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Abstract

Wireless sensor networks consist of a large number of sensor nodes which
communicate wirelessly. These nodes are small, battery-powered com-
puting devices equipped with sensors to perceive their environment. Sen-
sor networks are typically deployed in the nature; e.g., to observe the
breeding of delicate bird species, to monitor changes of glaciers or to
study seismic activities and earthquakes.

Several factors contribute to the fact that wireless sensor networks often
do not work as expected when deployed in a real-world setting. Some of
them are environmental influences which may lead to non-deterministic
behavior of radio transmission, malfunction of the sensors, or even the
complete failure of a sensor node. In addition to that, scarce resources
and missing protection mechanisms on the sensor nodes may lead to pro-
gram errors. Fixing these problems and errors at the deployment site is
difficult, as the inherent characteristics of sensor networks - autonomous,
distributed, and resource constrained - hardly allow to get insight into the
inner workings of the network. Another common cause for network prob-
lems is an unforeseen high traffic load, a so-called traffic burst. Such a
traffic burst may occur for example, when a sensor network observes a
physical phenomenon, and all nodes in the vicinity will try to report at
once, causing the occurrence of packet collisions combined with a high
packet loss. All these factors contribute to the uncertainty of the sensor
network behavior and function.

To help with the detection of faults in a deployed network, various active
inspection tools have been developed where the sensor nodes are instru-
mented to actively collect statistical data of their state and communication
behavior and forward this data over the radio network to a central station.
This additional communication, however, not only increases energy con-
sumption but also changes the nodes’ behavior. A further limitation is
the fact that no information can be gathered from partitioned parts of the
network.

With respect to communication, current medium access control proto-
cols use a probabilistic approach to handle concurrent send requests. Al-
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though this allows for efficient energy use in the case of infrequent and
sporadic traffic, which is typical for wireless sensor networks, probabilis-
tic protocols perform poorly in the presence of synchronous send requests
of neighboring nodes.

The goal of this thesis is to facilitate the deployment of wireless sen-
sor networks by reducing the uncertainty about the behavior of the net-
work. In order to reduce this uncertainty, we address two distinct areas,
namely fault detection and fault prevention. To detect faults in the sensor
node software, we provide tools for the efficient real-time inspection of
deployed networks that overcome the problems of the active inspection
approach. To prevent faults caused by traffic bursts, we propose medium
access protocols that avoid collisions and handle traffic bursts in a deter-
ministic manner.

With respect to the outlined problems, the contribution of this thesis is
threefold. Firstly, we present a survey on problems reported during actual
deployments and provide a classification of these. Secondly, to address
the problem of the active inspection approach, we propose and evaluate
the concept of passive inspection of sensor networks. Finally, we propose
and evaluate a new collision-free medium access control protocol capable
of handling bursty traffic.

In particular, we show that passive observation of the radio traffic fa-
cilitates the development of wireless sensor network applications and im-
proves their deployment. We elaborate on this by supplying appropriate
tools which can be adapted for different wireless sensor network appli-
cations with low configuration effort. Concretely, we present the Sensor
Network Inspection Framework (SNIF) which allows to detect faults in
a deployed wireless sensor network using passive observation and online
analysis.

To tackle problems related to traffic bursts, we evaluate different possi-
bilities for collision-free communication in sensor networks and present
new techniques for efficient group communication which leverage the
broadcast nature of radio communication. By combining existing and new
concepts, we realize a collision-free and energy-efficient protocol (Burst-
MAC) that induces only a low overhead compared to current probabilistic
state-of-the-art protocols but can handle traffic bursts efficiently.



Kurzfassung

Sensornetze bestehen aus einer grossen Anzahl miteinander drahtlos kom-
munizierender Sensorknoten. Dabei handelt es sich um batteriebetriebene
Kleinstcomputer mit Sensoren zur Wahrnehmung der Umgebung. Sensor-
netze werden häufig in die Umwelt ausgebracht; beispielsweise zur Beob-
achtung des Brutverhaltens gefährdeter Vogelarten, zur Beobachtung von
Veränderungen bei Gletschern oder zur Studie von seismischen Aktivitä-
ten und Erdbeben.

Verschiedene Faktoren führen dazu, dass Sensornetze oft nicht wie er-
wartet funktionieren, wenn sie in der realen Welt eingesetzt werden. Dazu
gehört unter anderem die Vielzahl von Umwelteinflüssen, was zu nicht-
deterministischem Verhalten der Funkschnittstelle, der Sensoren oder gar
zum Ausfall von Knoten führen kann. Darüber hinaus tragen knappe Res-
sourcen und fehlende Schutzmechanismen auf den Sensorknoten zu häu-
figen Programmierfehlern bei. Eine anderere häufige Ursache für Proble-
me in Sensornetzen stellen unvorhergesehene, hohe Sendeaktivitäten, so
genannte Traffic Bursts, dar. Solch ein Traffic Burst kann zum Beispiel
auftreten, wenn ein Sensornetz ein physikalisches Phänomen beobachtet
und alle Sensorknoten in der Nähe gleichzeitig versuchen dies zu melden,
was zum Auftreten von Paketkollisionen in Kombination mit einem ho-
hen Paketverlust führt. All diese Faktoren tragen zur Ungewissheit über
das Verhalten und die Funktionalität des Sensornetzes bei.

Um die Fehlersuche in einem ausgebrachten Sensornetz zu vereinfa-
chen, wurden verschiedene Inspektionswerkzeuge entwickelt, die einen
aktiven Ansatz verfolgen. Bei diesen Werkzeugen sammeln Sensorkno-
ten aktiv statistische Daten über ihren Zustand und ihr Kommunikations-
verhalten und leiten diese dann über das Funknetz nach aussen. Durch
die zusätzliche Kommunikation wird jedoch zum einen zusätzlich Ener-
gie verbraucht, zum anderen aber auch das Verhalten der Knoten selbst
verändert. Eine weitere Einschränkung ist, dass keine Informationen aus
isolierten Teilen des Netzes gewonnen werden können.

Für die Kommunikation nutzen aktuelle Medienzugriffsverfahren pro-
babilistische Mechanismen, um den Sendewunsch benachbarter Knoten
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zu regeln. Obwohl dies einen niedrigen Energieverbrauch bei der in Sen-
sornetzen üblichen geringen und sporadischen Kommunikation erlaubt,
erfüllen die probabilistischen Verfahren bei gleichzeitigem Sendewunsch
mehrerer Knoten ihre Aufgabe nur unzureichend.

Das Ziel dieser Disseration ist, den Einsatz von Sensornetzen dadurch
zu vereinfachen, dass die Ungewissheit über das Verhalten des Netzes
reduziert wird. Hierzu verfolgen wir zwei unterschiedliche Herangehens-
weisen, und zwar einerseits Fehlererkennung und andererseits Fehlerver-
meidung. Um Fehler in der Software von Sensorknoten zu entdecken,
stellen wir Werkzeuge zur effizienten Echtzeit-Inspektion ausgebrachter
Sensornetze bereit, welche die Probleme des aktiven Ansatzes vermei-
den. Hinsichtlich der Fehler, die durch Traffic Bursts verursacht werden,
entwerfen wir Medienzugriffsverfahren, die Kollisionen vermeiden und
Traffice Bursts auf deterministische Art und Weise abarbeiten.

Der Beitrag dieser Dissertation im Bezug auf die aufgeführten Proble-
me ist dreigeteilt. Als erstes stellen wir eine Klassifikation der Probleme
vor, die sich beim Ausbringen von Sensornetzen ergeben. Zweitens schla-
gen wir das Konzept des passiven Belauschens von Sensornetzen vor und
stellen hierzu ein lauffähiges und erweiterbares System bereit. Drittens
präsentieren wir ein neues kollisionsfreies Medienzugriffverfahren, wel-
ches in der Lage ist, mit Traffic Bursts effizient umzugehen.

Insbesondere zeigen wir, dass das passive Belauschen der Kommunika-
tion in einem Sensornetz das Enwickeln und das Ausbringen von Sensor-
netzen erleichtert und belegen dies durch das Bereitstellen entspechender
Werkzeuge, die mit geringem Konfigurationsaufwand an unterschiedli-
che Sensornetzanwendungen angepasst werden können. Konkret stellen
wir das Sensor Network Inspection Framework (SNIF) vor, welches es er-
laubt Fehler in einem ausgebrachten Sensornetz durch passives Mithöhren
und Online-Analyse zu entdecken.

Um Probleme durch Traffic Bursts zu vermeiden, evaluieren wir ver-
schiedene Möglichkeiten zur kollisionsfreien Kommunikation in Sensor-
netzen und präsentieren neue Basistechniken für kollisionsfreie Gruppen-
kommunikation, die sich die Tatsache zu Nutze machen, das ausgesandte
Funkwellen von allen Nachbarn empfangen werden. Durch eine Kom-
bination existierender und neuer Ansätze realisieren wir ein kolllisions-
freies und energieeffizientes Protokoll (BurstMAC). Das neue Vefahren
verursacht gegenüber existierenden probabilistischen Lösungen zwar ge-
ringe Mehrkosten, vermag dafür aber auch mit länger andauernden Traffic
Bursts effizient umzugehen.



Acknowledgements

Thanks to all of my collaborators who provided technical, intellectual,
practical, and advisorial help with various aspects of this work. These
include but are not limited to Kay Römer, Oliver Kasten, Marc Langhein-
rich, Harald Vogt, Jan Beutel, Matthias Dyer, Philipp Blum, and, of
course, my dissertation committee.

Special thanks to Mila for her constant support.

This work was partially supported by the Swiss National Science Foun-
dation under grant number 5005-67322 (NCCR-MICS).

vii





Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Wireless Sensor Network Deployments 5
2.1. Projects . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Great Duck Island . . . . . . . . . . . . . . . . 6
2.1.2. Oceanography . . . . . . . . . . . . . . . . . . 8
2.1.3. GlacsWeb . . . . . . . . . . . . . . . . . . . . . 8
2.1.4. Structural Health Monitoring . . . . . . . . . . . 9
2.1.5. Redwood Tree . . . . . . . . . . . . . . . . . . 9
2.1.6. LOFAR-agro . . . . . . . . . . . . . . . . . . . 10
2.1.7. Volcano . . . . . . . . . . . . . . . . . . . . . . 11
2.1.8. Soil Ecology . . . . . . . . . . . . . . . . . . . 11
2.1.9. SensorScope . . . . . . . . . . . . . . . . . . . 12

2.2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1. Node Problems . . . . . . . . . . . . . . . . . . 13
2.2.2. Link Problems . . . . . . . . . . . . . . . . . . 13
2.2.3. Path Problems . . . . . . . . . . . . . . . . . . 15
2.2.4. Global Problems . . . . . . . . . . . . . . . . . 15

2.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 16

I. Fault Detection 19

3. Network Inspection 21
3.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1. Simulation and Testbeds . . . . . . . . . . . . . 22
3.1.2. Active Inspection . . . . . . . . . . . . . . . . . 23
3.1.3. Network Sniffing . . . . . . . . . . . . . . . . . 25
3.1.4. Distributed Systems . . . . . . . . . . . . . . . 26

ix



3.2. Problem Statement . . . . . . . . . . . . . . . . . . . . 27
3.2.1. Online Analysis . . . . . . . . . . . . . . . . . . 27
3.2.2. No Instrumentation of WSN Nodes . . . . . . . 28
3.2.3. Multi-Hop Networks . . . . . . . . . . . . . . . 28
3.2.4. Flexibility . . . . . . . . . . . . . . . . . . . . . 28

3.3. Passive Inspection of WSN . . . . . . . . . . . . . . . . 28
3.3.1. Basic Approach . . . . . . . . . . . . . . . . . . 29
3.3.2. Indicators . . . . . . . . . . . . . . . . . . . . . 30

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. SNIF: Sensor Network Inspection Framework 37
4.1. Architectural Overview . . . . . . . . . . . . . . . . . . 37
4.2. Deployment Support Network . . . . . . . . . . . . . . 39

4.2.1. Hardware: BTnode rev3 . . . . . . . . . . . . . 39
4.2.2. Software: BTnut . . . . . . . . . . . . . . . . . 42

4.3. Bluetooth Time Synchronization . . . . . . . . . . . . . 45
4.3.1. Related Work . . . . . . . . . . . . . . . . . . . 46
4.3.2. Protocol Overview . . . . . . . . . . . . . . . . 47
4.3.3. Implementation . . . . . . . . . . . . . . . . . . 53
4.3.4. Evaluation . . . . . . . . . . . . . . . . . . . . 54
4.3.5. Discussion . . . . . . . . . . . . . . . . . . . . 58

4.4. DSN Sniffer . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5. Packet Decoder . . . . . . . . . . . . . . . . . . . . . . 60
4.6. Data Stream Processor . . . . . . . . . . . . . . . . . . 62

4.6.1. Data Streams . . . . . . . . . . . . . . . . . . . 62
4.6.2. Records . . . . . . . . . . . . . . . . . . . . . . 62
4.6.3. Basic Operators . . . . . . . . . . . . . . . . . . 63
4.6.4. Sources . . . . . . . . . . . . . . . . . . . . . . 64
4.6.5. Application-specific Operators . . . . . . . . . . 64

4.7. Root Cause Analysis . . . . . . . . . . . . . . . . . . . 70
4.8. Visualization . . . . . . . . . . . . . . . . . . . . . . . 71
4.9. Evaluation: Data Gathering Applications . . . . . . . . . 71

4.9.1. Application Model . . . . . . . . . . . . . . . . 72
4.9.2. Problems and Indicators . . . . . . . . . . . . . 73
4.9.3. Decision Tree . . . . . . . . . . . . . . . . . . . 74
4.9.4. Results . . . . . . . . . . . . . . . . . . . . . . 78

4.10. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 85



II. Fault Prevention 87

5. Medium Access Protocols for Wireless Sensor Net-
works 89
5.1. Background . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1. Sources of Energy Waste . . . . . . . . . . . . . 90
5.1.2. Design Strategies . . . . . . . . . . . . . . . . . 91

5.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.1. Contention-based Protocols . . . . . . . . . . . 96
5.2.2. Schedule-based Protocols . . . . . . . . . . . . 98
5.2.3. Multi-Frequency Protocols . . . . . . . . . . . . 100
5.2.4. Discussion . . . . . . . . . . . . . . . . . . . . 101

5.3. Problem Statement . . . . . . . . . . . . . . . . . . . . 102
5.3.1. Determinism . . . . . . . . . . . . . . . . . . . 102
5.3.2. Energy Efficiency . . . . . . . . . . . . . . . . . 102
5.3.3. Latency . . . . . . . . . . . . . . . . . . . . . . 102

5.4. Approach . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5. Cooperative Transmission Schemes . . . . . . . . . . . 104

5.5.1. Assumptions . . . . . . . . . . . . . . . . . . . 104
5.5.2. Validation . . . . . . . . . . . . . . . . . . . . . 105
5.5.3. Related Work . . . . . . . . . . . . . . . . . . . 107
5.5.4. Single-Bit Transmissions and Preamble Elimination108

5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 110

6. BitMAC 111
6.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.1. Application Characteristics . . . . . . . . . . . . 111
6.1.2. Network Topology . . . . . . . . . . . . . . . . 111

6.2. Protocol Overview . . . . . . . . . . . . . . . . . . . . 112
6.3. Advanced Cooperative Transmission Schemes . . . . . . 112

6.3.1. Integer Operations . . . . . . . . . . . . . . . . 112
6.3.2. Vectorial and Parallel Integer Operations . . . . 113
6.3.3. Discussion . . . . . . . . . . . . . . . . . . . . 114

6.4. Star Network . . . . . . . . . . . . . . . . . . . . . . . 115
6.5. Multi-Hop Network . . . . . . . . . . . . . . . . . . . . 117

6.5.1. Assigning Channels and IDs . . . . . . . . . . . 118
6.5.2. Time Synchronization and Ring Discovery . . . 119
6.5.3. Maintenance . . . . . . . . . . . . . . . . . . . 121
6.5.4. Operation Phase . . . . . . . . . . . . . . . . . 122



6.6. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6.1. Time Synchronization . . . . . . . . . . . . . . 123
6.6.2. Network Density . . . . . . . . . . . . . . . . . 125
6.6.3. Setup Phase . . . . . . . . . . . . . . . . . . . . 127
6.6.4. Operation Phase . . . . . . . . . . . . . . . . . 128

6.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 130

7. BurstMAC 131
7.1. Protocol Overview . . . . . . . . . . . . . . . . . . . . 131

7.1.1. General Approach . . . . . . . . . . . . . . . . 132
7.1.2. Coordination-free Transmission Scheduling . . . 132
7.1.3. Packet Bursts . . . . . . . . . . . . . . . . . . . 133
7.1.4. Cross-Layer Optimizations . . . . . . . . . . . . 134

7.2. Protocol Details . . . . . . . . . . . . . . . . . . . . . . 134
7.2.1. 2-Hop Coloring . . . . . . . . . . . . . . . . . . 135
7.2.2. Transmission Scheduling . . . . . . . . . . . . . 135
7.2.3. Packet Bursts . . . . . . . . . . . . . . . . . . . 137
7.2.4. Cross-Layer Support for Routing . . . . . . . . . 139
7.2.5. Time Synchronization . . . . . . . . . . . . . . 139
7.2.6. Network Startup . . . . . . . . . . . . . . . . . 140

7.3. Implementation . . . . . . . . . . . . . . . . . . . . . . 141
7.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.1. SCP-MAC and LMAC . . . . . . . . . . . . . . 143
7.4.2. Time Synchronization . . . . . . . . . . . . . . 144
7.4.3. Idle Case . . . . . . . . . . . . . . . . . . . . . 145
7.4.4. Constant Traffic . . . . . . . . . . . . . . . . . . 146
7.4.5. Correlated Burst Case . . . . . . . . . . . . . . 147

7.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 151

III. Conclusion 153

8. Conclusion and Future Work 155
8.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . 155
8.2. Limitations and Future Work . . . . . . . . . . . . . . . 156

8.2.1. Passive Inspection . . . . . . . . . . . . . . . . 156
8.2.2. Collision-Free Medium Access . . . . . . . . . . 158

8.3. Recommendations for Protocol Design . . . . . . . . . . 159



A. part a 161

References 162





1. Introduction

Recent progress in the field of wireless sensor networks (WSN) has led to
the deployment of sensor networks by scientists from different research
areas, such as biology, seismology and agriculture. However, when sen-
sor networks are deployed in the real world, they often do not work as
expected for a number of different reasons. The goal of this thesis is to
facilitate the deployment of sensor networks by providing new methods
and tools to detect faults in deployed networks and new medium access
protocols which prevent faults by avoiding typical collisions.

In this first chapter, we introduce the research area of wireless networks,
motivate the need for passive inspection and collisions-free medium ac-
cess, and give a brief overview of the main contributions of our work. We
conclude the chapter with an overview of the remainder of this thesis.

1.1. Motivation

Wireless sensor networks consists of a large number of sensor nodes
which communicate wirelessly. Sensor nodes are small, battery-powered
computing devices equipped with sensors which are able to perceive their
environment. They were first envisioned for military surveillance appli-
cations where a large number of nodes would be deployed in hostile en-
vironments to provide information about the other parties’ movements
without own risks. Later, sensor networks became a civil tool for environ-
mental monitoring and even wireless indoor power and utility metering.
While the cost of sensor installation stayed constant, the falling costs for
processing power and wireless communication made wireless sensor net-
works more feasible and more attractive. In addition, ready-to-use exam-
ple applications and better commercial packaging of sensor nodes made
this technology available to scientists from different research areas, e.g.
in biology [61], seismology [86], and agriculture [13].

However, wireless sensor networks often do not work as expected when
deployed in the real world. Environmental influences may lead to non-
deterministic behavior of radio communication, the sensors, or even the
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complete failure of a sensing node. In addition to that, scarce resources
and missing protection mechanisms on the sensor nodes often lead to pro-
gram errors which makes them hard to debug.

To get an insight into the inner workings of a sensor network, several
tools have been developed, such as Sympathy [63] or Memento [70]. In
these tools, sensor nodes collect statistical data of their state and commu-
nication behavior and forward this data over the radio network to a central
station. The additional communication, however, not only increases en-
ergy consumption but may also involuntarily change the nodes’ behavior.
A further limitation is the fact that no information can be gathered from
isolated parts of the network. Therefore, tools which provide an insight
without affecting and disturbing wireless network, are an important tool
to facilitate real-world deployments.

A typical communication problem is the sudden occurrence of packet
collisions combined with a high packet loss. This might be triggered by a
sudden high traffic load, a traffic burst. Such a traffic burst may occur if
it is the task of a sensor network to detect a certain physical phenomenon.
When the phenomenon is observed, all nodes in the vicinity will try to
report at once. Current low power media access protocols which are
optimized for infrequent and sporadic traffic, use probabilistic protocols
which perform poorly in the presence of correlated send requests of neigh-
boring nodes. Thus, collision-free medium access protocols with similar
energy efficiency are a promising approach to allow collision-free traffic
bursts.

1.2. Contributions

The goal of this thesis is to facilitate the deployment of wireless sensor
networks by reducing the uncertainty about the behavior of the network.
In order to reduce uncertainty both in already deployed networks and in
new deployments, we address two distinct issues, namely fault detection
and fault prevention. To detect faults in the sensor node software, we
aim to provide tools for the efficient and real-time inspection of deployed
networks that overcome the problems of the active inspection approach.
To prevent faults caused by traffic bursts, we aim to design medium access
protocols that avoid collisions and handle traffic bursts in a deterministic
manner. This thesis provides three main contributions:

1. Classification of deployment problems: As a first contribution, we
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provide a classification of faults experienced in sensor networks
based on various reports.

2. Passive Inspection: We show that passive observation of the ra-
dio traffic facilitates the development of wireless sensor network
applications in general and particularly simplifies their deploy-
ment. We justify this by supplying appropriate tools which can be
adapted for different WSN applications with little configuration ef-
fort. Concretely, we present the Sensor Network Inspection Frame-
work (SNIF) which consist of several components: (1) a wireless
sniffing network, (2) a packet description language, (3) a framework
for data stream processing with sensor network specific operators,
and (4) a graphical user interface for the observation of the network.

3. Collision-free medium-access: Based on our findings on common
error causes in sensor networks, we present a new media access pro-
tocol which shows only a low overhead compared to current (prob-
abilistic) state-of-the-art protocols but can handle traffic bursts effi-
ciently. For this, we evaluate different possibilies for collision-free
communication in sensor networks. By combining existing and new
concepts, we are able to achieve energy-efficient and collision-free
communication in our BurstMAC protocol.

1.3. Structure

This thesis first discusses general aspects of wireless sensor networks,
before providing an analysis of WSN deployments and their problems.
To address these problems, we propose, implement, and evaluate passive
inspection of WSNs and collision-free medium access. In more detail, the
thesis is structured as follows:

Chapter 3 introduces the concept of passive inspection based on live
traces of network messages from WSNs and discusses its challenges. We
further present passive indicators that allow to detect most of the common
problems in WSN deployed so far. We present and discuss related work
for network monitoring and WSN inspection.

Chapter 4 is devoted to our Sensor Network Inspection Framework
(SNIF), an instance of the passive inspection approach. We first present
the general architecture and explain how we realize a flexible network
sniffer. The online analysis of the captured network traces is performed
by a data-stream processor. We demonstrate WSN-specific operators and
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show how these can be combined to detect problems in a deployed WSN
and inspect the state of individual nodes via a graphical use interface.
We evaluate SNIF in a simulation environment in terms of accuracy and
latency.

Chapter 5 provides an overview on WSN medium-access protocols with
an emphasis on energy-efficiency and mechanism for collision-free com-
munication. We describe our new physical layer techniques that are based
on concurrent transmissions over a shared radio channels. Based on these
techniques, we develop an efficient protocol for single-hop networks.

In chapter 6, we present a MAC-protocol based on the new integer op-
eration from the previous chapter to form a spanning-tree multi-hop net-
work. The focus in this protocol lies on efficient network-startup and col-
oring. We evaluate the protocol in terms of required time synchronization,
feasible network density, and energy consumption.

Based on the MAC protocol from chapter 6, in chapter 7, we relax the
assumptions and present a MAC protocol which works on common plat-
forms. We provide a detailed protocol overview and describe the im-
plementation. An evaluation in a lab setting confirms its robustness and
energy-efficiency and provides insights into further optimization options.

Chapter 8 concludes this thesis by summarizing the results, by dis-
cussing limitations, and by providing an outlook on future work.



2. Wireless Sensor Network
Deployments

Sensor networks offer the ability to monitor real-world phenomena in de-
tail and at large scale by embedding a wireless network of sensor nodes
into the real world. Here, deployment is concerned with setting up an
operational sensor network in a real-world environment. In many cases,
deployment is a labor-intensive and cumbersome task as real-world in-
fluences trigger bugs or degrade performance in a way that has not been
observed during pre-deployment testing in the lab. The reason for this is
that the real world has a strong influence on the function of a sensor net-
work by controlling the output of sensors, by influencing the existence and
quality of wireless communication links, and by putting physical strain on
sensor nodes. These influences can only be very rudimentarily modeled
in simulators and lab testbeds.

Information on the typical problems encountered during a deployment
is rare. We can only speculate on the reason for this. On the one hand, a
paper which only describes what happened during a deployment seldom
constitutes novel research and might be hard to get published. On the
other hand, people might tend to hide or ignore problems which are not
directly related to their field of research. In this chapter, we first summa-
rize projects for which information on the deployment and the encoun-
tered problems have been made available. Then, we analyze the reported
problems and classify them according to the number of affected nodes.

2.1. Projects

In the following projects, a variety of sensor nodes have been used. To
get an impression on the actual hardware and its characteristics, we give
a short overview on the used platforms before presenting the projects and
the experienced problems.

The majority of the projects used the Mica2 mote [97] designed at the
University of Berkeley and produced by Crossbow Technology Inc. or a
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variant of it (Mica2Dot, T-Node [104]). Its main components are an At-
mel ATmega128L [92] 8-bit microcontroller and a Chipcon CC1000 [108]
radio module for the 433/868/915 MHz ISM bands. Later deployments
used the Chipcon CC2420 radio module on the MicaZ and the TMote
Sky sensor node. In deployments with special communication require-
ments such as GlacsWeb and in the described oceanography project, a
Microchip PIC microcontroller was used. The key figures for the used
hardware and the surveyed projects are given in tables 2.1 and 2.2 respec-
tively. In the latter, the column yield denotes the amount of data reported
by the sensor network with respect to the expected optimum, e.g., based
on the sample rate.

Mica2(Dot) T-Node MicaZ
Microcontroller ATmega128L ATmega128L ATmega128L
Architecture 8 bit 8 bit 8 bit
Clock 7.328 MHz (4 MHz) 7.328 MHz 7.328 MHz
Program Memory 128 kB 128 kB 128 kB
Data Memory 4 kB 4 kB 4 kB
Storage Memory 512 kB 512 kB 512 kB
Radio Chipcon CC1000 Chipcon CC1000 Chipcon CC2420
Frequency 433 / 915 MHz 868 MHz 2.4 GHz
Data Rate 19.2 kbps 19.2 kbps 250 kbps

TMote Sky TinyNode Oceanography GlacsWeb
Microcontroller MSP 430 MSP 430 PIC 18F452 PIC 16LF878
Architecture 16 bit 16 bit 8 bit 8 bit
Clock 8 MHz 8 MHz <40 MHz <20 MHz
Program Memory 48 kB 48 KB 32 kB 16 kB
Data Memory 10 kB 10 kB 1536 B 368 B
Storage Memory 1024 kB 512 kB 0.25 kB 64 kB
Radio Chipcon CC2420 Xemics XE1205 not specified Xemics
Frequency 2.4 GHz 868 MHz 173 MHz 433 MHz
Data Rate 250 kbps 152.2 kbps 10 kbps 9600 bps

Table 2.1.: Sensor node characteristics. Data for Mica2Dot in parentheses.

2.1.1. Great Duck Island

One of the earliest deployments of a larger WSN was carried out in the
summer of 2002 on Great Duck Island [61], located in the gulf of Maine,
USA. The island is home to approximately 5000 pairs of Leach’s Storm
Petrels that nest in separate patches within three different habitat types.
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Deployment Year #nodes Hardware Duration Yield Multi-hop
GDI I 2002 43 Mica2Dot 123 days 16% no
GDI II - patch A 2003 49 Mica2Dot 115 days 70% no
GDI II - patch B 2003 98 Mica2Dot 115 days 28% yes
Oceanography 2004 6 Custom HW 14 days not reported no
GlacsWeb 2004 8 Custom HW 365 days not reported no
SHM 2004 10 Mica2 2 days up to 50% yes
Redwoods 2005 33 Miac2Dot 44 days 49% yes
Potatoes 2005 97 TNode 21 days 2% yes
Volcano 2005 16 TMote Sky 19 days 68% yes
Soil Ecologoy 2005 10 MicaZ 42 days not reported no
Sensorscope 2006- 6- TinyNode 4- not reported yes

2008 97 180 days

Table 2.2.: Characteristics of selected deployments

Seabird researchers are interested in questions regarding the usage pat-
tern of nesting burrows with respect to the microclimate. As observation
by humans would be both too costly and might harm the birds, a sensor
network of 43 nodes was deployed for 4 months just before the breeding
season. The nodes had sensors for light, temperature, humidity, pres-
sure, and infrared radiation and have been deployed in a single hop net-
work. Each sensor node samples its sensors every 70 seconds and sends
its readings to a solar-powered gateway. The gateway forwards the data
to a central base station with a database and a WAN connection using a
two-way satellite connection to the Internet. During the 123 days of the
experiment, 1.1 million readings have been recorded, which is about one
sixth of the theoretical 6.6 million readings generated over this time.

In a book chapter [61], the authors analyze the network’s behavior in de-
tail. The most loss of data was caused by hardware-related issues. Several
nodes stopped working due to water entering the sensor node casing. As
all sensors where read out by a single analog-to-digital converter, a hard-
ware failure of one of the sensors caused false readings of other sensors.
Due to the transparent casing of the sensor nodes, direct sun light could
heat the whole sensor node and thus lead to high temperature readings
for nodes which are deployed above ground. Over time, various sensors
report false readings such as humidity over 150% or below 0%, or too
low or unreasonably high temperature. The temperature sensor of about
half the nodes failed at the same time as the humidity sensor suggesting
water inside the packaging. Although it did not directly cause packet loss
as the gateway was always listening, several nodes did show a phase skew
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with respect to their 70 second sending interval. A crash of the database
running on the base station resulted in the complete loss of data for two
weeks.

After lessons learned from the first deployment, a second deployment
was conducted in 2003 [75]. This time, two separate networks, a single-
hop network of 49 nodes similar to the one in the first deployment and a
multi-hop network with 98 nodes were deployed. The multi-hop network
used the routing algorithm developed by Woo [89]. Again, the project
suffered from several outages of the base station - this time caused by
harsh weather. In the multi-hop network, early battery depletion was
caused by overhearing in combination with low-power listening. In the
pre-deplomyent calculation, the group did not account for an increased
overhearing in the multi-hop network although it could have been pre-
dicted.

2.1.2. Oceanography

A small sensor network of 6 nodes was deployed in 2004 on a sandbank
off the coast of Great Yarmouth, Great Britain [76] to study sedimenta-
tion and wave processes. A node did consist of a radio buoy for com-
munication above the sea and a sensor box on the seabed connected by
a wired serial connection. The sensor box had sensors for temperature,
water pressure (which allows to derive wave height), water turbidity, and
salinity. The authors reported problems with the sensor box due to last-
minute software changes which led to cutting and re-fixing of the cable
between buoy and sensor, and later, to the failure of one of the sensors
caused by water leakage.

2.1.3. GlacsWeb

The GlacsWeb project [57] deployed a single-hop sensor network of 8
glacier probes in Norway. The aim of this system is to understand glacier
dynamics in response to climate change. Each probe samples every four
hours the following sensors: temperature, strain (due to stress of the ice),
pressure (if immersed in water), orientation, resistivity (to detect whether
the probe would be in sediment till, water or ice), and battery voltage. The
probes were installed in up to 70 m deep holes located around a central
hole which did hold the receiver of the base station.

In this deployment, initially, the base station only received data from
seven probes and during the course of the experiment, communication
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with four probes failed over time. In the end, three probes were able to
report their sensor readings. The base station experienced an outage. The
authors speculate that the other probes might have failed for three reasons:
Firstly, nodes might have been moved out of transmission range because
of sub-glacial movement. Secondly, the node casing might have broken
due to stress by the moving ice. And thirdly, clock drift and sleeping
policy might have led to unsynchronized nodes which hinders communi-
cation.

2.1.4. Structural Health Monitoring

To assess the structural health of buildings, the Wisden [58] data acquisi-
tion system was conceived. Each node measures seismic motion by means
of a three-axis accelerometer and forwards its data to a central station over
a multi-hop network. The data samples are time stamped and aggregated
in the network to compensate for the limited bandwidth. In the case of an
seismic event, the complete data for it is buffered on the node to allow for
reliable end-to-end data transmission.

The authors report a bug in their system, where an 8-bit counter was
used for the number of locally buffered packets and an overrun would
cause packets to not be delivered at all. Also, the accelerometer readings
showed increased noise when the battery voltage did fall below an certain
threshold.

2.1.5. Redwood Tree

To monitor the microclimate of a 70-meter tall redwood tree, 33 sensor
nodes have been deployed along a redwood tree roughly every two meters
in height for 44 days in 2005 [80]. Each node measured and reported
every 5 minutes air temperature, relative humidity, and solar radiation.
The overall yield of this deployment has been 49%. In addition to the
Great Duck Island hardware and software, the “Tiny Application Sensor
Kit” (TASK) was used on the multi-hop network. The TinyDB [105]
component included in TASK provides an SQL-like database interface to
specify continuous queries over sensor data. In addition to forwarding
the data over the network, each sensor node was instructed to record all
sensor readings into an internal 512 kB flash chip.

Some nodes recorded abnormally high temperature readings above
40 ◦C when other nodes reported temperatures between 5 and 25 ◦C. This
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allowed to single out nodes with incorrect readings. Wrong sensor read-
ings have been highly correlated to low battery voltage similar to the re-
port for the Structural Health Monitoring. This should have not been sur-
prising as the used sensor nodes, Mica2Dot motes, did not employ a volt-
age converter and the battery voltage fell below the threshold for proper
operation over time. Also in this project, two weeks of data were lost due
to a gateway outage. The data stored in the internal flash chip was com-
plete but did not cover the whole deployment. Although it was estimated
that it would suffice, initial tests, calibration, and a longer deployment
than initially envisioned led to a full storage after about four weeks.

2.1.6. LOFAR-agro

A detailed report on deployment problems was aptly called “LOFAR-agro
- Murphy Loves Potatoes” [47]. The LOFAR-agro project is aimed at
precision agriculture. In summer 2005, after two field trials, 110 sensor
nodes with sensors for temperature and relative humidity were deployed
in a potato field just after potatoes have been planted. The field trials and
the final deployment suffered from a long list of problems.

Similar to the oceanography project, an accidental commit to the source
code revision control system led to a partially working MAC protocol be-
ing installed on the sensor nodes just before the second field trial. Later,
update code stored in the nodes’ external flash memory caused a conti-
nous network code distribution which led to high network congestion, a
low data rate and thus the depletion of all nodes’ batteries within 4 days.
The routing and the MAC component used different fixed size neighbor
tables. In the dense deployment, where a node might have up to 30 neigh-
bors, not all neighborhood information could be stored, which caused two
types of faulty behavior. Firstly, the routing component of most nodes did
not send packets to the gateway although the link would have been opti-
mal. Secondly, as both components used different neighbor tables, pack-
ets got dropped by the MAC-layer when the next hop destination was not
in its neighbor table. To allow nodes to recover from software crashes, a
watchdog timer was used. Either due to actual program crashes or due to
a malfunction of the watchdog handling, most nodes rebooted every two
to six hours. This did not only cause data loss for the affected node but
also led to network instability as the entries for rebooting nodes are re-
moved by their neighbors. As in other projects, the LOFAR-agro project
suffered from gateway outages. In this case, a miscalculation of the power
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requirements for the solar-powered gateway caused a regular outage in the
morning when the backup battery was depleted before the sun rises and
the solar cells provided enough power again. The sensor nodes were pro-
grammed to also store their readings in the external flash memory, but due
to a small bug, even this fallback failed and no data was recovered after
the deployment. In total, the 97 nodes which ran for 3 weeks did deliver
2% of the measured data.

2.1.7. Volcano

In August 2005, a sensor network of 16 sensor nodes has been deployed
on the volcano Reventador in Ecuador [86]. Each node samples seismic
and acoustic data at 100 Hz. If a node detects a local seismic event, it
notifies a base stations. If 30% of the nodes report an event in parallel, the
complete data set of the last minute is fetched from all nodes in a reliable
manner. Instead of immediately reporting all data, which would lead to
massive network congestion and packet collisions with current low-power
MAC protocols, the nodes are polled by the base station sequentially.

The first problem encountered was a bug in the clock component which
would occasionally report a bogus time. This led to a failure of the time
synchronization mechanism. The team tried to reboot the network but
this trigged another bug, which led to nodes continuously rebooting. Af-
ter manual reprogramming of the nodes, the network was working quite
reliably. A median event yield of 68 % was reported, which means that
for detected events 68% of the data was received. As with other deploy-
ments, data was lost due to power outage at the base station. During the
deployment, only a single node stopped reporting data and this was later
confirmed to be due to a broken antenna.

2.1.8. Soil Ecology

To monitor the soil ecology in an urban forest environment, ten sensor
nodes have been deployed near John Hopkins University in the autumn of
2005. The nodes have been equipped with manually calibrated tempera-
ture and soil moisture sensors and packed into a plastic waterproof casing.
The sensor application was designed to store all sensor readings in the lo-
cal flash memory which had to be read out every two weeks to guarantee
100% sensor data yield in combination with a reliable data transfer proto-
col.
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However, due to an unexpected hardware behavior, a write to the flash
memory could fail and an affected node would then stop recording data.
Further parts of the data have been lost due to human errors while down-
loading the data to a laptop computer. Similar to previous deployments,
the software on the nodes had to be updated and for this the waterproof
cases had to be re-opened several times which led to water leakage in
some cases.

2.1.9. SensorScope

Sensorscope [4, 5] is a system for environmental monitoring with many
deployments across Switzerland. Instead of accuracy of individual sen-
sors, the system design strives for generating models by high spatial den-
sity of inexpensive sensing stations. Each station is powered by a so-
lar cell, which is mounted onto a flagstaff alongside the sensors and a
TinyNode. Different environmental parameters are captured and gath-
ered for later analysis. Most deployments are in the range of days to a
couple of months. The environments are typically harsh, especially in
the high mountain terrain deployments, e.g., on the Grand St. Bernard
pass. Similar to the report of the LOFAR-agro project, the authors pro-
vide a detailed overview of issues and lessons learned in a comprehensive
guide [4]. They again stress the importance of adequate packaging of
the sensor nodes, and especially the connectors. With respect to these
particular harsh environments, substantial temperature variations showed
considerable impact on the clock drift. However, while the clock drift
typically affects the time synchronization of the network, in this case,
it induced a loss of synchronization of the serial interface between the
sink node and the GPRS modem. In an indoor test deployment, the au-
thors report on packet loss from interference where the interfering source
could not be determined. Finally, a change on the querying interval of the
wind speed sensor, when moving from the lab to the deployment, caused
counter over?ows, which rendered all sensor readings useless.

2.2. Analysis

This section contains a classification of the problems typically found dur-
ing deployment according to our own experience and as surveyed in the
previous section. Here, a problem is essentially defined as a behavior of a
set of nodes that is not compliant with the specification.
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We classify problems according to the number of nodes involved into
four classes: node problems that involve only a single node, link prob-
lems that involve two neighboring nodes and the wireless link between
them, path problems that involve three or more nodes and a multi-hop
path formed by them, and global problems that are properties of the net-
work as a whole.

2.2.1. Node Problems

A common node problem is node death due to energy depletion either
caused by “normal” battery discharge or due to short circuits. An in-
creased amount of network traffic, compared to initial calculations, led
to an early battery depletion due to unexpected overhearing (Great Duck
Island [74], section 2.1.1) or repeated network floods (LOFAR-agro [47],
section 2.1.6). In [75] (Great Duck Island), a low-resistance path between
the power supply terminals was created by water permeating a capacitive
humidity sensor, resulting in early battery depletion and abnormally small
or large sensor readings.

Low batteries often do not cause a fail-stop behavior of the sensor
nodes. Rather, nodes may show random behavior at certain low battery
voltages. As reported in [80] (Redwood Tree, section 2.1.5), for example,
wrong sensor readings have been observed at low battery voltage.

Software bugs often result in node reboots, for example, due to failure
to restart the watchdog timer of the micro controller (LOFAR-agro [47]).
We also observed software bugs resulting in hanging or killed threads,
such that only part of the sensor node software continued to operate.

Sink nodes act as gateways between a sensor network and the Internet.
In many applications they store and forward data collected by the sensor
network to a background infrastructure. Hence, problems affecting sink
nodes or the gateway must be promptly detected to limit the impact of
data loss (GlacsWeb [57], Great Duck Island [74], Redwood Tree [80]).

2.2.2. Link Problems

Field experiments (e.g., [27, 89]) demonstrated a very high variability of
link quality both across time and space resulting in temporary link failures
and variable amounts of message loss.

Network congestion due to traffic bursts is another source of message
loss. In [74](Great Duck Island), for example, a median message loss
of 30% is reported for a single-hop network. Excessive levels of traffic
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bursts have been caused by accidental synchronization of transmissions
by multiple senders, for example, due to inappropriate design of the MAC
layer [64] or by repeated network floods [47](LOFAR-agro). If message
loss is compensated for by retransmissions, a high latency may be ob-
served until a message eventually arrives at the destination.

Most sensor network protocols require each node in the sensor network
to discover and maintain a set of network neighbors (often implemented
by broadcasting HELLO messages containing the sender address). A
node with no neighbors presents a problem as it is isolated and cannot
communicate. Also, neighbor oscillation is problematic [64], where a
node experiences frequent changes of its set of neighbors.

A common issue in wireless communication are asymmetric links,
where communication between a pair of nodes is only possible in one di-
rection. In a field experiment [27] between 5-15% of all links have been
observed to be asymmetric, with lower transmission power and longer
node distance resulting in more asymmetric links. If not properly con-
sidered, asymmetric links may result in fake neighbors (received HELLO
from a neighbor but cannot send any data to it) and broken data communi-
cation (can send data to neighbor, but cannot receive acknowledgments).

Another issue is the physical length of a link. Even though if two nodes
are very close together, they may not be able to establish a link (missing
short links). On the other hand, two nodes that are very far away from
each other (well beyond the nominal communication range of a node),
may be able to communicate (unexpected long links). Experiments in [27]
show that at low transmit power about 1% of all links are twice as long
as the nominal communication range. These link characteristics make
node placement highly non-trivial as the signal propagation characteris-
tics of the real-world setting have to be considered [12] to obtain a well-
connected network.

Most sensor network MAC protocols achieve energy efficiency by
scheduling communication times and turning the radio module off in-
between. Clock drift or repeated failures to re-synchronize the communi-
cation phase may result in failures to deliver data as nodes are not ready
to receive when others are sending. In [53], for example, excessive phase
skew has been observed (about two orders of magnitude larger than the
drift of the oscillator).



2.2. Analysis 15

2.2.3. Path Problems

Many sensor network applications rely on the ability to relay information
across multiple nodes along a multi-hop path. In particular, most sensor
applications include one or more sink nodes that disseminate queries or
other tasking information to sensor nodes and sensor nodes deliver results
back to the sink. Here, it is important that a path exists from a sink to each
sensor node, and from each sensor node to a sink. Note that information
may be changed as it is traversing such a path, for example due to data
aggregation. Two common problems in such applications are hence bad
path to sink and bad path to node. In [47], for example, selfish nodes
have been observed that did not forward received traffic, but succeeded in
sending locally generated messages.

Since a path consists of a sequence of links, the former inherits many
of the possible problems from the latter such as asymmetric paths, high
latency, path oscillations, and high message loss. In [74](Great Duck
Island), for example, a total message loss of about 58% was observed
across a multi-hop network.

Finally, routing loops are a common problem, since frequent node and
communication failures can easily lead to inconsistent paths if the soft-
ware isn’t properly prepared to deal with these cases. Directed Diffu-
sion [37], for example, uses a data cache to suppress previously seen data
packets to prevent routing loops. If a node reboots, the data cache is
deleted and loops may be created [71].

2.2.4. Global Problems

In addition to the above problems which can be attributed to a certain
subset of nodes, there are also some problems which are global properties
of a network. Several of these are failures to meet certain application-
defined quality-of-service properties. These include low data yield, high
reporting latency, and short network lifetime [77].

Low data yield means that the network delivers an insufficient amount
of information (e.g., incomplete sensor time series). In [80](Redwood
Tree), for example, a total data yield of only about 20-30% is reported.
This problem is related to message loss as discussed above, but may be
caused by other problems such as a node crashing before buffered infor-
mation could be forwarded, buffer overflows, etc. One specific reason
for a low data yield is a partitioned network, where a set of nodes is not
connected to the sink.
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Reporting latency refers to the amount of time that elapses between the
occurrence of a physical event and that event being reported by the sensor
network to the observer. This is obviously related to the path latency, but
as a report often involves the output of many sensor nodes, the reporting
latency results from a complex interaction within a large portion of the
network.

The lifetime of a sensor network typically ends when the network fails
to cover a given physical space sufficiently with live nodes that are able
to report observations to the observer. The network lifetime is obviously
related to the lifetime of individual nodes, but includes also other aspects.
For example, the death of certain nodes may partition the network such
that even though coverage is still provided, nodes can no longer report
data to the observer.

2.3. Discussion

Orthogonal to the classification in the previous section, the deployment
problems in the surveyed literature fall into two categories: implementa-
tion and design defects. A majority of the reported problems have been
caused by defects in the realized hardware and software, and can be fixed
after they have be detected, analyzed, and understood. Here, inspection
tools allow to find the defects quicker.

The two most underestimated problems in the surveyed sensor network
deployments have been the water-proof packaging of the sensor nodes
required for an outside deployment and the provision of a reliable base
station which records sensor data and has to run for months and years.
This suggests that sensor nodes should be sold together with appropri-
ate packaging. However, due to the variety of sensors used for different
applications, a common casing is often not practicable or possible. The
provision of a reliable base station is not specific to wireless sensor net-
works and mostly depends on a reliable power supply and software.

The packet collisions and network congestions caused by traffic bursts
are an example for problems caused by improper design, in this case, by
an unsuitable medium access control design. In the case of the volcano
deployment (see section 2.1.7), the application designer was able to avoid
packet collisions by serializing the data transfer from the nodes to the
base station. After an event was detected, the base station polls each node
individually for its data. However, this constitutes an uncessary “work
around” as the MAC layer should be able to handle this.
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To address both kinds of problems, we will argue in the first part of this
thesis that a majority of deployment problems can be detected by passive
observation of the exchanged radio messages, which we call passive in-
spection. Then, in the second part, we will present our work on collision-
free medium access protocols which can handle traffic bursts caused by
event-triggered applications.
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Part I.

Fault Detection





3. Network Inspection

Deployment of sensor networks in real-world settings is typically a labor-
intensive and cumbersome task, as we have shown in the previous chapter.

During the development of a sensor networks application, an array of
tools such as simulation, emulation, and testbed is used in the lab. How-
ever, these tools cannot applied to an already deployed network. Other
tools that have been designed to query the state of a deployed network
consume scarce resources and require to modify the nodes.

To deal with these limitations, we propose a passive approach for sensor
network inspection by overhearing and analyzing sensor network traffic
to infer the existence and location of typical problems encountered during
deployment.

In this chapter, we first provide an overview on available tools and con-
cepts to help in the development of sensor networks and discuss their
shortcomings with respect to the inspection of already deployed networks.
Next, we propose a set of requirements which a useful tool to inspect de-
ployed sensor networks has to fulfill. Finally, we present our “passive
inspection” approach and show that it on one hand meets the stated re-
quirements and on the other hand allows to detect most of the problems
listed in section 2.2.

3.1. Related Work

This section presents and discusses existing tools and methods to help in
the development and deployment of wireless sensor networks and related
areas such as wireless LANs. We first discuss tools which are used before
the actual deployment of sensor networks. Our main focus is, however,
on tools that can be used for already deployed networks. In addition, we
discuss related tools for analysis of network traces for wireless LAN, and
for monitoring and debugging of distributed systems.
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3.1.1. Simulation and Testbeds

Simulations and testbeds are a valuable tool as they support the develop-
ment and test of sensor networks before deployment in the field.

Simulation is commonly used for the evaluation of new network pro-
tocols and algorithms, and it is also used for wireless sensor networks
In the simulator, a complete network of sensor nodes together with a ra-
dio model which controls the success of packet transmission is run and
analyzed. The abstraction level of simulation tools vary from high-level
discrete event simulation (with actions like “send packet”, and “receive
packet”) down to accurate instruction level simulation of a particular sen-
sor node, e.g., with the AVRORA simulator [78]. Simulation tools with a
high abstraction level, e.g., general purpose simulators such as ns-2 [10]
or OMNet++ [83] and wireless sensor network specific simulators, e.g.,
SENS [73] require to implement applications in the context of their pro-
gramming framework. In contrast, other sensor network simulators like
TOSSIM [49] and EmTOS [29] allow to simulate a network of TinyOS
sensor nodes as used by most of the projects in section 2.2

Testbeds for wireless sensor network such as MoteLab [87], Kansai
[25], Mirage [19] or Twist [31] allow to test sensor network applications
in a fixed setup, mostly in academic office buildings. They consists of
a large number of sensor nodes that are provided with permanent power
supply and a back-channel for logging and control. The testbed infras-
tructure allows for nodes to be programmed and controlled (on/off, re-
boot) and provides a wired back-channel from each node, such that sensor
nodes can be instrumented to send status information to an observer. As
the behavior of a node and particularly its radio module is not simulated,
testbeds provide a far more realistic behavior than simulations, but do not
scale to large numbers of nodes.

Hybrid Simulation integrates simulation and testbed concepts into a
common framework. In EmStar [28], the radio communication between
sensor nodes can either be simulated using various radio models or han-
dled by real sensor nodes in a testbed. Hence, the sensor nodes in an
EmStar testbed need instrumentation and a wired back-channel. Each of
the nodes can either act as an autonomous testbed node or only provide
an interface to its radio module to be used by an simulated node.
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In contrast to EmStar, a “simulation-based augmented reality system”
[85] allows to simulate a network of both simulated and real nodes. In
such a mixed topology, so-called “super nodes”, which consist of a real
node that are attached to the simulator, are present in both the simulated
and the real wireless network. By this, the behavior of real nodes in a
large (simulated) network can be studied in detail.

Deployment-Support Network A second network which helps with the
deployment of wireless sensor nodes was proposed in [21]. In this ap-
proach, each sensor node is connected physically to a deployment-support
node which provides the functionality of a testbed but without a fixed
network infrastructure. Instead, the reliable Bluetooth Scatternet of the
BTnodes [95] provides a wireless back-channel and enables remote con-
trol of the sensor nodes. This effectively creates a wireless testbed and
allows the sensor nodes to be deployed without additional restrictions.

Discussion While simulation and lab testbeds are helpful tools to test
an application prior to deployment, they fail to provide realistic environ-
mental models (e.g., regarding radio signal propagation, sensor stimuli,
chemical/mechanical strain on sensor nodes). Hence, environmental ef-
fects in real deployments often trigger bugs or degrade performance in a
way that could not be observed during pre-deployment testing.

To track down such problems, a developer needs to inspect the state of
network and nodes. While this is easily possible during simulation and
experiments on lab testbeds (wired backchannel from every node), access
to network and node states is very constrained after deployment.

Although the deployment-support network approach allows to inspect a
deployed sensor network, the fact that sensor nodes need to be physically
wired to DSN nodes (requiring as many DSN nodes as there are sensor
nodes) limits this approach significantly. Also, node software must be
instrumented to be used with wired or wireless testbeds as discussed in
the following section.

3.1.2. Active Inspection

Current practice to inspect a deployed sensor network requires active in-
strumentation of sensor nodes with monitoring software and monitoring
traffic is sent in-band with the sensor network traffic to the sink. The
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most suitable tools for deployed networks are Nucleus, Sympathy, and
Memento.

Nucleus [79] is a management system for sensor networks. It allows
to query sensor node attributes over the network and provides a logging
framework that delivers important local events to the sink. By querying
for example the neighbor table or the state of the routing module, the
nodes’ networking behavior can be monitored and inspected in a live set-
ting.

Sympathy [63] is a system for the detection and debugging of faults
based on statistical data collected by individual nodes and forwarded to
the sink node. It supports a fixed set of statistical metrics related to net-
working and makes use of the neighbor and routing tables as well as the
number of packets received (correctly vs. with bit-errors) and transmitted.
In case of a fault, e.g., if no data is received for a node in a certain period
of time, the system uses a heuristic decision tree to infer the most likely
root cause of the fault.

Memento [70] focusses on the efficient monitoring of nodes’ state and
in-network failure detection for dead nodes and network partitions. The
failures detection algorithm is designed to be robust to packet loss. Be-
sides node dead, other binary states are reported, e.g., low battery and
network congested. Compared to Sympathy, it is less flexible but it re-
duces the network traffic for monitoring significantly.

Discussion The main advantage of active inspection is that it can pro-
vide accurate access to the internal state of wireless sensor nodes in their
real-world deployment environment. Unfortunately, however, the active
inspection approach has several fundamental limitations. Firstly, prob-
lems in the sensor network (e.g., partitions, message loss) also affect
the monitoring mechanism, thus reducing the desired benefit. Secondly,
scarce sensor network resources (energy, CPU cycles, memory, network
bandwidth) are used for inspection. In Sympathy, for example, up to 30%
of the network bandwidth is used for monitoring traffic. Thirdly, the mon-
itoring infrastructure is tightly interwoven with the application. Hence,
adding/removing instrumentation may change the application behavior in
subtle ways, causing probe effects. As reported in the previous chapter,
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changes to a deployed network should be avoided, if possible, to reduce
the risk of failure of the network. Also, it is non-trivial to adopt the in-
strumentation mechanism to different applications or sensor network op-
erating systems. Memento, for example, assumes a certain tree routing
protocol being used by the application and reuses that protocol for deliv-
ering monitoring traffic.

3.1.3. Network Sniffing

Passive observation by means of packet sniffing has been applied to wire-
less (and wired) LANs before [33].

Recently, four systems for passive analysis of WLANs and sensor net-
works have been proposed, namely WIT and JIGSAW for WLAN, and
STNS and LiveNet for sensor networks. JIGSAW processes the traces of
multiple WLAN sniffer nodes on-line whereas the other systems record
traces collected by disconnected nodes which are later merged and an-
alyzed offline. For the merging and time synchronization of separate
traces, all systems rely on messages being overheard by two or more snif-
fer nodes.

WIT [52] follows an offline approach, merging redundant traces of net-
work traffic collected by distributed sniffers. After merging packet traces
of all sniffers, WIT makes use of a detailed model of the 802.11 MAC
[107] to infer which packets have actually been received by the respective
destination nodes and derives different network performance metrics.

JIGSAW [18], in contrast to WIT, focuses on online inference of link-
layer and transport-layer connections and their characteristics for larger
networks based on a detailed model of the 802.11 MAC. It utilizes time
synchronization on the sniffer nodes to reduce the computation cost for
merging the traces. In [18], the authors report on a 150 node sniffer net-
work which generated 2.7 million events in a day and which JIGSAW is
able to merge, synchronize and analyze in real time on a single server.

SNTS: Sensor Network Troubleshooting Suite [41] uses distributed snif-
fer sensor nodes that record overheard traffic in local Flash storage. After
an experiment, the nodes are collected and the packet traces are transfered
to a central server. In contrast to WIT and JIGSAW, where the underly-
ing 802.11 packet format is standardized, SNTS decodes the raw packet
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dumps based on a text file that describes the packet format. As an exam-
ple for a possible processing of the packet traces, the authors employed
machine-learning algorithms to identify bad sequences of events, which
lead to an observed bug in the protocol/system, allowing them to fix the
problem.

LiveNet [69] is a sensor network tool for network dynamics analysis. It
uses passive sniffer nodes that forward overheard packets on the serial
port to a connected laptop computer or stores them locally in the flash
memory. Using an out-of-band mechanism, traces are collected on a cen-
tral server and merged based on the WIT approach. The main analysis
described in [69] is the reconstruction of the spanning tree routing paths
using statistical methods.

Discussion Sensor networks differ substantially from wireless LANs.
While typical wireless LANs are single-hop networks that can be ob-
served with one or few sniffers, sensor networks are typically multi-hop
networks. As sensor networks do not have standardized packet formats,
an approach similar to the one employed by SNTS, which uses a packet
description file, is favorable. Also, many of the problems encountered
during deployment of sensor networks are not present in WLANs.

In general, offline approaches using sniffer nodes which log packets lo-
cally are cumbersome to use for deployed sensor networks, as they would
have to be continuously placed within the network and later recollected to
get access to the packet logs.

Finally, the use cases of the described works are rather specific and the
proposed tools cannot easily be adapted to other protocols and applica-
tions, or used as general inspection tools.

3.1.4. Distributed Systems

In the more general context of management and debugging of distributed
systems, a large body of work exists. However, here, we will focus on
classes of work which are related to the inspection of deployed sensor
networks.

Performance One such class of closely related work is performance de-
bugging of distributed systems (e.g., [1,3]) where message traces are used
to reconstruct causality paths and their latencies. Although [1] advocates
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passive monitoring to collect the traces of distributed systems, all experi-
ments are performed by tagging client calls with a request ID for the used
J2EE components. Both [1, 3] are based on LAN infrastructure and as-
sume that message latency is exclusively caused by the inspected software
components and not by concurrent network traffic.

Network Traffic Analysis A number of data stream management systems
have been specifically developed for network traffic analysis, e.g. Gi-
gascope [20] and Tribeca [72]. Data streams of networking events are
processed online based on queries defined in a SQL-like language [20],
or by procedural code [72]. The main focus of this work is on processing
speed of the queries to allow monitoring even corporate networks.

Discussion The principal idea of those approaches, namely online pro-
cessing of network traces, tends to support wireless sensor networks in
combination with network sniffing very well. However, while trying to
create queries which would allow to detect most of the the problems pre-
sented in section 2.2, we found it difficult, if not impossible, to express
the required indicators, e.g., to test for a routing loop, using the SQL vari-
ants of these systems. Although specifying queries using procedural code
allows for more flexible processing, extra care has to be taken to allow
for re-use of existing queries. Therefore, a modular approach which al-
lows to combine existing queries with new ones, preferably specified in a
procedural language, would be beneficial.

3.2. Problem Statement

In the previous section, we have surveyed existing work with respect to
the inspection of wireless sensor networks. Based on our observations,
we outline the requirements for a useful inspection tool in this section.

3.2.1. Online Analysis

An effective inspection tool has to work and provide insight into the de-
ployed sensor network in a (near) real-time fashion. Otherwise, if network
state information is not provided in a timely manner, the person deploy-
ing the network might not be able to learn about potential problems in the
network before she might have to leave the deployment area.



28 Chapter 3. Network Inspection

3.2.2. No Instrumentation of WSN Nodes

To avoid problems in a deployed WSN, it is desirable to offer an inspec-
tion approach that does not require the sensor nodes to be altered, neither
in hardware nor in software, to prevent problems resulting from changes
on the sensor nodes to manifest. For example, firmware updates over-the-
air may fail and leave the network in an inconsistent state, while manual
updates often require the sensor node cases to be opened, which might
harm the nodes’ waterproofing. Clearly, it is beneficial, if no extra re-
sources on the sensor nodes are required for the inspection tool. Hence,
no program code should be added. By this, no additional memory is used,
no radio traffic is generated, and potential race conditions due to the added
code are avoided.

3.2.3. Multi-Hop Networks

Routing in sensor networks is a major research area and multi-hop net-
works already have be used in real deployments as shown in section 2.1.
Because of this, the inspection tool also has to support multi-hop net-
works.

3.2.4. Flexibility

Paramount to the previous requirements is the assumption that an inspec-
tion tool for sensor networks has to be quite flexible, otherwise it will not
be used. Rather than being limited to a single sensor network OS (e.g.,
TinyOS) and its default network stack, it should be applicable to all kinds
of sensor node platforms and networking implementations. As both sen-
sor network applications and routing protocols may evolve over time, the
inspection tools should be easy to re-configure and update. Furthermore,
the inspection tool should support the detection of a wide range of prob-
lems and not be focused on a specific one.

3.3. Passive Inspection of WSN

In this section, we first present our approach for the passive inspection of
deployed wireless sensor networks which fulfills the requirements for a
useful inspection tool. Then, we demonstrate how the problems in section
2.2 can be detected based on overheard network traffic.
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Figure 3.1.: A deployment-support network (rectangular nodes) is a physical overlay
network that overhears sensor network (round nodes) traffic and delivers it
to a sink using a second radio.

3.3.1. Basic Approach

We advocate to inspect deployed sensor networks using a system that al-
lows to capture the radio traffic on a network wide scale, combine the
overhead packets on a central server and provide a flexible framework to
define detectors that operate on the captured packets and uncover abnor-
mal behavior.

To overhear the network traffic of a larger multi-hop sensor network,
we make use of a so-called deployment support network (DSN) [8]: a
wireless network that is temporarily installed alongside the actual sensor
network during the deployment process as depicted in figure 3.1. The
DSN can be removed after the satisfactory operation of the sensor net-
work has been asserted. Each DSN node provides two different radio
front-ends. The first radio is used to overhear the traffic of the sensor net-
work, while the second radio is used to form a robust and high-bandwidth
network among the DSN nodes to reliably collect overheard packets. The
overheard stream of packets is then analyzed to infer and report problems
soon after their occurrence.

One might argue that the deployment of the DSN may be as difficult and
error-prone as deploying the sensor network itself. However, as the DSN
is only used to monitor the network and detect faults for short periods
of time (in the order of days), energy and resource constraints are not
a primary issue here. This enables the use of more reliable networking
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technologies such as Bluetooth or Wireless LAN. For example, Bluetooth
has been designed as a cable replacement and employs techniques such as
frequency hopping and forward error correction to provide highly reliable
data transmission.

3.3.2. Indicators

An indicator is an observable behavior of a sensor network that hints (in
the sense of a heuristic) the existence of one of the problems discussed
in section 2.2. In the context of passive inspection, we are particularly
interested in indicators that can be observed purely by overhearing the
traffic of the sensor network as this does not require any instrumentation
of the sensor nodes. We call such indicators passive. The structure of
this section mirrors that of the problem analysis in section 2.2, discussing
passive indicators for the problems outlined there.

In fact, passive indicators heavily depend on the protocols used in the
sensor network. However, there are a number of protocol elements that
are commonly found in sensor network applications that can be exploited.
For example, many protocols exchange regular beacon messages, all
packets need to contain the per-hop destination MAC address, some pack-
ets also contain the per-hop source MAC address to identify the sender of
the message, and some packets do contain a monotonically increasing se-
quence number.

Node Problems

Node death Many commonly used MAC and routing protocols (e.g.,
[30, 89]) require every node to transmit a beacon message at regular in-
tervals, in particular for the purpose of time synchronization and neigh-
borhood management. Failure to transmit any such message for a certain
amount of time (typically a multiple of the inter-beacon time) is an indi-
cator for node death. Also, node death can be assumed if a node is no
longer considered a neighbor by any other node (see the next subsection
on Link Problems).

Node reboot When a node reboots, its sequence number counter will
be reset to an initial value (typically zero). Hence, the sequence number
contained in messages sent by the node will jump to a smaller value after
a reboot with high probability even in case of lost messages, which can
serve as an indicator for reboot. Note that a reboot cannot be detected
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this way when the node crashes just before the sequence number counter
would wrap around to its initial value. However, a simple fix would be to
set the sequence counter to some value other than the initial value at wrap-
around, such that a wrap-around could be distinguished from a reboot.

Wrong sensor readings These can only be passively observed when ap-
plication messages contain raw sensor readings. The decision whether a
certain sensor reading is wrong or not strongly depends on the type of the
particular application. One could for example exploit the fact that sen-
sor values of nearby nodes are correlated in many applications. For other
applications, the range of valid sensor values might be known a priori.

Link Problems

Discovering neighbors Depending on node density, a node in a sensor
network may have a large number of other nodes within communication
range with largely varying link quality. Most multi-hop routing protocols
maintain a small set of neighbors with good link quality. Unfortunately,
the set of neighbors chosen by a node cannot be passively observed di-
rectly. However, there are two ways to learn about the neighbors of a
node. Firstly, by overhearing the destination addresses of messages a node
sends we can learn a subset of the neighbors. The second approach ex-
ploits link advertisements sent by nodes to estimate link quality. Since
links are often asymmetric in sensor networks, link quality estimation
must consider both directions of a link. As a sensor node can only mea-
sure the quality of one direction of a link directly (e.g., by means of the
fraction of beacon messages being received), nodes broadcast link adver-
tisement messages containing the addresses and quality of the incoming
links from their neighbors. These messages can be passively observed to
obtain information about the neighbors of a node and the quality of the
associated link.

Knowing the neighbors of a node, we can detect neighbor oscillation
and isolated nodes. If the locations of nodes are known, we can also
discover missing short links and unexpected long links.

Message loss Again, it is not directly possible to decide whether or not
a node has received a message by means of passive observation. How-
ever, in many situations reception of a message by a node does trigger
the transmission of another message by that node (e.g., acknowledgment,



32 Chapter 3. Network Inspection

forwarding a message to the next hop). If such a property exists, failure
to overhear the second message within a certain amount of time after the
first message has been overheard is an indicator for message loss. Note
that with this approach, it is not possible to tell apart message loss from
nodes that receive but fail to forward messages. Another issue with this
approach is that the DSN may fail to overhear the second message al-
though it has actually been sent. In this case, one would take the wrong
conclusion that message loss occurred. Similarly, even if the messages
contain sequence numbers and it can be confirmed that a node did sent a
message (by overhearing the next message), it is still not possible to dis-
tinguish the forwarding of a message from the sending of a new message.

Latency To estimate the latency of a link, the same approach as for de-
tecting message loss is used. The time elapsed between overhearing the
causal and the consequential message gives an estimate of the latency,
which includes processing delays in the node.

Congestion The level of link congestion (i.e., frequency of collisions)
perceived by a sensor node cannot be passively observed. However, the
level of congestion experienced by a deployment support node overhear-
ing the traffic that is being addressed to this sensor node can be used as a
rough approximation.

Phase skew Again we can exploit the existence of beacon messages that
are sent at regular time intervals. A change of the time difference between
receipt of beacons from neighboring nodes indicates phase drift. Aver-
aging over multiple beacon intervals can help eliminate variable delays
introduced by, e.g., medium access.

Path Problems

Discovering paths In order to discover the routing path between two
sensor nodes (e.g., from node to sink and from sink to node), we would
need access to the routing information maintained by sensor nodes. As for
the neighbor table, this is not directly possible with passive observation.
There are two possible ways around. Firstly, we can reconstruct a path
by tracking a multi-hop message as it travels from source to destination.
Using the per-hop sender and receiver addresses of overheard messages,
we can reconstruct multi-hop paths. However, for this we need a way to
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decide whether two messages belong to the same multi-hop transmission.
This is easily possible, if the message payload contains a unique identifier
such as an end-to-end sequence number. Also, if the message payload
is relayed unmodified along the path, we can compare packet contents to
decide (with some probability) whether two packets belong to the same
multi-hop message transmission. Things get more difficult if message
contents are changed along the path, for example due to in-network data
aggregation. In this case, one might be able to exploit temporal correla-
tions between messages, assuming that a node will forward a (modified)
message soon after it has received the original message.

Another issue is that some protocols do not include the per-hop source
address in messages as it is not needed due to the lack of acknowledg-
ments. For example, TinyOS 1.x [106] does not provide a field for the per-
hop source address in its standard packet header. One possible heuristic
to infer the missing per-hop source address nonetheless exploits the fact
that the per-hop source address of a forwarded packet equals the per-hop
destination address of the original packet.

Secondly, we can overhear routing messages (if there exist any) to dis-
cover paths. While these messages typically indicate that a node has es-
tablished a route, it is often impossible to reconstruct the route. To con-
struct a spanning tree, for example, it is sufficient that nodes broadcast
messages containing their address and distance to the sink, but not their
parent in the tree. The latter would be necessary to reconstruct the span-
ning tree from overheard traffic.

If paths can be discovered, we can also easily detect path oscillations
and find missing paths from nodes to sink and vice versa. Using similar
techniques as for links, we can estimate message loss and latency along a
path.

Loops Like for path discovery, we need a mechanism to decide whether
or not two packets belong to the same multi-hop message exchange. If
such a mechanism exists, a message that is addressed to a node that pre-
viously sent the same message indicates a routing loop. Alternatively,
discovered paths can be directly examined for loops.

Global Problems

As discussed in section 2.2, global problems such as low data yield, high
reporting latency, or insufficient network lifetime are typically due to a
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combination of different node, link, and path problems. Hence, the indi-
cators for the latter problems discussed above can be considered as indi-
cators for these global problems.

Partitions Knowledge of the routing paths as discussed above allows to
obtain an approximate view on the routing topology and to detect network
partitions.

3.4. Summary

The presented passive inspection approach removes the limitations of ac-
tive inspection: no instrumentation of sensor nodes is required, no sensor
network resources are used, and networking problems in the deployed
WSN do not affect the inspection.

The inspection mechanism is completely separated from the applica-
tion. Thus, it can be more easily adopted to different applications and
added or removed without altering sensor network behavior. Even prob-
lems in multihop networks can be detected as the DSN covers the whole
network. Online analysis (as opposed to long periods of data collection
followed by offline analysis) contributes to a more effective deployment
process, as it allows an engineer to go out and study affected nodes while
a problem is still present. Also, problems can be fixed in an incremental
fashion as they occur, thus reducing the chance for complex aftereffects.

Besides these advantages, a number of challenges need to be addressed
when implementing passive inspection:

Incomplete information

The DSN may fail to overhear some packets and messages might not con-
tain all information that is needed to infer a problem. To support ro-
bust problem detection nonetheless, appropriate loss-tolerant detectors are
needed.

Flexibility

There is no established protocol stack for sensor networks – a large variety
of radio configurations, MAC, routing, and application layer protocols
are in use. To support this open protocol space, a packet capturer that
works with a large variety of MAC protocols and radio configurations is
required.
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Reliability

The DSN should provide reliable wireless communication. For this, an
established wireless technology such as Bluetooth, which has been de-
signed as a cable replacement, employing frequency hopping and other
techniques to minimize loss, or wireless LAN should be used.
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4. SNIF: Sensor Network
Inspection Framework

The previous chapter motivated the need for passive inspection. This
chapter will focus on a concrete instance of this approach called Sensor
Network Inspection Framework (SNIF), which is – as the name suggests
– intended as a widely applicable framework for passive inspection.

We first present SNIF’s architecture and then explain the framework
components in more detail. For a concrete application, we evaluate SNIF
in a simulation framework in terms of accuracy and latency.

4.1. Architectural Overview

In this section, we present the architecture of SNIF as depicted in figure
4.1. The network traffic of the wireless sensor network is overheard by a
distributed sniffer based on a Deployment Support Network as illustrated
in figure 3.1. Each DSN sniffer node captures WSN traffic with one radio
receiver and relays the captured raw packets over the second radio. In
order to correctly order packets received by different sniffer nodes, the
reception time of each packet has to be recorded, which requires the DSN
nodes to be time synchronized. The DSN nodes form a collection tree and
forward all captured packets to a laptop computer running the SNIF sink.
On the SNIF sink, the overheard raw packets are decoded by the packet
decoder. Then, the packets are processed by a data stream processor to
detect the root causes of failures. The data stream processor makes use
WSN-specific operators that implement passive indicators such as those
described in section 3.3.2. Finally, information on the state of individual
nodes and the network can be accessed by the person who deploys the
WSN via a graphical user interface.

As shown in figure 4.1, all parts of the system can be configured by the
user. Sniffer nodes and the packet decoder are configured by a text file,
the data stream processor and the root cause analysis are configured by
Java code.
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Figure 4.1.: SNIF architecture with parts of an example configuration to detect node
reboots, dead and isolated nodes.

For the realization of the distributed sniffer, we make use of the BTnode
platform, which we describe in section 4.2. To forward overheard WSN
traffic in a reliable manner, the Bluetooth radio is used. However, Blue-
tooth does not provide time synchronization as a service. Therefore, we
developed a new time synchronization technique for Bluetooth networks
that we present in section 4.3. In section 4.4, we present our generic dis-
tributed sniffer based on the time synchronized DSN. All parts beside the
distributed sniffer are implemented in Java and run on a laptop computer
or a common PC. We presented these components in detail in sections 4.5
until 4.8.
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4.2. Deployment Support Network

The distribued sniffer builds upon a Deployment Support Network to
overhear and forward WSN traffic to the SNIF sink. In our implemen-
tation, we chose the BTnode platform as the base of our distributed snif-
fer, as it already provides both required communication primitives for the
distributed sniffer, namely network broadcast to disseminate the sniffer
configuration and route-to-sink to collect overheard traffic, and provides
two independent radio interfaces.

The BTnode platform has been used as a DSN before by others [8,
21] and we did not contribute significantly to these works. However, to
provide for a complete overview of SNIF, we summarize the hardware
and software of this platform in this section.

4.2.1. Hardware: BTnode rev3

The BTnode rev3 depicted in figure 4.3 is the third incarnation of a
Bluetooth-enabled embedded system designed at ETH Zurich. Similar
to the sensor network nodes used in the various deployments in chapter
2.1, it mainly consists of a microcontroller and a radio. Its most dis-
tinct feature, compared to those nodes, is the presence of two radio mod-
ules, a Bluetooth module and the Chipcon CC1000 low-lower radio. Fur-
thermore, an additional 256 KB memory chip provides amble processing
memory which alleviates the memory scarcity of the 4 KB provided by
the ATmega128L microcontroller alone.

Microcontroller and Memory

Central to the BTnode rev3 architecture depicted in figure 4.2 is the At-
mel ATmega128 8-bit microcontroller [92]. It provides 128 KB of pro-
gram flash, four KB of EEPROM and four KB of internal RAM. An ad-
ditional 256 KB SRAM module is connected via an 16-bit address and an
8-bit data bus. As the 16-bit address bus only allows to address 64 KB
of RAM, two additional I/O lines are used for bank switching between
the four available 64 KB RAM banks. The ATmega128L microcontroller
provides various standard busses for aynchrous/synchronous serial com-
munication, I2C and SPI, eight analog inputs, and various digital I/O pins.

It runs with a system clock of 7.3278 MHz, a rate commonly found
with microcontrollers as it is an integral multiple of the standard serial
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Figure 4.2.: BTnode rev3 architecture. Both radio modules can be operated and powered
independently.

communication baud rate of 9600 bps. A 32768 Hz real-time clock allows
to keep the time while the processor is in an energy-saving sleep mode.

Communication

Low-Power Radio The Chipcon CC1000 [108] low-power radio can be
tuned in software to communicate on a frequency between 400 and 1000
MHz. However, the antenna interface has to be roughly configured for a
particular ISM band such as 433, 868 or 915 MHz, where 868 and 915
use the same configuration. On the BTnode, the European 868 MHz ISM
band is used. The CC1000 uses frequency-shift keying for sending data at
up to 76.8 kbps. If the build-in Manchester-encoding is used, the CC1000
can synchronize itself to incoming data, otherwise bit synchronization has
to be performed in software by the microcontroller which does not allow
for the microcontroller to handle other tasks in parallel. On all sensor
board designs based on an ATmega128 and the CC1000, the CC1000 is
controlled via three I/O lines and radio data is transferred using the SPI
bus as a synchronous serial bus. Due to the fact that the SPI component of
the ATmega128 does not allow to buffer an outgoing byte ahead of time,
all ATmega128-CC1000-based sensor nodes only communicate at 19200
baud.

Bluetooth Bluetooth operates in the unlicensed 2.4 GHz ISM band and
uses frequency hopping to achieve reliable communication even in noisy
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Figure 4.3.: BTnode Rev3.20. The ATmega128L microcontroller is in the center. The
Chipcon CC1000 low-power radio and its support circuitry are situated on
the lower left, the Bluetooth module in the upper right corner.

environments. A group of devices which are synchronized to a common
clock and frequency hopping pattern is called a Piconet. The device which
provides the reference time for synchronization is called master, all other
devices are referred to as slaves. Piconets have a star topology with the
master at the center, that is, direct communication is only possible be-
tween a master and a slave, but not between slaves. A Scatternet consists
of several inter-connected Piconets in which some nodes are part of more
than one Piconet at the same time as illustrated in figure 4.4, where large
circles indicate a Piconet.

The Zeevo ZV4002 Bluetooth module contains a powerful ARM7 core
which handles all Bluetooth baseband communication and provides a se-
rial HCI interface as specified by the Bluetooth Special Interest Group
[93]. As it supports participation in up to 4 Piconets, it support Scatter-
nets. The ZV4002 is connected to the ATmega128 by an asynchronous
serial port at 115200 baud.

Power

The BTnode runs on a single internal voltage level of 3.3 V which is either
provided by a DC-DC step-up convertor powered by two AA batteries or
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Four states:

– IDLE

– MASTER

– SLAVE

– MASTER/SLAVE

Scatternet

Figure 4.4.: Illustration of Bluetooth Scatternets.

by a linear dropout regulator powered from an external DC input. The
power for both radio modules can be switched independently by the mi-
crocontroller as depicted in figure 4.2.

4.2.2. Software: BTnut

The additional 256 KB RAM of the BTnode allows for the use of a multi-
threading OS. In addition to normal OS services such as threading, mem-
ory management, and device drivers, the BTnode requires a radio stack
for the Bluetooth and the CC1000 radios as well as support for the banked
memory.

Nut/OS

For the OS of the BTnode, we use Nut/OS [98] which is a cooperative
multi-threading OS. Its main use is the development of embedded net-
worked Ethernet devices for the Atmel AVR family of microcontrollers.
It provides a POSIX-like device driver interface and already supports all
internal ATmega128 busses such as SPI, I2C, and serial communication.

BTnode Support

As the ATmega128 can only access 64 KB of RAM directly, we have
provided low-level functions that allow to copy memory blocks from one
of the hidden banks into the main memory and vice versa. In addition, the
init routines are modified to take care of the Bluetooth and the CC1000
module.

Bluetooth Stack

The main component in BTnut is its Bluetooth stack which supports Scat-
ternet networking. Figure 4.5 depicts the lower layers of the standard
Bluetooth protocol stack. The component that implements the physical
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Figure 4.5.: Lower layers of the standard Bluetooth Protocol Stack. Components above
the Host Controller Interface (HCI) have to be implemented in software. All
but SDP and OBEX are provided in BTnut.

Bluetooth functionality is called Bluetooth Host Controller and the entity
that uses it is defined as Bluetooth Host. Accordingly, the interface be-
tween the Host and the Host Controller is the Host Controller Interface
(HCI). All components above this interface are implemented on the Host,
which in our case is the BTnode. Out of those depicted, all but the Service
Discovery Protocol (SDP) and the Object Exchange (OBEX) protocol are
implemented by BTnut.

Host Controller Interface The HCI implementation [59] of BTnut con-
tains all common HCI commands. A HCI receiver thread is used to handle
packets received from the Bluetooth module. A synchronous command
call results in the calling thread beeing put into a sleeping state and being
woken up by the HCI receiver thread upon command completion.

L2CAP The L2CAP layer provides TCP-like communication over Blue-
tooth. In addition to this connection-oriented mode, it also provides a
connection-less mode which allows to send datagrams without an explicit
connection establishment between a master and a slave node in a Piconet.
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RFCOMM The RFCOMM layer is used for the emulation of serial ports
and is mainly useful for communication with mobile phones. BTnut sup-
ports sending of AT commands but does not implement the Object Ex-
change Protocol (OBEX) yet. Furthermore, RFCOMM allows for Internet
access by means of the Point-to-Point protocol (PPP). TCP/IP over PPP
over RFCOMM has not been tested on the BTnode, although the com-
bination of Nut/OS and the BTnut Bluetooth Stack provides all required
parts.

Scatternet Networking In addition to the standard Bluetooth protocols,
BTnut provides multi-hop networking using Scatternets. The components
of the BTnut Bluetooth Stack relevant for this are depicted in figure 4.6.

Connection Manager The connection manager is responsible for the for-
mation of Scatternets (see figure 4.4) over all active BTnodes and supports
different network topology construction policies for this. Implementa-
tions for the XTC algorithm [84], which forms a mesh network, and our
own TreeNet [8], which maintains an acyclic tree, are available.

Multi-hop Data Transfer On top of the Scatternet, a simple pro-active
flooding-based routing algorithm in the Multi-hop (MHOP) component
allows to forward data to a central sink. Upon reception of a broadcast
packet, a node stores the source address of the packet together with the
ID of the neighbor from which it received the packet in a routing table.
Later, a packet can be forwarded towards the destination according using
the routing table.

Summary The BTnode platform with the BTnode Rev3 node can be
used as a Deployment Support Network and is suitable to construct a dis-
tributed sniffer. Its low-power radio is compatible with all WSN nodes
which use the CC1000 radio and it might even be possible to decode ra-
dio messages sent by a different radio that also uses FSK modulation.
The 256 KB memory provides ample space to reliably buffer overheard
network traffic until it can be delivered over the Bluetooth multi-hop net-
work.
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Figure 4.6.: Bluetooth Protocol Stack used for Scatternets in BTnut. The Connection
Manager handles topology control and the Multi-Hop (MHOP) compo-
nent provides basic routing support. Both make use of the connection-less
L2CAP standard which provides datagram-like packet delivery over base-
band connections.

4.3. Bluetooth Time Synchronization

By means of so-called Scatternets, Bluetooth provides the ability to con-
struct robust wireless multi-hop networks. In this chapter we present a
practical protocol for time synchronization of such Bluetooth multi-hop
networks.

Time synchronization is a fundamental service in almost any computer
network, including Bluetooth networks. Surprisingly, Bluetooth does not
provide time synchronization as a service to applications even though
time synchronization is needed internally, as its medium access is based
on time-division multiple access (TDMA). However, the Bluetooth API
provides a few functions that allow limited access to the internal clock
that is maintained to control medium access. In this section, we propose
and evaluate a practical algorithm for synchronizing multi-hop Bluetooth
Scatternets which makes use of these functions. The algorithm provides a
synchronization accuracy of few milliseconds across multiple hops with
minimal communication overhead.

In the following, we first discuss related work on Bluetooth time syn-
chronization before the core of our protocol is described. We then present
implementation aspects and evaluate our proposal.
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4.3.1. Related Work

There exists a large body of work on time synchronization in wireless
networks and in particular wireless sensor networks [68]. However, all of
these approaches send explicit synchronization messages, whereas our ap-
proach uses the synchronization primitives provided by Bluetooth to build
a global synchronization protocol, thus minimizing additional communi-
cation overhead. Protocols based on the exchange of explicit synchro-
nization messages would suffer from highly variable messages latencies
of typical Bluetooth implementations. In [65], for example, round trip
times in a simple two-node network varied between 30 and 230 ms with
an 76 ms average. In [55], round-trip times between 20 and 120 ms have
been observed in a similar setup.

Specific protocols for time synchronization with Bluetooth are rare. [16]
describes an experiment in which a Piconet master sends broadcast mes-
sages to synchronize slaves among each other. As the broadcast mes-
sage arrives almost simluatneously at all slaves, the reception event can
be used to accurately synchronize the clocks of slaves. They report very
good results for the accuracy among slaves in the order of 10 us. How-
ever, this approach can only synchronize slaves among each other, but not
the master with the slaves as only the master can send broadcast messages.
Hence, a Bluetooth Scatternet cannot be synchronized with this approach.
A similar technique is used in [7] to synchronize the slaves of a Piconet.
However, in addition they modify the firmware of the Bluetooth module
to precisely measure the point in time when the master sent the broadcast
message. Using this information, they can also synchronize the master
with the slaves. Overall, they obtain a precision of few micro seconds
in a single Piconet. While their approach could be extended to Scatter-
nets, they do not consider this option. However, modifying the Bluetooth
firmware is often impracticable or even impossible.

IEEE 802.11 also uses an internal clock to control medium access and
specifies a Timing Synchronization Function (TSF) to synchronize the
clocks of different nodes. In both infrastructure and ad hoc modes, 802.11
only supports single-hop networks. Therefore, TSF is a rather simple pro-
tocol. In infrastructure mode, the base station regularly broadcasts time-
stamped beacon messages and receivers adjust their clocks to the received
time stamp. In ad hoc mode, every node broadcasts such beacon messages
and receivers adjust their clocks to the sender with the latest time stamp.
Huang et. al. [35] propose a simple extension to this procedure to im-
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prove the scalability of TSF. Unfortunately, this scheme is not applicable
to Bluetooth as precise time stamps can neither be sent or received.

4.3.2. Protocol Overview

Bluetooth is implemented as a radio modem with a well-defined command
interface, the so-called ”Host Controller Interface“ (HCI), that is con-
nected to the main processor via a serial interface (e.g., USB or RS232).
The Bluetooth radio modem is itself a complex embedded computing de-
vice that contains, among others, a separate processor that runs parts of the
Bluetooth protocol stack and a real-time clock to control medium access.
Access to the internal state of the modem (e.g., the real time clock) is only
possible via commands that are sent to the modem via the serial connec-
tion. In fact, Bluetooth provides two commands related to the real time
clock: HCI_Read_Bluetooth_Clock to read out the current value
of the real-time clock, and a second command HCI_Read_Clock_-
Offset to read some (but not all) bits of the current offset of the clock
to the clock of a connected node.

Even though Bluetooth provides the above two commands as a founda-
tion for time synchronization, the implementation of Bluetooth as a radio
modem has far-reaching implications on the design of a synchronization
protocol. Firstly, each network node has two clocks: the system clock and
the Bluetooth clock. Typically, the operating system and applications use
the (unsynchronized) system clock, whereas we intend to use the Blue-
tooth clock for synchronization among different nodes. That is, we need
to synchronize the system clock with the Bluetooth clock in some way.
Secondly, reading the Bluetooth clock (offset) is a costly and lengthy op-
eration as it involves exchange of protocol messages between the main
processor and the Bluetooth modem over a serial connection (in contrast,
reading the system clock is cheap and fast). This implies that the Blue-
tooth clock (offset) should be read rarely. Moreover, execution time of a
Bluetooth command is highly variable, as the reply to a command may be
delayed by arriving data messages. That is, accurate synchronization of
the system clock with the Bluetooth clock is non-trivial.

Figure 4.7 illustrates the design of our protocol which was inspired by
the above observations. Three nodes are shown which are connected in
a chain topology using Bluetooth Scatternets. Each node is indicated by
a circle that contains the current values of the system clock and of the
Bluetooth clock. All clocks are unsynchronized – they advance freely
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Figure 4.7.: Illustration of the synchronization protocol.

at their respective rates without being disciplined. However, each node
maintains offsets between its system clock and the Bluetooth clock (and
vice versa) and its Bluetooth clock and the Bluetooth clocks of connected
nodes. These offsets are illustrated in figure 4.7 by tagged arrows that
point from clock A to another clock B. By adding the arrow tag (i.e., the
clock offset) to the value of clock A, one can obtain the corresponding
value on clock B. We use the above Bluetooth commands to obtain the
offsets between Bluetooth clocks of connected nodes and to obtain the
offset between the system clock and the Bluetooth clock. As the off-
sets change infrequently (the clock drift of the various clocks is small
compared to the required synchronization accuracy), these commands are
invoked infrequently to update the offset values.

The thick arrow in figure 4.7 illustrates the exchange of a time-stamped
message between node 1 and node 3 via node 2. When generating a new
message, node 1 reads its system clock (i.e., 123) and includes this value
as a time stamp in the message. Next, the time stamp is converted to
the Bluetooth clock of node 1 by adding the respective clock offset -24.
Then, the time stamp is converted to the Bluetooth clock of node 2 by
adding the respective clock offset -42 and the modified message is sent
to node 2. There, clock offset -7 is added to the time stamp to convert to
Bluetooth clock of node 3. The message is then sent to node 3, where the
clock offset +38 is added to transform to the system clock of node 3. The
resulting time stamp 88 equals the value of node 3’s system clock at the
time when the message was generated in node 1. With this approach, all
time stamps a node receives from different nodes will be synchronized in
the sense that they refer to the time scale defined by its local system clock.

The above approach is sufficient for many applications (including our
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distributed sniffer) and has two important advantages. Firstly, it does not
require a designated node that acts as a time reference for other nodes and
thus our protocol can easily deal with node failures and topology changes.
Secondly, the difficulties of disciplining clocks are completely avoided.

Bluetooth Clock

The Bluetooth clock is a 28-bit counter with 0.3125 ms resolution and a
mandatory maximum drift of ± 20 ppm. This results in an overrun every
228× 0.3125 ms ≈ 1 day.

Each Bluetooth device has a unique 6-byte baseband address
(BD_ADDR) similar to the medium access control address of Ethernet
devices. The hopping sequence is a pseudo-random sequence of commu-
nication frequencies seeded with the BD_ADDR of the Piconet master
device. Because of the frequency hopping, a special procedure called in-
quiry is required to discover other devices (i.e., their address and hopping
sequence). During an inquiry, a device uses a special inquiry hopping
sequence and doubles its hopping rate to rendezvous with other devices.
As a result of an inquiry, the BD_ADDR and the difference between the
local Bluetooth clock and the clock of the remote device are acquired.
Based on this information, a node can calculate the hopping sequence of
discovered nodes and is thus able to connect to these devices.

The clock offset to discovered devices is defined as bits 2-16 of the
difference between the clock of the discovered device and the local clock.
Similarly, the clock offset between two connected devices is specified as
bits 2-16 of the difference between the clock of the slave node (CLKslave)
and the clock of the master node (CLKmaster). With the reduced range
(only bits 2-16) of these clock offsets, a maximum time interval of 217×
0.3125 ms = 40.96 s with a resolution of 1.25 ms can be specified.

Offset between System and Bluetooth Clock

Measuring the offset between the system clock and a Bluetooth clock is
non-trivial as reading the Bluetooth clock requires sending a command
message to the Bluetooth modem over the serial interface between the
main processor and the Bluetooth modem and receiving a reply message
(a so-called event) over the serial interface that contains the requested
clock value.

This protocol is illustrated in figure 4.8 (a). First, the command is sent
over the channel connecting the main processor (MCU) with the Blue-
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Figure 4.8.: Reading Bluetooth clock over Host Controller Interface. a) no parallel data
traffic, b) incoming data packet.

tooth modem (“MCU-to-Bluetooth channel”). After the Bluetooth mo-
dem has received the last bit of this message over the serial line, the com-
mand will be processed. At some (unknown) point in time, the actual
readout of the clock will be performed, before the reply message is gener-
ated and sent to the main processor via the “Bluetooth-to-MCU channel”.

We could use a typical round-trip-time measurement to compute the
clock offset between the system clock and the Bluetooth clock. Here,
we would use the system clock to measure the point in time t1 when the
last bit of the command has been sent and the point in time t2 when the
first bit of the reply has been received. The clock offset could then be
approximated by the returned Bluetooth clock value t3 minus (t1 + t2)/2.

Unfortunately, the reply from the Bluetooth module may be signifi-
cantly delayed if the Bluetooth module has received a data message via
radio and is sending this message to the main processor as illustrated in
figure 4.8 (b), such that the communication channel (“Bluetooth-to-MCU
channel”) is blocked. The resulting highly variable delay t3− t2 results in
significant errors when using the above approach.

Likewise, processing of the command in the Bluetooth modem may be
delayed if the modem is busy receiving data. However, we performed
experiments that confirmed that the offset t3 − t1 is much more stable
than t3 − t2 even under heavy communication load. Therefore, we use
t3 − t1 as the offset between the system clock and the Bluetooth clock
in our protocol. Still, there are occasional outliers that are substantially
larger than the average clock offset. To remove these outliers, we apply a
simple median filter. Instead of using t3−t1 as the clock offset, the median
filter remembers the last n measured offsets and returns the median value
among them. The evaluation in section 4.3.4 will show the effectiveness
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of this approach for small n.
Note that the above approach results in a systematic error which equals

the time interval between transmission of the last bit of the command
message and the actual readout of the Bluetooth clock. Assuming that the
error is mainly a function of the Bluetooth implementation, it will cancel
out in the end-to-end synchronization protocol illustrated in figure 4.7 if
both sender and receiver use identical Bluetooth hardware. The reason for
this is that we transform each time stamp twice between system clock and
Bluetooth clock: once at the sending node and once at the receiving node.
Since these transformations are in reverse direction (i.e., system clock to
Bluetooth clock on the sending node and Bluetooth clock to system clock
on the receiving node), the error will cancel out.

Offset between Bluetooth Clocks

To obtain the offset ∆ between the Bluetooth clocks of two connected
nodes, the HCI_Read_Clock_Offset command can be used. How-
ever, the clock offset returned by this command only contains bits 2-16 of
the clock difference. We therefore need to reconstruct the complete clock
difference. For this, a local Bluetooth time stamp is sent over an estab-
lished connection as shown in figure 4.9. The method for reconstructing
the missing bits of ∆ described below assumes that the transmission la-
tency d of the message is less than the clock offset range of 40.96 s, which
is a reasonable assumption.

In the following, we will refer to the difference between two Bluetooth
clocks as clock difference ∆ and refer to the lower part of this clock differ-
ence ∆ returned by Bluetooth commands as clock offset. Also, we assume
that all variables hold integer multiples of a Bluetooth clock tick of 0.3125
ms. We can therefore express the assumption that d is below 40.96 s as
follows

0 6 d < 217 (4.1)

In the following we will use the notation Vb_c to refer to the integer value
of V where bits with index b-c in the binary representation are preserved
and all others are set to zero. The least significant bit has index 0. For
example, 151_2 = 6.

From the HCI_Read_Clock_Offset command, we obtain bits 2-
16 of the clock difference ∆:
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Figure 4.9.: Sending a Bluetooth time stamp from node A to node B.

∆2_16 = (CLKslave− CLKmaster)2_16

Let us assume that node A in figure 4.9 is in the slave role and sends the
current value t1 of its clock CLKslave to node B which records the time
t3 of its local clock CLKmaster at reception.

Node B can calculate an approximate clock difference ∆′ as:

∆′ := t1 − t3 (4.2)

As t3 represents the time when the message was sent plus the (unknown)
transmission delay d, (4.2) can be reformulated as follows:

∆′ = t1 − (t2 + d) = (t1 − t2)− d = ∆− d (4.3)

As we know ∆′ and ∆2_16, we can use (4.3) to calculate ∆17_27 as
follows. Since 0 ≤ d < 217 by assumption, (4.3) implies that either
∆′17_27 = ∆17_27 or ∆′17_27 = ∆17_27− 217. ∆′17_27 = ∆17_27 can only hold
iff ∆′2_16 ≤ ∆2_16, otherwise it would follow that ∆′ > ∆ in contradiction
to (4.3). In summary, we can compute the missing bits of ∆ using the
following equation:

∆17_27 =

{
∆′17_27 if ∆′2_16 6 ∆2_16,
∆′17_27 + 217 otherwise.

(4.4)

If node A would have been in master mode, the following analogous
equation has to be used:

∆17_27 =

{
∆′17_27 if ∆′2_16 > ∆16_2,
∆′17_27 − 217 otherwise.

(4.5)
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4.3.3. Implementation

We implemented our time synchronization protocol on the BTnode Rev.
3 nodes described in section 4.2. Unfortunately, the implementation of
the commands HCI_Read_Clock_Offset and HCI_Read_Blue-
tooth_Clock on the Zeevo Bluetooth module suffers from several
bugs, which we had to work around when implementing our protocol.
While the HCI_Read_Clock_Offset command was always present
in the Bluetooth specification, the HCI_Read_Bluetooth_Clock
command was introduced by Bluetooth specification 1.2 in 2003. The
Zeevo Bluetooth module on the BTnode was sold as a pre-1.2 version.
Although it supports the required commands for our time sync approach,
some commands do not follow the specification or are not properly im-
plemented. We provide details on the bugs and our work-arounds below.

HCI_Read_Bluetooth_Clock

This command is supposed to return the value of the local Bluetooth clock
or the value of the Bluetooth clock of a connected Piconet master (depend-
ing on the command parameters). However, our Zeevo modules always
return the value of the local Bluetooth clock, the clock of the master could
not be read. Further, the returned Bluetooth clock value was expressed as
a multiple of 1.25 ms instead of the specified 0.3125 ms. Finally, we no-
ticed occasional significant outliers when analyzing the computed offsets
between system clock and Bluetooth clock The reason for this is a bug in
the implementation of the HCI_Read_Bluetooth_Clock command,
which returns the same Bluetooth clock reading twice in 1% of all cases.
As the command execution takes about 10 ms in our configuration, two
HCI_Read_Bluetooth_Clock commands cannot have been issued
and answered within the clock resolution of 1.25 ms. As it turned out, the
second value was a duplicate of the first, and we resorted to reading the
Bluetooth clock twice and using the second value only if it was different
from the first.

HCI_Read_Clock_Offset

This command is supposed to return the current clock offset to a con-
nected device. However, once a connection between two BTnodes has
been established, the offset returned by this command never changes even
though the two clocks drift apart. Only after closing and re-opening a con-
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nection the returned clock offset changed. That is, the command always
returns the clock offset at the time when the connection was established.

As periodic disconnects are no option in many applications, another
way to read the clock offset was needed. After some experimentation,
we noticed that a connected device is also reported by an Bluetooth in-
quiry. This comes as a surprise as inquiries are generally used to find
new devices and not to collect information about already connected neigh-
bors. As inquiries also return the current clock offset, periodic inquiries
can be used to update the clock offsets to connected neighbors. How-
ever, the clock offset returned by an inquiry is slightly different from the
value returned by HCI_Read_Clock_Offset. The latter always re-
turns CLKslave - CLKmaster no matter if the Bluetooth device is a mas-
ter or a slave. The inquiry returns the same value only if the invoking
Bluetooth device is a master. If invoked by a slave, the returned value is
217−(CLKslave - CLKmaster).

4.3.4. Evaluation

To evaluate our approach, we first study the accuracy of synchroniza-
tion between system and Bluetooth clock in the presence of parallel data
transmissions. Then we measure the synchronization error within an 8
node multi-hop Scatternet. We also show some preliminary results of this
approach running on a linux laptop computer with a built-in Bluetooth
module.

Reading the Bluetooth Clock under Load

We evaluate the accuracy of the approach to measure the offset between
the system clock and the Bluetooth clock. We consider a Bluetooth Pi-
conet of two node A and B. The speed of the serial connection between
the main processor and the Bluetooth modem was set to 115200 baud.
After B has connected to A, A will start reading its Bluetooth clock 1000
times at regular intervals. A will then signal B to start sending data mes-
sages. A will discard these messages, but continues to read out the Blue-
tooth clock. After 1000 readouts, A signals B to stop sending data. A
continues to read out its Bluetooth clock for another 1000 times.

At each readout, A records the time of the system clock after the last
bit of the command has been sent to Bluetooth and the returned value
of the Bluetooth clock. That is, A records a data point (system clock,
Bluetooth clock) for each readout. We then fit a line to these 3000 data
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Figure 4.10.: Accuracy of Bluetooth clock read out with and without data traffic.

points using linear regression. This line approximates the ground-truth
offset between the two clocks. We consider the distance of a data point
from the regression line as a measure of the accuracy of that data point.

Figure 4.10 shows the accuracy for the first 100 readings of each block
(no data, data, no data). The maximum error on accuracy was 15 ms. To
analyze the impact of data transmission, we plotted the empirical cumu-
lative distribution function (ECDF) for ”data“ and ”no data“ separately
as shown in figure 4.11. The distribution for ”no data“ shows smaller er-
rors than for the ”data“ section, but this results mainly from having less
outliers compared to the ”data“ section.

To further improve accuracy, we employed a median filter as described
in section 4.3.2, which outputs the median of the last n samples. Figure
4.12 shows the average and the maximum error for different values of
n over all samples. For all 3000 samples with and without parallel data
traffic, the maximum error for n=5 is below 2 ms.
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Figure 4.11.: ECDF of accuracy with and without data traffic.

Scatternet Synchronization Error

As the Bluetooth clocks run unsynchronized and the clock offset is only
available with a 1.25 ms resolution, we expect the error between two
connected nodes to be less than this value. We set up 8 BTnodes in a
chain topology in which each node but the end nodes act as a master/slave
bridge, effectively forming a Scatternet of 7 inter-connected Piconets. All
nodes are connected to an 8-channel logic analyzer with 1 us time resolu-
tion. After the Scatternet has been established, the first node in the chain
periodically sends a time-stamped message along the chain of nodes, ap-
plying the synchronization algorithm described in section 4.3.2 to syn-
chronize the time stamp. When receiving the message, a node will set
a timer to expire at system time t + C, where t is the (synchronized)
time stamp contained in the message and C is a constant offset. When
the timer expires, the node toggles the I/O pin which is connected to the
logic-analyzer. Ideally, all nodes should toggle their pins at exactly the
same point in time. However, synchronization errors will cause nodes to
toggle their pins at slightly different points in time. Using the logic ana-
lyzer, we measure the time between the first node in the chain toggling its
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Figure 4.12.: Mean and maximum clock reading error for median filter with window size
n.

pin and every other node in chain toggling its pin. This amount of time is
the synchronization error.

In the experiment, the BTnodes update their clock offsets every 5 min-
utes using a Bluetooth discovery. The experiment runs for 2 hours, result-
ing in 712 accuracy measurements for all 8 nodes. Figure 4.13 shows the
average and maximum synchronization error for each node. The mean er-
ror for the last node in the chain is 5.47 ms ± 2.25 ms and the maximum
error is 11.35 ms.

Other Platforms

The BTnodes used in the evaluation are only a single example for devices
which support our time synchronization protocol. Often, a more power-
ful device such as a laptop computer is used to store collected data and
to provide a time reference for a whole Scatternet. For our protocol to
work, a device needs to support the HCI_Read_Bluetooth_Clock
and HCI_Read_Clock_Offset commands which are available, e.g.,
in the BlueZ [94] Linux Bluetooth Stack. We tested an Apple PowerBook
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Figure 4.13.: Time synchronisation error for a 7-hop Scatternet.

G4 12" with an embedded Cambridge Silicon Radio (CSR) chipset con-
nected over USB, running the Ubuntu 6.10 Linux distribution with the
default 2.6.17 kernel. Both commands are available on the CSR Blue-
tooth module. However, the HCI_Read_Clock_Offset only works
correctly if the device is in a slave role. In master role, the clock offset
was not updated similar to the bug with the Zeevo module (see section
4.3.3). We repeated the read Bluetooth clock test and calculated the ac-
curacy as in section 4.3.4. In this configuration without median filter, the
maximum error on accuracy was 4 ms. The mean error was 0.15 ms with
a standard deviation of ± 0.24 ms.

4.3.5. Discussion

The proposed time synchronization results in an average time sync error
in the order of several milli seconds over multiple hops. For SNIF, to
correctly order two packets received by two neighboring DSN nodes, the
time synchronization error should be lower than half the duration of a
WSN packet. An example TinyOS packet for the Mica2 node with a 10
bytes payload results in a total of 25 bytes (6 bytes preamble, 2 bytes start-
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of-packet indicator, 5 bytes header and a 2 bytes CRC). At 19200 baud,
the total packet time is 10.4 ms which is more than twice the mean time
synchronization error between nodes with five hops in between. Note that
with low-power listening protocols such as WiseMAC [23] or B-MAC
[60], a significantly longer preamble has to be used which reduces the
required accuracy for the time synchronization.

4.4. DSN Sniffer

The first step in the passive inspection approach is the collection of ra-
dio traffic. For this, a distributed generic sniffer is needed that can be
configured for different MAC protocols used by WSN applications. The
BTnode platform provides the functionality for this: The BTnodes are
equipped with two independent radios, can form a deployment support
network with a reliable Bluetooth Scatternet for packet forwarding, and
allow for Bluetooth-based time synchronization.

In addition, the DSN nodes need a receive-only implementation of the
physical (PHY) and MAC layers in order to overhear sensor network traf-
fic. Due to the lack of a standard protocol stack, many variants of PHY
and MAC are in use in sensor networks. Hence, we need a flexible im-
plementation that can be easily configured for the sensor network under
inspection.

Our generic PHY implementation supports configurable carrier fre-
quency, baud rate, and checksumming parameters. We assume that the
sensor network uses a single frequency for communication (which is the
case with most current implementations) such that a single-channel radio
is sufficient to overhear WSN traffic.

Regarding MAC, we exploit the fact that – regardless of the specific
MAC protocol used – a radio packet always has to be preceded by a
preamble and a start-of-packet (SOP) delimiter to synchronize sender and
receiver. In our generic MAC implementation, every DSN node has its
WSN radio turned to receive mode all the time, looking for a preamble
followed by the SOP delimiter in the received stream of bits. Once an
SOP has been found, payload data and a CRC follow. Also, a timestamp
is recorded when the SOP is detected. This way, DSN nodes can receive
packets independent of the actual MAC layer used. Received packets are
then forwarded by the Multi-Hop service of BTnut (see section 4.2.2) to
the SNIF sink.

Figure 4.14 shows an excerpt of a sample configuration file for inspect-
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ing a TinyOS 1.x application running on MICA2 motes. The first five
lines set the carrier frequency of the WSN radio to 868.000 MHz and a
data rate of 19200 bits/second, and instruct the packet sniffer to check for
a start-of-packet sequence of 0xcc33. The 16 bit CRC-CCITT polynomial
x16 + x12 + x5 + 1 (0x1021) is used as checksum algorithm.

4.5. Packet Decoder

Since no standard protocols exist for sensor networks, we need a flexible
mechanism to decode overheard packets. As most programming environ-
ments for sensor nodes are based on the C programming language or a
dialect of it (e.g., nesC for TinyOS), it is common to specify message
contents as (nested) C structs in the source code of the sensor network ap-
plication. Our packet decoder uses an annotated version of such C structs
as a description of the packet contents. This way, the user can copy and
paste packet descriptions from the source code.

The configuration of the packet decoder consists of some global param-
eters (such as byte order and alignment), type definitions, and one or more
C structs. One of these structs is indicated as the default packet layout.
Note that such a struct can contain nested other structs.

Consider figure 4.14 for an example, which describes link advertise-
ment packets used by the Multihop routing service implemented in ESS
[30]. Line 20 defines the struct TOS_Msg as the default packet lay-
out. The LinkAdv PDU used by ESS, is encapsulated in the field
TOS_Msg.data, but only if the TOS_Msg.type is equal to the con-
stant LinkAdvType. Line 36 specifies the contents of TOS_Msg.data
depending on the value of the field TOS_Msg.type. Note that an encap-
sulated structure can itself also contain another encapsulated structure.

Our description language allows to specify variable sized arrays. If an
element of a message is used as array size (e.g., TOS_Msg.length),
then the value of this field in the overheard message denotes the number
of elements in the array to decode. If an array without a size is given (e.g.,
LinkAdvertisement.links), the size of the array is inferred from
the total packet size.

At startup of SNIF, the configuration file is parsed and the default packet
type is investigated. If the default packet type is of fixed size, the packet
size is computed. Otherwise, size and position of the packet length indi-
cator (e.g., TOS_Msg.length in the example) is computed. This infor-
mation, along with the parameters for the physical layer are then broadcast
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1 // PHY + MAC parameters
2 cc . freq = 868000000;
3 cc .baud =19200;
4 cc .sop = 0xcc33;
5 cc . crc = 0x1021;
6

7 // encoding: endianness + alignment
8 enc. endianness = " little " ;
9 enc.alignment = 1;

10

11 // type definitions and constants
12 typedef uint16_t mote_id_t;
13 typedef uint8_t quality_t ;
14 struct link_quality_t {
15 mote_id_t id ;
16 quality_t quality ;
17 };
18

19 // Default packet type
20 default . packet = "TOS_Msg";
21

22 // TOS_Msg definition
23 struct TOS_Msg {
24 uint16_t addr;
25 uint8_t type ;
26 uint8_t group;
27 uint8_t length ;
28 int8_t data [ length ]; // variable payload size
29 uint16_t crc ;
30 };
31

32 // LinkAdvertisement packet type
33 const int LinkAdvType = 2;
34 // LinkAdvertisement packet definition
35

36 struct LinkAdv : TOS_Msg.data (type == LinkAdvType) {
37 mote_id_t id ;
38 struct link_quality_t links []; // var . size
39 };

Figure 4.14.: A SNIF configuration file.
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to all DSN nodes, allowing them to correctly receive WSN traffic.

4.6. Data Stream Processor

The DSN sniffer outputs a stream of overheard packets that needs to be an-
alyzed to detect problems in the WSN. To enable an efficient deployment
process, this analysis should be performed online, allowing an engineer to
go out and study and fix affected nodes while the problem is still present.

Given these preconditions, we decided for a data stream processor [2] to
perform online analysis of packet streams. In the remainder of this section
we present the particular data stream model we use, the representation of
packets as elements of a data stream, and specific operators provided by
the framework for analyzing packet traces.

4.6.1. Data Streams

A data stream is an unbounded sequence of records. Various data stream
management systems (DSMS) have been proposed as generic frameworks
to process data streams. Mainly motivated by practical considerations
(Java as implementation language, stability, open-source availability) we
chose the PIPES data stream processor [15] for use with SNIF.

Three basic abstractions are provided: sources that produce data
streams, sinks that consume data streams, and operators that modify data
streams. An operator is essentially both a source and a sink. Sinks and
operators can subscribe to sources and operators, such that a data stream
output by the subscribee acts as input for the subscriber. That is, sources,
operators, and sinks form a directed operator graph with data streams
flowing from sources through operators towards sinks. In SNIF, we model
each DSN node as a data stream source. An operator graph (being exe-
cuted on the DSN sink) processes these data streams to detect indicators
for problems, and sink nodes inform the user of detected indicators.

4.6.2. Records

A data stream record (i.e., an element of the data stream) is a typed and
time-stamped list of attribute-value pairs. The type of a record essentially
indicates what attributes can be found in that record. The time stamp
indicates when that record was generated according to a global time scale.
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In our implementation, an attribute is a string and each value an ob-
ject. Two built-in attributes holding record type and time stamp are
always available. The DSN produces records of type Packet which
contain additional attributes holding the contents of an overheard packet
(compare with section 4.5). The syntax of the latter attributes follows
C syntax for accessing the field of a structure (e.g., TOS_Msg.addr
in Figure 4.14). The fields of the encapsulated structures can be ac-
cessed recursively (e.g., TOS_Msg.data.id). The length of an ar-
ray can be accessed by appending .length to the array field as in
TOS_Msg.data.links.length.

All attributes referring to packet contents are implemented as virtual
attributes. Whenever an attribute referring to packet contents is accessed,
the packet decoder is invoked to extract the requested field from the raw
packet as captured by the DSN.

4.6.3. Basic Operators

Our framework provides a number of basic data stream operators that
are sufficient to implement SQL with time windows, but without joins.
These operators can be configured by parameters that are either attribute
names (prefixed by attr), predicates (prefixed by pred), or functions over
record(s) (prefixed by func).

Mapper(attr1Old, attr1New, attr2Old, attr2New, ...) Renames attribute at-
trXOld to attrXnew in each record.

ArrayIterator(attrArray) Provides access to array elements by iterating
over the array contained in attribute attrArray. The operator creates N
copies of each input record, where in the i-th copy the array is replaced
with array element i. When applied to LinkAdvertisement.links
in figure 4.14, for example, we obtain one record for each pair of neigh-
bors.

Union Merges the records of all subscribed data streams into one, such
that the output data stream has non-decreasing time stamps.

Filter(pred) Drops all records from the data stream for which the given
predicate evaluates to false.
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TimeWindowAggregator (window, funcAggr, funcHash, attrGroup) Com-
putes an aggregate value over a time window of size window. Within the
window, records are grouped by the contents of the attribute attrGroup.
In each group, duplicate records are removed by applying the collision-
free hash function funcHash to records. If records hash to the same value,
only the one with the latest time stamp is kept. Whenever window con-
tents change, the aggregation function funcAggr is applied to the window
contents. It creates an output record for each group, containing at least
an attribute holding the group id and an attribute holding the aggregated
value for that group.

Besides common aggregation functions such as counting the number
of records as well as computing the sum, average, variance, minimum,
and maximum of a given attribute, we provide an aggregation function
ratio(attr) = count / (max(attr) - min(attr) + 1) with two notable applica-
tions. Firstly, when applied to a packet sequence number attribute, ratio
computes an indicator of observation quality as the fraction of messages
sent by a sensor node that can be overheard by the DSN. Secondly, when
applied to the time stamp attribute, ratio can also be used to estimate con-
gestion (i.e., packets per time unit).

4.6.4. Sources

DSNSource This data stream source is SNIF’s interface to the DSN. The
individual streams from the DSN nodes are merged into a single stream
using the Union operator. Also, duplicate packets (resulting from two
or more DSN nodes overhearing the same sensor node) are removed, us-
ing a Filter operator with the predDistinct(window) predicate that drops a
packet if a copy has been observed before within a time window of size
window.

EmSource This source uses link dump files or the EmStar framework
[28] as input, but it is otherwise identical to DSNSource.

4.6.5. Application-specific Operators

This section presents specialized operators that assist in detecting the
problems described in section 2.2. Although the basic operators described
in the previous section allow to specify some of the indicators from sec-
tion 3.3.2 - e.g. TimeWindowAggregator can be used to count the number
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of packets per node for a certain amount of time and if a node does not
send any packets, it can be consider dead - other indicators require more
complex logic, e.g., the detection of a loop in the routing path. Such oper-
ators can be specific to the domain of wireless sensor networks or even for
a concrete WSN application. We call such operator application-specific.

Development of such application-specific operators is the core task to
customize SNIF for detection of a specific deployment problem. The pri-
mary challenge here is to deal with incomplete information due to i) the
DSN failing to overhear packets, and due to ii) information that would
be needed to detect a problem not being explicitly included in messages.
For example, the SeqReset operator in the following section implements
heuristics to tell apart reboots from sequence number wrap-around even
in case of lost messages.

Albeit such operators might be combined from other basic operators,
we also allow to specify operators in an imperative programming lan-
guage, which is Java in our implementation and allows to handle state in
an intuitive way.

SeqReset(attrSrc, attrSeq, maxSeq) This operator detects node reboots
exploiting the fact that the sequence number contained in beacon mes-
sages will be reset after reboot. Parameters are the attribute name holding
the source address attrSrc and the sequence number attrSeq, as well as
the maximum sequence number value maxSeq before a wrap around. The
main challenge here is to tell apart a wrap-around of the sequence number
from reboot in case of lost beacon messages. The algorithm in Fig. 4.15
maintains a data structure n that holds for each node i the last sequence
number n[i].seq, last time stamp n[i].t, and minimum interval n[i].ival
between successive beacons. Whenever a beacon with source address src,
sequence number seq, and time stamp t is received, the algorithm checks if
seq is smaller than the last sequence number n[src].seq seen for this node.
If the last sequence number is far apart from maximum sequence number
maxSeq (parameter C must be selected such that loss of C consecutive
beacon messages is highly unlikely), then src has rebooted. Otherwise,
we apply an additional check to distinguish reboots from wrap-arounds
with lost messages. In case of a wrap-around, the time between the last
and current beacon messages t - n[src].t must be greater than or equal
to the minimum beacon interval n[src].ival times the number of beacon
messages that were lost plus one (seq - n[src].seq) % maxSeq. If a node
reboot is detected, a record of type SeqReset is emitted containing the
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on receive beacon(src , seq , t ):
if ( exists n[ src ]) {

if (seq < n[ src ]. seq) {
if (n[ src ]. seq < maxSeq − C)

emit reboot ( src , t );
else if ( t − n[src ]. t < (seq − n[src ]. seq) % maxSeq ∗ n[src]. ival )

emit reboot ( src , t );
}
n[ src ]. ival ← min (n[src]. ival , ( t − n[src ]. t ) / (seq − n[src ]. seq ));

} else {
n[ src ]. ival ←∞;

}
n[ src ]. seq ← seq;
n[ src ]. t ← t;

Figure 4.15.: SeqReset operator

address of the node.

PacketTracer(attrOrigin, attrDst, predSameFlow) In sensor networks,
messages are often not acknowledged at the link layer. In these cases, the
sender MAC address is not included in the message. However, as noted
in section 3.3.2, some indicators require the per-hop source address. The
operator PacketTracer reconstructs the per-hop source address for the case
that a message is relayed across multiple hops (e.g., a sensor reading be-
ing transmitted from a node to the sink). We assume that all messages
of such a flow contain the address of the originator (attribute attrOrigin)
(e.g., as context information on where a sensor reading has been gener-
ated). Also, it must be possible to decide whether two given messages
belong to the same flow (e.g., using message contents or an end-to-end
sequence number) as implemented by the predicate predSameFlow. The
per-hop destination address (attribute attrDst) must be included in any
message to identify the receiver.

To recover the missing source MAC address, the fact is exploited that
the per-hop destination address of a message will equal the per-hop source
address of the next message in the flow. The operator maintains a table
with the last message in each active flow. When a message cannot be as-
sociated to a flow in the table using predSameFlow, then a new flow is
created and the packet is stored. The per-hop source address equals the
originator address in this case. Otherwise, if the flow already exists, the
per-hop source address of the message equals the per-hop destination ad-
dress in the packet stored for that flow in the table. A special case are
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on receive data ( dst , seq , orig , t ):
if ( exists p[seq | orig ]) {

if (p[seq | orig ]. dst = dst) {
emit retransmission ( dst , seq , orig , t );

}
src ← p[seq|orig ]. dst ;
p[seq | orig ]. dst ← dst;

} else {
src ← orig;
p[seq | orig ]. dst ← dst;

}
emit data ( src , dst , seq , orig , t );

Figure 4.16.: PacketTracer operator.

retransmitted packets, where the destination address in the packet equals
the destination address stored in the table. The packet in the table is then
replaced with the new packet. The operator copies incoming records to
the output but appends an attribute holding the discovered source address.
Another attribute is added indicating whether or not this packet is a re-
transmission.

Note that if the DSN fails to overhear one or more of these messages in
a row, the destination address of the last overheard packet will be used as
the source of the next overheard packet. As a positive side effect of this,
we obtain a continuos message flow (i.e., a sequence of messages where
the destination address of a message equals the source of the next message
in the flow) even if the DSN fails to overhear messages. The operators
PathAnalyzer and TopologyAnalyzer operators described below rely on
this feature to deal with missing messages.

PathAnalyzer(attrSrc, attrDst, sinkAddr) This operator finds sensor
nodes that have a routing path to the sink with MAC address sinkAddr.
We assume that messages are routed from nodes to the sink along the
edges of a spanning tree. Here, a path between a node and the sink exists
if a sequence of packets p1, ..., pn with increasing time stamps has been
observed, such that the source address of p1 equals the address of the
node, the destination address of pn equals sinkAddr, and the destination
address of pi equals the source address of pi+1. The latency of this path is
defined as the difference of the time stamps of p1 and pn. The names of
the attributes holding the source and destination MAC addresses must be
given by attrSrc and attrDst. Note that the above notion of path existence
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on receive data ( src , dst , t ):
if ( dst ∈ n[src].desc) {

emit routingloop ( src , dst , t );
remove dst from n[ src ]. desc;

}
desc ← (src, t ) ∪ n[src].desc;
foreach (dn, dt ) ∈ desc {

if ( dst = sink) {
if (dn 6∈ n[sink].desc) {

emit goodpath (dn, t );
} else if (dt > n[sink ]. desc[dn]) {

emit goodpath (dn, t );
}

}
n[dst ]. desc ← n[dst ]. desc ∪ (dn, max (n[dst ]. desc[dn], nt ));

}

Figure 4.17.: PathAnalyzer operator.

does not imply that packets are actually successfully delivered, but packet
loss will result in increased path latency.

To implement this approach, a data structure is maintained that contains
for each node A a set {(j, tj)}, where j is a node that has a path to A
according to the above definition and tj is the time stamp of the latest
message sent by j. We call these nodes j descendants of A. When a
message p is observed with source address A, destination address B, and
time stamp t, node B is inserted into the data structure if it did not exist
before. If B is already listed as a descendant of A then a routing loop
exists and B is removed from the A’s descendants. Then, the set of de-
scendants of B is updated to include (A, t) and all descendants (j, tj) of
A. Whenever a new descendant is added to the sink or the time stamp of
an existing descendant of the sink is updated with a later value, a record
with type GoodPath is emitted containing the MAC address of the de-
scendant and the latency of the path from the descendant to the sink. In
case of a routing loop, a record of type RoutingLoop is emitted holding
the addresses of sender and receiver of the message causing the loop.

TopologyAnalyzer(window, sinkAddr) This operator implements a
heuristic to detect network partitions. Note that partition detection is a
non-trivial problem as we do not know the exact set of neighbors of each
node. We assume that messages are sent from nodes to the sink (with ad-
dress sinkAddr) along the edges of a spanning tree. Here, a partition is a
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on receive data ( src , dst ):
n[dst ]. nb ← n[dst ].nb ∪ src;
reset timeout ( dst , src );

on timeout ( dst , src ):
remove src from n[dst ]. nb;

on receive nodestate ( src , state ):
if ( state = ‘‘dead’’ ) n[ src ]. nb ← ∅;

periodically :
DFS (n, sink );
foreach unvisited node nn

emit partitioned (nn);

Figure 4.18.: TopologyAnalyzer operator.

special case of “no path to sink”, where node failures lead to a separation
of the node from the sink. In fact, only after a “no path to sink” error
has been reported for a node, should the output of TopologyAnalyzer be
used to decide whether the reason for this error is caused by a network
partition.

To detect such partitions, we construct an approximate view of the net-
work topology. For each node, we maintain a list of recently used (in
terms of a time window with length window) tree parent nodes by extract-
ing sender and receiver addresses from overheard packets. Also, when a
node failure is observed, the respective node is marked as failed in this
data structure. A node is considered partitioned if there is no path from
that node to the sink in this data structure that uses only nodes that have
not failed. In practice, a depth-first search is performed whenever the data
structure is modified.

The operator requires two input data streams: a stream of overheard
packets and a stream of “node failure” events generated by another oper-
ator graph. The output of the operator consists of Partition records
indicating whether or not a node is currently partitioned from the sink.
These records contain a node address, a flag indicating if that node is par-
titioned or not, and the addresses of any failed upstream nodes that caused
the partition.

StateDetector(attrGroup, funcEval) While the above operators are used
to detect a variety of passive indicators, it is often not trivial to infer the
original problem from these indicators. To help with the root cause anal-
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ysis described in the following section, SNIF provides the StateDetector
operator.

This operator groups records by record type and by the value of the
attribute given by attrGroup. For each group, the operator stores the lat-
est record. Whenever a new record is inserted into a group, the function
funcEval is invoked for that group, with the set of stored records as param-
eter. The evaluation function outputs a record of type State, containing
the value of the grouping attribute as well as the current state of the group.
A typical application of this operator is to compute the current state of
each node (e.g., ok, crashed, no route, ...). Here, records are grouped by
node address.

predStateChange(attrGroup, attr1, attr2, ...) This predicate is used with
the Filter operator to remove duplicate records. Records are first grouped
by attrGroup. In each group, a record is dropped unless it differs from
the previous record in that group in at least one of the attributes attrX.
When applied to the output of StateDetector, (node) state changes can be
computed.

4.7. Root Cause Analysis

The next step in the inspection of a sensor network is to derive the state
of each node, which can be either “node ok” or “node has problem X”.
Note that the indicators mentioned above may concurrently report multi-
ple problems for a single node. In many cases, one of the problems is a
consequence of another problem. For example, a node that is dead also
has a routing problem. In such cases, we want to report only the pri-
mary problem and not secondary problems. For this, we use a decision
tree, where each internal node is a decision that refers to the output of
an operator graph, and each leaf is a node state. In the example tree de-
picted in figure 4.1, we first check (using the output of an operator graph
that counts packets received during a time window) if any messages have
been received from a node. If not, then the state of this node is set to
“node dead”. Otherwise, if we received packets from this node, we next
check if this node has any neighbors (using an operator graph that counts
the number of neighbors contained in link advertisement packets received
from this node). If there are no neighbors, then the node state is set to
“node isolated”. Here, the check for node death is above the check for
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isolation in the decision tree, because a dead node (primary problem) is
also isolated (secondary problem).

In general, the decision tree for the inspection of a WSN is constructed
in a heuristic manner, based on a basic cause-effect analysis for the ex-
pected problems. In section 4.9.3, the decision tree used in our evaluation
of a data gathering application is explained in detail.

4.8. Visualization

To display problems in the sensor network that have been detected by the
data stream processor, SNIF provides a configurable user interface, which
allows to display a real-time view of the network topology graph, where
nodes and links can be annotated with application-specific information
(e.g., state of a node, packet loss of a link) using a simple API. The core
abstraction implemented by the user interface is a network graph, where
nodes and links can be annotated with arbitrary information. Also, log-
ging and later replay of execution traces is supported. Figure 4.19 shows
an instance of this user interface for a typical data gathering application
as discussed in the next section. Here, node color indicates state (green:
ok, yellow: warning, red: severe problem, gray: not covered1 by DSN -
), detailed node state can be displayed by selecting nodes. Thin arcs indi-
cate what a node believes are its neighbors, thick arcs indicate the paths
of multi-hop data messages.

4.9. Evaluation: Data Gathering Applications

So far, most existing non-trivial deployments are data gathering applica-
tions (e.g., [47, 74, 80]), where nodes send raw sensor readings at regular
intervals along a spanning tree across multiple hops to a sink. In this
evaluation, we will therefore consider how SNIF can be applied to this
application class. We first characterize the application in more detail and
define the problems we want to detect. We then describe application-
specific data stream operators to detect these problems and how they are
used to form an operator graph. Finally, we evaluate the resulting inspec-
tion tool.

1We consider a node covered, if the DSN overhears a certain amount of beacon messages, e.g., 70%
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Figure 4.19.: An instance of SNIF’s user interface.

4.9.1. Application Model

Two prominent implementations of data gathering applications are the Ex-
tensible Sensing System (ESS) [30] using beacon-based multi-hop routing
for data collection, and Surge using MintRoute [89] for data collection.
Both implement a similar multi-hop tree routing scheme as described be-
low. We will use ESS as an example throughout the paper, but our ap-
proach can be readily applied to other, similar implementations.

In ESS, all nodes broadcast beacon messages at regular intervals. To
discover neighbors, nodes overhear these messages and estimate the qual-
ity of incoming links from neighbors based on message loss. Nodes then
broadcast link advertisement messages at regular intervals, containing a
list of neighbors and link quality estimates. Overhearing these messages,
nodes compute the bidirectional link quality to decide on a good set of
neighbors. To construct a spanning tree of the network with the sink at
the root, nodes broadcast path advertisement messages, containing the
quality of their current path to the sink. Nodes overhearing these mes-
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sages can then select the neighbor with the best path as their parent and
broadcast an according path advertisement message. All this is executed
continuously to adapt neighbors and paths to changing network condi-
tions. Finally, data messages are sent from nodes to the sink along the
edges of the spanning tree across multiple hops.

In ESS, beacons are sent every 10 seconds, path advertisements and
link advertisements every 80 seconds, data message are generated every
30 seconds. All messages except data messages are broadcast messages
and contain per-hop source address. Data messages contain the address
of the originator of the sensor data and the per-hop destination address,
but not the per-hop source address. In addition, beacon messages and data
messages contain a sequence number.

4.9.2. Problems and Indicators

In section 2.2, we studied existing deployments to identify common prob-
lems and described passive indicators that allow to infer the existence of a
problem from overheard network traffic in section 3.3.2. Below, we sum-
marize the problems that are considered in the evaluation and give passive
indicators for their detection.

Node death (fail stop) An affected node will not send any messages.

Node reboot After reboot the sequence number contained in beacon
messages will be reset.

Node has no neighbor The node does not send link advertisement mes-
sages or they are empty.

Node has no parent The node fails to send path advertisement messages.

No path from node to sink Data messages sent by the node are not for-
warded to the sink.

Node’s path to sink loops A data message originating from the node is
sent twice to the same destination by different senders. Note that this is a
special case of “no path from node to sink”.
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Node partitioned from sink A node on the path from the node to the sink
died and there is no alternate path available. Note that this is a special
case of “no path from node to sink”.

4.9.3. Decision Tree

In the following, we describe the decision tree used for the root cause
analysis to detect the problems defined in the previous section. We first
explain how the tree has been constructed and then describe each test in
the decision tree and its corresponding part of the used operator graph.

The structure of the decision tree in figure 4.20 is motivated by the
desire to find and report the root cause of a failure. For example, a dead
node (root cause) also has a routing problem (consecutive fault). Here, we
want node death to be reported, but not the routing problem. Hence, in the
decision tree, the check to detect node death is located above the checks
to detect a routing problem. Actually, the “Heard any packets?” test for a
dead node is the very first one in the tree. For the remaining tests in the
decision tree, we motivate why they are ordered in the presented way.

If a node reboots, the routing component will be reset and it will take
awhile until the node can participate in the network again. Therefore, the
“Sequence number reset?” test which detects reboots follows the dead
node test. The most important requirement for a node to communicate is
to have neighbors, hence, the “Has neighbors?” test is performed next.
Having neighbors allows a node to learn of a routing path to the sink and
select a routing parent to whom it sends data for the sink. If it does not
have a parent, this can either be caused by a recent network partition or
there might have not been a path to the sink before. If the node has a parent
and it is working properly, it should periodically send data packets to the
sink in our data gathering application. If no data from a node reaches the
sink, this can again be caused by a recent network partition or by a routing
loop. If neither a network partition nor a routing loop can be detected, we
classify this as a general routing failure.

The tests in the decision tree make use the operator graph depicted in
figure 4.21. We now explain these tests in detail:

Heard any packets? This test succeeds if any packet from a sen-
sor node could be overheard. Since data messages do not con-
tain the per-hop source address, DSNSource is filtered for data
packets (multiHopFilter) and PacketTracer is applied to reconstruct
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Heard any packets?

Sequence number reset?

yes

Node dead

no

Has neighbors?

no

Node Rebooted

yes

Has a parent?

yes

No neighbours

no

Has a route?

yes

Network partition?

no

Network partition?

no

Node OK

yes

Loops?

Routing failure

no

Routing loop

yes

no

Network partition (no route)

yes

No parent

no

Network partition (no parent)

yes

Figure 4.20.: Node state decision tree.
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the source address. Also, DSNSource is filtered for the remain-
ing packet types (beacon (linkBeaconFilter), link and path advertise-
ments(linkAdvertisementFilter, pathAdvertismentFilter)) that do already
contain the per-hop source address. A Mapper is used to normalize the
name of a particular field to the generic srcAddr attribute (linkAdver-
tisementIDMapper, linkBeaconIDMapper, pathAdvertisementIDMapper,
multihopIDMapper). The resulting data streams are then merged with the
Union operator (packetIdUnion) to obtain a stream of all packets contain-
ing source addresses. This stream is then fed to a TimeWindowAggre-
gator (packetsTWA) to count the number of packets per node using the
count aggregation function.

Sequence number reset? This test succeeds if the node rebooted. To
implement this test, DSNSource is filtered for beacon packets (linkBea-
conFilter) and SeqReset is applied to the resulting data stream. To allow
for a node reboot warning to be temporary, a TimeWindowAggregator
(seqNrResetTWA) is used to count the number of resets per node.

Has any neighbors? This test examines whether a node has any neigh-
bors. DSNSource is filtered for link advertisement packets (linkAdver-
tisementFilter). An ArrayExtractor (linkAdvertisementExtractor) is use
to create one record for each neighbor. Using TimeWindowAggrega-
tor (neighborsSeenTWA) the number of such advertisements per node is
computed. The test succeeds for a node if at least one non-empty link
advertisement was heard from this node.

Has a parent? This test examines whether a node has a parent in the
tree. DSNSource is filtered for path advertisement packets (pathAdver-
tisementFilter). Using an ArrayExtractor (pathAdvertisementExtractor)
and TimeWindowAggregator (pathAdvertisementsTWA), the number of
such advertisements per node is computed. The test succeeds for a node
if at least one path advertisement was heard from this node.

Has a route? This test checks whether a node recently had a routing path
to the sink. DSNSource is filtered for data messages (multihopFilter).
PacketTracer is applied to reconstruct the source address. PathAnalyzer
is applied and its output filtered for good route reports (goodRouteFilter).
Using TimeWindowAggregator (goodRoutesTWA), the number of good
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route reports per node is counted. The test succeeds for a node if at least
one data packet from this node was sent to the sink.

Loops? This test checks whether the path from a node to the sink re-
cently had any loops. DSNSource is filtered for data messages (multihop-
Filter). PacketTracer is applied to reconstruct the source address. Path-
Analyzer is applied and its output filtered for routing loop reports (rout-
ingLoopFilter). Using TimeWindowAggregator (loopsTWA), the number
of routing loop reports per node during a time window is counted. The
test succeeds for a node if a routing loop was reported more than once for
this node. This allows to mask temporary routing loops that may occur
after a route change.

Network partition? This test checks if a bad path from a node to the sink
was caused by a network partition. DSNSource is filtered for data mes-
sages (multihopFilter). PacketTracer is applied to reconstruct the source
address. TopologyAnalyzer is applied to detect partitions. TopologyAn-
alyzer is also subscribed to the output of StateDetector in order to obtain
node death events. The test succeeds for a node if the last record received
from TopologyAnalyzer says that this node is partitioned.

Time window configuration In the above operator graphs, the time win-
dows for TimeWindowAggregator are set to W times the interval of the
packets they consider. For example, the time window in Has a parent? is
set to W× 80 seconds, since path advertisement messages are considered
which are sent every 80 seconds. That is, W is a global parameter and we
will study its performance impact in the next section.

4.9.4. Results

To evaluate our data gathering application case study, we used the same
experimental setup as described in [63], where the Extensible Sensing
System (ESS) [30] is executed in the EmStar emulator [28]. The reason
for choosing EmStar instead of the real DSN as a data source for evalua-
tion is the ease of injecting failures in a reproducible way with EmStar.

As depicted in figure 4.22, we consider a network of 21 nodes forming
a multi-hop topology with a diameter of 7 hops. Node 2 acts as the sink.
We added three DSN nodes (nodes 31, 33, and 35 marked with squares in
figure 4.22). The link dump files of the DSN nodes generated by EmStar
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were used as input to the inspection tool. Since some sensor nodes could
be overheard by more than one DSN node, the DSN received 1.3 ± 0.5
copies of each sensor network message during the experiments, while 4%
of the beacon messages were lost (i.e., not overheard by any DSN node).

Accuracy and Latency

We study the accuracy (number and type of false error reports) and latency
(time between failure injection and report) of our inspection tool. These
metrics mainly depend on two parameters: the size of time windows used
in the operator graph (i.e., the value of the time window factor W ) and
the amount of packet loss (i.e., fraction of sensor network messages that
were not overheard by DSN nodes).

As most decisions regarding node state are based on packets received
during a fixed time window, increasing W should improve accuracy (as
operators then have more packets to base their decision on) and increase
latency linearly (as more packets need to be collected before a decision is
made). Increasing packet loss should degrade accuracy (as operators with
fixed time windows then have less packets to base their decision on) and
decrease latency (e.g., since node death is reported when no packets are
received from a node during a time window, loss of the last packets sent
by a node before death will decrease latency).

In general, the latency to detect a problem is determined by the path of
decisions leading to this problem in the binary decision tree depicted in
figure 4.20. For example, the decision Network partition? leading to state
Network partition (no parent) can only be made when the previous deci-
sion Has a parent? has been made with a result of no. That is, the latency
for detecting a given problem is a function of the maximum latency of the
decisions in the decision tree on the path from the root to the leaf denoting
this problem. In turn, the latency of a decision is determined by the size
of time window(s) in the associated operator graph.

In order to assess the impact of W and packet loss on accuracy and
latency, we ran a set of experiments injecting three types of faults into
the network: node failure, network partition, and no data. The duration
of each experiment was 30 minutes with faults being injected randomly
between 10 and 15 minutes after experiment begin. In addition to the
(small) packet loss of the DSN, we introduced additional packet loss by
uniformly dropping a given fraction of the overheard packets. We report
averages and standard deviation over multiple runs.
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To guide the selection of W for a given amount of packet loss, we
ran a first experiment without injecting any faults, varying both W and
packet loss, counting the number of (false) error reports for each parame-
ter choice. The averaged results over 10 runs are depicted in figure 4.23.
The flat area of the graph shows feasible values for W given a certain
packet loss. For a packet loss of 30% (a common value in single-hop sen-
sor networks [74]), no errors were reported for W ≥ 7, motivating our
choice of W = 8 to study the impact of message loss in more detail as
depicted in figure 4.24. Similarly, we chose a packet loss of 30% for a
more detailed study of the impact of W as depicted in figure 4.25.

In the first experiment, we performed 40 runs and injected a single node
failure per run, such that all nodes but the sink failed twice. All node
crashes were correctly detected and no false errors were reported. The
latency of the reports is mainly determined by the size of the time win-
dow used to implement the Heard any packets? test which is W× 10s.
For W = 8 and a beacon period of 10 seconds, we expect the latency to
be between 70 and 80 seconds, which is confirmed by the experiments.
Increasing packet loss does not have a significant impact on latency. The
number of false positives is negligible until 30% of packet loss and raises
significantly with more than 50% as depicted in figure 4.24. We analyzed
the generated error reports and observed that for up to 70% of packet loss,
we only observed no neighbor and no parent reports. These reports are
caused by missing link and path advertisements, respectively, which are
rarely sent (every 80s). For higher packet loss, we found node dead re-
ports for working nodes. We never observed any false negatives. When
varying W , we find (as expected) a linear increase of latency and an im-
provement of accuracy as depicted in figure 4.25.

In the second experiment we made nodes 4-16 fail at random times
to partition nodes 17-27 from the remainder of the network. We would
expect a network partition error for nodes 17-27. We report the latency
until the first node was classified as partitioned. As explained above, the
latency of partition detection is bounded by the latencies of preceding
decisions in the decision tree, namely Has a parent? and Has a route?,
which both use a time window of W× 80 seconds. As Has a route?
basically tracks multi-hop data packets which are sent often (every 30s by
all nodes), it reacts shortly before 640 seconds. The Has a parent? test
fails, if no path announcements were observed during the time window.
As explained above, increasing packet loss results in reduced detection
latency.
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In the third experiment, we injected faults into the Multihop routing
component of single nodes such that an affected node stops sending data
messages, while still broadcasting beacons and advertisements. We would
expect a no route error for the affected node and all other nodes whose
paths contain the former. We report the time until the affected node is
marked with no route. In this experiment, the latency is determined by
the window size of the Has a route? test which is set to W× 80 seconds.
As most nodes in the network forward packets for other nodes and data
packets are sent every 30 seconds, the DSN should observe data packets
until the fault is injected and the average latency should be close to the
window size. The average of 633 ± 24 seconds for W = 8 and no packet
loss confirms this. Again, in figure 4.25 bottom, the accuracy improves
and latency increases linearly with W as expected.

SNIF Performance

We also studied the performance overhead of SNIF itself. During one
30 minute experiment run without any fault injections, the DSN collected
261 kB of data, resulting in an average data rate of 1.2 kbps including
duplicate packets. Note that this equals about 0.3% of the effective Blue-
tooth 1.2 bandwidth of 400 kbps. SNIF was executing on a 2 GHz PC
using Java 1.5. The total CPU time for processing the above amount of
data was about 13 seconds, which equals about 0.7% of the experiment
duration of 30 minutes.

A Bug in the ESS Multihop Component

In the course of our experiments, we encountered a bug in the ESS Mul-
tihop component. At one point we decided to upgrade to a new version
of EmStar that fixed a bug with collision handling. After the upgrade,
we suddenly observed a large number of no parent error reports without
injecting any faults. As SNIF was still receiving close to 100% of all
beacon packets and link advertisements, we concluded that this problems
was caused solely by the path advertisement component. By examining
the source code of Multihop, we learned that nodes react to receipt of a
path advertisement message by updating their parent selection and broad-
casting their updated path advertisement immediately without any addi-
tional delay. Hence, the original path advertisement broadcast results in
an implicit synchronization of all receivers, such that the secondary path
advertisements collide with high probability without being retransmitted.
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By adding a random jitter, we were able to fix this problem.
Although SNIF was neither constructed nor configured for this particu-

lar problem, its ability to report both the close to 100% reception rate of
beacon packets while receiving almost no path advertisement reduced the
time to trouble-shoot this problem significantly.

4.10. Summary

In this chapter, we presented a framework for passive inspection of de-
ployed sensor networks, consisting of a distributed network sniffer, data
stream processor, and user interface. The key advantage of this frame-
work is that sensor networks need not be instrumented for inspection.
The framework has been specifically designed to support different proto-
col stacks and operating systems. We showed how this framework can be
applied to data gathering applications, demonstrating that our approach
can detect typical problems encountered during deployment timely and
accurately even in case of incomplete information. Using this tool, we
found a bug in the ESS application. SNIF has been fully implemented
and demonstrated at the EWSN conference in 2007 [67].
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Part II.

Fault Prevention





5. Medium Access Protocols for
Wireless Sensor Networks

In the second main part of the thesis, we proactively address problems
caused by the unsuitable design of current medium access control (MAC)
protocols for event-triggered applications by providing a new MAC pro-
tocol specifically designed for this kind of application.

Many early applications of sensor networks were time-triggered, where
sensor nodes sample their sensors at regular intervals and report these
readings to a sink. In event-triggered applications, in contrast, sensor
nodes do not transmit any data unless a relevant real-world event occurs.
In the volcano monitoring application described in section 2.1.7, for ex-
ample, sensor nodes detect volcanic eruptions by sampling their sensors.
Only when a node detects an eruption, it sends a lengthy time series of
sensor values to the sink, generating a traffic burst in the network. Be-
cause an eruption typically triggers many nodes simultaneously, the oc-
currence of traffic bursts produced by different nodes are highly corre-
lated in time. Here, it is important that all data is collected in a reliable
and timely manner with low energy overhead. However, it is equally im-
portant that the energy overhead during idle periods between eruptions is
very low.

Existing medium access (MAC) protocols are not well-suited for such
event-triggered applications with correlated traffic bursts as they are effi-
cient either in idle mode or during correlated traffic bursts, but not both.
Contention-based protocols such as SCP-MAC are very efficient in idle
mode because they minimize control overhead required for node coordi-
nation. However, during correlated traffic bursts when many nodes com-
pete for the radio channel, their efficiency is rather low due to control
traffic required for contention. In contrast, scheduled protocols such as
LMAC eliminate contention overhead during correlated traffic bursts, but
exhibit a high overhead in idle mode due to the control traffic required for
node coordination.

The goal of the second main part of this thesis is the design of a MAC
protocol suitable for event-triggered applications with correlated traffic
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bursts. It should have a low energy consumption for idle situations and
be able to transfer the data during bursts efficiently. In this first chapter of
the second part, we lay the foundation for the MAC protocols presented in
the subsequent two chapters. We first give a general overview on the prin-
ciples underlying MAC protocols for wireless sensor networks and then
present related work with an emphasis on energy-efficiency and collision-
free communication. Then, we specify the goal of the second part of this
thesis in more detail. We present basic mechanism that will be used by
the protocols introduced later.

5.1. Background

In contrast to existing wireless MAC protocols (e.g., for WLAN), sen-
sor network MAC protocols stand out by their need for energy effi-
ciency. Therefore, we first highlight the main sources of energy waste.
Also, whereas WLAN communication generally is infrastructure-based,
in which a number of entities communicate directly with a single access
point, WSN increasingly make use of multi-hop communication, in which
data is routed from sensor nodes to a central sink node over multiple inter-
mediate nodes. Based on an understanding of the sources of energy waste
and the need for multi-hop protocols, several design strategies for WSN
MAC protocols have emerged, which we review next.

5.1.1. Sources of Energy Waste

Ye et. al. identified four main sources of energy waste in their seminal
work on MAC protocols for WSN [90]:

• Idle Listening: If a node does not know when the next message for
it arrives, it has to listen to the medium also when no messages are
sent. This is called idle listening. Idle listening constitutes the major
source for energy consumption in idle networks.

• Overhearing: Overhearing refers to the undesired reception of mes-
sages which are not addressed to oneself.

• Collisions: Collisions occur when a node transmits a packet in the
vicinity of a node that is receiving another packet. Such a collision
may result in a corrupted packet that has to be retransmitted. Re-
transmissions increase energy consumption for both the sender and
the receiver.
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• Protocol Overhead: Protocol overhead refers to the signaling pro-
tocol and the packet headers that are required to implement the
medium access control protocol.

Over time, various MAC protocols have been proposed that address
these sources of waste differently and are often named X-MAC, where X
stands for a group of letters of the alphabet. [45] provides an overview of
this “MAC Alphabet Soup”.

5.1.2. Design Strategies

MAC protocols differ in the way how they address the sources of energy
waste listed in the previous section. In general, all nodes in a WSN im-
plement the same MAC protocol. On each node, the protocol has control
over the operation mode of the radio transceiver and can use timers. Com-
mon radio transceivers for WSN work in half-duplex mode as they cannot
receive and transmit at the same time and support three different modes of
operation: sleep, receive and transmit. In addition, most radio transceivers
allow for the measurement of the received radio signal strength (RSSI).
This measurement can be used to perform a so-called clear channel as-
sessment (CCA) [60], which tests if there is an ongoing transmission.
Finally, some radio transceivers are able to set the frequency and are able
to communicate on different channels, but only one at a time.

The main classification of MAC protocols is whether communication
is scheduled in a time-division multiple-access (TDMA) fashion or not.
Scheduling the communication helps to avoid idle listening, overhearing,
and collisions, but incurs additional protocol overhead for the schedul-
ing and time synchronization. If the communication is not scheduled, a
contention-based approach has to be used, in which nodes compete for
the medium. With such protocols, the probability for collisions depends
on various factors: protocol design, traffic pattern, network load, and the
network topology.

Independent of the scheduling of communication over time, commu-
nication can also be scheduled in the frequency domain, which is called
frequency-division multiple-access (FDMA). The use of multiple, orthog-
onal frequency channels is possible in scheduled protocols as well as in
contention-based protocols and can help to increase the throughput in a
network and allows to communicate in overlapping clusters without inter-
ference. Although WSN are dominated by the strategies introduced here,
others certainly exist for different kinds of wireless networks.
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In the following, we further discuss the benefits and drawbacks of
scheduled and contention-based protocols with an emphasis on two as-
pects: energy efficiency, especially the ability to reduce idle listening,
and collision avoidance.

Contention-based Protocols

In this section, we discuss the main technique used in contention-
based WSN protocols called low-power listening and the effectiveness of
carrier-sense multiple-access (CSMA) for collision avoidance in sensor
networks.

In the standard IEEE Wireless LAN 802.11 protocol [107], nodes listen
continuously for incoming packet transmissions. For an otherwise idle
network, this results in a dominant idle listening overhead. An efficient
way to deal with this overhead is to let nodes only periodically poll the
medium for on-going transmissions and keep the radio transceiver turned
off most of the time. If a node detects a transmission, it keeps the radio
turned on and tries to receive the packet. If there is no transmission, it
turns the radios off until the next polling event. This scheme is called
low-power listening.

However, as the polling is not scheduled, the sender does not know
at which time the intended receiver will poll the medium the next time.
A first practical solution to this problems was to extend the duration of
the preamble preceding a packet to be long enough to assert that the re-
ceiver will poll the channel during the packet preamble and, hence, will
be able to receive the packet. By this, the cost for idle listening is reduced,
whereas the cost for actually transmitting a packet is increased. For appli-
cations with very low data rates, this already gets close to the optimum.
For applications with low data rates, several improvements of this scheme
further reduce the cost for a rendezvous between sender and receiver and
allow to achieve idle radio duty cycles below 1%.

As contention-based protocols do not explicitly coordinate the send re-
quests of multiple nodes, they attempt to avoid collisions by listening to
the channel before sending, which is called carrier-sense multiple access.
If the medium is found busy, a node stops its transmission attempt and
tries later. This constitutes a back-off mechanism. When the node will try
to send again is defined by a protocol’s back-off strategy. In most WSN
protocols, a node will try again after a fixed amount of time. A more ad-
vanced strategy is the binary exponential back-off algorithm specified by
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the IEEE 802.11 standard, whereby a node will choose to wait for a ran-
dom time between 0 and 2i times a constant c before trying to send again.
For this, i is initialized with 1 and is incremented with each failed try.

The problem with CSMA in wireless networks is that it is not possible
to send and transmit at the same time and that switching between polling
the channel and sending takes a non-neglibile amount of time. If two or
more nodes poll the channel at nearly the same time, all of them will sense
a free channel, switch to transmit mode, and instantly start to transmit,
which leads to a collision.

Another issue not addressed by CSMA is the hidden terminal problem
which occurs when two nodes A and B are in the communication range
of node R, but nodes A and B cannot detect each other’s transmission.
Assume that node A is already transmitting a packet to node R. If node B
senses the medium, it will not detect node A’s transmission and will also
start sending its packet. This results a in collision at node R. To reduce
collisions caused by the hidden terminal problem, the 802.11 protocol
provides the RTS/CTS (Request to Send / Clear to Send) mechanism. A
node wishing to send data first transmits a request-to-send (RTS) packet
to the destination node. The destination then replies with a clear-to-send
(CTS) packet. Any other node that receives either the RTS or CTS packet
should refrain from sending for the duration of the transmission. How-
ever, this mechanism is rarely used in wireless sensor networks for two
reasons. Firstly, the CTS and RTS packets may also collide due to the hid-
den terminal problem similar to ordinary WSN messages, and secondly,
the size of CTS and RTS packets including the long wake-up preamble is
similar to ordinary WSN messages. Therefore, it is often cheaper to just
retransmit the actual data packet than to make use of CTS/RTS signaling.

Because of the problem of accurately detecting a free medium and the
hidden terminal problem, contention-based protocols are not suited for
applications with concurrent transmissions where the probability for two
or more nodes trying to send at the same time is especially high.

Schedule-based Protocols

Schedule-based MAC protocols coordinate the communication between
neighboring nodes. This implicitly avoids collisions, and thus allows to
handle traffic bursts. For this, time is divided into frames with a fixed
number of slots and a schedule specifies for each node in which slots its
has to listen and in which slots it is allowed to transmit. As nodes have to
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listen only during certain slots, this leads to a reduced idle listening over-
head. In the rest of this section, we discuss different ways how scheduling
can be performed and their energy consumption.

If the traffic pattern is constant or predictable (e.g., if there are recur-
rent traffic flows), a global schedule can be constructed and disseminated,
which results in very efficient communication with low idle listening, low
overhearing, no collisions, and low protocol overhead.

However, if the traffic is not predictable, the schedule has to be con-
stantly updated, which causes a high protocol overhead. For idle traffic
situations, the scheduling even dominates the energy consumption. To re-
duce the scheduling overhead, MAC protocols can adapt two approaches:
fixed slots or dynamic local scheduling.

In traditional TDMA protocols for single-hop networks, each node is
assigned a fixed slot in which it can send. With such a fixed scheduling,
all nodes have to listen in all slots, as they do not know, whether the owner
of this slot will send a packet. To reduce the energy consumption for idle
listening, the slots can be made rather long, as less slots per time unit have
to be checked for transmissions. Although this saves on energy, it causes
a high latency.

Instead of using a fixed schedule, the schedule can be dynamically cal-
culated, but this introduces a chicken-and-egg problem. Let’s consider
the case of a TDMA protocol with a single receiver and multiple senders
where the traffic is not predictable. If the receiver would know which of
its neighbors want to send at the moment, it could construct a schedule
and broadcast it. The senders could then send their message in turn with-
out further coordination. The problem with this dynamic scheme is that
in order to let the receiver know that a node wants to transmit something,
it has to communicate with the receiver. So instead of the actual data
transmission, the send requests have to be coordinated. For this, either a
contention-based approach can be used or send request slots have to be
assigned to the nodes. Similar to the non-scheduling MAC protocols, the
contention-based approach may lead to collisions. On the other hand, re-
serving send request slots avoids collisions, but is inefficient, as the trans-
mission of a complete packet is required to communicate the single bit
send request over the radio. Even though the send request consists only
of the sender ID, which can be encoded as a single bit of information if
each slot is associated with a particular sender ID, it has to be framed into
a complete packet, consisting of a preamble, the start-of-packet symbol
and the actual payload data.
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Figure 5.1.: 2-hop coloring of multi-hop network. Two nodes with a common neighbor
must have different colors (represented by filling patterns here).

In addition to efficient scheduling, a scheduling MAC protocol also has
to prevent collisions between nodes of separate scheduling domains and
therefore has to construct a conflict-free schedule. A common approach is
to pose the assignment of slot numbers to nodes as a 2-hop-coloring prob-
lem, in which each node has to be assigned a color such that no two nodes
with the same color also have a common neighbor as depicted in figure
5.1. Then, nodes with the same color cannot use the same slot for trans-
missions. This approach effectively prevents collisions for neighboring
nodes and also avoids hidden-terminal situations.

5.2. Related Work

A comprehensive discussion and comparison of MAC protocols for sensor
networks can be found in [46]. Here, we focus only on the latest and most
relevant results and follow roughly the outline of the design strategies in
section 5.1.2. After describing single-channel scheduled and contention-
based MAC protocols, we look at first implementations of multi-channel
protocols.
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5.2.1. Contention-based Protocols

B-MAC

B-MAC [60] and “Aloha with preamble sampling for sporadic traffic in
ad hoc wireless sensor networks“ [22] have been the first two protocols to
employ the low-power listening technique described in the previous sec-
tion to reduce idle listening. In addition, B-MAC exposes certain MAC
configuration parameters, e.g., the channel polling period and its back-off
settings to higher layers respectively to the the application layer. B-MAC
only implements a minimal back-off strategy. Per default, the protocol
waits for a random time before sending a packet, and also uses a small
random time in case the medium is busy. This allows for protocols on
higher layers to define their own back-off strategy. Similarly, exposing
the channel polling period, which determines the latency and the energy
consumption of idle listening, allows to adapt the MAC protocol to appli-
cation needs. However, for two nodes to communicate, the same polling
period has to be used. Hence, the polling period should be the same in the
whole network, and it is difficult to adapt the polling period at run-time in
response to spontaneous changes.

X-MAC

X-MAC [11] improves upon the basic low-power listening concept by
replacing the extended preamble by a sequence of short announcement
packets that indicate the destination address of the actual packet. After
each announcement packet, a short pause allows for the target node to
respond with an early acknowledgment (ACK). Upon receipt of the early
ACK, the sender can skip the rest of the preamble and start transmitting
the actual data. As a node will wake up after half the preamble on average,
this scheme saves half of the energy required for the long preamble. X-
MAC specifies a custom back-off strategy based on the idea that a node
that has been woken-up and has responded with an early ACK may receive
further packets without long strobed preambles by staying awake after the
first packet for a certain time. Hence, if node A attempts to send a packet
to node B but instead of a free medium it detects a preamble, node A will
wait for the ACK to check if it was sent by node B. In this case, node A
will wait for the time it takes to transmit a packet with maximal payload
plus a random back-off time before trying again to transmit its data. The
random back-off time is intended to deal with multiple nodes that want
to send to the same node. By this, the collision probability of random
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access is increased as multiple senders that want to transmit to the same
receiver concentrate their send attempts during the time the receiver waits
for further packets. A further benefit of X-MAC compared to B-MAC
is that it also accommodates radio transceivers that do not allow to send
arbitrarily long preambles, such as the 802.15.4-based radio transceivers
used on the Telos-B [97], MIZAz [97], and the TMote Sky [100] sensor
nodes.

WiseMAC

WiseMAC [23] reduces the length of the preamble used for the low-
power listening technique by keeping track of neighbors’ sleeping sched-
ules. The required schedule information is piggy-backed onto message
acknowledgements and allows to predict the next time the neighbor is
polling the channel, taking into account possible clock drift. With the es-
timated information about the next wake-up time, WiseMAC can reduce
the length of the preamble to a minimum for unicast communications. All
nodes that want to send to the same receiver are implicitly synchronized to
the receiver’s wake-up time. To avoid collisions in this case, an additional
medium reservation window is used. A sender node picks a random time
during this reservation window to sample the medium, and starts sending
its preamble if the medium is free. If the medium is occupied, the binary
exponential back-off strategy is applied to reduce the chance of collisions
for consecutive transmission attempts.

SCP-MAC

SCP-MAC [91] is named after its “Scheduled Channel Polling” approach.
Similar to the low-power listening technique, the nodes periodically poll
the channel for ongoing transmissions. Here, the time interval between
each channel polling is termed polling interval. In contrast to the pre-
vious three protocols, SCP-MAC synchronizes the sleep schedules of all
nodes such that all nodes poll at the same time. By this, a sender can trans-
mit a packet just at the moment when all neighbors wake-up, without an
extended preamble and also allows for the efficient transmission of broad-
cast packets. Even the contention between multiple potential senders is
performed before neighboring nodes wake up. With this, the idle listen-
ing energy is minimized to the energy required for time synchronization.
However, the synchronized medium access leads to a higher chance of
collisions that have to be resolved by back-off mechanisms. In addition,
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only a single packet is transmitted per polling intervall. To increase the
available bandwidth, SCP-MAC proposes an “adaptive channel polling”
mode, which allows to send multiple packets during a polling interval.
This is achieved by repeating the channel polling process multiple times
during each polling interval and transmitting one packet in each so-called
“high-frequeny polling slot”. This mode also allows to efficiently for-
ward packets along a path through the network as a packet can be received
and forwarded during the same polling interval. However, this streaming
scheme only works for a single path as transmissions by multiple senders
in the same area cannot be handled this way. The protocol does not specify
a particular back-off strategy for the case that a node looses the competi-
tion to sent against another node. Therefore, it will try again at the next
possible time.

5.2.2. Schedule-based Protocols

LEACH

LEACH [32] partitions the network into clusters, such that all nodes in a
cluster can communicate with each other. In each cluster, the cluster head
assigns a fixed TDMA schedule to the nodes. Non-cluster-head nodes
send their data to the cluster head, which forwards the data to the sink.
The role of the cluster-head is rotated to distribute energy consumption
equally among all nodes. However, since cluster heads communicate via
long-range radio with the sink, all nodes must be capable of long-range
communication, which is a strong assumption.

BMA

The “bit-map-assisted” (BMA) MAC protocol [50] is similar to LEACH,
but provides dynamic slot allocations within each cluster. For the slot
allocation, a "contention period" is used, where each cluster member is
assigned a short send request slot. After the send requests are collected,
the cluster head broadcasts a transmission schedule. Although the collec-
tion of send requests requires only a single bit of information per node,
it is not discussed whether this can be implemented efficiently. Instead,
a control packet with a total length of 18 bytes is used to communicate a
single-bit send request in the analytical part of the paper.
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TRAMA

With TRAMA [62], the TDMA scheduling is replicated over the nodes
of the network. However, the schedule can only be adapted to long-term
traffic flows through the network. The protocol additionally assumes an
out-of-band mechanism for time synchronization and exhibits a high la-
tency.

LMAC

In contrast to the previous protocols, LMAC [81] has been implemented
and used in sensor network deployments. LMAC establishes a slot struc-
ture for the whole network and assigns each node to a slot in a TMDA
schedule using 2-hop coloring. For this, each node transmits in each
round which of the slots are used by itself and its neighboring nodes. By
computing the union of the allocated slots of its neighbors, a new node
can learn about the occupied slots in its two-hop neighborhood. From
the list of free slots, the new node then picks a random slot that it uses
for its transmission in the future. With this scheme, LMAC effectively
avoids hidden-terminal problems at the expense of using more slots than
the maximal degree of nodes in the network. The original paper suggests
32 slots. However, all nodes must listen during all slots to receive data.
This implies a significant energy overhead, resulting in a radio duty cycle
� 1% even in idle mode.

AI-LMAC

The “Adaptive, Information-centric and Lightweight MAC” [17] is based
on the LMAC protocol and allows nodes to own more than a single slot
for sending. With AI-MAC, in a data-gathering application, nodes closer
to the sink can uses more slots, which improves throughput and latency.
However, the decision on how many slots a node should use is left to the
application. To this end, the paper proposes a data management frame-
work that deals with predictable traffic, e.g., if the network has to respond
to dynamic queries and the distribution of the queried sensors is known.

Dozer

While the previous protocols have been general purpose MAC protocols,
Dozer [14] is an integrated data collection stack for ultra-low data rates,
consisting of MAC layer, topology control, and routing. After an initial
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spanning-tree construction, each inner node coordinates the data collec-
tion from its child nodes. The child nodes are enumerated and a basic
fixed schedule allows each child node to forward its data to the parent
node. In each slot, a child node can send multiple packets until the end of
its slots. Each packet is then directly acknowledged by the parent node.
Although the communication between a parent and its children nodes are
scheduled, transmissions of different parent-child star topologies may in-
terfere. For the low data rates, for which Dozer was designed, such colli-
sions are infrequent. To avoid the situation that schedules of neighboring
star topologies are synchronized, which would result in systematic colli-
sions, the length of the TDMA schedule is extended each round by a small
time interval by the parent of each star. However, in the case of correlated
traffic bursts, most slots in each star schedule are used, which results in
significant collisions between the transmissions of neighboring stars.

5.2.3. Multi-Frequency Protocols

“A Practical Multi-channel Media Access Control Protocol for WSN”

The protocol by H. Le et. al. [48] distributes nodes over the available
frequency channels in a way to maximize the total network bandwidth.
Each node listens on a single channel and this channel is called its “home
channel”. Initially, all nodes start with the same home channel. When
this channel becomes overloaded, some nodes migrate to another non-
interfering channel. As nodes keep track of other nodes’ home chan-
nels, a node A with home channel X can still send a message to node B
with home channel Y by temporarily switching to channel Y . The de-
cisions when to migrate to a different channel and to which channel are
performed by a local heuristic algorithm. The protocol is proposed as an
additional component on top of an existing single-channel MAC protocol.
For contention-based protocols, this poses no new problems as a message
can be sent at any time. However, it is not clear how the channel switch
required to transmit a message to a node on a different home channel can
be integrated into the scheduling of TDMA protocols. Finally, the focus
of the protocol is on network throughput. Energy efficiency has not been
addressed and the additional periodic channel update packets that are used
to maintain connectivity increase energy consumption significantly for the
idle case.
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Y-MAC

The Y-MAC [42] protocol also increases the network bandwidth. In con-
trast to the previous protocol, which builds on top of an existing single-
channel MAC protocol, Y-MAC is based on a TDMA scheme where
each node is assigned a time slot similar to LMAC. However, whereas
in LMAC a node sends during its slot, in Y-MAC it has to listen. All
nodes that want to send to a particular receiver compete for the medium
during a contention window in the beginning of the receiver’s time slot.
In addition to these unicast slots, the protocol provides a dedicated broad-
cast period in which a node can reach all neighbors. By this, a node only
has to listen during the broadcast period and during its own unicast slot
which reduces the cost for idle listening. However, the TDMA approach
increases the latency and reduces the throughput compared to, e.g., SCP-
MAC, where a packet can be sent in each slot. To allow for traffic bursts,
a node that received a packet during its assigned slot x will change to a
different channel and be ready to receive another packet on the new chan-
nel in slot x+1. The sender of the first packet as well as other contenders
that lost during slot x will follow the receiver to the new channel. This
process continues as long as there are transmissions for the receiver. Al-
though orthogonal channels and a TDMA-approach are used, contention
is still used for each transmitted packet. In particular, all nodes that try to
send to the same receiver (which is the common case in tree-based col-
lection protocols) will send at the same time on the same channel; hence,
they suffer from the same contention overhead as in the SCP-MAC proto-
col.

5.2.4. Discussion

Out of the surveyed protocols, only SCP-MAC, WiseMAC, and Dozer
achieve a low idle-duty cycle below 1%. However, correlated traffic bursts
lead to collisions or cause a large number of nodes to repeatedly compete
for the medium and have them back-off while the medium is constantly
busy. Collisions and the high number of times a node has to compete
for the medium increase the energy consumption per packet significantly.
In contrast, most scheduled protocols, and especially LMAC, can handle
traffic bursts without collisions, but their idle listening overhead is higher
and the maximal throughput is severely limited by the fixed slot assign-
ment.
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5.3. Problem Statement

In the previous section, we have surveyed existing MAC protocols with
an emphasis on energy efficiency and collision avoidance. None of them
both achieves a low idle duty-cycle and can handle correlated traffic bursts
efficiently at the same time.

Based our study of existing MAC protocols and our work on the in-
spection of sensor networks, we now outline the requirements for a MAC
protocol specifically designed for event-triggered applications with corre-
lated traffic bursts.

5.3.1. Determinism

In order to reduce uncertainty in WSN, the new MAC protocol should
be able to handle correlated traffic bursts in a deterministic way. Since
contention-based protocols are not deterministic, their behavior is not pre-
dictable. Therefore, the analysis of problems is aggravated. Furthermore,
as the probability for collisions increases with the number of nodes trying
to send simultaneously, traffic bursts might even incur chaotic behavior.
Therefore, the new MAC protocol should be scheduled, and the behav-
ior of all relevant components should be deterministic also during traffic
bursts.

5.3.2. Energy Efficiency

The traffic of event-triggered applications is characterized by long periods
where no data is generated. Therefore, the energy consumption during
these periods has to be on the same level as current state-of-the-art WSN
MAC protocols. This means, that the radio duty cycle for idle networks
should be below 1%. Then, in the case of an event, many nodes will
try to report their measurements simultaneously. For this, the scheduling
overhead should be low to keep the energy for the actual data collection
at reasonable levels. Finally, if large amounts of data are generated, this
data has to be transferred efficiently by the network.

5.3.3. Latency

In general, there is a trade-off between energy consumption and the reac-
tivity of a network. A shorter latency usually requires more energy. How-
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ever, we still expect that the latency between event detection and event
reporting to be in the order of seconds and not minutes.

5.4. Approach

In this section, we first explain our strategy to fullfill the stated require-
ments of event-triggered applications with correlated traffic bursts, then
we outline the basic structure of our protocols, and give an overview over
the remaining sections and the remainder of the second part of the thesis.

As pointed out in section 5.3.1, we focus on schedule-based MAC pro-
tocols as these achieve deterministic behavior in the presence of correlated
traffic bursts. However, at first glance, this choice incurs higher energy
consumption and latency. We address these issues by combining several
existing and new techniques to balance the cost for the deterministic be-
havior.

A major improvement in terms of energy efficiency, especially in idle
situations, is achieved by synchronizing the time when nodes exchange
messages, similar to the SCP-MAC protocol. In addition, we developed a
new single-bit transmission technique that allows to collect small amounts
of the information without the associated high overhead of sending com-
plete packets and thus allows for efficient on-demand scheduling. Finally,
the coordination of neighboring scheduling domains is achieved, implic-
itly based on the global time and the node’s ID, without explicit commu-
nication.

So far, schedule-based MAC protocols have dealt with the hidden ter-
minal problem by scheduling slots to nodes in a way that would prevent
nodes that share a common neighbor to use the same slot. However, this
incurs a high latency compared to contention-based MAC protocols be-
cause a node can only send during the slot that it has been assigned. In
addition to scheduling over time, we make use of the ability of current ra-
dio transceivers of sensor nodes to communicate on a range of orthogonal
channels by distributing the nodes over the available channels. All nodes
that want to communicate with a particular node switch to that node’s
channel. This effectively avoids the hidden terminal problem while in-
creasing the network capacity at the same time.

We designed two protocols: BitMAC and BurstMAC. In both proto-
cols, nodes are organized into 1-hop star networks, where a coordinator
node communicates with its direct neighbors. The whole network then
consists of all interconnected star networks. The nodes of each star net-
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work communicate on a radio channel orthogonal to the one of other co-
located stars. The radio channels are determined by a 2-hop-coloring of
the network as depicted in figure 5.1. We assume that there are enough
channels available for this and will evaluate this assumption in chapter
6. We further assume in both protocols that a node receives the “or” of
the transmissions of all senders within its communication range. We will
validate this assumption in the next section and demonstrate as a first ex-
ample for such a cooperative transmission scheme how send requests of
multiple nodes can be collected with minimal overhead.

In BitMAC, we focused on data-gathering applications with a static net-
work and a central sink. We made use of new cooperative transmission
schemes to achieve a parallel and time-bounded coloring of unstructured
networks. However, some parts of the protocol do not cope well with
changes in the network topology. In our second protocol, BurstMAC, we
used a less efficient approach for the coloring of the network, but this led
to a protocol with less stringent timing requirements and which can deal
with topology changes.

After this overview of our approach, we will introduce in the next sec-
tion our work on cooperative transmission schemes which allow a set of
nodes to communicate at the same time in a useful way. Then, we present
BitMAC and BurstMAC in chapter 6 and chapter 7 respectively.

5.5. Cooperative Transmission Schemes

In this section, we introduce the concept of cooperative transmission. We
first state and valildate our assumption on the used radio technology for a
concrete sensor node radio transceiver, the ChipCon CC1000, before we
present related work on this topic in a broader context. Finally, we demon-
strate how a single bit of information can be collected from all neighbors
without the need for preambles. Further, more advanced techniques will
be presented as part of the BitMAC protocol in section 6.3.

5.5.1. Assumptions

Our work is based on the assumption, that a node receives the “or” of the
transmissions of all senders within communication range. In particular,
if bit transmissions are synchronized (e.g., slotted access to the medium)
among a set of senders, a receiver will see the bitwise “or” of these trans-
missions.
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This behavior can actually be found in practice for radios that use On-
Off-Keying (OOK), where ”1”/“0” bits are transmitted by turning the ra-
dio transmitter on/off. Note that transmitting a zero is then equal to send-
ing nothing.

Although the use of OOK modulation has been superseded by more
efficient modulation schemes over time, it is still possible to receive the
“or” of the transmissions of all senders within communication range. The
first generation of sensor nodes that achieved widespread use (e.g., MICA
and RENE motes [97], Scatterweb ESB [102], TecO Particles [103],
and the EYES project prototype [99]) employed the RTF TR1000 radio
transceiver that directly provided OOK modulation. The next generation
of sensor nodes (e.g., MICA2 motes, MANTIS Nymph [101], BTnode
Rev. 3) was based on the Chipcon CC1000 series, which only sup-
ported Frequency-Shift-Keying (FSK) modulation. However, an applica-
tion note [96] of the manufacturer describes how OOK modulation can be
emulated for the CC1000. The newer Chipcon CC1020 and CC1021 pro-
vide support for OOK modulation in addition to FSK and GFSK (Gaus-
sian Frequency Shift Keying).

Our MAC protocols will use this communication model (and hence
OOK) only for a limited number of control operations. For the remainder
(e.g., payload data transmission), other, perhaps more efficient modula-
tion schemes can be used if supported by the radio. In this case it might
be necessary to adjust the transmit power such that the communication
ranges are similar for both modulation schemes.

5.5.2. Validation

In a first experiment, we validate our communication model by showing
that a node can indeed receive the bitwise “or” of the transmissions of two
other nodes.

For the hardware experiments, we used the BTnode Rev. 3, which pro-
vides a Chipcon CC1000 low-power radio. As this radio does not directly
support OOK transmission it has to be emulated. For this, the transmitter
sets the frequency separation to 0 Hz and switches the power amplifier
in the transmitter section on and off to transmit single bits. On the re-
ceiver side, the received signal strength indicator (RSSI) is used to decide
whether a “1” is transmitted or not. A “1” is assumed if the RSSI value
is above a fixed threshold. The built-in analog-to-digital converter (ADC)
of the ATmega128 was used to measure the analog RSSI output. The
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Figure 5.2.: Experiment setup for the OOK emulation on the CC1000

BTnode provides a 7.328 MHz system clock, which allows a sampling
rate of 250 kilo samples per second (i.e., one sample every 4µs).

To verify OOK transmissions, we used three nodes in the setup shown
in figure 5.2. Two sender nodes are triggered concurrently via a wire to
start sending their bits via radio. A receiver hears both transmissions. As
illustrated by the oscilloscope images in figure 5.3, the senders transmit
the bit sequences (a) “101000” and (b) “100010”. The third node receives
(c) “101010” as expected. The images were obtained by connecting the
analog RSSI output of the receiver to the oscilloscope. A low voltage
represents a “0” bit.

Although figure 5.3 clearly shows the constructive superposition of
the sent signals, superposition can also result in destructive interference,
which would render our “or” assumption useless. However, Krohn et. al.
could show in [43] that the modulation of the transmitter carrier frequency
by band-limited noise reduces the effect of destructive interference to a
minimum.

Note that in this experiment, we used a bit time of 300 us, which cor-
responds to a bit rate of 3.3 kbps, to assert that the transmitted OOK bits
can be decoded correctly. Radios with direct support for OOK and with
digital signal output (such as the RFM TR 1000 or newer Chipcon ra-
dios) allow to use shorter bits. Hence, our experiments with the Chipcon
CC1000 can be considered as worst-case results. In the implementation
of BurstMAC in chapter 7, we were able to reduce the bit duration to 150
us.
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Figure 5.3.: RSSI measurements for reception of OOK data (time 0.2 ms/div, voltage
0.5/div), low voltage represents a “0” bit. (a) First node sending “101000”
(b) Second node sending “100010” (c) Both nodes sending.

5.5.3. Related Work

The concept of cooperative transmission has been proposed and explored
before in various settings. Here, we present its use in three different areas:
time synchronization, data aggregation, and network density estimation.

“Asymptotical Optimal Time Synchronization in Dense Sensor Networks”

In [34], a time synchronization protocol based on cooperative transmis-
sion is described. In this approach, a designated node emits a sequence of
pulses. Nodes that hear this pulse sequence predict when the next pulse



108 Chapter 5. Medium Access Protocols for Wireless Sensor Networks

will be sent and transmit a synchronous pulse themselves at the predicted
point in time. Eventually, all nodes in the network will hear and transmit
synchronous pulse sequences.

“A Lightweight MAC and Data Aggregation Protocol’

In [56], the concept of multiple nodes sending a bit vector of length k
in parallel is proposed. As a consequence, the logical OR of the sent bit
vectors is received. In addition to the OR operation, it is suggested that the
MAX operation can be implemented similarly. However, this suggestion
is not explored any further. Also, no details on a possible implementation
on real hardware are given in the article.

Synchronous Distributed Jam Signaling

An interesting approach to estimate the number of neighboring nodes is
presented in [44]. The common approach would be to broadcast a “hello”
message and have all neighboring nodes answer with an “hello-ack” mes-
sage. However, this is inefficient, as all nodes would have to send a com-
plete packet just to transmit their ID, which would result in a correlated
traffic burst that would stress the MAC protocol and could cause colli-
sions. To overcome this problems, cooperative transmission is used by
the “Synchronous Distributed Jam Signaling” (SDJS) scheme. After an
initial synchronization message, each node randomly chooses a slot out
of the available N slots to send a jamming signal. The number of slots
in which at least one or more nodes sent a jamming signal is an indirect
measure for the number of nodes. Although two or more nodes might
jam the same slot, statistical methods allow to calculate the most likely
number of sending nodes given the fixed number of jamming slots and
the observed number.

5.5.4. Single-Bit Transmissions and Preamble Elimination

After validating our assumption on concurrent transmissions and proving
example use cases in other areas, in this section we show, how single-bit
transmissions can be implement to eliminate the need for preambles of
send requests in TDMA-based protocols.

Every transmission of payload data typically has to be preceded by a
preamble (often a “101010...” bit sequence) and a start-of-packet (SOP)
delimiter with a total size of about 100 bit. Preamble and SOP are needed
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Figure 5.4.: Single-bit transmissions to a coordinator node: with (top) and without (bot-
tom) preambles. Time increases to the right.

to synchronize the receiver to the sender and to adjust the bit-decision
threshold.

Control traffic of a MAC protocol often consists of data packets with
few or even single bits. For example, in a TDMA protocol without a fixed
slot assignment, each node that wants to transmit has to signal a send re-
quest to a coordinator node such that a schedule can be constructed. Pre-
ceding every send request with a preamble represents significant overhead
of MAC protocols as depicted in figure 5.4(top).

Fortunately, many preamble transmissions can be eliminated. To collect
send requests, the coordinator may trigger (by means of a request message
“R” in figure 5.4) the other nodes to send their requests within a short
time. Typically, these single bit transmissions are preceded by preambles
as in figure 5.4(top).

However, since the coordinator’s preamble does already synchronize
all other nodes, the latter can maintain synchronization for the duration of
several hundred bits using their hardware clocks. Hence, single bits can
be transmitted without preambles as depicted in figure 5.4(bottom).
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5.6. Summary

Existing MAC protocols are not able to handle the concurrent traffic bursts
that occur in event-triggered WSN applications without collisions and fre-
quent retransmissions. In order to reduce the uncertainty in the behav-
ior of these protocols, schedule-based protocols are needed. But while
schedule-based protocols can solve the problem with collisions, they in-
cur a high overhead for idle situations. As a first step towards efficient
schedule-base protocols, we showed in this section how the collection of
send requests which has been proposed before in the BMA protocol, can
actually be implemented on common sensor node platforms. In the fol-
lowing two chapters, we will show how this single-bit transmission tech-
nique is used together with other novel techniques to create an efficient
MAC protocol for event-triggered applications.



6. BitMAC

The previous chapter motivated the need for schedule-based MAC pro-
tocols with low idle duty cycle for event-triggered applications. This
chapter will focus on the BitMAC protocol that achieves this in a fully
deterministic manner without collisions. Even more, we show that coop-
erative transmissions can be embraced as building blocks for the design
of a collision-free protocol.

After stating the assumptions for BitMAC, we present an overview of
the protocol. Then, we describe the protocol in detail and evaluate its
major components, before concluding the chapter with a discussion on
remaining issues and a summary.

6.1. Assumptions

BitMAC was designed for a common use case of WSN with respect to the
application characteristics and the network topology, which we state now.

6.1.1. Application Characteristics

BitMAC is designed for data-collection sensor networks, where many
densely deployed sensor nodes report sensory data to a sink across multi-
ple hops. In order to avoid the bottleneck of the sink, data from multiple
sensor nodes may be aggregated by nodes in the network. Data communi-
cation is mostly uplink from the sensor nodes to the sink, although the sink
may issue control messages to the sensor nodes. One prominent exam-
ple of this application class are directed diffusion [36] and TinyDB [51].
Many concrete applications (e.g., [6, 40, 66, 75]) show this behavior as
well.

6.1.2. Network Topology

Furthermore, it is assumed that the network topology is mostly static.
That is, after initial deployment, node mobility and addition are rare
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events. However, BitMAC is designed to support a large class of perma-
nent or temporary node failures efficiently and without introducing con-
tention or indeterminism. Hence, BitMAC can support applications with
real-time and robustness requirements. Applications such as [6, 40, 75]
fall into this class.

6.2. Protocol Overview

BitMAC is based on a spanning tree of the sensor network with the sink at
the root. In this tree, every internal node and its direct children form a star
network. That is, the tree consists of a number of interconnected stars.
Within each star, time-division multiplexing is used to avoid interference
between the children sending to the parent. Time slots are allocated on
demand to nodes that actually need to send. Using a distributed graph-
coloring algorithm, neighboring stars are assigned different channels as
to avoid interference between them. Both the setup phase and actual data
transmission are deterministic and free of collisions.

In the following sections we will describe the complete protocol with
increasing level of complexity. We will begin with new cooperative trans-
mission schemes that build upon those in section 5.5 and are used by the
graph-coloring algorithm. We will then discuss the part of the MAC pro-
tocol used to control a single star. Finally, we will describe how these
stars can be assembled to yield the complete multi-hop MAC protocol.

6.3. Advanced Cooperative Transmission Schemes

In this section, we discuss the potential of cooperative transmission
schemes to implement several logical and arithmetic operations for sin-
gle and multiple overlapping star networks as depicted in figure 6.1.

6.3.1. Integer Operations

Let us assume that all or a subset of children need to transmit k-bit un-
signed integer values to the parent, where the latter is interested in various
aggregation operations (OR, AND, MIN, MAX) on the set of values of the
children. Below we discuss efficient ways to implement these operations,
assuming synchronized nodes and the communication model described in
section 5.5.1.
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Obviously, a bitwise “or” can be implemented by having the children
synchronously transmit their values bit by bit. Our communication model
ensures that the parent will receive the bitwise “or” in time O(k). Since
x AND y = x̄ OR ȳ (where x̄ is the bitwise inversion of x), the bitwise
“and” can be obtained if the children invert their values before transmis-
sion and if the parent inverts the received value.

By interpreting an integer value as a set (where i is contained in the set
if and only if the i-th bit of the value is 1), the operations OR and AND
implement the UNION and INTERSECTION of integer sets, respectively.
Integer values with k bits can then support sets of up to k elements. Often,
long sequences of zero bits have to be transmitted where values represent
integer sets with only a few elements. However, as mentioned in section
5.5.1, transmitting sequences of zeros equals doing nothing, allowing for
an energy-efficient implementation by switching off the radio transmitter.

In order to compute MAX, k communication rounds are performed. In
the i-th round, all children send the i-th bit of their value (where i = 0
refers to the most significant bit), such that the parent receives the bitwise
“or”. The parent maintains a variable maxval which is initialized to zero.
When the parent receives a one, it sets the i-th bit of maxval to one.
The parent then sends back the received bit to the children. Children stop
participation in the algorithm if the received bit does not equal the i-th bit
of their value as this implies that a higher value of another child exists.
After k rounds or time O(k), maxval will hold the maximum among the
values of the children. Note that children who sent the maximum will
implicitly know, since they did not stop participation. Likewise, children
who did not send the maximum can also detect this. Additionally, all
children can find out the maximum by listening to all messages sent by
the parent. The MIN operation can be implemented if the children invert
their values before the procedure and if the parent inverts maxval after
the procedure.

6.3.2. Vectorial and Parallel Integer Operations

In the previous section we discussed, how a single instance of an integer
operation can be performed. In this section we discuss the efficient ex-
ecution of multiple instances of the same operation. We distinguish two
different problems: vectorial and parallel integer operations.

For a vectorial operation, each child has a vector of n integer values,
such that the parent would have to perform an operation n times, where
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(b)(a)

Figure 6.1.: (a) Star network with a single parent. (b) Multiple stars with shared children.

the i-th execution considers the values at position i in the vectors of the
children (cf. single instruction multiple data). However, these n sequen-
tial operations can be combined into a single operation as described in the
previous section, where the messages contain the respective information
for all elements of the vector. For k-bit integers, this requires time O(nk).
A vectorial operation is more efficient than the independent execution of
many operations, since many preambles and radio switches (transmit to
receive and vice versa) can be omitted.

For a parallel operation, the parents of multiple stars that share one or
more children have to perform the same integer operation as depicted in
figure 6.1 (b). If all involved nodes are synchronized, all of the above inte-
ger operations can be performed (synchronously) in parallel. For the OR
and AND operations, our communication model will ensure that all par-
ents will obtain the correct result for their respective children. For MIN
and MAX, the parent will in general not obtain the correct result. How-
ever, each child n will find out whether it presented the MIN/MAX value
among the children who share a parent with n. As explained in section
6.3.1, a node presented the MIN/MAX if it did not stop participation in
the algorithm. Note that any number of such parallel operations on k-bit
values can be performed in time O(k). Vectorial and parallel operations
can also be combined, requiring time O(nk).

6.3.3. Discussion

The techniques described in the previous sections are sensitive to errors,
where one or more bits are not correctly delivered to the receiver. For
the discussion of error handling we distinguish two cases. In the first
case, one or more nodes send the same bit value concurrently. In this
case, traditional error handling mechanisms such as checksums or coding
techniques can be used.



6.4. Star Network 115

In the second case, two or more transmitters send different bits concur-
rently. According to our communication model, the receiver will see the
“or” of these bits. In this case, checksums and coding techniques cannot
be applied, since the bitwise “or” of checksums or encoded values is gen-
erally not equal to the checksum or encoded value of the bitwise “or” of
the original bits. For example, if b1 6= b2 are the bits to be transmitted by
two nodes and e(bi) are the encoded bits, then e(b1ORb2) 6= e(b1)ORe(b2)
must be expected.

To detect errors in this case, the bits can be sent unencoded two or more
times. If different values are received, then an error is assumed. If three
or more transmissions are performed, then errors can be corrected if the
majority of the transmissions are identical. Bluetooth uses such a forward
error recovery to protect its protocol headers.

Sometimes it is possible to handle transmission errors more efficiently
at the application level. Errors can be detected, for example, if constraints
(e.g., minimum/maximum/exact number of “1” bits in a received bit vec-
tor) are known on the transmitted values. For example, if a node signals a
send request, then it should be assigned a time slot for data transmission.
Due to bit errors, a node may find that it hasn’t been assigned a slot and
can retry transmission in a later round. Likewise, if a node didn’t sig-
nal a send request, then bit errors may lead to the false assignment of a
time slot. Although this can result in reduced efficiency, it is not strictly
necessary to correct this error.

6.4. Star Network

Using the techniques presented in the previous section, we present a MAC
protocol for star networks, which will be used as a building block for the
multi-hop protocol presented in the subsequent section.

The protocol supports uplink communication from the children to a par-
ent, and downlink communication from the parent to one or more chil-
dren. Time-division multiplexing is used to avoid collisions and to ensure
a deterministic behavior of the protocol. In order to optimize bandwidth
utilization, time slots are allocated on demand to nodes that actually need
to send data.

Let us assume for the discussion that children have been assigned small,
unique integer IDs in the range 1...N . We will show in section 6.5 how
these can be assigned.

The protocol proceeds in rounds with the parent acting as a coordinator.
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A round starts with the parent broadcasting a beacon message to the chil-
dren. The beacon contains an indicator whether this round is downlink
or uplink communication. If the round is downlink, the beacon message
will be followed by the payload data, which will usually contain the ad-
dress (e.g., ID) of the target node(s). If this is an uplink round, children
will transmit send requests to the parent. After receiving these requests,
the parent constructs a schedule and broadcasts it to the children. From
this schedule, children can deduce their time slot for transmission. Dur-
ing their time slots, children send their payload data to the parent. The
parent will then acknowledge successful receipt. If transmission failed,
the affected children will try a retransmission in the next round.

The beacon serves multiple purposes: it indicates the begin of a new
round, carries control information, and synchronizes the children (by
means of a preamble). For the send requests and the acknowledgments,
an integer set of node IDs (i.e., a bit vector of length N ) is used to reduce
preamble transmissions as explained in section 5.5.4. A node with ID i is
part of such a set if and only if the bit i is “1” in the bit vector.

For the send requests, each child with pending data sends such an inte-
ger set containing only its ID without a preamble. The parent will then
receive the UNION of these sets as depicted in the lower part of figure 5.4.
The parent then sends back the received integer set to the children. Having
received it, the children also know the IDs of the nodes with pending send
requests. Assuming that nodes with smaller IDs send first, both parent
and children can assign time slots for the transmissions. After receiving
all the data transmissions, the parent sends an integer set to the children
that contains the IDs of the children with successful transmissions.

Sched i

Preamble SOP

Preamble SOP Data

Data

1

1

Parent

Child 1

Child 2

Child 3

SOPPreamble ACK i−1

Figure 6.2.: Round i of the optimized MAC protocol for star networks.

As a further optimization, the acknowledgment set can be concatenated
with the beacon of the following message as depicted in figure 6.2. Also,
the schedule can be sent without an additional preamble, since the pream-
ble that is part of the beacon is sufficient to synchronize the children for
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the duration of several hundreds of bits (see section 6.6.1). Hence, pream-
bles are only needed for the beacon and for the payload data packets.

6.5. Multi-Hop Network

We now show how to extend the protocol for star networks to a multi-hop
network. This will be based on a spanning tree of the network with the
sink at the root, where each internal node and its direct children form a
star that uses the protocol presented in the previous section. As to avoid
interference, stars are assigned different communication channels.

(b)

1 2 3

(a)

i

i−1

i+1

B C
A D

Figure 6.3.: Distance from the sink (•) imposes a ring structure on the network. Network
links between nodes in the same ring are not shown.

For our discussion let us assume that nodes possess unique MAC ad-
dresses (e.g., 16 bit identifiers) and that each node knows its hop-distance
from the sink. We show in section 6.5.2 how this can be achieved. Nodes
in the network can now be partitioned based on their distance from the
sink, such that nodes with equal distance form a ring around the sink. We
will denote the ring of nodes with distance i as the ring i. A node in ring
i now has one or more parents in ring i − 1, and zero or more children
in ring i + 1. Note that nodes in ring i + 1 by definition are not within
communication range of nodes in ring i− 1. Nodes in the same ring will
not interfere with each other, since they will either all send or all receive
at the same time.
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6.5.1. Assigning Channels and IDs

In order to turn this hierarchical ring structure into a tree, each node must
be assigned to a single parent. A parent in ring i then must share a channel
with its children in ring i + 1, such that no other parent in ring i of the
children uses the same channel. More formally, this requires the assign-
ment of small integers (i.e., channel identifiers) to nodes in ring i, such
that nodes who share a child in ring i + 1 are assigned different numbers.

We assumed in section 6.4 that children of a single parent are assigned
small unique integer numbers. With respect to the ring structure, this task
can be formulated as assigning small integers to nodes in ring i, such that
nodes who share a parent in ring i− 1 are assigned different numbers.

The above two problems can be combined into a two-hop graph coloring
problem: assign small integers (i.e., colors) to nodes in ring i, such that
nodes with the same number do not share a common neighbor in ring i−1
or i+1. Note that common neighbors in ring i are not considered. In figure
6.3 (b), a valid color assignment would be A = D = 1, B = 2, C = 3.

In order to solve this problem, let us assume for now that all nodes in
rings i − 1, i, i + 1 are synchronized, such that the vectorial and parallel
integer operations described in sections 6.3.1 and 6.3.2 can be applied.

Let us further assume that a small number C is known, such that the
numbers 1...C (the color space) are sufficient to solve the coloring prob-
lem. We will discuss C in section 6.6.2. In practice, C will be equal to
the number of available radio channels.

Under these assumptions, we can use a deterministic variant of the al-
gorithm presented in [39] to solve the above described two-hop graph col-
oring problem for ring i. For this algorithm, each node in ring i maintains
a set P (the palette) of available colors, which initially contains 1...C.
Initially, all nodes use the same communication channel.

The algorithm proceeds in rounds. In each round, every node in ring
i selects an arbitrary (e.g., smallest, random) color c from its palette P .
Some nodes may have selected conflicting colors. For each possible color,
the algorithm will allow the nodes with the largest respective MAC ad-
dress to keep its color. All other nodes reject the color. For this, each
node sets up a vector v[1...C] of MAC addresses with one entry for each
possible color. v[c] is set to the MAC address of the node, all other entries
are zero.

Now, all nodes in rings i−1 and i+1 synchronously perform a vectorial
parallel MAX operation (see section 6.3.2) over the vectors v of the nodes
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in ring i. As a side effect of this operation, all nodes in ring i will then
know whether or not they are the node with the maximum MAC address
for the selected color within two hops. If a node is the maximum, then it
keeps color c and is finished. The node will not participate in consecutive
rounds. If a node detects that it is not the maximum, it removes c from
P and proceeds with the next round. By listening to the values received
from the parents as part of the MAX operation, the node can also find out
which colors have been selected by other nodes. These are also removed
from P .

Since the above algorithm assigns at least one color per round, it re-
quires at most C rounds to finish.

A node in ring i with color c will use the channel associated with c for
communication with its children in ring i+1. c will also be used by nodes
in ring i as the small integer ID for communication with its parent in ring
i− 1 (see section 6.4).

In a final step, all nodes in ring i synchronously broadcast an integer set
(i.e., bit vector) that contains the selected color c. Nodes in ring i + 1 will
receive the UNION (see section 6.3.1) of the colors of all their parents. By
picking one of the colors and switching to the according communication
channel, every node in ring i + 1 can select a single parent. Note that this
selection can be changed at any time, for example, if the parent fails.

Note that the above procedure can be performed for multiple rings
in parallel, because rings i − 1, i, i + 1 do not interfere with rings
i + 3, i + 4, i + 5. Due to this, rings i, i + 4, i + 8, i + 12, ... can be
colored in parallel. Hence, four parallel coloring steps are sufficient to
color an arbitrary network with an arbitrary number of rings. Since each
step requires at most C rounds of the coloring algorithm, an arbitrary net-
work can be colored in 4C parallel rounds. Moreover, as each node knows
its ring number, it can autonomously decide when to start the coloring al-
gorithm, since it knows how many rounds are required to color the other
rings (e.g., after some point in time t0, a node in ring i waits C(i mod 4)
rounds before starting with coloring).

6.5.2. Time Synchronization and Ring Discovery

In the previous section, we assumed that rings are synchronized and each
node knows its ring number r (i.e., distance from the sink). In this section,
we show how this can be accomplished.

In the protocol for stars described in section 6.4, the parent sent a beacon
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message to synchronize its children. This approach can be adopted to the
ring structure (and hence also to trees) as follows. For ring discovery,
we also include a level field in the beacon message. The sink emits such
a beacon with level 1. Nodes that receive this beacon set r to the level
contained in the beacon and do themselves emit a beacon message with
level r + 1. In addition, the node must ignore the beacon sent by its
children (which will contain level r + 2).

During the setup phase, such a beacon broadcast is performed before
each round of the coloring algorithm to keep the nodes synchronized.

sender C

receiver

sender B

Figure 6.4.: Identical transmissions by two senders with small synchronization errors.
The receiver will see slightly stretched “1” bits and slightly compressed “0”
bits.

A beacon broadcast can be used to synchronize the receivers with re-
spect to each other with high precision, since the broadcast is received
almost concurrently by all receivers [24]. Since the MAC protocol knows
the size of the beacon message and bit lengths and has total control over
access to the medium, the receivers can also accurately synchronize to
the sender of the beacon [26]. As in [24], multiple beacon transmissions
can be used to compensate the clock drift of the hardware clocks of the
nodes, which allows the nodes to stay synchronized even longer after the
transmission of a beacon.

In the initial ring structure used during tree setup, each node may re-
ceive the beacon from two or more (already synchronized) parents con-
currently. In figure 6.3 (b), for example, the node in ring i+1 will receive
the beacon concurrently from nodes B and C in ring i. According to our
communication model, these identical transmissions are merged, such the
receiver will see the “or” of all transmissions. If the parents have a small
mutual synchronization error, then the receiver will see slightly stretched
“1” bits and compressed “0” bits as illustrated in figure 6.4. However,
if the duration of a bit is long compared to synchronization errors, this
can be tolerated by the receiver. Hence, the bit length has to be selected
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appropriately. See section 6.6.1 for a discussion of this issue.
If the receiver synchronizes to the merged bit sequence of all its parents,

it will effectively synchronize to the average of its parents. As a result,
multiple parents improve the robustness of synchronization with the par-
ents. Additionally, the synchronization precision errors among neighbor-
ing receivers that share multiple parents will benefit from this averaging
process. We will analyze synchronization performance in section 6.6.1.

6.5.3. Maintenance

So far we have described the setup phase of BitMAC that organizes the
nodes of a deployed network into an interference-free tree with the sink
at the root. In this section we discuss what happens if nodes are added or
removed after this initial setup. Note that node mobility can be interpreted
as removing a node and adding it again at a different place. Please keep
in mind that we assumed in section 6.1.1 that node mobility and node
additions are rare events.

Let us first consider what happens if a node is removed temporarily or
permanently, or if communication is temporarily disturbed. In dense net-
works, each node will typically possess communication links to multiple
parents in the initial ring structure. As the last step of the setup proce-
dure in section 6.5.1, each node was informed of the channels of all its
parents, such that the node could choose one parent by selecting the re-
spective channel. We also noted that this selection can be changed at any
time without the need for repeating tree setup. Hence, if the selected par-
ent fails, a node can switch over to another parent simply by selecting the
appropriate communication channel. If a node “reappears” after a tem-
porary communication failure, no further actions are required. Note that
parent re-selection can also be used to balance the load of the parents or
to select a parent with the best communication link etc.

If a node in ring i runs out of operational parents, the tree is either parti-
tioned or there are connections to the remainder of the tree via neighbors
in ring i or i + 1. If the node scans all communication channels and does
not receive any beacon messages, the network is partitioned. If the node
does receive a beacon, then the node will effectively move to another ring
> i, since the sender of the beacon in ring ≥ i will become the new par-
ent of the node. In this case, the setup phase must be repeated. For this, a
special bit is used during signaling of send requests. If a parent receives
a “1” during this bit slot, it will propagate the request to its parent and so
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on, until the sink is informed, which eventually initiates a reconstruction
of the tree.

If a node is added to the network, it will first scan the communica-
tion channels for beacon messages from other nodes. Upon receiving a
beacon, the node will signal a rebuild request to its parent to enforce a
reconstruction.

6.5.4. Operation Phase

Up to now we have discussed setup and maintenance of BitMAC. In this
section we discuss the operation phase, where data are transmitted up and
down the tree.

For synchronization, the procedure described in the previous sections
is used as well. However, at this point every node has selected a single
parent, and the stars operate largely independent of each other (see below
for a detailed discussion of this issue). Each node will therefore receive
the beacon from its single parent only, which is sufficient to synchronize
a parent and its children.

As discussed in section 6.4, the MAC protocol for the stars proceeds
in rounds, where each round starts with a beacon broadcast. Using the
procedure described in section 6.5.2, the rounds are synchronized among
the stars. However, in contrast to the setup phase, each node will receive
the beacon only from a single parent and bit-level synchronization is only
required among a parent and its children. Synchronization requirements
across different stars are rather relaxed, since the stars operate indepen-
dent of each other due to the interference-free channel assignment.

The rounds in all stars are of equal length. Hence, the number of time
slots for data transmission in a round is also limited. If in a star more
children signal a send request than available time slots, the parent will
schedule the maximum possible number of transmission for the round.
Children which have not been assigned a time slot will retry in the next
round. However, the parent remembers the children with rejected send
requests to give them preference in the next round(s).

Note that a node in ring i has to act both as a parent for communication
with children in ring i+1 and as a child for communication with its parent
in ring i− 1. Therefore, a node will act as a parent in even rounds and as
a child in odd rounds.

So far, BitMAC enables nodes to send data to its parent or to its children
in the tree. Various approaches can be used to route data over multiple
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hops. For the applications described in section 6.1.1, data is either sent
from nodes to the sink, or from the sink to some or all nodes, which can
be easily implemented. However, tree routing protocols can be used to
exchange data between any two nodes in the network. Directed diffusion
[36] or TinyDB [51] could also be easily adopted to BitMAC.

6.6. Evaluation

To evaluate BitMAC, we apply a mix of experiments involving actual
hardware, analysis, and simulation. Experiments are used to verify the
basic operation of the protocol elements on a few nodes. The obtained re-
sults are used analytically or in simulations to evaluate BitMAC in larger
networks.

In particular, we will analyze the impact of the number of available
communication channels, the precision of time synchronization, as well as
delays and protocol overhead of BitMAC. For this evaluation, we assume
a perfect channel (i.e., no bit errors).

6.6.1. Time Synchronization

In a second experiment, we evaluate the precision of the time synchro-
nization approach described in section 6.5.2 using the setups shown in
figure 6.5 (a-d). All nodes are connected by a wire to trigger the start of
the experiment at t0. In (a), the top node starts transmission of a single
“1” bit at t0, which will be received by the bottom node. In (b), the two
top nodes start transmitting a “1” bit concurrently at t0. The receiver (i.e.,
bottom node) measures the point in time tc corresponding to the center of
the received bit by averaging the points in time corresponding to the rising
(tl) and the falling edge (tr) of the “1” bit. By observing the variation of
tc over multiple runs, we can estimate the precision of time synchroniza-
tion. In (c) and (d), the top node starts transmitting a “1” bit at t0. After
receiving the bit and measuring tc, the middle node(s) start(s) transmitting
a “1” bit at tc + tx with a small fixed delay tx. The bottom node measures
tc using the (or-ed) bit received from the middle node(s).

During the measurement of tc we observed rare (less than 1%) larger
variations for tl, while tr is rather stable. However, since the duration
of the bit tbit is known, we can detect these errors and correct them by
setting tl := tr − tbit in such cases. With this fix, we performed the above
measurements 100000 times to determine the maximum variation terr of
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(d)(a) (b) (c)

Figure 6.5.: Experiment setups and results for time synchronization. (a) one hop, one
sender (b) one hop, two senders (c) two hops, chain (d) two hops, rhombus.

tc. The results are shown in the diagram in figure 6.5. A point on the
curve indicates the percentage (y axis) of the measurements for which the
variation of tc is bounded by an interval of a certain length (x axis).

The diagram shows than the maximum variation in the single-hop ex-
periments (a) and (b) is about 20µs. For the two-hop experiments we
would expect about twice the maximum variation of the single-hop mea-
surements. In the experiments we observed a maximum variation of about
36µs, which is slightly smaller then the expected value. As mentioned in
section 6.5.2, the results are indeed slightly better if multiple senders are
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involved (cases (b) and (d)).
As mentioned in the previous section, we can expect that the above

results can be significantly improved if the radio directly supports OOK
modulation and provides a digital signal output. Indeed, the authors of
[44] report a maximum error of 2µs for the setup (a) when using the RFM
TR 1000, which is a 10-fold improvement over our measurement results.

Let us now consider the worst case synchronization error in larger net-
works. If terr is the worst case error for a one-hop setup, then the worst
case error after r hops is rterr. Note, however, that we can expect better
results if the network is dense, because then each node has many parents
in the ring structure.

In section 6.5.2 we mentioned that synchronization errors lead to
stretched or compressed bits. Hence, the duration of a bit tbit has to be
long enough to tolerate these effects. Let us assume that bits can still be
correctly received if their length is reduced to tbit/2 due to synchroniza-
tion errors. If the radius of the ring is r, then tbit must be at least 2rterr.
For example, if r = 7 and terr = 20µs, then tbit ≥ 280µs, which equals a
bit rate of about 3.5 kilobit per second. With terr = 2µs, we would obtain
tbit ≥ 28µs or 35 kilobit per second. Note, however, that these “long” bits
only have to be used during the setup phase for control traffic. Data trans-
missions can use any bit rate and modulation scheme that is supported by
the radio.

Let us finally consider for how long two nodes can maintain synchro-
nization using their hardware clocks, assuming they are perfectly synchro-
nized initially. With a bounded clock drift ρmax, at least 1/(4ρmax) bits
can be transmitted until the synchronization error can result in a bit dura-
tion smaller than tbit/2. For example, the oscillator used on the BTnode
provides ρmax = 100 ppm according to the data sheet, which allows to
send up to 2500 bits without resynchronization. Note that multiple syn-
chronization rounds could be used to compensate the clock drift to reduce
the frequency of synchronization.

6.6.2. Network Density

In section 6.5.1 we assumed the knowledge of a constant C, such that the
coloring problem can be solved with C colors. We also mentioned that in
practice C is set to the number of available radio channels. The Chipcon
CC1000, for example, can support up to 130 channels in the 915 MHz
ISM band, or 35 channels in the 868 MHz ISM band (assuming a channel
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width of 200 kHz). Hence, we have to examine which network density
can be supported by BitMAC given a certain C.

It is a well-known fact that a graph with maximum node degree ∆ can
be colored with ∆ + 1 colors. Since the maximum two-hop degree (i.e.,
number of nodes within distance ≤ 2 hops) of a graph with maximum
degree ∆ is at most ∆2, we would need ∆2 + 1 colors for a standard two-
hop coloring, where any two nodes with distance ≤ 2 must be assigned
different colors. However, recall from section 6.5.1 that in our coloring
algorithm the effective two-hop neighborhood of a node n in ring i is the
set of nodes in ring i that share a common neighbor with n in rings i− 1
or i + 1. We will call the respective two-hop degree the two-hop ring
degree. We can expect that the two-hop ring degree of nodes in a plane is
significantly smaller than ∆2.
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Figure 6.6.: Relationship between node density and node degrees. Nodes with commu-
nication range 1 are randomly placed in a 10-by-10 area.

To verify this expectation we performed a set of simulations, where a
given number of nodes with communication range 1 is randomly placed
in a 10-by-10 rectangular area. The sink is placed at the center of the area.
For different numbers of nodes we determined the average and maximum
degree, as well as the average and maximum two-hop ring degree. We
performed 80 simulation runs and computed averages. The results are
depicted in figure 6.6. As can be seen, the average and maximum two-
hop ring degrees are even smaller than the average and maximum degree,
respectively.

Recall that the Chipcon CC1000 supports up to 35 channels in the 868
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MHz ISM band. With this setup we can expect to be able to color random
graphs with an average degree of up to about 20.

If the number of channels is not sufficient to color the graph, then some
nodes will end up without a color assignment after the coloring algorithm.
Such nodes cannot participate in the sensor network. However, the re-
maining nodes will form an operational network. Due to the high degree,
this network is most likely connected.

6.6.3. Setup Phase

In this section we examine the setup phase of our protocol, in particular
we derive the amount of time tsetup that is needed to setup a network
with given parameters. tsetup depends on the following parameters: the
duration tbit of a single bit as examined in section 6.6.1, the number C
of channels, the length Lmac of a MAC address in bits, the length Lbeacon

of the beacon in bits, the time trxtx needed to switch the radio between
transmit/receive modes, and the radius r of the ring.
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Figure 6.7.: One parallel step of the coloring algorithm on ring i. Shaded packets indi-
cate data receptions.

As explained in section 6.5.1, rings with numbers i, i+4, i+8, i+12, ...
can be colored in parallel. Hence, 4 parallel coloring steps are required.
One coloring step is illustrated in figure 6.7. Each step consists of a bea-
con broadcast for synchronization, followed by the coloring algorithm.
Recall from section 6.5.1 that the coloring algorithm consists of C rounds.
In each round, a parallel vectorial MAX operation is performed. In a fi-
nal step, colored nodes announce assigned colors to the children. Let us
consider the duration tstep of such a parallel coloring step, which can be
expressed as follows:
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tstep ≤ tbeacon + C tround + tannounce

tbeacon ≤ 4 (Lbeacon tbit + trxtx)

tround ≤ 2 Lmac (C tbit + trxtx)

tannounce ≤ C tbit + trxtx

Due to the delay caused by the beacon broadcast, coloring of ring r is
started at time rtbeacon/4 after the sink has initiated the setup. Hence, we
obtain for the setup time:

tsetup ≤ 4 tstep + r tbeacon

Let us consider the sample network we used for the simulations in section
6.6.2 with 800 nodes. With r = 7, C = 35, Lmac = 16, Lbeacon = 110,
trxtx = 250µs, we obtain tsetup ≤ 48s for tbit = 280µs, or tsetup ≤ 6s for
tbit = 28µs.

6.6.4. Operation Phase

In this section we evaluate the operation phase, where payload data is
transmitted from nodes towards the sink. Let us assume that each round
consists of S slots for data packets. Recall from section 6.5.4 that each
node acts as a child in even rounds and as a parent in odd rounds. Hence,
when a node wants to transmit, it may have to wait up to two rounds until it
can transmit a send request to its parent. Then the packet is forwarded one
hop towards the sink in every round. Since the overlay tree is a shortest-
path tree from the sink to all nodes, packets are always forwarded on the
shortest path to the sink. Hence, it takes at most i + 2 rounds to deliver
a packet from a node in ring i to the sink, provided that a free slot can
be allocated in each round. If a free slot cannot be assigned immediately,
then a node may have to wait for 2bC/Sc rounds until a slot is assigned,
since a parent cannot have more than C children.

As with most other MAC protocols, there is a trade-off between latency
and energy consumption in BitMAC. If the duration of a round (i.e., S)
is increased, the latency will increase and energy consumption will de-
crease (due to fewer beacon transmissions). The energy consumption of
an idle network is dominated by the duration of a round and the length
of the beacon. In every idle round, each non-leaf node has to receive and
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transmit a beacon (without acknowledgments and schedules), and has to
listen to C send-request bits from its children. A child node only receives
and forwards the beacon. Hence, we obtain for the average radio-on time:

ton ≤ 2 (Lbeacon tbit + trxtx) + C tbit/2

Let us consider an example, where C = 35, tbit = 52µs (19200 baud),
trxtx = 250µs, and Lbeacon = 110. With these parameters we obtain
ton ≤ 13ms. If the duration of a round is 200ms, then S = 9 data packets
of 32 bytes each can be delivered in each round. The duty cycle of the
nodes in an idle network is then about 6% on average.

If the network is not idle, then parents have to send schedules and ac-
knowledgments, resulting in an additional 2C bits. Overall, the time per
round that cannot be used for data transmissions is:

toverhead ≤ 2 Lbeacon tbit + 4 trxtx + 3 C tbit

Note that toverhead can be interpreted as the overhead of our protocol com-
pared to an ideal protocol, where all nodes know a priori when to trans-
mit data packets without collisions. For the above example we obtain
toverhead ≤ 18ms, such that about 9% of the bandwidth cannot be used for
payload data transmissions if a round lasts for 200ms.

6.7. Discussion

In the protocol description, we assumed that links between nodes are ei-
ther error-free or nonexistent. A more realistic model to characterize com-
munication links is the distinction of communication range, in which the
communication is more or less error-free, and interference range, in which
data transmitted from a node A to node B does harm node C’s reception
of data sent by node D. By design of BitMAC, there are no collisions be-
tween nodes in communication range, so we would like to discuss issues
related to nodes in interference range here.

Nodes on the same ring either transmit or receive at the same time,
hence neither collisions nor interference do occur on one ring. Also, by
the way the rings are constructed, we conclude that transmissions from
nodes on ring i + 1 to nodes on ring i do not interfere with parallel trans-
missions from ring i− 1 to i− 2 (3 hops). Even if they would, we could
insert a “buffer ring” to avoid such interferences.
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The vulnerable part of BitMAC is the channel and ID assignment. If
there are two nodes A and B which do not have a common child or parent,
they might choose the same channel independently. Not having a common
child refers to not having a node in the communication range. Yet still
node A might have a child node C which might be in interference range
to node B and disturb transmissions from B’s child nodes.

One way to alleviate this problem is to ensure that such a node C is
seen as a common child node of A and B during coloring. This can be
done by temporarily increasing the radio power in such a way that the
communication range during this phase equals the interference range of
the later communication. It is important that the radio power is increased
only during coloring, otherwise the situation would not improve. By do-
ing this, additional parent-child links are created which are not available
at normal transmission power. Therefore, all links should be validated by
an additional link probing phase.

6.8. Summary

We have presented and analyzed BitMAC, a deterministic, collision-free,
and robust protocol for dense wireless sensor networks. BitMAC is based
on an “or” channel, where synchronized senders can transmit concur-
rently, such that a receiver hears the bitwise “or” of the transmissions.
Using the BTnode Rev. 3 platform, we have shown the practical feasibil-
ity of this communication model and analyzed the performance of time
synchronization. We gave deterministic bounds on the execution time of
all protocol elements and showed that the protocol overhead is small com-
pared to an ideal protocol.



7. BurstMAC

Although the BitMAC protocol presented in the previous chapter fulfills
the requirements for an efficient data-gathering protocol that can handle
correlated traffic bursts, it still has some drawbacks, which make it un-
practical for some realistic scenarios. The two main drawbacks of Bit-
MAC are that changes in the network topology, especially the addition of
nodes, are not handled well and that the communication pattern is limited
to convergecast, which does not allow a node to communicate with all
neighbors.

In this chapter, we present the BurstMAC protocol that builds upon suc-
cessful components of BitMAC, but introduces some indeterminism to
remedy the limitations above.

This chapter is structured as follows. We first give an overview of Burst-
MAC and its key techniques before we explain the protocol in detail.
Then, we describe the implementation of BurstMAC on BTnodes. Fi-
nally, we report performance results, before concluding the chapter.

7.1. Protocol Overview

In this section, we present the key ideas behind BurstMAC and outline the
basic protocol structure. A detailed discussion of the various BurstMAC
components can be found in section 7.2. BurstMAC combines a number
of techniques to provide high throughput and efficiency under load and
low idle overhead. Most notably, scheduling and the use of multiple ra-
dio channels enable high throughput, while cooperative transmissions and
techniques to eliminate preambles guarantee low idle overhead. Also, the
different techniques are integrated in an innovative manner. For exam-
ple, scheduling of time slots and assignment of channels is combined to
reduce the overhead further.

One important underlying assumption on the radio is that a sufficient
number of radio channels is supported. In particular, that number should
be larger than the maximum number of two-hop neighbors of a node in
the network. In our implementation on the ChipCon CC1000 radio, we
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use 32 data and two additional control channels as detailed below.

7.1.1. General Approach

To avoid collisions, BurstMAC operates in synchronous rounds. Each
round consists of N frames with N=32 in our implementation. Ev-
ery frame contains a small CONTROL section and a large DATA sec-
tion as depicted in Fig. 7.1. To maximize throughput and to allow for
collision-free communication during the DATA section, BurstMAC uses
N interference-free data channels and one control channel. The CON-
TROL section is used for time synchronization, to broadcast other infor-
mation to all network neighbors, and to assign color ids to nodes. As
a result of the latter, each node is assigned a color id c ∈ 1..N that is
unique within two hops. The color id c is used for two purposes. Firstly,
a collision-free TDMA schedule of the control channel is implemented,
such that a node with color id c sends a control message in the CON-
TROL section of frame c. Secondly, node c coordinates multiple senders
on radio channel c during the DATA section, which allows it to receive
data without collisions. The set of nodes which act as coordinators dur-
ing a frame is determined by a coordination-free transmission scheduling,
as described in the next paragraph. By using multiple channels, contrary
to basic TDMA, nodes are able to send packets during multiple frames,
which increases the total network bandwidth.

To achieve a low duty cycle in idle situations, the frame length is cho-
sen rather large, 1s in our implementation. Therefore, a node is required
to turn its radio on for the duration of the (short) control message in ev-
ery frame. During the data section, coordinator nodes need to check for
neighor transmissions. Due to the coordination-free transmission schedul-
ing described below, a node is a coordinator in every other frame on aver-
age. This results in an idle duty cycle below %1.

7.1.2. Coordination-free Transmission Scheduling

As a node cannot send and receive at the same time due to the half-duplex
nature of typical low-power radios, some form of coordination is required
among the nodes to achieve agreement on when to send and when to re-
ceive. To realize this coordination without introducing additional control
messages, BurstMAC uses the following communication-free communi-
cation approach. During each frame, a node is either in transmit or receive
mode, that is, it can either only transmit or only receive data during the
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Global TDMA!

Local TDMA!

Channel #c!

Channel #1 !

Channel #2!

Channel #31!

Channel #32!

…!FDMA!

Packet #1 ! Packet #2 ! Packet #31 ! Packet #32 !…!

FRAME 1 ! FRAME 2 ! FRAME 31 ! FRAME 32 !…!

CONTROL! DATA!

Figure 7.1.: BurstMAC protocol overview: Synchronous rounds consist of 32 frames
(global TDMA). Each frame contains a CONTROL and a DATA section.
Multiple radio channels are used for interference-free communication of
collocated node clusters (FDMA). Communication within a node cluster is
coordinated by local scheduling (local TDMA).

whole frame. The choice of mode is controlled by a pseudo-random num-
ber sequence that is seeded with the unique 16-bit node id. Knowing the
node ids of its neighbors, a node can not only compute its own current
mode, but also the current modes of its neighbors. If node A wants to
send to neighbor B, then A has to wait for a frame when it is in send
mode and B is in receive mode. A uses B’s channel for the actual trans-
mission. This approach avoids extra traffic for coordination among nodes
completely.

This approach is loosely related to pseudo-hopping sequences used,
e.g., in Bluetooth, or the uniform distribution of wake-up times in JAVe-
LEN [38], and avoids extra traffic for coordination among nodes.

7.1.3. Packet Bursts

To further increase throughput and reduce communication overhead, a
sender can request the transmission of multiple packets in a row, elim-
inating lengthy preambles for all but the first packet. In contrast to the
standard approach of sending packets back-to-back, BurstMAC reliably
transmits the packet lengths of each individual packet and provides each
packet with a checksum to detect bit errors. By this, the checksum of each
packet can be checked separately and a single bit error does not cause the
whole packet train to be dropped. The receiver replies a bit vector with a
one bit for each packet that has been received correctly.
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struct CONTROL {

    u_short node_id;         // MAC address of sender

    u_long  occupied;        // vector of occupied control packet slots

    u_char  current_frame;   // frame number

    u_char  round;           // round counter, only incremented by sink

    u_char  hops;            // to gateway

    u_short timestamp;       // SOP time in ticks relative to frame start

    u_char  flags;           // type of dynamic data

    u_char  dynamic_length;  // total length of dynamic data

    u_char  dynamic_data[0];

    u_short crc;

};

Coloring

Timesync

Dynamic Data

Figure 7.2.: Contents of the control message.

7.1.4. Cross-Layer Optimizations

Typical routing protocols such as MintRoute [89] need to perform neigh-
bor discovery and link quality estimation, which requires each node to
broadcast beacon packets at regular intervals. However, due to the exis-
tence of the control packets in BurstMAC, we can integrate neighbor dis-
covery and link estimation into BurstMAC without additional overhead.

7.2. Protocol Details

In this section, we provide a detailed description of the BurstMAC pro-
tocol. Key functional components channel assignment, cross-layer sup-
port for routing (i.e., neighbor discovery and link estimation), actual data
transmissions, as well as time synchronization (i.e., establishing a com-
mon time among the nodes in the network) and network startup (i.e., how
nodes join a BurstMAC network).

The key protocol element to enable the above functions is the CON-
TROL section, where a node broadcasts a control message to all its neigh-
bors on a common control channel in frame c of each round, where c is
the color id that has been assigned to the node. As shown in figure 7.2, the
control message consists of a fixed part which is always present with basic
information for time synchronization, and coloring, as well as a dynamic
section which contains one or more optional headers. A flags field in-
dicates which of the optional headers are present in a message. We will
reference the various field of the control message throughout this section.
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7.2.1. 2-Hop Coloring

Each node has to be assigned a color id c that is unique within two hops.
As discussed in section 7.1, c is used for two purposes: as a channel id
for payload data transmissions and to schedule broadcasting of control
messages on the control channel.

For coloring, all nodes keep track of the frames used by their neigh-
bors for sending control messages similar to LMAC [81]. As a node with
color id c transmits a control message in frame c, each node is aware of
the colors assigned to its neighbors and periodically broadcasts a bit vec-
tor of these occupied color ids in its control message (field occupied).
A newly joining and yet uncolored node with id i receives the list of used
color ids in the control messages of all of its neighbors. The union of these
sets equals the set of color ids used in its 2-hop neighborhood. The new
node then randomly picks a color id c from the remaining free colors and
transmits its control packet in frame c in the next round. A special flag
in the control message requests other nodes to echo the node id contained
in the control packet of frame c. If another node with node id j simul-
taneously picks the same color c, both node ids i and j will be reported
for frame c by different neighbors. In this case, both newly colored nodes
pick another free color at random.

Topology changes in the network may lead to a situation where two
nodes with the same color id are two hops or less apart. This situation
must be detected and at least one of the nodes must pick a new color
id. For detecting such a situation, each node monitors the node id (field
node_id) contained in the control messages. If a node observes that the
node id of the control message in frame c is different from the node id of
the control message in frame c during the previous round, the observing
node reports in its next control message that nodes with color c should
pick a new color according to the above procedure. Here we exploit the
capture effect [88] – where a node will receive the stronger of two con-
current transmissions on the same channel rather than seeing a collision –
paired with the spatial diversity of the nodes.

7.2.2. Transmission Scheduling

As discussed in Sect. 7.1, each node is either in receive or send mode
during each frame, using a pseudo-random generator to control the choice
of mode. Using these pseudo-random sequences, a node can compute
whether it can send to a certain node during a certain frame. However,
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more than one sender may want to transmit to a single receiver during
the same frame on the same channel. Hence, these senders have to be
coordinated in some way to avoid collisions. A key goal of BurstMAC is
to minimize this coordination overhead in the idle case, where no sender
wants to transmit.

Our solution is illustrated in Fig. 7.3, which shows the DATA section in
more detail, time increases from left to right. One node is in receive mode,
and two nodes in send mode (with colors c = 1 and c = 3) want to trans-
mit a packet to the receiver. In segment A, both senders employ cooper-
ative transmission and concurrently transmit a short jamming signal (i.e.,
unmodulated carrier signal) during 500 us to indicate a send request. If
the receiver does not detect a jamming signal (i.e., if RSSI always smaller
than a certain threshold during these 500 us), it can go back to sleep, op-
timizing the overhead in the idle case.

However, the simultaneous transmission of jam signals of multiple
senders may result in destructive interference at the receiver, such that the
receiver won’t detect the presence of multiple jam signals. This problem
can be addressed if senders transmit on slightly different frequencies, such
that a beat with a certain period time will result at the receiver. If the re-
ceiver listens for at least that period time, it will encounter non-destructive
interference at some point in time and detects the jam signal. Fortunately,
there is a natural frequency diversity due to variations of crystal frequen-
cies among nodes. For a 868 Mhz carrier signal, for example, a crystal
frequency difference of 10 ppm between two transmitters results in a beat
with a period length of 115 us, and a high probability for the receiver to
detect the transmission if it listens for at least this amount of time. In our
implementation, we used 500 us, which further increases the chance that
a receiver will encounter non-destructive interference. In tests, we could
not observe a significant drop in the number of detected jam signals when
using multiple transmitters instead of a single one. If this natural diver-
sity should not be enough to prevent errors from destructive interference
on other hardware, additional frequency diversity could still be created
explicitly as detailed in [43].

If a receiver detects a jam signal (i.e., if there is at least one sender),
then the receiver exerts the single-bit transmission technique by transmit-
ting a minimal sync packet consisting of a preamble and a start-of-packet
symbol in segment B in Fig. 7.3. The sync packet allows a sender to
accurately synchronize with other senders and the receiver. Each sender
then transmits a single jamming “bit” in the bit slot which corresponds
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BurstMAC – A MAC Protocol with
Low  Idle Overhead and High Throughput

Matthias Ringwald, Kay Römer
Institute for Pervasive Computing, ETH Zurich

Protocol Overview

BurstMAC Status

Yet Another MAC Protocol? Why BurstMAC? What’s Wrong With SCP, LMAC, ... ?

Problem

• Many sensor network applications feature bursty traffic
patterns: after long periods of idle time, large amounts of
data have to be transmitted reliably.

• Example: Volcano monitoring - precious high-volume data is
generated by rare volcanic eruptions.

• Existing MAC protocols do no sufficiently support such
applications with bursty traffic patterns.

• CSMA protocols such as WiseMAC or SCP-MAC have very low
overhead in idle situations, but have high overhead and low
throughput under high loads due to collisions.

• TDMA protocols such as LMAC can handle high loads
without collisions, but have a low throughput and
significant overhead in idle mode.

Approach

• We designed a new sensor network protocol which
provides low idle overhead, avoids collisions, and supports
energy-efficient and fast transmission of high-volume
data.

Implementation

• Prototypical implementation for the
BTnode Rev. 3 nodes and ChipCon CC1000
radio module working.

• Massive network-wide bursts are handled
correctly.

• Average synchronization error per hop
about 25 uS.

Preliminary Evaluation

• Energy consumption in idle situation depends on the number of neighbors. For
a well-connected network with seven neighbors, nodes run at 0.8% duty cycle.

• Burst test case in lab testbed: 30 nodes have to deliver 10 KB of data
(320 packets) to the sink  (= 9280 packets total):

• Time: 14 BurstMAC rounds = 448 seconds.

• Energy consumption: 46 ms radio time per packet compared to optimum of
29 ms (  * 1.58).

MICS

Efficient Transmission Scheduling

• Cooperative Transmission to detect presence of
senders (segment A)

• Single-bit transmission to identify senders (segment C)

• Local broadcast of schedule (segment D)

• Packets can be sent as packet bursts with a single
preamble.

Collision-Free Communication

• Communication happens in synchronous
rounds of 32 frames.

• CONTROL section of frame i is reserved for
node with color i.

• 2-Hop-Coloring asserts that no two nodes
within radio range transmit during the same
CONTROL section.

• Communication in the DATA section is
coordinated by a single Receiver on
frequency i.

Coordination-Free Transmission Scheduling

• In every frame, a node is either in transmit or receive
mode based on a pseudo-random number sequence
seeded with the node id.

• Neighboring nodes can compute this decision only by
knowing the node id and only send when the recipient
is ready to receive.

Cross-Layer Optimization

• Link estimation and path construction
integrated in CONTROL section

Network Startup

• Synchronized nodes send a short jamming signal
(BLIP) at the beginning of the CONTROL section.

• New nodes have to listen only for a single frame
at 100 % duty cycle to synchronize to the network.

Receiver

Sender (c = 1) x

sync

x

schedule ack

x xSender (c = 3)

...

data 1

ack

data 2

A B D E1 E2C

21 3

FRAME 1 FRAME 2 FRAME 31 FRAME 32
...

CONTROL DATA

50 ms 950 ms

DATA Section

Frame

Round

Idle Energy: Duty
cycle with respect to
number of neighbors

Figure 7.3.: Data SECTION with two senders transmitting a packet to the receiver. Co-
operative transmission is used in segment A and single bit transmission in
segments B and C to identify the senders.

to its color id c in segment C in Fig. 7.3. Based on the list of senders,
the receiver then computes and broadcasts the transmission schedule in
segment D. This schedule is essentially a copy of the bit vector received
in section C, where bit i is set iff a sender with channel i has submitted
a send request. However, if the receiver has insufficient buffer space to
store all packets, it will randomly erase a bit until the number of remain-
ing bits equals available buffer space. This way, we achieve a simple form
of flow control to avoid packet loss due to buffer overruns.

A sender with channel i checks if bit i in the received schedule bit vector
is set. If this is the case, the sender transmits a data packet in slot Ej,
where j is the number of “1” bits in the schedule bit vector with an index
smaller than i. The slots are of fixed length such that each sender can
compute start and end of its slot from the schedule bit vector. To deal
with packet loss caused by bit errors, each data packet is immediately
acknowledged by the receiver. The sender retransmits the packet if it does
not receive the acknowledgment in time. To eliminate duplicates caused
by lost acknowledgments, each data packet contains a small header with
a one byte sequence number, which also allows FIFO delivery of packets
in the receiver.

The header of the data message also contains several flags. One of
them, the more flag, can be set by the sender to indicate that it needs
another slot to send a further packet. If available, the receiver will reply
an unused slot k in the acknowledgment, such that the sender can send the
next packet in slot Ek.

7.2.3. Packet Bursts

To reduce the probability of packet loss due to bit errors, packet sizes are
rather small in BurstMAC as well as in all other MAC protocols for sen-
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sor networks. However, this results in substantial overhead due to several
reasons. Firstly, each data packet and acknowledgment needs to be pre-
ceded by a long preamble to synchronize sender and receiver at the bit
level. In many cases, the preamble is longer than the actual payload data.
Secondly, both sender and receiver need to switch the radio back and forth
between transmit and receive mode, which consumes time and energy.

To reduce this overhead, BurstMAC offers a so-called burst mode,
where a sender can use almost the whole DATA section of a frame to send
a sequence of packets back-to-back preceded by only a single preamble
and acknowledged with a single message. Each individual packet in the
sequence has its own CRC, such that a bit error destroys only a single
packet and not the whole burst1. The acknowledgment message contains
a bit vector of the packets that have been successfully received.

To initiate a burst, a sender first sends a normal data packet with the
more and burst flags set in the header of the data message, indicating
that is has more data to send and wants to use burst mode. To ensure fair-
ness, the receiver does not grant burst access to the first sender requesting
it, but waits for a (small) random number of burst requests until granting
access. Otherwise, the sender with the smallest color id would always be
granted burst access because it is assigned the first slot, resulting in unfair
behavior.

When granting burst access to a sender, the acknowledgment message
will contain the first slot the sender can use for the burst. The burst will
then extend until the end of the frame. The receiver will also stop as-
signing slots to other senders at this point. Next, the sender transmits a
message containing the lengths of all packets (up to 51) in the burst. As
each packet in the burst has a maximum length of 32 bytes, the length can
be encoded into 5 bits per packet. The receiver needs this length informa-
tion in order to split the burst into packets for checking their individual
CRCs. As a packet burst without length information is useless to the re-
ceiver, length info and the actual data are sent in separately acknowledged
packets. Upon reception of an acknowledgment from the receiver, the
sender starts transmitting the packets back-to-back with individual CRCs,
but without individual preambles. After all packets are transmitted, the
receiver sends a single acknowledgment which contains a bit vector with
a one bit for each packet that has been received correctly. Using this bit

1Note that modern radio transceivers are can receive arbitrarily sized packets without loosing the bit
synchronization, even in the presence of bit errors. Therefore, the main caveat with sending packets
back-to-back is the risk of a bit error in the length field of a header, as the start of all later packets
would be missed and, hence, would have to be discarded.
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vector, the sender can retransmit any lost packets in a future burst.

7.2.4. Cross-Layer Support for Routing

Most routing protocols need to perform neighbor discovery and link qual-
ity estimation as a prerequisite to computing routes. For this purpose,
those protocols (e.g., MintRoute [89]) broadcast periodic beacon mes-
sages. In BurstMAC, we can use existing control messages to derive this
information without introducing additional overhead. As these messages
are free of collisions, we obtain better link qualities than in CSMA proto-
cols, where beacon messages may collide in dense deployments, resulting
in an incorrect link quality estimation.

BurstMAC offers an interface to retrieve the list of neighbors and their
link qualities. As an exemplary routing protocol, we implemented a con-
vergecast to the sink based on MintRoute [89] on top of BurstMAC. For
this, each node periodically broadcasts its list of neighbors and link qual-
ities in the control message. Receiving this information, each node com-
putes a bidirectional link quality estimate for each neighbor and picks a
set of “good” neighbors. Using only good neighbors, a distance vector
approach is used to compute a spanning tree consisting of the best quality
path from each node to the sink.

7.2.5. Time Synchronization

As BurstMAC makes use of synchronous rounds, we need some form of
global time synchronization to make sure that rounds and frames begin at
the nodes at approximately the same time. Note that the required synchro-
nization accuracy is rather low as the time-critical events in BurstMAC are
the transmission of control messages and the single-bit transmission at the
beginning of the DATA section. We set the duration of the single-bit to
500 us as described in Sect. 7.2.2. A maximal synchronization error of
half that duration between two neighboring nodes ensures an overlap of
at least 250 us among neighbors for detection of the jam signal.

For time synchronization, we assume that a dedicated node provides a
time reference for the whole network. Although this is not a requirement,
the data sink will also act as the time reference in most practical settings.
In contrast to typical tree-based synchronization protocols where each
node synchronizes to a single parent node, BurstMAC uses a more ro-
bust and accurate approach where each node synchronizes to the average
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time of all its parents (i.e., all nodes that are closer to the time reference
than itself).

An important issue that needs to be dealt with is the dynamic nature
of wireless links, that is, the set of parents of a node changes over time.
In fact, a parent of a node may turn into a child (i.e., a node that is far-
ther away from the reference as the node) due to a broken link. Here,
we must avoid synchronizing to the former parent, which has become a
child. To deal with this issue, the control message contains both a hops
counter that holds the distance of the sending node from the reference,
and a round number. The latter is incremented by the reference node
before broadcasting a control message, all other nodes broadcast a copy
of this value without incrementing. If a node receives a control message
from a parent (i.e., a node which has a smaller hop counter than the node),
whose round counter is the same as in the previous message from this par-
ent, then the parent may have turned into a child and is not used during
time synchronization of the node.

Time synchronization is realized by accurately timestamping the trans-
mission and reception of the first bit of the control message in the radio
interrupt handler. With this, we obtain a per-hop synchronization accu-
racy of few microseconds.

A node performs these measurements for two consecutive control mes-
sages from each parent and computes the duration of a round for each
of the parents, which may differ from parent to parent due to different
clock rates and drift. The node then computes the average round duration
of its parents and adjusts its local round duration, increasing/decreasing
the number of clock ticks of a frame if the average round duration of the
parents is larger/smaller than its own round length. As the duration of a
clock tick of a typical 32 kHz real-time clock is too large for this correc-
tion (resulting in a minimal increment per round of 30.5 µs× 32 frames),
we use a variant of Bresenham’s algorithm [9] to adjust the average frame
length in smaller increments using only integer arithmetic. This approach
proved to be very robust to outliers.

7.2.6. Network Startup

Network startup is concerned with the problem of how nodes join a Burst-
MAC network. In fact, the main problem is getting in sync with the time
reference. For example, during deployment nodes are switched on in ran-
dom order, so each node needs to wait until it gets connected to a time
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reference. As this waiting process may last quite long, we need to make
sure that nodes do not spend much energy in this waiting state.

Our approach uses a dedicated wake-up channel where nodes transmit
wake-up signals. Communication on this channel uses cooperative trans-
missions, i.e., concurrent transmissions by multiple nodes overlay in a
non-destructive manner. On this channel, every node transmits a very
short jamming signal (100 µs), called Blip, at the begin of every CON-
TROL section as depicted in figure 7.4. By this, a new node joining
the network has to scan the wake-up channel at 100% duty cycle only
for a single frame instead of a whole round. On detection of the Blip,
the node already has approximate timing information on the start of the
CONTROL section and will receive at least one control message in the
next 32 frames. If a node starts up and the network is not active yet, it
will not receive a Blip during one frame and start low-power listening
with a period T slightly smaller than the duration of a frame. That is, the
node wakes up every T time units, scans the wake-up channel for ongoing
transmissions, and goes back to sleep. When the time reference starts up,
it sends a pulsed jamming signal during the first frame to wake up nodes
from low-power listening. Each jamming pulse starts exactly at the begin
of the CONTROL section, providing woken-up nodes with a rough time
information similar to the Blips. The idle-listing period T equals the du-
ration of a wake-up pulse, which is slightly shorter than the frame length.
Nodes that have been woken up this way will transmit a wake-up signal
themselves to wake up nodes further away from the time reference, such
that eventually the whole network will be activated and synchronized.

As depicted in figure 7.4, Blips and wake-up pulses have been designed
such that if some nodes transmit a Blip and others transmit a wake-up
pulse simultaneously, a receiver will see a wake-up pulse due to non-
destructive interference.

Upon receiving the first Blip or wake-up pulse, a node obtains rough
time information, which is sufficient to receive a control message in the
next 32 frames. When it receives the first control message, a node sets its
local clock to the time of the sender. After that, only the frame lengths are
adjusted to stay synchronized as described in the previous section.

7.3. Implementation

We implemented BurstMAC on BTnode Rev. 3 nodes. The CC1000 on
the BTnode is configured for the 868 MHz ISM-band, where the actual
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Initialization II

• problem: On LPL receive of WAKE-UP, no time
sync given.

• Idea: Make WAKE-UP compatible to BLIP.
WAKE-UP contains time sync info, too.

• LPL period < WAKE-UP length < Frame period

• Before sending WAKE-UP receive correct time
packet

Blip

Wake

Figure 7.4.: (Top) Periodic start-of-frame signal: Blip, (Bottom) Wake-up signal with
integrated start-of-frame information. The duration of Blip and wake-up in
our prototypical implementation are 0.1 ms and 999.8 ms respectively/

baseband frequency within this band is configurable by software. We
used 34 channels of which one is reserved for control broadcasts, one
is used for the wake-up mechanism and the other 32 are used for data
communication. The analog RSSI output of the CC1000 is used for clear-
channel assessment, cooperative and single-bit transmission. We further
make use of the CC1000’s ability for precise MAC layer timestamping in
the order of 10 us [54].

For the implementation, we used a bit rate of 19200 bps and a frame
length of 1 s, which is split into 50 ms for the CONTROL section and 950
ms for the DATA section. By this, the DATA section provides 24 data slots
for single bit transmission or up to 51 packets in burst mode. Each packet
contains a type field and up to 32 bytes of payload. In this configuration,
a node can send or receive a single packet and up to 51 burst packets of
each 33 bytes in a single frame. Such a transfer of 1716 bytes results
in a maximal usable bandwidth of 71.5% of the total bandwidth of 2400
bytes/s.

In fact, BurstMAC was also used to perform firmware updates during
the experiments and to collect measurement results from the network, thus
demonstrating BurstMAC’s reliability.

7.4. Evaluation

We study the performance of the BurstMAC implementation on BTnodes.
In particular, we investigate the accuracy of time synchronization, the idle
overhead, as well as overhead and time to completion of correlated bursts.
We compare BurstMAC against two established protocols that represent
the two ends of the design space that are relevant for our work. Firstly,
we choose SCP-MAC as a state-of-the-art contention-based protocol with
very low idle overhead. Also, SCP-MAC does contain an adaptive chan-
nel polling mode which allows it to adapt to traffic bursts. Secondly, we
chose LMAC as a scheduling-based and, hence, collision-free protocol
that has been shown to outperform many other MAC protocols under high
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data rates [46].

7.4.1. SCP-MAC and LMAC

In order to be able to compare the three protocols on a common hardware
platform, we have implemented SCP-MAC and LMAC on the BTnode. In
fact, we can switch between all protocols at runtime, performing firmware
updates and collecting measurement results with BurstMAC, while the
actual experiments make use of SCP-MAC or LMAC (or BurstMAC).
The implementations are based on published papers and source code, with
some additions and parameter choices to enable a fair comparison.

For LMAC, we used a frame length of 150 ms. By this, it is possible
to send up to 300 bytes or up to 7 packets of maximal size in one frame
similar to [81]. As LMAC provides only a single ACK per frame, in-
creasing the frame length would result in a higher chance that all packets
sent in a frame have to be dropped if a single bit error occurs. In LMAC,
one or multiple payload packets are sent directly after the control packet.
As described in a technical report [82], multiple packets are sent back-to-
back with a single CRC at the end. The receiving node(s) acknowledge
the reception of data packets in the control message of its own slot. If no
acknowledgment is received, the packets will be retransmitted. If an ac-
knowledgment gets lost, the destination will receive the packets a second
time. Our only modification to LMAC is the use of sequence numbers as
in BurstMAC to suppress duplicate packets.

We implemented SCP-MAC as described in [91], using the published
source code for clarification. We used 8 contention slots before the wake-
up tone and 16 for the second contention window as described in the
paper. The duration of a single contention slot is 427 us, which is the
minimal time for a node to assert a free channel, switch to transmit, and
allow other contenders to detect this transmission at the start of the next
contention slot. We also implemented overhearing avoidance by check-
ing the destination address in a packet before it is completely received.
Our implementation differs from the original paper in two aspects: time
synchronization and acknowledgements. For the time synchronization,
we embedded SCP-MAC into the DATA section of BurstMAC, using the
CONTROL section of BurstMAC for time synchronization. By this, the
channel polling period in SCP-MAC is identical to the BurstMAC frame
length of one second. As BurstMAC’s CONTROL section serves more
purposes than just time synchronization and because SCP-MAC could tol-
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Figure 7.5.: Accuracy of time synchronization on a chain topology.

erate less frequent time sync updates, we exclude the radio time used for
the CONTROL section from SCP-MAC’s energy measurements. By this,
SCP-MAC gains a slight advantage over both LMAC and BurstMAC, but
this advantage is relevant only in an idle scenario. To allow for efficient
and reliable link-layer packet transmission, we modified SCP-MAC to let
nodes acknowledge the reception of a correct packet. We believe that this
is favorable compared to other mechanisms, as for unicast packets, only
the sender and receiver are active at this time allowing for a contention-
free transmission of the acknowledgment.

7.4.2. Time Synchronization

We study the accuracy of time synchronization as a function of the net-
work diameter to investigate the maximal network diameter that Burst-
MAC can support. For this, we arrange 10 nodes in a chain topology
with the time reference at the end, forcing each node to use only its di-
rect parent as a reference for synchronization. However, all nodes are
within communication range of the time reference, such that each node
can directly measure its synchronization error with respect to the time
reference. We ran this setup for one hour, where each node measures its
synchronization error once per round. After collecting the measurements
from the network, we computed averages and standard deviations for all
nodes in the chain as depicted in figure 7.5 (left). The results show that
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Figure 7.6.: Radio duty cycle in idle mode as a function of neighborhood size.

the average synchronization error increases by about 25 µs per hop. Note,
however, that the accuracy of our clock is only 30.5 µs. As the required
synchronization accuracy is in the order of few milliseconds (we only
need to synchronize to rounds, not at the byte or bit level), we can easily
support networks with a diameter in the order of several tens of hops.

7.4.3. Idle Case

We investigate the idle overhead of the protocols in terms of the radio
duty cycle. For both BurstMAC and LMAC, the radio duty cycle is a
function of the number of neighbors of a node as a node has to receive
the control message from each of its neighbors. Therefore, we study the
radio duty cycle of a node with a varying number of neighbors. For each
neighborhood size, we ran the network for 5 minutes, measuring the time
the radio was on and compute the average duty cycle as depicted in figure
7.6 (right). A neighborhood size of zero represents a special case. In this
situation, BurstMAC behaves as described in section 7.2.6 and switches
to low-power listening. As the behavior or LMAC is not specified in the
technical report [82], we have to omit this data point. For more than
one neighbor, we find that the duty cycle increases by about 0.02 % per
added neighbor for BurstMAC and by about 0.5% for LMAC. The high
duty cycle for LMAC is a consequence of its short frame rate which is
required to deliver burst traffic. The duty cycle for SCP-MAC, without
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time synchronization or neighborhood discovery packets, stays constantly
at 0.22%, which is the cost of one clear channel assessment per second.

When comparing idle overhead to other MAC protocols, we need to
take into account that the above numbers for BurstMAC already con-
tain the overhead for maintaining the routing topology and allow for the
collision-free sending of short broadcast messages without extra over-
head.

7.4.4. Constant Traffic

In most sensor network applications, data collected in the network is ex-
tracted by a small number of sink nodes using convergecast. Therefore,
each sink and its direct neighbors form a star topology in which all neigh-
bors of the sink compete for the right to send to the sink. Similarly, the
inner nodes in a data gathering tree form such a star topology. Hence, the
performance of a star network, where N senders try to send to one re-
ceiver simultaneously, represents the performance bottleneck of tree col-
lection protocols during correlated traffic bursts. Therefore, we first eval-
uate the performance of the protocols on such a star topology with N = 7
senders (a typical number to ensure connected networks) under different
data rates.

In addition to the full version of BurstMAC, we also study BurstMAC’s
performance when the packet burst feature is disabled, termed BurstMAC
NoBurst, to provide a better comparison to the other protocols. Each
node creates packets with a constant data rate. Every 32 (resp. 38.4 for
LMAC) seconds, the number of packets received without bit-errors and
the total radio-on time are logged, and the packet rate is increased. We
plot the average duty cycle per node and the radio time per packet in
figure 7.7. Note that each protocol can handle a certain maximal packet
rate depending on its design. To determine the maximal usable packet rate
and the corresponding efficiency, we let the nodes send packets as fast as
possible. Table 7.1 lists the results.

Although LMAC’s idle duty cycle is higher than for other protocols,
its collision and contention-free design allows to deliver packets more ef-
ficiently than SCP-MAC for packet rates higher than 6 packets/second.
At its maximal packet rate of about 10 packets per second, its energy ef-
ficiency is even slightly better than BurstMAC without the packet burst
mode. This results from the fact that LMAC only sends a single acknowl-
edgement bit for up to 7 packets, whereas SCP-MAC and BurstMAC
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BurstMAC BurstMAC (NoBurst) SCP-MAC LMAC
Packet Rate [1/s] 35.3 18.4 17.6 9.5

Time per Packet [ms] 43.07 71.1 94.9 79.8

Table 7.1.: Packet rate and radio time per packet for star topology with seven sender
nodes.

NoBurst both send complete acknowledgement packets. Overall, Burst-
MAC with its efficient burst mode has the lowest energy consumption and
also delivers packets faster than the other protocols.

Below we study the performance of the protocols during correlated traf-
fic bursts in a more realistic multi-hop network. As LMAC outperforms
SCP-MAC already in the simple star topology for high data rates, we limit
further comparisons to LMAC. Also, increased contention and potential
hidden terminal problems in multi-hop networks makes things even worse
for SCP-MAC.

7.4.5. Correlated Burst Case

To investigate protocol performance during correlated bursts in a more
realistic scenario, we setup a multi-hop network of 30 nodes in our lab.
The diameter of the resulting network is four hops and each node has at
most ten neighbors. We simulate a traffic burst in the volcano monitoring
application [86], where an eruption triggers all nodes simultaneously to
transmit a burst of 10 KB (i.e., 320 BurstMAC packets). We measure the
following metrics: firstly, the time it takes until all data has been success-
fully delivered to the sink, and secondly, the total radio energy spent in
the network for delivering the correlated burst.

During preliminary tests, we realized that LMAC does not provide a
flow control mechanism. In a burst traffic scenario with a high packet
load, this would result in significant packet loss due to buffer overruns.
Hence, we added a minimal flow control mechanism to LMAC by having
a node announce whether or not it is ready to receive data in the control
packet. A node is ready to receive when less than the maximum number of
packets per LMAC frame is in the outgoing message queue. This simple
stop-and-go flow control mechanism effectively avoids dropped packets
due to buffer overruns. To evaluate the effect of our flow-control im-
plementation for LMAC, we performed the experiment with BurstMAC,
plain LMAC, and LMAC with flow control.
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Figure 7.7.: Star topology with one sink and seven neighbor nodes: average duty cycle
(top), radio time per error-free received packet (bottom). Note that each
protocol can only support constant traffic up to a certain packet rate.
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To compare the energy overhead of correlated bursts, we measure the
radio-on time of each node from the start of the experiment until the node
has finished sending all data and goes back to idle mode. By this, LMAC’s
comparatively high idle duty cycle does not affect the burst energy mea-
surement. The results of the time measurement are shown in figure 7.8.

For LMAC without flow control, we measured a packet retransmission
rate of about 120% which means that each packet had to be sent more than
twice. With our flow-control implementation, the packet retransmission
rate drops to about 6%. Although BurstMAC also provides efficient flow
control, we measured a packet retransmissions rate of about 12%. We
attribute these packet losses to the fact that a lost burst acknowledgment
(due to bit errors) currently requires to resend the whole burst although a
significant number of packets might have been received correctly.

BurstMAC delivers the 9280 packets in 448 seconds which is about 5
times faster than both LMAC variants. The effectiveness of BurstMAC’s
multiple radio channels is limited as all traffic has to flow to the sink
through a single channel. Hence, convergecast with a single sink can
be considered as the worst case for BurstMAC with respect to LMAC.
In scenarios with multiple (also collocated) sinks or point-to-point multi-
hop traffic flows, BurstMAC’s gain over LMAC will be even higher. In
the convergecast scenario, the main benefit of BurstMAC’s multi-channel
approach is the reduction of collisions and energy consumption, as we
show next.

To estimate the protocol overhead introduced by the MAC protocols, we
measured for all protocols the total radio-on time based on the collected
metrics. In addition, we calculated the minimal radio-on time based on a
packet length of 35 bytes (1 byte type, 32 bytes payload and 2 byte CRC)
to be 14.5 ms at 19200 kbps. As the transmission of a packet involves
both the sender and the receiver, we define the minimal radio on-time as
29 ms. Figure 7.9 depicts the average radio time per packet per protocol
(bars) together with the minimal radio-on time (horizontal line). Burst-
MAC required 43.24 ms which is at the same level as during the constant
traffic experiment and shows that BurstMAC can achieve its energy effi-
ciency also in multi-hop data gathering applications without extra config-
uration. Note that the complete overhead is only about 50% higher than
the minimum and that this already includes the control messages and the
overhead caused by sending preambles and acknowledgments. LMAC
with flow control requires more than three times the minimal radio-on
time. LMAC without flow control requires even more energy but not as
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much as we expected due to dropped packets caused by overruns, hence,
the flow control did not significantly improve the delivery time, but it
does reduce LMAC’s energy consumption and should be added if LMAC
is used in the future.

7.5. Summary

We have presented and analyzed BurstMAC, a collision-free and efficient
protocol for event-triggered applications with correlated traffic bursts.
BurstMAC shares some design concepts with its predecessor BitMAC,
namely the use of cooperative and single-bit transmission for efficient
communication in star topologies, and the use of multiple radio channels
to avoid interference between neighboring star topologies. In contrast to
BitMAC, BurstMAC can handle topology changes and is not restricted
to the spanning-tree convergecast model, which allows for unicast com-
munication between neighboring nodes. The new packet based topology
maintenance significantly reduces the required time synchronization, and,
together with the efficient network startup, yields a protocol ready for
real-world deployments.

For the BTnode Rev. 3 platform, we could show that BurstMAC has a
similar idle overhead as state-of-the-art low-power data collection MAC
protocols under comparable conditions and that BurstMAC significantly
outperforms existing scheduled protocols with respect to efficient han-
dling of correlated traffic bursts.
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8. Conclusion and Future Work

In this final chapter, we summarize the contributions of our work and
discuss some limitations of our approaches. We also sketch potential fu-
ture research directions based on the proposed concepts and give recom-
mendations for a sensor network protocol design that facilitates passive
inspection.

8.1. Contributions

We surveyed the literature on the deployment of wireless sensor networks
and could show that deployments are still often prone to failure. Apart
from hardware-related problems, software failures exist even after the de-
ployed sensor applications have been carefully tested in the lab. We pro-
posed a classification for the reported deployment failures based on the
number of involved nodes: single node problems, link problems, path
problems and global problems. Most of the reported problems fall into
the categories of link and path problems, but are hard to debug as sensor
networks do not provide insight into the state of sensor nodes from re-
mote. An important problem is the occurrence of bursty traffic patterns
which cannot be handled by existing medium access control protocols.

With respect to the inspection of sensor networks, we showed that ex-
isting tools and approaches to provide insight into the network interfere
significantly with the inspected application and require too much of the
resources of sensor nodes. We proposed the concept of passive inspec-
tion that is based on overhearing and analyzing the network traffic of a
deployed sensor network without instrumentation of the sensor nodes.
We provided the Sensor Network Inspection Framework (SNIF) to imple-
ment this concept in a generic way. SNIF makes use of a robust and reli-
able deployment-support network and allows to inspect sensor networks
that use a variety of operating systems and networking protocols. A data
stream processing engine allows to adapt SNIF to different applications
and to provide input for a graphical user interface. The configurable user
interface both allows to inspect the live state of the network and to replay
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and analyze recorded network traces.
To better support event-triggered applications with sporadic traffic

bursts, we developed two collision-free medium access control protocols.
Both protocols make use of multiple radio channels to dynamically clus-
ter nodes into star topologies that can communicate without interference
with other clusters. Within such a cluster, cooperative transmissions are
used for the efficient scheduling of TDMA slots. In the first protocol, Bit-
MAC, the network start-up and the frequency assignment is deterministic
and we gave upper bounds on the execution time of all protocol elements.
However, some parts of the protocol do not cope well with changes in
the network topology. In the second protocol, BurstMAC, we used a less
efficient approach for the frequency assignment, but this led to a protocol
with less stringent timing constraints and which can deal with topology
changes. We finally showed that BurstMAC can handle traffic bursts well
while still providing an idle duty cycle below 1% with a frame length of
1 second.

8.2. Limitations and Future Work

There are a number of limitations and potential improvements with re-
spect to our passive inspection approach and the proposed MAC proto-
cols, which we will discuss in this section. We also discuss future work
in the broader context of our work.

8.2.1. Passive Inspection

Limited Insight

The passive inspection approach we proposed solves the problem of in-
specting an already deployed sensor network without active instrumenta-
tion. Naturally, this passive approach also has limitations. By design, the
passive inspection approach only makes use of data broadcasted by sensor
nodes. Consequently, if no data about the internal state of a sensor node
is included, its state cannot be inferred. A special case in the analysis
of network protocols is the question whether a packet was received by a
particular node. Even if a message is received by the deployment-support
network, the passive approach cannot decide whether an observed node
has correctly received the message.
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Multi-channel MAC Protocols

In addition to the limited insight, the fact that common radio transceivers
can only receive on a single channel at the same time limits the use of
SNIF for multi-channel protocols. In the case of BurstMAC, e.g., ob-
serving the common channel provides valuable information, especially as
most link layer and routing information is broadcasted there. However,
the actual data exchange cannot be captured. Optionally, at least the data
traffic from and to a single node could be captured if the sniffer would
follow the frequency changes according to the BurstMAC protocol. Pro-
viding a way to specify the channel changes based on the information
encapsulated in overheard control messages would therefore be a natural
extension to the current SNIF implementation.

Semi-passive Inspection

As we have shown in sections 3.3.2 and 4.9, for many common problems
which occur during deployment of sensor networks, passive indicators ex-
ist that allow to infer the existence of a problem from overheard network
traffic. However, in some situations we had to make assumptions about
the underlying sensor network protocols that may not hold for all appli-
cations (e.g., indicators for message loss). For other problems, passive
indicators provide only an approximate view of the ground truth (e.g., in-
dicators for network congestion). In such situations, one could resort to
semi-passive observation, where sensor nodes are instrumented with code
to emit messages containing additional information about the state of the
sensor node (e.g., level of congestion, battery voltage, etc.). These mes-
sages are overheard by the DSN and ignored by other sensor nodes. While
this approach requires instrumentation of sensor nodes and transmission
of additional messages, these messages do not have to be routed through
the sensor network. Moreover, if the additional data is added already dur-
ing the development of the sensor network application, the probe effect
described in section 3.1.2 is avoided.

Graphical Interface for Operator Graph Configuration

While not actually a scientific problem, the availability of a graphical user
interface for the configuration of the operator graph in SNIF would ease
SNIF’s use and lower the barrier for new users. In the current implemen-
tation, the operator graph is constructed by Java code. In a future version,
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a configuration file could be used to denote the graph and the parameters
of the operators. Finally, a graphical tool could be developed to support
the construction and checking of the operator graph visually.

8.2.2. Collision-Free Medium Access

Packet-based Radio Transceiver

Currently, we have only implemented BurstMAC on the BTnode Rev.
3 platform with a Chipcon CC1000 radio transceiver that provides fine-
grained control over the radio operation and supports OOK to implement
efficient single-bit transmission. Together with the steady progress in
hardware technology, the radio transceivers used on typical sensor nodes
change over time. In the year 2000, single channel radio transceivers such
as the RFM TR1000 were common, which required the microcontroller to
process raw bit streams. Later, the Chipcon CC1000 with hardware sup-
port for Manchester coding allowed the microcontroller to send and re-
ceive at the byte level. Newer receivers, such as the 802.15.4-compatible
Chipcon CC2420 implement basic MAC functionality in hardware and
only allow to send and receive on the packet level. For these radios,
BurstMAC cannot be implemented directly. However, BurstMAC uses its
low-level techniques only in two cases: the cooperative signaling that at
least one sender is ready and single-bit transmission to communicate the
actual send requests. Similar to the the emulation of OOK on the CC1000,
sending and receiving of OOK data may be implemented indirectly. The
CC2420 for example provides a test mode to transmit an unmodulated
carrier signal that can be used to send short jamming signals controlled
by the microcontroller. Furthermore, it also provides hardware support
for clear-channel assessment that can be used as an indicator for other
nodes jamming signals. With these two methods, it should be possible to
implement BurstMAC on this hardware. Although this example motivates
the possibility of adapting BurstMAC to newer hardware, its concrete im-
plementation has to be evaluated for each radio transceiver separately.

Extension for Dense Networks

Finally, the number of available radio channels currently limits the maxi-
mal density of sensor nodes. For random network topologies, such as the
ones used in the BitMAC coloring evaluation in section 6.6.2, the 32+2
channels used in BurstMAC allow for an average degree of about 8 nodes,
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which is enough to provide a well-connected network. To support more
dense networks, nodes can act as cluster heads for nodes that could not
be assigned a free channel. Even without an assigned channel, such a
leaf node can still receive broadcast messages, like all other nodes, e.g.,
to receive configuration data or a sensor query. As it does not control a
channel, however, it cannot receive unicast messages from other nodes.
But, it can still send unicast messages to other nodes on their respective
channel. For this to work, the number of single request bits in the DATA
section might be increased by e + 1 and each a leaf nodes has to be as-
signed one of these e extra IDs by its new cluster head. While the first
additional bit is used to signal the cluster head that a leaf node requests to
be accepted, the other e bits are used to enumerate additional leaf nodes.
If the first bit is set, the cluster head schedules a data slot in which all
unassigned leaf nodes content to send a packet with their node ID. If the
cluster head correctly receives the node ID of a leaf node, it will announce
in the next control message that node with ID X can use the additional re-
quest bit Y. In the case of collisions, the leaf nodes follow an exponential
back-off strategy until all leaf nodes are associated with a cluster-head.
With this scheme, the number of nodes in a given area can be increased
by a factor of e + 1.

8.3. Recommendations for Protocol Design

As we have shown in the paragraph on the PacketTracer in section 4.6.5,
the omission of the two-byte sender address in Tiny OS messages trans-
forms the tracking of multi-hop messages from a basic task into a hard
problem. This example shows that protocol design decisions may have a
strong impact on the ease of deployment. Therefore, we would like to end
this thesis with a short list of guidelines for the design of new protocols
that facilitates passive inspection by design.

• Include the per-hop source address in all messages to identify com-
munication partners.

• Include a link layer sequence number in all messages so that the
observing network can detect when it failed to overhear a message.

• Include information in multi-hop messages that allows to decide
whether or not two packets belong to the same multi-hop message
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exchange. As the source address of a multi-hop message is com-
monly included to specify which node did create a message, it is suf-
ficient, e.g., to include an additional network layer sequence number
that is forwarded as part of the message.

• Include information in routing messages that allows to reconstruct
the routing graph. For example, a common routing beacon contains
its address and the cost for forwarding a packet to the sink, but it
does not announce which node is its parent. Adding this mere two
bytes of information to the beacon message is enough to reconstruct
the complete spanning-tree-based routing graph.

We hope that our work on the inspection of sensor nodes and on
collision-free medium protocols helps to reduce the uncertainty in wire-
less sensor networks and will benefit future deployments.
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