
Blur-resistant joint 1D and 2D barcode localization for
smartphones

Gábor Sörös
Institute for Pervasive Computing

ETH Zurich
Universitaetstrasse 6
Zurich, Switzerland

soeroesg@inf.ethz.ch

Christian Flörkemeier
Institute for Pervasive Computing

ETH Zurich
Universitaetstrasse 6
Zurich, Switzerland

floerkem@inf.ethz.ch

ABSTRACT
With the proliferation of built-in cameras barcode scanning
on smartphones has become widespread in both consumer
and enterprise domains. To avoid making the user precisely
align the barcode at a dedicated position and angle in the
camera image, barcode localization algorithms are necessary
that quickly scan the image for possible barcode locations
and pass those to the actual barcode decoder. In this paper,
we present a barcode localization approach that is orienta-
tion, scale, and symbology (1D and 2D) invariant and shows
better blur invariance than existing approaches while it op-
erates in real time on a smartphone. Previous approaches
focused on selected aspects such as orientation invariance
and speed for 1D codes or scale invariance for 2D codes.
Our combined method relies on the structure matrix and
the saturation from the HSV color system. The comparison
with three other real-time barcode localization algorithms
shows that our approach outperforms the state of the art
with respect to symbology and blur invariance at the ex-
pense of a reduced speed.

Categories and Subject Descriptors
J.7 [Computers in Other Systems]: Consumer products;
I.5.4 [Pattern Recognition]: Applications

General Terms
Algorithms

Keywords
visual codes, barcode, localization, pattern recognition

1. INTRODUCTION
Barcode scanning with smartphones is becoming popular
thanks to a rich variety of e-commerce services. While bar-
code scanning in the past required dedicated laser scanner

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

MUM’13, December 02 - 05 2013, Lulea, Sweden
Copyright 2013 ACM 978-1-4503-2648-3/13/12...$15.00.
http://dx.doi.org/10.1145/2541831.2541844

or imaging devices, consumers are today using their smart-
phones to scan barcodes on products to conveniently com-
pare prices and to check product reviews. In enterprise ap-
plications, employees are using their smartphones to scan
barcodes to reorder products and to track assets.

The smartphone-based barcode scanning pipeline consists of
several steps. In the initial step, video frames are acquired
from the camera. The frame rate is usually between 5 and
30 frames per second and the resolution in video mode is
typically between 640x480 and 1280x720 pixels depending
on the required quality and speed of processing. In practice,
the scanning algorithms must be limited to a small search
window in the image because (blurry) decoding is computa-
tionally complex. Due to the lack of a laser beam the users
do not see where the scanner is currently reading and they
often struggle with continuously aligning the barcode at a
dedicated position and angle within the search window. To
maximize ease of use, barcodes need to be scanned in the en-
tire camera image. For that a quick barcode localization al-
gorithm is required that selects possible barcode candidates
before a particular scanline through the code is decoded us-
ing approaches such as ZXing, RedLaser, or Scandit1.

Figure 1: Barcode localization in digital images poses several
challenges: different scales, different orientations, different
symbologies, blur

The ideal barcode localization algorithm is scale, orienta-
tion, barcode-symbology and blur-invariant (see Figure 1)
and operates in real-time on the entire camera image. Scale-
invariance is important because barcodes are printed in dif-
ferent form factors and the distance to the smartphone cam-
era can vary. Orientation invariance is necessary because the

1
http://code.google.com/p/zxing/

http://www.redlaser.com
http://www.scandit.com

user will not always place the barcode exactly horizontally
in the camera image. There are also a number of different
barcode symbologies that need to be successfully detected
by the barcode localization algorithm. This includes lin-
ear 1D barcodes such as those found on consumer products
and on logistical labels (e.g. EAN13, UPC12, CODE39,
CODE128) and 2D codes such as the popular QR codes, but
also DataMatrix and PDF417 codes. Enterprise applications
may require scanning 1D and 2D symbologies in the same
algorithm without explicit switching by the user. Since the
latest commercial barcode decoders can also decode blurry
barcodes, it is also important to localize blurry barcodes in
camera images. Blurry barcode images can result from a
fixed focus camera, a barcode being placed too close to the
camera or the camera focusing on the distant background
when the barcode is small (cf. Figure 1).

Previous work focused only on selected aspects of the re-
quirements mentioned above such as orientation invariance
and speed for 1D codes or scale invariance for 2D codes. The
contribution of this paper is a combined barcode localiza-
tion approach that aims to address both orientation, scale,
symbology and blur invariance. Our results with publicly
available data sets show that the method provides robust
orientation and scale invariance, and can localize both 1D
and 2D barcodes in sharp and blurry images.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the related work also including the details
of three techniques that represent the state of the art in
real-time barcode localization. Section 3 is devoted to the
description of our approach while Section 4 presents a com-
parison of our approach with the three previous ones. We
conclude and discuss future work in Section 5.

2. RELATED WORK
Despite the fact that barcodes have an apparent structure
for the human eye, the fast and robust localization in dig-
ital images is still an active research area. The different
approaches presented previously can be categorized by the
image processing technique used. Previous work on 1D local-
ization includes simple image filters, orientation histograms,
line detection approaches, morphology operators, Gabor fil-
ters and harmonic analysis. 2D localization has been previ-
ously implemented via image thresholding and scanning, via
orientation maps, or via combinations of line/corner/square
detection.

2.1 Localization of 1D Barcodes
Simple image filters combine various low-level image fea-
tures such as image gradients, intensity variance, etc., and
try to find bar-like structures [4, 13, 16, 6]. They offer a
good compromise when accuracy is not crucial but localiza-
tion speed is an important aspect in the application. Ando
and Hontani [4] detected sharp 1D barcodes by classifying
image regions to plain, uni-directional and omni-directional
areas and by inspecting the transitions between those areas.
Gallo et al. [6] presented a very fast barcode localization
technique that despite its simplicity outperforms many com-
plex methods. However, it works only with a single sharp
code that lies horizontal (less than 30 ◦ rotated) in the im-
age. For each pixel, the algorithm calculates the measure
m = |Ix| − |Iy| where Ix and Iy stand for image derivatives

in x and y directions, respectively, and |.| means absolute
value. m is then blurred with a box filter and binarized by
Otsu’s method. The idea behind this approach is that hor-
izontally oriented barcodes have strong gradients in the x
direction but no gradients in the y direction, so m is very
high at bars in a barcode. The box filtering connects the
bars into a region. To find the axis-aligned bounding box of
the code, Gallo et al. first find the maximum value in m (as-
suming this is within the barcode region) and search in four
directions on the binarized image for the region boundaries.
Finally, a rectangle is fitted on the four endpoints. We also
apply some of these ideas in our approach.

Orientation histograms are used for 1D barcode localiza-
tion by Tekin and Coughlan [12]. Their algorithm is part
of the BLaDE barcode scanning aid for visually impaired
users who have difficulties with aligning codes in a search
window. The algorithm builds a histogram of gradient ori-
entations for each 20x20 patch in the image, calculates the
entropy (peakedness) of the histogram, and finds its domi-
nant orientations. The patches are then clustered according
to their orientation. The resulting regions are tested for al-
ternating edges in their dominant orientation and the most
likely barcode candidate is selected. This approach provides
orientation invariance but the patch size has to be tuned
carefully to the expected code scales. Also many other algo-
rithms look at the distribution of the gradient orientations
over image patches; sharp 1D codes have a single peak and
2D codes have two peaks 90 degrees apart. However, when
the image gets blurred, many of the thin bars disappear and
the code breaks into many disconnected parts. The blur also
flattens the orientation histogram of a 2D code, it ”smears”
the gradients in practically all directions making the com-
mon localization algorithms fail.

Line detection with Hough transform has also been used to
estimate the orientation of a single barcode close to the cam-
era with little background clutter [1]. Dubska et al. [5] pre-
sented a fast localization algorithm that successfully distin-
guishes 2D codes from text. However, to detect a sufficiently
large number of lines, the code must be fairly prominent in
the camera image.

Mathematical morphology is another tool for detecting bar
structures. Combinations of image erosions and dilations en-
hance barcode areas but these algorithms tend to produce
frequent false positives and will always be constrained by
the proper choice of the structuring elements. Detection at
different scales requires a search with multiple structuring
elements which can be a rather slow process. An overview
on morphological localization can be found in the work of
Katona et al. [9]. The authors also propose an alternative
approach that uses bottom-hat filtering and a distance map
and achieve over 90% detection rates in their simulations.
Their method can be extended to combine 1D and 2D local-
ization but it often classifies text areas as part of a code.

Gabor filters are combinations of different Gaussian and Si-
nusoid functions that model the edge-sensitivity of the hu-
man primary visual system. They can be used to detect
stripe patterns at any orientation and scale. Concrete ex-
amples in localization include [11, 14]. These methods offer
scale and rotation invariance but tend to be slow.

Harmonic analysis approaches transform the image into the
Fourier, DCT, or Wavelet domain and look for barcode-
specific features. Examples include [10, 7]. We consider
these methods to be too complex for real-time barcode scan-
ning on smartphones.

2.2 Localization of 2D Barcodes
2D-specific methods for codes like DataMatrix, QR, etc.,
rely on the codes’ apparent black and white rectangular
structures and special finder patterns with given black-white
signal ratios. The typical localization pipeline consists of im-
age thresholding and line-by-line search in the binary image
for the finder patterns. Obviously, if the finder patterns are
degraded by blur the black-white proportions do not follow
the standards anymore.

Alfthan’s work [2] is devoted to localizing QR codes in blurry
images with three different approaches. First, the author
trains an SVM on color and intensity variance features ex-
tracted from QR codes. This approach can successfully sep-
arate the code area from text but is not scale-invariant. The
second, morphology-based method requires precise parame-
ter tuning. Third, the author tries to find the white square
support of the code in Hough-space, which is inherently in-
fluenced by the success of the underlying edge detection.

Xu et al. [15] presented the first method to localize and
also deblur linearly blurred 2D codes using a special camera.
They localize the blurry code based on intensity variance,
Harris corner density [8] and background substraction. The
authors rely on the fact that corners are less sensitive to
motion blur than edges so the many corners of a 2D code
can still be found in a blurry image.

In summary, there is a vast amount of literature on local-
izing barcodes in digital images, but none of the existing
approaches focuses on all four identified challenges. We de-
veloped a combined approach that addresses both orienta-
tion, scale, symbology and blur invariance.

3. OUR APPROACH
In this section we present a new localization algorithm for
1D and 2D codes that also works with blurry images. We
rely on the facts that 1D codes consist of black and white
parallel bars while 2D codes have a black and white grid
structure. The grid corners of 2D codes are less sensitive to
blur and stay apparent also in blurry images. In our com-
bined algorithm we search for areas with high concentration
of edge structures as well as for areas with high concentra-
tion of corner structures. We derive two separate barcode-
ness maps from the structure matrix for 1D and 2D codes.
The two maps can be calculated at the same time very ef-
ficiently. To further speed up the sharp localization and
allow blurry localization we also rely on information from
the HSV (hue,saturation,value) color channels that - to the
best of our knowledge - has not been proposed before.

3.1 Structure Matrix
We derive our barcodeness measures from the structure ma-
trix M =

(Cxx Cxy

Cxy Cyy

)
at each pixel p. The Cij entries of M

are calculated from the image derivatives Ix and Iy over an

image patch D around the pixel p using a window w:

Ci,j =
∑

(x,y)∈D

w(x, y)Ii(x, y)Ij(x, y)

As we will see, using the structure information instead of
simply the gradient like other methods can enhance also the
robustness against blur. The following steps are illustrated
in Figure 2.

3.2 Edge and Corner Maps
From the structure matrix, according to the work of Ando [3],
we can define the measure m1 which is strong at edge struc-
tures in any orientation and the measure m2 which is strong
at corners. The derivation of these formulas can be found
in the Appendix.

m1 =
(Cxx − Cyy)2 + 4C2

xy

(Cxx + Cyy)2 + ε
, m2 =

4(CxxCyy − C2
xy)

(Cxx + Cyy)2 + ε

Next, we blur the two maps by a block filter to connect areas
where there is high line density or high corner density. Note
that while the applied edge/corner detection is invariant to
illumination changes and to rotation, it is not invariant to
scale changes. Scale invariance could be added by repeating
the calculation of M over bigger and bigger image patches
D and selecting extrema over the scales. Fortunately, visual
codes contain plenty of edge and corner structures of differ-
ent size so independent of the distance between the code and
the camera, there will be lots of edges and corners detected
even using a fix neighborhood size D = 7. We achieve good
scale invariance by connecting those edges/corners via a big
block filter. In our experiments we used a separable box fil-
ter of size 30 pixels. This not only connects high-density ar-
eas but also removes separated edges/corners of background
clutter. There is, however, often text in the vicinity of visual
codes that also exhibits high edge and corner density, so a
further step is necessary to remove those areas.

3.3 Barcode Saliency Maps

Figure 2: Algorithm outline: m1: edge density map, m2: cor-
ner density map, s1: 1D saliency, s2: 2D saliency, bounding
box detection. The color coding is normalized to [0..1] in all
figures. (Please zoom in for better viewing.)

The two box-filtered maps are linearly combined to get our
final barcode saliency maps s1 and s2. The idea behind this
is that 1D codes must not contain corner areas (note that
this is how text gets removed from 1D codes) and sharp 2D
codes must also contain edge areas. The resulting “barcode-
ness” images are thresholded and barcode borders are found
by tracing the binary image in four directions starting from
the pixel with maximal strength (cf. Gallo’s method [6]).
Note that using a more sophisticated method for finding the
peak areas in the barcodeness map would allow for detecting
multiple codes even with different symbologies.

The above described method works reliably with sharp 1D,
sharp 2D, and blurry 2D codes, however, blurry 1D codes
are challenging as the blur leaves little structure information
in the code area (see Figure 3). If the camera focuses on the
background that contains strong parallel lines, the algorithm
finds that area more likely to be a barcode. To overcome this
limitation we propose an extension to our algorithm using
information from the saturation channel.

3.4 HSV Color Information
So far we have not considered that barcodes are almost al-
ways printed black and white and in most cases also in a
rectangular white support. This is a very important clue
because if we look at a sharp and a blurry code in the HSV
(hue, saturation, value) color system, their saturation val-
ues are very low in both cases. Although blur distorts the
intensity structure of the code, smearing black and white to-
gether still results in gray. In very blurry cases where only
little structure information is left, code localization may be
still possible by finding rectangles in the saturation channel
(see Figure 3). If both m1 and m2 are very low, our algo-
rithm switches to rectangle detection mode. Of course, this
works only with the mentioned rectangular white support
but it is the case with lots of consumer products. Further-
more, looking at the saturation of each pixel can be a fast
first test to reject non-barcode pixels in general. We also
augmented our edge/corner detector with a color conversion
module and we set all pixels with saturation above 0.25 to
zero in both m1 and m2 to remove background clutter.

4. EVALUATION
4.1 Implementation
We have developed our algorithm in Matlab and ported it to
C++ using the OpenCV framework. The native OpenCV
code can also be executed on iOS and Android with little
modifications. As speed is crucial in mobile barcode scan-
ning, we compare our method to three others (Gallo2011 [6],
Tekin2012 [12], Katona2013 [9]) that represent the state of
the art and allow real-time operation on smartphones. To
only compare the quality of the saliency maps of the different
algorithms, we apply Gallo’s method (described in Section
2) in each algorithm to generate a bounding box from the
saliency map except for Tekin2012 that already returns a
single scanline.

4.2 Test Environment
Mobile barcode scanner applications read video preview im-
ages with high frame rate rather than still images to speed
up the scanning. Recent smartphone cameras are able to

Figure 3: A very blurry 1D code results in low 1D saliency
(s1) and low 2D saliency (s2) but if wee look at areas with
saturation below 0.25, the code rectangle is clearly visible.

deliver preview frames in 720x960 resolution, so we focus on
this image size in all our tests.

We test the 1D performance on the Muenster BarcodeDB2

data set by Wachenfeld et al. [13]. We did not include their
localization approach in our comparison because they as-
sume the user already positioned the code to the center of
the image. The algorithms we test do not need to make this
assumption. The 1050 images were taken with a Nokia N95
phone with autofocus (AF). Additionally, we also recorded
200 blurry images with an iPhone5 with its AF turned off.

For tests with 2D codes we use the QR code dataset of Dub-
ská et al.3 which consists of about 400 images with perspec-
tive distortions, illumination variations, blur, and surround-
ing text. The images were taken by a mobile phone in (high-
resolution) photo mode. We also recorded 120 new images of
QR codes with an iPhone4S in video mode with and without
AF. The images contain codes in various scale, orientation
and blurriness. Our images are also publicly available4.

We hand-labeled the code corners in all images and stored
the bounding boxes as ground truth. We compared the accu-
racy of the four algorithms by measuring the overlap of their
output with the ground truth. We calculate the Jaccard co-
efficient J(A,B) = |A ∩ B|/|A ∪ B| as the overlap measure
where A is the of the ground truth bounding box and B is
the detected bounding box. A coefficient above 0.5 repre-
sents a visually good match when the returned bounding box
is bigger than the ground truth, but actually a smaller co-
efficient would also be acceptable as decoders can deal with
codes that cover one third of the search window. When the
returned bounding box is smaller than the ground truth we
accept only 5% loss. Because the algorithm of Tekin returns
a single scanline instead of a bounding box, we calculate its
Jaccard coefficient in one dimension along the code axis.

4.3 Experimental Results
4.3.1 1D Performance

In our first test we took 1000 original sharp images from the
Muenster dataset and looked at the average Jaccard coffe-
cient of the four algorithms (see Table 1). Our algorithm

2http://cvpr.uni-muenster.de/research/barcode/
3http://medusa.fit.vutbr.cz/pclines/?p=86
4http://people.inf.ethz.ch/soeroesg/

Figure 4: Successful 1D detection rates (J ≥ 0.5) on 1000
images from the Muenster data set with various degrees of
artificial Gaussian blur. The bottom row gives an impression
on the effect of the blur parameter sigma.

achieves an average overlap well above 50% while its stan-
dard deviation is also lower than that of Gallo2011.

In our second test we investigated the robustness of the algo-
rithm against Gaussian (defocus) blur. We added artificial
Gaussian blur to the original images with standard deviation
σ = 1, 2, 5, 7, 9, 11, 13 pixels. Our results are summarized in
Figure 4 and example images are listed in Figure 8. With
sharp images, our algorithm accurately detects 82.5% of the
barcodes out of 1000 images. False positives are mostly
caused by a very dominant sharp edge in the background
or selecting the wrong code among multiple ones (we always
labeled the one which is closest to the image center). False
negatives are caused by colorful codes and non-rectangular
codes. Our algorithm detected more blurry codes accurately
than others.

It is important to note that on sharp images we achieve
about the same detection rate as the other algorithms but
we make no assumptions about code size (like Katona2013)
nor code orientation (like Gallo2011) nor code position (like
Wachenfeld2010). Although Katona2013 [9] reports over
90% detection rate in simulations, the method performs
weakly in our tests. It almost always returns a bounding box
that is too big and contains text and other objects around
the code. Gallo2011 is fast and works well even with fairly
blurry codes, but often returns a too small bounding box
because a blurry code breaks into many parts. Its high de-
tection rate is thanks to the fact that most codes in the data
set are horizontal. Tekin2012 works with multiple orienta-
tions, however, on blurry images it tends to give too short
scanlines and returns many false positives.

In our third test we added artificial motion blur to the

Algorithm Gallo Tekin Katona Ours

Avg. J. coeff. J 70.89% 81.22% 19.94% 66.47%
Std. dev. 35.42% 25.62% 11.56% 27.77%

Table 1: Average Jaccard coefficients on 1000 sharp images.
We defined every J ≥ 0.5 a good match. (Recall that for
Tekin2012 J is calculated only in 1D therefore results in
better overlap).

Figure 5: Successful 1D detection rates (J ≥ 0.5) on 1000
images from the Muenster data set with various degrees of
artificial motion blur. The bottom row gives an impression
on the effect of the blur length.

1000 sharp images. We chose motion blurs with length
3, 5, 7, 9, 11, 13, 15 pixels in 135 ◦ direction to make sure we
destroy some of the bars. Figure 5 shows that algorithm is
more robust to motion blur than the others.

The detection rates on the images we recorded with real de-
focus and motion blur are 5.2% (Gallo2011), 0.0% (Tekin2012),
8.1% (Katona2013), and 29.8% (ours). Example images are
shown in Figure 9. Our method has difficulties with blurry
codes without a rectangular frame and sometimes sharp gray
stripes in the background are found more likely to be a bar-
code than the actual blurry one. We can still conclude that
our algorithm outperforms the previous 1D localization ap-
proaches in blur resistance while it is also scale and rotation
invariant and can detect 2D codes as well.

4.3.2 2D Performance
We tested the 2D performance of the algorithm on the QR
code dataset of Dubská et al. While their line detection algo-
rithm performs well on big sharp codes of the dataset, our
algorithm returns oversized bounding boxes also including
the surrounding text. However, on the motion blurred im-
ages of the dataset, the corner measure is more reliable than
line detection (see Figure 6). Due to our oversized bounding

Figure 6: Sharp text around the QR code misleads our algo-
rithm and it returns an oversized bounding box. In motion
blurred images the text disappears but the high corner den-
sity in the code area makes it still clearly distinguishable.
Input images are from Dubská et al.

boxes, we achieve an overall detection ratio of only 42.6%.

On our QR data set with real sharp, defocused and motion
blurred images (examples are shown in Figure 10) our algo-
rithm can reliably detect 81% of the codes. However, if a
code is rotated close to 45 ◦, our simple axis-aligned bound-
ing box detection tends to return a bounding box that is too
small.

4.3.3 Multi Code Performance
All described methods focus on localizing only one code in
the image but they all build a barcodeness map in an in-
termediate step. Therefore, they all could be extended to
localize multiple codes and provide a list of ranked candi-
dates. Figure 7 shows two examples with multiple 1D and
2D codes together with our barcodeness maps. If both code
types are present in the image the linear combination of m1

and m2 causes crosstalk in s1 and s2 which may lead to false
classifications. Note that the codes are still visible but the
code type might be uncertain. We leave the detailed analysis
of this question for future work.

4.4 Discussion
In our 1D tests we achieve similar sharp detection rates as
the others but without their limiting assumptions, while the
algorithm also detects close to 17% of the blurry codes. This
means in 17% of the cases a blurry decoder can already
start decoding the barcode even before the AF was triggered
which leads to better user experience.

The average runtime of our algorithm (on images of resolu-
tion 720x960) is 73ms that adds up as follows: HSV conver-
sion (19.90 ms); gradient calculation (9.19 ms); calculation
of Cij (14.32 ms); calculation of saliency (6.19 ms); box
filtering (7.51 ms); bounding box detection/rectangle detec-
tion (15.87 ms). The test PC has an Intel Core i7 M620
CPU with 2.67GHz clock frequency and the phone measure-
ments were taken on a Samsung Galaxy Nexus. We can
clearly see that the most time is spent on color space con-
version. Without the HSV information the algorithm still
finds sharp codes but it becomes more sensitive to clutter.
Thanks to the saturation information our algorithm returns
significantly less false positives than the others in our tests.
It is also important to note that current smartphone models
are also equipped with a graphical processing unit, and not

Figure 7: Multiple 1D and 2D codes in a sharp image (top
row) and in a blurry image (bottom row). Note that the
measures s1 and s2 clearly show the barcode areas in both
the sharp and blurry images.

Algorithm Gallo Tekin Katona Ours

Runtime PC 27ms 49ms 63ms 73ms
Runtime phone 85ms 26ms† 173ms 380/118ms‡

Table 2: Average runtime of the four algorithms on PC
(960x720 pixels) and on a smartphone (640x480 pixels).
† Tekin is optimized C++ code, the other algorithms are
written in OpenCV. Tekin is slower in our PC simulations
because of image format conversions. ‡CPU only / calcula-
tion of s1 and s2 on GPU and reading back to CPU

just color conversion but every step of our algorithm can be
implemented as OpenGL ES fragment shaders. We achieved
a speedup of factor 3.2 by calculating the barcodeness maps
on the mobile GPU.

Recall that for comparison we applied Gallo’s method to
generate a bounding box from the saliency map, a method
that assumes axis-aligned barcodes in the image. While also
rotated barcodes are well visible in our saliency maps, the
final bounding boxes are sometimes too small (J < 0.5). A
more sophisticated bounding box algorithm should signifi-
cantly improve our detection rates.

While our algorithm is fully orientation invariant, it is not
fully scale invariant. The size of the box filter is chosen to
connect barcode areas of a fairly wide scale range, but it
would not work with tiny codes (would include clutter) or
huge codes (would break apart).

The resolution of current generation smartphone cameras is
already high enough for decoding multiple codes that are
cut out from the original image. The true advantage of
scanning multiple small codes, however, will be unleashed
with the upcoming smart glasses. Scanning multiple codes
on a shelf may soon become possible without the need for
holding the products close to the camera. Scanning several
symbologies at the same time is important for enterprise
applications. It is an interesting research question how to
design a wearable user interface for barcode selection when
multiple code candidates are available.

5. CONCLUSION AND FUTURE WORK
We have presented a combined 1D and 2D barcode localiza-
tion algorithm that addresses orientation, scale, and sym-
bology invariance and is also more robust to blur than pre-
vious methods. We compared the speed and accuracy of
our approach to three recent localization algorithms on pub-
licly available datasets and achieved higher detection ratio
even with defocused images where previous methods per-
form weakly. Taking our algorithm as a preprocessing step,
blurry barcode scanning can be extended to full-resolution
images in the future. We are currently working on extending
the bounding box detection to multiple codes in an image.

6. REFERENCES
[1] R. Adelmann. Mobile phone based interaction with

everyday products - on the go. In Proceedings of
International Conference on Next Generation Mobile
Applications, Services and Technologies, NGMAST’07.

[2] J. Alfthan. Robust detection of two-dimensional
barcodes in blurry images. Master’s thesis, KTH
Stockholm, Sweden, 2008.

[3] S. Ando. Image field categorization and edge/corner
detection from gradient covariance. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 22(2):179–190, Feb. 2000.

[4] S. Ando and H. Hontani. Automatic visual searching
and reading of barcodes in 3-d scene. In Proc. IEEE
International Vehicle Electronics Conference,
IVEC’01, pages 49–54, 2001.

[5] M. Dubská, A. Herout, and J. Havel. Real-time precise
detection of regular grids and matrix codes. Journal of
Real-Time Image Processing, pages 1–8, 2013.

[6] O. Gallo and R. Manduchi. Reading 1D barcodes with
mobile phones using deformable templates. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 33(9):1834–1843, 2011.

[7] D. Han, J. Teng, Z. Yang, Y. Pang, and M. Wang. 2D
barcode image binarization based on wavelet analysis
and Otsu’s method. In Proc. International Conference
on Computer Application and System Modeling,
volume 5 of ICCASM’10, pages V5–30–V5–33, 2010.

[8] C. Harris and M. Stephens. A combined corner and
edge detector. In Proc. Fourth Alvey Vision
Conference, pages 147–151, 1988.

[9] M. Katona and L. G. Nyúl. Efficient 1d and 2d
barcode detection using mathematical morphology. In
Proc. International Symposium on Mathematical
Morphology and Its Applications to Signal and Image
Processing, ISMM’13, pages 464–475, 2013.

[10] H. W. Kongqiao Wang, Yanming Zou. 1D barcode
reading on camera phones. International Journal of
Image and Graphics, 7(3):529–550, 2007.

[11] A. Kutiyanawala, X. Qi, and J. Tian. A simple and
efficient approach to barcode localization. In Proc.
International Conference on Information,
Communications and Signal Processing, 2009,
ICICS’09, pages 1–5, 2009.

[12] E. Tekin and J. Coughlan. BLaDE: Barcode
localization and decoding engine. Technical Report
2012-RERC.01, The Smith-Kettlewell Eye Research
Institute, December 2012.

[13] S. Wachenfeld, S. Terlunen, and X. Jiang. Mobile
multimedia processing. chapter Robust 1D barcode
recognition on camera phones and mobile product
information display, pages 53–69. Springer-Verlag,
Berlin, Heidelberg, 2010.

[14] M. Wang, L.-N. Li, and Z.-X. Yang. Gabor
filtering-based scale and rotation invariance feature for
2D barcode region detection. In Proc. International
Conference on Computer Application and System
Modeling, volume 5 of ICCASM’10, pages 34–37, 2010.

[15] W. Xu and S. McCloskey. 2D Barcode localization and
motion deblurring using a flutter shutter camera. In
Proc. IEEE Workshop on Applications of Computer
Vision, WACV’11, pages 159–165, 2011.

[16] S. Yahyanejad and J. Ström. Removing motion blur
from barcode images. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
CVPRW’10, pages 41–46, 2010.

APPENDIX
A. EDGE AND CORNER MEASURES
To make our paper self-contained we present here the deriva-
tion of the applied edge and corner measures. We combine
the derivations of Harris [8] and Ando [3] who both defined
edge and corner measures based on the structure matrix M :

M =

[
< I2x > < IxIy >

< IxIy > < I2y >

]
=

[
Cxx Cxy

Cxy Cyy

]
where Ix and Iy are the image derivatives in x and y direc-
tion. The entries Cij are calculated over theD neighborhood
of the pixel with a window function w:

Ci,j =
∑

(x,y)∈D

w(x, y)Ii(x, y)Ij(x, y)

The window function is usually either a box window or a
Gaussian window. The λ eigenvalues of this matrix are the
solutions of the quadratic equation∣∣∣∣Cxx − λ Cxy

Cxy Cyy − λ

∣∣∣∣ = (Cxx − λ)(Cyy − λ)− C2
xy =

= λ2 − (Cxx + Cyy)λ+ CxxCyy − C2
xy = 0.

Using Vieta’s formulas, the two solutions λ1 and λ2 satisfy

λ1 + λ2 = Cxx + Cyy > 0, λ1λ2 = CxxCyy − C2
xy > 0

The discriminant of the quadratic equation is always non-
negative:

(Cxx +Cyy)2−4(CxxCyy−C2
xy) = (Cxx−Cyy)2 +4C2

xy ≥ 0.

This means that both λ1 and λ2 are real and non-negative.
Actually, the two eigenvalues are the variances of the two
principal components of the (Ix,Iy) distribution. By taking
the ratio of their multiplicative average to their additive
average, one can define the homogeneity measure m2:

m2 =
(√

λ1λ2

(λ1 + λ2)/2

)2
=

4(CxxCyy − C2
xy)

(Cxx + Cyy)2

Since if λ1, λ2 > 0 we have

0 ≤
√
λ1λ2 ≤ (λ1 + λ2)/2,

the measure m2 is dimensionless and is normalized such that
0 ≤ m2 ≤ 1. Let us define a complementary measure m1 as

m1 = 1−m2 =
(Cxx − Cyy)2 + 4C2

xy

(Cxx + Cyy)2

which is also dimensionless and is normalized such that 0 ≤
m1 ≤ 1. To avoid division by zero in flat image regions, we
add a small number ε to the denominators. Ando proves
the following properties: (1) m1 reaches 1 where the image
intensity varies one-dimensionally (edges and ridges); (2) m2

reaches 1 where the image intensity changes with circular
symmetry or with rotational periodicity with a period π/2
(checkerboard corners). For more details please refer to [8]
and [3].

Figure 8: Positive and negative examples from the Muenster dataset. A green rectangle indicates positive detection (J ≥ 0.5),
a red rectangle indicates false detection (J < 0.5), blue rectangles represent the hand-clicked ground truth. Bottom row: The
failures are caused by (1) parallel lines in the background, (2) glare, (3) dominant text, (4) object lines (5), colored code.
(The runtimes given in the images also include loading files and opening windows)

Figure 9: Positive and negative examples from our no-AF dataset. Left: Our algorithm can localize blurry codes with
rectangular white support. Right: difficult cases with all-gray background and sharp background (no codes found).

Figure 10: Positive and negative examples from our QR code dataset. Note that the misalignment on the right is caused by
the simple axis-aligned bounding box detection step. The code area would be still clearly distinguishable in the s2 map.

