
Dynamic Control of a Robotic Swarm using a Service-Oriented Architecture

Vlad M. Trifa1,4∗ Christopher M. Cianci2 Dominique Guinard3,4

1Institute for Pervasive Computing, ETH Zurich, Switzerland
2Swarm-Intelligent Research Group, École Polytechnique Fédérale de Lausanne

3Auto-ID Labs ETH Zurich, 8092 Zurich
4SAP Research CEC Zurich, Kreuzplatz 20, 8008 Zurich

Abstract
The development, deployment, and control of

groups of robots is a tedious process even for ex-
perienced roboticists. Particularly in heterogeneous
systems a high granularity of control and visibility
is difficult to achieve. The lack of standardized in-
terfaces and communication protocols to interconnect
robots from different manufacturers makes it very dif-
ficult to develop flexible robotic applications. We pro-
pose an efficient system suited to support heteroge-
neous robotic swarms that can be used as a toolkit
for fast prototyping of robust distributed applications.
This system offers a flexible interface allowing external
users to remotely control the swarm over the internet
by using standardized communication protocols such
as Web Services.

1 Introduction

Given the ubiquitous nature of the internet both
in private and industrial settings, more and more pro-
cesses are shifting from fully centralized to distributed
solutions. To attain the required degree of flexibil-
ity and interoperability, the Service-Oriented Archi-
tecture (SOA) paradigm has been introduced and has
become a common method for data exchange between
large industrial enterprises. The key idea behind SOA
is that different companies offer their services in the
form of modular, and loosely coupled software compo-
nents exchanging data over HTTP which can be con-
sumed by other companies through the internet with
no human intervention.

Telerobotics is no exception to this massive decen-
tralization of industrial processes, and several projects
where robots can be controlled over the internet have
emerged in the last decade, as for example the Robotic
Garden [4] and KhepOnTheWeb [9], among others.1

∗Corresponding author: vlad.trifa@ieee.org
1http://ranier.hq.nasa.gov/telerobotics page/realrobots.html

In the industrial sector, remote control of manufac-
turing processes can also be distributed, but in many
cases a reliable communication channel is required
to ensure functionality. Usually, industrial robotic
teams (e.g. a manufacturing production line) are pro-
grammed assuming no equipment failure, and the con-
trol process is centralized on a single machine which or-
chestrates the synchronization between different tasks
and robots. However, if a robot fails, it can take a lot
of time (and money) to reconfigure a new robot and
integrate it in the chain to resume the task. To avoid
such losses, a powerful and robust infrastructure that
offers full control over a group of heterogeneous robots
through the internet can be very efficient solution.

Unfortunately, most telerobotic projects have been
mainly focused on the control of a single robot. Our
approach is relatively novel in that we are interested
in providing a solid tool for experts working with dis-
tributed robotics. The metaphor of Swarm Intelligence
[2], offers several promising methods for creating ro-
bust distributed systems. Global a priori knowledge
of the system is not required, and coherent behav-
ior emerges from local interactions between robots.
Thus no centralized controller is needed, increasing
the robustness of the whole system. However, the dif-
ficulty of properly analyzing such systems often pre-
vents them from being implemented in industrial set-
tings, hence the lack of appropriate standards for the
associated tools and methods.

Specifically, when dealing with heterogeneous
groups of robots, the principal challenge is to seam-
lessly interconnect devices made by different manufac-
turers and having different capabilities. Several differ-
ent approaches have been proposed as potential stan-
dards; Web Services (WS), as a particular implemen-
tation of an SOA, have been selected here for their
flexibility and its demonstrated success in other do-
mains. Other SOA standards such as Universal Plug
and Play (UPnP) have also been used to interconnect
robots [1], but UPnP is not particularly well suited to



this task as it requires specific libraries that are not
available on all operating systems.

To maximize compatibility, a fully open set of stan-
dards is preferable, as presented in WS, and demon-
strated in various research efforts. A remote monitor-
ing and control architecture based on the WS model
[6], a control platform for a robotic arm [7], and a
method to control several robots using WS in con-
junction with Manufacturing Messages Specifications
[10] have all been proposed. In addition, RoboLink
[8] is an attempt supported by several industrial part-
ners to standardize robust inter-robot communication
protocols. Unfortunately, it is mainly concerned with
the low-level communication specifics, and thus cannot
easily be extended to other devices.

We advocate the use of WS for communication be-
tween the different components of the system (in par-
ticular the hardware and the user interface). A key ad-
vantage of using WS to access and control the robots
is that they enable clients on diverse platforms (e.g.
web pages, mobile phones, etc.) to have the same
level of control over the network. In addition, WS
provide a reliable and secure communication channel,
automatic discovery of new devices, and an efficient
publish-subscribe event notification mechanism.

In this project, we have built a central server based
on Java Enterprise Edition (J2EE) that acts as a gate-
way between the end-user and the robot group. The
server implements a WS that allows users to retrieve
real-time information about the current status of the
system as a whole, or of an individual robot. An ad-
vantage of this approach is that a control application
can leverage both the centralized aspect of the server
(which has full control over the robots) and the fully
distributed nature of the robotic swarm.

2 Tools and Methods

The basic components of the system are shown in
Fig. 1, and this section will described each of these
parts more in detail.

2.1 Physical Device & Gateway Layers:
The e-puck Robot

In this case study, the physical devices used were
e-puck robots. The e-puck2 is a miniature open-
hardware robotic platform recently developed at the
École Polytechnique Fédérale de Lausanne (shown in

2http://www.e-puck.org

Figure 1: The general architecture of our system is com-
posed of four parts. From left to right: The Physical layer,
consisting of the actual robots; the Gateway layer, which is
the connection between the physical devices and the sys-
tem; the Logic layer, containing the server that logs the
data coming from the devices; and the Interface layer,
which includes any device or interface for an external user
or users.

Fig. 2). The standard e-puck has eight infrared prox-
imity and light sensors, a trinaural microphone array,
a speaker, a three-axis accelerometer, and a Bluetooth
interface for programming. It can also be fitted with
custom pluggable modules that stack in between the
two standard boards, such as the short-range radio
communication turret used here [3], which provides
a subset of the 802.15.4 and ZigBee protocols and is
fully interoperable with the MicaZ [5] nodes used here
as base stations in the physical gateway layer.

2.2 Logic Layer: Web Services

Web Services are a set of standards3 similar to Re-
mote Procedure Calls (RPCs), where the functional-
ity of different software components is exposed as an
API with different methods that can be invoked on
the service. These functional specifications allow dif-
ferent software modules to collaborate and exchange
data regardless of the underlying hardware and soft-
ware platforms.

From a functional point of view, our system is com-
posed of three disjoint components. As can be seen in
Fig. 1, the end-user is only involved at the Interface
Layer; the Human-Computer Interface to the robotic
swarm. The Interface Layer communicates directly
with the Logic Layer (the server), which contains the
main application and is responsible for the transport of

3http://www.w3c.org/2002/ws/



Figure 2: LEFT: The e-puck, a small-scale experimen-
tal robotic platform. Shown here with the radio com-
munication board stacked between the basic module and
the jumper board, allowing the implementation of sensor
networks and other networked robotic systems. RIGHT:
Several e-pucks in a table-top arena (Shown with colored
markers attached to facilitate tracking by an overhead cam-
era).

commands and data between the user and the physical
devices. The Logic Layer is implemented using J2EE,
which is a powerful, industrial development and pro-
duction environment. The choice of J2EE was based
on its reputation as a robust environment that sup-
ports industrial applications, and Web Services in par-
ticular.

2.3 Control Layer: User Interface

The development of distributed robotic applications
often requires significant additional effort to design
custom user interfaces for the visualization, configura-
tion, and control of a robotic swarm. In addition, these
interfaces can frequently be very application-specific.
One feature of this system is that, using the WS stan-
dard, almost any physical device or piece of software
capable of implementing HTTP (e.g. a stand-alone
Java application, PDA, Tablet PC, mobile phone, etc.)
can be used to interact with the multi-robot system,
regardless of the operating system or programming
language on the device. The service provider needs
only to publish a list of the different functions that
can be called by the client, allowing any user to create
a personalized user interface.

For devices with limited computational power (e.g.
a GPRS-enabled mobile phone), an additional Repre-
sentational State Transfer (REST)4 interface has been
developed. REST allows clients to interact with the
system simply by accessing specific URLs that encode
function calls and their associated parameters.

4http://rest.blueoxen.net/

3 Experimental Case Study

As a proof of concept, we used a team of e-puck
robots capable of performing various actions (e.g., il-
luminating LEDs, setting motor speeds, reading prox-
imity sensors, azimuth estimation of incident sound,
etc.). If combinations of these actions are considered
‘tasks,’ the following scenario can be used to illustrate
one possible use case for the proposed architecture.

The e-pucks are able to perform three tasks (T1, T2,
and T3). Two e-pucks are executing T1, and a third is
executing T2.

1. A fourth e-puck is added to the swarm, and sends
an INIT message to the server.

2. The server acknowledges the robot by sending it
a command to execute T2.

3. The user changes the wheel speed of an e-puck
using the web interface.

4. All LEDs of another robot are turned on using a
Java application.

5. All e-pucks are ordered to execute T3 using a mo-
bile phone.

This sample sequence is a basic illustration of the
different commands that can be send to the robot
team. Of course, given the nature of our system, much
more elaborate sequences can be executed from remote
locations.

The server is responsible for keeping track of the
status of all connected devices, and logging all re-
ceived data into a database. Additionally, it also gen-
erates the actual commands that are sent to the robots
though different physical gateways. When a robot is
turned on, it broadcasts a message which specifies its
physical address and available capabilities. The server
will acknowledge the new arrival by sending a com-
mand specifying a behavior to execute based on the
current state of the system, and task priorities.

4 Conclusion and Future Work

We have presented an infrastructure for easy de-
velopment and control of distributed robotic applica-
tions. Our approach focuses on the runtime config-
uration (and reconfiguration) of the robots; different
devices can perform their tasks autonomously, accept
direction from a central entity, or some mixture of both
modes. Another novel aspect of the system is its use of
WS for communication between the end-user and the



system, allowing personalized control interfaces (cre-
ated using any programming language on any hard-
ware platform, provided that HTTP is supported).

This simple case study also illustrates how the WS
standard can significantly increase the interoperabil-
ity of heterogeneous sensor and actuator networks. In
addition, integration of any of the available features
in WS standard is relatively straightforward. For ex-
ample, secure and reliable communication can be es-
tablished with minimal network overhead, and new
robots can be automatically discovered and integrated
into the system. As the WS standard is becoming in-
creasingly common in industrial enterprises, the merg-
ing of robotic and business applications—a growing
demand—is greatly facilitated.

For the current case study, the WS protocol was not
implemented directly on the robots, due to the limited
computational resources on the e-pucks (this formal-
ity was handled in the Physical Gateway layer), but
Moore’s law may soon make this relatively feasible.
However, it will nonetheless be essential to compare
the performance of WS-based communication with ex-
isting proprietary protocols, and carefully find the bal-
ance between performance and flexibility for each ap-
plication. A testbed composed of industrial robots will
also be needed to quantitatively evaluate the perfor-
mance of the architecture presented here.

Future work also includes efforts to adapt the au-
tomated service discovery mechanism to handle arbi-
trary device types. In particular, methods to encode
different capabilities of robots are to be explored (e.g.,
an XML description of a robot’s sensors, actuators, ca-
pabilities, etc.), and also automatically generated user
interfaces based on the specific nuances of each robot.

Clearly, the work presented here only serves as an
initial prototype for a robust and flexible infrastruc-
ture that can support the development of extremely
large distributed robotic systems. A fully functional
system (where performance issues can be systemati-
cally analyzed) will need careful design and optimiza-
tion based on the tasks the robots will perform, and
the trade-off between flexibility and reliability must be
carefully evaluated. However, the fundamental princi-
ples proposed here represent a scalable solution which
will be able to meet industrial standards.

Acknowledgments

The authors would like to thank the European
Commission and the partners of the European IST
FP6 project Service-Oriented Cross-layer infRAs-
tructure for Distributed smart Embedded devices

(SOCRADES; http://www.socrades.eu) for their sup-
port. Christopher Cianci is currently sponsored by
a grant from the Swiss National Science Foundation
(Contract Number PP002-116913).

References

[1] Sang Chul Ahn, Jung-Woo Lee, Ki-Woong Lim, Hee-
dong Ko, Yong-Moo Kwon, and Hyoung-Gon Kim.
Upnp sdk for robot development. In SICE-CASE In-
ternational Joint Conference, 2006.

[2] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz.
Swarm Intelligence From Natural to Artificial Sys-
tems. Oxford University Press, New York, NY, 1999.

[3] Christopher M. Cianci, Xavier Raemy, Jim Pugh, and
Alcherio Martinoli. Communication in a swarm of
miniature robots: The e-puck as an educational tool
for swarm robotics. In Simulation of Adaptive Be-
havior (SAB-2006), Swarm Robotics Workshop, pages
103–115, Rome, Italy, October 2006, Lecture Notes in
Computer Science (2007), vol. 4433.

[4] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg,
C. Sutter, and J. Wiegley. Desktop tele-operation via
the world wide web. In In IEEE International Con-
ference on Robotics and Automation (ICRA 1995).,
1995.

[5] Jason L. Hill and David E. Culler. Mica: A wireless
platform for deeply embedded networks. IEEE Micro,
22(6):12–24, November/December 2002.

[6] Min-Hsiung Hung, Kuan-Yii Chen, and Shih-Sung
Lin. Development of a web-services-based remote
monitoring and control architecture. In In IEEE In-
ternational Conference on Robotics and Automation
(ICRA 2004)., volume 2, pages 1444–1449, April/May
2004.

[7] Bong Keun Kim, M. Miyazaki, K. Ohba, S. Hirai,
and K. Tanie. Web services based robot control plat-
form for ubiquitous functions. In In IEEE Interna-
tional Conference on Robotics and Automation (ICRA
2005)., 2005.

[8] Masahiko Narita, Makiko Shimamura, and Makoto
Oya. Reliable protocol for robot communication on
web services. In Proceedings of the International Con-
ference on Cyberworlds (CW’05), 2005.

[9] P. Saucy and F. Mondada. Khepontheweb : One year
of access to a mobile robot on the internet. In Proc.
of the 1998 IEEE/RSJ International Conference on
Intelligent Robots and Systems IROS1998, 1998.

[10] Bin Wu, Bing-Hai Zhou, and Li-Feng Xi. Remote
multi-robot monitoring and control system based on
mms and web services. Industrial robot: an interna-
tional journal, 34(3):225–239, 2007.


