total. The order of
the interaction within each scenario was the same; the order of the scenarios was random
for each participant to avoid a learning bias. Before each scenario, the participants were
briefly instructed on the new type of interaction. After finishing with each scenario, the
participants filled in a questionnaire on the scenario containing the following questions,
each to be answered on a five-point Likert scale from “disagree” to “agree” with a score
ranging from -2 to 2 with the neutral score at 0:

Q1 The way how to control devices was easy to understand.
Q2 It was fast.
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Q3 It was appealing.
Q4 It was not physically demanding.
Q5 It was not mentally demanding.
Q6 I felt comfortable.
Q7 I felt that I was in control of the devices.
Q8 I can imagine using this method in my daily life.

Additionally, the participants were given a User Experience Questionnaire (UEQ) [110]
score sheet to obtain a standardized measure of the user experience. The questionnaire is
available online [225]. The 26 items have a seven-point score ranging from -3 to 3. The
UEQ analysis results in scores in the following six dimensions: attractiveness, perspicuity,
efficiency, dependability, stimulation, and novelty.

After having performed all three scenarios the participants fill in another questionnaire
with pairwise comparisons (also allowing for a neutral decision) on which of the scenarios
they preferred concerning the following questions (i.e. there are three pairwise comparisons
per question):

P1 Which method did you generally prefer?
P2 Which method was faster to use?
P3 Which method was easier to understand?
P4 Which gave you the feeling of the most control?
P5 Which was more fine-grained?

Besides, we measured the task completion time from the moment the investigator instructed
the participant to perform a task until it was fulfilled. One entire session took around 45
minutes.

Participant Population We recruited five participants for the pilot study (average age
24.0 with a standard deviation of 1.9, ranging from 22 to 26, two females) and 25 further
participants (average age 29.3 with a standard deviation of 9.7, ranging from 21 to 52, six
females) for the actual study. 36% of the participants had previous experience with VR
(virtual reality) and 16% had previous experience with AR applications. The participants
took part on a voluntary basis without compensation.

Results

We carry out a statistical analysis on the four measures: the questionnaire, the UEQ,
the pairwise comparison questionnaire, and the task completion times. For all the four
measures, the normality condition for applying an ANOVA test is violated (significant
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Shapiro-Wilk’s test and visible from QQ-plots). Hence we employ the Friedman test. If
the Friedman test finds significant differences, we carry out post hoc tests employing a
Bonferroni-corrected Wilcoxon signed-rank test to reveal where the differences lie. In
general, we use a significance level of 0.05, in the cases using Bonferroni-correction 0.017,
respectively. We only include the data of the 25 participants from the actual study and
not the additional five from the pilot study. For the sake of shorter notations, we use the
abbreviations S1, S2, and S3 for Scenario 1, 2, and 3, respectively.

Questionnaire Results The questionnaire, filled in after each scenario, asked the
participants to answer the questions Q1 to Q8 in Subsection 4.3.1 on a five-point Likert
scale ranging from -2 to 2. The average results for the 25 participants are displayed in
Figure 4.9. The mean scores for all the questions are positive. For all questions except

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
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Figure 4.9: Average results of the Likert items in the questionnaire for all three scenarios
with 95% confidence intervals.

Q5, S1 obtains the highest average scores. S2 mostly achieves higher scores than S3,
however the only significant differences we find are between S1 and S2 (Q2 p < 0.005, Q3
p < 0.015, Q7 p < 0.01), and S1 and S3 (Q2 p < 0.005, Q3 p < 0.005, Q8 p < 0.017).
The results indicate that on average, the participants have a more positive impression of S1
compared to the others. Especially for the subjective impression of speed (Q2), the scores
are more than twice as high for S1 than for S2 and S3.

UEQ Results The results of the UEQ are six scales, calculated as averages from the
items on the UEQ sheet, i.e. we can calculate a score for each scale for each participant and
scenario. The average scores across all participants for these six are shown in Figure 4.10.
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Figure 4.10: The average results of the UEQ, segmented in the six dimensions, for all
three scenarios. The error bars show the 95% confidence intervals.

Again, all the results are positive. The results in the UEQ generally support the findings
of the questionnaire mentioned above. All the average scores are positive, and again,
apart from the scale Novelty, S1 has the highest average scores. For the first four scales
we find significant differences between S1 and S2 (Attr. p < 0.005, Eff. p < 0.005,
Dep. p < 0.005), and S1 and S3 (Attr. p < 0.005, Per. p < 0.005, Eff. p < 0.005,
Dep. p < 0.001), only for Perspicuity the difference between S1 and S2 is insignificant
(p = 0.03). Between S2 and S3, we find no significant differences. For Stimulation and
Novelty, the means are similar (as can be seen from the plot), and we cannot find any
significant differences.

Pairwise Comparisons The results for the pairwise comparisons are shown in Fig-
ure 4.11 as the sums over the participants’ preferences per question item.

Across all question items and participants, there were no cyclic dependencies (such as
S1 being preferred over S2, S2 over S3, and S3 over S1), i.e. it was possible to transform
the pairwise answers into rankings for each question item. For these, we can carry out
a Friedman test and post hoc tests as above. As for the other measures, S1 is mostly
preferred over S2 and S3, which is also supported by the statistical tests (S1 - S2: P2, P3,
P4 significant with p < 0.001; S1 - S3: P1 p < 0.005, P2 p < 0.001, P3 p < 0.005, P4
p < 0.017, P5 p < 0.01). Only for P5, S3 was chosen more often, i.e. the majority believe
that S3 offers a more fine-grained control. Between S2 and S3, there were no statistically
significant differences, apart from the aforementioned P5 (S2 - S3: p < 0.001).
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Figure 4.11: The results for each pairwise comparison item summed over all participants.
The plots show how often which scenario was preferred over which other
scenario.

Task Completion Times We calculate the mean task completion time per participant
and scenario. Since task 6 and 8 included changing from one spot to the other, which
constitutes a rather undefined period of time difficult to compare, we omit those tasks. The
averages of all participants are given in Table 4.1. The average overall task completion
time for S2 is nearly twice as high as for the fastest, S1. For S3, it is 50% higher than
for S1. The differences in the overall mean completion times between all scenarios are
significant (S1 - S2: p < 0.001, S1 - S3: p < 0.001, S2 - S3: p < 0.01). Interestingly, the
order S1 < S3 < S2 holds in each task.

Table 4.1: Mean completion times in seconds for each measured task over all participants
for each scenario.

T1 T2 T3 T4 T5 T7 T9 T10 all

S1 31.8 9.0 21.2 3.5 3.6 1.2 8.4 1.6 10.0
S2 51.5 17.0 42.4 4.8 5.1 5.6 20.2 6.1 19.1
S3 41.1 12.3 32.6 4.0 4.9 5.4 17.6 4.2 15.3
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4.3.4 Discussion

As the positive scores in the questionnaire (e.g. Q3) and Attractiveness in the UEQ
show, our participants liked our system in general and were excited to use it (high scores
for Stimulation), most were even amazed at this new way of interaction. We received
many comments, such as “It was a great experience”, “So cool, this is amazing” and “I
am mind-blown”. Besides the general appeal, all participants found the system to be
innovative.

General advantages of our approach which apply to all three scenarios are that it makes
appliances easily accessible, as the user only has to look at them in order to control
them and shares the benefit of remote controls by enabling an interaction from a distance.
Furthermore, our interaction approach was easy to learn in all scenarios, as the scores for
Q1 and Perspicuity indicate. We believe this to be the result of the possibility to show
interaction instructions in a first-person view, e.g. which way the user should rotate his/her
arm to increase a level. This makes the control very intuitive, as none of the interactions
has to be remembered. Moreover, as the AR representation is locally collocated with the
appliance (except for S3), there is no need to switch one’s gaze between a remote control
and the controlled device as it is the case for standard remote controls. This also makes it
easy to understand which appliance is currently affected by changes. Several participants
stated that “it is easy to get used to”.

When comparing the three scenarios, we find a strong preference for S1, indicated by the
questionnaire, the UEQ, and especially by the strong overall votes for S1 in the pairwise
comparisons. Appliance control was also significantly faster on average than in the other
scenarios. This objective measure aligns with the subjective impression of higher speed,
as shown in Q2 and Efficiency. Many participants expressed their liking of S1 because
of its simplicity compared to the others, which also made it easier to understand: “Easy
to understand”, “Intuitive”, “worked like a charm”, “more intuitive and faster”, “good
that you only have to learn a single gesture”, “I don’t have to think too much”, “really
intuitive, although I’m not a geek”. One important reason we believe for this scenario
being so popular is that it provided the most direct interaction because one is virtually
moving sliders and clicking buttons on the appliance itself. One participant described the
reason for his preference for S1 accordingly as “the feeling of the direct interaction”. The
results for Q7 and P4 also show a significantly higher score for the feeling of being in
control of the devices, supporting our assumption.

The only major shortcoming of S1 was the difficulty to adjust the values in a fine-grained
manner. Participants stated it was easy to set an appliance parameter to the minimum or
maximum, but rather difficult to set it to an exact intermediate value. This is also exhibited
by the preference of S3 over S1 in the pairwise comparison item P5 on which scenario
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offered the most fine-grained control.

S2, using the Myo for gesture recognition, received a higher score than S3 for many of
the questionnaire items. However, only the difference in the scores for P5 was significant,
but then in favour of S3. What participants valued, similarly to S1, was the direct
interaction with the appliances. Moreover, some preferred the use of natural gestures, such
as waving to the left or right, over the clicking on buttons and dragging sliders in S1: “The
coarse-grained gestures in S2 are better than the fine-grained gesture in S1”. Furthermore,
a participant mentioned this form of gesture input is better because one does not have to
raise the hand to be in the field of the camera, but it can be anywhere. Another participant
even said that he thinks this would be faster than S1 because one does not have to raise the
arm. One interesting aspect is that the subjective impression of speed does not match the
objective task completion times. There are slightly higher scores for the question items on
the speed for S2 than for S3 (but not significant), although the task completion times show
that S2 is significantly slower than S3.

In comparison to the two other scenarios, there was a great conceptual difference in
S3. Instead of direct gestural control, S3 offered a tangible user interface through the
movement of a mug. Participants found this scenario very innovative and interesting,
but at the same time not as suitable for appliance control: “more innovative than S1, but
also more cumbersome” or “very cool, but liked much less than S1”. The participants
strongly prefer the form of direct control that S1 and S2 offer, as mentioned above. Some
also expressed their dislike of the necessity to frequently change the viewpoint back and
forth from the appliances to the mug. In our implementation, the mug is only tracked
visually by the HoloLens, which requires it to be in the field of view of the HoloLens’
cameras. This means the user has to be looking at the controlling objects to be able
to perform actions and cannot look at the controlled appliance at the same time, which
was very unnatural for many participants. Several participants said that looking down
is uncomfortable when wearing the relatively heavy HoloLens. This limitation could be
solved by visually tracking the object with an external camera. However, this defies the
goal of a mobile application.

On the other hand, one strong advantage S3 has over the other scenarios, is that it offers
haptic feedback, as one participant expressed, for example: “the haptic feedback is great”.
This goes hand in hand with the fact that S3 was on average preferred for setting the
parameter values in a fine-grained manner, as shown by the results for P5. The participants
showed strong interest in this scenario and understood our intention to potentially use any
object as it “would be great if this worked with all objects”, and one would not have to
take it with oneself.

In summary, we found a strong preference for the simplest way of control, S1, using
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only a single gesture together with comprehensible visual representations. According
to our participants, this offered the most direct form of control. A similar scheme of
interaction was given in S2, however, with more gestures. This appeared to be significantly
slower and more physically demanding. S3 affords a novel interaction paradigm, which
provides tangible feedback through the physical object. The participants indeed found
this interesting. However, our evaluation shows that the more direct form of control is
preferred, which does not use an interaction proxy. Nevertheless, the haptic experience of
the interaction allows for a fine-grained adjustment.

A conclusion we can draw when contemplating all scenarios is that an AR representation
offers the benefit of allowing for direct control of appliances without requiring any proxy
controller device in between. We believe this is also helpful advice for the design of
potential future human interfaces of appliances.

4.3.5 Limitations

The general positive attitude towards our approach is despite the HoloLens being relatively
bulky and heavy, and furthermore having a little field of view. These constraints currently
are a limitation to the practical use of our approach and are reflected in the relatively low
scores for the question, whether participants could imagine using our system in their daily
life (Q8). Nevertheless, we believe there to be more practical AR devices in the future
with a broader spread among the general public. We envision an AR system, which is
built into a person’s glasses, ubiquitously available, making our approach also practical
for daily life.

A further limitation of our work is that the prototype system, including the interfaces
displayed, was fixed to three devices and to a single office. The concept itself is applicable
to many more devices and a much larger space. As mentioned before, we designed
the interfaces in a way that they could be used in a generalized form, which could be
automatically generated from abstract device descriptions, as shown in [125]. Especially
the extension to a larger space with more rooms would be an interesting continuation
because then also proximity-based interactions as in [86, 111] could be explored. In
this sense, another limitation is that often the devices were within reaching distance
for the user. This raises the question of whether the widget augmentation and the use
of gestures is necessary at all. The main reason for this is that the recognition of the
markers does not work well at a large distance without significantly increasing the size
of the marker. Hence it was limited in our study. This limitation could be mitigated by
implementing object recognition based on the appearance of the devices (which would
eliminate the necessity of having to use markers overall), or using additional technology
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such as infrared emitters and receivers to transmit IDs between devices and the HoloLens
(augmented with an IR sensor) which works across a range of several meters [19, 37, 193].
However, the implementation of these more complex approaches is out of the scope of
this work. Nevertheless, in some situations, the appliances were clearly out of reach for
the participants, especially after moving to another chair. Furthermore, the participants
never questioned the interaction design in spite of the proximity of the appliances. In any
case, we believe that the widget augmentation and the interactions we present here still
have benefits compared to interfaces on the appliances themselves, in particular, because
the appliances are not required to have an interface of their own.

Another limiting factor could be the fact that 15 out of 25 participants had no previous
experience with VR or AR applications which might bias these participants in their general
assessment of the interaction system by being amazed by the AR experience in general.
Nonetheless, also among the participants with previous VR and AR experience, most
were positively surprised by the way our AR approach supported device interaction and
also explicitly stated this in their comments. In fact, there were little differences in the
attractiveness scores between the two groups for example (only S1 having a significantly
higher score for the inexperienced group). In the comparison of the scenarios, there should
be no bias, as none of the participants knew the system beforehand.

4.4 Device Network Configuration through Wearable

Augmented Reality

Hitherto, the concept we presented only allows controlling a single appliance at a time.
A significant part of the time spent on dealing with appliances may, however, be due to
the configuration of multiple devices. We can expect this proportion of effort to increase
over time as more appliances can be interconnected to others. For example, a smart switch
could be connected to a smart light. This flexibility has the benefit that the configuration
can be changed, in contrast to conventional switches with hardwired connections. We
could even see the Wi-Fi connection of a router to a laptop as such a connection which can
be reconfigured, e.g. the network owner might want to interrupt the connection. Building
upon our results in the first part, we present ConnectAR, a prototype system fulfilling our
goal of allowing such a reconfiguration of compatible smart devices in an egocentric AR
view. Here, we focus on connections between devices and controllers, i.e. components
which can be manipulated by the user and then relay this manipulation to the connected
device, and not arbitrary connections between devices. ConnectAR also avoids a limitation
of our work mentioned above: at least at the current time, users may not be willing to
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wear an AR headset all the time in order to be able to control appliances. Now, this is not
necessary anymore, as it is only used for configuration.

Our idea is to enable logical control connections between smart devices and controllers
and to allow the configuration of smart devices and controllers in the visual AR space.
For example, we want to be able to connect a smart light bulb to a switch by simple
manipulation in AR. The user can see all existing connections in his/her egocentric view,
but also create new or modify connections by employing the simple pinching gesture,
which we found to be the most favourable option in the first part. Naturally, we do not only
require the devices to exhibit “smartness”, but also the controllers by being able to connect
to a Wi-Fi network and providing an interface to transmit their value settings, i.e. the
devices would have to abide by a common standard to fulfil our concept. We envision this
to be possible in the future. For our prototype, we use devices which we can freely modify
to enable a common interface. The devices and controllers are visually recognized with
the HoloLens’ camera by their individual markers as for our first prototype. Marker-based
recognition suits our prototyping purpose very well. As already mentioned above, in the
future, we could integrate visual object recognition or a device selection based on infrared
light as proposed in [19, 37, 193].

While wearing the HoloLens, the creation of a new connection can be initiated by
looking at a component (either a device or controller), more precisely at its marker, which
is then recognized. The gaze is approximated by the head pose provided by the HoloLens.
The user may then select the component for a potential connection by performing the
finger pinching gesture, which is recognized by the HoloLens. A selection is indicated
by a scanning symbol (cf. Figure 4.12) while the system is waiting for the selection of a
second component. This counterpart component, a controller for a device or vice versa, is
selected the same way, and we then establish a logical control link between the two. This
connection is visualized by a line between the spatially mapped controller and device in
the visual AR space, as shown in Figure 4.2, for example. Instead of drawing a straight
line between them, we interpolate a line along the positions of the HoloLens during the
connection process since there might be obstacles in between the components in the way
of a direct line, or the components might even be in different rooms as the user may have
moved from one to the other. Each visual connection has a deletion option which can be
executed by tapping on the virtual red sphere located in the middle of each connection
line.

The question that remains is how to check the validity of potential connections and
how to convey the control information without hardcoding it for each pair of device and
controller, which would result in a potentially large number of mappings. Similarly to
Mayer et al. [125], we create machine-readable and downloadable interaction abstractions
for each device and controller, which can be retrieved on demand and interpreted. An
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Figure 4.12: When a controller marker is recognized, a scanning symbol is displayed,
notifying the user that the system expects a device to be selected.

abstraction defines which capabilities and requirements a device or controller has. For
example, the abstraction for a smart light bulb which only has a brightness setting could
specify that it can handle continuous values, the abstraction for a simple switch only
on/off. Hence, ConnectAR has to interpret the two abstractions and match them in the best
possible way and thereby defines the relationship between device and controller. In the
example above, this could mean that the on/off-function of the switch is matched to the
maximum brightness and turning the light bulb off, respectively. If no match can be found,
the potential connection is invalid and not allowed. This is indicated to the user by a cross
symbol (cf. Figure 4.13).

Figure 4.13: A cross symbol shown when no valid connection is possible, e.g. when trying
to connect two controllers.

We use the following simple set of abstractions for describing the component capabilities
and requirements:
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1. k states, representing k possible positions on a one-dimensional scale, e.g. a
simple switch could provide two positions which could be used for an on/off
functionality.

2. float value from lower limit to upper limit, e.g. as a slider could pro-
vide.

Although we use only two abstractions, we can already provide a large space of function-
ality. Each function of a device and a controller can now be described by the abstractions.
For example, the smart light bulb we use in our prototype can change its appearance in
the HSV colour space, i.e. there are three functions: setting the hue colour angle, the
saturation, and the brightness value. An abstraction specification could look as follows:
hue float value from 0 to 360

saturation float value from 0 to 1

brightness float value from 0 to 1

For a simple controller, a switch with only two states, the specification could look like the
following:
switch 2 states

The switch cannot fulfil the full specification of the lamp. However, we try to match
them partially. In the given case, for example, the on/off-switch could set the brightness
value to 0 or 1, respectively. We divide the one-dimensional continuous value space into
(k− 1) equal intervals and assign the ith out of the k positions the ith interval border.
After creating the virtual line in AR, we let the user choose which characteristic (e.g. hue,
saturation, or brightness) the switch should be matched to by holding the pinching gesture
and dragging the virtual slider to the intended position as shown in Figure 4.14.

Figure 4.14: The connection settings defining which characteristic of the device is con-
trolled.

94



4.4 Device Network Configuration through Wearable Augmented Reality

For valid connections, we allow any form of combinations of devices, i.e. many-to-
one combinations (many controllers, one device) are possible as well as one-to-many
combinations (one controller, many controlled devices) or any other combination (several
controllers controlling overlapping sets of multiple devices). For example, the same light
could be connected to several switches, responding to all of them or a single switch could
be connected to multiple lights, controlling all of them at the same time.

The message exchange between the controller and the device is similar to the abstrac-
tions for creating the connections. The messages contain the abstractions concatenated
with the current state. For example, upon being adjusted to level 6, a slider controller
might send the following message:
slider float value from 0 to 10: 6

For the ease of implementation in our prototype, we mainly use controllers implemented
using Android smartphones (Nexus 5X with Android 8.1) running an app which displays
simple control elements such as an on/off-button or sliders for setting continuous values
as shown in Figure 4.15. However, if available, we could include any kind of controller
which implements our protocol, e.g. a knob with a Wi-Fi connection.

Nevertheless, the availability of the spatial tracking capability of the HoloLens makes it
possible to also incorporate simple, unconnected objects as controllers as in Interaction
scenario 3. The tracked movements of the object can then be used for control. As smart
devices, we incorporate the light bulb which may be controlled via Wi-Fi and can change
its colour in the HSV space, and a sound system for which the volume can be adjusted

Figure 4.15: Screenshots of two control elements in our prototype controllers, an on/off-
button and a continuous slider.
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as for our prototype. A desirable property of the prototype is that it only utilizes the
head-worn computer and smart things connected over a Wi-Fi network, therefore it is
mobile and not confined to a restricted space.

The HoloLens controls all the appliances by sending commands via a Wi-Fi network
which is established by a router. For the purpose of exchanging the validity messages,
state information, and commands, we again implemented a simple message protocol based
on JSON. To enable the control of the appliances and the message exchange, we use an
additional Nexus 5X handling the light bulb via UDP and being connected to loudspeakers
and thereby providing a mockup of a sound system (the smartphone is not visible). A
schematic diagram of all the devices and their information flows is given in Figure 4.16,
which is similar to the schematic for our first prototype extended by the logical control
connection. Currently, all logical connections and settings are stored in the Hololens.
Whenever the user deletes a connection, it is simply removed from the connection list and
thereby the interaction between the corresponding component automatically ends. The
connection information could also be stored on the network router in the future, to make it
possible to manage connections from several devices or share these with other users. We
are aware that our approach would require explicit rights management in the background
to avoid unauthorized manipulations of the overall system, and we leave this to future
work. However, here we also see the potential for our concept to make it easier for users to
understand access rights, as access levels can easily be visualized and inform users when
they infringe upon the stronger authorization of others.

4.5 Conclusion

We presented two concepts for the interaction with smart devices through their represen-
tation in a head-mounted AR display and implemented them in two prototypes. In the
first part, we presented an interaction paradigm in which we externalize the user interface
of appliances into visual representations in AR, using a head-mounted display. These
representations provide an overview of the properties and capabilities of every appliance
in the user’s first-person view and also allow appliance control. We implemented three
different ways of interaction: (1) using simple gestures to adjust virtual sliders and click
virtual buttons, (2) employing more gestures recognized by an EMG armband, and (3)
extending the representation to an object, in our case a tea mug, which can be utilized
for control by moving it and thereby provides a tangible interface. We conducted a user
study in an environment consisting of three appliances, and our evaluation shows that the
participants prefer the direct control and simplicity featured by the first scenario, which is
also significantly faster than the other two options. Although the use of the object may
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Communication 
over WebSockets

Optical tracking

Smart devices

Controllers

Logical
links

Figure 4.16: The HoloLens tracks the smart devices and the controllers. It communicates
to the devices and the controllers via a Wi-Fi network, which is established
by a router. The logical control link between a controller and a device is
established once the user selects these and their potential connection is valid.

seem the most intriguing interaction possibility, it introduces the object as a proxy control.
This lets the user interact with the object, rather than with the appliance, which was less
preferred by the participants.

Nevertheless, this first concept cannot capture a many-to-many-relationship of multiple
devices that work together. We built upon the results in the first part and designed a second
approach for configuration of control connections between smart devices and controllers
in AR. Connections can be created and modified directly in the AR space by employing
simple gestures. We propose an interface abstraction to represent devices and controllers
and thereby are able to verify the validity of a potential device connection. This abstraction
also allows simple, unconnected objects to be incorporated as a controller by coupling
the virtual representation to their physical movement. We envision a method such as our
prototype to be built in the operating system of head-mounted AR displays, which subtly
shows the configuration options whenever a known configurable device is recognized.
One goal of our concept is to break up the fixed coupling of controllers and devices, e.g. a
specific remote control for an appliance or a specific switch for a single light, and set free
their functionality for any valid combination among them. By using a head-mounted AR
display and only wireless communication over a Wi-Fi network, the system is mobile, and
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the user is free to move without limits.

One interesting area of future research would be to extend the configuration possibilities
from a pure controller-actuator relationship to data producer-consumer relationships with
logical rules in between, such as between a light sensor and the blinds or a lamp. The
lamp could react to the values it receives from the sensor, turning on in darkness and
off at daylight, for example. We could visualize such data streams in AR and also allow
their configuration, thereby providing a simple “programming” interface for devices in
AR. Another way to enhance our approach could be the use of spatial sound attached to
the devices or the use of speech commands. Furthermore, we could take the proximity
of already mapped surrounding devices and controllers into account by, for example,
showing the nearest compatible devices and controllers or displaying connections based
on proximity.
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Chapter 5
Creating Personalized Tangible User
Interfaces from Simple Materials

5.1 Introduction

In the previous chapters, we introduced different user interfaces, either purely gestural
ones or through representation in augmented reality. Similar to most other interfaces,
these do not adapt to the specific user preferences or the task at hand. In this chapter, we
present a method that allows the quick and inexpensive creation of personalized interfaces
from plain paper. Users can cut out shapes and assign control functions to these paper
snippets via a simple configuration interface. After configuration, control takes place
entirely through the manipulation of the paper shapes, providing the experience of a
tailored tangible user interface.

Tangible user interfaces, such as buttons and knobs, enjoy widespread use for controlling
appliances: they naturally arose as controls of purely mechanical devices before the
emergence of digital products, and virtual implementations of the interaction patterns they
express are ubiquitous in graphical user interfaces (GUIs) for software as well. In fact,
with the spread of displays in the past decades, more and more interactions have been
transferred from tangible mechanical controls or remote controls to GUIs. These have
the advantage of being able to display changing content and therefore are highly flexible
and widely applicable. However, GUIs often do not induce any haptic sensation, which
humans innately prefer over passive interfaces [205]. Moreover, GUIs usually do not
provide common physical interactions humans are used to, such as easily moving, adding,
or removing elements. This has given rise to the creation and proliferation of tangible user
interfaces (TUIs) in the past two decades with the aim of making interactions more natural
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(a) (b) (c)

Figure 5.1: We present a concept and a prototype of a system for creating personalized
user interfaces from paper. Users can cut out preferred shapes from paper
and add interaction functionalities to them. The paper shapes and the user’s
fingers are tracked by an RGBD camera mounted above the interaction surface
(Figure 5.1a). Our processing pipeline recognizes and measures manipulations
of the shapes (Figure 5.1b), such as movements and touches, which can be
mapped to certain functions according to the assigned interactions, e.g. for
controlling a toy rover as illustrated in Figure 5.1c.

and binding virtual elements and functions to real objects. TUIs, which can take almost
any physical form, are also conducive to the fundamental goal of ubiquitous computing:
making computers (and their controllers) disappear physically and mentally into users’
environments [180].

However, TUIs usually cannot adapt to a specific user nor to the task the user intends to
carry out, simply because they are hardware devices and are thus constrained to – and by –
their physical form. Consequently, many tangible interfaces that we use in our daily lives
(e.g., traditional TV remote controls) are often built to provide interactors for all functions
of the controlled device, even if these functions are used only rarely – or never. This can
be overcome with interfaces that are able to change their shape during interaction [68, 98].
However, this currently requires complex and expensive electro-mechanical systems.

An intriguing solution for adaptive user interfaces is to let users themselves create and
assemble their personalized user interfaces from inexpensive everyday materials (e.g.,
paper, cardboard, or playdough), and enabling them to link these TUIs to device functions.
This would allow users to create exactly the interfaces they require, at their desired level
of complexity.

Such an approach enables various applications. First, it benefits the process of user
interface prototyping, where paper snippets are commonly used, by making it possible to
add actual functionality to the paper shapes and thus being able to rapidly test designed
interfaces – this enables us to bridge the “ideation” and “implementation” steps in the
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design process, which are typically separate [39]. Furthermore, the interfaces can easily
be reconfigured, thereby enabling quicker iterations in the design process and an earlier
realization of potentially erroneous approaches as the UI does not have to be implemented
first, which entails high development cost.

Second, an approach like this could be used in various real applications, for example,
in the domain of building control, where it would permit the creation of passive control
interfaces for lights, blinds, AC, and other devices that are attached to surfaces and walls
without requiring infrastructure such as power and control lines. This would provide
an installation that can be easily reconfigured, which becomes necessary as building
automation companies are searching for ways to flexibly rearrange the spaces we live and
work in, in response to user preferences.

Third, the development towards the increasingly automated operation of industrial
equipment entails less frequent direct interactions of workers with machines in industrial
shop floors. In the wake of this process, adaptive, tactical, user interfaces would enable us
to avoid cluttering workshops with UIs that are operated infrequently (and might not even
be suitable for a particular user). Rather, they would enable workers to bring their own
interfaces with them, quickly assemble and configure them, and use them to interact with
machines throughout the production space.

We present a system that allows users to create their own, personalized, user interfaces
by cutting out arbitrary paper snippets and assembling them on a suitable surface (e.g., a
table). We track both the shapes and the user’s fingers with an RGBD (colour and depth)
camera without the need to employ any markers, enabling a natural control of devices and
permitting a wide range of interaction abstractions. In addition, our system allows for
dynamically adding and removing paper snippets from the interface.

We determined the types of interactions that such a system should enable through an
elicitation study with 20 participants, and deduced 25 abstract interactions. Out of these,
we implemented the 13 most common ones in our prototype – these interaction abstractions
cover more than 92% of all observed interactions from the elicitation study. When creating
an interface using our system, users cut out paper shapes and assign interaction abstractions
to them. Being tracked by the RGBD camera, these shapes respond to corresponding user
interactions by emitting events that carry the relevant interaction information (e.g., the
distance a shape was moved; the angle it was rotated; the duration it was tapped, etc.).
These events are subsequently passed to any (networked) consumer where they trigger
application functionality – this can be configured using a common dataflow programming
language. We evaluated our complete prototype in another user study, which showed that
participants were able to use our system to successfully create fully functioning interfaces
for several different applications, such as controlling a sound system.
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5.2 Related Work

Already in 1995, Fitzmaurice et al. [67] presented Bricks, an approach that connects
physical bricks, laid out on a display surface, to virtual graphical counterparts depicted on
the display. The virtual shapes can be manipulated, e.g. moved or rotated by manipulating
the corresponding bricks. Shortly after, Ishii et al. [87] presented their vision of Tangible
Bits, aiming at a coupling of digital information to physical objects and thereby making
this information tangible. This coupling should also allow the manipulation of the digital
state by the manipulation of the objects. Our approach fits this concept well by coupling
components made from simple and inexpensive material, in our case paper shapes created
by the users themselves, to digital control components.

Dedicated Tangible Interfaces Complex tangible interfaces that feature high rep-
resentation capabilities are enabled by the interface changing its shape. For example,
Follmer et al. [68] created an interface consisting of an actuated matrix of poles which can
take arbitrary three-dimensional shapes. It can thereby provide tangible controls to the user
or even actuate objects lying on it by dynamic shape changes. This concept is combined
with an augmented reality (AR) application in [112] to add a tangible representation of the
AR content through the actuated pin array. Shape-changing tangible interfaces can also be
used to combine different elements, such as sliders or knobs in a single component [98].
Studies on shape-changing interfaces can be found in [49, 99]. These interfaces provide
an interesting approach in the area of dynamic and adaptable interfaces. However, they
also entail relatively complex hardware and high cost. We intend to follow the opposite
direction. Users should be enabled to create their own personalized interfaces from simple,
inexpensive material, and should be able to change and recreate interfaces themselves
easily.

Printable Circuits One possibility for using paper for interaction elements is to print
electronic circuits onto it. A number of projects have recently explored combining paper
with electronics. For example, Instant Inkjet Circuits [91] and Printem [136] are simply
created by a modified printer. The projects Sketching in circuits [141], PaperPulse [143],
CodeCollage [142], and LightItUp [81] specifically explore how users combine various
interactive paper electronics elements. The recent Pulp nonfiction [202] extends regular
paper with capacitive touch and pen sensing. Some paper electronics are even available in
commercial products such as Chibitronics [217] or DynamicLand [244]. The fundamental
difference to our approach is that the paper, on which the circuits were printed or glued or
stuck to, has to stay in a single piece, i.e. the user cannot create independent interaction
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elements which can be moved or reassembled. As such, the paper circuits act more as
printouts of graphical user interfaces than tangible interfaces.

Using Everyday Objects as Interfaces In addition to the creation of dedicated tan-
gible user interfaces as mentioned above, arbitrary objects in the user’s environment can
also be used as tangible interfaces. Pohl et al. [138] investigated the space of everyday
objects that could be useful as tangible controllers and found that there is both a diverse
set of objects available and potential use for them. This concept is employed in several
works in order to assign different functions to different objects, e.g. in painting applica-
tions [69, 159]. Often, a workspace is instrumented with overhead cameras to track simple
objects and their movements and map them to control functions, for example, iCon [43]
repurposes physical objects to control other objects by augmenting them with a trackable
paper label. Corsten et al. [51] do the same without markers, using an over-head depth
camera for pose estimation. Funk et al. [71] present an augmented workspace in which
everyday objects can be combined into personalized control widgets. The idea of using ob-
jects as tangible interfaces is also used in mobile settings by employing tablets [11, 82, 83]
or head-mounted AR displays as we showed in the previous chapter. In contrast to visual
sensing, Project Zanzibar [170] contributes a portable rubber mat with embedded NFC
readers that recognize various objects placed on top. This mat can be used to create
reconfigurable tangible controls similar to our system.

Similar to our work, using simple objects in the user’s environment also has the goal of
using readily available components as TUIs at no (or hardly any) extra cost. Nevertheless,
instead of using arbitrary objects, we intend to let users design their own interfaces –
according to their personal preferences and abilities. Furthermore, our interfaces do not
interfere with the normal use of objects (e.g., drinking from a mug that is also used as a
“dial” TUI).

Reconfigurable Interfaces from Simple Materials Besides using existing physical
objects as interfaces, there are other approaches which allow personalized interfaces and
reconfiguration as in ours. Kelly et al. [93] recently presented ARcadia, which is intended
for rapid prototyping. Control elements such as buttons, wheels, or sliders can be cut
out from paper or cardboard, arranged and then assigned a certain function in a browser
application. Fiducial markers are attached to the shapes to recognize and track them
using a webcam, e.g. a laptop camera. The laptop can be used to configure the function
assignments at the same time, as ARcadia requires an additional input device for this task.
Using markers has the advantage of being able to track the shapes very accurately and
giving the shapes a unique identity. However, the user has to provide the markers for every
shape in the interface construction process, e.g. by printing them. In contrast to ARcadia,

103



Chapter 5 Creating Personalized Tangible User Interfaces from Simple
Materials

our intention was to make the TUI creation process as simple as possible. Hence, we avoid
the use of markers and directly track the shapes and the user’s fingers. We furthermore
enable a broader range of interactions, as we (1) track the fingers separately from the
markers, thereby allowing users to simply tap on shapes – or swipe over them – instead of
having to cover an entire marker and (2) study which interaction behaviour is employed by
participants in an elicitation study resulting in a wider set of possible interactions which
goes beyond simple movements and rotations.

The VoodooSketch [35] system allows users to draw user interface elements on light-
reflective paper that are recognized by an over-head camera like in our setting. Our system
provides similar flexibility and ease of use. The main difference is in creating the widgets
via drawing or cutting and the selection of supported materials.

Olberling et al. [134] rely on printable circuits as mentioned above but furthermore
allow cutting interaction elements from the circuit-augmented paper. They presented a
special wiring topology for multi-touch sensors that make them robust to cutting, so users
can define and cut personalized UI elements. An advantage of our approach is that no
special material is required. The sensing part of our system, an RGBD camera, can be
reused and any kind of paper can be used for cutting out shapes. Moreover, with the
camera tracking, our approach allows the position and the movement of the widgets to be
taken into account when defining controls.

Object Tracking An important component of these approaches is the recognition
and tracking of the elements, which may be printed circuits or real-world object, as
mentioned above. There are various technologies for tracking user-defined elements
on a surface, all having their advantages and disadvantages. With cameras, for exam-
ple, ShadowTracking [62] recognizes silhouette shadows from above a well-lit touch
screen, VoodooSketch [35] and RetroDepth [97] apply special retro-reflective surfaces.
DIRECT [188] combines RGBD and IR input. In our approach, we do not only track the
position of the finger, but also its orientation. Instead of vision, also other modalities such
as radar sensing [191] have been used. Voelker et al. [171] presented Passive Untouched
Capacitive Widgets that can be tracked on top of unmodified capacitive touch screens.
SLAPWidgets [183] provide tangible transparent silicon elements that can be reconfigured
on the fly as various UI elements. The actual functions are projected onto the blank
elements with an overhead projector. The elements are recognized from the bottom via
IR-reflective identifiers. In comparison with our approach, the elements cannot be defined
by the user in a simple manner.
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5.3 Elicitation Study

Technically, our approach is based on visually tracking user-cut paper shapes. The
manipulations users perform (i.e. movements, rotations, touches, etc.) are then mapped
to specific value changes or discrete actions. For example, a user might create a paper
circle intending it to be a knob he/she can use to control the volume of a sound system.
The user should also be able to assemble basic shapes to groups, which then represent
an interface element, e.g. one could use two rectangles and a circle to create a trackbar
as shown in Figure 5.2. In order to infer this mapping from a certain shape or group,
we either require a fixed set of shapes and groups with a fixed mapping, which we can
automatically recognize, or a set of mappings the user can assign to the shapes. The first
case has the advantage of allowing the user to directly employ a shape or group without
having to assign an interaction behaviour to it but would limit him/her to the fixed set of
known shapes. This observation is closely related to the concept of affordance, introduced
by Donald Norman [131], which describes the interaction possibilities a human perceives
when encountering an object or another thing in his/her environment, e.g. that one can
throw a ball or push a button. We are specifically interested in which affordances different
paper shapes or groups have.

Our initial hypothesis was that there would be a common ground on the affordances
of certain shapes among users. To validate this hypothesis, we carried out an elicitation
study to investigate which shapes users would cut out for specific use cases. We invited
20 participants (seven female, average age: 29.1 years, ranging from 15 to 69 years) and
asked them to imagine different scenarios in which they had to control a set of appliances
using paper shapes they cut out themselves as controls. We included the four scenarios
listed below with the corresponding appliances or functionality which had to be controlled.

1. Office: blinds (up/down), temperature, ventilation, a light bulb (on/off), an LED
with adjustable brightness and colour temperature, a doorbell.

2. Movie remote control: play/pause, fast-forward, rewind, volume, back button,
ok-button, directions for selection cursor.

Figure 5.2: An example for a paper interface: a trackbar.
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3. Drone: 3D movement (translation in each direction), rotation (horizontal rotation),
taking a picture.

4. Car: air temperature, driver’s seat temperature, driving modes (eco, comfort, sport),
driver’s seat adjustment (backrest tilt, seat pitch, seat height).

We provided the participants with sheets of paper in different colours and a pair of
scissors, and let them cut out the shapes and groups they believed were best suited to
provide the specific control functionality.

In contrast to our assumption, the shapes and assembled groups the participants created
varied a lot. While some interfaces were implemented similar to our expectations (and
to common everyday interfaces), many of them would not be understandable for another
person without further explanation (cf. Figure 5.3). Often, the interfaces were relatively
complex because a single shape would be assigned a range of different functions. We
furthermore did not find a consistent use of differently coloured paper.

What we did find are common abstractions of interaction elements (or interaction
patterns). The interaction elements may not have the same appearance (i.e., shape), but the
same behaviour. For example, many participants use buttons which could be tapped and
which all related to the same underlying behaviour despite being different in appearance.
Hence, we decided to not implement an automatic recognition of shapes together with
an automatic assignment of the interaction behaviour, but to implement a system which
allows the user to create an arbitrary shape and assign the intended behaviour him-/herself
from this set of identified common abstractions. The fact that all participants thought
that their interface made sense concerning the given task emphasizes the strength of the

Figure 5.3: Two examples of interfaces participants designed. Left: An interface for
controlling a smart workplace, similar to what one might expect. Right: A
complex interface for controlling a movie.
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underlying idea, i.e., that the interfaces can be fully personalized to each individual’s
preferences.

5.3.1 Touchets

From the elicitation study, we inferred a set of 25 abstract interactions, which we refer to
as touchets. A touchet represents a behaviour a certain shape or a group of shapes should
exhibit, e.g. a “finger slider” should allow a piece of paper to become a slider manipulated
by the movement of the finger on top of it – note that this concept is independent of
what the shape actually looks like. We found five categories of touchets, the two largest
ones being buttons and sliders. In the following, we will shortly describe each identified
touchet. In our implementation, touchets propagate their manipulation by returning events,
which we also explain here. For some of the touchets, we added a picture displaying
some elements that occurred in the study with visualizations showing how a shape may be
moved or touched. However, these are merely examples of shapes or groups that could be
assigned the corresponding touchet.

Button Touchets

1. Button (B): A simple button which returns a “touched” event when
the user’s finger touches it.

2. Hold Button (HB): A button which can distinguish between a short and a long
press. It also returns an event with the duration of being pressed.

3. Positional Button (PB): A positional button may contain several
clickable zones, which are defined by the user.

4. Positional Hold Button (PHB): The same as a positional button, but with hold
buttons instead of buttons.

Finger Sliders

Finger sliders react to a user moving his/her finger above them, i.e. they track the position
of the finger relative to the slider. They return this position as a relative value whenever
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the finger is moved. The finger is always kept close to the slider.

5. Finger Slider (FS): A 1D finger slider with a straight axis.

6. 2D Finger Slider (2FS): A 2D finger slider that reacts to the move-
ment of the finger in two directions.

7. Curved Finger Slider (CFS): A 1D finger slider, however, with a
curved axis.

8. Special Finger Slider (SFS): A finger slider with an arbitrary
shape.

9. Swipe Button (SB): A finger slider that returns the direction of the
swipe.

Shape Sliders

Shape sliders are similar to finger sliders with the difference that the value is not set by the
finger directly, but by moving an indicator shape relative to a reference shape.

10. Slider (S): A 1D slider with an indicator shape and a reference
shape. It returns the relative position of the indicator to the main axis
of the reference shape, which is defined by the user by identifying
the two endpoints of the axis.

11. Circular Slider (CS): For circular sliders, the indicator shape can
be rotated around the reference shape. The touchet returns the
current rotation angle.

12. Unbounded Slider (US): A 1D slider without an upper bound. The
returned value is the distance of the indicator shape to the reference.
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13. 2D Unbounded Slider (2US): An unbounded slider that returns
the distances from the reference shape on two orthogonal axes.

14. Trackbar (T): A trackbar consists of three shapes, two representing
the lower and upper bounds, and the third being the indicator. It
returns the relative position w.r.t. the bounds.

15. 2D Trackbar (2T): A trackbar where the indicator can be moved
on a 2D area bounded horizontally and vertically by four reference
shapes. It returns the corresponding relative position for both axes.

16. Initial Position Offset Slider (IS): A single shape that returns the
current distance from the position it was first touched along a single
axis.

17. 2D Initial Position Offset Slider (2IS): The same as above only
returning the distance from the initial position on two orthogonal
axes.

18. Rotation (R): A single shape that reports the current rotation angle
relative to the position it was in at the beginning of being touched
and relative to its initial position on the table.

19. Angle (A): Returns the current angle between two shapes.

Hand Touchets

These interactions all concern the movement of the user’s hand directly, and independent
of the paper shapes. Hence, they do not fit into our concept of interacting with paper
shapes and were also relatively rare. However, we list them here for completeness.
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20. Hand Horizontal Position (HP): Returns the 2D position of the
hand in the plane parallel to the interaction surface.

21. Hand Rotation (HR): Returns the rotation of the hand in the plane
parallel to the surface around the center of the hand.

22. Hand Height (HH): Returns the height of the hand from the sur-
face.

23. Hand Tilt (HT): Returns the two angles of a virtual plane repre-
sented by the hand relative to the surface.

Special touchets

24. Existence (E): The existence touchet consists of a single shape which returns a
boolean value referring to whether it is currently placed on the surface or not.

25. Containment (C): Consisting of two shapes, it returns a boolean
value referring to whether the smaller shape is currently contained
within the larger one or not.

Touchets provide a powerful abstraction from the actual shapes and thereby enable
users to personalize their TUIs. In addition, it is possible to assign multiple touchets to
the same shape or group, which will then react to more interactions. Hence, our touchets
approach allows users to model and create complex interfaces. Besides, this approach has
the benefit that we do not have to classify the shapes, but only track each shape and group
and its touchet assignment.

5.3.2 Frequency of Touchet Occurrence

The touchets presented above cover the complete set of interaction abstractions observed
in the study. When using our approach, one has to assign the touchet functionality to
the cut-out paper shapes. Providing the user with a large set of touchets might lead to
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confusion and make it difficult to choose the appropriate touchet. Hence, we counted
the frequency of occurrence of touchet instances in the study in order to select the most
popular touchets for our prototype system. In total, we found 702 touchet instances.
Figure 5.4 shows the frequency of each touchet. Only nine touchets account for over 90%
of occurrences. Based on the frequencies, we decided to include all touchets with a count
of at least five in our implementation. However, we excluded the “hand height” (HH), as it
does not fit into our concept of paper interaction. Another touchet we omit is “existence”
(E), as shapes may not have a unique appearance and it hence is difficult to track a shape
visually which is taken away from the surface and reused later. The 13 selected touchets
cover over 92% of occurrences; we hence provide a nearly complete set of interaction
elements without overwhelming the user.
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Figure 5.4: The frequency of occurrence of each touchet in the elicitation study sorted
according to the frequency.

111



Chapter 5 Creating Personalized Tangible User Interfaces from Simple
Materials

5.4 Tailored Controls

5.4.1 Method Overview

We first describe the typical process of using user-defined paper snippets for controlling
appliances. The use of our prototype is furthermore showcased in a video available
online [213]. After the user has cut out and arranged his/her shapes, he/she has to assign
touchets to the shapes to add functionality, i.e. responsive behaviour, to them. This is done
by placing the finger in the corner (shown as a blue square in Figure 5.1b), which opens a
menu to select a touchet. For some touchets, the user may have to select several shapes,
e.g. for a slider, an indicator and a referential element are required. Similarly, one can
assign predefined actions to the shapes by opening another menu using the green square.
Actions are tags which can be used by the attached application to distinguish which shape
was touched (as there might be several buttons, for example). From now on the touchet
instance emits the corresponding event carrying the relevant information about its state
and the action tag whenever it is manipulated by the user. These events can then be used in
any connected application, as explained below. Our implementation reacts to all changes
immediately, e.g. movements of the reference shapes of a trackbar touchet instance change
the corresponding bounds, which directly also changes the trackbar’s value.

From the touchets we selected for our prototype, we can derive two main requirements:
tracking the shapes and groups which have touchets assigned to them, and tracking the
3D-position of the hand, especially of the fingers. Here, we restrict the finger tracking
to a single stretched out finger. A way to fulfil these requirements using only a single
hardware sensor is to use an RGBD camera mounted above the interaction surface (cf.
Figure 5.1a). The depth information is particularly important to detect when the finger

Depth image

RGB image

Touch 
detection

Event propagation, 
e.g. to NodeRED

Hand & fingertip 
detection

Manipulation trackingShape detection and tracking

Hand & finger tracking

greyscale

Figure 5.5: Our processing pipeline mainly consisting of finger and shape tracking based
on the images from the depth camera.
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touches the surface or a shape. An overview of our processing pipeline is depicted in
Figure 5.5. On the depth image, we perform a colour-independent hand segmentation
based on depth-thresholding. In the hand segment, we find an initial estimate of a stretched
out finger. We then track the fingertip using an optical flow algorithm, which allows us
to obtain the changes in the position of key points on the fingertip between each pair of
consecutive frames. Knowing the 2D-position of the fingertip, we can obtain the finger’s
height from the depth image as well and thereby deduce whether the user is currently
touching the surface or a shape on the surface. Based on the RGB image, we track all the
shapes in the field of view of the camera. As soon as a shape is placed on the surface, it
is assigned a unique identifier. Each shape is tracked continuously by a shape tracking
algorithm we designed for this purpose, which returns an estimate of the translation and
rotation a shape has undergone between two frames. The tracking is a challenging problem,
as a significant part of a shape may be occluded by the user’s hand. Finally, we combine
the information about the finger and shape positions and thereby can detect whether the
user is touching a shape, swiping over it, or moving it. If any of the actions performed
matches the touchet specification assigned to the touched shape, an event is forwarded to
a server, from where this information can be relayed to other applications. For example, a
“button” touchet will not react to rotation, but a “rotation” touchet will.

For configuring the propagation of events, we use Node-RED [227], a programming tool
which allows connecting and programming hardware devices, APIs, and online services in
a GUI editor. Using Node-RED, users can completely customize their own application.
For frequent use, the Node-RED parts can certainly also be pre-implemented, so that the
user can simply connect the touchet events to these pre-configured actions.

5.4.2 Set-up

For the RGBD camera, we use an Intel RealSense D435, which we mount 40 cm above a
table, as shown in Figure 5.1a. The camera monitors a rectangular area of about 43 cm
by 32 cm. The camera stream is processed by a desktop computer with an Intel i7-4790K
4x4 GHz CPU 16 GB of RAM. All the processing runs on the CPU. The source code of
the system can be downloaded from GitHub [212].

5.4.3 Image Preprocessing

Before detecting the hands and shapes, we first preprocess the colour and depth images
from the camera. The RGB image is merely aligned with the depth image so that the
coordinate systems correspond to each other. The depth image requires further processing

113



Chapter 5 Creating Personalized Tangible User Interfaces from Simple
Materials

due to noise: We first apply a temporal filter to reduce the noise. Additionally, to remove
spurious errors in the depth image where the values are clearly too high, we employ a
hole-filling algorithm, which takes the neighbouring pixels of such a hole into account.
Both algorithms are available in the RealSense library. Another problem is that the camera
plane is usually not perfectly parallel to the interaction surface, resulting in some areas
of the surface being perceived as further away, which interferes with the hand and finger
detection on the surface. In order to prevent this from happening, we take a snapshot of
the depth values when starting the system and henceforth subtract these from the currently
recorded image. Consequently, all points on the surface have the same depth, which
facilitates further processing.

5.4.4 Finger Detection and Tracking

One primary requirement is the ability to track the hand and fingers in order to detect when
the user is touching and manipulating the shapes. In an optimal case, we would know
the pose of the complete hand. For this purpose, we tested several hand pose estimation
algorithms such as [132], but none showed a satisfying accuracy although having high
computational requirements. Hence, we restricted the way users may manipulate shapes
to the most common one, touching them with a single fingertip, and designed an efficient
tracking algorithm for this case. Furthermore, we require the contours of the hand to
know when shapes are occluded. We assume that there are no objects in the field of view
of the camera apart from the paper shapes and the hand. Hence, we can distinguish the
hand by applying thresholding to the depth image, as the shapes are flat. We threshold
the image at a level of 1 mm to obtain a binary mask of the hand and apply a contour
finding algorithm. From all the resulting contours, we take the largest one, as we assume
the hand and arm to be the only larger 3D object in the scene. Thereby, we obtain a
rough estimate of the hand and arm position. To find the fingers, we search for defects
in the convex hull around the hand. The fingertips are the corners of the convex polygon.
Unfortunately, even after preprocessing the depth image, there is still a significant amount
of noise, which deteriorates the accuracy of the fingertip position. Hence, we do not only
search for the fingertip in the 1 mm-thresholded binary mask, but also in higher masks. We
thereby obtain several corner points along the top of the fingers, as illustrated in Figure 5.6.
Afterwards, we apply a closing morphology on the corner points in order to merge nearby
points. Fingertips then appear as the ends of point clusters.

We assume that the relevant fingertip for touching is the point furthest away from the
arm. We can find the arm as the part of the body which intersects the image frame.

The detection step described above by itself merely provides the current location of
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Figure 5.6: The resulting corner points of the finger finding algorithm applied on different
depth levels.

the fingertip, but not its movement over time, which is relevant to recognize and track
interactions with the shapes. In order to actually track the finger, we apply the Lucas-
Kanade optical flow algorithm [118] to the detected finger region in the greyscaled RGB
stream. The algorithm is able to find salient key points in the region and track their
position across multiple frames. We apply it as soon as a finger is detected in the images.
As multiple points are tracked, we can not only calculate the translation of the finger
across frames but also its rotation by matching the two corresponding point sets from two
consecutive frames. This is done by computing the best-fitting rigid transformation [158].
With the 2D location of the fingertip, we can directly extract its height above the surface
from the depth map and deduce whether the user is touching a shape or not.

Evaluation of Fingertip Detection In order to evaluate the accuracy of the fingertip
detection, we recorded several sequences during which a participant moved his/her fingers
below the camera. We then manually annotated the position of the fingertip to compare
it to our estimation. In total, we annotated 1137 frames from six participants (note that
our detection method works independently of skin colour). On average, the error was 15
pixels which corresponds to approximately 1 cm. However, this average was influenced by
a few large errors which occur when the hand is entering the field of view of the camera.
The median error was 8.6 pixels, which is accurate enough given shape sizes of a few
centimetres.
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5.4.5 Shape Tracking

Detecting and tracking the shapes is performed purely on the RGB image, as the depth
image does not contain any information about the flat paper shapes. We assume the
interaction surface to be unicoloured with low saturation, e.g. a standard table. To detect
the shapes, we convert the RGB image to the HSV colour space and threshold the saturation
channel (assuming the shapes have a different colour than the table). In the resulting binary
mask, we find the contours. From these shape candidates, we exclude those in the area
covered by the hand contour, as illustrated in Figure 5.7. Whenever a shape is occluded by
the hand or arm, we try to match reappearing shapes by their position to recover the shape
identity.

5.4.6 Tracking Manipulations of Shapes

Knowing the position of the fingertip and the shapes, we can detect when a user touches a
shape. To fulfil the necessary requirements to recognize all possible touchet interactions,
we have to detect for how long a shape is touched and whether it is swiped upon, as
well as the translation and rotation of the shape in case of a movement. A swipe can be
distinguished from moving the shape by the fact that only the finger, but not the shape
itself moves. For movements of shapes, we track the change in translation and rotation
from a shape’s appearance for every frame since the shape was touched as this might
induce a parameter value change which we want to be able to follow continuously. Since
the shape is occluded by the finger (and the finger position might also shift during the
movement), applying a direct transformation calculation through a best-fit algorithm as for
the finger tracking is not possible. Instead, we take a snapshot of the shape at the moment
it is first touched and calculate the translation between the currently detected shape and the

Figure 5.7: The binary shape masks with the detected hand region.
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snapshot. For the rotation, we iteratively test for the best fit employing an efficient ternary
search. The search uses the rotation estimate of the finger as a starting point. However,
as the finger position and rotation might change independently of the shape during the
movement, this can only be used as a first indication. The measure for a fit is the area
of intersection between the detected shape and the snapshot. Note that we can also track
the rotation of circular shapes, as the finger partly occludes a circle during interaction
resulting in a perceived shape that has a “hole” in the location of the finger, which allows
the tracking of the rotation.

Evaluation of Shape Tracking To evaluate the shape tracking accuracy, we recorded
several sequences when moving a squared shape at different speeds, also including ro-
tations. For 1,529 frames, we manually annotated the positions of the four corners of
the square and compared them to the estimate calculated by our tracking algorithm. We
calculated the average displacement of a corner point. The mean error over all the frames
was 6 pixels (0.4 cm), which is accurate enough for our purpose.

5.5 User Study

To evaluate the entire process of creating a TUI with our prototype, we invited six new
participants to a second study (two females, 18 to 28 years old). As we planned to let the
participants build a complete application from scratch, including the connection to and
implementation of the Node-RED flow, we only invited computer science students with
programming knowledge. We asked them to implement interfaces and the Node-RED
flows for the three following applications:

1. Driving a little toy rover, as shown in Figure 5.1c, which can drive forwards,
backwards, and rotate to the left and right.

2. Creating a music playback control based on an MPD [229] wrapper we provided.
The interface should control volume, play and pause, and switching to the next or
previous song.

3. Creating an interface for controlling a slide show. In order to do so, we provided
a wrapper in Node-RED to access the xdotool [239], which allows emulating
keyboard presses. The interface should allow starting and stopping a slide show, as
well as to move to the next and previous slides.

The order of implementing each of these applications was different for each participant.
Three days before the study, we gave the participants basic information on the required
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components and asked them to get familiar with MPD and xdotool. During the study,
we provided the participants with an overview of the available touchets besides the task
descriptions. We set no time limit and let the participants try any interface they wanted.
After the study, we asked them several questions concerning our prototype and let them
fill in a User Experience Questionnaire (UEQ) [110] score sheet to obtain a standardized
measure of the user experience (the questionnaire is available online [225]). The UEQ
includes 26 items on a seven-point score ranging from -3 to 3. The output of the UEQ
analysis is a set of scores in the following six dimensions: attractiveness, perspicuity,
efficiency, dependability, stimulation, and novelty.

All participants successfully completed the tasks. On average, a participant spent 2
hours and 18 minutes on all three tasks. Note that this includes all necessary parts, i.e., the
design of the paper interface and the assignment of the touchets, as well as the Node-RED
implementation. As participants spent most of the time on the Node-RED implementation,
this latter part could also be pre-implemented for certain real-world applications, speeding
up the use of our method significantly, e.g. for most of our tasks from a magnitude of half
an hour to an hour down to a few minutes. As we let participants try out interfaces as
they wished, they did not optimize for time. One participant enjoyed using the system and
optimizing his interface so much that he stayed for five hours. On the other hand, another
participant created an entire interface in 11 minutes. Furthermore, the average task time
significantly decreased from 70 minutes for the first task to 32 minutes for the second.

The resulting scores for the six dimensions of the UEQ are shown in Figure 5.8. For all
dimensions, the scores are positive, indicating that participants generally enjoyed using our
prototype. Most noticeable are the scores for perspicuity, stimulation, and novelty, which
imply that it was easy to learn and to understand, that the participants were motivated
and excited to use the approach, and that they believed it to be a creative new method for
designing interfaces. The worst characteristic is efficiency because our prototype cannot
track fast movements of the finger due to significant motion blur in the depth stream, i.e.,
sometimes participants had to repeat their interactions. Moreover, several participants
mentioned the relatively long time it takes to configure the necessary Node-RED flows,
especially for inexperienced users. This most likely also influenced the attractiveness
score. However, the Node-RED part is only used to forward the interaction events and
could be replaced by a different mechanism, or the flows could be pre-implemented for
common devices to be controlled.

As part of a survey that followed the study, participants confirmed that our method was
easy to understand and that most of them enjoyed using the prototype, especially to try out
different interfaces. They also suggested different scenarios in which the Tailored Controls
could be used, such as for rapid prototyping, for interfaces in changing environments, or
for controlling home devices.

118



5.6 Discussion

Attra
ctiveness

Perspicuity
Efficiency

Dependability

Stimulation
Novelty

Dimensions

0

1

2

U
E

Q
S

co
re

s

Figure 5.8: The average results of the UEQ.

5.6 Discussion

Our technical evaluation and the results from the presented user study show that we created
a functioning prototype with appropriate performance (e.g., regarding shape detection)
which was positively received by participants. This is in spite of the fact that our prototype
has several limitations, which are discussed below.

Despite these limitations, we were able to show that our suggested touchet taxonomy
that we derived from the results of our elicitation study can indeed be used for the
implementation of personalized TUIs. With our approach, we significantly progress
beyond the state-of-the-art compared to other current systems that enable dynamic TUIs.
In addition to not requiring fiducial markers, our system enables more natural interactions
due to the explicit finger tracking functionality, and it provides users with a wide range of
interaction abstractions to select from when creating TUIs.

We built our prototype with the intention to demonstrate the feasibility of our approach
and evaluate it in the user study. However, we believe there is a multitude of different
application scenarios where a system such as ours could prove useful as already mentioned
in the introduction.

First, our approach can be used for the rapid prototyping of functional TUIs – paper pro-
totyping is a common technique for interface design. However, such interfaces are usually
not functional, and the effects of using them have to be imagined by prototypers. With
our system, it is possible to immediately test and experience functional interfaces, which
we believe would spur creativity. This is backed by our user study, where participants
were very motivated to try out different interaction elements, in particular, because our
system does not restrict users to employ predefined generic paper shapes. Consequently,
Tailored Controls can bridge the gap between the “ideation” and “implementation” stages
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in the design thinking process [39], enabling the designer to be more creative and faster by
providing direct feedback on how a functionally implemented interface reacts.

Second, our system can be used in the context of dynamically changing workspaces,
e.g., to provide ad-hoc interfaces to devices that are used only infrequently – we imagine
this to be of use especially in crowded workspaces (e.g., in industrial workshops), where it
allows users to carry interfaces with them and deploy them tactically, rather than attaching
TUIs to the machines they intend to control. To this end, we want to emphasize that the
presented system and our prototype is not limited to paper alone, but can be used with
other (sufficiently flat) materials.

Third, our approach enables a very high degree of personalization in terms of the TUIs
that can be created by users. It thus enables individualized user interfaces, for instance
in the context of accessibility constraints: with our approach, it is possible to create
interfaces that are optimally suited for individual disabled persons, given their specific
type of disability and context constraints.

5.6.1 Limitations and Future Work

Our approach has several limitations, both from a theoretical and a practical perspective,
which we intend to approach in the future. Our current implementation of the finger
tracking algorithm only allows the use of a single finger for manipulations, and there is no
multi-touch support. Furthermore, it is difficult to track fast movements of the fingertip,
as fast movements create sequences of blurry images in the depth stream. Finally, the
interaction space is currently limited to a relatively small flat area. We envision that these
problems can be solved in the future by better hand pose estimation algorithms on the one
hand and by improved hardware on the other. Our approach could directly be adapted to
such improvements. A further issue is that our system requires an RGBD camera to be
available to monitor the scene, i.e. the approach is most applicable for fixed workspaces.
With future improvements, we, however, expect the area which may be covered to grow.

On a philosophical level, the use of flat paper shapes may no be considered tangible
in a strict sense. However, we view tangibility as the physical, material presence of the
elements used, i.e. that they can be touched, moved, or reconfigured without interacting
with a digital proxy device that displays the user interface. We believe already this property
of the paper shapes is beneficial for the interaction process, as it enables the interactions
to take place in the real world, an environment the user is naturally accustomed to. In
terms of taking advantage of the full properties of paper, one could experiment with other
forms paper interfaces may take, such as folding or crushing the paper, which would
further enhance the tangible experience. Nevertheless, none of our participants in the
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elicitation produced any of these interfaces, neither did anyone mention that this could be
a possibility, and we did not restrict them only to cut out paper shapes. Furthermore, one
could include different types of paper or materials, such as fabric, which is an interesting
aspect of future work. We partly already included this in the study by providing differently
coloured paper. However, this property was rarely incorporated in the interface designs
by the participants. Further, we do believe our approach could naturally be used with
other (flat) materials as well, such as fabric or even play dough, which would enable
an even easier reconfiguration of interfaces. Other materials could also solve practical
environmental issues paper shapes might have; for example, they are easily blown away
by wind or a draft.

5.7 Conclusion

We presented the Tailored Controls approach that enables the simple creation of personal-
ized TUIs that are made from plain paper but can be connected to virtually any application.
In a first user study with 20 participants, we found 25 interaction abstractions implicitly
employed by the participants. We built a functional prototype and implemented 13 of the
most common of these abstractions. Our system tracks a user’s fingertip as well as the
paper shapes and is thereby able to detect interaction events, including tapping, rotating,
swiping, sliding, and many more. Our prototype allows the simple creation of user inter-
faces for diverse applications, as we proved in a second user study, and demonstrates the
feasibility of our initial concept. By using a set of abstractions that covers a wide range of
potential interaction elements, we are able to give users the freedom to create the paper
shapes they want and afterwards add corresponding functionality themselves, instead of
having to choose from a predefined set of generic elements. The only hardware required is
an RGBD camera that is mounted above the interaction surface.

Tailored Controls demonstrates the feasibility of inexpensive reconfigurable TUIs, and
one main contribution is to enable further research in the direction of customizable per-
sonalized TUIs. Immediate applications of our approach include the rapid prototyping of
functional TUIs, the creation of tactical interfaces for sporadic interactions, and the gener-
ation of individualized TUIs that are optimal for concrete individual contexts, for instance
for the benefit of disabled persons. In addition, triggered by the expected proliferation of
RGBD cameras, we expect our approach to enable novel interaction methods in domestic
and public environments, as well as in mobile scenarios.
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Chapter 6
Conclusions

In this chapter, we briefly summarize the contributions of this dissertation and further
discuss remaining limitations and challenges for future work concerning the interaction
with smart devices. We also propose different paths for future research in the field of
ubiquitous computing that we find interesting.

6.1 Summary of Contributions

The amount of smart devices in our environment is continuously growing as we use more
digital devices in general but also, more and more everyday devices are becoming smart.
This growth impels the exploration and development of enhanced ways of interaction
between humans and smart devices, as a natural and intuitive interaction constitutes one of
the primary quality features of device functionality. This goal established the overarching
theme of this dissertation. We presented different methods of how we could enable or
facilitate the interaction of humans with smart devices, primarily focusing on how the user
could provide input. First, we presented two gesture recognition methods, TouchSense
and GestEar, based on different modalities, including electromyography, motion, and
sound. We continued by examining how interactions could take place in the AR space by
representing the user interface by AR widgets. Within that space, we also investigated
different interaction methods. Finally, we proposed a method which allows users to build
their own user interfaces from paper.

The first project, TouchSense, built on the idea that identifying the finger used for
touching and measuring the force of the touch provides valuable information on manual
interactions. This information can be inferred from electromyography (EMG) of the fore-

123



Chapter 6 Conclusions

arm, measuring the activation of the muscles controlling the hand and fingers. TouchSense
classifies the finger touches using a novel neural network architecture and estimates their
force directly on a smartphone in real time based on data recorded from the sensors of
an inexpensive and wireless EMG armband. Using data collected from 18 participants
with force ground truth, we evaluated our method’s performance and limitations. Our
approach could allow for new interaction paradigms with appliances and objects, which
we exemplarily showcased in four applications.

In Chapter 3, we introduced GestEar, a gesture recognition method for sound-emitting
gestures, such as snapping, knocking, or clapping, using only a simple smartwatch. The
technique exploits motion information from the built-in accelerometer and gyroscope,
as well as audio data recorded by the smartwatch microphone as input. We designed a
convolutional neural network architecture for gesture recognition, designed to run locally
on resource-constrained devices such as standard smartwatches, which achieves a user-
independent recognition accuracy of 97.2%. We further showed how to incorporate gesture
detection and gesture classification in the same network, compared different network
designs, and showcased several applications built with our method. Our evaluation
revealed that our system benefits from both the sound input as well as from the IMU
data. Our method could easily be added as a software update and thereby extend the
functionality of wrist-worn devices which contain an IMU and a microphone, such as
smartwatches and potentially also fitness trackers etc.

After presenting two gesture recognition methods, we introduced a concept which also
includes the recognition and selection of smart devices in Chapter 4. After the user selects
a device, the device’s user interface is presented in augmented reality. We investigated
different interaction methods from an ego-centric perspective. We examined how users can
control appliances through augmented reality directly. The physical objects are augmented
with interaction widgets, which are generated on demand and represent the connected
devices along with their adjustable parameters. We explored three ways of interacting with
the virtual widgets: (1) in-air finger pinching and sliding, (2) whole-arm gestures rotating
and waving, (3) incorporating physical objects from the surroundings and mapping their
movements to the interaction primitives. We compared these methods in a user study with
25 participants and found significant differences between them in terms of user preference,
speed, and granularity. We also developed a second method to allow users to create
and modify logical control connections between multiple devices in AR. This approach
facilitates the understanding of existing connections and their modification.

In the contributions mentioned above, we created different interfaces for the user. In the
final project Tailored Controls, presented in Chapter 5, we provided a framework to allow
the user to build his/her own tangible interface from materials as simple as paper. Users
cut out shapes and assemble them to their personalized interfaces. They can assign control
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functions to these paper shapes via a simple configuration interface. Our framework
then recognizes interactions with the paper interfaces and forwards these events to any
connected application. Our system is based on markerless tracking of the user’s fingers
and the paper shapes on a surface using an RGBD camera mounted above the interaction
space, which is the only hardware sensor required. Our approach and system are backed
up by two studies where we determined what shapes and interaction abstractions users
prefer and verified that users can indeed employ our system to build real applications
with paper snippet interfaces. Tailored Controls could not only enable an improved paper
prototyping process in the future but also make it possible to have personalized workspace
interfaces for workers, or potentially even help people with impairments, such as blindness,
to configure a personalized interface for themselves.

6.2 Demonstrators and Code

Besides designing algorithms for the problems mentioned above we also implemented each
method, mostly on wearable and resource-constrained devices, in order to demonstrate
the methods in different real-world scenarios and prove that it is possible to run them
even on current off-the-shelf hardware. We also created demonstration videos showing
our prototypes alongside the papers which are available at the URL references given
in Table 6.1. The table also provides references linking to the source code which we
published for some of the projects.

Projects Chapter Video reference Code reference

TouchSense 2 [215] [214]
GestEar 3 [210] [209]
AR interactions 4 [211] -
Tailored Controls 5 [213] [212]

Table 6.1: The URLs to the video and source code resources for each project.

6.3 Open Problems and Future Work

As mentioned in Chapter 1, we are aware of several limitations of our proposed solutions,
which we want to discuss here and which may direct the course of future work. First
of all, there remain technical challenges such as energy consumption when our methods
run on mobile devices. Second, there is also future work to be done in order to achieve
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a complete solution for the interaction with smart devices, as our work mainly focuses
on the aspect of providing input to such systems, and not how interaction is initiated, for
example, which would include the selection of the smart device.

6.3.1 Energy Consumption and Battery

While we did focus on optimizing our methods to run in real time also on wearable,
resource-constrained devices, we acknowledge that further work is necessary to also opti-
mize our methods for battery lifetime, especially in the cases of TouchSense and GestEar.
Both methods require far less than the full processing capacity of the main processor.
However, keeping the main processor awake at all times for gesture recognition is very
energy-intensive. Nevertheless, several hardware manufacturers are already working on
special low-power chips, which allow algorithms to run without activating the main proces-
sor. Furthermore, these chips even make it possible to bypass the main processor for sensor
processing by delivering the sensor data directly to the special-purpose chip. Examples
of such developments are Google’s CHRE (Context Hub Runtime Environment [222])
co-processor platform or Qualcomm’s Neural Processing SDK [237]. Qualcomm’s SDK
gives developers access to specialized engines for running neural networks or digital signal
processors for low-power (but fast) processing. While the processing capabilities currently
restrain us from running a larger classification model on low-power co-processors (e.g.
CHRE only allows so-called nano-apps with very low processing requirements), one could
still run smaller detection models, which wake up the main processor for enhanced pro-
cessing only in the few cases a relevant event has most likely happened. These hardware
improvements could enable the continuous use of methods such as the ones proposed by
us.

6.3.2 Further Miniaturization and Hardware Improvements

While GestEar already runs on a smartwatch and hence would be socially acceptable,
some of our other methods require specialized hardware not yet ready for everyday use.
TouchSense requires an EMG armband and our AR prototype a HoloLens. Users will
not be willing to wear either piece of equipment over extended periods of time, due to
the current weight and form factor. Nevertheless, we believe that such devices will be
improved rapidly, the EMG armband might be sewn into a sleeve, and AR glasses might
soon have the form factor of usual glasses as can be anticipated from devices such as the
North focals [234]. Along with these specific improvements, we will experience further
miniaturization, but also enhancement of hardware, which will allow us to include our
methods into smaller devices, which are less obtrusive to the user.
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6.3.3 Building a Complete Interaction System

As mentioned in the introduction, in this dissertation we mainly focus on the problem
of how a human can provide input in an interaction with a smart device, in particular
concerning our gesture recognition projects TouchSense and GestEar. As depicted in
Figure 6.1, we can conceptually view an interaction with a smart device as a process
consisting of three stages. First, recognizing and selecting the smart device, then allowing
the human to provide input, e.g. through gestures, and finally interpreting the human’s
input and determining which device command is the most appropriate according to the
current device state and the input.

Our two mentioned methods provide solutions for the second stage. Future research
would have to consider combining our methods with solutions for the other stages to form
a complete interaction system.

The first stage could be solved by different mechanisms, such as visual recognition
of the smart devices, attaching visual markers to the devices, or installing an infrared
transmission system. Visual recognition purely based on the appearance of the devices
has the disadvantage that two devices with the same appearance cannot be distinguished.

Visual object 
recognition, 
infrared transmission,
markers, …

Smart 
glasses

1. Recognize the 
device for 
interaction

Gesture
recognition, 
speech, …

2. Recognize the 
user’s input

EMG armband

Smartwatch

Decision
system

3. Infer the 
device action to 
be carried out

Figure 6.1: A concept of separating the process of interaction with a smart device into
three stages.

127



Chapter 6 Conclusions

However, the other methods require the augmentation of the environment, which results in
a higher installation effort and reduced flexibility.

The third stage requires a decision system to estimate the most likely device action
based on the state of the device and the command issued by the human, i.e. the method
has to provide a translation from a human command to the most appropriate device action.
Nowadays, this translation is usually simply hard-coded, as we also did in our demo
applications. A solution could be achieved employing probabilistic models which return
the most likely device command based on the combination of device state (which is known)
and the human command determined in the second stage. These models could then also
adapt to the human’s preferences over time. Our work on representing user interfaces
in AR provides an alternative solution to this challenge. There it is possible to show all
interaction possibilities to the user and let him/her decide which action to carry out, i.e. a
command translation would not be necessary any longer. Our last contribution, Tailored
Controls also circumvents this issue by letting the user make all design decisions on the
interface and its use him-/herself.

Another crucial challenge for the practical application is the combination of different
modalities, such as gestures and speech. Humans usually do not use a single modality
in isolation for communication. Hence, concerning the long-term goal of ubiquitous
computing to make computers less apparent and provide a natural interaction environment,
we should aim to find a meaningful way to combine all human means of communication.

Besides focusing on methods which are actively controlled by the user, such as issuing
gestural or spoken commands, it is essential to further include methods which passively
sense the human’s context, both his/her internal state and the state of the environment.
These could allow us to gain more information on the circumstances the user is in and
under which conditions he/she is trying to complete a task and thereby assisting him/her in
the best way possible. For example, we could potentially employ electroencephalography
(EEG) or facial temperature measurements [105] to measure the human’s workload and
consequently adapt the presentation of information, such as reducing the complexity at a
high mental workload. Or we could use eye tracking to infer where the user is directing
his/her attention.

We believe that both the combination with other modalities and the incorporation of
passive sensing are necessary to achieve the final objective of ubiquitous computing as
envisioned by Mark Weiser and discussed in Chapter 1. These objectives open up many
exciting opportunities for further research in the future.
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6.4 Final Remarks

In this dissertation, we presented different methods enhancing the interaction with smart
devices. Our contributions focus on different types of user interfaces: gestural interfaces,
interfaces represented in augmented reality, and tangible interfaces, which the user may
personalize. Each contribution advances the state-of-the-art in terms of performance and
novelty of the solution. Overall, we believe we could deliver our share to the goal of
creating more natural and intuitive interaction systems, which bridge the interaction gap
between humans and smart devices. We furthermore hope that solutions such as ours lead
to more accessible digital technology, which may benefit more people in the future. We
are aware that further efforts are necessary, and many questions remain open to be solved
in pursuance of this goal. Nevertheless, this research area provides opportunities for future
research, as discussed in the previous section.
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[6] C. Amma, T. Krings, J. Böer, and T. Schultz. Advancing muscle-computer interfaces
with high-density electromyography. In Proceedings of the Conference on Human
Factors in Computing Systems, CHI ’15, pages 929–938, New York, NY, USA,
2015. ACM. doi:10.1145/2702123.2702501.

[7] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen, Z. Chen,
M. Chrzanowski, A. Coates, G. Diamos, K. Ding, N. Du, E. Elsen, J. Engel,
W. Fang, L. Fan, C. Fougner, L. Gao, C. Gong, A. Hannun, T. Han, L. V. Johannes,

131

https://doi.org/10.1080/03091900802491246
https://www.usenix.org/legacy/events/es99/full_papers/akyol/akyol.pdf
https://www.usenix.org/legacy/events/es99/full_papers/akyol/akyol.pdf
https://doi.org/10.1109/ACSAC.2000.898860
https://doi.org/10.1109/ACSAC.2000.898860
https://doi.org/10.1145/2968219.2972715
https://doi.org/10.1016/j.eswa.2011.06.043
https://doi.org/10.1016/j.eswa.2011.06.043
https://doi.org/10.1145/2702123.2702501


Bibliography

B. Jiang, C. Ju, B. Jun, P. LeGresley, L. Lin, J. Liu, Y. Liu, W. Li, X. Li, D. Ma,
S. Narang, A. Ng, S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan, J. Raiman,
V. Rao, S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang,
L. Tang, C. Wang, J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang, S. Wu, L. Wei,
B. Xiao, W. Xie, Y. Xie, D. Yogatama, B. Yuan, J. Zhan, and Z. Zhu. Deep speech 2:
End-to-end speech recognition in English and Mandarin. In Proceedings of the Inter-
national Conference on Machine Learning, ICML ’16, pages 173–182. JMLR.org,
2016. URL: http://proceedings.mlr.press/v48/amodei16.pdf.

[8] M. Anand, J. Al-Muhtadi, M. D. Mickunas, and R. H. Campbell. Smart home: A
peek in the future. Technical report, University of Illinois at Urbana-Champaign,
1999.

[9] D. Archer. Unspoken diversity: Cultural differences in gestures. Qualitative
Sociology, 20(1):79–105, Mar 1997. doi:10.1023/A:1024716331692.

[10] J. W. Astington. The child’s discovery of the mind. Harvard University Press, 1993.

[11] D. Avrahami, J. Wobbrock, and S. Izadi. Portico: Tangible interaction on and
around a tablet. In Proceedings of the Symposium on User Interface Software
and Technology, UIST ’11, pages 347–356, New York, NY, USA, 2011. ACM.
doi:10.1145/2047196.2047241.
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