GPU-ACCELERATED JOINT 1D AND 2D BARCODE LOCALIZATION ON SMARTPHONES

Gdbor Soros

Department of Computer Science
ETH Zurich, Switzerland

ABSTRACT

The built-in cameras and powerful processors have turned
smartphones into ubiquitous barcode scanners. In smartphone-
based barcode scanning, barcode localization is an important
preprocessing step that quickly scans the entire camera image
and passes barcode candidates to the actual decoder. This
paper presents the implementation steps of a robust joint
1D and 2D barcode localization algorithm on the mobile
GPU. The barcode probability maps are derived from the
structure matrix and the color of the individual pixels. The
different steps of the localization algorithm are formulated
as OpenGL ES 2.0 fragment shaders and both 1D and 2D
barcode saliency maps are computed directly on the graph-
ics hardware. The presented method can detect barcodes at
various scales and orientations at 6 frames per second in HD
resolution images on current generation smartphones.

Index Terms— barcode, QR code, localization, smart-
phone, GPGPU

1. INTRODUCTION

Thanks to their built-in cameras and powerful processors,
smartphones are increasingly used for barcode scanning in
both consumer and enterprise domains. Example applications
include comparing prices, reading product reviews, checking
allergy information, assisting visually impaired users, or
tracking assets within a company. As the resolution of mobile
cameras increases, scanning smaller, distant, or even multi-
ple codes might soon become possible which would lead to
a better user experience. With the upcoming smart glasses
having smartphone-equivalent hardware, even wearable bar-
code scanning could be realized in the close future. Recent
decoder applications like RedLaser! and Scandit’ can also
decode fairly blurry codes before the camera has focused on
the code. However, the computational complexity of blurry
decoding limits practical decoder algorithms to a small search
window and requires the user to align the code close to the
camera. Most algorithms have to assume a limited scale range
of codes that fit the search window, and often also a limited
set of orientations. To enable barcode scanning in a wider

Uhttp://www.redlaser.com
Zhttp://www.scandit.com

range and at any orientation, a barcode localization algorithm
is necessary that quickly searches the entire image for pos-
sible barcode candidates and passes those cut-out regions to
the actual decoder.

The fast and robust localization of barcodes in digital im-
ages has been an active research area for the past decade.
Previous approaches can be categorized by their image pro-
cessing techniques. 1D localization has been presented us-
ing simple image filters [1, 2, 3], orientation histograms [4],
line detection [5], morphology operators [6, 7], Gabor fil-
ters [8], or harmonic analysis [9, 10]. 2D localization has
been implemented via image thresholding and scanning, via
orientation maps, or via combinations of line/corner/square
detection [11, 12]. The localization algorithms usually need
to trade accuracy and robustness for speed and make certain
assumptions about code orientation, code scale, or code sym-
bology. Existing algorithms often have difficulties with de-
focused or motion-blurred images because blur distorts the
barcode structures. The author has recently published [3] a
new, combined localization algorithm that addresses orienta-
tion, scale, symbology and blur invariance and runs close to
real time on a smartphone CPU.

This paper presents the implementation steps of the above
barcode localization algorithm on the embedded graphics
hardware. The algorithm calculates both 1D and 2D barcode
probability maps over the entire image using the structure
matrix and the color of the pixels. By reformulating the dis-
tinct steps as fragment shader programs, one can compute
the barcode probability maps directly on the graphics hard-
ware which brings significant speedup (e.g., of factor 3.2 in
our tests with 4 shader cores). The presented GPU-assisted
approach allows real-time operation without the limiting as-
sumptions of the concurrent methods.

The paper is organized as follows: Section 2 introduces
image processing on the graphics hardware in general, Sec-
tion 3 gives a brief overview of the selected barcode localiza-
tion algorithm and Section 4 presents how to implement the
algorithm on the GPU with various optimizations. Section 5
presents the experimental results while Section 6 concludes
the paper.

2. IMAGE PROCESSING ON MOBILE GPU

OpenGL ES is the de facto standard software-hardware in-
terface for rendering 3D graphics on embedded devices.
Version 2.0 of OpenGL ES introduced the programmable
graphics pipeline to mobile graphics hardware opening the
doors for general purpose GPU computations on smart-
phones. There are certain limitations though compared to
proprietary high-level parallel computing frameworks such
as CUDA3, OpenCL*, or RenderScript’® because OpenGL
was primarily designed for rendering 3D scenes. This means
one has to reformulate computing problems as rendering
problems and carefully tune the algorithms to graphics fea-
tures. Nevertheless, OpenGL ES provides portability across
all smartphone platforms and version 2.0 is widely available
already in middle-class consumer devices.

The programmable graphics pipeline consists of sev-
eral steps as shown in Figure 1. The 3D scene is defined
as a set of triangles formed by vertices. The vertices have
various attributes such as 3D coordinates, normal vectors,
primary color, texture coordinates, etc., that are passed to
a programmable SIMD processor called vertex shader. The
vertex shader program calculates the screen coordinates of
each vertex and passes those to the primitive assembly unit
that determines the points, lines, and triangles to be rendered
on the screen. The rasterizer decomposes the primitives
into individual fragments and for each fragment it interpo-
lates the attributes from those of the corresponding vertices.
Each fragment is passed to another programmable SIMD
processor called fragment shader which calculates the color
of the fragment based on the attributes and optional tex-
ture inputs. Textures are general 2D data containers with
hardware-accelerated interpolation. The individual fragments
run through several tests until they are finally combined in a
pixel of the frame buffer. When all primitives are processed,
the content of the frame buffer gets presented on the screen.
OpenGL ES 2.0 also features off-screen render targets called
frame buffer objects (FBOs). Using an FBO, the output can
be directed into a texture.

Image filtering can be reformulated as a multi-pass ren-
dering problem in the following setting (see Figure 2): The
input image is stored in a texture and an output FBO is set up
to have the same size as the input texture (1-to-1 mapping be-
tween texels and pixels). The 3D scene consists of only two
triangles (a quad) that together cover the whole screen (or
FBO). The virtual camera looks fronto-parallel to this quad
and orthographic projection is applied. Once the scene is
drawn, the full-screen quad generates a single fragment for
each output pixel. To determine the color value of a fragment,
the fragment shader program is run which contains the actual
image processing routine. The fragment shader can read from

3http://www.nvidia.com/object/cuda_home _new.html
“http://www.khronos.org/opencl/
Shttp://developer.android.com/guide/topics/renderscript/index.html

A

textures |

vertex buffer
vertex
shader

c
L
=4
©
N
9]
2
1
e

interpolation

g = }{‘T
E,

frame buffer
° o .. Y
-_ X e 4
° W #

model vertices

primitive assembly
fragment
shader

primitives fragments pixels

Fig. 1. The OpenGL ES 2.0 rendering pipeline.

any input texture position but can write its output only to the
fragment index it is currently assigned to. Therefore, different
shaders (filters) are loaded in subsequent rendering passes and
the role of the input and output textures is always exchanged.
This way a whole chain of image filters can be realized in the
GPU. The resulting image is presented on the screen or read
back to the CPU for further non-parallel processing. For fur-
ther reading on GPU computing, please refer to the excellent
textbooks GPU Gems [13] and GPU Pro [14].

2.1. Constraints on mobile platforms

OpenGL ES is a constrained subset of its desktop counter-
part and hence additional considerations need to be taken in
our algorithms when targeting mobile devices. Mobile GPUs
have significantly less memory and lower clock speed to re-
duce energy consumption. Also, transferring data from GPU
to CPU and back should be avoided during the algorithm due
to low memory bandwidth. The texture fetch latency is sig-
nificant so the number of texture reads should be minimized.
The number of texture units varies but is at least 8 while the
maximum texture size is 2048. Although the shaders can per-
form floating-point calculations, the results must be stored in
low-precision fixed-point textures and there is only one color
render target (with 4 color channels). However, for practical
applications the wide availability compensates for the API’s
limitations.

FBO

CPU GPU
e [T
[’.}%L (€=l
_} " ! W .
e !
. N texture A texture B '
input image I
= I
K= el |
= c o
£ SslsEl 22 | T
T 3 o a2llR =] = !
el = v © © (= =2 '
x < © .g [} wv o 8 "
g = |lez8| =& |2
quad g @ *g 82 g g
= - v —
2 S = frame buffer

Fig. 2. Image filtering can be reformulated as a rendering task
using textures for input as well as for output.

3. ALGORITHM OUTLINE

The selected barcode localization algorithm [3] consists of
multiple stages that are illustrated in Figure 3. The captured
color camera image is first converted to grayscale and the
chroma value ¢ = maz(R,G, B) — min(R, G, B) of each
pixel is also stored separately for later steps. Because 1D bar-
codes contain many edges and 2D codes contain many cor-
ners, the algorithm searches for areas with high concentration
of edge structures as well as for areas with high concentra-
tion of corner structures. Assuming that the codes are printed
black and white, the chroma mask can be used as a fast test
to reject no-code areas in an early stage of the pipeline. The
next step is to calculate the elements of the structure matrix
M= (g:: gz:) for each pixel. The C;; entries of M are cal-
culated from the image derivatives I, and I, over an image
patch D around pixel p using a window w:

(z,y)eD

Next, an edge map m; and a corner map my are derived from
the structure matrix according to the work of Ando [15].

(Cox = Cy)? +4C2,
(C:vw + ny)2 +e€

4(Cmcyy B Ca%y)
, Mo =

(Cm + ny)Q +e

my =

The two maps are then blurred with a big block filter to con-
nect areas where there is high line density or high corner
density and to remove background clutter. Finally, the two
blurred maps are linearly combined to give the 1D and 2D
barcode probability maps s; and sq, respectively. Note that all
steps from color conversion through filtering to linear combi-
nation are data-parallel operations that can be efficiently im-
plemented in fragment shader programs.

4. BARCODE LOCALIZATION ON MOBILE GPU

This section presents how the above algorithm can be refor-
mulated and optimized for the mobile GPU.

Fig. 3. Algorithm outline: input image and its chroma map,
my: edge density map, ms: corner density map, si: 1D
saliency, so: 2D saliency. The color coding is normalized to
[0..1] in all figures. (Please zoom in for viewing)

4.1. Data formats

The inputs and outputs of the subsequent stages are stored in
32-bit RGBA textures. The colors are represented as 8-bit
fixed-point values between 0 and 1. Each stage consists of
one or two render passes in which a simple quad gets textured
with the result of the previous step. Texture filtering is set to
NEAREST to sample one pixel only and coordinate wrapping
is set to CLAMP_TO_EDGE. We use non-power-of-two tex-
tures which prohibits mipmapping. Texture coordinates are
measured in the [0..1] range so the offset between neighbor-
ing texels (1.0/width) has to be supplied to all the shaders as
a uniform variable. Calculating the coordinates of the neigh-
bors can be shifted to the vertex shader letting the hardware
interpolate them for all the fragments.

4.2. Streaming camera images directly to the GPU

The smartphone camera captures the preview frames in
NV21 (YUV) format but the textures must be stored in RGBA
format. The GLES2 extension EGL_image_external allows to
bind an external image buffer to a texture unit. The stream
output of the camera can be redirected to this image buffer
and OpenGL automatically converts its content to RGBA at
reading time. This way, the manual conversion of camera
frames can be spared, so the frames do not need to be loaded
into the CPU.

4.3. Calculating the structure matrix

In the first stage of the algorithm, the elements of the struc-
ture matrix Y, 17, > I, and), I I, need to be calcu-
lated. The summation over the small neighborhood D can be
postponed to the following step so that the calculations for
each pixel can be decoupled and can run in parallel. Gray
conversion is easily performed as a dot product of the input
RGB vector with the constant vector [0.3,0.59,0.11] while
the chroma calculation involves only built-in maximum and
minimum functions.

We calculate the gradients using the derivative5 filters of
Farid et al. [16] that improve the robustness to barcode orien-
tation. The derivative5x consists of a 5-tap horizontal com-
ponent d; and a 5-tap vertical component p while in deriva-
tive5y these two components change their roles. Thanks to
the commutativity of convolution, we can perform all hori-
zontal filtering in one pass and all vertical filtering in the sec-
ond pass which requires only 5 texture fetches in each pass:
I, =I®d®pt while I, = I®df @p =I®pxd!. Inthe
first pass, we take 5 gray pixels horizontally and multiply-sum
them once with dy and store the result in R, and once with p
and store the result in G. In the second pass, we filter R with
p” and G with df vertically. The squares I2, I2, and I,
are then stored in the R,G,B channels of the output while the
chroma value is always passed in the A channel.

To remove colorful non-barcode areas in this stage, we set
all entries in M to zero if the chroma of the pixel is over 0.25.
Conditional statements in shaders decrease performance, so
we formulate the thresholding without a condition using the
built-in step function. The line ¢ < 0.2574 = 1.0 : A = 0.0;
is equivalent to A = 1.0 — step(0.25, ¢);

4.4. Fast Gaussian filtering

In the second stage, the derivatives are summed up in a small
neighborhood to get the final entries of the structure matrix.
We apply a 7x7 Gaussian window with standard deviation 2.
The 2D Gaussian is the outer product of two 1D Gaussians so
again the 2D filter can be substituted by a horizontal plus a
vertical 1D convolution. The two passes require only 7+ 7 =
14 texture fetches instead of 7 x 7 = 49. Furthermore, the
GPU works parallel on the RGB channels of the input so the
three different entries of the structure matrix are calculated at
the same time.

4.5. Edge and corner maps

In the third stage, an “edgeness” and a “cornerness” map is
generated over the image based on the entries of the structure
matrix which involves only pixel-wise arithmetic operations.
Intermediate steps of the algorithm are shown in Figure 4.

4.6. Box filtering and saliency maps

Box filtering with a large kernel would require a great number
of texture fetches for each fragment. However, if we set the
texture filtering to LINEAR and sample between the pixels,
thanks to hardware interpolation we get the average of the two
values in one texture fetch. We use a horizontal and a vertical
32-tap box filter with only 16 texture fetches each between
texels (ie., 32 in total instead of 322).

In the final stage, the blurred m; and mo maps are com-
bined to 1D and 2D barcodeness maps, respectively. Linear
combination of fragment values can also be done very effi-
ciently in GPU using the mix command.

4.7. Boundary detection

Finally, the barcode probability maps are transferred back to
the CPU where barcode region candidates are selected. This
step is identical to [2, 3].

g
&
i

Fig. 4. Intermediate results rendered on the screen: original
image; x-derivatives; edges (red) and corners (green)

5. EXPERIMENTAL RESULTS

We tested our algorithm on three smartphones with different
hardware: a Galaxy Nexus (1.2 GHz dual-core ARM Cortex-
A9 CPU, Imagination PowerVR SGX540 GPU), a Galaxy S3
(1.4 GHz quad-core ARM Cortex-A9 CPU and ARM Mali-
400 MP4 GPU) and a Galaxy $4 (1.9 GHz quad-core Qual-
comm Krait 300 CPU and Qualcomm Adreno 320 GPU). The
algorithm has been implemented using OpenCV 2.4.6 (native
C++) for the CPU and using OpenGL ES 2.0 for the GPU.
Table 1 summarizes the runtimes from image capture to the
barcode maps including GPU-CPU transfer. The GPU im-
plementation achieves a speedup of factor 3.2 on the Nexus
phone with 4 shader cores and factor 2.0 on the S3 which we
believe has only 2 shader cores. The S4 allows 6 frames per
secundum even in HD resolution. In that case the 152ms(})
runtime adds up as follows: derivatives and color conversion
(22ms), Gaussian blur (23ms), edge/corner maps (7ms), box
filter (41ms), reading from GPU (20ms), and rendering to the
screen (39ms). We conclude that OpenGL ES 2.0 brings a sig-
nificant speedup to data-parallel image processing algorithms
and offers code portability across a wide range of hardware
platforms.

| Frame size [Galaxy Nexus [Galaxy S3 [Galaxy S4

640x480 118ms (3.22x) | 144ms (2.02x) | 49ms (6.10x)
960x720 259ms (3.08x) | 322ms (1.96x) | 104ms (5.48x)
1280x720 | 349ms (3.23x) | 414ms (2.03x) | 152ms (5.41x)}

Table 1. Average runtime of the GPU implementation and
speedup compared to the CPU implementation on different
smartphone models.

6. SUMMARY AND OUTLOOK

We have presented the implementation, optimization and
evaluation of a robust barcode localization algorithm on
embedded GPU using OpenGL ES 2.0. Our localization
algorithm can be applied as a preprocessing step for exist-
ing barcode decoder algorithms pushing smartphones one
step closer to enterprise-grade barcode scanning. We fore-
see further optimizations in the future once the OpenGL ES
3.0 standard becomes widely available in embedded graph-
ics hardware. The new standard brings several additional
features compared to v2.0 including multiple render targets,
GPU-CPU synchronization, and floating point textures that
allow more sophisticated image processing with less render-
ing passes. Furthermore, GPU-CPU parallelism would speed
up barcode scanning even more; instead of simply waiting for
the results, the CPU can process the barcode candidates of
the previous frame. We leave this implementation for future
work. The approach presented here can be extended to run
on any OpenGL ES-compliant wearable computer with little
modifications which is an exciting research topic to explore
in the future.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

7. REFERENCES

Z. Bai Y. Chen, Z. Yang and J. Wu, “Simultaneous
real-time segmentation of diversified barcode symbols
in complex background,” in Proc. First International
Conference on Intelligent Networks and Intelligent Sys-
tems, 2008, ICINIS 08, pp. 527-530.

0. Gallo and R. Manduchi, “Reading 1D barcodes
with mobile phones using deformable templates,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 9, pp. 1834-1843, 2011.

G. Soros and C. Florkemeier, “Blur-resistant joint
1D and 2D barcode localization for smartphones,” in
Proc. of ACM Mobile and Ubiquitous Multimedia, 2013,
MUM’13.

E. Tekin and J. Coughlan, “BLaDE: Barcode localiza-
tion and decoding engine,” Tech. Rep. 2012-RERC.01,
The Smith-Kettlewell Eye Research Institute, December
2012.

A. Herout I. Szentandrasi and M. Dubska, “Fast de-
tection and recognition of QR codes in high-resolution
images,” in Proc. 28th Spring Conference on Computer
Graphics. 2012, SCCG ’12, pp. 129-136, ACM.

D. Chai and F. Hock, “Locating and decoding EAN-
13 barcodes from images captured by digital cameras,”
in Proc. Fifth International Conference on Informa-

tion, Communications and Signal Processing, 2005, pp.
1595-1599.

M. Katona and L. G. Nyil, “Efficient 1D and 2D bar-
code detection using mathematical morphology,” in
Proc. International Symposium on Mathematical Mor-
phology and Its Applications to Signal and Image Pro-
cessing, 2013, ISMM’ 13, pp. 464-475.

L. Li M. Wang and Z. Yang, “Gabor filtering-based scale
and rotation invariance feature for 2D barcode region
detection,” in Proc. International Conference on Com-
puter Application and System Modeling, 2010, vol. 5 of
ICCASM’10, pp. 34-37.

A. Tropf and D. Chai, “Locating 1-D bar codes in DCT-
domain,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, 2006, vol. 2
of ICASSP’06.

H. Wang K. Wang, Y. Zou, “1D barcode reading on
camera phones,” International Journal of Image and
Graphics, vol. 7, no. 3, pp. 529-550, 2007.

J. Alfthan, “Robust detection of two-dimensional bar-
codes in blurry images,” M.S. thesis, KTH Stockholm,
Sweden, 2008.

[12]

[13]

[14]

[15]

[16]

A. Herout M. Dubska and J. Havel, “Real-time precise
detection of regular grids and matrix codes,” Journal of
Real-Time Image Processing, pp. 1-8, Feb 2013.

H. Nguyuen, Ed., GPU Gems 3, Addison Wesley Pro-
fessional, 2008.

W. Engel, Ed., GPU Pro, Advanced Rendering Tech-
niques, A K Peters, 2010.

S. Ando, “Image field categorization and edge/corner
detection from gradient covariance,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22,
no. 2, pp. 179-190, Feb. 2000.

H. Farid and E. P. Simoncelli, “Differentiation of dis-
crete multidimensional signals,” IEEE Transactions on
Image Processing, vol. 13, no. 4, pp. 496-508, Apr.
2004.

