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1 DERIVATION OF MULTIFRAME NON-BLIND BLUR REMOVAL
1.1 Original algorithm

The fast non-blind uniform blur removal algorithm of Krishnan and Fergus [Kri09] minimizes the following energy

function:
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where f, = [1 —1] and f; = [I —1]T denote differential operators in horizontal and vertical directions, respectively
A is a factor to balance the error function and the prior term. For brevity, the notation Fix := (x  f;); and Kix :=
(xxKk); will be used in the following formulas. Applying the half-quadratic penalty method of Geman [Gem95],
we can introduce auxiliary variables w} and w?, together denoted as w, to split the energy function into a quadratic
problem in x and a pixel-wise problem in w, and solve for x and w iteratively by fixing the other variable.
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The solution of the x-subproblem given fixed w can be efficiently calculated using Fast Fourier Transforms because
in the frequency domain convolutions become multiplications. Deriving the above equation w.r.t. X and setting the
derivative to zero: Y Y
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from which we get x:
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where * denotes complex conjugate, and multiplications and divisions are performed element-wise.

The solution of the w-subproblem is obtained by solving 2N (N is the number of pixels in the image) independent
1D problems of the form
B
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Fora=j; a=3% Z and o = 1 even an analytical solution is given, for other values a Newton-Raphson root finder
method can be applied [Kri09].

1.2 Our extension

We extend the above algorithm with a new penalty term that incorporates information from other images of the
same scene. Specifically, we added a new penalty term which describes a weighted squared difference of the latent
image patch x from M other patches xj, j € 1...M that are estimated from blurry image patches y;. The weights
; are chosen inversely proportional to the "blurriness’ of the corresponding blurry image patch y ;. We assume the
rolling-shutter distortion has already been compensated in the input images.

We give here the solution of the x-subproblem with one additional input image patch. Let us denote our blurry
image patch with y, our additional blurry image patch with y,, and the whole images as B and B,, respectively. We
first perform single-frame patch-wise uniform deconvolution on B, as described in Section 4 of the paper to get a



sharpened image Xz Then, we align X, with B to get Xz An aligned and sharpened patch in X’z corresponding to
y2 is denoted as X;. After image alignment, we minimize the following energy function:

J
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Again, by applying the half-quadratic splitting method we transform our problem into an x-subproblem and a
w-subproblem.
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Here 4 (x —})? is in matrix form
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and its derivative w.r.t X is u
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The solution of the x-subproblem given fixed w is calculated in the frequency domain. Deriving equation 7 w.r.t.
X, plugging in the derivative of our new prior term, and setting the derivative to zero we get
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where Fix = xx* fi» Kx =xxK, and Ax = x x § is a convolution with the Dirac delta kernel (identity). From this we
can get x:
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Since 6 is the identity kernel of convolution, its Fourier transform .%# (A) is a matrix of ones and our formula
simplifies to
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We can generalize the above solution to 1 < j < M additional images:
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The solution of the w-subproblem is analog to the original algorithm.



2 ADDITIONAL RESULTS OF REMOVING SYNTHETIC BLUR
2.1 Comparison of deconvolution methods

Figure 1: This figure contains all results of the quantitative experiment shown in Table 1 in the paper. B is the input
image for patch-wise uniform deconvolution using the gyro-generated kernels and with different deconvolution
methods: Wiener filter (W), Richardson-Lucy algorithm (RL), Krishnan’s algorithm (KS). For comparison, we
also show the output of Photoshop’s ShakeReduction feature (PS) which is a blind uniform deconvolution method
(i.e., a single blur kernel is estimated from the image content only). The result of our multi-frame deconvolution
using B and B3 as additional priors is shown in the middle column in the bottom row (KM). The ground truth is
shown in GT.



2.2 Beach example

Figure 2: Removing synthetic blur (all images of the synthetic blur example in the paper). B is the main input
image and Bj » 4 5 neighboring images aid the blur removal, / is our result. Bottom: corresponding patches from
the 5 input images and the result.



2.3 House example

In this example, we synthetically generated 5 blurry images Bi—Bs and deblurred B = B3 using By 7 4 5 as additonal
priors in our multiframe deblurring algorithm. The final result is shown in /. In the following pages we also show
the estimated kernels and the intermediate single-frame deblurring results.
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Figure 3: Removing synthetic blur. B is the main input image and B 7 4 5 neighboring images aid the blur removal,
[ is our result. Bottom: corresponding patches from the 5 input images and the result.



Figure 4: The blur kernels estimated from gyroscope data for the house example (Figure 3)



Figure 5: The intermediate deblurred single frames E|—E5 for the house example (Figure 3) and our multi-frame
deblurred result /. Single-frame deblurring often fails in areas with large blur, hence the individual £ images are
of low quality. Information from multiple (differently blurred) images clearly improves the quality of the overall
restoration (c.f. B and I of the example).



3 ADDITIONAL RESULTS OF REMOVING REAL BLUR
3.1 Sign example

Figure 6: Restoring B with the help of Bj 3, all degraded with real motion blur. (The sign example from the paper
in high resolution.)




3.2 Books example
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Figure 7: Restoring B with the help of By 3, all degraded with real motion blur.



3.3 Newspapers example

Figure 8: Restoring B with the help of By 5 4 5, all degraded with real motion blur. Our result is shown in the bottom
right (1)



4 REFERENCES
[Kri09] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-Laplacian priors. In Advances in
Neural Information Processing Systems (NIPS). 2009.

[Gem95] D. Geman ans Y. Chengda. Nonlinear image recovery with half-quadratic regularization. In IEEE
Transactions on Image Processing, Vol.4, No.7. 1995.



