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Figure 1: An overview of several applications we created around our gesture recognition method. (1) using GestEar for device
control, e.g. sound or light systems; (2) music control while on the go; (3) unlocking a personal smartphone; (4) replacing the
doorbell button by simply knocking at the door.

ABSTRACT
We present GestEar, a gesture recognition method for sound-
emitting gestures, such as snapping, knocking, or clapping,
using only a simple smartwatch. Besides the motion infor-
mation from the built-in accelerometer and gyroscope, we
exploit audio data recorded by the smartwatch microphone
as input. We propose a lightweight convolutional neural
network architecture for gesture recognition, specifically de-
signed to run locally on resource-constrained devices, which
achieves a user-independent recognition accuracy of 97.2%
for nine distinct gestures. We further show how to incorpo-
rate gesture detection and gesture classification in the same
network, compare different network designs, and showcase
a number of different applications built with our method.
We find that the audio input drastically reduces the false
positive rate in continuous recognition compared to using
only motion.
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1 INTRODUCTION
Gestures together with speech form an important part of
human-to-human communication. But also in human-to-
computer interactions, gestures become a viable inputmethod,
besides traditional keyboard- or touch-based input, or recent
speech recognition. This is particularly true for hand ges-
tures. In comparison to speech, gestures have the advantage
of being more intuitive for some interactions and avoiding
the awkwardness of speaking to no one particular [3].
A large number of different methods for hand gesture

recognition have been proposed in the literature, both based
on wearable as well as external sensors. A prevalent line of
methods use motion data from inertial measurement units
(IMU) usually mounted on the wrist. Previous research has
shown that this works well for several different types of
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gestures [16, 19, 27]. Besides the motion signals, some com-
mon gestures emit a mostly unused, but rich physical signal:
sound. Gestures such as snapping or clapping, produce a
distinct sound, as for example shown in the spectrogram in
Figure 2. The features extracted from the sound signal could
be beneficial for the recognition of such gestures. Recently,
other researchers have explored the potential of sound-only
recognition and showed that sound can be used for activity,
context, and gesture classification [5, 8, 13, 23, 25].

We focus on recognizing gestures from motion and audio
signals together, and build a gesture set around the following
gestures: snapping, clapping, and knocking. The advantage
of these gestures is that they are common in most cultural
regions. Snapping, for example, was already used in Ancient
Greece by musicians [20]. We believe they could be used
for a multitude of applications such as smart device control.
Our gesture set is further extended by also distinguishing
which hand the gesture was performed with when snapping
or knocking, and whether a clapping or knocking gesture
was repeated.

One particular goal is to achieve the recognition with
minimal computational resources such that we can even fit
our algorithm into a smartwatch in order to create a mobile
system ubiquitously available to the user. Smartwatches have
the benefit that they are subject to the motion of the wrist,
which captures most of a gesture’s motion, and are very close
to the sound source a gesture may constitute. Besides, most
standard smartwatches already incorporate IMUs for activity
tracking and microphones for speech recording.
We present GestEar (gesture-ear), a method to classify

sound-emitting gestures based on motion and audio together,
two signals also captured by the ear.GestEar runs in real time
solely on a smartwatch. Our main contribution and the core
of our gesture classification method is a lightweight neural
network architecture which takes care of both gesture detec-
tion and gesture classification. After a preprocessing step, the
network takes the audio, acceleration, and gyroscope data
as separate inputs, computes individual features for each,
and fuses them within the network. This frees us from the
need of incorporating explicit sensor fusion without giving
up the benefit of end-to-end training. For training our net-
work and improving its robustness, we heavily employ data
augmentation, i.e. we generate a large corpus of synthetic
training data from the recorded real samples. Our network
runs on an ordinary and inexpensive smartwatch with a very
short average inference time of under 11ms at a high classi-
fication performance of 97% achieved in a user-independent
experiment with 16 participants. Furthermore, the model file
size is only 50 kB, which could easily be downloaded onto a
smartwatch. We thoroughly evaluate the proposed method,
also under the influence of environmental noise. We find
that the particular benefit of sound lies in the detection of

Figure 2: A spectrogram for snapping, knocking, and clap-
ping (in that order). The frequency characteristics are dif-
ferent for each gesture.

gestures, i.e. determining whether a segment contains a valid
gesture or not, resulting in a significant decrease in the false
positive rate. Based on our method, we created a working
app adding simple and fast gesture interaction functional-
ity to a smartwatch, which we also demonstrate in possible
applications as depicted in Figure 1.

2 RELATEDWORK
There is a wide range of approaches to gesture recogni-
tion. An obvious but difficult one is to rely on external or
body-worn cameras to visually recognize the shape of the
hand [15]. A disadvantage is that the hand has to be in the
field of view of the observing camera. Besides, many other
phenomena can be exploited for gesture recognition, such as
the reflection of radar waves [17], electromyography [2], or
the distortion in the electro-magnetic field of an antenna [12].
All of these methods rely on sensors not available in nowa-
days common consumer devices such as smartwatches. We
focus on technology that is already in use today.

Gesture Recognition from Motion. A number of methods
use orientation and acceleration gathered from an IMU,mostly
on smartwatches. For example, Serendipity [19] processes
the recordings from the accelerometer and the gyroscope of
a smartwatch to classify five finger gestures. Motion data
has also successfully been used for touch-free target selec-
tion [16] or extending the input interface by recognizing
taps around the watch [27]. Winkler et al. [21] developed a
multimodal approach to recognize hand interactions with
projections on a surface by visually tracking the fingers and
detecting finger touches from the surface’s vibrations em-
ploying a smartphone’s accelerometer. These works show
that it is very well possible to perform accurate gesture recog-
nition based only on motion. The benefit of using motion
information alone is that it is less prone to environmental
noise when compared to sound, but detecting gestures is
difficult. We aim to show that sound can be beneficial as
an additional input signal for the classification of gestures
which inherently emit sound, and moreover that recognition
is possible on a smartwatch alone.
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Gesture Recognition from Sound. Sound has been used for
many other classification problems before, most importantly
in speech recognition. Besides, it has been used in systems
to help deaf people to sense their environment [10], to sense
emotions and stress [7], or to perform human activity recog-
nition [11, 22]. One option for gesture recognition is to emit
inaudible tones and sense the reflection of the soundwave [4]
or to inject sound chirps into the hand and measure the fre-
quency response along the hand and wrist [26]. We do not
rely on actively induced sounds, but instead recognize ges-
tures from the natural sounds they emit.

In recent years, several researchers proposed gesture recog-
nition approaches that use sound directly, e.g. for recog-
nizing handwriting [13, 23]. For hand gesture recognition,
FingerSound [25] employs a microphone incorporated in a
ring for the thumb to sense unistroke gestures of the thumb
scratching against the inner side of the hand. Similar to our
goal, SoundCraft [5] aims at classifying audio signatures
from natural hand gestures such as snapping or clapping
using a smartwatch. Furthermore, by incorporating four mi-
crophones, it can determine the angle of the direction the
gesture was performed in, which provides a interesting in-
teraction possibility. In both cases, the approach requires
custom hardware and the processing only runs on a com-
puter. Laput et al. present ViBand [9], which uses a custom
smartwatch kernel to increase the sampling rate of the ac-
celerometer, enabling the sensing of bio-acoustic signals,
which are transmitted through the body. It is not only able
to reliably detect gestures in a user-dependent setting, but
also to distinguish objects the user touches based on their
vibration pattern. In comparison, we aim at a method which
leaves the smartwatch completely unmodified. Continuing
their work on sound recognition, they also present Ubicous-
tics [8], a method for human activity recognition. Ubicoustics
segments the incoming sound signal into windows and ex-
tracts Mel-frequency cepstral coefficients from each of them.
The resulting two-dimensional features (coefficients over
time) are interpreted as an image and classified using a com-
puter vision approach, a large pre-trained neural network
which is fine-tuned to activity classes. For training, audio
clips of common activities from sound effect libraries are
utilized, which are additionally augmented with audio from
different contexts and environments. Both of these ideas in-
spired our own augmentation method. A first difference to
our work is that Ubicoustics focuses on recognizing human
activity and its context, e.g., car driving. Furthermore, it em-
ploys a very large neural network for classification, which
leads to high processing requirements. In contrast, we aim
at lightweight computation besides high accuracy. Finally,
we also include IMU sensor data for higher accuracy.

Gesture Recognition from Sound and Motion. As we do, oth-
ers have combined motion and sound sensing for gesture
recognition. TapSkin [24] recognizes taps on up to eleven
locations around the wrist, when wearing a watch, based
on data from the microphone, accelerometer, and gyroscope.
It processes the data on a smartphone and achieves high
accuracy in a user-dependent setting. In contrast to TapSkin,
we aim at recognizing hand gestures, instead of taps around
the wrist. We design a lightweight neural network for clas-
sification, which reduces the amount of necessary feature
engineering and enables fast inference even on a smartwatch.
Ward et al. [18] use a wrist-mounted accelerometer and mi-
crophone to distinguish several wood workshop activities
and combine motion and audio data for gesture detection
and classification. In an offline evaluation, the authors find
that the recognition using a single sensor alone works only
poorly; however, when taking both into account, the perfor-
mance strongly improves. In comparison, we do not rely on
custom hardware and we develop an online system. Never-
theless, their work provides valuable insights in the task of
gesture detection, a problem we also tackle here.

3 THE GESTEAR METHOD
Our goal is to classify nine different gesture classes: no (null)
gesture, snap left, snap right, knock left, knock right, clap,
knock left twice, knock right twice, and clap twice. The null
class incorporates all samples which do not belong to any of
the other classes, left and right refer to the hand the gesture
is performed with. All gestures (except from the null class)
emit sound, which contains information about the performed
gesture. For example, Figure 2 shows the spectrogram of an
audio recording during which three different single gestures
were performed. We show how this audio information can
be used for gesture recognition together with data from the
gyroscope and accelerometer directly on a smartwatch.

Data Collection
On the smartwatch, we record mono audio from the micro-
phone at a sampling rate of 22,050Hz and a bit depth of 16,
and three-axes measurements from the gyroscope and the
accelerometer (with gravity subtraction) at a sampling rate of
200Hz (the maximum sampling rate provided by the smart-
watch we used). As the microphone samples at 22,050Hz,
we can take frequencies up to 11,025Hz into account ac-
cording to the Shannon-Nyquist theorem. To prove this is
sufficient, we calculated the Fast Fourier transform (FFT) for
all recorded gestures and summed up the resulting magni-
tudes for each frequency across all participants and gestures.
The result, depicted in Figure 3, shows that the great major-
ity of the signal energy lies in the frequencies below 8 kHz,
hence our sampling rate is sufficient.
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Figure 3: The sum of all amplitude spectra over all recorded
gestures. The majority of the signal energy resides in the
frequencies below 8kHz.

In order to record labelled training data, we created a com-
panion smartphone application for the smartwatch, which
displays the gesture the user has to perform, e.g. a single
knock with the left hand (note that at the time of appli-
cation only the smartwatch is required). Per gesture, the
smartwatch records for a duration of 2 s. In order to collect
samples for the null class, we let the participant perform
two additional gestures: staying still and not doing anything,
and ’randomly’ moving the arm and hand. The smartwatch
is always worn on the left wrist as watches usually are. Nev-
ertheless, we could also train a classifier for the right hand
by mirroring the motion data through the plane orthogonal
to the forearm in order to transform the measurements to
the new coordinate system on the right wrist (and chang-
ing the labels accordingly). The user could then select the
appropriate classifier by a position setting.

Preprocessing
We first segment the streams of audio, gyroscope, and accel-
eration data into windows, and then generate features per
window for each input independently. These features are
then taken as inputs by the network.

Segmentation. We segment the incoming signals into win-
dows of 300ms. This window size was chosen because all of
the single gestures fit into this window and it also provides
a good fit for the gestures with repetition when placing two
windows after each other. Since our gesture set contains
double gestures and we want to be able to reliably classify
these as well, a single sample cannot only consist of a single
window, but must contain two of them in order to fit a double
gesture. Hence, we concatenate two consecutive windows
to form a sequence. This is different from simply choosing
a window size of 600ms, as we obtain two feature sets, one
per window, representing the temporal structure of the in-
put. At inference time, when we do not know the point of
time a gesture is performed, we let the segmented windows
overlap by half a window, i.e. the sequences overlap by 1.5
windows, as illustrated in Figure 4. As a result, we return

a classification output from a sequence every 150ms. This
ensures that a gesture fits into a sequence at inference time.

Window 1

t [ms]

Window 3Sequence 1

Sequence 2

Sequence 3

0

Window 2 Window 4

Window 3 Window 5

Sequence 4 Window 4 Window 6

150 300 450 600 750 900 1050

Figure 4: An illustration of how we segment the sequences
(two consecutive windows) over time.

To segment the training data, we search for the signal’s
peak in each of the 2 s audio recordings and segment a win-
dow of 300ms around the peak. The second window of the
sequence is placed directly after the first, forming a valid
sequence. For double gestures, which contain two peaks, we
selected the first peak for the first window. We then find
the corresponding window bounds in the gyroscope and
acceleration recordings.
An alternative would be to classify single windows, ob-

tain labels for single gestures, and afterwards combine con-
secutive labels to potential double gestures. However, we
evaluated this approach and found that the recognition per-
formance is worse, especially since consecutive windows
might contain only parts of gesture signals, causing a single
gesture to be recognized as a double gesture. Our approach
is more robust against such mistakes, as the network specifi-
cally learns to distinguish single and double gestures.

Preprocessing the Motion Data. For the measurements from
the gyroscope and the accelerometer, we do not calculate any
specific features as we want the network to learn the relevant
features from the motion data itself. As the single readings
from the accelerometer and gyroscope usually do not arrive
at exactly the same point in time, we merely resample the
IMU recordings at joint time steps which correspond to a
sampling rate of 200Hz by linear interpolation. In the end, a
window contains 60 (200Hz ∗ 300ms) gyroscope readings,
and 60 accelerometer readings.

Preprocessing the Audio Data. After segmentation, a single
window contains 6,615 (22, 050Hz ∗ 300ms) audio readings.
We could feed these directly to the network, however, due to
the large input size, this would result in a large number of
parameters. Hence, we extract features from each window’s
audio data by calculating the spectrum of each window us-
ing an FFT, which reveals relevant information from audio
signals in a compact representation and can be calculated
relatively fast even on a resource-constrained device; for
some models even in hardware. Prior to the FFT we apply a
Hann window to avoid spectral leakage and then we zero-
pad the signal to have a length of 8192 (next power of 2) so
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that the FFT can be performed more efficiently. Our final
audio features are the magnitudes of the FFT, i.e. the ampli-
tude spectrum. The magnitudes for the single frequencies
are binned into 128 bins of equal size. We empirically evalu-
ated that 128 bins provide a sufficient resolution for accurate
classification as well as a compact representation.

As mentioned in Subsection Data Collection, the majority
of the signal energy lies below 8 kHz, i.e. the higher frequen-
cies are less relevant and can potentially be discarded, which
would help to reduce the dimensionality of the data. We eval-
uated keeping different numbers of bins and discarding the
rest with the network we designed as described in Subsec-
tion Gesture Classification. With the first 96 out of 128 bins
(which corresponds to a frequency range up to 8,268Hz), we
reach the same classification performance as with the full
number of bins, hence we discard the last 32 bins. This is
beneficial, as with less bins there are less network calcula-
tions at inference time and at the same time the classifier is
less prone to high-frequent noise.

After preprocessing, a single sample is a sequence consist-
ing of twowindows, eachwindow containing a 96-dimensional
FFTmagnitude vector, 60 gyroscope and 60 acceleration read-
ings for each of the three axes (x, y, and z), i.e. the shapes of
the resulting tensors are (2, 96), (2, 60, 3), and (2, 60, 3).

Data Augmentation
In order to train a more robust network, we augment the data
in several ways as depicted in Figure 5, inspired by [8]. In
the recordings, we first shift the window around the peak up
to 75% of the window length and create ten sequences from
a single 2 s-recording. Thereby, on the one hand we increase
the number of training samples and on the other reflect the
fact that windows will most probably not perfectly fit the
gesture performed at inference.

Sound signals have the beneficial property that scaling the
amplitude, as well as adding other sounds, creates a valid sig-
nal. In a second step, we create additional samples by scaling
the audio signals with factors of 0.25, 0.5, and 0.75. Finally,
we add environmental noise to our recordings to train the
network to be more robust against such noise. We down-
loaded over 10 hours of freely available1 sound tracks from
many different noisy environments: city streets with people
talking, from inside buildings, or even air planes. For each
sample generated up to this step we produce five additional
samples by adding five randomly chosen environment sound
segments. Overall, from a single recording, we generate 240
(10 (shifts) ∗ 4 (scales) ∗ (5 (augmentations) + 1)) samples.

We also require more samples belonging to the null class.
As simply recording audio and motion data in the wild, e.g.
by walking through a city, would breach the privacy of other

1freetousesounds.com
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…

Figure 5: We create additional samples by shifting the seg-
mentation window, amplifying the signal, and augmenting
it with noise from sound clips. Besides, we add null samples
by combining segments from the sound clips and IMU data
from recordings of non-gesture activities.

non-involved passers-by around the participant, we instead
only collected the IMU data in this manner and randomly
supplemented the audio from the downloaded noise sound
clips in order to create a large set of null samples.

Gesture Classification
The crucial step is the joint classification of the audio and
motion sequences with the design goals of high accuracy as
well as fast inference time directly on a smartwatch. Ward et
al. [18] performed activity recognition based on sound and
motion, employing traditional learning approaches for which
they achieve an accuracy of 70%.We also first evaluated more
traditional methods, an SVM and a Random Forest, for which
we calculated sets of common features from the IMU data,
such as the moments and spectral features, and used the
FFT features from the audio. However, we could not surpass
an accuracy of 70% in a user-independent setting. Hence,
attempting to reach a higher recognition performance, we
decided to create a neural network, which has the benefit
of freeing us of feature engineering and selection, as the
features are learned within the network. We thereby can
achieve an accuracy of over 97% (cf. Section Evaluation).
We designed the network taking into account the limited
resource capabilities, i.e. it should have as few parameters as
possible while achieving a high classification performance.
The full architecture is depicted in Figure 6. An evaluation of
different network designs is provided in Section Evaluation.
As mentioned above, the network receives sequences of

two windows each for audio, gyroscope, and acceleration.
A first convolutional part containing one-dimensional con-
volutional filters and max-pooling layers extracts features
from each input, followed by fully connected layers which
combine these features and finallymake a decision on the ges-
ture class. The one-dimensional convolutional filters (with 16
channels and a stride of 1) detect salient features in the data,

freetousesounds.com
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Figure 6: The neural network we designed for gesture recognition. The input are sequences containing two windows of audio
spectra, and time-domain gyroscope and accelerometer data. The network consists of a convolutional part for extracting fea-
tures from each input type separately, followed by fully connected layers which combine these features. It is responsible for
both gesture detection and classification by providing two outputs.

for both the FFT and the motion input, such as dominant fre-
quency bins or certain local motion patterns. An advantage
of convolutions is that they require relatively few parame-
ters. Each convolution is followed by a max-pooling layer
with a width and stride of 2, which halves the output and
selects the most salient activation. We thereby obtain a very
compact feature representation after this step. By repeating
the convolutions and the pooling, we obtain more and more
abstract features, which are also more compactly represented.
These layers are applied to each of the two windows of the
sequence independently, however, the weights are shared
between the operations, i.e. the same features are extracted
from both windows. Note that we do not interpret the two
windows as an image and do not perform two-dimensional
convolutions across the windows, as done in [8].
Afterwards, we add a fully connected layer (10 units) to

each of the three convolutional parts applied to audio, gyro-
scope, and acceleration input in order to combine the learnt
features and create a final individual representation of that
input. These representations are then stacked and fed to an-
other fully connected layer (20 units) which now takes all
features into account. Up to this step, all operations are still
applied to each of the two sequence components separately,
but with weight-sharing. Finally, we flatten the tensors along
the temporal axis and apply another fully connected layer,
which evaluates the temporal relationship. At this point, we
could include a recurrent layer like an LSTM (Long Short
Term Memory). However, an LSTM requires a high number
of parameters relative to the little number of two windows
handled here. The final classification takes place in a softmax
fully connected layer. We use ReLU as activation function in
every layer except the last one.

Gesture Detection
In order to detect whether a sequence contains a gesture,
we can first check if there is significant energy in the sound
signal. We only submit the sequence for classification if the
sum of the FFT magnitudes in the sequence is greater or
equal to 0.15 (arbitrary unit after FFT), otherwise we drop
the sequence. We determined this threshold by averaging
all magnitudes from valid gesture sequences obtained in the
collection trial, which results in an average magnitude of
0.591, and choosing the threshold to be roughly 25% of that.
However, in first experiments, we found that our network
and this threshold work well in case the sequences were
valid gestures or there was little audio noise. Nevertheless,
we also obtained many false positives from environmental
noise which surpassed the threshold criterion. To counter
this, we introduce a gesture/no gesture-classifier besides the
classification of the gesture type, which determines whether
a sequence represents a valid gesture or not. In previous
works, this is a separate step, for example using a binary
SVM, which increases the processing time for a single sam-
ple as it has to run through two classifiers. On the contrary,
if we regard our network as a feature detector (the part up
to the last layer), the extracted features would also be useful
for the gesture detection classifier and it seems an unneces-
sary loss of resources to compute additional features for it
in a separate detection process. Hence, we incorporate the
gesture detection in the neural network by adding a softmax
output layer with two units which uses the same network
body as shown in Figure 6. The result of the classification at
inference time is only accepted if the detection is positive.

Another advantage of incorporating the gesture detection
is that we can use a pretraining scheme. The data available for
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training are the set from the collection trials, which contains
roughly the same numbers of samples for each gesture class
and the supplementary set of null samples resulting from
the sound clip audio data and additionally collected motion
samples. If wewere to train only the gesture classification, we
would have to balance the dataset to have an equal number
of samples for each class, leaving many of the additional
null samples unused. However, if we first train the gesture
detector, we balance all null samples and all valid gestures.
Thereby, we obtain an accurate gesture detector and at the
same time a network body which has already seen many
null samples and valid gestures and thereby learnt relevant
features for gesture recognition. This network body now
serves as an initialization for training the gesture classifier.
We now balance the dataset for all nine classes. To maintain
the gesture detection performance, we jointly train both
outputs during this phase by backpropagating the errors
from both outputs through the network.
For both training phases, we use an Adam optimizer [6]

with a learning rate of 0.001, a batch size of 100 and we
control for overfitting. For the gesture detection, we train
for 5 epochs, for the second step we train for 15 epochs.
In total, our network only has 9,989 parameters, which

enables a very fast execution. In comparison, Ubicoustics [8]
uses a deep convolutional network (VGG16 architecture [14])
with over 138 million parameters, which consequently takes
significantly more computation resources.

Post-processing at Inference Time
At inference time, the sequences overlap by 1.5 windows
to increase the chance that a gesture falls into a sequence
completely. For a double gesture, e.g. clapping twice, it could
happen that the first clap lies in the second window of a first
and in both windows of the following sequence resulting in
the output of “Clap” for the first and the expected “Double
clap” for the second sequence. To avoid this, we defer the
output of a gesture until three more (overlapping) sequences
are classified and select the gesture with the highest average
probability (from the softmax layer) over the four votes.

Implementation
The smartwatch used throughout this work is a Sony Smart-
watch 3, an inexpensive model with Wear OS. At the time
of writing, the release date of this smartwatch lies over four
years in the past, hence we demonstrate that running our
method does not require the latest hardware. We imple-
mented the processing pipeline in Python and a correspond-
ing pipeline in Java to run on the Android smartwatch. To
perform the FFT on the smartwatch, we use the Noise li-
brary2. The neural network is implemented in Tensorflow,

2https://github.com/paramsen/noise

trained on a desktop, converted to the TFLite model format,
and transferred to the smartwatch. The model file size is only
50 kB, so it can easily be shipped within a mobile application.
The code is available on GitHub3.

4 EVALUATION
For training and testing our system, we collected data from
16 participants (20 to 55 years old, 25.75 years old on aver-
age, five females, four left-handed). In a single session, we
recorded each gesture five times in a randomized order. For
each participant we recorded five sessions.

Recognition Performance
In a first experiment using all data to perform a 10-fold
cross-validation, we achieve a high average accuracy of 96.9%
(F1 score: 96.9%), which shows that our network is able to
capture the characteristics of the input signals. In a second
experiment, we attempt the most challenging setting, cross-
validation on participants. We exclude a single participant’s
data from the training set and test on this data. We repeat this
for each participant. Here, we achieve an average accuracy
of 97.2% (F1 score: 97.2%), which proves that our classifier
also generalizes across users and implies that it has to be
trained only once and can consequently be used by anyone.
For all participants, we achieve an accuracy above 95%. The
confusion plot is given in Figure 7. Most errors happen for
similar gestures, such as “Snap right” and “Knock right”.
These two are harder to distinguish from another than their
left counterparts, as there is no IMU data available for them.

Comparison of Network Architectures
We evaluated different network designs, in order to justify
the choice of our network (training and testing the same
way as before). The results together with the total number
of parameters for each network are visualized in Figure 8
denoted by the abbreviations used in the following.

First, we create variations of our default network by chang-
ing its width, i.e. multiplying the number of units in each
layer by a factor ranging from 0.25 to 1.5 (denoted by
w=factor). For convolutional layers, this means to scale the
number of filters, for fully connected layers to scale the
number of units (we round down any non-integer). We also
change the depth of the network, e.g. by reducing the num-
ber of convolutional levels (a one-dimensional convolution
followed by a max-pooling layer) or altering the number of
dense layers. Note that with less convolutional levels, the
number of parameters actually increases, as the internal rep-
resentation after the convolutions will be larger, and thus
the following fully connected layers will have more weights
(wdl: without last dense layer, adl: additional dense layer,

3https://github.com/vincentbecker/GestEar

https://github.com/paramsen/noise
https://github.com/vincentbecker/GestEar
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Figure 7: The normalized confusion plot for the cross-
validation across participants.

c=n: number of convolutional levels). We believe that among
all these variations, our default network (w=1) offers a good
trade-off in terms of accuracy and the number of parameters,
i.e. runtime.

For comparison, we also trained a simple dense network (d)
consisting only of two fully connected layers with a similar
number of parameters as our default network. Our network
shows a higher performance when compared to this sim-
ple network. We also implemented a recently very popular
mechanism, attention, proposed by Bahdanau et al. [1] for
machine translation. The term encompasses a range of mech-
anisms, which learn to emphasize a certain input, both on
a feature (spatial) level or in a temporal context. First, we
replace the last fully connected layer in our network by a
spatial attention module (sa), which learns to generate a
weight vector from the input and element-wise multiplies
the weight vector and the input. Second, we apply a temporal
attention mechanism (ta), which replaces the flattening of
the sequence tensors and learns a weighted combination of
the sequence tensors. Finally, we combine both parts (sta).
However, neither of these approaches showed any benefit.

Importance of the Audio Features (Ablation Study)
Since previous works have shown that gesture recognition
from motion alone works well, one might pose the question
howmuch the sound input actually contributes. First of all, it
enables the recognition of the purely right-handed gestures,
i.e. for three out of nine gesture classes, as there is no motion
information available for these. Nevertheless, the question
still remains concerning the six classes including the left
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Figure 8: The accuracy of different networks w.r.t. to their
number of parameters, labelled with the abbreviation of the
design. Our default network is marked by the red cross.

hand (and the null class). The following experiments all
apply only to this reduced set of six left-hand classes. The
accuracy for our network including all features on this sub-
set of gestures in the user-independent setting is 98.1%. We
remove the audio input (and all directly following layers),
and rerun this experiment (including training). Remarkably,
the accuracy is only marginally worse (97.8%). However,
up to now we classified the preprocessed well-segmented
samples (cf. Subsection Preprocessing). In a more practi-
cal and also more challenging setting, we would run our
method on a continuous stream of overlapping sequences,
most likely containing many more sequences from the null
class. Therefore, in a new experiment, we replicate our ap-
plication pipeline and use our full 2 s recordings gathered
during data collection as real world stream samples instead
of only employing the segments containing the gestures. As
for the real application, we continuously segment the 2 s
recordings from the beginning to the end and classify the
resulting stream of sequences (including post-processing).
The ideal outcome would be a single, correct label for each
recording (except for null recordings). As before, we train
and test in a leave-one-participant-out manner. We measure
the recall (was the correct label predicted?) and the false pos-
itive rate (how many incorrect or additional “correct” labels
were delivered?). Including sound and motion as features,
we achieve a high average recall of 94.4% and a low average
false positive rate of 5.5%. When training and testing with-
out sound, the recall is still high (87.8%), however, the false
positive rate rises to 45.5%, i.e. the detection of gestures is
much more reliable with sound.

Performance in Noisy Environments
To evaluate our method’s performance not only with the
audio noise which we added to the training data, but also
with real noise, we recorded five additional sessions for five
of our participants while playing white Gaussian audio noise
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at increasing noise levels. The decibel levels resemble noise
ranging from little noise to louder traffic. We train on all the
other data as usual, and test on the noisy sessions. For these
sessions, we did not add any noise augmentations during
preprocessing to not further alter the audio noise. The ac-
curacy decreases with increasing environmental noise (cf.
Table 1). This in particular affects the right-handed gestures,
e.g. “Snap right”, as these cannot be recognized from mo-
tion. For louder noise, they are more often assigned to the
null class, as the recordings then resemble null samples
with noise augmentation used for training. Nevertheless, the
classifier proves to be relatively robust against noise.

Table 1: Testing on different levels of environmental noise.

Noise level [dB] 50 55 60 65 70
Avg. accuracy 94.1% 95.6% 94.7% 91.1% 91.2%

Runtime
We also investigate the time requirements for running our
method on the smartwatch, including the preprocessing steps
as well as running the network for inference. We let the app
process 1,000 sequences and calculate the average runtime
per sequence. Note that the network is only run if the sum of
the FFT magnitudes in a sequence is high enough, i.e. only
for a fraction of the recorded sequences. For this experiment,
we removed the magnitude threshold so that every sequence
is classified to calculate the correct average. Overall, process-
ing a single sequence (600ms) takes 64.08ms. The effort for
running the network inference is very low at 10.56ms on
average. The greatest effort is spent on calculating the FFT
(43.47ms). Performing the resampling of the motion data
takes 10.05ms. Note that the two preprocessing steps and
the inference are pipelined. We believe that both, network
inference and FFT, could be accelerated by dedicated hard-
ware in the future. Nevertheless, this evaluation shows that
a regular use is possible even without further optimization.

5 APPLICATIONS
We believe our method provides a fast, simple, and intuitive
way to interact with the smartwatch itself, but also with
other devices.We created several applications to demonstrate
GestEar in real-world settings. Figure 1 shows an overview
of all demos (we also published a video on YouTube4). We al-
ways used the same network model which we did not tune to
any specific user or application. The first demo shows device
control in an environment consisting of a sound system and
a smart lamp. We show how the user can give commands
easily and quickly, such as turning the music on and off,
changing tracks, turning the lamp on and off, and changing
4https://youtu.be/cfT4eOho6v4

its color. We believe that there are also many other devices
which could be controlled this way, such as the television or
even cleaning robots; the two devices here should only high-
light the potential. We extended this scenario to a mobile
setting, for controlling the music on the smartphone while
walking or running. This could also be used for accepting or
declining incoming calls.
In the second application, we take advantage of the fact

that some of the gestures cannot be reproduced by people
other than the user him-/herself. For example, the “Snap left”
gesture is only recognized if the corresponding motion of
the wrist also occurs. Potential adversaries cannot provide
that. We can hence use “Snap left” as a command to unlock
a companion smartphone in an easy and simple manner.
Finally, we believe that GestEar can enable novel inter-

actions. We created a demo that shows how the button of
a doorbell could be replaced by our system. When a user
knocks at the door, a message is sent to the flat’s home con-
trol system, which then rings the bell, without the user ever
having to touch the door bell button itself.

6 CONCLUSION
We presented GestEar, a fast and robust method for real-
time recognition of eight sound-emitting gestures using the
microphone and motion sensors of an unmodified smart-
watch. We designed an efficient neural network to jointly
perform gesture detection and recognition, we showed how
to train the network for both of these tasks, and how to
create a large training dataset from a relatively small num-
ber of recordings. Besides different gesture types, we were
also able to distinguish whether the gesture was performed
with the right or the left hand, or whether it was performed
twice in quick succession to form a double gesture. The re-
sulting model is lightweight, it has a size of only 50 kB and
requires on average only 10.6ms for inference directly on
the smartwatch. Our method achieves a high accuracy of
97.2% in a user-independent setting with 16 participants, in-
dicating that the method would only have to be trained once
to work even for unknown users. GestEar demonstrates the
advantage of combining readily-available sound and motion
input on smartwatches for enhanced gesture recognition. We
also created a working app enabling fast and simple gestural
interactions, which could easily be added to existing smart-
watches as a software update, and showed several smart
home applications employing these interactions.
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