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Abstract

We present a machine learning technique for recognizing
discrete gestures and estimating continuous 3D hand posi-
tion for mobile interaction. Our multi-stage random forest
pipeline jointly classifies hand shapes and regresses metric
depth of the hand from a single RGB camera. Our tech-
nique runs in real time on unmodified mobile devices, such
as smartphones, smartwatches, and smartglasses, comple-
menting existing interaction paradigms with in-air gestures.

1. Introduction

Personal wearable computers, such as smartphones,
smartwatches and smartglasses, provide ubiquitous access
to digital information and play now an important role in our
everyday life. Yet, it is unclear what is the easiest and most
natural way to interact with such devices, in order to effec-
tively access and consume digital content. Clearly, a major
hindrance to seamless interaction is posed by small touch
screens and diminutive buttons — the de facto standard for
wearable interfaces. Hence, we argue that the current wear-
able interaction paradigm can be effectively complemented
by natural hand gestures around the devices.

Researchers investigated in-air gestural interaction via
hardware modifications or dedicated wearable sensors (e.g.,
IR proximity sensors [5], muscle sensors [7] or external
cameras [4]), but such solutions pose a serious limitation
to seamless interaction. Previous work has also success-
fully expanded smartglasses’ input capabilities (e.g., [1],
[8], [12]), but available solutions do not provide means for
gesture sensing and rely on external infrastructure.

The recent emergence of consumer depth cameras has
enabled a number of high fidelity, interactive gestural sys-
tems and fine-grained 3D hand-pose estimation [3, 6, 11].
The current state of the art can be categorized into meth-
ods relying either on model fitting and temporal tracking
[6, 11], or on data-driven approaches [3]. In wearable sce-
narios, however, the usage of conventional depth sensors is
prohibitive due to power consumption, heat dissipation and
size. Recently Fanello et al. [2] try to overcome these limi-

tations by learning a mapping from color to depth in a cam-
era surrounded with IR illuminants. However, such solution
requires hardware modification.

Our contribution builds upon and extends existing re-
search on gesture recognition on mobile devices. Our work,
though, differs from existing solutions as it leverages only
RGB cameras, lending itself to run on unmodified devices.
We propose a Random Forest (RF) based algorithm to ex-
tend the interaction space around mobile devices by detect-
ing rich gestures performed in front of any wearable cam-
era. The algorithm runs in real time on off-the-shelf mo-
bile devices including resource-constrained smartphones,
smartwatches, and smartglasses. In [9] we introduced a
data-driven gesture recognition approach that enables mid-
air interaction on unmodified portable devices. While the
method in [9] is limited to 2D gestures, in [10] we extended
this framework to a hybrid classification-regression scheme
which is capable of successfully learning a direct mapping
from 2D color images to 3D hand positions plus gestures.

2. Method

Our algorithm consists of established image process-
ing steps interwoven with a new, staged classification—
regression process. All components have been carefully de-
signed for real-time performance, even on ultra-mobile and
resource-constrained devices.
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Figure 1. Classification-regression pipeline: 1.) Hand segmenta-
tion; 2.) Coarse depth classification; 3.) Hand shape classification;
4.) Fine-grained depth regression (average hand depth)
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2.1. Segmentation and Pre-processing

Our method relies on binary masks of the hand, seg-
mented from the background. Currently no method can pro-
vide perfect segmentation under arbitrary conditions in real
time. Hence, we opted for a simple color thresholding tech-
nique which is a good compromise between true positives
and false negatives, while it suffers from false positives (see
Fig. 1). However, the subsequent classification algorithm
can be made robust to this type of noise as detailed below.

2.2. RF based Classification and Regression

Our gesture recognizer is based on RFs, which have been
successfully used for a number of vision problems, includ-
ing body pose estimation and hand pose and state estimation
form depth cameras. Our method relies only on shape (i.e.,
binary masks) to infer hand features and states. Within the
classification trees we use split criteria based on binary fea-
tures. Specifically, for each split node we learn shift vectors
and a comparison threshold. When evaluating a pixel, we
compare the values of the segmented binary mask at these
shifted locations and proceed traversing the three based on
the result of the comparison. Our binary features allow
training of complex data-sets while keeping the computa-
tional time and memory footprint low, with no impact on
precision. Conceptually, the binary and shift values encode
the hand shape information and hence the probability that a
given pixel belongs to the hand and to which gesture.

2.3. Multi-stage Recognition

To jointly recognize a rich set of gestures and 3D hand
position, one approach is to collect a training database that
covers all expected variations and train a single, potentially
very deep forest through switching split objectives. While
even deep trees can be evaluated in a few milliseconds, the
memory footprint of the forest can quickly become an issue,
as it grows exponentially with tree depth.

Instead, we opt for a multi-layered forests approach.
This is a configuration where expert forests are trained for
a particular task and only those images corresponding to
a particular class are forwarded to a second forest, trained
only on examples from this class. Each of the forests then
needs to model less variation and hence can be compara-
tively shallow. We propose to combine multiple forests that
are specialized on different tasks and modify the image be-
fore they downstream it. This is effectively a pipeline of
independent but inter-related classifiers, as shown in Fig. 1.

Stage 1: Coarse Depth Classification The segmented
but noisy foreground mask S(u) is classified into three lev-
els of depth (see Fig. 1). The depth classification forest
(DCF) serves a dual purpose. First, it removes most of the
noise coming from the simple segmentation method. Sec-
ond, it constrains the variation in terms of hand appearance

that the steps further down have to deal with. Currently the
system is trained to distinguish gestures performed in three
intervals: 9-15cm, 15-24cm, 24-39cm, corresponding to a
comfortable arm pose.

Stage 2: Shape Classification Once the foreground
masks pass the DCEF, the corresponding shape classification
forest (SCF) classifies the images into (currently) six ges-
ture classes, one additional no-gesture class, and a per-pixel
noise class. The latter is necessary to deal with remain-
ing false positives from the segmentation, and the former to
robustly reject non-gesture motion in front of the camera.
Fig. 1 illustrates typical colour-coded per-pixel classifica-
tion results. White pixels are classified as noise.

Stage 3: Hand depth regression On the final level we
switch from classification to regression forests. Here the
goal is to map from an input pixel = to an absolute depth
value. Note that in contrast to the previous level here we
only run one forest per gesture (they are trained only on ex-
amples of one hand shape). The continuous value y(z|S) is
attained as y(z|c, S) = Zle wiyi(x|c, S)); 1 is the coarse
depth level and w; are the posteriors from the first layer.
The main difference from classification forest to regression
forest is the entropy definition. For regression, we employ
the differential entropy of the empirical continuous den-
sity p(y|S), modeled as a 1D Gaussian. This reduces to
E(S) =log(os), where o is the variance of the Gaussian.

2.4, Training Data

RFs rely on good training data for high classification ac-
curacy. To train a classifier robust to large variation in hand
shapes, sizes, distances to the camera and gesture execution,
we need a large, but balanced training data-set. We asked
20 subjects to perform the gestures under natural variation
and recorded short sequences of each. This included one
’no-gesture’ where participants casually moved their hands.
We recorded ~ 50K images covering enough variation in
rotation, depth and appearance for training the SCF.

3. Evaluation

We have conducted several experiments to evaluate the
performance of our algorithm. Here, we only summarise
the main experimental results, but we remand the reader to
[9, 10] for an in-depth analysis.

Gesture Recognition. Fig. 3 summarizes classification ac-
curacy as a confusion matrix for the entire gesture set, us-
ing both half training—half test and leave-one-out validation
methods. Our technique achieves a mean per-class, per-
frame accuracy of 98% and 93% respectively. In practice
this translates to a very robust gesture recognizer with very
little temporal filtering.



Figure 2. Applications: (A) Bimanual map browsing with a magnifier lens; (B) Shooting in a mobile game; (C) Music control in the air;
(D) In-air pointing in front of the smartwatch triggers a photo sharing app; (E) Finding and selecting a contact card using hand depth.
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Figure 3. Confusion matrix (20 users). Left: half—test / half—train
cross-validation; avg. accuracy 98% Right: leave—one—subject—
out; avg. per-frame accuracy 93%.

Depth Estimation. To evaluate our depth estimation step,
we have compared our technique against ground-truth (GT)
data acquired from a depth camera' and against a naive
depth estimation technique based on raw hand size. Fig. 4
show depth estimates data over 2K frames and under ges-
ture variation. Our method tracks the GT closely, with small
recurring spikes between the coarse depth levels. In con-
trast, the naive technique systematically over and under-
shoots the GT, with a larger avg error (17mm vs. 81mm).
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Figure 4. Depth estimation under gesture variation. GT (green) is
tracked closely by Ours (orange). Naive (blue) is worse.

4. Application Scenarios

To demonstrate the feasibility of our algorithm, we im-
plemented several application scenarios where in-air ges-
tures successfully complement touch input (a larger se-
lection of applications is presented in [10, 9] and related
videos). For instance, in a mapping application users
can control zoom, pan and map switching with their non-
dominant hand (Fig. 2, A). An in-air pinch gesture invokes
a magnifier lens over a particular area of interest on the map.
The lens can then be positioned by moving the hand behind
the device. To showcase more complex bi-manual interac-
tion, we interfaced our gesture recognizer with a 2D scroller
game. Touch input is used to control the character position,
whereas gestures are used to shoot weapons (Fig. 2, B).

The low computational requirements make our approach
applicable on a wide range of devices. Fig. 2, C shows how
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a tablet in the kitchen can be controlled using effortless ges-
tures without touching the screen with wet hands. In Fig. 2,
D, a splayedhand gesture in front of a smartwatch triggers a
photo sharing application. Finally, an important advantage
of our technique is that it can recover gesture and hand po-
sition simultaneously. This allows users to jointly control
discrete and continuous inputs. For example, gestures and
depth may be used to invoke and browse linear list controls
like selecting a contact card on smartglasses (Fig. 2, E).

5. Conclusion

We presented a robust gesture recognition algorithm that
runs in real time on unmodified mobile devices with a
single RGB camera. Our multi-layered RF classification-
regression framework is well suited for low-memory de-
vices. Our method exhibits high accuracy, which can be
further improved if extended with temporal tracking.
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