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1 DERIVATION OF MULTIFRAME NON-BLIND BLUR REMOVAL
1.1 Original algorithm
The fast non-blind uniform blur removal algorithm of Krishnan and Fergus [Kri09] minimizes the following energy
function:
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where fx = [1−1] and fy = [1−1]T denote differential operators in horizontal and vertical directions, respectively.
λ is a factor to balance the error function and the prior term. For brevity, the notation Fd

i x := (x∗ fd)i and Kix :=
(x ∗k)i will be used in the following formulas. Applying the half-quadratic penalty method of Geman [Gem95],
we can introduce auxiliary variables wx

i and wy
i , together denoted as w, to split the energy function into a quadratic

problem in x and a pixel-wise problem in w, and solve for x and w iteratively by fixing the other variable.
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The solution of the x-subproblem given fixed w can be efficiently calculated using Fast Fourier Transforms because
in the frequency domain convolutions become multiplications. Deriving the above equation w.r.t. x and setting the
derivative to zero: (
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from which we get x:
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where ∗ denotes complex conjugate, and multiplications and divisions are performed element-wise.

The solution of the w-subproblem is obtained by solving 2N (N is the number of pixels in the image) independent
1D problems of the form
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For α = 1
2 ,α = 2

3 and α = 1 even an analytical solution is given, for other values a Newton-Raphson root finder
method can be applied [Kri09].

1.2 Our extension
We extend the above algorithm with a new penalty term that incorporates information from other images of the
same scene. Specifically, we added a new penalty term which describes a weighted squared difference of the latent
image patch x from M other patches x j, j ∈ 1 . . .M that are estimated from blurry image patches y j. The weights
µ j are chosen inversely proportional to the ’blurriness’ of the corresponding blurry image patch y j. We assume the
rolling-shutter distortion has already been compensated in the input images.

We give here the solution of the x-subproblem with one additional input image patch. Let us denote our blurry
image patch with y, our additional blurry image patch with y2, and the whole images as B and B2, respectively. We
first perform single-frame patch-wise uniform deconvolution on B2 as described in Section 4 of the paper to get a



sharpened image X̃2. Then, we align X̃2 with B to get X̃′2. An aligned and sharpened patch in X̃′2 corresponding to
y2 is denoted as x̃′2. After image alignment, we minimize the following energy function:
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Again, by applying the half-quadratic splitting method we transform our problem into an x-subproblem and a
w-subproblem.
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Here µ

2 (x− x̃′2)
2
i is in matrix form
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and its derivative w.r.t x is
µ
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The solution of the x-subproblem given fixed w is calculated in the frequency domain. Deriving equation 7 w.r.t.
x, plugging in the derivative of our new prior term, and setting the derivative to zero we get(
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where F ix = x∗ fi, Kx = x∗k, and ∆x = x∗δ is a convolution with the Dirac delta kernel (identity). From this we
can get x:
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F (F1)∗ ◦F (F1)+F (F2)∗ ◦F (F2)+(λ/β )F (K)∗ ◦F (K)+(µ/β )F (∆)∗ ◦F (∆)

)
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Since δ is the identity kernel of convolution, its Fourier transform F (∆) is a matrix of ones and our formula
simplifies to
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We can generalize the above solution to 1≤ j ≤M additional images:
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The solution of the w-subproblem is analog to the original algorithm.



2 ADDITIONAL RESULTS OF REMOVING SYNTHETIC BLUR
2.1 Comparison of deconvolution methods

Figure 1: This figure contains all results of the quantitative experiment shown in Table 1 in the paper. B is the input
image for patch-wise uniform deconvolution using the gyro-generated kernels and with different deconvolution
methods: Wiener filter (W), Richardson-Lucy algorithm (RL), Krishnan’s algorithm (KS). For comparison, we
also show the output of Photoshop’s ShakeReduction feature (PS) which is a blind uniform deconvolution method
(i.e., a single blur kernel is estimated from the image content only). The result of our multi-frame deconvolution
using B1 and B3 as additional priors is shown in the middle column in the bottom row (KM). The ground truth is
shown in GT.



2.2 Beach example

Figure 2: Removing synthetic blur (all images of the synthetic blur example in the paper). B is the main input
image and B1,2,4,5 neighboring images aid the blur removal, I is our result. Bottom: corresponding patches from
the 5 input images and the result.



2.3 House example
In this example, we synthetically generated 5 blurry images B1–B5 and deblurred B = B3 using B1,2,4,5 as additonal
priors in our multiframe deblurring algorithm. The final result is shown in I. In the following pages we also show
the estimated kernels and the intermediate single-frame deblurring results.

Figure 3: Removing synthetic blur. B is the main input image and B1,2,4,5 neighboring images aid the blur removal,
I is our result. Bottom: corresponding patches from the 5 input images and the result.



Figure 4: The blur kernels estimated from gyroscope data for the house example (Figure 3)



Figure 5: The intermediate deblurred single frames E1–E5 for the house example (Figure 3) and our multi-frame
deblurred result I. Single-frame deblurring often fails in areas with large blur, hence the individual E images are
of low quality. Information from multiple (differently blurred) images clearly improves the quality of the overall
restoration (c.f. B and I of the example).



3 ADDITIONAL RESULTS OF REMOVING REAL BLUR
3.1 Sign example

Figure 6: Restoring B with the help of B1,3, all degraded with real motion blur. (The sign example from the paper
in high resolution.)



3.2 Books example

Figure 7: Restoring B with the help of B1,3, all degraded with real motion blur.



3.3 Newspapers example

Figure 8: Restoring B with the help of B1,2,4,5, all degraded with real motion blur. Our result is shown in the bottom
right (I)
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