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Jie Song1, Fabrizio Pece1, Gábor Sörös1, Marion Koelle1,2, Otmar Hilliges1

1ETH Zurich, 2University of Passau
{jsong|fabrizio.pece|gabor.soros|otmar.hilliges}@inf.ethz.ch, marion.koelle@uni-passau.de

ABSTRACT
We present a machine learning technique to recognize ges-
tures and estimate metric depth of hands for 3D interaction,
relying only on monocular RGB video input. We aim to en-
able spatial interaction with small, body-worn devices where
rich 3D input is desired but the usage of conventional depth
sensors is prohibitive due to their power consumption and
size. We propose a hybrid classification-regression approach
to learn and predict a mapping of RGB colors to absolute,
metric depth in real time. We also classify distinct hand ges-
tures, allowing for a variety of 3D interactions. We demon-
strate our technique with three mobile interaction scenarios
and evaluate the method quantitatively and qualitatively.

Author Keywords
mobile interaction; gesture recognition; machine learning
ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies

INTRODUCTION
We are currently witnessing how ultra-mobile devices such
as smartwatches and head-worn displays (HWDs) are rapidly
becoming commoditized. However, how the user will inter-
act with these ever richer forms of virtual information is be-
coming a pressing issue. Current commercial offerings, such
as Google Glass, Epson Moverio, or other AR research pro-
totypes commonly leverage smartphone technologies such as
touchscreens or acceleration sensors for user input. This lim-
its interaction mostly to manipulations of 2D content – rather
than 3D information embedded into the real world.

Natural user interface (NUI) research has enabled rich, con-
tactless 3D input using hands, fingers and the full body. NUI
is now synonymous with depth sensing technologies such as
Kinect or the LeapMotion controller. Most available depth
sensing technologies are based on either a stereo setup or a
combination of a single camera and some form of active il-
lumination such as structured light or time-of-flight. These
dependencies set hard lower bounds on the size, weight and
the power consumption of such devices. Hence, most depth
sensing technologies are currently prohibitive in wearables.
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Figure 1. Joint classification of gesture and regression of metric depth
from a single head-worn camera for spatial interaction. (A) User wearing
a monocular RGB camera attached to AR glasses. Depth-aware gestures
allow for rich interactions. (B) Invoking a contacts app by gesture and
selecting a contact card by depth (C) Simultaneous control over discrete
and continuous parameters in 3D apps.
At the same time almost all wearable computing devices
and HWDs are equipped with RGB cameras for image cap-
ture. We leverage these and propose a novel machine-learning
based algorithm that jointly recognizes gestures and estimates
the 3D position of hands. In contrast to previous work [2],
where instrumentation of the camera is required to obtain
depth information, our technique uses only the built-in RGB
camera, and hence is suitable for off-the-shelf, unmodified
mobile devices, including compute-limited HWDs.

Our technique successfully copes with variation in gesture ex-
ecution, and varying lighting conditions. To achieve this, we
take a data-driven machine learning approach similar to those
presented in [2, 13] but extend this framework to a hybrid
classification-regression scheme, capable of learning a map-
ping from 2D images to 3D hand positions plus gestures.

RELATED WORK
Ultra-mobile interfaces have seen a lot of interest recently. In
particular, researchers have tried to extend the input capabil-
ities of small-screen devices such as smartwatches by adding
touch sensitive wristbands [10] or by leveraging the skin for
user input [3, 9]. Others have attempted to enable more free-
form, in-air gestures using finger- [14] or wrist-worn [5] sen-
sors. These approaches all require hardware modification,
which allow for richer input but add bulk and power draw.

Researchers have also looked into expanding the input capa-
bilities of emerging HWDs (e.g., [12]) but do not provide
sensing solutions and rely on external infrastructure. More
unconventional solutions to the mobile input problem include
sensors placed on the tongue [11], behind ears [8], or on
cheeks [12]. All these approaches require the user to wear



Figure 2. Classification-Regression pipeline overview. Top row: ground truth (GT) data used for training. Bottom row: posteriors outputted at each
level by the forests. Left: Coarse depth classification. Middle: Hand-shape classification. Right: Fine-grained depth regression (average depth per hand
shown at different depth). The inset shows the error in mm compared to the ground truth.

specialized sensor electronics and might not be feasible in
real-world scenarios. Song et al. [13] recently introduced a
data-driven gesture recognition approach that enables mid-air
interaction on unmodified portable devices. However, the type
of interactions are limited to 2D gestures.

Our approach leverages machine-learning techniques to
jointly infer hand shape (gestures) and hand position in 3D
from only monocular RGB imagery. Estimating depth from
single images is ill-posed and a hard problem. Although sev-
eral approaches exist that try to estimate surface normals or
scene depth from single images. These methods rely on as-
sociating still images and ground-truth depth pairs, to then
derive coarse scene depth [4, 7]. These approaches make use
of complex and computationally costly algorithms, infeasible
for interactive scenarios on mobile devices.

SPATIAL INTERACTION FOR WEARABLE COMPUTING
In this section we introduce our machinery for joint classifica-
tion of discrete hand gestures and regression of scene depth of
hands. Similarly to our work, Fanello et al. [2] learn a direct
mapping between infrared intensity and depth measurements,
to predict per-pixel depth values. Relying on infrared inten-
sity fall-off, this requires mounting of IR illuminants and an
IR pass filter, and as such, renders the camera unusable for
other purposes while also increasing power draw.

Our method is similar to those proposed in [2, 13]. In [13]
several randomized decision forests (RFs) are combined to
enable the recognition of discrete 2D hand shapes or gestures.
We extend [13] to jointly detect hand shapes and to regress
the average hand depth. Together with the hand’s centroid
this gives full 3D hand position. This allows users of HWDs
to interact with rich 3D graphics in a natural and direct fash-
ion. The method relies only on 2D RGB camera imagery and
works on completely unmodified mobile devices.

Cascaded Random Forests
The pipeline in [13] consists of simple image processing steps
and three cascaded RF classifiers to detect i) coarse depth ii)
hand shape and iii) hand parts. Our pipeline (see Fig. 2) is
similar but differs in important aspects. We briefly compare
our technique to the original algorithm:

Hand Segmentation
We use the same skin color segmentation method as [13]
which is robust enough under normal lighting conditions. In
this step the main importance is to keep the hand contour

as complete as possible, whereas false positives (background
noise) are handled later in the pipeline.

Coarse Depth Classification
After background segmentation we classify the image into
three coarse layers of depth [2, 13]. For our purposes we are
only interested in close range interaction (i.e., arms reach). By
experimentation, we found that 90mm to 390mm measured
from a head-worn camera to the center of the palm is a com-
fortable range for most users. We divide this global range
into three smaller intervals: 90− 150mm, 150− 240mm and
240 − 390mm (Fig. 2, left). Note how the interval ranges in-
crease with distance. This is due to perspective effects causing
the change in appearance of the users hand to decrease with
distance from the camera.

This layer serves two purposes. First, it removes most of the
noise coming from the simple segmentation method. Sec-
ond, it constrains the variation in terms of hand appearance
that the steps further down the pipeline have to deal with, as
prior work has shown that classifying the scene into canonical
depth regions helps in subsequent, more fine-grained depth
estimation [6]. This means that overall we can use shallower
trees, resulting in reduced memory footprint (as was the main
goal in [13]). Analogously, this approach also allows us to in-
crease the predictive power of the RF ensemble while keeping
the memory footprint constant, for example to solve a more
difficult task, as is our intention with this work.

Given an input image I with associated pixels x and a
segmentation S, the forest at the top layer infers a prob-
ability distribution p(l|x, S) over the three coarsely quan-
tized depth ranges and an additional noise class, where l =
{close,middle, far, noise} are the labels. This per-pixel
distribution (Fig. 2, left) is forwarded to the next layer.

Shape Classification
At the next level we evaluate each pixel x in I again to com-
pute a gesture probability distribution p(c|x, S), where c is
the label for different hand shapes or gestures, in our case
c = {splayed hand, pinch, closed hand} for the three ges-
tures. The predicted posteriors are combined:

p(c|x, S) =
L∑

l=1

wlpl(c|x, S) (1)

Here the output posterior p is the weighted sum over the es-
timates pl of the forests trained on the three gesture classes.
The weights wl are the posterior probabilities estimated by



the first layer. Note that this means we need to run all shape
classification forests simultaneously. In practice this is not a
problem as the trees at depth 15 are relatively shallow. Fi-
nally we pool, and average, the probabilities across the image
to attain a single value p(c|S) (Fig. 2, middle).

Depth Regression
At the final level we switch from classification to regression
forests. Here the goal is to map from an input pixel x in I to
an absolute depth value (Fig. 2, right). Note that in contrast
to the previous level here we only run one forest per gesture
(they are trained only on examples of one hand shape). The
continuous value y(x|S) is attained as

y(x|c, S) =
L∑

l=1

wlyl(x|c, S) (2)

Where l is the coarse depth level and weights wl are again the
posteriors from the first layer.

Prediction and Features
For prediction we follow [13] as closely as possible, with the
predictions for p(l|x, S), p(c|x, S) and y(x|c, S) are all done
in a similar fashion. We pass individual pixels down several
decision trees, forming an ensemble or forest. At each split
node we evaluate a split function, passing the pixel to its left
or right child, until it reaches a leaf node. The classification
forests at the first two levels simply store learned, discrete
probability distributions in their leaf nodes and output the
mode. For regression, the distributions are multi-modal, and
outputting the mean can lead to poor performance. Hence, we
store a small set of distributions and perform a median filter
over a small patch of pixels around x, resulting in the final
depth prediction yl(x) (Fig. 2, right). We use the same binary
split criteria and visual feature responses as in [13].

Training
Both the tree structure and the final probability distributions
are learned from annotated training data. In the case of RFs,
this is done by randomly selecting multiple split candidates
and offsets and choosing the one that splits the data best. The
quality metric for the split thereby is typically defined by the
information gain Ij at node j. For the classification levels we
use the Shannon-Entropy E(S) of the empirical discrete dis-
tribution of coarse depth values and hand shapes, respectively,
to compute Ij (cf. [2, 13]). For the regression forest, E(S)
is the differential entropy of the empirical continuous density
p(y|S), modeled as a 1D Gaussian. Thus E(S) reduces to
E(S) = log(σs), where σ is the the Gaussian variance.

Our training data (cf. Fig. 2) consists of ground-truth images
attained from a Creative Senz3D depth camera. We use sim-
ple depth thresholding and connected component analysis to
attain clean segmentation of the hand. We also keep the seg-
mented depth map for training of the regression forest. We
record training data for the different hand shapes separately
so that labeling can be automated. In addition we add artifi-
cial noise to the binary segmentation in the fashion of [13].

For coarse depth classification we train a single tree of depth
8 using 8K training images. This tree achieves an average

Figure 3. Error vs. ground-truth as a function over depth. Blue is our
method (avg. avg. 24mm) and orange is the Naı̈ve method (avg. 87mm).

classification accuracy of 90.1% in half-test-half-train cross-
validation. For each gesture in the second layer we use 4K
images for training, totaling 12K training data. Using this data
we train three trees of depth 15 achieving an average accuracy
of 95.3%. For regression, we train one forest per coarse depth
interval and per gesture, each consisting of 6 trees (3×3×6 =
54 trees in total). Each tree is trained to depth 16 using 4K
training images. As we only execute one of the regression
forests at a time, the algorithm still runs in real time.

SYSTEM EVALUATION
We have conducted a number of experiments to asses the ac-
curacy of the algorithm. We compare our output to two sepa-
rate data sources. First, we compare against the ground-truth
(GT) data acquired from a Creative Senz3D camera as a base-
line. We also compare to a naı̈ve depth estimation technique
based on raw hand size. This naı̈ve baseline is calibrated off-
line and per user by moving the hand repeatedly to and away
from the camera. We record min and max pixel counts and
corresponding depth values. At runtime we simply interpolate
the depth between these two values. While not a very robust
method this actually works reasonably well in particular with
constant hand shape and linear motion along z.

Fig. 3 plots the error of the two depth estimates as function of
distance from the camera, compared to the GT depth value.
Our technique compares favorably to the naı̈ve method and
also tracks the GT data well. The accuracy of our approach
can also be assessed qualitatively. Again, our technique per-
forms significantly better than the naı̈ve approach (cf. Fig. 4).

The experiments so far were conducted using a single ges-
ture. A more realistic scenario is evaluated in Fig. 5. Here we
show depth estimates data over 2K frames and under gesture
variation. The plot is divided into three areas corresponding
to the different gestures. Our method tracks the GT closely,
with small recurring spikes. These can be traced back to the
boundaries between the coarse depth levels. One could de-
tect and filter these, alternatively one could train the regres-

Figure 4. Qualitative Results compared to GT.



Figure 5. Depth estimation under gesture variation. GT (green) is
tracked closely by Ours (orange). Naı̈ve (blue) is significantly worse.

sion forests with training data that has more overlap across
the depth boundaries. In contrast, the naı̈ve technique sys-
tematically over and undershoots the GT and exhibits a much
larger avg error (17.3mm vs. 81.1mm). A t-test reveals that
this difference is statistically significant (p = 0.001).

APPLICATION SCENARIOS

Figure 6. Application scenarios. See text and video figure.

We have built a variety of proof-of-concept demonstrators.
These are illustrated in Fig. 6 and the accompanying video.
The main advantage of our technique is that it can recover
gesture and hand position simultaneously. This allows users
to control discrete and continuous inputs jointly. For example,
gestures and depth may be used to invoke and browse linear
list controls. For instance, to find and select a contact card
(Fig. 6, A). Similarly, in an AR furniture application a flat
hand may be used to switch 3D models and the pinch gesture
may be used to control size of the model (see Fig. 6, B–E).
Finally, our approach could also be used to control a spatial,
hierarchical 3D menu, where the x, y position of the hand is
used to browse entries, z is used to select levels of the hierar-
chy, and gestures confirm the final selection (Fig. 6, F+G). A
promising area for future work could be to combine our input
with a trajectory based menu system akin to [1].

DISCUSSION AND CONCLUSION
We have presented a method to jointly estimate 3D hand po-
sitions and gestures for 3D input on HWDs. Additionally, we
have demonstrated its feasibility quantitatively and qualita-
tively. However, our method also has clear limitations. First,
it is not a general purpose depth estimation technique, but
is only trained to recover depth for hands and only at close
range. Furthermore, we currently only regress a single, av-
erage depth value per hand. This clearly affords less fidelity
than what commercial depth cameras produce – albeit at the
cost of size and power consumption. However, this depth es-
timate, when combined with the x, y position of the hand’s

centroid into a 3D position, is often what an application pro-
grammer is interested in. Alongside the possibility to detect
gestures this already enables exciting interaction possibilities.
For future work we are interested in experimenting with esti-
mating depth for individual parts of the hand such as finger-
tips versus the palm [13]. Given that the method operates on
hand shape only it is unclear whether this could be extended
to per-pixel depth but offline methods [6, 7] suggest that there
is room for further research and improvement.

REFERENCES
1. Bau, O., and Mackay, W. E. Octopocus: A dynamic

guide for learning gesture-based command sets. In Proc.
ACM UIST (2008), 37–46.

2. Fanello, S. R., Keskin, C., Izadi, S., Kohli, P., Kim, D.,
Sweeney, D., Criminisi, A., Shotton, J., Kang, S. B., and
Paek, T. Learning to be a depth camera for close-range
human capture and interaction. ACM Trans. Graph. 33, 4
(2014), 86:1–86:11.

3. Harrison, C., Tan, D., and Morris, D. Skinput:
Appropriating the Body As an Input Surface. In Proc.
ACM CHI (2010), 453–462.

4. Karsch, K., Liu, C., and Kang, S. B. Depth extraction
from video using non-parametric sampling. In Proc. of
ECCV (2012), 775–788.

5. Kim, D., Hilliges, O., Izadi, S., Butler, A. D., Chen, J.,
Oikonomidis, I., and Olivier, P. Digits: Freehand 3D
interactions anywhere using a wrist-worn gloveless
sensor. In Proc. ACM UIST (2012), 167–176.

6. Ladicky, L., Shi, J., and Pollefeys, M. Pulling things out
of perspective. In Proc. IEEE CVPR (2013), 89–96.

7. Ladicky, L., Zeisl, B., and Pollefeys, M.
Discriminatively trained dense surface normal
estimation. In Proc. of ECCV (2014), 468–484.

8. Lissermann, R., Huber, J., Hadjakos, A., and
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