
Fast Blur Removal for Wearable QR Code Scanners
(supplemental material)

Gábor Sörös, Stephan Semmler, Luc Humair, Otmar Hilliges
Department of Computer Science

ETH Zurich
{gabor.soros|otmar.hilliges}@inf.ethz.ch, {semmlers|humairl}@student.ethz.ch

DERIVATION OF THE ENERGY FUNCTION FOR
BLIND DECONVOLUTION
The uniform blur model is formulated as

b = k ∗ l + n

where the blurred image b is a result of convolving a sharp
image l with a blur kernel k and adding Gaussian noise n. In
blind deconvolution, we know only the blurred image b and
we try to recover the latent sharp image l. This also requires
estimating the blur kernel k. The problem of finding both l
and k can be formulated as minimizing the following energy
function:

arg min
l,k

||b− k ∗ l||22 + λρl(l) + γρk(k)

To derive this energy function, we first express the noise on a
single pixel. In the equations, the index i runs over all image
pixels from 1 to N .

ni = bi − (k ∗ l)i
The probability distribution of a single pixel’s additive noise
is assumed to be Gaussian with zero mean and standard devi-
ation σ:

p(ni) ∼ N(0, σ) =
1√
2πσ

exp(− 1

2σ2
n2
i) ∝ e

− 1
2σ2

n2
i

Assuming that the noise on each pixel is independent and
identically distributed (i.i.d.), the probability of the image
noise is the product of the pixel noise probabilities:

p(n) ∝
N∏
i=1

e−
1

2σ2
n2
i = e−

1
2σ2

∑N
i=1 n

2
i

Now let us look at the probabilities of l and k. As Bayes’ rule
says, the posterior probability is proportional to the product
of the likelihood and the prior:

p(x|y) =
p(y|x)p(x)

p(y)
∝ p(y|x)p(x)

The term p(y) is a normalization factor which does not play
a role in the further minimization, as it will reduce to an ad-
ditive constant after taking the logarithm.

Introducing independent variables l and k hence results in

p(l, k|b) ∝ p(b|l, k)p(l, k) = p(b|l, k)p(l)p(k)

The maximum a posteriori (MAP) estimates of the unknowns
k and l are

arg max
l,k

p(l, k|b) = arg min
l,k

[− log p(l, k|b)]

= arg min
l,k

[− log p(b|l, k)− log p(l)− log p(k)]

as maximizing the posterior probability is equivalent to min-
imizing its negative logarithm.

Likelihood term
The likelihood term follows from our blur model by express-
ing the noise term:

p(b|l, k) = p(n) ∝ e−
1

2σ2

∑N
i=1 n

2
i

− log p(b|l, k) ∝ C
N∑
i=1

[ni]
2 = C

N∑
i=1

[bi − (k ∗ l)i]2 ∝ ||b− k ∗ l||22

with C containing all the constant terms and i indexing the
pixels in the image.

Image prior
While the pixel values can be very different across images,
the (log-)distribution of the image derivatives follows a com-
mon pattern (see Figure 1) in photographs. This property has
been successfully exploited in the solutions of various image
processing problems. This distribution is independent of the
image scale and has a heavy tail which means while most
gradients are around zero (flat image areas), some large gra-
dients are also likely (edges). In particular, the distribution
is not Gaussian. This is very unfortunate because a Gaus-
sian prior would make the minimization problem very simple
with a closed-form solution. Images restored with a Gaus-
sian prior are often oversmoothed and/or contain ringing arti-
facts. Instead, the distribution is usually modeled by a Hyper-
Laplacian function (see Figure 2) with an exponent α < 1,
best values are α ∈ [0.5, 0.8].

Let us denote the x- and y-derivatives of the image l at pixel
i as ∂xli and ∂yli, respectively. The prior p(l) can then be
formulated as

p(l) ∝ e−
1

2η2

∑N
i |∂xli|

α+|∂yli|α

In general form:

p(l) =

L∏
i=1

Φ(∇li) =

L∏
i=1

e−φ(∇li)

and after taking the logarithm:

− log p(l) =

L∑
i=1

φ(∇li)

The two most commonly used curves are the Gaussian prior:

− log p(l) =

L∑
i=1

|∇li|2 = ||∇l||22

and the hyper-Laplacian prior:

− log p(l) =

L∑
i=1

|∇li|α

Other parametric curves are also used in the literature.

In our algorithm, we apply the Laplacian prior (α = 1) be-
cause it matches well the black and white code images and
fast solution methods exists for minimizing the energy func-
tion:

ρl(l) =

L∑
i=1

|∇li|

0 20 40 60 80 100 120 140 160 180 200 220 240100

101

102

103

104

105

X

Figure 1: A natural image prior: log-gradient histogram of an image. The
shape of this curve can be approximated by various parametric models.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

X

f(
X

)

Gaussian: −X2

Laplacian: −|X|
−|X|0.5
−|X|0.25

Figure 2: Parametric models as natural image priors.

Kernel prior
In the simplest case the kernel prior p(k) is assumed uniform
so it is ignored.

Earlier methods applied a sum-of-exponentials prior: For a
single pixel ki of the kernel k the distribution is a sum of D
exponential distributions:

p(ki) ∼
D∑
d=1

wdελd(k) =

= w1λ1e
−λ1k + w2λ2e

−λ2k + w3λ3e
−λ3k + . . .

For the whole kernel then:

p(k) ∼
K∏
k=1

D∑
d=1

wdελd(k)

Its negative logarithm is:

− log p(k) = −
K∑
k=1

log

D∑
d=1

wdελd(k) =

= −
K∑
k=1

log[w1λ1e
−λ1k+w2λ2e

−λ2k+w3λ3e
−λ3k+ . . .]

Alternatively, a Gaussian gradient prior can be applied, this
prior enforces connectedness.

p(k) =

K∏
k=1

e−c(∆k)2

− log p(k) = C

K∑
i=1

(∆k)2 = ||∆k||22

In most methods and also in our method, a Gaussian inten-
sity prior is applied on the kernel, this prior enforces small
values and avoids Dirac kernels.

p(k) =

K∏
i=1

e−k
2
i = e−

∑K
i=1 k

2
i

− log p(k) =

K∑
i=1

k2
i = ||k||22

ρk(k) = ||k||22

Also, ||k||1 =
∑K
i=1 ki = 1 is always necessary so that the

blurring does not change the overall image intensity.

FIGURES OF THE PAPER IN HIGHER RESOLUTION

Removing synthetic blur

Figure 5: Top two rows: Removing synthetic blurs from images (0.1% synthetic noise). Bottom two rows: Removing synthetic blurs from images (also added
1% synthetic noise). The odd rows show the input images and ground truth kernels. The even rows show the output images and kernel estimates when first
decoded. Kernel size indicates the scale level. The kernels are from the blur test set from Levin2009.

A B C D E F G H I J
Input Cho2009 Xu2010 Sun2013 Xu2013 Pan2013 Perrone2014 Pan2014 Ours2015 Truth

binary - C++/GPU C++/GPU Matlab C++/GPU Matlab Matlab Matlab (C++) C++ -
runtime - 0.481s 0.955s 217.730s 1.049s 133.8s 171.898s 12.736s (9.691s) 1.765s (0.614s) -
decoded - no no no yes no yes yes yes -

Figure 6: Comparison of blind deconvolution algorithms on a synthetically blurred QR code.

Removing real motion blur
These figures show more examples from the 83 smartphone images restored by our algorithm (Figure 6 in the paper).

Figure 7: Removing real motion blur from QR code images. The decoded content (ISWC2015 URL) is written in the top of the images.

Figure 8: Further results of removing real motion blur from QR code images.

Figure 9: Further results of removing real motion blur from QR code images.

ADDITIONAL EXPERIMENTS

Initial kernel choice

Figure 10: Illustration of image and kernel refinement over 8 iterations using a single peak or a grid of peaks as starting kernel. In this example, both initial
kernels lead to a correct solution, but our grid kernel converges slower. However, the grid kernel is able to restore very large blurs that are otherwise unsuccessful
with the peak kernel (see next figure). The grid example also illustrates how disconnected kernel noise gets removed during the process. The image is 300×300,
the kernel is 33× 33 pixels, the decoding took 0.719s and 3.107s, respectively. The blurry image was taken with a smartphone.

Figure 11: Further examples illustrating image and kernel refinement using a single peak or a grid of peaks as starting kernel. In these examples, codes were not
recognized using the peak initial kernel, but our grid kernel is successful in removing large blurs.

Defocus blur and upscaling blur
So far, we have focused on decoding motion-blurred codes only, but the QR properties remain the same under other types for
blur as well. In our future work, we will investigate the adaptations required in kernel regularization to allow different non-sparse
shapes. Here, we briefly show promising preliminary results of our experiments in removing synthetic defocus blur and synthetic
upscaling blur.

Removing synthetic defocus blur
In theory, it is possible to restore slightly defocused codes until the blur is smaller than the module size in the code. Figure 12
left shows a synthetically defocused example using a 178× 178 image and a 33× 33 Gaussian kernel with standard deviation 3.
The image is successfully decoded in 0.318s, however, some gray artifacts are visible at dense black and white areas of the code.
Note the Gaussian-shaped estimated kernel.

Reading tiny codes
Blind deconvolution is also an important step in super resolution algorithms where a downsampling filter needs to be estimated
and inverted. The close connection in the mathematical models suggest that our algorithm might be suitable for super resolving
tiny QR codes. We have performed a simulation to justify this (see Figure 12 right). In a photo editing software we downscaled
a QR code with nearest neighbor interpolation so that one symbol corresponds to only one pixel, and upscaled it to 300 × 300
pixels (12×) again, using bilinear interpolation. The upscaled code is blurry and not readable. Our algorithm is able to restore
and read the code after only two iterations. Note the square shape of the estimated blur kernel in the bottom right corner.

Figure 12: Left: removing synthetic defocus blur. Note the Gaussian-shaped estimated kernel. Right: Reconstructing a bilinearly 12x upscaled code. Note the
square-shaped estimated kernel.

	Derivation of the energy function for blind deconvolution
	Likelihood term
	Image prior
	Kernel prior

	Figures of the paper in higher resolution
	Removing synthetic blur
	Removing real motion blur

	Additional experiments
	Initial kernel choice
	Defocus blur and upscaling blur

