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Figure 1: Left three: Scanning visual codes with handheld and wearable devices is becoming ubiquitous. Right four: When the camera or the scanned object
move even slightly during scanning, the captured visual codes become distorted by motion blur and conventional decoder algorithms cannot decode them. We
propose a fast blur removal algorithm that allows scanning motion-blurred QR codes.

ABSTRACT

We present a fast restoration-recognition algorithm for scan-
ning motion-blurred QR codes on handheld and wearable de-
vices. We blindly estimate the blur from the salient edges of
the code in an iterative optimization scheme, alternating be-
tween image sharpening, blur estimation, and decoding. The
restored image is constrained to exploit the properties of QR
codes which ensures fast convergence. The checksum of the
code allows early termination when the code is first readable
and precludes false positive detections. General blur removal
algorithms perform poorly in restoring visual codes and are
slow even on high-performance PCs. The proposed algo-
rithm achieves good reconstruction quality on QR codes and
outperforms existing methods in terms of speed. We present
PC and Android implementations of a complete QR scanner
and evaluate the algorithm on synthetic and real test images.
Our work indicates a promising step towards enterprise-grade
scan performance with wearable devices.
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INTRODUCTION

Visual codes printed on physical objects of all kinds play an
important role in many consumer and research scenarios that
aim to embed digital information in the real world. Quick re-
sponse (QR) codes are particularly popular and are found in
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numerous applications, such as scanning codes for shopping
or product comparison, checking electronic tickets, deliver-
ing parcels, and are found in magazines, on postcards and
other adverts (see Figure 1, left). Finally, QR codes are also
becoming ubiquitous in enterprise asset tracking and provide
employees access to detailed object records.

On most current mobile platforms such as smartglasses and
smartwatches, QR code scanners are available for free. Cur-
rent scanning solutions work well only if the camera is held
still and relatively close to the scanned object (Figure 1, 2"¢
left). However, with wearable cameras, slight motions dur-
ing scanning are almost unavoidable and motion can easily
render the captured codes unreadable (Figure 1, right).

Under motion blur, conventional decoder algorithms fail to
recognize even slightly unsharp codes which greatly dete-
riorates user experience and utility. Scanning out-of-focus
or very small codes is another challenge that camera-based
wearable scanners must overcome in order to become com-
petitive with commercial-grade laser scanners. The common
aspect in these related image degradations is an underlying
mathematical blur model that, when carefully inverted, allows
for removing blur from the images. We present and algorithm
that can robustly decode QR codes degraded by synthetic or
real motion blur. Furthermore, we show promising results
with synthetic defocus blur and upscaling blur.

Problem statement and contributions

The problem of removing blur from photographs has been
widely studied in the past but existing algorithms typically
fail on artificial black and white visual tags because they look
very different from natural images. We illustrate this in Fig-
ure 5 where we compare our QR restoration approach with
other deblurring methods from the literature. Intuitively, text
deblurring appears to be a similar problem to ours. However,
text deblurring methods expect a few thin black lines on dom-
inant white background. Visual codes, in contrast, usually
have an equal distribution of dark and light areas. Further-
more, the existing restoration algorithms are computationally



too demanding to be carried out on mobile devices — even if
they make strong assumptions about the image type. We are
not aware of any published method that achieves anywhere
near real time blur removal performance (even on PCs). How-
ever, the special structure of visual codes compared to general
photographs allows for optimizations in terms of restoration
speed and, to a lesser extent, quality. We can exploit two
important differences between restoring general photographs
and restoring QR codes. First, QR codes do not need to look
perfectly for decoding. Second, the checksum! in the codes
allows for early termination while it also eliminates false pos-
itive detections.

Our main contribution is a new practical blur removal algo-
rithm specifically tailored for decoding motion-blurred QR
codes on CPU- and memory-constrained wearable comput-
ers. We improve general purpose deblurring methods from
the literature by adapting each step to the specific proper-
ties of QR codes that ensures fast convergence to the cor-
rect solution. We also propose and empirically evaluate
a new initialization scheme that greatly improves conver-
gence and the quality of the results in removing large motion
blur. We present fast PC and Android implementations and
show in thorough experiments that our iterative restoration-
recognition algorithm can quickly decode QR code images
degraded by synthetic or real motion blur. From the compar-
ison with the state of the art we conclude that our restoration
quality is on par with existing methods while the restoration
speed is about a magnitude faster.

RELATED WORK

Removing motion blur from an image is a mathematically
challenging inverse problem. A common assumption [2, 3, 6,
10, 11, 15, 13, 19] is uniform (shift-invariant) blur over the
image which simplifies the mathematical models and allows
for faster restoration algorithms. The uniform blur process
can be described as a convolution of the sharp image with
a blur kernel hence blur removal is also termed deconvolu-
tion. Non-blind deconvolution refers to deconvolution with a
known kernel. In contrast, in blurry QR scanning the kernel
needs to be estimated first, this is called blind deconvolution.

Existing blind deconvolution algorithms usually follow a
common pattern of Bayesian energy minimization. The un-
known latent sharp image and blur kernel are estimated suc-
cessively in a multi-scale iterative optimization scheme. Usu-
ally, natural image statistics (given distribution of image gra-
dients) are applied as additional constraints on the restored
image [6, 7]. The blur kernel can be estimated for instance
from edge profiles [5, 3, 4, 17], from external sensors [12],
or using special camera hardware [21]. In this paper, we tar-
get unmodified wearable devices, so our attention is on the
family of edge-based methods, and only the fastest of those.
These algorithms in a first step try to hallucinate sharp edges,
and in a second step find the blur kernel that causes the ob-
served blurry edges. The two steps are alternated in an itera-
tive optimization, often also across multiple scales to aid the
convergence.

"We refer to the QR error detection and correction capability.

Deblurring natural images

Cho and Lee [3] presented the first fast algorithm for mo-
tion deblurring. The main idea is that for image reconstruc-
tion a low-quality but fast step is sufficient if the errors are
suppressed and edges are boosted by edge-aware image fil-
ters. They achieve quality comparable to previous attempts
within a few seconds, up to two magnitudes faster than oth-
ers. Xu and Jia [19] analyzed which edges are actually useful
for kernel estimation and showed that structures smaller than
the kernel size (like thin lines of a barcode or modules of a
QR code) may mislead the optimization. They proposed a fil-
tering approach that selects strong edges in the image. Other
methods like [4] and [5] recover the blur kernel by explic-
itly inspecting how sharp edges of the scene get blurred and
reconstruct the kernel from its cross-sections. In [20] the au-
thors exchange the parametric edge enhancement filters of [3]
with a new regularization term that approximates the Ly norm
of the gradients. With this new energy formulation, the algo-
rithm no longer relies on ad-hoc edge selection and filtering
methods which means no parameter tuning is required. [13]
revisits an older method called total variation deconvolution,
and analyzes in details why — although it is simpler than nat-
ural image priors — can still find the correct sharp solution.

Overall, the general photograph deblurring algorithms today
have high computational requirements and are tuned for nat-
ural scenes. They often fail on artificial image content such
as visual codes because of the different appearance.

Deblurring text and visual codes

Previous work also addressed defocus and motion blur re-
moval from text and barcode images. While the shape of a
defocus kernel is given by the lens characteristics and can
be measured accurately, a motion blur kernel can have very
different shapes depending on the object or camera motion,
hence compensating the latter is significantly more difficult.

Compensating defocus blur in 1D barcodes can be considered
solved and fast algorithms exist in commercial barcode scan-
ner applications?. Liu et al. [8] extended a standard deconvo-
lution method with a bi-level image histogram constraint for
quickly removing defocus blur from 2D DataMatrix codes,
but this method would not work with motion blur.

Compensating motion blur in 1D barcodes is addressed in
Yahyanejad et al. [22]. They reduce the problem to 1D by
averaging over several lines of the barcode, which renders
the method inapplicable for 2D QR codes. Xu and Mc-
Closkey [21] presented a motion deblurring method using a
camera with a fluttered shutter, a hardware modification that
makes the blur easier to invert. We target off-the-shelf wear-
able devices without such modifications. Gennip et al. [17]
presented an algorithm for blind deblurring of QR codes by
explicitly making use of the known finder patterns to estimate
the kernel. The algorithm is evaluated only with synthetic
blurs, and with the assumption that the location of the blurry
finder pattern is known, which might be difficult to determine
in real images.

2e.g., RedLaser www.redlaser.com, Scandit www.scandit .com
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Our QR restoration algorithm is closely related to recent re-
search on blind text deblurring. The method of Cho et al. [2]
can successfully remove motion blur from text images that
have a lot in common with visual tags, but the algorithm relies
on precise text segmentation and is too slow for our purposes.
The text deblurring method of Chen et al. [1] is specifically
developed for binary text images and is unlikely to work well
with cluttered images. The algorithm of Pan et al. [10] ap-
plies Ly-minimization not only to image gradients (see [20]
for natural images) but also to the pixel values which means
the algorithm enforces the image to have a few black pixels
among many white pixels, which is typical for documents.
Our experiments have shown that this method only works for
QR codes if its parameters are carefully tuned. Furthermore,
the algorithm is too slow for mobile applications.

FAST QR DEBLURRING

Instead of high-quality deblurring, we rather focus on high-
speed decoding. We contribute an algorithm that is particu-
larly suitable for fast restoration of a single QR image.

Properties of QR deblurring

In addition to the findings made in the general blind deconvo-
lution techniques, we can make the following observations.
(i) QR codes contain many black and white corners that are
easy to localize even in a blurred image. (ii) QR codes in-
clude a checksum, so the algorithm can terminate when the
checksum is correct. False positives are hence practically im-
possible. (iii) QR codes contain strong error correction, so
even partially restored codes may be decoded. This is espe-
cially important when the blur is slightly non-uniform in the
code area. (iv) QR codes consist of sharp edges, which is ad-
vantageous for blur estimation, but disadvantageous for blur
removal. (v) QR codes also contain small structures that may
mislead the blur estimation process [19] and therefore their
influence needs to be suppressed.

Method overview

We apply the uniform blur model which describes the blurred
image B as a convolution of a latent sharp image [ and a blur
kernel k, with additive Gaussian noise NV:

B=kxI+N (D

Uniform blur is a valid assumption if the blur is caused mainly
by translational motion. Cropping the image to a small search
region in practice reduces blur to mostly this kind.
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Figure 2: Method overview

The algorithm consists of four main components that work in
a tightly coupled restoration-recognition loop (see Figure 2).
In the first step, we run a standard decoder algorithm; if
an image is sharp enough for decoding, the loop terminates.
Otherwise, the contrast is increased in the second step and
edge-aware filtering is applied. This removes noise from the

image, flattens small structures while it keeps strong edges.
Next, the blur kernel estimation step finds the most likely ker-
nel which transforms the sharpened image into the blurry one.
In the fourth step the blurry image is deconvolved with the
currently estimated kernel to get a sharper image estimate,
which again enters the decoder. The process is iterated up
to five times to attain improved kernel estimates and sharper
image estimates. Performing the loop over multiple image
scales ensures fast convergence to the correct solution.

Similar to other blur removal techniques, we formulate the
QR deblurring problem as an energy minimization scheme
over I and k and iteratively optimize for one while keep-
ing the other constant. The total energy function to be mini-
mized consists of a data fitting term and regularization terms
pr(I) on the image and px (k) on the kernel with regulariza-
tion weights A and -y, respectively. For the data fitting term,
the Lo norm is commonly used, and different blind decon-
volution methods apply different regularization terms. The
common form of the energy function is

argmin [|B —k +I|l3 + Apr (1) +pe(k) - )

Our goal is to find a good compromise between restoration
quality and restoration speed, also taking into account the
typical black and white structure of QR codes. We chose a
sparsity prior on the image gradients VI; and an Lo sparsity
prior on the kernel values k;:

pr(1) = _IVL®  pr(k) = K= "k ()
Vi vy

In our notation, ¢ and j index image pixels and kernel pixels,
respectively. The optimization of the total energy function
can be separated into /- and k-subproblems that are presented
in the following sections.

Fast image estimation

Assuming a current estimated kernel & is known, we apply
the fast non-blind deconvolution method of Krishnan [6] that
in general enforces a sparse hyper-Laplacian distribution on
the gradients of the sharp image. With the exponent o = 1,
the enforced Laplacian distribution of the gradients in turn
corresponds to a total variation regularization of the image /.
This is well suited for QR-codes as it favors flat image regions
while it also allows sharp edges.

argmin ||B — k x I||3 + \||VI||® )
I

For oo = 1, the solution is particularly simple and fast, relying
only on FFTs and thresholding operations [6].

To reduce boundary artifacts in the FFT-based restoration,
we wrap the image boundaries using the method of Liu and
Jia [9] prior to deconvolution. This wrapping method is suit-
able for not only symmetric but general kernels, is reasonably
fast, and can be used in any FFT-based restoration method.

Fast edge-aware filtering

Due to an imperfect kernel, the fast deconvolution produces
unwanted ringing artifacts and noise that need to be sup-
pressed while the main structure of the image must be kept



unchanged before kernel estimation. At this stage other de-
blurring methods usually apply a combination of bilateral
and shock filters [3] which require parameter tuning, or Lg-
smoothing [20, 10] which is slower. We propose to use the
joint weighted median filter (WMF) [23] to remove small
variations in the structure. This new filter produces an output
similar to other edge-aware smoothing filters but is signifi-
cantly faster. The filter radius is set 1/5 proportional with the
current kernel size. The blurry B and the sharpened I image
pair is passed to the next stage for blur kernel estimation.

Fast kernel estimation

Given an image estimate I, we solve for the kernel k in the
gradient space using the efficient method of Cho and Lee [3].
The energy function to be minimized here is

argmin ||VB — k * VI||3 4 ||| |3 4)
k

which can be solved with the conjugate gradient method [3]
in the Fourier domain where convolution turns into multipli-
cation. The Ly-norm on k favors sparse solutions which is
desirable because a motion blur kernel consists of a thin con-
tinuous motion path. Working with image gradients instead
of image intensities is crucial here because it allows to ignore
boundary artifacts which drastically reduces the number of
FFTs required [3].

Next, potentially disconnected small components in the ker-
nel are discarded and the kernel is shifted to its geometri-
cal center. Other methods usually shift the kernel to its mass
center but that might clip long thin tails at the boundaries. Fi-
nally, the kernel is normalized so that the convolution does
not reduce or increase the energy of the image.

Decoding in a restoration-recognition loop

After each iteration, we let a common QR detector and de-
coder algorithm process the image. The error correction in
QR codes practically disables false decoding while it can
guarantee that the algorithm converged to the right solution.

We perform our calculations over multiple image scales, start-
ing with a kernel size of 5 X 5 up to 33 x 33 pixels. The image
pyramid is built with scale factor 1/1/2. On each scale level
the algorithm performs up to 5 iterations. Between scale lev-
els, the kernel is bilinearly upscaled. Figure 3 illustrates how
the kernel gets refined over the iterations.

Once the QR code is recognized, depending on its content a
URL is opened or the contact details are shown to the user.

Initialization

One of our main contributions is a grid-shaped starting ker-
nel. Other methods usually initialize the kernel either with a
Dirac delta function (identity blur) or with a small 2D Gaus-
sian (small defocus blur). In contrast, we initialize the ker-
nel with a grid of Dirac functions (see Figure 3) which cor-
responds to multiple shifted copies of the sharp image after
convolution. The proposed kernel has, to our knowledge, not
been reported in the literature but makes an important differ-
ence, in particular for heavily blurred images. While the delta
kernel works well in simulations, we found in experiments

7. decoded 8.

Figure 3: Illustration of image and kernel refinement over 8 iterations using
a grid of peaks as starting kernel. The example also illustrates how discon-
nected kernel noise gets removed during the process. The image is 300 x 300,
the kernel is 33 x 33 pixels, the decoding took 3.107 seconds. The blurry
image was taken with a smartphone.

with real smartphone images that using a grid as initial kernel
greatly improves the robustness of the algorithm. We provide
an analysis on the impact of the new kernel in the evaluation
section. However, this gain in deblurring performance comes
at a small cost as in general the grid kernel converges slower
than the delta kernel. Fortunately, one could overcome this
tradeoff by reading the inertial sensors during image capture
and thus selecting the right initial kernel based on a first esti-
mate of the blur size. Due to constraints of the Android API,
we have left this for future work.

Implementation

We have implemented the algorithm on both PC and An-
droid using the open-source OpenCV, FFTW, and ZBar li-
braries®. We have found the constants A = 0.002, v =2, and
WMF standard deviation 55 to work well in all our experi-
ments. The algorithm requires no further parameter tuning.
Our scanner is built as a standard native Android application
which makes it portable to any Android device.

Our linear blur model does not take into account the
manufacturer-dependent non-linear image enhancements and
other effects in the camera that may cause significant im-
pact on the performance of blur removal algorithms [16]. It
is therefore vital that we set the tone map curve to linear*
and switch off the automatic image enhancement functions in
our camera. In our experiments, this is possible through the
Android Camera2 API. This fine camera control is available
since Android 5.0 if the camera driver also supports it. This
fact, unfortunately, limits our live tests to high-end smart-
phones, however, we expect that with rapid technological ad-
vancement the smartphones’ capabilities will soon be avail-
able in smartwatches and smartglasses as well. Until that,
the smartglasses implementation can be tested using synthetic
images, which is sufficient for speed and memory analysis.
The graphical user interface of our smartphone application
is also shown in Figure 8, and the smartglasses interface is
shown in the accompanying video.

EVALUATION
We evaluate the effectiveness of our algorithm on a series
of QR code images contaminated by synthetic and real blur,

Swww . opencv.org, www. £ftw.org, www.github.com/ZBar
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and also compare our algorithm with the state of the art. For
convenience, the comparisons were performed on a notebook
with a 2.40 GHz Core i7-4700MQ CPU. Our algorithm cur-
rently uses a single thread only. The input images with syn-
thetic blur were created in Matlab, the input images with real
blur were captured with a Google Nexus 6 smartphone. We
also show qualitative results of our algorithm running directly
on the smartphone and on smartglasses.

Removing synthetic motion blur

In the first experiment, we test whether the algorithm can re-
move synthetic uniform blur, i.e., blur that our mathematical
model assumes. Figure 4 illustrates the experiment. For re-
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Figure 4: Removing synthetic uniform blurs. Top: input images and ground
truth kernels. Bottom: output images and kernel estimates when first de-
coded. Kernel size indicates the scale level.

peatability, we use 6 out of the 8 benchmark kernels from
Levin et al. [7]. We leave out 2 kernels that are so small
that we can decode the images without deblurring. The in-
put images are of resolution 200 x 200, the kernels are be-
tween 17 x 17 and 27 x 27 pixels. In this experiment, we use
small images because the benchmark kernels are rather small.
To simulate imperfections of real images, we also add small
0.1% noise to the blurred images. The top row of Figure 4
shows the input images and in the insets the ground-truth blur
kernels that were used to create the input images. The bot-
tom row shows each intermediate image and the current esti-
mate of the kernel when the code first could be decoded. The
output images and kernels are upscaled for visualization us-
ing nearest neighbor interpolation. The form of our estimated
kernels resembles that of the ground truth kernels. On the PC,
it takes about 0.450 s to restore the first five images while the
last one takes 1.6 s because iterations on two more scales are
required due to larger blur.

We repeated the experiment after adding large 1% image
noise. The algorithm can successfully decode all blurry and
noisy examples with the expense of a longer average runtime
of 0.657 s. The images can be found in the supplement.

We conclude that our algorithm is able to quickly restore
blurry codes that follow our mathematical model, however,
the restoration speed depends on both the image size and blur
size. The main bottleneck of real-time operation is the num-
ber of single-threaded FFTs but we expect a speedup with a
parallel implementation.

Comparison of blind deblurring methods
For practical applications, the restoration speed is crucial. In
this experiment, we compare our algorithm with the state of

the art in terms of runtime and readability of the resulting im-
ages. All selected methods are available open source or as ex-
ecutables. Methods (B)-(G) were developed for general blind
deconvolution problems while method (H) is specifically for
text image deblurring. A short summary of each method can
be found in the Related work section. Figure 5 summarizes
our findings.
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binary - C++/GPU C++/GPU Matlab C++/GPU
runtime - 0.481s 0.955s 217.730s 1.049s
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Figure 5: Comparison of blind deconvolution algorithms on a syntheti-
cally blurred QR code. (A) Input frame (B) Cho2009 [3] (C) Xu2010 [19]
(D) Sun2013 [15] (E) Xu2013 [20] (F) Pan2013 [11] (G) Perrone2014 [13]
(H) Pan2014 [10] original Matlab implementation and in brackets our C++
port (I) Ours, in brackets the time of first decoding (J) Ground truth

Method (B) [3] was the first fast algorithm for natural image
deblurring, but the applied gradient statistics make it fail on
artificial black and white content. Also, this method is sensi-
tive to initialization parameters. Method (C) [19] selects good
edges for kernel estimation and reconstructs the sharp edges
but the result exhibits significant ringing artifacts that make
the code unreadable. Method (D) [15] decomposes the image
into a dictionary of sharp edge and corner patches to aid the
kernel estimation. The method is very slow, and although the
patch prior was expected to fit well with the structure of QR
codes, the result is surprisingly unreadable. Method (E) [20]
is fast and can successfully restore the code. However, to get
good results, we had to supply an estimate for kernel size al-
most double of the true kernel size which is rather inefficient
in terms of calculation overhead.

Method (F) [11] also implements an edge selection strategy,
but the decoding failed. Method (G) [13] uses TV regular-
ization like we do. It can successfully restore the code but
is very slow. Method (H) is especially interesting as text im-
ages share similar properties with visual codes. We tested
the authors’ Matlab implementation and we also ported the
algorithm to C++ to make it faster (we achieved about 30%
speedup, not using the GPU at all). The result of both ver-
sions is almost perfect. The runtime was 12.736 s in Matlab
and 9.691 s in our C++ implementation. The critical bottle-
neck is the L restoration step. Also, the algorithm requires
tuning many parameters, we found that QR codes need dif-
ferent regularization weights than text.



Our method (I) almost perfectly reconstructed the code (c.f.
ground truth (J)). Further advantages of the proposed method
over the reconstruction quality are its low memory footprint
and high speed. Our method is almost as fast as (E), and it
is important to note that (E) performs the FFT calculations
on the GPU while we use one CPU core only. Also note that
Matlab performs parallel processing in several built-in func-
tions, so an exact runtime comparison is difficult.

Removing real motion blur

Next, we test the algorithm on codes contaminated by real
motion blur. We capture a sequence of images with a smart-
phone while holding a QR code in front of the camera and
deliberately shaking either the code or the smartphone. We
used the same QR code with error correction level M in all
our experiments. We capture camera preview frames because
barcode scanner applications usually work with those instead
of still images. We set the frame size to 720 x 480 pixels. We
tested 340 images in total, out of this 217 frames were de-
coded without deblurring (63.8%), 83 frames were decoded
after deblurring (24.4%), and only 40 frames were unsuccess-
ful (11.8%), so our algorithm significantly increased the num-
ber of codes that could be scanned. Figure 6 shows examples
of the restored codes. The decoding of these blurry examples
took on average 1.4 s on the PC, but the number of iterations
and so the speed depends on the size of the blur.
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Figure 6: Removing real motion blur from QR code images. The decoded
content (ISWC2015 URL) is written in the top of the images.

Impact of initial kernel choice

As discussed before, one of our main contributions is the pro-
posed initialization scheme. In experiments with real data we
have experienced that in case of heavy blur and when initial-
ized with the Dirac kernel, the algorithm often did not con-
verge to the right solution. In her seminal work, Levin [7] an-
alyzed why blind deconvolution algorithms may converge to
a blurry solution, however, the problem is different here, be-
cause we observed sharp but unreadable output images. We
then introduced a new grid-shaped starting kernel that with
large blurs works better than the Dirac kernel. In Figure 8
and in the supplemental material we show several example
results of our experiments that verify our claims. We assume
the better performance of the grid kernel is in connection with
the regular structure of the underlying sharp QR code, but a
rigorous analysis of this finding has not been done yet and a
thorough explanation is left for future work.

Experiments on smartphones and smartglasses

After successful offline experiments with real motion-blurred
images, we ported our algorithm to Android for live experi-
ments. Figure 8 illustrates a concrete example with a large

QR code and challenging blur restored directly on the Nexus
6 smartphone (Qualcomm Snapdragon 805 SoC with 2.7 GHz
Krait 450 CPU and 3 GB RAM). The Android GUI consists
of the camera preview and three image views for the input,
output, and kernel images, respectively. The camera resolu-
tion is set to 720 x 480, and we added a 300 x 300 search
window on top of the preview and constrain the algorithm to
this area. Additionally, there are buttons to capture an image
and start the deblurring, and a textbox for logging output. The
challenging image is decoded in about 13 s.

We also implemented the algorithm on more constrained
Google Glass smartglasses (TI OMAP 4430 SoC with
1.2 GHz CPU and 2 GB RAM). As the tonemap curve cannot
be controlled, the recorded images on the Glass do not fol-
low our linear blur model. Due to this limitation of the cam-
era driver, we can report the performance on the Glass only
using synthetically blurred images. Deblurring a 300 x 300
image on the Glass takes 8.54 s (using a single CPU core),
which is about 2.5 slower than deblurring the same image
on the smartphone. The Android debugger reports the use of
34.9 MB of memory during deblurring, which we find accept-
able on a wearable device. More experiments can be found in
the supplementary video.

DISCUSSION

Target devices

As shown in the experiments, the algorithm requires a fast
processor, moderate amount of memory (less than 40 MB
without strict optimizations), and a camera with a suitable
driver that allows manual control. As usually more complex
applications are built on top of barcode scanning, the high
CPU requirements restrict the applicability of our approach
to high-end wearable devices. Slower wearable devices (e.g.,
a smartwatch or a life logger camera) could send the captured
image to the user’s smartphone which we believe is the most
powerful wearable device nowadays. A cross-device barcode
scanning solution (i.e., smartwatch camera, smartphone pro-
cessor, smartglasses display) should be further explored in
future research. However, distributing the computation on
many individual devices would produce too much commu-
nication overhead. In the future, the algorithm could greatly
benefit from embedded processors with fast floating point cal-
culations and/or DSP support with hardware FFT features.

Camera resolution and code size

An important setting of the algorithm is the image size. We
chose a 300 x 300 search window with the common 720 x 480
preview resolution. This corresponds to a convenient 15cm
scanning distance for a 5 X 5cm code, a typical QR shop-
ping scenario with the smartphone. The Glass camera has a
wider field of view, so with the same resolution and search
window, the code must be placed closer to the camera. In or-
der to match the search window with a smaller code that the
user holds further away, the camera resolution needs to be in-
creased. Doubling the camera resolution means the code is
visible from twice the distance, but then a twice higher reso-
lution blur kernel ir required to represent the same shake blur.
For example with preview resolution 1280 x 960 on the Glass,
the 300 x 300 search window fits a 5 X 5cm code in 35cm



distance. As only the search window is processed, the actual
camera resolution makes no difference in the image estima-
tion, but the higher resolution makes a big difference in the
blur kernel estimation.

Speed optimizations

The runtime of the algorithm depends on several factors. Fig-
ure 7 illustrates the time spent on image estimation and ker-
nel estimation on different scales when the early detection is
switched off. The complexity of image estimation grows ex-
ponentially with the image size, and the complexity of blur
estimation grows exponentially with the blur kernel resolu-
tion. The complexity of FFT is known, the complexity of
conjugate gradients can be estimated, but the number of it-
erations and scales until decoding depends on the actual blur
shape. As the total time per scale grows exponentially, the
importance of a fixed search window and early QR detection
is indisputable.

Processing time per scale level (PC)
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Il image estimation
[ IKernel estimation

Time [s]
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Figure 7: Time spent on image and kernel estimation on different scales (PC).
In this example, the algorithm with QR detection would terminate success-
fully after 3 scales.

The runtime of the algorithm could be further reduced. We
provided speed measurements of our single-threaded imple-
mentation, but as the algorithm contains a large number of
FFTs, it could be greatly accelerated with parallel process-
ing on multiple cores or even mobile GPUs or DSPs. Further
speedup in wearable scanners could be achieved with inertial
sensors that can aid the kernel estimation. The sensor stream
captured together with the camera stream allows for recon-
structing the camera motion during the exposure time which
in turn relates to the (non-uniform) blur in an image. How-
ever, the lack of precise synchronization of the camera and the
sensors on current wearable platforms is prohibitive without
hardware modifications.

During scanning, we have access to multiple images of the
QR code which could be exploited in multi-frame deblurring
algorithms. However, those require precise image alignment
which is difficult under arbitrary blur. In some cases, the cam-
era might capture another sharp image during processing, so
it might be advantageous to run a cheap decoder in parallel
with deblurring. In this paper, we focused on scenarios when
only a single blurry image of the code is available, typical in
low lighting conditions, or when the code is moving.

Limitations

Our algorithm can estimate and remove uniform blur only,
therefore it fails in case of significant rotational motion or
strong rolling shutter distortions in the image (see video sup-
plement). Blind non-uniform deblurring is computationally
too demanding [18] to perform on current generation mobile
devices. However, the uniform blur assumption is usually
valid in the search window of our user interface.

We assume QR-specific gradient statistics in the whole
restoration window which is violated if the code is placed in
front of a complex background. To succeed, either the back-
ground must be a plain color, or the code must be segmented
in a preprocessing step, for which algorithms do exist [14].

Future Work

So far, we have focused on decoding motion-blurred codes
only, but the QR properties remain the same under other types
for blur as well. In our future work we will investigate the
adaptations required in kernel regularization to allow differ-
ent non-sparse shapes. In the supplement, we briefly show
our promising results in removing synthetic defocus blur and
synthetic upscaling blur.

APPLICATIONS AND IMPACT
A blurry QR scanner brings many advantages for both con-
sumer and enterprise applications.

For consumers, shopping becomes even easier by simply
turning the product’s code to the smartglasses while putting
into the shopping basket. Robust blur removal from upscaled
codes allows scanning tiny codes in the environment that is a
core step in many applications of ubiquitous computing. Fast
compensation of motion blur means conductors can have a
ticket reader more robust to sudden movements in trains. We
also imagine a new type of point of sale system with a simple
tablet computer on the table. Products can then be checked
out by simply swiping the code above the front camera.

In industrial applications, logistics employees and factory
workers need to carry expensive enterprise handhelds to scan
their own visual tags. While the proprietary protocols of these
devices are rather difficult to integrate into business applica-
tions, they are also expensive and hence available to a limited
number of employees only. On the other hand, each employee
has a smartphone in the pocket (soon maybe smartglasses as
well) with outstanding processing and sensing capabilities,
with easy application development, and with an intuitive user
interface. From a business process perspective, there lies
great potential in a ubiquitous, smartphone or smartglasses
scanning solution because then every employee can have a
programmable barcode scanner and can access information
on every item across the value chain. For the post and the
packaging industry, blurry QR scanning saves time because
codes can be scanned without stopping the conveyor belt.

The above examples illustrate that fast blur compensation
could even create new use cases for barcode scanning that
are not possible with today’s technology.

CONCLUSION

We have presented a method for reading severely blurred QR
codes in images casually captured on the go with mobile de-
vices. Our restoration-recognition algorithm brings cheap
wearable QR scanning one step closer to enterprise-grade per-
formance and bears great potential for practical applicability.
Our method can help to bring the comfort, the productivity,
and the new business opportunities of wearable scanning also
to the professional users who are accustomed to the perfor-
mance of their laser scanners.



Figure 8: Android GUI: This example shows removing large motion blur from a QR code in 13.638s directly on a smartphone. The input is replicated in the top
row and intermediate steps are shown in the bottom row. More examples with smartphones and smartglasses can be found in the supplementary video.
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