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Abstract

Visual codes like barcodes and quick response (QR) codes are the most prevalent linking
elements between physical objects and digital information. They are found in numerous
consumer applications such as shopping, electronic payments, ticketing, or marketing
campaigns, but they are also found in logistics and enterprise asset tracking and provide
employees access to detailed service records. Reading visual codes is also often the first
step for pairing and interaction with physical appliances in various research projects in the
area of pervasive computing. While these codes are found almost everywhere, the reading
of codes usually requires expensive scanner devices which hinders the original goal of
easy access to information about every physical object.

Technological advancements in wearable computing and mobile computer vision may
radically expand the adoption of visual codes because smartphones, smartwatches, smart-
glasses, and other wearables enable instant barcode scanning on the go. The wide accessi-
bility, the computing performance, the intuitive user interface, and the relatively low price
make personal wearable computers strong competitors for traditional scanners while they
also enable new use cases for visual codes. As these devices are primarily designed for
other purposes, there are also a few shortcomings.

In this dissertation, we describe methods to overcome these shortcomings and to add
advanced features that can make wearable barcode scanning an attractive alternative to
traditional barcode scanning even outside the consumer domain. We present fast and robust
solutions to the following problems on computationally restricted unmodified wearable
devices:

(i) Fast and robust localization of visual codes: Current smartphone-based barcode
scanning solutions require the user to hold and align the tagged object close to the camera.
This is especially problematic with smartglasses and leads to lower user acceptance. On
the other hand, today’s wearable cameras have a high enough resolution to scan visual
codes that are further away, once they are segmented in a preprocessing step. We propose
a fast algorithm for joint 1D and 2D visual code localization in large digital images. The
proposed method outperforms other solutions in terms of accuracy while it is invariant to
scale, orientation, code symbology, and is more robust to blur than previous approaches.
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We further optimize for speed by exploiting the parallel processing capabilities of mobile
graphics hardware for image processing. Fast segmentation allows for scanning multiple
codes at the same time and thus helps in application scenarios where interaction with
multiple objects is necessary.

(ii) Fast and robust compensation of motion blur: When the camera or the code
undergoes slight motion during scanning, in contrast to the performance of laser scanners,
wearable cameras often suffer from motion blur that renders the codes unreadable. We
build upon existing work in photograph deblurring and develop a fast algorithm for scan-
ning motion-blurred QR codes on mobile devices. We exploit the fact that QR codes do not
need to be visually pleasing for decoding and propose a fast restoration-recognition loop
that exploits the special structure of QR codes. In our optimization scheme, we interweave
blind blur estimation from the edges of the code and image restoration regularized with
typical properties of QR code images. Our proposed restoration algorithm is on par with
the state of the art in quality while it is about a magnitude faster. We also propose to
combine blur estimation from image edges with blur estimation from built-in inertial
sensors to make the restoration even faster. Fast blur compensation means that no precise
code alignment is required but the user can simply swipe the camera in front of the code.

(iii) Fast and robust recognition of in-air hand gestures: Wearable devices have
limited input capabilities; the way of interaction is usually limited to a few buttons or slim
touchpads. We add natural hand gesture input to our wearable computers, but indirectly
also to other smart appliances in our smart environment that can be automatically recog-
nized through tiny visual codes, and that can “outsource” their own user interface to our
wearable devices. We present a machine learning technique to recognize hand gestures
with only a single monocular camera as can be found on off-the-shelf mobile devices. The
algorithm robustly recognizes a wide range of in-air gestures and runs in real time on un-
modified wearable devices. We further show that, with little modification, our method can
not only classify the gesture but can also regress the distance of the hand from the camera.
3D in-air gesture control allows hands-free scanning with smartglasses which brings many
advantages in enterprise scenarios. Furthermore, through user interface outsourcing, it
also enables expressive vision-based gesture control even to those appliances that do not
possess a camera by their own.

Along with the dissertation, we created several showcase scenarios and demonstrators
of our contributions. All proposed algorithms have been designed and implemented to be
compatible with various platforms and device families (e.g., PCs, tablets, smartphones,
smartwatches, smartglasses), with their resource constraints in mind. The solutions
presented in this dissertation are pushing forward the state of the art in terms of accuracy,
speed, and robustness, and thus help to make wearable barcode scanning a promising
alternative to traditional barcode scanning.
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Kurzfassung

Visuelle Codes, wie beispielsweise Strichcodes oder QR-Codes, werden im Rahmen zahl-
reicher mobiler Anwendungsszenarien genutzt, sie stellen optisch erkennbare Marker als
Verbindungselemente zwischen Objekten der physischen Welt und digitaler Information
dar. Vom intelligenten Einkaufsassistenten über elektronische Zahlungen, Tickets, Mar-
ketingkampagnen bis hin zu Anwendungen in Logistik und Güteverkehr unterstützen
visuelle Codes eine große Zahl an Einsatzmöglichkeiten. Auch bei vielen aktuellen For-
schungsvorhaben im Bereich des pervasive computing ist das Erfassen visueller Codes
der erste Schritt zur Interaktion mit physischen Objekten und Geräten in der näheren
Umgebung. Doch obwohl visuelle Codes mittlerweile auf praktisch allen Produkten und
vielen anderen Dingen zu finden sind, benötigt das optische Erkennen der Codes und
das Auslesen der darin hinterlegten Daten (“scannen”) bisher noch dedizierte und teure,
meist laserbasierte Lesegeräte. Der intendierte Zweck eines unmittelbaren und ubiquitären
Zugangs zur damit verknüpften Information wird dadurch infrage gestellt.

Das zunehmende Interesse an visuellen Codes wird in der jüngeren Zeit auch durch
rasante technische Entwicklungen im Bereich des wearable computing sowie des mobilen
maschinellen Sehens induziert. Smartphones, Smartwatches, Smartglasses und andere trag-
bare Geräte bringen mit ihren eingebauten kleinen Kameras sowie ihren leistungsfähigen
CPUs alle Voraussetzungen für eine effiziente Codeerkennung mit. Aufgrund ihrer breiten
Verfügbarkeit, hohe Rechenleistung, intuitiven Mensch-Maschine-Schnittstelle sowie ihres
günstigen Preises konkurrieren sie mit den traditionellen Lesegeräten für visuelle Codes
und ermöglichen gleichzeitig neue Anwendungsszenarien. Da diese neueren mobilen
Geräte aber vornehmlich für andere Verwendungszwecke entwickelt wurden, weisen sie
in Hinblick auf die Codeerkennung als spezielle Eigenschaft allerdings einige markante
Unzulänglichkeiten auf.

In der vorliegenden Dissertation beschreiben wir Methoden, die diese Defizite nicht
nur überwinden, sondern darüber hinaus auch einige neue und interessante Funktionen
ermöglichen. Damit wird der traditionellen Strichcodeerkennung eine attraktive Alternative
gegenübergestellt, welche auch in vielen Bereichen außerhalb des Konsumentensektors,
vor allem im Industrieeinsatz, zusätzlichen Nutzen stiften sollte. Im Wesentlichen stellen
wir schnelle und robuste Lösungen für die folgenden Problembereiche bei der Verwendung
leistungsbeschränkter (und generell ressourcenlimitierter) wearable devices vor:
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(i) Schnelle ung robuste Lokalisierung von visuellen Codes: Gängige Smartphone-
basierte Scannerlösungen verlangen, dass der Nutzer das Produkt dicht vor die Kamera
hält und sorgfältig positioniert. Dies ist insbesondere bei Smartglasses problematisch
und führt zu einer geringeren Akzeptanz. Andererseits verfügen die heutigen digitalen
Kameras über eine genügend hohe Bildauflösung, um visuelle Codes auch aus großer
Entfernung zu lesen, sofern die Codes durch einen vorverarbeitenden Schritt segmentiert
werden. Um dieses Potential zu nutzen, entwickeln wir einen schnellen Algorithmus für die
gleichzeitige visuelle Lokalisierung mehrerer ein- und zweidimensionalen Codes in großen
digitalen Bildern. Die realisierte Methode übertrifft andere Lösungen an Genauigkeit,
während sie bezüglich Skalierung, Orientierung und Symbologie der Codes invariant ist.
Zusätzlich ist sie robuster gegen Unschärfe (blur) als bisherige Ansätze. Unter Ausnutzung
der Parallelisierungsfähigkeiten moderner mobiler Graphikhardware zeigen wir, dass
die Geschwindigkeit weiter optimiert werden kann. Die schnelle Codesegmentierung
erlaubt das gleichzeitige Lesen mehrerer Codes und unterstützt Situationen, bei denen
eine Interaktion mit mehreren Objekten erfolgen kann.

(ii) Schnelle ung robuste Kompensation von Bewegungsunschärfe: Wenn Kamera
oder Codemarker während des Scannens bewegt werden, verursacht dies im Unterschied
zu den traditionellen laserbasierten Scannergeräten oft ein durch Bewegungsunschärfe
verzerrtes Bild, das die codierte Information unleserlich macht. Um diesem Problem zu
begegnen, bauen wir auf existierenden Ansätzen aus der Bildbearbeitung im Bereich
deblurring auf und entwickeln einen schnellen Algorithmus, um unscharfe QR-Codes
direkt auf mobilen Geräten lesen zu können. Wir profitieren dabei von der Tatsache, dass
QR-Codes für ein erfolgreiches Decodieren nicht visuell ansprechend sein müssen und
schlagen eine schnelle Restaurierungs- und Erkennungsschleife vor, welche die spezielle
Struktur von QR-Codes ausnutzt. In unserem Optimierungsschema verbinden wir eine
mittels dominanter Kanten erzielte Unschärfeschätzung des Bildes mit der Bildrestaurie-
rung unter Ausnutzung typischer Eigenschaften von QR-Codes. Die von uns entwickelte
Restaurierungsmethode entspricht qualitativ dem aktuellen Stand der Technik, ist aber
um eine Größenordnung schneller. Darüber hinaus schlagen wir vor, die kantenbasierte
Unschärfeberechnung mit einer Unschärfeschätzung mittels der in mobilen Geräten oft
verbauten Trägheitssensoren zu kombinieren, um die Restaurierung weiter zu beschleu-
nigen. Die von uns entwickelte Unschärfekompensation bedeutet, dass keine präzise
Positionierung der Codemarkers mehr erforderlich ist und der Nutzer die Kamera einfach
über den Code ziehen kann.

(iii) Schnelle ung robuste Erkennung von Handgesten: Kleine Geräte haben oft li-
mitierte Ein- und Ausgabemöglichkeiten, die Interaktion ist dabei auf wenige Tasten oder
schmale Touchpads beschränkt. Aus diesem Grund haben wir eine Handgesteneingabe für
mobile Geräte entwickelt, welche indirekt sogar von Objekten ohne Kamera und explizi-
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te Bedienschnittstellen genutzt werden kann. Automatisch erkennbare kleinste visuelle
Codes erlauben den beteiligten Objekten, ihre eigenen “virtuellen” Bedienelemente an
andere mit Nutzerschnittstelle ausgestatteten mobilen Geräte auszulagern. Wir stellen ein
maschinelles Lernverfahren vor, welches Handgesten mit einer einfachen monokularen
Kamera, wie sie in den meisten mobilen Geräten verbaut ist, erkennen kann. Der Algorith-
mus läuft in Echtzeit auf physisch unmodifizierten Geräten und kann eine breite Auswahl
von Handgesten zuverlässig erkennen. Des Weiteren zeigen wir, dass unsere Methode
mit kleinen Änderungen nicht nur die Gesten klassifizieren, sondern auch die Distanz
der Hand zur Kamera schätzen kann. Die Gestenerkennung erlaubt somit das Lesen von
Strichcodes ohne Gebrauch der Hände; ein Vorteil, der besonders im kommerziellen
Bereich zur Geltung kommt. Durch Bedienungsauslagerung wird ferner auch Geräten,
welche selbst keine Kamera aufweisen, eine ausdrucksvolle Gestensteuerung ermöglicht.

Im Rahmen der Dissertation wurden mehrere Demonstratoren für diverse Anwendungs-
szenarien erstellt. Von allen beschriebenen Algorithmen liegen Implementierungen für
unterschiedliche Plattformen und Geräte (z.B. PCs, Tablets, Smartphones, Smartwatches,
Smartglasses) vor, welche die jeweiligen technischen Einschränkungen beachten. Die in
der vorliegenden Dissertation präsentierten Verfahren zur mobilen Codeerkennung gehen
hinsichtlich Genauigkeit, Geschwindigkeit und Robustheit deutlich über den bisherigen
Stand der Technik und Wissenschaft hinaus. Damit stellt die kamerabasierte Codeerken-
nung mit alltäglichen mobilen Geräten nunmehr eine vielversprechende Alternative zu
den traditionell verwendeten spezielleren Lesesystemen dar.
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Kivonat

Valós tárgyak és digitális információ között mai világunkban a legelterjedtebb összekötő
elemek a vizuális kódok, mint például a vonalkódok és a quick response (QR) kódok.
A vizuális kódok számos alkalmazásával találkozhatunk a bevásárlástól az elektronikus
fizetéseken és jegyvásárláson át a reklámkampányokig, de mindenütt megtalálhatóak a
logisztika és az áruforgalom területén is. A pervasive computing területén sok kutatási
projektben a fizikai eszközök konfigurálásában és az azokkal való interakcióban is vi-
zuális kódok leolvasása az első lépés. Noha a vizuális kódok majdnem mindenhol jelen
vannak, leolvasásuk általában drága olvasóeszközöket (scannereket) igényel, és ez meg-
hiúsı́tja a kódok használatának eredeti célját, hogy bármely tárgyról egyszerűen és gyorsan
információhoz juthassunk.

A vizuális kódok további elterjedését jelentősen elősegı́thetik a viselhető számı́tástechnika
(wearable computing) és a mobil gépi látás (mobile computer vision) technikai vı́vmányai.
Az okostelefonok, okosórák, okosszemüvegek és más viselhető eszközök lehetővé teszik,
hogy bárhol és bármikor leolvassunk vizuális kódokat. A széleskörű elérhetőségnek, a
fejlett számı́tási teljesı́tménynek, az intuitı́v felhasználói felületnek és a viszonylag ala-
csony árnak köszönhetően a viselhető számı́tástechnikai eszközök komoly konkurenciát
jelenthetnek a hagyományos leolvasóknak, egyúttal utat nyithatnak a kódok számos új al-
kalmazásának is. Mivel azonban ezeket az eszközöket eredetileg más felhasználási célokra
tervezték, kódolvasóként használva őket néhány területen hiányosságokat is mutatnak.

Jelen disszertációban olyan módszereket mutatunk be, amelyek ezeket a hiányosságokat
áthidalják, és ezen felül egyéb új funkciókat is lehetővé tesznek. Így a viselhető vo-
nalkódolvasás (wearable barcode scanning) új alternatı́vát kı́nál a hagyományos leol-
vasókkal szemben mind a fogyasztók körében, mind pedig ipari alkalmazásokban. A
disszertációban gyors és hatékony módszereket mutatunk be a következő problémákra
korlátozott számı́tási teljesı́tményű, módosı́tatlan viselhető eszközökön:

(i) Gyors és hatékony kódlokalizáció: A mai okostelefon-alapú leolvasó megoldások
megkövetelik, hogy a felhasználó a kódot stabilan, közel a kamera előtt tartsa. Ez gondot
okozhat okosszemüvegek esetében, mert a felhasználók körében nemtetszést válthat ki.
Másrészről a viselhető kamerák elég magas képfelbontással rendelkeznek ahhoz, hogy a
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kamerától távolabb található vizuális kódokat is képesek legyenek leolvasni, ha azokat
egy előzetes feldolgozó lépésben szegmántáljuk. Egy olyan gyors és hatékony algoritmust
mutatunk be, amely nagy digitális képeken tud egyszerre egy-, és kétdimenziós vizuális
kódokat lokalizálni. Az új módszer felülmúlja a korábbiakat pontosságában, miközben
a kód méretét, orientációját, és a kód tı́pusát tekintve nem támaszkodik előfeltételekre,
valamint kevésbé érzékeny az elmosódottsággal szemben. A modern, mobil grafikus
hardverek párhuzamos számı́tási képességeit kihasználva az algoritmus sebességét tovább
lehet növelni. A gyors kódszegmentáció lehetővé teszi egyszerre több kód leolvasását is,
amely olyan esetekben különösen hasznos, amikor egyszerre több tárggyal való interakció
szükséges.

(ii) Gyors és hatékony elmosódás-helyreállı́tás: Ha leolvasás közben a kamera vagy
a kód kis mértékben elmozdul, a lézerolvasókkal ellentétben a viselhető kamerák gyakran
olvashatatlan, elmosódott képet rögzı́tenek. Ennek a problémának a kiküszöbölésére egy
olyan gyors és hatékony algoritmust fejlesztettünk ki, amely képes rendkı́vül elmosódott
QR kódokat is leolvasni. Az algoritmus a fényképretusálásban is alkalmazott módszereken
alapul, amelyek minden lépését a QR kódok egyedi tulajdonságaihoz igazı́tottuk. Azt a
tényt használjuk ki, hogy a QR kódoknak nem szükséges vizuálisan esztétikusnak lenniük
ahhoz, hogy dekódolhatóak legyenek. A módszerünk alapja egy gyors javı́tó-dekódoló
ciklus, amely kihasználja a QR kódok speciális struktúráját. Az optimalizációs ciklusban
felváltva becsüljük a kép elmosódottságát a kód éleiből és javı́tjuk a kép minőségét QR-
tipikus regularizációt alkalmazva. Ez a rekonstrukciós módszer minőségben a jelenlegi
technikákkal azonos szintet képvisel, ám egy nagyságrenddel gyorsabb azoknál. Az
elmosódottságot nemcsak az élekből, hanem a viselhető eszközökbe beépı́tett mozgás-
szenzorokból is becsülhetjük, hogy a helyreállı́tási folyamatot még gyorsabbá tegyük.
A gyors elmosódás-kompenzáció lehetősége azt jelenti, hogy a leolvasás során nem
szükséges többé a kód pontos pozı́cionálása, a felhasználó egyszerűen elhúzhatja a kamerát
a kód előtt.

(iii) Gyors és hatékony gesztusfelismerés: A viselhető eszközök korlátozott be- és
kiviteli lehetőségekkel rendelkeznek, az interakció többnyire pár gombra vagy vékony
érintőképernyőkre korlátozódik. Ezért egy, a természetes kommunikációhoz sokkal köze-
lebb álló, gesztikuláción alapuló beviteli módszert fejlesztettünk ki, amely indirekt módon
akár más, az “okos” környezetünkben található eszközökhöz is használható. Az automati-
kusan felismerhető apró kódok lehetővé teszik a kommunikációban résztvevő eszközök
számára, hogy saját kiszolgáló elemeiket a felhasználó viselhető eszközeire “ruházzák át”.
Egy olyan tanuló algoritmust mutatunk be, amely a gesztusokat egy egyszerű, monokuláris
kamera segı́tségével is felismeri, amellyel a legtöbb viselhető eszköz rendelkezik. Az algo-
ritmus a kézi gesztusok széleskörű felismerésére képes, és valós időben fut módosı́tatlan
viselhető eszközökön. Azt is bemutatjuk, hogy módszerünk kis változtatással nemcsak a
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gesztusokat tudja felismerni, hanem a kéz és a kamera távolságát is meg tudja becsülni,
és ezáltal háromdimenziós gesztusbevitelt tesz lehetővé. Módszerünk lehetővé teszi a
vonalkódok leolvasását gombok és érintőképernyő használata nélkül, amely főként ipari
alkalmazásokban jelenthet nagy előnyt, valamint a kezelőfelület viselhető eszközökre
való átruházásával lehetővé teszi a gesztikuláción alapuló vezérlést olyan eszközökön is,
amelyek maguk nem rendelkeznek kamerával.

A disszertációhoz szemléltető példákat és bemutatókat is készı́tettünk. Az algoritmu-
sokat úgy terveztük és alkottuk meg, hogy különböző platformokon és eszközökön is
működjenek, például személyi számı́tógépeken, okostelefonokon, okosórákon és okos-
szemüvegeken – azok minden technikai korlátjára gondolva. Az eredmények, amelyeket itt
bemutatunk mind pontosság, gyorsaság és megbı́zhatóság tekintetében jelentős előrelépést
jelentenek. Segı́tségükkel a viselhető vonalkódolvasás ı́géretes alternatı́vát kı́nálhat a
hagyományos vonalkódolvasókkal szemben.

xiii





Acknowledgements

The work in this thesis would not have been possible without the help and support of
many people. First and foremost, I would like to express my gratitude to Prof. Friedemann
Mattern and Prof. Otmar Hilliges for their guidance and motivation throughout the last
five years. I greatly appreciate the freedom to choose my research topic and to follow my
passion in mobile computer vision. I also thank Prof. Dieter Schmalstieg for his valuable
feedback as co-examiner.

I thank all my colleagues and friends at the Institute for Pervasive Computing for the
joyful moments inside and outside the office: my first officemates, Wilhelm Kleiminger
and Simon Mayer for the stimulating work atmosphere, game nights and grill events.
Simon for his infinite positivism and Willi for his endless skepticism. Matthias Kovatsch
for the bananas. I appreciate that Christian Beckel will let me win in Unreal next time. All
participants of the greatest bachelor party and my first, last, and worst ski experience ever.
Furthermore, I thank Jie Song and Fabrizio Pece for all the nights and weekends we spent
together in the office, and our explorations in Chinese and Italian cuisine. I thank Mihai
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Chapter 1
Introduction

1.1 Visual codes and applications

Codes, in particular visual codes, exist since the early history of mankind with the purpose
of information transfer to others in space and time. The information contained in a code
can be anything the communicating parties agree on, let it be map symbols, numerical
systems, languages, musical notes, or others. Of particular importance in our economy are
machine-readable visual codes like barcodes and matrix codes for object identification
that allow information access on physical items.

The first barcode was patented by Norman Woodland and Bernard Silver in 1949 (US
patent no. 2612994 [249]) with the goal of making the inventories in supermarkets easier.
The idea of encoding information in bars of different size came from Morse code dots and
dashes that the authors extended to long vertical lines. The linear reading method was
inspired by the 1920’s movie industry: the authors adapted the way of sound encoding
at the edge of the film via patterns of varying transparency. The barcode was shifted in
front of a strong light bulb and could be read by a photo-multiplier tube behind the code.
Because the reading required almost complete darkness, the first barcode readers were not
practical and the idea was suspended for a while.

The first large-scale application of barcodes was installed in the railway industry for
identifying individual freight cars on the railroad, developed by David J. Collins and
standardized US-wide in 1967. The KarTrak encoding scheme used orange and blue bars
on reflective material, in principle similar to a barcode. The original Woodland-patent also
proposed an encoding scheme with concentric circles that would be readable from any
orientation, but the linear version was more practical due to its advantages in contemporary
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Chapter 1 Introduction

printing technology [273]. In 1973, the Universal Product Code (UPC) standard got
accepted in the US, the European Article Number (EAN) was introduced in Europe three
years later, and since then barcodes boosted a whole industry of automatic identification
and data capture (short AIDC).

Today, visual codes represent the most widespread object identification technology and
have a wide range of applications in both consumer, enterprise, and research domains.
There exists a wide variety of mappings between information content and visual appear-
ance, called code symbologies, but all symbologies have a well-defined special structure
usually consisting of black and white bars, circles, triangles, or squares that are easy to
detect for a machine. A few popular symbologies are collected in Figures 1.1 and 1.2.
Visual codes are usually printed on flat surfaces or displayed on flat screens, and are read
by a barcode scanner device that converts the black and white optical signal to a digital
signal. There are several different technological principles for this conversion, the most
versatile one is using a handheld computer with a camera. These scanners, however, are
very expensive and in the recent years they are being replaced by off-the-shelf personal
mobile computers like smartphones in many scenarios. Despite the many advantages
of smartphones in their technological parameters, their availability, and their price, the
performance of smartphone-based scanners is still lagging behind professional scanners.

0 123456 789104

(a) EAN13/UPC-A: 012345678910

Gabor Soros ETH Zurich

(b) Code-128: Gabor Soros ETH Zurich

0123456789

(c) MSI Plessey: 0123456789 (d) Postnet: 008092

Figure 1.1: Popular 1D barcodes generated by [272]. Code contents are indicated in the
captions.

In this thesis, we present various methods to extend the capabilities of smartphone-based
barcode scanners beyond traditional barcode scanners and generalize our methods to other
personal wearable computers like smartwatches and smartglasses, and combinations of
them. We believe that inexpensive wearable barcode scanning is an important step towards
the vision of ubiquitous information access on and interaction with physical objects. In
the rest of this section, we highlight a number of applications to hint at the ubiquity of
visual codes in our economy and to motivate the topic of the thesis.
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(a) QR code:
gabor.soros@inf.ethz.ch

(b) Data Matrix:
www.vs.inf.ethz.ch

(c) Data Matrix:
Gabor Soros vCard

(d) Aztec code:
Universitätstrasse 6, CNB H

(e) Code One:
gabor.soros@inf.ethz.ch

(f) Maxicode:
Gabor Soros

(g) PDF417:
Gabor Soros, Institute for Pervasive Computing, ETH Zurich

Figure 1.2: Popular 2D barcodes (matrix codes) generated by [272]. Code contents are
indicated in the captions.

1.1.1 Consumer applications

In the consumer domain, visual codes1 can link unlimited information to a specific product.
The widespread GTINs2 are printed on the packaging of goods in form of 1D barcodes and
allow product identification at any point of the supply chain. The GTIN is a combination of
a producer identifier and a product identifier, and note that a barcode is only one possible
representation of this GTIN identifier. While a standard barcode encodes only the GTIN,
other 2D codes can encode more information for item-level identification. This allows
the consumer to track back a specific item in the production chain. For instance, we can
look up which specific farm the product originates from. Also, by simply encoding a Web
address onto the product packaging, we can look up various kinds of information about the
product. This is an elegant way for producers to extend the packaging space with detailed
nutrition facts, descriptions in multiple languages, advertisements about complementary
products, but also user manuals and quick configuration guidelines. Crowd-sourced
online databases [102, 175] of product ratings, expert reviews, allergy checks, and price
comparisons help customers in making right purchasing decisions[277]. Merchants can
scan barcodes to check inventories or to redeem coupons.

1.1.2 Enterprise and governmental applications

In enterprise scenarios, logistics employees are scanning visual codes for delivering
parcels, tracking assets, refilling inventories, checking tickets, etc. When employees

1In the document we use the words visual code, visual tag, and barcode interchangeably
2GTIN: Global Trade Item Number, the worldwide identification standard also including Universal Product

Code (UPC), European Article Number (EAN), Japanese Article Number (JAN). They are maintained
by the non-profit international organization GS1 [293].
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(a) Grocery shopping [324] (b) Ticket control [325] (c) Product picking [274]

(d) Authentication [279] (e) Originality check [334]

Figure 1.3: Visual codes in consumer and enterprise applications

perform order picking in big logistics warehouses, they scan each item before putting
it into the basket. Following the vision of an industrial Internet of Things with highly
customizable production lanes, intelligence is embedded in smart factory machines, smart
tools, but also partially assembled smart products. A smart machine can recognize a
workpiece and can automatically decide what to do with it. Very small visual codes can
help realizing this vision. Domain-specific visual codes are applied for instance in the
medical industry (Aztec code) or in the car industry (Vehicle Identification Number). QR
codes are also widely used on e-documents, tax forms, bills, etc. as links to further infor-
mation, but also codes on business cards are becoming popular. Some financial institutes
already introduced visual transaction authentication methods like the CrontoSign visual
cryptogram (Figure 1.3d [279]). For a more secure economy, SMark (Figure 1.3e [334])
and ScanTrust [332] develop irreproducible visual codes for originality check of products.
In contrast with the wide-spread consumer use cases, employees and factory workers
usually need to carry dedicated enterprise handhelds to scan their own visual tags.

1.1.3 Visual codes in tourism and marketing

Visual codes are increasingly popular marketing elements in the tourism industry. QR
codes on landmarks link to further audio-visual content about historical events in Gibral-
tar [287] or in ’the first Wikipedia town’ Monmouth in Wales (see Figure 1.4a). A code
next to a painting in a museum provides information about the painter (Figure 1.4b),
scanning the code on a memorial can link to the biography of the famous person. In 2010,
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an interactive board game (The World Park) has been installed in the Central Park of New
York City (Figure 1.4c) with interactive QR codes (named Parkodes) that reveal the park’s
iconic history. By scanning a code, visitors can access famous location-related movie
scenes, photographs, and historical, scientific, and cultural facts. Visual codes are not only
ideal for participants of self-guided walking tours but also for the organizers because they
learn how often people use the services and can analyze walking patterns [22]. Hotels can
improve customer experience and accelerate customer feedback through QR codes.

(a) A QRpedia landmark [308] (b) Painter biography [310] (c) Interactive park [339]

Figure 1.4: Visual codes in tourism

Since black and white squares are not the most compelling marketing assets, a number
of more artistic visual codes have been developed [44] (see Figure 1.5). For instance,
Human Readable Quick Response (HRQR) codes [296] consist of specially designed
modules that correspond to human-readable characters. Half-tone QR codes [40] combine
halftoned images with conventional QR codes. The authors first learn which patterns (QR
code modules) are still readable under small transformations and blur, then build a large
dictionary of robust patterns, and decompose the image into the dictionary words. The
final image is a decodable QR code while it still appears similar to the original image.

(a) QR Artist code [323] (b) HRQR code [296] (c) Halftone QR code [40]

Figure 1.5: Artistic visual codes

1.1.4 Visual codes for interaction and augmented reality

Visual codes are also used in a number of research projects on interaction. In their work,
Rohs [182], Rukzio [185], and Roduner [181] investigate various techniques for interaction

5



Chapter 1 Introduction

between smart physical objects and mobile phones. The visual codes not only serve as
object identifiers and hyperlinks between the real and the virtual worlds, but can also
help to determine the position and orientation of an interaction device (smartphone) with
respect to the real object of interest. Through such 3D registration, the mobile device
can be turned into a magic lens, a window in the world that reveals invisible things. The
motion of the device can be translated into a diverse set of interactions with the digital
content (see Figure 1.6a). Moving the smartphone has analogies to moving an ordinary
magnifying glass in order to change the focused area and the viewing perspective. This
is called an embodied user interface because the smartphone embodies a well-known
real-world object and the user can find analogies from experiences with the real-world
object to explore the virtual functionalities [182].

As opposed to communication where high data capacity is required, augmented reality
(AR) registration markers (Figure 1.6b) contain less information and must be easily
detectable and trackable under various lighting conditions. While the code itself serves
as a registration marker, it is also possible to encode a URL3 to a model database where
we can read a 3D model and metric scales of the object for initialization of markerless
tracking [236, 237]. While polluting the environment with fiducial markers seems less
attractive, in some scenarios it is advantageous to explicitly control the users’ attention
to the AR-enabled objects. When the user knows there is AR content for an object, he
or she can explicitly enable or disable camera processing. This way, there is no need for
constant visual processing so the application can save energy. Clever design also helps to
hide visual codes into the environment, for example a Bokode (Figure 1.6c) is a simple
light dot for the human eye but it reveals lots of information for a defocused camera.

(a) A visual code widget [182] (b) AR wheel marker [344] (c) Bokode [149]

Figure 1.6: Visual codes for interaction and augmented reality

3URL: Uniform Resource Locator, an address to a resource on the Internet
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1.1.5 Visual codes for communication

Visual codes can also be used to transmit information on wireless screen-camera links
which attracted great research interest in recent years. Visible light communication
has many advantages over radio communication including no multi-path interference,
no licence fees, and privacy due to the short range and required line of sight. Earlier
attempts like motion QR codes simply display a sequence of QR codes after each other,
4D Barcode [127] extends this to different colors, COBRA [74] improves on robustness
against blur, RainBar [240] improves on robustness against segmentation errors. When
compared to the all-or-nothing decodability of previous symbologies, the multi-level
Strata [87] and the OFDM4-based PixNet [165], Focus [81], and the method of [150]
allow the receiver to decode less or more information by getting further or closer to the
code. VRCode [248], InFrame [238], ImplicitCode [198], and HiLight [135] can be
hidden in a regular video stream and are invisible to the human eye. Such codes can
be used for unidirectional communication in cinemas or at public displays, but also as
watermarks in copyrighted content without disturbing the audience.

(a) Video response code [248] (b) Strata code [87] (c) Focus code [81]

Figure 1.7: Visual codes for communication

1.1.6 Other object identification technologies

Besides visual codes, a number of other other object identification techniques have been
developed. One may expect that radio-frequency identification (RFID) or near field
communication (NFC) will soon replace visual codes. The main advantages of RFID are
the possibility of simultaneous scanning of multiple tags and no required line of sight. We
argue that visual codes will remain an indispensable object identification method because
of the limitations of radio waves in certain scenarios (e.g., metallic parts or water content,
radio interference, tag collisions). Furthermore, the high price (passive 0.07−0.15 USD,
active 25−100 USD in 2015 [320]) compared to visual codes and the lack of handling
electronic waste make radio chips less attractive.

4OFDM: Orthogonal Frequency-Division Multiplexing
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In the recent years, several commercial product recognition methods appeared based
on advanced image recognition techniques. Image recognition engines like Google
Goggles [291], Microsoft Bing Vision [306], Amazon Firefly [270], CamFind [276],
or Kooaba [301] are able to recognize book and CD/DVD covers, posters, wine labels,
etc. that link directly to specific products. One step further in this direction is 3D
product recognition by companies like Moodstocks [309], Slyce [333], Aipoly[269], or
Fashwell [284]. Visual product recognition engines, however, cannot provide us with
item-level information because all items of the product have the same appearance. The
recognition engines may also have problems with different appearance of the same product
in different countries, or very similar appearance of different products of the same brand.
As such, we argue that visual codes, and in particular 2D codes, are and will remain
important in many applications.

1.2 A short history of barcode scanners

In the beginning, barcodes were read by simply swiping a photodiode over the code. Old
scanner devices had a wand or pen-like form with a light source and the photodiode at
the tip [89, 184]. To avoid the tedious and often imprecise manual swipe movement5,
laser scanners have been developed in the 1970s that swipe a laser beam over the code
and read a slice of it by measuring the reflection [16, 221]. Swiping the laser beam can
be implemented by a rotating mirror. Stacked (extended) 1D symbologies can also be
read by making multiple passes over the code. The main advantage of laser scanners even
today is the high speed that allows scanning even if the code or the scanner is (slowly)
moving. Furthermore, some laser scanners are able to read codes at a range up to 15
meters. Aiming with the laser beam is also relatively easy for the user.

In the late 1980s, the moving laser had been replaced by a photodiode array [98] or by a
1D charge coupled device (CCD) image sensor (US patent 4874933 [186] in 1989). These
so called linear imaging scanners consist of a line of light sources and light sensors and
capture a single scanline across the code. Linear imaging is a cost-effective solution when
long range and scanning 2D codes are not required.

The need for extending the data capacity of codes and the reducing cost of 2D imaging
technology pushed the emergence of 2D symbologies (for instance, QR code [157]) and 2D
scanners called area imaging scanners (US patent 5378883 [18] in 1995). An area imager
is essentially a low-resolution high-speed camera and a light source. The main advantage
of area imagers is their ability to read any symbology while laser scanners cannot read 2D

5Note that varying swipe speed over the code might lead to false decoding
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1.2 A short history of barcode scanners

codes as there is no swipe pattern that would work from any orientation. Therefore also
producers of traditional scanning hardware started to shift towards 2D sensors [244], and
we also focus on this general domain. A 2D imager can be also easily extended with photo
capture and document scanning functionality. However, compared to laser scanners, area
imagers have a limited, typically 5−30 cm working range that stems from the relatively
low resolution of the image sensor. The camera’s typical spatial resolution is in the range
of 640×480 to 800×600 pixels, and the typical temporal resolution is up to 60 Hz with
a global shutter [295]. Today, area imagers built into handheld computers represent the
most versatile tools for scanning visual tags. Examples of such handheld scanner devices
are illustrated in Figure 1.8.

(a) Intermec SG20 handheld
wireless scanner, $252.94
[299]

(b) Symbol DS6878-SR cord-
less 2D imager and base
station, $620.00 [338]

(c) Intermec CN70 heavy-
duty mobile computer,
$1,290.00 [298]

Figure 1.8: A few current handheld area imager models. Prices are from Amazon.com in
February 2016

In the late 2000s, programmable smartphones and tablets with built-in cameras appeared
and boosted the adoption of visual tags and consequently many new application areas
opened in the consumer domain [104]. Scanning products by simply taking our smartphone
out of our pocket enables convenient mobile interaction and a wide range of services,
which lead to an increasing interest in robust barcode scanning engines for smartphone
apps. In 2011, Adelmann [2] presented a method for robust and fast scanning of defocused
barcodes. Before 2010, smartphone cameras had no autofocus (AF) and were usually not
optimized for capturing close objects. Even with more expensive models with a macro
mode available, the user had to precisely align the code at a certain distance. Compared to
a handheld laser scanner, this heavily deteriorated the user experience. The new blurry
decoder algorithm made scanning without AF possible, and enabled very fast scanning
when AF-cameras appeared, because the algorithm was able to decode images even before
focusing actually succeeded. Blurry barcode scanning made companies like RedLaser
(now owned by eBay) [327] and Mirasense (now Scandit) [331] a commercial success.

The professional barcode scanners in enterprises are expensive (cf. Figure 1.8) and
therefore available to a limited number of employees only. The proprietary protocols of

9



Chapter 1 Introduction

dedicated scanners are also rather difficult to integrate into business applications. On the
other hand, almost every employee has a smartphone today with extensive processing
and sensing capabilities, with a wide variety of applications, and with an intuitive user
interface. The camera of a smartphone is often much better than any area imager on the
market, and advanced features like character recognition [267] and high-quality document
scanning [281] can also be easily added as software features. Also, in contrast to area
imagers, the resolution of today’s smartphone cameras is high enough for scanning
multiple codes at a distance. This, and other advantages, encourage the use of off-the-shelf
smartphones as a replacement for traditional scanner devices.

In summary, visual codes that are traditionally rooted at enterprise applications transi-
tioned to the consumer domain, where the fast technological advancements in consumer
hardware allowed wide adoption and opened up possibilities for numerous new applica-
tions. Bringing the cheap and versatile smartphone scanners from consumers now back to
the enterprises offers many advantages over the use of traditional scanners. Putting the
smartphone in a ruggedized case can also protect it from environmental conditions. From
a business process perspective, there lies great potential in a ubiquitous, smartphone-based
scanning solution because it allows every employee to have a programmable barcode
scanner and to access information on every item across the value chain.

1.3 Wearable barcode scanning

We argue that for an even broader adoption of visual tags, scanners must be very easy to use
and must be available to everyone, everywhere, everytime. We propose to bring barcode
scanning functionality not only to tablets and smartphones but also to smartwatches,
smartglasses, and other personal wearable devices (see Figure 1.9). These emerging
devices – and most importantly their combinations as we will see later – bear the potential
to unify the advantages of long-range laser scanners with the versatility of area imagers,
in addition to their original features. In the rest of the thesis, we will refer to barcode
scanning with personal wearable computers, i.e., with devices that were not primarily
designed for barcode scanning, as wearable barcode scanning. Figure 1.12 illustrates this
transition from traditional scanner devices to the emerging class of new devices.

The idea of a wearable barcode scanner is not new, there exist several specialized devices
for this purpose. The first hands-free body mounted laser scanner was already patented
in 1993 [117]. The main problem with these devices is that they are very expensive
with only limited applicability. Figure 1.10a illustrates the i.d.Mate Quest hand-mounted
barcode reader device for visually impaired people. The built-in mini computer can access
a database of products and read out loud the name of the scanned product. The Zebra
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(a) Smartphones [342] (b) Smartwatches [343] (c) Smartglasses [341]

Figure 1.9: A few current personal wearable computers.

CS1504 keychain scanner is a very small laser scanner with internal memory that stores
the scanned IDs. As the device has no radio unit, the IDs can be transferred to a computer
via cable only. The Honeywell 8650 scanner ring is worn on the finger and is connected
to a Bluetooth unit on the wrist. The Bluetooth unit then transmits the scanned IDs to a
mobile computer or a fixed external computer. In turn, smartwatches and smartglasses
offer a much wider applicability and we believe they can become powerful alternatives of
dedicated wearable scanners.

(a) i.d. Mate Quest 1D
product scanner for vi-
sually impaired people,
$1,299.00 [297]

(b) Zebra Technologies
CS1504 keychain
laser barcode scanner,
$129.99 [350]

(c) Honeywell 8650 Blue-
tooth Ring Scanner,
$1,148.00 (without
computer) [294]

Figure 1.10: Wearable dedicated barcode scanners. Prices are from Amazon.com in
February 2016

We are inspired by the success of smartphone-based scanning in customer scenarios
and the success of head-mounted displays in order picking scenarios. Order picking is the
task of collecting specific items into a basket in a large warehouse. It is an important and
labour-intensive step of logistics and supply chain operations. Order picking is a monotone
task that is prone to mistakes in the collected items which leads to customer dissatisfaction.
Therefore, various systems have been developed for assisting employees in doing the
task: pick-by-paper (list), pick-by-voice (audio guide), pick-by-light (notification lamps),
pick-by-HMD (head-mounted display), etc. [60, 67, 174, 242].
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Head-mounted displays are particularly useful in providing instant visual feedback
such as navigation hints [112], an attention tunnel [174], or directly highlighting the
next object [67] in form of augmented reality. It has also been shown that HMD-based
picking solutions outperform other approaches in speed [250]. They are also preferred
by employees due to lower mental workload [250]. Scanning barcodes on each picked
item can ensure a low pick error rate, but current solutions require explicit scanning
with a laser scanner. Our vision of wearable barcode scanning allows implicit scanning
with smartglasses while putting an item into the basket. Concurrently, the first head-
mounted code scanner was patented in 2014 [220] and the first commercial solutions
(Ubimax [340], iTiZZiMO [300], Picavi [319], etc., see Figure 1.11) appeared. Wearable
computers can also extend our physical and mental capabilities. For example, smartglasses
enable vision enhancement [91], vision augmentation [21, 92, 143], automatic task logging
and reporting [189], but also instant object recognition and interaction [145]. Live video
transfer with smartglasses enables “eye swapping” between a specialist and a technician
in the field [321]. The specialist in the service center can guide the local technician and
even send documents to the technician’s wearable display.

(a) Maintenance [275] (b) Logistics [319] (c) Order picking [319]

Figure 1.11: A few industrial use cases for smartglasses. Image credits: Brückner Servtec
Callisto [275], Logcom GmbH Picavi [319])

Device CPU Memory Display Connectivity Camera Other
Intermec
CN70
(2015)

1 GHz 512 MB 640×480
touch screen

WLAN,
WAN (UMTS),
Bluetooth

5 MP keyboard,
laser aimer
(no laser
scanner),
GPS

Motorola
Nexus 6
(2014)

quad-core
2.7 GHz

3 GB 2560×1440
touch-screen

WLAN,
WAN (LTE),
Bluetooth

13 MP GPS

Osterhout
R-7
(2016)

quad-core
2.7 GHz

3 GB 1280×720
see-through
(2×)

WLAN,
Bluetooth

5 MP still,
2.1 MP video
@ 120 Hz

GPS

Table 1.1: Hardware comparison of current scanner, smartphone, and smartglasses models.
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If we compare computing aspects, a current-generation smartphone is actually much
more powerful than a current-generation handheld scanner computer. Table 1.1 compares
the top-of-the-line Intermec CN70 heavy duty mobile computer (Figure 1.8c) with a
Motorola Nexus 6 smartphone. Except the laser aimer, the large battery, and the protective
casing, a smartphone beats the scanner in almost all parameters. Smartglasses and smart-
watches are also quickly following up in computing power, the hardware specifications of
the recent Osterhout R-7 [317] smartglasses are close to that of the smartphone two years
ago.

Personal wearable computers are becoming important parts of our daily lives and
hence it is a straightforward idea to apply them as barcode scanners (see Figure 1.12) in
addition to their intended usecases. Barcode scanning with personal wearable computers
is attractive for many reasons:

• good processing power (CPU, GPU, DSP – driven by mobile entertainment)
• very good cameras (compared to area imagers) and other sensors
• high-resolution display
• constant wireless connectivity
• seamless connectivity between the devices
• multimodal input and output, intuitive user interface
• convenient, ergonomic form factor
• easy application development and business process integration
• flexible update with new functionality as software plugins
• wide accessibility
• barcode scanner applications are available for free [331, 349, 351]

However, combining wearable devices unlocks even more advantages. The smartglasses
share the user’s viewpoint, the smartwatches provide a convenient touch screen and
pedometer, while the smartphone has advanced sensors and fast Internet connectivity. The
camera of any device can be applied to scan visual codes and to provide instant navigation
hints. The smartphone can take the role of the main computation hub and the other devices
can assist the user and enable cross-device interaction with other smart objects in the
environment [145].

Overall, personal wearable computers can become strong competitors of traditional
scanners and enable new use cases for barcode scanning. The unifying theme of this
thesis is barcode scanning with off-the-shelf mobile and wearable devices, which bears
the potential of widely extending the possibilities of information access on the go. Our
long-term goal is to bring the comfort, the productivity, and the business opportunities
of wearable barcode scanning also to the professional users who are accustomed to the
performance of laser scanners.
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Figure 1.12: Traditional barcode scanning (left three photos) vs. wearable barcode scan-
ning (right four photos). Typical wearable scanning scenarios: 1.) ’shopping’
scan with a handheld camera, 2.) ’checkout’ swipe past a static camera, 3.)
’shopping’ scan with a watch 4.) ’glasses’ scan with a head-worn camera.

1.4 Research problems and contributions

As discussed above, visual codes represent important physical-virtual links in our digi-
tally augmented environments, and wearable computers offer plenty of advantages over
traditional barcode scanners in addition to their great original features. However, we also
have to overcome a few difficulties that arise when using wearable cameras instead of
laser scanners (see Figure 1.13). For example, wearable computers come without a laser
aimer which makes code positioning more difficult. Even though the spatial resolution of
wearable cameras is often high enough to capture multiple codes, the temporal resolution
is usually lower than that of area imagers which might lead to motion blur in the captured
images. Furthermore, wearable cameras apply a rolling shutter instead of a global shutter
that may introduce severe distortions in the image when the code is moving (on a conveyor
belt, for instance). Even if cameras in smartglasses offer perhaps the most advantages,
smartglasses have very limited input capabilities compared to handheld devices.

In this dissertation, we describe methods that overcome these limitations and add
advanced features that can make wearable barcode scanning an attractive alternative
to traditional barcode scanning even outside the consumer domain. Our algorithmic
contributions can be divided into three areas: visual code localization, blur compensation,
and gesture control. We propose fast and robust solutions to these problems that leverage
the capabilities of the latest generation of wearable computers, in particular their cameras,
sensors, and GPUs.
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Figure 1.13: Challenges in wearable barcode scanning: lack of laser beam for localization,
(multiple) small codes, defocus and motion blur, lack of robust and efficient
user input (image credit: [319])

1.4.1 Fast and robust visual code localization

In many existing smartphone-based barcode scanning solutions, a possible way to reduce
the computational cost is to limit the scanning algorithm into a search window and along a
predefined scanline over the camera image. The user is required to hold the product close
to the camera and align the code into the search window. This is especially problematic
with smartglasses and leads to lower user acceptance. A related issue is the lack of a laser
beam that shows where the scanner is currently reading. The need for continuous code
re-alignment in the image frame can easily lead to user frustration. Therefore, we must be
able detect codes in the full image area and provide immediate visual feedback to the user.

The resolution of wearable cameras is typically high enough to scan visual tags that
are further away (about 1m range) once the tags are segmented in a preprocessing step.
Scanning multiple codes will become straightforward if a localization method can produce
and store code probability maps (i.e., a map of possible code candidates in a large image)
in an intermediate step. The ability to scan multiple codes simultaneously is one of the
key advantages over laser scanners and traditional low-resolution area imagers. Hence,
our first challenge is visual tag localization in large digital images, especially in case of
small codes, distant codes, and blurry codes.

We propose a fast algorithm for joint 1D and 2D visual tag localization in large digital
images. We focus on two prevalent examples: 1D EAN/UPC barcodes and 2D QR-codes
that have different characteristics. Our proposed localization method outperforms existing
methods in terms of accuracy while it is invariant to scale, orientation, code symbology,
and is more robust to blur than previous approaches. We further optimize for speed by
exploiting the parallel processing capabilities of mobile graphics hardware for image
processing. Fast code segmentation enables scanning multiple codes at the same time and
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Figure 1.14: Our localization method is able to detect 1D and 2D symbologies at various
scales. Left: input image. Right: code probability map overlaid on the image

thus helps for instance in assembly scenarios where interaction with multiple objects is
necessary.

1.4.2 Fast and robust motion blur compensation

In contrast to the performance of laser scanners, smartphones and wearable cameras
suffer from various types of image degradation such as defocus blur or motion blur. Blur
can make the scanning difficult or even impossible without image enhancements. These
limitations make the use of wearable computers less attractive in enterprise applications
where scanning speed and reliability are of great importance. Professional users are
accustomed to the performance of laser scanners and are unwilling to hold the devices
steady or to carefully align the barcode with a wearable camera.

Defocus blur can already be successfully compensated in commercial applications. Mo-
tion blur is a more general and mathematically more complex form of image degradation
caused by slight motion of the camera or the code during scanning (see Figure 1.15). The
problem of removing motion blur from photographs has been widely studied in the past
decade but besides being slow, the existing algorithms are optimized for natural images
and typically fail on artificial visual tags.

We build upon existing work in photograph deblurring and develop a fast algorithm
for scanning motion-blurred QR codes on mobile devices. We exploit the fact that QR
codes do not need to be visually pleasing for decoding and propose a fast restoration-
recognition loop that exploits the special structure of QR codes. In our optimization scheme
we interweave blind blur estimation from the edges of the code and image restoration
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Figure 1.15: Top: When the camera or the scanned object move even slightly during
scanning, the captured visual codes become distorted by motion blur and
conventional decoder algorithms cannot decode them. Bottom: We propose
a fast blur removal algorithm that allows the scanning of motion-blurred QR
codes.

regularized with typical properties of QR code images. Our proposed restoration algorithm
is on par with the state of the art in quality while it is about a magnitude faster. We also
propose to combine blur estimation from image edges with blur estimation from built-in
inertial sensors to make the restoration even faster. Fast blur compensation means that no
precise code alignment is required but the user can simply swipe the camera in front of the
code.

1.4.3 Fast and robust gesture control

The input capabilities of traditional barcode scanners are usually limited to a set of buttons.
Smartphones offer convenient touch screens but are hard to operate when wearing gloves.
Hands-free operation is certainly one of the biggest advantages of using smartglasses over
using any handheld device. In our vision, the user just needs to look in the direction of a
visual tag that automatically gets localized and scanned, while the user’s hands remain free
to concentrate on the actual task. As the wearable camera is always on for scanning, we
can also use the visual channel for natural hand gesture input to our wearable computers,
but also to other smart objects in our environment. In particular, smart appliances and
other connected machines in our smart environment can be automatically recognized based
on their tiny visual tags, and these machines can “outsource” their own user interface to
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our wearable devices. Such a mechanism brings expressive vision-based gesture control
even to those appliances that do not posses an own camera.

Figure 1.16: Left: The small buttons and slim touchpads of personal wearable computers
are hard to operate when wearing gloves. Images from [288]. Right: We
enable 3D in-air hand gesture control using the simple built-in RGB camera
of the wearable devices.

Gesture input so far has required either special hardware instrumentation, special gloves,
or energy-consuming depth cameras. Our goal is to enable simple gesture control with the
built-in camera of smartglasses. We present a machine learning technique to recognize
hand gestures with only a single camera now commonplace on off-the-shelf devices. The
algorithm robustly recognizes a wide range of in-air gestures and runs in real time on
commercially available wearable devices. We further show that with little modification,
our method can not only classify the hand gestures but can also regress the distance of
the hand from the camera. Such 3D in-air gesture control allows hands-free scanning
with smartglasses and brings many advantages in smart environments. A large part
of the gesture recognition results stem from joint work with the Advanced Interactive
Technologies group of ETH Zurich, which is marked at the respective parts in the text.

1.5 Positioning and structure of the thesis

This thesis can be positioned at the intersection of several computer science disciplines.
Linking the physical and virtual worlds – via visual codes or via other means – is a long-
standing problem in ubiquitous computing research. We primarily deal with visual signals,
i.e., signals of mobile computer vision all over the thesis. We learn from well-established
methods in texture detection and blur removal from the vast literature on image processing.
Furthermore, we combine various sensor modalities to improve our images which is has
been long investigated in the field of computational photography. We also propose new
techniques for human computer interaction. Finally, in the whole thesis, we specifically
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target a new class of emerging devices that originate from decades of research in wearable
computing. We will see how generally very difficult visual computing problems such as

Figure 1.17: This thesis can be positioned at the intersection of several computer science
disciplines.

object detection, image restoration, and shape classification can still have fast and robust
solutions even on resource-constrained wearable devices when we restrict ourselves to a
specific domain of binary images – visual codes and hand silhouettes.

The thesis does not describe a single line of research but rather describes a selection of
techniques related to wearable computers and visual codes. The main technical chapters
form self-contained individual entities and can be read separately. Parts of the contributions
stem from collaboration with other researchers and students, therefore the document is
formulated in the more inclusive scientific plural. Contributions of other people are
explicitly marked in the text, and summarized in a contribution statement in Section 5.1.5.

The structure follows the order of our contributions outlined above. Chapter 2 deals with
fast and robust code localization, Chapter 3 is about fast and robust blur compensation,
while Chapter 4 is devoted to fast and robust in-air gesture control. Finally in Chapter 5,
we summarize our findings and propose directions for future research. A review of
previous work and the description of necessary mathematical tools are included in the
respective chapters and in the Appendix. A large part of the results described in the thesis
has been peer-reviewed and presented at conferences, these publications are also listed
below (Section 1.6) and referenced at the corresponding chapters. All our algorithms are
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implemented on mobile and wearable devices and have been demonstrated along with the
publications. The appendix describes the content of accompanying videos recorded during
the demonstrations.

1.6 Publications on parts of the thesis

This dissertation presents research that has also been published in the following papers.

[208] Gábor Sörös, Christian Floerkemeier – Poster: Towards Next Generation Barcode
Scanning, In Proceedings of the 11th ACM International Conference on Mobile and
Ubiquitous Multimedia (MUM 2012), Ulm, Germany, December 2012

[209] Gábor Sörös, Christian Flörkemeier – Blur-Resistant Joint 1D and 2D Barcode
Localization for Smartphones, In Proceedings of the 12th ACM International Conference
on Mobile and Ubiquitous Multimedia (MUM 2013), Lulea, Sweden, December 2013

[206] Gábor Sörös – GPU-Accelerated Joint 1D and 2D Barcode Localization on
Smartphones, In Proceedings of the 39th IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2014), Florence, Italy, May 2014

[145] Simon Mayer, Gábor Sörös – User Interface Beaming - Seamless Interaction with
Smart Things using Personal Wearable Computers, In Proceedings of the 11th International
Conference on Wearable and Implantable Body Sensor Networks (BSN 2014) Workshop
on Glass & Eyewear Computers, Zurich, Switzerland, June 2014

[204] Jie Song, Gábor Sörös, Fabrizio Pece, Sean Fanello, Shahram Izadi, Cem Keskin,
Otmar Hilliges – In-air Gestures Around Unmodified Mobile Devices, In Proceedings of
the 27th ACM User Interface Software and Technology Symposium (UIST 2014), Honolulu,
Hawaii, USA, October 2014

[203] Jie Song, Fabrizio Pece, Gábor Sörös, Marion Koelle, Otmar Hilliges – Joint Esti-
mation of 3D Hand Position and Gestures from Monocular Video for Mobile Interaction,
In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI 2015), Seoul, South Korea, April 2015

[210] Gábor Sörös, Severin Münger, Carlo Beltrame, Luc Humair – Multiframe Visual-
Inertial Blur Estimation and Removal for Unmodified Smartphones, In Proceedings of the
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23rd International Conference on Computer Graphics, Visualization and Computer Vision
(WSCG 2015), Plzen, Czech Republic, June 2015

[205] Jie Song, Gábor Sörös, Fabrizio Pece, Otmar Hilliges – Extended Abstract:
Estimation of 3D Hand Position and Gestures on Unmodified Wearable Devices, In
Proceedings of the IEEE Workshop on Observing and Understanding Hands in Action
(HANDS 2015), in conjunction with the 28th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2015), Boston, MA, USA, June 2015

[212] Gábor Sörös, Stephan Semmler, Luc Humair, Otmar Hilliges – Fast Blur Removal
for Wearable QR Code Scanners, In Proceedings of the 19th International Symposium on
Wearable Computers (ISWC 2015), Osaka, Japan, September 2015
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Chapter 2
Visual code localization

This chapter presents a new method for finding 1D and 2D visual codes in large digital
images captured by smartphones. Most parts of the results have been published in [206]
and [209].

2.1 Introduction

In wearable barcode scanning, code localization is an important preprocessing step that
quickly scans the entire camera image and passes code candidates to the actual decoder.
The ideal code localization algorithm is scale-, orientation-, symbology- and blur-invariant
(see Figure 2.1) and operates in real time on the entire camera image. Scale-invariance is
important because visual codes are printed in different form factors and the distance to the
smartphone camera can vary. Orientation invariance is necessary because the user will not
always place the code exactly horizontally in the camera image. There are also a number of
different code symbologies that need to be successfully detected by the code localization
algorithm. These include linear 1D barcodes such as those found on consumer products
and on logistical labels like EAN13, UPC12, CODE39, CODE128 (see Figure 1.1) and
2D codes such as the popular QR codes, but also DataMatrix and PDF417 codes (see
Figure 1.2). Enterprise applications may require scanning 1D and 2D symbologies by
the same algorithm without explicit switching by the user. Since the latest commercial
barcode decoders can also decode blurry barcodes, it is also important to localize blurry
barcodes in camera images. Blurry barcode images can result from a fixed focus camera,
a barcode being placed too close to the camera or the camera focusing on the distant
background when the barcode is small (cf. Figure 2.1 right). Previous work focused only

23



Chapter 2 Visual code localization

on selected aspects of the requirements mentioned above such as orientation invariance
and speed for 1D codes or scale invariance for 2D codes.

Figure 2.1: Visual code localization in digital images poses four main challenges: different
scales, different orientations, different symbologies, blur.

In this chapter, we present a code localization approach that is orientation, scale,
and symbology (1D and 2D) invariant and shows better blur invariance than existing
approaches while it operates in real time on a smartphone. Our probability maps of code
locations over the image are derived from the structure matrix and the saturation in the
HSV color system. The comparison with three other real-time code localization algorithms
that represent the state of the art shows that our approach outperforms existing ones with
respect to symbology and blur invariance at the expense of a reduced speed. Besides the
efficient CPU version, we present the parallel implementation details of the algorithm
on mobile GPUs. The different steps of the localization algorithm can be formulated as
OpenGL ES 2.0 fragment shaders, and both 1D and 2D barcode saliency maps can be
computed directly on the graphics hardware. The fragment shaders are portable between
all tested wearable platforms. The presented method can detect barcodes and QR codes
at various scales and orientations at 22 frames per second in HD resolution images on a
current generation smartphone. In the next section, we give an overview of previous work
on 1D and 2D tag localization and summarize what we can learn from previous methods.

2.2 Related work

The wearable barcode scanning pipeline consists of several steps. In the initial step,
video frames are acquired from the camera. The frame rate is usually between 5 and
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30 frames per second and the resolution in video mode is typically between 640×480
and 1280× 720 pixels depending on the required quality and speed of processing. In
practice, the scanning algorithms must be limited to a small search window in the image
because (blurry) decoding is computationally complex. Due to the lack of a laser beam,
the users do not see where the scanner is currently reading. Thus they often struggle with
continuously aligning the barcode at a dedicated position and angle within the search
window. To maximize ease of use, barcodes need to be scanned in the entire camera image.
For that a quick barcode localization algorithm is required that selects possible barcode
candidates before a particular scanline through the code is decoded using approaches such
as Scandit [331], RedLaser [327], or ZXing [351].

Despite the fact that barcodes have an apparent structure for the human eye, the fast
and robust localization in digital images is still an active research area. The different ap-
proaches presented previously can be categorized by the image processing technique used.
Previous work on 1D localization includes simple image filters, orientation histograms,
line detection approaches, morphology operators, Gabor filters, and harmonic analysis.
2D localization has been previously implemented via image thresholding and scanning,
via orientation maps, or via combinations of line/corner/square detection.

2.2.1 Localization of 1D barcodes

Simple image filters combine various low-level image features (e.g., image gradients,
intensity variance, etc.), and try to find bar-like structures [11, 63, 234, 257]. They offer
a good compromise when accuracy is not crucial but localization speed is an important
aspect in the application. Ando and Hontani [11] detected sharp 1D barcodes by classifying
image regions to plain, uni-directional, and omni-directional areas and by inspecting the
transitions between those areas. Gallo et al. [63] presented a very fast barcode localization
technique that despite its simplicity outperforms many complex methods. However, it
works only with a single sharp code that lies horizontal (less than 30◦ rotated) in the
image. For each pixel, the algorithm calculates the measure m = |Ix|− |Iy| where Ix and Iy

stand for image derivatives in x and y directions, respectively, and |X | denotes the absolute
value of X . The temporary image m is then blurred with a box filter and binarized by
Otsu’s method [159]. The idea behind this approach is that horizontally oriented barcodes
have strong gradients in the x direction but no gradients in the y direction, so m is very
high at bars in a barcode. The box filtering connects the bars into a region. To find the
axis-aligned bounding box of the code, Gallo et al. first find the maximum value in m
(assuming this is within the barcode region) and search in four directions on the binarized
image for the region boundaries. Finally, a rectangle is fitted on the four endpoints. We
also apply some of these ideas in our approach.
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Chapter 2 Visual code localization

Orientation histograms are used for 1D barcode localization by Tekin and Cough-
lan [230]. Their algorithm is part of the BLaDE barcode scanning aid for visually impaired
users who have difficulties with aligning codes in a search window. The algorithm builds
a histogram of gradient orientations for each 20×20 patch in the image, calculates the
entropy (peakedness) of the histogram, and finds its dominant orientations. The patches
are then clustered according to their orientation. The resulting regions are tested for
alternating edges in their dominant orientation and the most likely barcode candidate is
selected. This approach provides orientation invariance but the patch size has to be tuned
carefully to the expected code scales. Also many other algorithms look at the distribution
of the gradient orientations over image patches; sharp 1D codes have a single peak and 2D
codes have two peaks 90◦ apart. However, when the image gets blurred, many of the thin
bars disappear and the code breaks into many disconnected parts. The blur also flattens the
orientation histogram of a 2D code, it “smears” the gradients in practically all directions
making the common localization algorithms fail.

Line detection with Hough transform has also been used to estimate the orientation of
a single barcode close to the camera with little background clutter [1]. Line detection
methods are also useful for finding 2D codes. Dubska et al. [49, 222] presented a fast
localization algorithm that successfully distinguishes 2D codes from text. However, to
detect a sufficiently large number of lines, the code must be fairly prominent in the camera
image.

Mathematical morphology is another tool for detecting bar structures. Combinations
of image erosions and dilations enhance barcode areas but these algorithms tend to
produce frequent false positives and will always be constrained by the proper choice of
the structuring elements. Detection at different scales requires a search with multiple
structuring elements which can be a rather slow process. An overview on morphological
localization can be found in the work of Katona et al. [105]. The authors also propose an
alternative approach that uses bottom-hat filtering and a distance map and achieve over
90% detection rates in their simulations. Their method can be extended to combine 1D
and 2D localization but it often classifies text areas as part of a code.

Gabor filters are combinations of different Gaussian and sinusoid functions that model
the edge-sensitivity of the human primary visual system. They can be used to detect stripe
patterns at any orientation and scale. Concrete examples in localization include [124, 239].
These methods offer scale and rotation invariance but tend to be slow.

Harmonic analysis approaches transform the image into the Fourier, DCT, or Wavelet
domain and look for barcode-specific features. Examples include [72, 119]. We consider
these methods to be too complex for real-time barcode scanning on smartphones.
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2.3 Fast joint 1D and 2D code localization

2.2.2 Localization of 2D barcodes

2D-specific methods for codes like DataMatrix, QR, etc., rely on the codes’ apparent black
and white rectangular structures and special finder patterns with given black-white signal
ratios. The typical localization pipeline consists of image thresholding and line-by-line
search in the binary image for the finder patterns. Obviously, if the finder patterns are
degraded by blur the black-white proportions do not follow the standards anymore.

Alfthan’s work [6] is devoted to localizing QR codes in blurry images with three
different approaches. First, the author trains an SVM on color and intensity variance
features extracted from QR codes. This approach can successfully separate the code
area from text but is not scale-invariant. The second, morphology-based method requires
precise parameter tuning. Third, the author tries to find the white square support of the
code in Hough-space, which is inherently influenced by the success of the underlying edge
detection.

Xu et al. [255] presented the first method to localize and also deblur linearly blurred 2D
codes using a special camera. They localize the blurry code based on intensity variance,
Harris corner density [75] and background substraction. The authors rely on the fact that
corners are less sensitive to motion blur than edges so the many corners of a 2D code can
still be found in a blurry image.

In summary, there is a vast amount of literature on localizing barcodes in digital images,
but none of the existing approaches focuses on all four identified challenges. The existing
algorithms usually need to trade accuracy and robustness for speed and make certain
assumptions about code orientation, code scale, or code symbology. Existing algorithms
often have difficulties with defocused or motion-blurred images because blur distorts the
barcode structures. We developed a combined approach that addresses orientation, scale,
symbology, and blur invariance together.

2.3 Fast joint 1D and 2D code localization

In this section, we present a new localization algorithm for 1D and 2D codes that also
works with blurry images. We rely on the facts that 1D codes consist of black and white
parallel bars while 2D codes have a black and white grid structure. The grid corners
of 2D codes are less sensitive to blur and stay apparent also in blurry images. In our
combined algorithm, we search for areas with high concentration of edge structures as well
as for areas with high concentration of corner structures. We derive two separate barcode
probability maps from the structure matrix for 1D and 2D codes. The two maps can be
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calculated very efficiently at the same time. To further speed up the sharp localization and
to allow blurry localization, we also rely on information from the HSV (hue, saturation,
value) color channels, an approach that – to the best of our knowledge – has not been
proposed before.

2.3.1 Structure matrix

Our goal is to find image areas with many edges and corners. We combine the derivations
of Harris [75] and Ando [10] who both defined edge and corner measures based on the
structure matrix (also called second moment matrix). As we will see, using the structure
information instead of simply the gradient like other methods can enhance the robustness
against blur.

The intuition behind the structure matrix is that when we shift a patch around within its
small neighborhood and compare it with the underlying pixels, we can distinguish between
flat, edge, and corner areas (see Figure 2.2). In a flat image area, the image intensities are

Figure 2.2: Flat, edge, and corner image areas can be distinguished by shifting a patch
and comparing it with its small neighborhood. Figure adapted from [75].

the same in any direction, in an edge area the change is small in one direction while large
in a perpendicular direction, while in a corner area the change is large in any direction.
These changes can be captured in mathematical form in various similar ways. While
Harris approached the problem from approximating the local autocorrelation function of
the image, Ando looked at the covariance of the x- and y-gradients. In fact, both methods
calculate the structure matrix in the first step.

The E window-averaged change in patch intensity for the shift (u,v) can be written as:

E(u,v) = ∑
x,y

w(u,v) [I(x+u,y+ v)− I(x,y)]2
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2.3 Fast joint 1D and 2D code localization

Now, if we consider the second-order Taylor series expansion of E(u,v) for small shifts,
we arrive at the bilinear approximation

E(u,v)≈
[
u v

]
M
[

u
v

]
The 2×2 structure matrix M is calculated for each pixel p as:

M =

[
< I2

x > < IxIy >

< IxIy > < I2
y >

]
=

[
Cxx Cxy

Cxy Cyy

]

where Ix and Iy are the image derivatives in x and y direction. The entries Ci j are calculated
over the D neighborhood of the pixel p with a box or Gaussion window function w:

Ci, j = ∑
(x,y)∈D

w(x,y)Ii(x,y)I j(x,y)

The structure matrix M has a number of important properties. It is a Hermitian (self-
adjoint matrix) matrix, i.e., M = transp(con j(M)), so its eigenvalues λ1 and λ2 are always
real, and its eigenvectors form an orthonormal basis. The two eigenvectors are in fact the
principal components of the ellipse that M describes (ellipse equation E = c constant), and
show the directions of the fastest and slowest change in E. The two eigenvalues show the
rate of change, i.e., are proportional to the principal curvatures of the local autocorrelation
function [75], and are also proportional to the variances of the two principal components
of the (Ix,Iy) distribution [10].

Figure 2.3: Flat, edge, and corner image areas can be distinguished by inspecting the
eigenvalues of the structure matrix. Figure adapted from [75].

We found that the calculation of the derivatives of the discrete image is indeed an
important factor for robustness to barcode orientation. Because calculating the image
gradient via the common [1,−1] and [1,−1]T filters produces relatively large errors at
slanted edges, we chose for the optimized derivative filters of Farid and Simoncelli [57]
that improved our detection rates.
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2.3.2 Edge and corner maps

We can now distinguish between flat, edge, and corner image areas by looking at the
eigenvalues of the structure matrix (see Figure 2.3). The λ eigenvalues of the structure
matrix are the solutions of the quadratic equation∣∣∣∣Cxx−λ Cxy

Cxy Cyy−λ

∣∣∣∣= (Cxx−λ )(Cyy−λ )−C2
xy =

= λ
2− (Cxx +Cyy)λ +CxxCyy−C2

xy = 0.

Using Vieta’s formulas, the two solutions λ1 and λ2 satisfy

λ1 +λ2 =Cxx +Cyy = trace(M)> 0

λ1λ2 =CxxCyy−C2
xy = det(M)> 0

The discriminant of the quadratic equation is always non-negative:

(Cxx +Cyy)
2−4(CxxCyy−C2

xy) = (Cxx−Cyy)
2 +4C2

xy ≥ 0.

This means that both λ1 and λ2 are real and non-negative and therefore the inequality
of their additive and multiplicative average must hold. By taking the ratio of their mul-
tiplicative average to their additive average, one can define the homogeneity measure
m2:

m2 =
( √

λ1λ2

(λ1 +λ2)/2

)2
=

4(CxxCyy−C2
xy)

(Cxx +Cyy)2

Since if λ1,λ2 > 0, we have

0≤
√

λ1λ2 ≤ (λ1 +λ2)/2

the measure m2 is dimensionless and is normalized such that 0≤ m2 ≤ 1. Let us define a
complementary measure m1 as

m1 = 1−m2 =
(Cxx−Cyy)

2 +4C2
xy

(Cxx +Cyy)2

which is also dimensionless and is normalized such that 0≤ m1 ≤ 1. To avoid division
by zero in flat image regions, we add a small number ε to the denominators. Ando
proves the following properties: (1) m1 reaches 1 where the image intensity varies one-
dimensionally (edges and ridges), (2) m2 reaches 1 where the image intensity changes
with circular symmetry or with rotational periodicity with a period π/2 (checkerboard
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corners). We also note here that Harris defined the cornerness as det(M)−k∗trace(M)2 =

(CxxCyy−C2
xy)− k ∗ (Cxx +Cyy)

2 with k = 0.05, which is similar to the form of m2. For
more mathematical details, we refer to [10] and [75].

2.3.3 Block filtering

So far, we have defined the measure m1 which is strong at edge structures in any orientation
and the measure m2 which is strong at corners.

m1 =
(Cxx−Cyy)

2 +4C2
xy

(Cxx +Cyy)2 + ε
, m2 =

4(CxxCyy−C2
xy)

(Cxx +Cyy)2 + ε

Next, we blur these two maps by a block filter to connect areas where there is high
line density or high corner density. Note that while the applied edge/corner detection
is invariant to illumination changes and to rotation, it is not invariant to scale changes.
To achieve invariance over large barcode scale changes, the calculations of M have to
be repeated on multiple image scales (bigger and bigger image patches D) and selecting
extrema over the scales (see for example [147]). As one of our main concerns is speed, we
calculate the m1 and m2 maps only on a single scale (HD input resolution, see experiments
in Section 2.4) which also gives fair scale invariance over typical barcode sizes within 1 m
range. Thanks to the fact that visual codes contain plenty of edge and corner structures of
different size, there will be lots of edges and corners detected even using a fix neighborhood
size D = 7 independent of the distance between the code and the camera. We achieve
good scale invariance by connecting those edges/corners via a big block filter. In our
experiments we used a separable box filter of size 30 pixels. This not only connects
high-density areas but also removes separated edges/corners of background clutter. There
is, however, often text in the vicinity of visual codes that also exhibits high edge and
corner density, so a further step is necessary to remove those areas. The next steps are
illustrated in Figure 2.4.

2.3.4 Barcode saliency maps

The two box-filtered maps are linearly combined to get our final barcode saliency maps s1

and s2. The idea behind this is that 1D codes must not contain corner areas (note that this
is how text gets removed from 1D codes) and sharp 2D codes must also contain edge areas.
The barcode saliency maps are defined as s1 = m1−αm2 and s2 = βm2 +(1− β )m1.
We empirically found that α = 0.25 and β = 0.65 give good results. The resulting
“barcodeness” images are thresholded and barcode borders are found by tracing the
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Figure 2.4: Algorithm outline: m1: edge density map, m2: corner density map, s1: 1D
saliency, s2: 2D saliency, bounding box detection. The color coding is normal-
ized to the range [0,1].

binary image in four directions starting from the pixel with maximal strength (cf. Gallo’s
method [63]). Note that using a more sophisticated method for finding the peak areas
in the barcodeness map would allow for detecting multiple codes even with different
symbologies.

The above described method works reliably with sharp 1D, sharp 2D, and blurry
2D codes. However, blurry 1D codes are challenging as the blur leaves little structure
information in the code area (see Figure 2.6). If the camera focuses on a background that
contains strong parallel lines, the algorithm finds that area more likely to be a barcode. To
overcome this limitation we propose an extension to our algorithm using information from
the saturation channel.
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2.3 Fast joint 1D and 2D code localization

2.3.5 HSV color information

So far we have not considered that barcodes are almost always printed black and white and
in most cases also in a rectangular white support. This is a very important clue because if
we look at a sharp and a blurry code in the HSV (hue, saturation, value) color system, their
saturation values are very low in both cases. Saturation is a normalized measure of color
content, it is defined as s = (max(R,G,B)−min(R,G,B))/max(R,G,B), and can have
values between 0.0 and 1.0. Black, white, and all gray shades inbetween have saturation
0.0 while the true rainbow colors have saturation 1.0 (see Figure 2.5). Although blur
distorts the intensity structure of a code, smearing black and white together still results in
gray and hence low saturation. Looking at the saturation of each pixel can be a fast first

Figure 2.5: HSV color system [348]

test to reject non-barcode pixels in general. We also augmented our edge/corner detector
with a color conversion module and we set all pixels with saturation above 0.25 to zero in
both m1 and m2 to remove background clutter.

In very blurry cases where only little structure information is left, code localization may
be still possible by finding rectangles in the saturation channel (see Figure 2.6). If both
m1 and m2 are very low, our algorithm switches to rectangle detection mode. Of course,
this works only with the mentioned rectangular white support but it is the case with most
consumer products.

We note here that our original algorithm uses the saturation values, but in our smartphone
experiments we noticed that under low illumination, the saturation is unstable in dark and
noisy regions of the image. In fact, colors close to black may have small or large saturation
values depending on the little difference in RGB values which makes the thresholding
unreliable. Therefore in our smartphone implementation, we replace the saturation with
the chroma value c = max(R,G,B)−min(R,G,B), which is guaranteed to be close to zero
for all shades close to black. This problem does not affect white or the other shades of
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Figure 2.6: A very blurry 1D code results in low 1D saliency (s1) and low 2D saliency
(s2) but if wee look at areas with saturation below 0.25, the code rectangle is
clearly visible.

gray. As the chroma value is not normalized, the threshold value requires little manual
adjustment depending on the overall scene brightness.

2.4 Evaluation

2.4.1 Implementation

We have developed our algorithm in Matlab and ported it to C++ using the OpenCV [313]
framework. The native OpenCV code can also be executed on iOS and Android with little
modifications. As speed is crucial in mobile barcode scanning, we compare our method
to three others (Gallo2011 [63], Tekin2012 [230], Katona2013 [105]) that represent the
state of the art and allow real-time operation on smartphones. To only compare the quality
of the saliency maps of the different algorithms, we apply Gallo’s method (described in
Section 2.2) in each algorithm to generate a bounding box from the saliency map except
for Tekin2012 that already returns a single scanline.

2.4.2 Test environment

Mobile barcode scanner applications read video preview images with high frame rate
rather than still images to speed up the scanning. Recent smartphone cameras are able to
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deliver preview frames in 720×960 or 720×1280 (HD) resolution, so we focus on this
image size in all our tests.

We test the 1D performance on the Muenster BarcodeDB1 data set by Wachenfeld
et al. [234]. We did not include their localization approach in our comparison because
they assume the user already positioned the code to the center of the image, which is too
restrictive for our purposes. The algorithms we test do not need to make this assumption.
The 1050 images were taken with a Nokia N95 phone with autofocus (AF). Additionally,
we also recorded 200 blurry images with an iPhone 5 with its AF turned off.

For our tests with 2D codes, we use the QR code dataset of Dubská et al.2 which
consists of about 400 images with perspective distortions, illumination variations, blur,
and surrounding text. The images were taken by a mobile phone in (high-resolution) photo
mode. We also recorded 120 new images of QR codes with an iPhone 4S in video mode
with and without AF. The images contain codes in various scale, orientation and blurriness.
Our images are also publicly available3.

We hand-labeled the code corners in all images and stored the bounding boxes as ground
truth. We compared the accuracy of the four algorithms by measuring the overlap of their
output with the ground truth. We calculate the Jaccard coefficient J(A,B) = |A∩B|/|A∪B|
as the overlap measure where A is the of the ground truth bounding box and B is the
detected bounding box. A coefficient above 0.5 represents a visually good match when the
returned bounding box is bigger than the ground truth, but actually a smaller coefficient
would also be acceptable as decoders can deal with codes that cover one third of the search
window. When the returned bounding box is smaller than the ground truth we accept only
5% loss. Because the algorithm of Tekin returns a single scanline instead of a bounding
box, we calculate its Jaccard coefficient in one dimension along the code axis.

2.4.3 1D code localization performance

In our first test, we took 1000 original sharp images from the Muenster dataset and looked
at the average Jaccard coffecient of the four algorithms. The results are summarized in
Table 2.1. On sharp images, we achieved an average bounding box overlap Jours = 0.665
with standard deviation 0.278, so an average overlap well above the 50% requirement
while the standard deviation is also lower than that of Gallo2011. Overall, our algorithm
accurately detects 82.5% of the barcodes out of 1000 images. False positives are mostly
caused by a very dominant sharp edge in the background or selecting the wrong code

1http://cvpr.uni-muenster.de/research/barcode/
2http://medusa.fit.vutbr.cz/pclines/?p=86
3http://people.inf.ethz.ch/soeroesg/
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Chapter 2 Visual code localization

among multiple ones (in case of multiple codes in the image, we always labeled the one
which is closest to the image center). False negatives are caused by colorful codes (rejected
by the saturation threshold) and non-rectangular (skewed) codes. Our algorithm detected
more blurry codes accurately than the other algorithms. Example images are shown in
Figure 2.7.

Figure 2.7: Positive and negative examples from the Muenster dataset. A green rectangle
indicates positive detection (J ≥ 0.5), a red rectangle indicates false detection
(J < 0.5), blue rectangles represent the hand-clicked ground truth. Bottom
row: The failures are caused by (1) parallel lines in the background, (2) glare,
(3) dominant text, (4) object lines (5), colored code.

It is important to note that on sharp images, we achieve about the same detection rate
as the other algorithms but we make no assumptions about code size (like Katona2013)
nor code orientation (like Gallo2011) nor code position (like Wachenfeld2010). Although
Katona2013 [105] reports over 90% detection rate in simulations, the method performs
weakly in our tests. The method almost always returns a bounding box that is too big and
contains text and other objects around the code. Gallo2011 is fast and works well even
with fairly blurry codes, but often returns a too small bounding box because a blurry code
breaks into many parts. Its high detection rate is based on the fact that most codes in the
data set are horizontal. Tekin2012 works with multiple orientations, however, on blurry
images it tends to give too short scanlines and returns many false positives.
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Algorithm Gallo Tekin Katona Ours
Average of J 70.89% 81.22% 19.94% 66.47%
Std. dev. of J 35.42% 25.62% 11.56% 27.77%
Success rate (J ≥ 0.5) 79.45% 88.04% 2.34% 82.5%

Table 2.1: Average Jaccard coefficients on 1000 sharp images. We defined every J ≥ 0.5
a good match. (Recall that for Tekin2012 J is calculated only in 1D therefore
results in better overlap).

In our second test, we investigated the robustness of the algorithm against Gaussian
(defocus) blur. We added artificial Gaussian blur to the original images with standard
deviation σ = 1,2,5,7,9,11,13 pixels. Our results are summarized in Figure 2.8.

Figure 2.8: Successful 1D detection rates (J ≥ 0.5) on 1000 images from the Muenster
data set with various degrees of artificial Gaussian blur. The bottom row gives
an impression on the effect of the blur parameter sigma.

In our third test, we added artificial motion blur to the 1000 sharp images. We chose
motion blurs with length 3,5,7,9,11,13,15 pixels at 135◦ orientation to make sure we
destroy some of the bars. Figure 2.10 shows that our algorithm is more robust to motion
blur than the others.

The detection rates on the images we recorded with real defocus and motion blur are
5.2% (Gallo2011), 0.0% (Tekin2012), 8.1% (Katona2013), and 29.8% (ours). Example
images are shown in Figure 2.9. Our method has difficulties with blurry codes without
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Figure 2.9: Positive and negative examples from our no-AF dataset. Left: Our algorithm
can localize blurry codes with rectangular white support. Right: difficult cases
with all-gray background and sharp background (no codes found).

Figure 2.10: Successful 1D detection rates (J ≥ 0.5) on 1000 images from the Muenster
data set with various degrees of artificial motion blur. The bottom row gives
an impression on the effect of the blur length.
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a rectangular frame and sometimes sharp gray stripes in the background are found more
likely to be a barcode than the actual blurry one. We can still conclude that our algorithm
outperforms the previous 1D localization approaches in blur resistance while it is also
scale and rotation invariant and can detect 2D codes as well.

2.4.4 2D code localization performance

We tested the 2D performance of the algorithm on the QR code dataset of Dubská et al.
While their line detection algorithm performs well on big sharp codes of the dataset, our
algorithm returns oversized bounding boxes also including the surrounding text. However,
on the motion blurred images of the dataset, the corner measure is more reliable than line
detection (see Figure 2.11). Due to our oversized bounding boxes, we achieve an overall
detection ratio of only 42.6%.

On our QR data set with real sharp, defocused, and motion blurred images, our algorithm
can reliably detect 81% of the codes. However, if a code is rotated close to 45◦, our simple
axis-aligned bounding box detection tends to return a bounding box that is too small
because it reaches the code border too early in the barcodeness map. Examples are shown
in Figure 2.12

Figure 2.11: Sharp text around the QR code misleads our algorithm and it returns an
oversized bounding box. In motion blurred images the text disappears but
the high corner density in the code area makes it still clearly distinguishable.
Input images are from Dubská et al. [49]
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Figure 2.12: Positive and negative examples from our QR code dataset. Note that the
misalignment on the right is caused by the simple axis-aligned bounding box
detection step. The code area would be still clearly distinguishable in the s2
map.

2.4.5 Multi code performance

All described methods focus on localizing only one code in the image but they all build a
barcodeness map in an intermediate step. Therefore, they all could be extended to localize
multiple codes and provide a list of ranked candidates. Figure 2.13 shows two examples
with multiple 1D and 2D codes together with our barcodeness maps. If both code types
are present in the image, the linear combination of m1 and m2 causes crosstalk in s1 and s2

which may lead to false classifications. Note that the codes are still visible but the code
type might be uncertain. We leave the detailed analysis of this effect for future work.

Figure 2.13: Multiple 1D and 2D codes in a sharp image (top row) and in a blurry image
(bottom row). Note that the measures s1 and s2 clearly show the barcode
areas in both the sharp and blurry images. Also note that the characters on
the chocolate box are so small that the text lines are detected as a barcode
candidate.
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2.4.6 Other symbologies

Our method can be easily extended for localization of other 1D and 2D symbologies
that mainly consist of black and white line and corner structures. As the method is also
fairly robust to blur, we can employ it for detecting noise-like 2D patterns such as the
FOCUS codes [81] for communication. The gray noise-like pattern of the code generates
a dominant m2 signal. Figure 2.14 shows a couple of examples with FOCUS codes.

Figure 2.14: Our method can be easily extended to detect other visual codes. We detect
noise-like FOCUS codes [81] in these examples.

2.4.7 Discussion

In our 1D tests, we achieve similar sharp detection rates as the other approaches but
without their limiting assumptions, while the algorithm also detects close to 17% of the
blurry codes. This means in 17% of the cases a blurry decoder can already start decoding
the barcode even before the AF was triggered leading to a better user experience.

The average runtime of our algorithm with images of resolution 720×960 pixels on
a notebook PC (Intel Core i7 M620 CPU with 2.67 GHz clock frequency) is 73 ms (see
Table 2.2) that adds up as follows: HSV conversion (19.90 ms); gradient calculation
(9.19 ms); calculation of Ci j (14.32 ms); calculation of saliency (6.19 ms); box filtering
(7.51 ms); bounding box detection/rectangle detection (15.87 ms). We can clearly see
that the most time is spent on color space conversion. Without the HSV information,
the algorithm still finds sharp codes but it becomes more sensitive to clutter. Thanks to
the saturation information, our algorithm returns significantly less false positives than
the others in our tests. It is important to note that current smartphone models are also
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equipped with a graphical processing unit, and not just color conversion but every step
of our algorithm can be implemented as OpenGL ES fragment shaders. We achieved a
speedup of factor 3.2× by calculating the barcode probability maps on the mobile GPU.
We present the implementation details on the GPU in the next section.

Algorithm Gallo2011 Tekin2012 Katona2013 Ours
Runtime PC 27 ms 49 ms 63 ms 73 ms
Runtime phone 85 ms 26 ms† 173 ms 380 ms/118 ms‡

Table 2.2: Average runtime of the four algorithms on PC (960× 720 pixels) and on a
smartphone (640× 480 pixels). † Tekin is optimized C++ code, the other
algorithms are written in OpenCV. Tekin is slower in our PC simulations
because of image format conversions. ‡CPU only / calculation of s1 and s2 on
GPU and reading back to CPU. All phone measurements were taken with a
Samsung Galaxy Nexus (2011-model).

While our algorithm is fully orientation invariant, it is not fully scale invariant. The
size of the box filter is chosen to connect barcode areas of a fairly wide scale range, but it
would not work with tiny codes (would include clutter) or huge codes (would break apart).

Recall that for comparison, we applied Gallo’s method to generate a bounding box
from the saliency map, a method that assumes axis-aligned barcodes in the image. While
also rotated barcodes are well visible in our saliency maps, the final bounding boxes are
sometimes too small (J < 0.5). A more sophisticated bounding box algorithm should
significantly improve our detection rates.

As mentioned before, our algorithm consists of per-pixel operation and is hence well
suited for parallelization. In the next section, we show how to implement the algorithm on
mobile graphics hardware to make it even faster.

2.5 Fast implementation on mobile GPUs

2.5.1 Overview

This section presents the implementation steps of the above barcode localization algorithm
on embedded graphics hardware. By reformulating the distinct steps as fragment shader
programs, one can compute the barcode probability maps directly on the graphics hardware
which brings significant speedup (e.g., of factor 3.2 in our tests with 4 shader cores).
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The presented GPU-assisted approach allows real-time operation without the limiting
assumptions of the concurrent methods.

input

m2

s1m1

s2chroma

Figure 2.15: Algorithm outline: input image and its chroma map, m1: edge density map,
m2: corner density map, s1: 1D saliency, s2: 2D saliency. The color coding is
normalized to the range [0,1].

We shortly repeat and illustrate the necessary stages of our barcode localization algo-
rithm in Figure 2.15. The captured color camera image is first converted to grayscale and
the chroma value c = max(R,G,B)−min(R,G,B) of each pixel is also stored separately
for later steps. Because 1D barcodes contain many edges and 2D codes contain many
corners, the algorithm searches for areas with high concentration of edge structures as
well as for areas with high concentration of corner structures. Assuming that the codes
are printed black and white, the chroma mask can be used as a fast test to reject no-code
areas in an early stage of the pipeline. The next step is to calculate the elements of the
structure matrix M =

(Cxx Cxy
Cxy Cyy

)
for each pixel. Next, an edge map m1 and a corner map m2

are derived from the structure matrix. The two maps are then blurred with a big block
filter to connect areas where there is high line density or high corner density and to remove
background clutter. Finally, the two blurred maps are linearly combined to give the 1D
and 2D barcode probability maps s1 and s2, respectively. Note that all steps from color
conversion through filtering to linear combination are data-parallel operations that can be
efficiently implemented in fragment shader programs.

2.5.2 Image processing on mobile GPUs

OpenGL ES [314] is the de facto standard software-hardware interface for rendering 3D
graphics on embedded devices. Version 2.0 of OpenGL ES introduced the programmable
graphics pipeline to mobile graphics hardware opening the doors for general purpose GPU
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computations on smartphones. There are certain limitations though compared to propri-
etary high-level parallel computing frameworks such as CUDA [280], OpenCL [312], or
RenderScript [328] because OpenGL was primarily designed for rendering 3D scenes. This
means one has to reformulate computing problems as rendering problems and carefully
tune the algorithms to graphics features. Nevertheless, OpenGL ES provides portability
across all smartphone platforms and version 2.0 is widely available already in middle-class
consumer devices.
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Figure 2.16: The OpenGL ES 2.0 rendering pipeline.

The programmable graphics pipeline consists of several steps as shown in Figure 2.16.
The 3D scene is defined as a set of triangles formed by vertices. The vertices have various
attributes such as 3D coordinates, normal vectors, primary color, texture coordinates, etc.,
that are passed to a programmable SIMD processor called vertex shader. The vertex shader
program calculates the screen coordinates of each vertex and passes those to the primitive
assembly unit that determines the points, lines, and triangles to be rendered on the screen.
The rasterizer decomposes the primitives into individual fragments and for each fragment
it interpolates the attributes from those of the corresponding vertices. Each fragment is
passed to another programmable SIMD processor called fragment shader which calculates
the color of the fragment based on the attributes and optional texture inputs. Textures
are general 2D data containers with hardware-accelerated interpolation. The individual
fragments run through several tests until they are finally combined in a pixel of the frame
buffer. When all primitives are processed, the content of the frame buffer gets presented
on the screen. OpenGL ES 2.0 also features off-screen render targets called frame buffer
objects (FBOs). Using an FBO, the output can be directed into a texture.
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Image filtering can be reformulated as a multi-pass rendering problem in the following
setting (see Figure 2.17): The input image is stored in a texture and an output FBO is set
up to have the same size as the input texture (1-to-1 mapping between texels and pixels).
The 3D scene consists of only two triangles (a quad) that together cover the whole screen
(or FBO). The virtual camera looks fronto-parallel to this quad and orthographic projection
is applied. Once the scene is drawn, the full-screen quad generates a single fragment
for each output pixel. To determine the color value of a fragment, the fragment shader
program is run which contains the actual image processing routine. The fragment shader
can read from any input texture position but can write its output only to the fragment index
it is currently assigned to. Therefore, different shaders (filters) are loaded in subsequent
rendering passes and the role of the input and output textures is always exchanged. This
way a whole chain of image filters can be realized in the GPU. The resulting image is
presented on the screen or read back to the CPU for further non-parallel processing. For
further reading on GPU computing, we refer to the excellent textbooks GPU Gems [152]
and GPU Pro [50].
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Figure 2.17: Image filtering can be reformulated as a rendering task using textures for
input as well as for output.

2.5.3 Constraints on mobile platforms

OpenGL ES is a constrained subset of its desktop counterpart and hence additional
considerations need to be taken in our algorithms when targeting mobile devices. Mobile
GPUs have significantly less memory and lower clock speed to reduce energy consumption.
Also, transferring data from GPU to CPU and back should be avoided during the algorithm
due to low memory bandwidth. The texture fetch latency is significant so the number of
texture reads should be minimized. The number of texture units varies but is at least 8
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while the maximum texture size is 2048. Although the shaders can perform floating-point
calculations, the results must be stored in low-precision fixed-point textures and there is
only one color render target (with 4 color channels, R, G, B, and A). However, for practical
applications the wide availability compensates for the API’s limitations. Next, we present
how our localization algorithm can be reformulated and optimized for the mobile GPU.
We target a wider range of devices so we apply only OpenGL ES 2.0 features with one
extension that allows copying the camera image directly to the GPU memory bypassing
the CPU. One has to keep in mind that shader programs are submitted as a string literals
and compiled by the graphics driver prior execution and this may lead to slightly different
behaviour on different hardware platforms.

2.5.4 Data formats

The inputs and outputs of the subsequent stages are stored in 32-bit RGBA textures. The
colors are represented as 8-bit fixed-point values between 0 and 1. Each stage consists
of one or two render passes in which a simple quad gets textured with the result of the
previous step. Texture filtering is set to NEAREST to sample one pixel only and coordinate
wrapping is set to CLAMP TO EDGE. We use non-power-of-two textures which prohibits
mipmapping. Texture coordinates are measured in the [0,1] range so the offset between
neighboring texels (1.0/width) has to be supplied to all the shaders as a uniform variable.
Calculating the coordinates of the neighbors can be shifted to the vertex shader letting the
hardware interpolate them for all the fragments.

2.5.5 Streaming camera images to the GPU

The smartphone camera captures the preview frames in NV21 (YUV) format but the
textures must be stored in RGBA format. The GLES2 extension EGL image external

allows to bind an external image buffer to a texture unit. The stream output of the camera
can be redirected to this image buffer and OpenGL automatically converts its content to
RGBA at reading time. This way, the manual conversion of camera frames can be saved
and the frames do not need to be loaded into the CPU.

2.5.6 Calculating the structure matrix

In the first stage of the algorithm, the elements of the structure matrix ∑D I2
x , ∑D I2

y , and
∑D IxIy need to be calculated. The summation over the small neighborhood D can be
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postponed to the following step so that the calculations for each pixel can be decoupled
and run in parallel. Gray conversion is easily performed as a dot product of the input RGB
vector with the constant vector [0.3,0.59,0.11] while the chroma calculation involves only
built-in maximum and minimum functions.

We calculate the gradients using the derivative5 filters of Farid et al. [57] that improve
the robustness to barcode orientation. This filter gives an optimal approximation of the
gradient with regards to gradient oriantation, i.e., it produces more accurate estimate than
the usual [−1,1] and [−1,1]ᵀ filters when the gradient is not axis aligned. The derivative5x
consists of a 5-tap horizontal component d1 and a 5-tap vertical component p while in
derivative5y these two components change their roles. Thanks to the commutativity of
convolution, we can perform all horizontal filtering in one pass and all vertical filtering
in the second pass which requires only 5 texture fetches in each pass: Ix = I⊗ d1⊗ pT

while Iy = I⊗dT
1 ⊗ p = I⊗ p⊗dT

1 . In the first pass, we take 5 gray pixels horizontally and
multiply-sum them once with d1 and store the result in R, and once with p and store the
result in G. In the second pass, we filter R with pT and G with dT

1 vertically. The squares
I2
x , I2

y , and IxIy are then stored in the R,G,B channels of the output while the chroma value
is always passed in the A channel.

To remove colorful non-barcode areas in this stage, we set all entries in M to zero if the
chroma of the pixel is over 0.25. Conditional statements in shaders decrease performance,
so we formulate the thresholding without a condition using the built-in step function. The
code line c < 0.25?A = 1.0 : A = 0.0; is equivalent to A = 1.0− step(0.25,c);

2.5.7 Fast Gaussian filtering

In the second stage, the derivatives are summed up in a small neighborhood to get the final
entries of the structure matrix. We apply a 7x7 Gaussian window with standard deviation
2. The 2D Gaussian is the outer product of two 1D Gaussians, so again, the 2D filter can
be substituted by a horizontal plus a vertical 1D convolution. The two passes require only
7+7 = 14 texture fetches instead of 7×7 = 49. Furthermore, the GPU works parallel
on the RGB channels of the input so the three different entries of the structure matrix are
calculated at the same time.

2.5.8 Edge and corner maps

In the third stage, the “edgeness” m1 and the “cornerness” m2 maps are generated over
the image based on the entries of the structure matrix which involves only pixel-wise
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arithmetic operations. Intermediate steps of the algorithm are shown in Figure 2.18.

Figure 2.18: Intermediate results rendered on the screen: original image; x-derivatives;
edges (red) and corners (green)

2.5.9 Box filtering and saliency maps

Box filtering with a large kernel would require a great number of texture fetches for each
fragment. However, if we set the texture filtering to LINEAR and sample between the
pixels, thanks to hardware interpolation we get the average of the two values in one texture
fetch. We use a horizontal and a vertical 32-tap box filter with only 16 texture fetches each
between texels (i.e., in total 32 instead of 322). In the future, we plan to implement box
filtering via hardware-accelerated mipmaps.

In the final stage, the blurred m1 and m2 maps are combined to 1D and 2D barcodeness
maps, respectively. Linear combination of fragment values can also be done very efficiently
in GPU using the mix command. Finally, the barcode probability maps are transferred
back to the CPU where barcode region candidates are selected. This step is identical to
[63, 209].

2.5.10 Running on wearable devices

First, we tested our algorithm on three smartphones with different hardware: a Galaxy
Nexus (1.2 GHz dual-core ARM Cortex-A9 CPU, Imagination PowerVR SGX540 GPU), a
Galaxy S3 (1.4 GHz quad-core ARM Cortex-A9 CPU and ARM Mali-400 MP4 GPU) and
a Galaxy S4 (1.9 GHz quad-core Qualcomm Krait 300 CPU and Qualcomm Adreno 320
GPU). The algorithm has been implemented using OpenCV 2.4.6 (native C++) for the CPU
and using OpenGL ES 2.0 for the GPU. Table 2.3 summarizes the runtimes from image
capture to the barcode maps including GPU-CPU transfer. The GPU implementation
achieves a speedup of factor 3.2 on the Nexus phone with four shader cores and factor 2.0
on the S3 which we believe has only two shader cores. The S4 allows 6 frames per second
even in HD resolution. In that case, the 152ms(‡) runtime adds up as follows: derivatives
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and color conversion (22ms), Gaussian blur (23ms), edge/corner maps (7ms), box filter
(41ms), reading from GPU (20ms), and rendering to the screen (39ms). We conclude that
OpenGL ES 2.0 brings a significant speedup to data-parallel image processing algorithms
and offers code portability across a wide range of hardware platforms.

Frame size Device Galaxy
Nexus
(2011)

Galaxy S3
(2012)

Galaxy S4
(2013)

640×480 CPU 380ms 291ms n.a.†
307200 pixels CPU 421ms 308ms 299ms
(X) GPU 118ms

(3.22×)
144ms
(2.02×)

49ms
(6.10×)

960×720 CPU 797ms 634ms n.a.†
691200 pixels CPU 970ms 652ms 570ms
(2.25X) GPU 259ms

(3.08×)
322ms
(1.96×)

104ms
(5.48×)

1280×720 CPU 1127ms 842ms n.a.†
921600 pixels CPU 1434ms 968ms 822ms
(3.0X) GPU 349ms

(3.23×)
414ms
(2.03×)

152ms
(5.41×)‡

Table 2.3: Average runtime of the GPU implementation and speedup compared to the
CPU implementation on different smartphone models from image capture to
the barcode maps including GPU-CPU transfer. The first CPU line is with using
OpenCV’s native camera, the second CPU line is with using OpenCV’s Java
camera † OpenCV 2.4.6 does not support the S4 camera.

The approach presented here can be easily extended to run on any OpenGL ES-compliant
wearable computer with little modifications Figure 2.19 shows the same algorithm running
on a Samsung Gear v1 smartwatch and on Google Glass v1 smartglasses. Also, while the
number of CPU cores in wearable devices is increasing slowly, the number of GPU cores
is expected to increase much faster in the future which means our algorithm becomes faster
with time without modifying the code. For instance, we repeated the experiment with
a 2015-model Motorola Nexus 6 smartphone (Qualcomm 2.7 GHz quad-core Krait 450
CPU, Adreno 420 GPU with 128 shader cores) using 1280×720 resolution, and achieved
45.05ms runtime including readback which corresponds to a processing frequency of
about 22 frames per second. Furthermore, the GPU with more cores at lower frequency
requires much less energy than performing the same calculations on the CPU as heat
dissipation increases super-linearly with clock frequency, so it is beneficial for battery-
powered devices to outsource data-intensive computations to the graphics hardware.
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Figure 2.19: Parallelization in OpenGL allows portability across a wide range of devices
including wearable computers such as the Google Glass (left) or the Samsung
Galaxy Gear watch (right).

2.6 Conclusions

We have presented a combined 1D and 2D barcode localization algorithm that addresses
orientation, scale, and symbology invariance and is also more robust to blur than previous
methods. We compared the speed and accuracy of our approach to three recent localization
algorithms on publicly available datasets and achieved higher detection ratio even with
defocused images where previous methods perform weakly. Taking our algorithm as a
preprocessing step, blurry barcode scanning can be extended to full-resolution images
in the future. Extending the simple bounding box detection approach for instance using
mean shift segmentation immediately allows for detecting multiple codes in an image.

Also, we collected a new public dataset that contains hundreds of challenging barcodes
and QR codes recorded by smartphone cameras to facilitate further research in the area.
The images are degraded by various types of real blur, noise, shadows, glare, and scratches
that represent the problems in real-world scanning situations.

We have presented the implementation, optimization, and evaluation of our barcode
localization algorithm on embedded GPU using the widely adopted OpenGL ES 2.0.
The GPU code is portable between all existing smartphone platforms (we tested on
PowerVR, Mali, Adreno), can run even in middle-class smartphone models and even on
a first-generation smartwatch and a smartglass. We carried out several optimizations in
the processing pipeline including streaming camera images directly to texture memory,
resampling on graphics hardware, reshuffling vertical and horizontal filter operations,
applying separable filters to reduce the number the texture fetches, reading multiple texels
simultaneously by leveraging hardware interpolation, and creating branch-free code using
the built-in step function.

We expect further optimizations in the future once the OpenGL ES 3.0 [314] standard
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becomes widely available in embedded graphics hardware. The new standard brings
several additional features compared to v2.0, including multiple render targets, GPU-
CPU synchronization, and floating point textures that allow more sophisticated image
processing with less rendering passes. Furthermore, GPU-CPU parallelism would speed
up barcode scanning even more; instead of simply waiting for the results, the CPU can
process the barcode candidates of the previous frame. The OpenGL ES 3.1 standard
further introduces the compute shaders. New, general purpose GPU programming APIs
are also becoming available in high-end smart devices. The Open Computing Language
(OpenCL) [312] API (which is unfortunately not available on Android) introduces a new
programming model that is more suitable for computations on heterogenous processors.
The tasks are executed transparently either on the CPU, the GPU, or an embedded DSP4.
Also, the Vulkan [345] combined compute and graphics API is under standardization. It is
considered a ground-up redesign of the OpenGL standard with more direct access to the
GPU and unified programming model for desktop and mobile (embedded) applications.
We leave the implementation of our algorithm using the new APIs for future work.

4DSP: digital signal processor
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Chapter 3
Motion blur compensation

This chapter presents a fast blur removal algorithm that allows the scanning of motion-
blurred QR codes. The blur removal process is tailored to the special properties of QR
codes images, and also makes use of the built-in inertial sensors of wearable devices.
Most parts of the methods and results presented in this chapter have been published
in [210, 212].

3.1 Introduction

Current mobile barcode scanning solutions work well only if the camera is held still
and close to the scanned object. Commercial scanner engines by companies such as
RedLaser [327] and Scandit [331] can successfully compensate for defocus and lens blur
and can decode also blurry codes. This makes barcode scanning possible on devices
without autofocus and accelerates the scanning on devices with autofocus. The existing
solutions, however, still cannot compensate for more complex blurs like motion blur
(caused by the slight relative movements between the camera and the scanned object), zoom
blur (caused by the autofocus), or shake blur (caused by the user’s hand). Unfortunately,
with wearable cameras, slight motion during scanning is almost unavoidable which can
easily render the captured codes unreadable, greatly deteriorating the user experience and
utility (see Figure 1.15). Although the various blur effects can be modeled in a similar
way mathematically, motion blur is a far more complex problem than the others.

High-end cameras reduce motion blur with optical image stabilization, where motion
sensors control mechanical actuators that shift the sensor or the lens during exposure to
compensate for motions of the camera. Unfortunately, image stabilization neither prevents
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motion blur caused by the movements of the object, nor extreme translational movements
of the camera, nor rotation around its optical axis. We expect the spread of wearable
cameras with hardware image stabilization in the future, but the mentioned limitations
demand software-based enhancements.

The problem of removing blur from photographs has been widely studied in the past.
However, existing algorithms typically fail on artificial black and white visual tags be-
cause they look very different from natural images. We will show concrete examples of
this problem later in this chapter. Furthermore, the existing restoration algorithms are
computationally too demanding to be carried out on mobile devices – even if they make
strong assumptions about the image type. We are not aware of any published method that
achieves near real time blur removal performance (even on PCs). However, the special
structure of visual codes compared to general photographs allows for optimizations in
terms of restoration speed and, to a lesser extent, quality.

In this chapter, we present an algorithm that can robustly decode QR codes degraded
by motion blur. We exploit the fact that QR codes do not need to be visually pleasing
for decoding and propose a fast restoration-recognition loop that removes blur using the
special structure of QR codes. In our optimization scheme, we interweave blind blur
estimation from the edges of the code and image restoration regularized with typical
properties of QR code images. We show in experiments with synthetic and real blurred
images that our proposed restoration algorithm is on par with the state of the art in quality
while it is about a magnitude faster. In addition, we propose to combine blur estimation
from image edges with blur estimation from built-in inertial sensors to make the restoration
even faster.

3.2 Related work

Restoring images degraded by blur has been an active research area for a long time because
of its military, forensic, and astronomical applications. The topic gained considerable
interest again in the past decade due to the large demand of improving photographs
captured by consumer point-and-shoot cameras and smartphones. In the recent years, a
large number of algorithms (algorithm families) have been proposed for restoring blurred
images [171]. In this section, we give a brief overview of the existing methods and
summarize what we can learn from them for the efficient restoration of motion-blurred
visual codes.

54



3.2 Related work

3.2.1 Blur removal in general

Deconvolution The formation of a blurred image B can be modeled by a convolution
of a sharp image I with a blur kernel k as also illustrated in Figure 3.1, therefore blur
removal is also termed deconvolution in the literature. Formally,

B = k ∗ I +N (3.1)

where the convolution of two-dimensional signals f and g is defined as

f (x,y)∗g(x,y) =
∞

∑
i=−∞

∞

∑
j=−∞

f (i, j)g(x− i,y− j) (3.2)

We distinguish between non-blind deconvolution, where the blur kernel is known in
advance, and blind deconvolution, where the blur kernel is unknown and needs to be
estimated first.

Figure 3.1: Blurry image formation modeled by convolution.

The blur kernel can either be measured in some (very limited) settings, or it can
be estimated for instance from salient edges in the image [35, 97, 219, 254], from the
frequency or cepstral domain [66, 162], from an auxiliary or modified camera [37, 225,
256], or from motion sensors [96, 164]. Unfortunately, an infinite number of combinations
from latent sharp images and blurs may result in the same blurry image (see Figure 3.2),
which makes blind deconvolution and blur kernel estimation very hard. Even known blur is
difficult to invert because many false images can also satisfy the equations. Intuitively, non-
blind deconvolution can be expressed by the equation B= k∗?+N, and blind deconvolution
corresponds to B =?∗?+N, which is very under-determined. Despite the significant
progress in this research area, a method that inverts the effect of arbitrary blur is not
known.

Blurry barcode scanning is a blind deconvolution problem since the blur kernel needs
to be estimated first. We target unmodified wearable devices, which limits our available
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Figure 3.2: The ambiguity in blind deconvolution: many blur kernels and latent images
can result in the same blurred image, so finding the right solution is hard.
Figure adapted from Robert Fergus [58].

computational resources, but we can also benefit from the specific setting of barcode
scanning. Our images always contain a large number of black and white edges, so our
attention is on the family of edge-based methods, and only the fastest of those. Also, we
can exploit the fact that most of today’s wearable devices possess built-in motion sensors,
and these sensors can hint at the expected motion blur in the image. Before coming to
these two method families, we quickly summarize the whole landscape of blur removal.

Uniform vs. non-uniform blur Both defocus blur and motion blur can be modeled
as a convolution with a uniform (shift-invariant) blur kernel, under the assumptions of a
planar fronto-parallel scene and only translational motions. Defocus blur is caused by the
fact that the image of a single object point not in focus is spread over many pixels on the
sensor (hence the blur kernel is also called point-spread function or PSF). A defocus kernel
is well approximated by a circle or a 2D Gaussian shape, but actually the exact camera
aperture shape should be used. It might also slightly vary over the image based on lens
characteristics, but this effect is only apparent at very high image resolutions. However, as
a motion blur kernel corresponds to some camera motion, it can have practically arbitrary
form which renders the latter problem significantly more difficult. Still, a motion blur
kernel is usually very sparse and contains a thin continuous path that corresponds to the
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motion the camera underwent during image capture. Figure 3.2 shows typical blur kernel
shapes: Dirac delta function is the identity of the convolution operator, a typical defocus
kernel that has circular shape, and a motion blur kernel that is a sparse continuous motion
path. If there is no in-plane camera rotation and the scene is planar or far away and static,
or if we concentrate only on a small part of the image, the uniform kernel is valid also in
case of motion blur. This assumption simplifies the mathematical models and allows for
much faster restoration algorithms [33, 35, 122, 160, 161, 167, 219, 252].

The uniform blur model is usually violated in many real scenarios that can lead the
restoration to fail, often even lowering the quality of the processed image [133]. In
particular, the kernel may be non-uniform (position-dependent) over the image when the
camera undergoes large rotations, when the scene is not planar and the camera captures
parallax effects, or if objects are moving in the scene. Models for non-uniform blur do
exist (we discuss some of them later at the sensor-based methods) but handling different
blur at each pixel of the image is computationally too demanding for a live application.

The estimation of complex motion blur can actually be treated as an image registration
problem using a projective motion path model [34, 226] (see Figure 3.3). The uniform
convolution can also be interpreted as a summation of translated and weighted versions
of the same image. The new, generalized model allows any projective transformation
during exposure, but of course the number of variables to estimate increases drastically.
Whyte [245] limits the allowed motions to x,y,z rotations while Gupta [68] restricts the
model to two translations and one in-plane rotation. The assumption of a planar scene is
still necessary though. Cho [32] proves that the effects of out-of-plane rotations can also
be well approximated by the uniform blur model, however, in-plane rotations need to be
handled differently.

Figure 3.3: The convolution model can be generalized to the projective motion path model
for modeling non-uniform blur. Instead of translations T , we plug general
planar homographies P into the summation. Figure adapted from Yu-Wing
Tai [226].
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For our smartphone and wearable applications, a semi-non-uniform approach might be
still viable that divides the image into smaller overlapping regions where uniform blur
can be assumed. The final sharp image can then be re-assembled from the independently
restored regions. If the visual code is only a fraction of the image, then as the cut-out
region is usually a planar surface, the assumption of uniform blur is valid in that image
region. In the rest of this thesis we therefore focus only on uniform blurs.

Non-blind deconvolution Non-blind deconvolution refers to deconvolution in applica-
tions where the kernel is known or can be measured in advance. Non-blind deconvolution
is a mathematically ill-posed inverse problem because multiple solutions satisfy the
equations. As convolution in the spatial domain is equivalent to a multiplication in the
Fourier domain, deconvolution is possible by inverse filtering (division) in the Fourier
domain, in theory. In practice, high-frequency image noise gets amplified by the divi-
sion with small filter values. This problem was addressed by regularization in Wiener
filtering [247], or by Richardson-Lucy filtering [178]. For the Wiener filter, the signal-to-
noise ratio needs to be known in advance, and the method is prone to ringing artifacts at
edges. The Richardson-Lucy filter is well suited for astronomical images because it is
based on a Poisson-distributed image formation model. Newer deconvolution algorithms
usually constrain the solution space to images that follow certain properties of natural
images [58, 122, 132]. These new methods enforce natural look of the reconstructed
image by for instance shaping the distribution of the image gradients. This way they
can effectively reduce ringing artifacts that were common with the older methods. Of
particular interest to us is the algorithm of Krishnan and Fergus [122] because it produces
high-quality results, is very fast, and is suitable for parallelization.

Blind deconvolution Blind deconvolution, i.e., finding the original sharp image and the
blur function from a single given blurry image is a severely ill-posed problem and hence
needs to be treated with some kind of regularization. Earlier attempts posed regularization
constraints on the blur kernel and assumed it has a parametric form [36, 259]. They
estimated its parameters for instance in the Fourier domain. Recent methods usually
follow a common pattern of Bayesian energy minimization, and constrain both the kernel
and the latent sharp image, e.g., by shaping the distribution of its gradients according to
natural image statistics. The unknown latent sharp image and blur kernel are estimated
successively in a multi-scale iterative optimization scheme [58, 123, 133, 194]. All these
techniques assume a uniform blur kernel over the image and iteratively estimate the sharp
image in one step and the kernel in another step using complex optimization methods.
While they enable impressive results, they have their own limitations, and in particular
their long processing time is not acceptable for a mobile barcode scanning application.
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For example, the time required for blindly deconvolving an image of 640×480 pixels that
was originally blurred by a kernel of size 25×25 takes about an hour with the method of
Fergus (2006) [58], about 5 minutes with the methods Shan (2008) [194], and about 1 to 5
seconds with the method of Cho (2009) [35] depending on whether we use the GPU or the
CPU. This example shows that while there have been tremendous advancements in the
past years, we are still far from real-time blind deblurring.

Multiframe deblurring Others have shown how significant improvements can be
achieved when multiple blurry images of the same object are available as this can help
to reduce ambiguities in the restoration [17, 26, 173, 260, 264]. The subsequent im-
ages contain differently degraded forms of the original scene which can be exploited in
joint multi-frame deblurring. The use of multiple blurry/noisy images for restoring a
single sharp frame has been proposed by Rav-Acha and Peleg [173], applied for sharp
panorama generation by Lie et al. [136], and recently for HDR and low-light photography
by Ringaby et al. [179]. Methods to jointly restore multiple blurred images are for in-
stance [47, 263, 264] but those are too slow for smartphone applications. The key insight
of these approaches is that the image alignment problem and the camera shake problem
are actually very similar in that both result from camera movement, just the former comes
from inter-frame movements and the latter comes from intra-frame movements. The
cost function for multi-image deblurring is the sum of the cost functions of single image
deblurring, because each other image is also just a sum of transformed versions of the
original sharp image. The work in [264] extends multi-shot imaging even further into a
unified model for image alignment, blur removal, and super resolution. Deblurring and
super resolution are inherently connected problems as every super resolution approach
needs to invert a downsampling operator, hence a deconvolution is a necessary step in
super resolution [195].

Schechtman [197] and Takeda [227] present the theory of joint space-time super res-
olution and deblurring. The key insight is that motion blur is actually the result of a
temporal effect, it is caused by too low temporal resolution of the camera, hence it should
be treated temporally. Instead of spatially deconvolving single images with complex and
even varying motion blur kernels, we should try to deconvolve a video along the time
axis. The temporal blur kernel is the same simple rectangular function in the whole image,
independently of whether the motion blur was caused by object motion or camera motion.
The obvious advantage of this method is that deconvolution becomes much simpler and
uniform, but our experiments in this direction turned out to be too slow for a practical live
application. Nevertheless, the idea is still very interesting for offline video enhancement.

Although multiple images are available when scanning a barcode with a wearable cam-
era, the joint multiframe optimization scheme of the above algorithms involves excessive

59



Chapter 3 Motion blur compensation

computations, therefore they are not suitable for a live scanner application. We have
performed experiments in reducing the problem to only black and white images but we
have not found a reliable image registration method that could robustly align our blurred
images.

Deblurring with special hardware Alternative approaches use dedicated hardware to
aid the deblurring. Ben-Ezra et al. [20] combine a high frame rate video camera with a
still camera to help in recording the blur kernel. Optical flow from the high-speed camera
helps in computing the motion blur in the captured images of the high-resolution camera.
Raskar et al. proposed solutions to overcome the loss of high frequency components using
a fluttered camera shutter [172] or by varying the exposure time of subsequent frames
[4]. However, these methods rely on precise motion segmentation and the knowledge of
object velocities, and cannot handle blur caused by camera rotations. Cho et al. [37] built
a camera that moves on a parabolic path during exposure. Under this special movement,
the motion blur caused in the image is independent of the speed of moving objects in the
scene, hence all blur can be removed by deconvolving the whole image with the same
blur kernel. Wang et al. [241] design a new imaging sensor that is able to capture a blurry
colour image and a noisy grayscale image at the same time, thereby avoiding the need
for a registration step between the two. Image restoration from a blurry/noisy image pair
can be done by the method of [260]. As our goal is deblurring on unmodified wearable
devices, we do not further discuss this family of methods.

3.2.2 Deblurring with edge enhancement

The way an edge gets blurred in an image gives information about the cross-section of the
blur kernel perpendicular to the edge [38, 95, 97]. The edge-based algorithms in a first
step try to hallucinate sharp edges, and in a second step find the blur kernel that causes
the observed blurry edges (see Figure 3.4). The two steps are alternated in an iterative
optimization, often also across multiple scales to aid the convergence. Edge-based methods
are often much faster than any other approaches and they are proven to be effective in
practice [268] but they are difficult to analyze because of heuristic steps.

Cho and Lee [35] presented the first fast algorithm for blind motion deblurring. They
iterate between an image restoration step and a kernel estimation step, and use only simple
image filters between the two. The main idea is that for image reconstruction, a low-quality
but fast step is sufficient if the errors are suppressed and edges are boosted by edge-aware
image filters, before the kernel estimation step. This image-kernel refinement loop is
repeated several times from smaller to larger image scales, improving the overall conver-
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Figure 3.4: The blur kernel (PSF) can be estimated from the profile of dominant edges.
The way an ideal step edge gets blurred gives information about the cross-
section of the blur kernel perpendicular to the edge. Figure from Sunyeong
Kim [224].

gence of kernel estimation. The authors report to achieve results of quality comparable to
previous attempts within a few seconds (up to two magnitudes faster than others), opening
the doors for interactive use. Their multi-scale loop structure forms the basis of many
subsequent algorithms and is also fundamental to our work.

Xu and Jia [252] analyzed which edges are actually useful for kernel estimation and
showed that structures smaller than the kernel size (like thin lines of a barcode or modules
of a QR code) may mislead the optimization as shown in Figure 3.5. They proposed a
filtering approach that selects strong edges in the image and uses only those for kernel es-
timation. Other methods like [38] and [97] recover the blur kernel by explicitly inspecting
how sharp edges of the scene get blurred and reconstruct the kernel from its cross-sections.
In [254], the authors exchange the parametric edge enhancement filters of [35] with a
new regularization term that approximates the L0 norm of the gradients, i.e., it keeps the
number of non-zero gradients minimal (see details in the Appendix). With this new energy
formulation, the algorithm no longer relies on ad-hoc edge selection and filtering methods
which means that no parameter tuning is required. [167] revisits an older method called
total variation deconvolution, and analyzes in details why – although it is simpler than
natural image priors – it can still find the correct sharp solution.

3.2.3 Deblurring with inertial sensors

Kernel estimation from the image content alone often involves iterative optimization
schemes that might be computationally too complex to perform on a smartphone within
acceptable time. Auxiliary hardware might be expensive and difficult to mount, so
kernel estimation from built-in motion sensors seems the most appealing for wearable
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Figure 3.5: Left: At large structural edges (structures larger than the blur kernel), the
blurry pixels are easy to match with the edges, hence it is easy to estimate
the blur kernel. Right: However, at small-scale structures (structures smaller
than the blur kernel), it is hard to tell which blurry pixel originates from which
edge, and most blur estimation methods fail. Therefore we must limit our
blur estimation algorithms to large-scale structures. Figure adapted from Li
Xu [252].

applications. Combining camera frames and inertial measurement units (IMU) has been
successfully used for video stabilization [19, 59, 73, 101], for denoising [90, 179] and
also for blur removal [96, 164, 202].

Joshi et al. [96] presented the first IMU-based deblurring algorithm with a DSLR
camera1 and external gyroscope and accelerometer. In their approach, the camera and
the sensors are precisely synchronized through the flash trigger. The DSLR camera has a
global shutter which makes the problem easier to handle than the case of smartphones. To
keep the problem tractable, they assume a constant uniform scene depth, which they find
together with the sharp image by solving a complex optimization problem. Bae et al. [13]
extend this method to depth-dependent blur by attaching a depth sensor to the camera.
Ringaby and Forssen [179] develop a virtual tripod for smartphones by taking a series
of noisy photographs, aligning them using gyroscope data, and averaging them to get a
clear image, but not targeting blur removal. Köhler [118] and Whyte [246] show in their
single-frame deblurring experiments that three rotations are enough to model real camera
shakes well. Karpenko [101], Ringaby [59], and Bell [19] developed methods for video
stabilization and rolling shutter correction specifically for smartphones. Without a depth
sensor, they all have to assume a planar scene far from the camera. Recently, a new model
for joint deblurring and rolling shutter de-warping has been presented in [217], but this

1DSLR camera: Digital single-lens reflex camera
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method is too complex for our purposes, the authors report a runtime of 18min on a single
800×600 image.

Park and Levoy [164] compared the effectiveness of jointly deconvolving multiple
images degraded by small blur versus deconvolving a single image degraded by large blur,
and versus averaging a set of blur-free but noisy images. They record a series of images
together with gyroscope measurements on a modified tablet with advanced camera controls
(e.g., exposure control, RAW2 data access) through the FCam API [163], and attach an
external 750Hz gyroscope to the tablet. They estimate the rotation axis, the gyroscope
drift, and the time delay between the frames and the gyroscope measurements in a non-
linear optimization scheme over multiple image segments. Their optimization scheme is
based on the fact that applying two different kernels to an image patch is commutative.
This means in the case of true parameters, applying the generated kernels in different
order results in the same blurry patch. The rolling shutter parameter is calculated off-line
with the method of Karpenko [101]. They report the runtime of the algorithm to be 24.5
seconds using the Wiener filter and 20 minutes using a sparsity prior for deconvolution,
not mentioning whether on the tablet or on a PC.

Closest to our goals and constraints is the series of work by Sindelar et al. [200, 201,
202] who also reconstruct the blur kernels from the sensor readings of an unmodified
smartphone in order to make the deconvolution non-blind. The first approach [200]
considers only x and y rotations and generates a single kernel as weighted line segments
using Bresenham’s line drawing algorithm. Unfortunately, their time calibration method
is not portable to different phones. They find the exact beginning of the exposure by
inspecting the logging output of the camera driver, which might be different for each
smartphone model. They read the exposure time from the EXIF3 tag of the captured
photo, however, this information is not available for the preview frames we intend to
use for a live deblurring system. Extending this work in [202] the authors generate
piecewise uniform blur kernels and deblur overlapping patches of the image using the
Wiener filter. They also account for the rolling shutter by shifting the time window of
gyroscope measurements when generating blur kernels for different rows of the image.
This last approach is appealing for kernel estimation in wearable devices, however, we
need to deal with various calibration issues.

2A RAW image file is also called digital negative as it is not a viewable image but contains all sensor
information required to create an image

3EXIF: Exchangeable image file format
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3.2.4 Deblurring text and visual codes

Intuitively, blur removal from text images appears to be a similar problem to ours. Previous
work addressed defocus and motion blur removal from text and also barcode images.
While the shape of a defocus kernel is given by the lens characteristics and can be
measured accurately (in document imaging applications), a motion blur kernel can have
very different shapes depending on the object or camera motion, hence compensating the
latter is significantly more difficult. Furthermore, text deblurring methods expect a few
thin black lines on dominant white background. Visual codes, in contrast, usually have an
equal distribution of dark and light areas.

Compensating defocus blur in 1D barcodes can be considered solved [2, 30, 39, 52, 62,
139] and fast algorithms exist in commercial barcode scanner applications [327, 331]. Liu
et al. [137] extended a standard deconvolution method with a bi-level image histogram
constraint for quickly removing defocus blur from 2D DataMatrix codes, but this method
would not work with motion blur.

Compensating motion blur in 1D barcodes is addressed in Yahyanejad et al. [257]
who present a blind deconvolution algorithm to remove translational motion blur. They
reduce the problem to 1D by averaging over several lines of the barcode, which renders
the method inapplicable for 2D QR codes. Guo et al. [67] showed how to scan barcodes
using a light field camera [305] that has extended depth of field so the distance of the
camera and the barcode can vary in a wider range. Xu and McCloskey [256] presented a
motion deblurring method using a camera with a fluttered shutter, a hardware modification
that makes the blur easier to invert. We target off-the-shelf wearable devices without such
modifications. Gennip et al. [232] presented an algorithm for blind deblurring of QR
codes by explicitly making use of the known finder patterns to estimate the kernel. The
algorithm is evaluated only with synthetic blurs, and with the assumption that the location
of the blurry finder pattern is known, which might be difficult to determine in real images.

Our work is closely related to recent research on blind text deblurring. The method
of Cho et al. [33] can successfully remove motion blur from text images that have a lot
in common with visual tags, but the algorithm relies on precise text segmentation and is
too slow for our purposes. The text deblurring method of Chen et al. [31] is specifically
developed for binary text images and is unlikely to work well with cluttered images.
The algorithm of Pan et al. [160] applies L0-minimization not only to image gradients
(see [254] for natural images) but also to the pixel values which means the algorithm
enforces the image to have a few black pixels among many white pixels, which is typical
for documents. Our experiments have shown that this method only works for QR codes
if its parameters are carefully tuned. Furthermore, the algorithm is too slow for mobile
applications.
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3.2.5 Towards fast visual code deblurring

Overall, the general photograph deblurring algorithms today have rather high computa-
tional requirements and are optimized for natural scenes. Our experiments have shown that
they often fail on artificial image content such as visual tags due to the different appearance.
Even if the blur function is known, non-blind deconvolution of visual tag structures (step
edges, thin lines, etc.) differs from that of photographs because the assumptions (e.g.,
natural image priors) do not hold. Also, many existing methods have difficulties with sharp
discontinuities and produce ringing artifacts. Therefore, directly applying a natural image
deblurring method usually fails with visual code images as also illustrated in Figure 3.6.

Figure 3.6: A blurry visual tag deblurred by the methods of Cho2009 [35], Sun2013 [219],
and Xu2010 [252]. Existing blind deconvolution methods are optimized for
natural scenes and often fail with artificial image content.

However, we can exploit two fundamental differences between restoring general pho-
tographs and restoring visual codes. First, the codes do not need to look perfectly for
decoding. Second, the 1D codes usually have error detection (checksum), and 2D codes
have both error detection and error correction (Reed-Solomon encoding, etc.) capabilities.
These properties allow early termination of the restoration algorithm; we may arrive at
an acceptable image within a few iterations only. Furthermore, there is no need for a
complicated visual quality measure for automated termination.

The approach of inspecting blurry edges in the image to recover the blur function
is especially appealing since it is relatively fast, and visual tags originally contain a
large number of sharp edges. Moreover, 2D codes are also rich in corners that are more
distinctive under blur and make localization and tracking of blurry codes over multiple
video frames feasible. In today’s smartphones, we have access to built-in inertial sensors
that can aid the kernel estimation. The code region itself is planar, so a uniform kernel
assumption is valid in the code area.

Unfortunately, the thin lines of 1D barcodes often become indistinguishable after motion
blur because the distance between the bars is often smaller than the blur kernel (cf. Xu’s
conclusions about natural image deblurring [252]), therefore we cannot robustly estimate
the blur solely from a barcode’s edges. Also, a barcode contains only edges in one direction

65



Chapter 3 Motion blur compensation

so only one cross-section of the blur kernel can be recovered. This cross-section, however,
should be enough for restoring the barcode information, in theory. The strong rectangular
region around the code (that we also exploited for localization in Chapter 2) might help in
recovering more information about the kernel, but our experiments were unsuccessful in
this direction. We therefore turned towards 2D codes that have apparent finder patterns
(e.g., the corner areas of QR codes). In the rest of the thesis, we focus on QR codes, but
generalization of our methods to other matrix codes containing some thick lines should be
easily possible.

In addition to the findings made in the general blind deconvolution techniques, we can
make the following observations. (i) QR codes contain many black and white corners
that are easy to localize even in a blurred image. (ii) QR codes include a checksum, so
the algorithm can terminate when the checksum is correct. False positives are hence
practically impossible. (iii) QR codes contain strong error correction, so even partially
restored codes may be decoded. This is especially important when the blur is slightly
non-uniform in the code area. (iv) QR codes consist of sharp edges, which is advantageous
for blur estimation, but disadvantageous for blur removal. (v) QR codes also contain small
structures that may mislead the blur estimation process and therefore their influence needs
to be suppressed.

In the rest of this chapter, we present two methods to tackle motion blur in visual codes
on unmodified wearable devices. Our first contribution is a new “blurry QR decoder”
algorithm that iteratively estimates the blur kernel from the edges in the image in a
restoration loop with the goal of fast decoding instead of visually pleasing deblurring. Our
second contribution is a quick blur estimation method from built-in inertial sensors that
can be used as a fast initialization step for the QR restoration loop.

3.3 Fast blind deblurring of QR codes

In this section, we present an algorithm that is particularly suitable for fast restoration
of a single QR image (see Figure 3.7). Instead of high-quality deblurring, we rather
focus on high-speed decoding. We apply and combine well-established techniques from
the photograph deblurring literature, our contributions are the adaptations that make the
algorithm particularly suitable for fast QR restoration.
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Figure 3.7: We recover the information from severely motion-blurred QR codes

3.3.1 Method overview

We apply the uniform blur model which describes the blurred image B as a convolution of
a latent sharp image I and a blur kernel k, with additive Gaussian noise N:

B = k ∗ I +N (3.3)

Uniform blur is a valid assumption if the blur is caused mainly by translational motion.
Cropping the image to a small search region in practice reduces blur to mostly this kind.

The algorithm consists of four main components that work in a tightly coupled restoration-
recognition loop, illustrated in Figure 3.8. In the first step, we run a standard decoder
algorithm; if an image is sharp enough for decoding, the loop terminates. Otherwise, the
contrast is increased in the second step and edge-aware filtering is applied. This removes
noise from the image, flattens small structures while it keeps strong edges. Next, the blur
kernel estimation step finds the most likely kernel which transforms the sharpened image
into the blurry one. In the fourth step the blurry image is deconvolved with the currently
estimated kernel to get a sharper image estimate, which again enters the decoder. The
process is iterated up to five times to attain improved kernel estimates and sharper image
estimates. Performing the loop over multiple image scales ensures fast convergence to the
correct solution.

Figure 3.8: Method overview
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Similar to other blur removal techniques, we formulate the QR deblurring problem as an
energy minimization scheme over I and k and iteratively optimize for one while keeping
the other constant. The total energy function to be minimized consists of a data fitting term
and regularization terms ρI(I) on the image and ρk(k) on the kernel with regularization
weights λ and γ , respectively. The derivation of the whole energy function can be found
in the Appendix. For the data fitting term, the L2 norm is commonly used, and different
blind deconvolution methods apply different regularization terms. The common form of
the energy function is

argmin
I,k
||B− k ∗ I||22 +λρI(I)+ γρk(k) (3.4)

Our goal is to find a good compromise between restoration quality and restoration speed,
also taking into account the typical black and white structure of QR codes. We chose a
sparsity prior on the image gradients∇Ii and an L2 sparsity prior on the kernel values ki:

ρI(I) = ∑
∀i
|∇Ii|α ρk(k) = ||k||22 = ∑

∀ j
k2

j (3.5)

In our notation, i and j index image pixels and kernel pixels, respectively. The optimization
of the total energy function can be separated into I- and k-subproblems that are presented
in the following.

3.3.2 Fast image estimation

Given the currently estimated kernel k, we apply the fast non-blind deconvolution method
of Krishnan [122] that in general enforces a sparse hyper-Laplacian distribution on the
gradients of the sharp image. With the exponent α = 1, the enforced Laplacian distribution
of the gradients in turn corresponds to a total variation regularization of the image I. This
is well suited for QR-codes as it favors flat image regions while it also allows sharp edges.

argmin
I
||B− k ∗ I||22 +λ ||∇I||α (3.6)

For α = 1, the solution is particularly simple and fast, relying only on FFTs and threshold-
ing operations [122].

To reduce boundary artifacts in the FFT-based restoration, we wrap the image boundaries
using the method of Liu and Jia [138] prior to deconvolution. This wrapping method is
suitable for not only symmetric but general kernels, is reasonably fast, and can be used in
any FFT-based restoration method.
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3.3.3 Fast edge-aware filtering

Due to an imperfect kernel, the fast deconvolution produces unwanted ringing artifacts
and noise that need to be suppressed while the main structure of the image must be
kept unchanged before kernel estimation. At this stage other deblurring methods usually
apply a combination of bilateral and shock filters [35] which require parameter tuning, or
L0-smoothing [160, 254] which is slower. We propose to use the joint weighted median
filter (WMF) [265] to remove small variations in the structure. This new filter produces
an output similar to other edge-aware smoothing filters but is significantly faster. The
filter replaces each pixel with a weighted median of its neighborhood of radius r. The
weights depend on a measure of similarity with the current pixel (intensity, color, etc. –
we use intensity). The neighbors of the pixel are ranked according to their weight and the
middle value is chosen. The WMF has computational complexity O(r) so it is very fast.
The filter radius r is set 1/5 proportional with the current kernel size. The blurry B and
the sharpened I image pair is passed to the next stage for blur kernel estimation.

Figure 3.9: The weighted median filter smooths high-frequency components but keeps
sharp edges.

3.3.4 Fast kernel estimation

Given an image estimate I, we solve for the kernel k in the gradient space using the
efficient method of Cho and Lee [35]. The energy function to be minimized here is

argmin
k
||∇B− k ∗∇I||22 + γ||k||22 (3.7)

which can be solved with the conjugate gradient method [35] in the Fourier domain where
convolution turns into multiplication. The L2-norm on k favors sparse solutions which is
desirable because a motion blur kernel consists of a thin continuous motion path. Working
with image gradients instead of image intensities is crucial here because it allows to ignore
boundary artifacts which drastically reduces the number of FFTs required [35].
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Next, potentially disconnected small components in the kernel are discarded, small
values are thresholded, and the kernel is shifted to its geometrical center (see Figure 3.10).
Other methods usually shift the kernel to its mass center but that might clip long thin tails
at the boundaries. Finally, the kernel is normalized to sum to 1 so that the convolution
does not reduce or increase the energy of the image.

Figure 3.10: The kernel estimation step may produce off-centered kernels but thin motion
blur kernels may contain important entries at borders. Because mass centering
might clip off important parts, we shift the geometrical center to the middle
instead.

3.3.5 Decoding in a restoration-recognition loop

After each iteration, we let a common QR detector and decoder algorithm process the
image. The error correction in QR codes practically disables false decoding while it can
guarantee that the algorithm converged to the right solution. The first successful decoding
allows early termination.

We perform our calculations over multiple image scales, starting with a kernel size of
5×5 up to 33×33 pixels. The image pyramid is built with scale factor 1/

√
2. On each

scale level the algorithm performs up to 5 iterations. Between scale levels, the kernel is
bilinearly upscaled. Figure 3.11 illustrates how the kernel gets refined over the iterations.

Figure 3.11: Illustration of kernel refinement over 7 scales using a single peak as starting
kernel.
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3.3.6 Initialization

One of our main contributions is a grid-shaped starting kernel. Other methods usually
initialize the kernel either with a Dirac delta function (identity blur) or with a small 2D
Gaussian (small defocus blur). In contrast, we initialize the kernel with a grid of Dirac
functions (see Figure 3.12) which corresponds to multiple shifted copies of the sharp
image after convolution. The proposed kernel has, to our knowledge, not been reported in
the literature but makes an important difference, in particular for heavily blurred images.
While the delta kernel works well in simulations, we found in experiments with real

Figure 3.12: Illustration of image and kernel refinement over 8 iterations using a grid
of peaks as starting kernel. The grid kernel converges slower but is able to
restore very large blurs that are otherwise unsuccessful with the peak kernel.
The example also illustrates how disconnected kernel noise gets removed
during the process. The image is 300×300, the kernel is 33×33 pixels, the
decoding took 3.10s. The blurry image was taken with a smartphone.

smartphone images that using a grid as initial kernel greatly improves the robustness of
the algorithm. With this initialization, our algorithm is able to invert very large blurs. We
provide an analysis on the impact of the new kernel in the evaluation section. However,
this gain in deblurring performance comes at a small cost as in general the grid kernel
converges slower than the delta kernel. Fortunately, one could overcome this tradeoff by
reading the inertial sensors during image capture and thus selecting the right initial kernel
based on a first estimate of the blur size, as we will show in Section 3.4.
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3.3.7 Implementation and test environment

We have implemented the algorithm on both PC and Android using the open-source
OpenCV [313], FFTW [285], and ZBar [349] libraries. We have found the constants
λ = 0.002, γ = 2, and WMF standard deviation 55 to work well in all our experiments.
The algorithm requires no further parameter tuning. Our scanner is built as a standard
native Android application which makes it portable to any Android device.

Our linear blur model does not take into account the manufacturer-dependent non-linear
image enhancements and other effects in the camera that may cause significant impact
on the performance of blur removal algorithms [224]. It is therefore vital that we set the
tone map curve to linear and switch off the automatic image enhancement functions in
our camera (this is the reason why our real input images appear dark). In our experiments,
this is possible through the Android Camera2 API. This fine camera control is available
since Android 5.0 if the camera driver also supports it. This fact, unfortunately, limits
our live tests to high-end smartphones; however, we expect that with rapid technological
advancement the smartphones’ capabilities will soon be available in smartwatches and
smartglasses as well. Until then, the smartglasses implementation can be tested using
synthetic images, which is sufficient for speed and memory analysis. The graphical user
interface of our smartphone application is also shown in Figure 3.25, and the interface on
smartglasses is shown in the accompanying video (see Appendix). Once the QR code is
recognized, depending on its content, a URL is opened or the contact details are shown to
the user.

We evaluate the effectiveness of our algorithm on a series of QR code images contami-
nated by synthetic and real blur, and also compare our algorithm with the state of the art.
For convenience, the comparisons were performed on a notebook with a 2.40 GHz Core
i7-4700MQ CPU. Our algorithm currently uses a single thread only. The input images
with synthetic blur were created in Matlab, the input images with real blur were captured
with a Google Nexus 6 smartphone. We also show qualitative results of our algorithm
running directly on the smartphone and on smartglasses.

3.3.8 Removing synthetic motion blur

In the first experiment, we test whether the algorithm can remove synthetic uniform blur,
i.e., blur that our mathematical model assumes. Figure 3.13 illustrates the experiment. For
repeatability, we use six out of the eight benchmark kernels from Levin et al. [133]. We
leave out two kernels that are so small that we can decode the images without deblurring.
The input images are of resolution 200×200, the kernels are between 17×17 and 27×27
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Figure 3.13: Removing synthetic uniform blurs from images (0.1% synthetic noise). Top:
input images and ground truth kernels. Bottom: output images and kernel
estimates when first decoded. Kernel size indicates the scale level.

pixels. In this experiment, we use small images because the benchmark kernels are rather
small. To simulate imperfections of real images, we also add small 0.1% noise to the
blurred images. The top row of Figure 3.13 shows the input images and in the insets the
ground-truth blur kernels that were used to create the input images. The bottom row shows
each intermediate image and the current estimate of the kernel when the code first could
be decoded. The output images and kernels are upscaled for visualization using nearest
neighbor interpolation. The form of our estimated kernels resembles that of the ground
truth kernels. On the PC, it takes about 0.45s to restore the first five images while the last
one takes 1.6s because iterations on two more scales are required due to larger blur.

We repeated the experiment after adding large 1% image noise (see Figure 3.14). The
algorithm can successfully decode all blurry and noisy examples with the expense of a
longer average runtime of 0.66s.

We conclude that our algorithm is able to quickly restore blurry codes that follow our
mathematical model; however, the restoration speed depends on both the image size and
blur size. The main bottleneck of real-time operation is the number of single-threaded
FFTs, but we expect a speedup with a parallel implementation.

3.3.9 Comparison of blind deblurring methods

For practical applications, the restoration speed is crucial. In this experiment, we compare
our algorithm with the state of the art in terms of runtime and readability of the resulting
images. All selected methods are available open source or as executables. Methods (B)-(G)
were developed for general blind deconvolution problems while method (H) is specifically

73



Chapter 3 Motion blur compensation

Figure 3.14: Removing synthetic blurs from images (also added 1% synthetic noise). The
top row shows the input images and ground truth kernels. The bottom row
shows the output images and kernel estimates when first decoded. Kernel
size indicates the scale level. The kernels are from the blur test set from
Levin et al. [133].

for text image deblurring. A short summary of each method can be found in the related
work section. Figure 3.15 summarizes our findings.

Method (B) [35] was the first fast algorithm for natural image deblurring, but the applied
gradient statistics cause it to fail on artificial black and white content. Also, this method
is sensitive to initialization parameters. Method (C) [252] selects good edges for kernel
estimation and reconstructs the sharp edges but the result exhibits significant ringing
artifacts that make the code unreadable. Method (D) [219] decomposes the image into a
dictionary of sharp edge and corner patches to aid the kernel estimation. The method is
very slow, and although the patch prior was expected to fit well with the structure of QR
codes, the result is surprisingly unreadable. Method (E) [254] is fast and can successfully
restore the code. However, to get good results, we had to supply an estimate for kernel size
almost double of the true kernel size which is rather inefficient in terms of computational
overhead.

Method (F) [161] also implements an edge selection strategy, but the decoding failed.
Method (G) [167] uses TV regularization like our approach. It can successfully restore the
code but is very slow. Method (H) is especially interesting as text images share similar
properties with visual codes. We tested the authors’ Matlab implementation and ported
the algorithm to C++ to make it faster (we achieved about 30% speedup, not using the
GPU at all). The runtime was 12.73s in Matlab and 9.69s in our C++ implementation.
The critical bottleneck is the L0 restoration step. Also, the algorithm requires tuning many
parameters, we found that QR codes need different regularization weights than text.

Our method (I) almost perfectly reconstructed the code (cf. ground truth (J)). Further
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A B C D E
Input Cho2009 Xu2010 Sun2013 Xu2013

binary - C++/GPU C++/GPU Matlab C++/GPU
runtime - 0.481 s 0.955 s 217.730 s 1.049 s
decoded - no no no yes

F G H I J
Pan2013 Perrone2014 Pan2014 Ours2015 Truth

binary Matlab Matlab Matlab (C++) C++ -
runtime 133.8 s 171.898 s 12.736 s

(9.691 s)
1.765 s
(0.614 s)

-

decoded no yes yes yes -

Figure 3.15: Comparison of blind deconvolution algorithms on a synthetically blurred
QR code. (A) Input frame, (B) Cho2009 [35], (C) Xu2010 [252],
(D) Sun2013 [219], (E) Xu2013 [254], (F) Pan2013 [161], (G) Per-
rone2014 [167], (H) Pan2014 [160] original Matlab implementation and
in brackets our C++ port, (I) Ours, in brackets the time of first decoding,
(J) Ground truth
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advantages of the proposed method over the reconstruction quality are its low memory
footprint and high speed. Our method is almost as fast as (E), and it is important to note
that (E) performs the FFT calculations on the GPU while we use one CPU core only. Also
note that Matlab performs parallel processing in several built-in functions, so an exact
runtime comparison is difficult.

3.3.10 Removing real motion blur

Next, we test the algorithm on codes contaminated by real motion blur. We capture a
sequence of images with a smartphone while holding a QR code in front of the camera and
deliberately shaking either the code or the smartphone. We used the same QR code with
error correction level M in all our experiments. We capture camera preview frames because
barcode scanner applications usually work with those instead of still images. We set the
frame size to 720×480 pixels. We tested 340 images in total, out of this 217 frames were
decoded without deblurring (63.8%), 83 frames were decoded after deblurring (24.4%),
and only 40 frames were unsuccessful (11.8%), so our algorithm significantly increased
the number of codes that could be scanned. Figure 3.16 shows examples of the restored
codes. The decoding of these blurry examples took on average 1.4s on the PC, but the
number of iterations and thus the speed depends on the size of the blur kernel.

Figure 3.16: Removing real motion blur from QR code images. The decoded content
http://iswc.net/iswc15/index.html is written in the top of the images.

3.3.11 Impact of initial kernel choice

As discussed before, one of our main contributions is the proposed initialization scheme.
In experiments with real data we have experienced that in case of heavy blur and when
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Figure 3.17: Further results of removing real motion blur from QR code images.

Figure 3.18: Further results of removing real motion blur from QR code images.

initialized with the Dirac kernel, the algorithm often did not converge to the right solution.
In her seminal work, Levin [133] analyzed why blind deconvolution algorithms may
converge to a blurry solution, however, the problem is different here, because we observed
sharp but unreadable output images. We then introduced a new grid-shaped starting kernel
that works better with large blurs than the Dirac kernel. In Figure 3.19 and Figure 3.20,
we show several example results of our experiments that verify our claims. The example
also illustrates how disconnected kernel noise gets removed during the process. We
assume the better performance of the grid kernel is connected to the regular structure of
the underlying sharp QR code, but the detailed analysis is left for future work.

3.3.12 Other visual codes

DataMatrix codes The algorithm also performs well on DataMatrix codes (see Fig-
ure 3.21), but the blur estimation phase is less robust as the modules (the black and
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Figure 3.19: Illustration of image and kernel refinement over 8 iterations using a single
peak or a grid of peaks as starting kernel. In this example, both initial kernels
lead to a correct solution, but our grid kernel converges slower. However, the
grid kernel is able to restore very large blurs that are otherwise unsuccessful
with the peak kernel (see next figures). The image is 300×300, the kernel is
33×33 pixels, the decoding took 0.72s and 3.10s, respectively. The blurry
image was taken with a smartphone.

Figure 3.20: Further examples illustrating image and kernel refinement using a single
peak or a grid of peaks as starting kernel. In these examples, codes were not
recognized using the peak initial kernel, but our grid kernel is successful in
removing large blurs.
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white squares) of a DataMatrix are much smaller than the modules of a QR code. We
performed this experiment directly on the smartphone and we did not change anything in
our algorithm and as it still expected a QR code, it took the maximum amount of allowed
time. The first three images became decodable with a commercial decoder.

Figure 3.21: Running our algorithm on DataMatrix input without modifications. The top
row shows the input images and the bottom row shows the output images
and estimated kernels. The first three results can be decoded by the Scandit
decoder [331] while the rightmost example fails due to non-uniform blur.

EAN barcodes Figure 3.22 and Figure 3.23 summarize the results of our experiments
with a barcode and synthetic motion blurs. The blur kernels are the same as in the synthetic
QR experiment, originally from Levin et al. [133]. The kernels are of size from 17×17 to
27×27 pixels, the input images of Figure 3.22 are of size 200×200 pixels, and the input
images of Figure 3.23 are of size 300×300 pixels. This means the same kernel causes
visually larger blur in Figure 3.22 than in Figure 3.23. Unfortunately, our method performs
poorly when the distance between the thin bars is smaller than the blur kernel because the
thin lines can mislead the kernel estimation. Our restored barcodes were often less visually
appealing than the input images. Nevertheless, the thick bars and the numbers below the
bars got sharper. While none of the input images is readable with the ZXing reader [351],
some of our restored barcodes became decodable. We note here that the ZXing reader
is open source and applies no image enhancement steps other than simple thresholding
operations. It is also apparent from the experiments that if the blur is small or if most of
the kernel values are concentrated around a dominant spot, the very efficient defocus blur
model of the Scandit [331] scanner can decode the barcode (recall the Gaussian shape of a
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Figure 3.22: Experiment with a 200× 200 barcode image and synthetic blurs with the
kernels of Levin [133]. Our method can make 4 out of 8 images decodable
with the simple ZXing decoder. However, some codes degraded by small
(or concentrated) motion blur can be decoded with the Scandit scanner that
applies a very efficient defocus blur model.
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typical defocus blur kernel). Hence there is actually no need for expensive blind motion
blur estimation in most cases when the blur is small, but we can apply one of the fast
defocus models (see related work section) instead. A quick estimate on the size of the
motion blur can be derived from the inertial sensors as we will describe in Section 3.4. 1D

Figure 3.23: Experiment with a 300× 300 barcode image and synthetic blurs with the
kernels of Levin [133]. Here the blur is visually smaller than in Figure 3.22.
Again, our method makes some barcodes decodable with ZXing, but some
codes become even worse than the input, and the Scandit scanner can actually
decode the ones where the motion blur can be approximated by a defocus
blur model.

barcodes are also vulnerable to false positive detections because they contain only weak
error detection by a single checksum character. Therefore, the restoration errors might
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result in a false barcode candidate. In contrast, the combined error detection and error
correction in QR codes can avoid false detections.

We can conclude that our method is best suited for 2D visual codes with larger modules
(w.r.t. typical blur size) and is less robust when applied to codes with smaller modules. In
particular, QR codes and AR markers are good representatives while DataMatrix codes
and barcodes are not. This behaviour is actually expected from the analysis of Xu and
Jia [252] in natural image deblurring. If the code contains only small-scale structures, the
kernel estimation is not guaranteed to converge.

3.3.13 Other types of blur

So far, we have focused on decoding motion-blurred codes only, but the QR properties
remain the same under other types for blur as well. In our future work, we will investigate
the adaptations required in kernel regularization to allow different non-sparse shapes. Here,
we briefly show promising preliminary results of our experiments in removing synthetic
defocus blur and synthetic upscaling blur.

Removing synthetic defocus blur In theory, it is possible to restore slightly defocused
codes if the blur is smaller than the module size in the code. Figure 3.24 left shows a
synthetically defocused example using a 178×178 image and a 33×33 Gaussian kernel
with standard deviation 3. The image is successfully decoded in 0.32s; however, some gray
artifacts are visible at dense black and white areas of the code. Note the Gaussian-shaped
estimated kernel.

Figure 3.24: Left: removing synthetic defocus blur. Note the Gaussian-shaped estimated
kernel. Right: Reconstructing a bilinearly 12× upscaled code. Note the
square-shaped estimated kernel.

Reading tiny codes Blind deconvolution is also an important step in super resolution
algorithms where a downsampling filter needs to be estimated and inverted. The close
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connection in the mathematical models suggest that our algorithm might be suitable
for super resolving tiny QR codes. We have performed a simulation to justify this (see
Figure 3.24 right). In a photo editing software we downscaled a QR code with nearest
neighbor interpolation so that one symbol corresponds to only one pixel, and upscaled
it to 300× 300 pixels (12×) again, using bilinear interpolation. The upscaled code is
blurry and not readable. Our algorithm is able to restore and read the code after only two
iterations. Note the square shape of the estimated blur kernel in the bottom right corner.

3.3.14 Experiments on smartphones and smartglasses

After successful offline experiments with real motion-blurred images, we ported our
algorithm to Android for live experiments. Figure 3.25 illustrates a concrete example
with a large QR code and challenging blur restored directly on the Nexus 6 smartphone
(Qualcomm Snapdragon 805 SoC with 2.7 GHz Krait 450 CPU and 3 GB RAM). The
Android GUI consists of the camera preview and three image views for the input, output,
and kernel images, respectively. The camera resolution is set to 720×480, and we added
a 300×300 search window on top of the preview and constrain the algorithm to this area.
Additionally, there are buttons to capture an image and start the deblurring, and a textbox
for logging output. The challenging image is decoded in about 13s.

We also implemented the algorithm on more constrained Google Glass smartglasses
(TI OMAP 4430 SoC with 1.2 GHz CPU and 2 GB RAM). As the tonemap curve cannot
be controlled, the recorded images on the Glass do not follow our linear blur model. Due
to this limitation of the camera driver, we can report the performance on the Glass only
using synthetically blurred images. Deblurring a 300× 300 image on the Glass takes
8.54s (using a single CPU core), which is about 2.5× slower than deblurring the same
image on the smartphone. The Android debugger reports the use of 34.9MB of memory
during deblurring, which we find acceptable on a wearable device. More experiments with
smartphones and smartglasses can be found in Figure 3.26 and in the supplementary video
(see Appendix).

In summary, we have shown that our proposed algorithm achieves good reconstruction
quality even on severely blurred QR codes and outperforms existing methods in terms of
speed. Our method requires no parameter tuning except a rough estimate of the kernel
size which we have set to 33×33 pixels in all our experiments. In the following section,
we provide a simple yet effective method to quickly estimate the initial size of the blur
from the inertial sensors of a wearable scanner device.
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Figure 3.25: Android user interface: This example shows removing large motion blur
from a QR code in 13.638s directly on a smartphone. The input is replicated
in the top row and intermediate steps are shown in the bottom row.

Figure 3.26: Challenging real blurred examples that our algorithm is able to decode
directly on a smartphone. The number of iterations depends on the blur size,
the total runtime is indicated in the respective image corners. While our
method is currently too slow for real-time applications, it is significantly
faster than other existing approaches.
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3.4 Fast blur estimation from inertial sensors

Further speedup in the deblurring can be achieved with inertial sensors that are common
in wearable devices. The sensor stream captured together with the camera stream allows
for reconstructing the camera motion during the exposure time which in turn relates to the
(non-uniform) blur in an image. This idea is inspired by high-end cameras that compensate
for handshake blur via optical image stabilization techniques: Vibration Reduction (Nikon),
Image Stabilization (Canon), Optical Stabilization (Sigma), etc., by moving the lens or
the image sensor based on inertial sensor measurements. As those hardware technologies
are not common for small wearable cameras, we need to perform the enhancements in
software.

In Section 3.2, we have discussed deblurring approaches that aid the kernel estimation
with motion sensors in custom hardware. With unmodified wearable devices, however,
there are a number of practical issues that prohibit accurate blur estimation from the
sensors alone. We aim at interactive frame rates which implies a trade-off between
restoration quality and speed, and limits the applicability of many approaches. The required
hardware modifications and the long restoration time are the two main reasons why none
of the existing gyro-based methods fits our purposes. Instead of relying solely on the
inertial sensors for deblurring as previous work, we propose to quickly initialize the blind
deblurring algorithm from the built-in sensors, while the initial errors are compensated in
our edge-based blind kernel estimation loop.

3.4.1 Method overview

We can make the following observations illustrated in Figure 3.27: i) The blurry image of
a point light source in the scene (such as distant street lights at night) gives the motion blur
kernel at that point of the image ii) smartphones today also provide a variety of sensors
such as gyroscopes and accelerometers that allow reconstructing the full camera motion
during camera exposure thereby giving information about the blur process. iii) We can get
the blur kernel at any point in the image by placing a virtual point light source in front of a
virtual camera and replaying the camera motion.

Figure 3.28 gives an overview of our sensor-aided (non-uniform) deblurring approach.
First, piecewise uniform blur kernels Kij along rows i and columns j of the image are
estimated from the sensor measurements. The generated kernel(s) are used as initialization
in our restoration-recognition loop which speeds up the blind blur estimation process.
Within the loop, individual patches are restored from using visual code image priors.
Finally, the sharp output I is assembled from the deblurred patches. When creating
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Figure 3.27: Left: The blur is “encoded” in the image of point light sources. Middle: We
can reconstruct the camera motion from inertial sensor measurements. Right:
We can get the blur kernel by replaying the motion with a virtual camera
looking at a virtual point light source.

Figure 3.28, we performed only a single iteration of the image estimation step to illustrate
the immediate effectiveness of sensor-based kernel estimation.

Figure 3.28: Illustration of our gyroscope-aided (non-uniform) blur removal approach.

Typically, wearable computers are equipped with both an accelerometer and a gyroscope.
There are, however, a couple of difficulties in using the accelerometer for blur estimation.
First, the accelerometer measures linear acceleration, so in order to get the translation of the
camera, a double integration is necessary which amplifies the sensor noise. The amplified
noise can lead to large errors in kernel estimation. Second, gravity compensation is difficult
with complex motions. Third, and most important, is the fact that translational blur also
depends on the scene depth so we cannot get the blur kernels only from the sensors. In
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Figure 3.29: Given a scene at 1m distance, a slight rotation of 0.57◦ is enough to produce
the same blur as 1cm translation. If the scene is 3m away, then already 0.19◦

rotation has the same effect. From this simple example, we see why the blur
effect of camera rotation is much more dominant than of camera translation.

contrast, gyroscopes measure rotational velocity and the values need to be integrated
only once to get the rotation of the camera. Moreover, rotational blur is independent of
scene depth so there is no need for difficult depth estimation or energy-consuming depth
sensors. As we are only interested in the camera motion within the shutter interval, the
gyroscope bias can be neglected because we only integrate a couple of measurements.
As also illustrated in Figure 3.29, rotational blur is dominant in hand shake, especially
when the scene is further away. This allows to restrict ourselves only to the gyroscope
measurements for blur estimation.

3.4.2 Modeling camera motion and blur

The traditional convolution model for uniform blur is written in matrix-vector form as

~B = A~I+~N (3.8)

where~B,~I,~N denote the vectorized blurry image, sharp image, and noise term, respectively,
and A is the sparse blur matrix. Camera shake causes non-uniform blur over the image,
i.e., different parts of the image are blurred differently. We assume piecewise uniform
blur and use different uniform kernels for each image region which is a good compromise
between model accuracy and model complexity.

The blur kernels across the image can be found by reconstructing the camera movement,
which is a path in the six-dimensional space of 3 rotations and 3 translations. A point in this
space corresponds to a particular camera pose, and a trajectory in this space corresponds to
the camera movement during the exposure. From the motion of the camera and the depth
of the scene, the blur kernel at any image point can be derived. We target unmodified
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smartphones without depth sensors, so we need to make further assumptions about the
scene and the motion.

Similar to Joshi et al. [96], we assume the scene to be static and planar (or sufficiently
far away from the camera) so that the blurred image can be modeled as a sum of transfor-
mations of a sharp image. The transformations of a planar scene due to camera movements
can be described by a time-dependent homography matrix Ht ∈ R3×3. We apply the
pinhole camera model with square pixels and zero skew for which the intrinsics matrix K
is defined as

K =

 f 0 cx

0 f cy

0 0 1


where f is the focal length and [cx,cy]

T is the principal point of the camera.

Given the rotation matrix Rt and the translation vector Tt of the camera at a given time
t, the homography matrix is defined as

Ht(d) = K(Rt +
1
d

Tt~nT )K−1 (3.9)

where~n is the normal vector of the latent image plane and d is the distance of the image
plane from the camera center. The homography Ht(d) maps homogenous pixel coordinates
from the latent image I0 to the transformed image It at time t:

It
(
(ut ,vt ,1)T)= I0

(
Ht(d)(u0,v0,1)T) (3.10)

The transformed coordinates in general are not integer valued, so the pixel value has to be
calculated via bilinear interpolation, which can also be rewritten as a matrix multiplication
of a sparse sampling matrix At(d) with the latent sharp image~I0 as~It = At(d)~I0 in vector
form. Then, assuming constant illumination in the scene during exposure time, we can
describe the blurry image as the integration of all transformed images during the exposure
time plus noise:

~B =

tclose∫
topen

At ·~Idt +~N = A ·~I+~N (3.11)

Note how this expression resembles the form of Equation 3.8. While for this formula
the depth of the scene is required, a common simplification is to assume zero translation
[59, 73, 101] because rotation has a significantly larger impact on shake blur [19, 118, 246].
With only rotational motion, Equation 3.9 is no longer dependent on the depth:

Ht = KRtK−1 (3.12)
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Handling pixel-wise spatially varying blur is computationally too complex to perform on
a smartphone, so we adopt a semi-non-uniform approach. We split the images into R×C
overlapping regions (R and C are chosen so that we have regions of size 30×30 pixels)
where we assume uniform blur and handle these regions individually. We reconstruct the
motion of the camera during the exposure time from the gyroscope measurements and
from the motion we reconstruct the blur kernels for each image region by transforming the
image of a point light source with the above formulas. Once we have the blur kernels, fast
uniform deblurring algorithms can be applied in each region, and the final result can be
reassembled from the deblurred regions (recall Figure 3.28).

3.4.3 Camera-IMU calibration

Reconstructing the motion of the mobile phone during camera exposure of a given frame i
with timestamp ti requires the exact time window of sensor measurements during that frame.
This is challenging to find on unmodified smartphones given that current smartphone APIs
allow rather limited hardware control. We denote with td the delay between the recorded
timestamps of sensor measurements and camera frames which we need to estimate prior
to deblurring.

Synchronization of the camera and the IMU data is an important open issue in sensor-
based blur estimation because the mobile operating systems do not provide precise time-
stamps. Existing methods estimate the unknown parameters (time delay, frame rate, rolling
shutter fill time, gyroscope drift) from a sequence of images off-line via optimization.
We have found that the camera parameters might even change over time, for example the
smartphones automatically adjust the frame rate depending on whether we capture a bright
or a dark scene. This is an important issue because it means we require an online calibra-
tion method. Jia and Evans [94] proposed such an online camera-gyroscope calibration
method for smartphones based on an extended Kalman filter (EKF). The method tracks
point features over a sequence of frames and estimates the time delay, the rolling shutter
fill rate, the gyroscope drift, the physical sensor offset, and even the camera intrinsics.
However, it requires sharp frames for feature tracking.

Furthermore, the rolling shutter in CMOS image sensors introduces a small time delay
in capturing different rows of the image that causes image distortions. The pixel values
are read out row-wise from top to bottom which means ’top’ pixels in an image will be
transformed with ’earlier’ motion than ’bottom’ pixels, which has to be taken into account
in our model (see Figure 3.30. For an image pixel u = [ux,uy]

T in frame i the start of the
exposure is modeled as

t([ux,uy]
T , i) = ti + td + tr

uy

h
(3.13)
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where tr is the readout time for one frame and h is the total number of rows in one frame.
The gyro-camera delay td is estimated for the first row of the frame, and the other rows are
shifted in time within the range [0, tr]. We set the time of each image region to the time of
the center pixel in the region.

Figure 3.30: The rolling shutter introduces image distortion when the camera (or the
object) is moving during exposure because the bottom part of the image is
captured later than the top part. When the camera moves to the left, the
bottom part of the checkerboard is sheared to the right. When the camera
moves downwards, the squares are squeezed vertically. Our motion blur
model must take these effects into account.

To find the unknown constants of our model, we apply the Extended Kalman Filter
(EKF)-based online gyro-camera calibration method of Jia and Evans [93, 94] once at the
beginning of the sequence. This method estimates the rolling shutter parameter tr, the
camera intrinsics f , cx, cy, the relative orientation of the camera and IMU, the gyroscope
bias, and even the time delay td . The intrinsics do not change in our application, and the
relative orientation is not important because we are only interested in rotation changes
which are the same in both coordinate systems. The gyroscope bias is a small and varying
additive term on the measured rotational velocities which slightly influences the kernel
estimation when integrated over time. However, for kernel estimation we consider only
rotation changes during single camera frames, and in such short time intervals the effect
of the bias can be neglected. For example, in case of a 30Hz camera and a 200Hz
gyroscope we integrate only 200/30≈ 6 values during a single frame. We perform the
online calibration once at the beginning of our image sequences and we assume the above
parameters to be constant for the time of capturing the frames we intend to deblur. The
EKF is initialized with the intrinsic values given by the camera calibration method in
OpenCV.

The time delay td was found to slightly vary over longer sequences, so after an initial
guess from the EKF, we continuously re-estimate td in a background thread. We continu-
ously calculate the mean pixel shift induced by the movement measured by the gyroscope,
and we also observe the mean pixel shifts in the images (see Figure 3.31). The current
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td is found by correlating the curves in a sliding time window. This calibration method
works only with far away scenes so that the camera’s translational motion is negligible.

Figure 3.31: Our continuous calibration method for the time delay parameter compares
the mean pixel translation rates observed in the images and generated from
the gyroscope measurements. The time delay td can be found by matching
the curves in horizontal direction, and the focal length f can be found by
matching the two curves in vertical direction. Figure adapted from Luc
Humair.

The last parameter, the exposure time te = tclose− topen of a frame can be read from the
EXIF tag of JPEG images like in [200], but an EXIF tag is not available for live video
frames. Therefore, we lock the camera settings at the beginning and capture the first frame
as a single image.

3.4.4 Kernel estimation from gyroscope measurements

We generate a synthetic blur kernel at a given point in the image by replaying the camera
motion with a virtual camera that is looking at a virtual point light source. For any pixel
u = [ux,uy] in the image, we place the point light source to U = [(ux− cx)

d
f ,(uy− cy)

d
f ,d]

in 3D space. Note that the value of d is irrelevant if we consider rotations only.

First, we need to rotate all sensor samples into a common coordinate system because
the raw values are measured relative to the current camera pose. The chosen reference
pose is the pose at the shutter opening. Next, the measured angular velocities need to
be integrated to get rotations. As described in Section 3.4.3, we neglect the effects of
gyroscope bias within the short time of the exposure. In order to get a continuous rendered
kernel, we super-resolve the time between discrete camera poses where measurements

91



Chapter 3 Motion blur compensation

exist, using spherical linear interpolation (SLERP). The transformed images of the point
light source are blended together with bilinear interpolation and the resulting kernel is
normalized to sum to 1. Finally, we crop the kernel to its bounding square in order to
reduce the computational effort in the later deblurring step. Note that this method allows
to estimate the blur at each pixel of the image. For the sake of restoration speed, we
restrict ourselves to the locally uniform blur model and generate only the blur kernels at
predefined locations on a grid over the image.

3.4.5 Implementation

We have implemented the proposed method in OpenCV [313]. We recorded grayscale
camera preview sequences of resolution 720× 480 at 30Hz together with gyroscope
data at 200Hz on a Google Nexus 4 smartphone. Our tests were conducted offline
on a PC but each component of our algorithm is portable to a smartphone with little
modifications. The gyro-camera calibration is performed on the first few hundred frames
with Jia’s implementation [94] in Matlab. We found that this calibration method sometimes
converges to incorrect values so we also allow the user to adjust the td and tr values
manually. A robust online calibration method is out of the scope of this thesis. Given the
rendered piecewise uniform blur kernels, we start the fast blind QR restoration method
from Section 3.3. For smoothing discontinuities that may produce ringing artifacts, we
perform edge tapering on the overlapping regions before deblurring.

3.4.6 Evaluation of kernel generation

To test the accuracy of kernel generation, we recorded a sequence in front of a point light
grid, and also generated the kernels from the corresponding gyroscope data. Ideally, the
recorded image and the generated image should look identical, and after (single-frame)
deblurring using the generated kernels the resulting image should show a point light
grid again. Figure 3.32 illustrates that our kernel estimates are close to the true kernels;
however, the bottom part is not matching perfectly because of residual errors in the online
calibration. Nevertheless, the accuracy of the generated kernels is enough for initialization
of the blind deblurring component.
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Figure 3.32: Kernel generation example. Left: blurry photo of a point grid. Middle:
kernels estimated from gyroscope data. Right: the deblurred image is close
to a point grid again.

3.4.7 Removing the blur

We also evaluate the proposed method on images of real blurred QR codes close to the
camera. Figure 3.33 illustrates our experiment. We also added a laser spot next to the
static code and moved the camera during exposure. The captured laser streak gives a hint
about the true blur kernel. Ideally, with perfect deblurring, the laser streak should become
a single dot after restoration. We generated local blur kernels from sensor data. The right
column illustrates the generated kernels at selected tiles. We then run a single iteration
of our image estimation step (see details in Section 3.3.2) to get sharper estimates. The
generated kernels are close to the true kernels, therefore we can significantly improve
the quality of the images within a single iteration only. One of the output images is
actually already readable. This means, when incorporating sensor data in our algorithm,
the expensive multiscale blind kernel estimation can be skipped and we can immediately
continue with kernel estimation on the highest scale. The blind kernel estimation algorithm
then quickly finds the solution that gives the sharpest result.
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Figure 3.33: Experiment with real blurred images as input (left column). We generate
local blur kernels from sensor data (right column) and run one iteration of
our image estimation step to get sharper estimates (middle column).
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3.5 Discussion

3.5.1 Target devices

As shown in the experiments, our QR restoration algorithm requires a fast processor,
moderate amount of memory (less than 40MB without strict optimizations), and a camera
with a suitable driver that allows manual control. As usually more complex applications
are built on top of barcode scanning, the high CPU requirements restrict the applicability of
our approach to high-end wearable devices. Slower wearable devices (e.g., a smartwatch
or a life logger camera) could send the captured image to the user’s smartphone which
we believe is the most powerful wearable device nowadays. A cross-device barcode
scanning solution (i.e., smartwatch camera, smartphone processor, smartglasses display)
should be further explored in future research. However, distributing the computation on
many individual devices would produce too much communication overhead. In the future,
the algorithm could greatly benefit from embedded processors with fast floating point
calculations and/or DSP support with hardware FFT features.

3.5.2 Impact of image resolution

An important setting of the algorithm is the image size. We chose a 300× 300 search
window with the common 720×480 preview resolution. This corresponds to a convenient
15cm scanning distance for a 5× 5cm code, a typical QR shopping scenario with the
smartphone. The Glass camera has a wider field of view, so with the same resolution
and search window, the code must be placed closer to the camera. In order to match the
search window with a smaller code that the user holds further away, the camera resolution
needs to be increased. Doubling the camera resolution means the code is visible from
twice the distance, but then a twice higher resolution blur kernel is required to represent
the same shake blur. For example with preview resolution 1280× 960 on the Google
Glass, the 300×300 search window fits a 5×5cm code in 35cm distance. As only the
search window is processed, the actual camera resolution makes no difference in the image
estimation, but the higher resolution makes a big difference in the blur kernel estimation.

It is also important that we pick a tight, but not too tight initial estimate of the kernel
size. In the implementation used in our experiment, we represented all kernels by a 33×33
matrix. If the chosen kernel size is too small, parts of the kernel might be lost or clipped (cf.
our automatic centering method), and there is little chance to recover the complete image
with a truncated kernel. Even worse, the false kernel will cause severe ringing artifacts
propagating the errors further in the loop which might lead to a wrong local optimum
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or no convergence at all. Choosing the kernel size too big is no problem in the sense
of finding the optimum (note that the solution will be filled with zeros around the true
kernel) but it has a huge impact on the runtime. A larger kernel implicitly leads to larger
matrices and longer processing time because significantly more variables are involved in
the optimization. In summary, the image resolution, the blur size in pixels, and thus the
kernel resolution are strongly coupled and the latter one needs to be chosen carefully, and
therefore our quick initialization scheme from inertial sensors is an important module of
an efficient scanner.

3.5.3 Speed optimizations

The runtime of the blind restoration algorithm depends on several factors. Figure 3.34
illustrates the time spent on image estimation and kernel estimation on different scales
when the early detection is switched off. The image estimation and the kernel estimation
steps contribute similarly to the total time per scale. The complexity of image estimation
grows exponentially with the image size, and the complexity of blur estimation grows
exponentially with the blur kernel resolution. The complexity of FFT is known, the
complexity of conjugate gradients can be estimated, but the number of iterations and
scales until decoding depends on the actual blur shape. While our Android tests are still
far from real time, we presented some extremely large blurs that might be unrealistic
assuming that the user wants to scan the code. Smaller blur is faster to estimate because
less iterations are needed. As the total time per scale grows exponentially, the importance
of a fixed search window and early QR detection is indisputable.

Figure 3.34: Time spent on image and kernel estimation on different scales (PC), with
the QR decoder disabled footnoteIn this example, the QR code would be
successfully decoded after 3 scales..

The runtime of the patchwise restoration algorithm depends mainly on the size of the
input images. In fact, we perform R×C non-blind deconvolutions on patches but as
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the patches are overlapping, we process somewhat more pixels than the image contains.
In Figure 3.35, we compare the effect of grid resolution on deblurring quality on a real
blurred image. We generate local kernels in 24×36, 12×18, 4×6, and 2×3 locations,
respectively. We then run one iteration of the image estimation step. Given the input
image resolution of 720×480, there is no significant quality difference when we choose
a grid resolution higher than 4×6. The necessary grid resolution also depends on how
non-uniform the blur is, but this can also be estimated from the sensors by setting simple
thresholds. It seems, however, important that the whole code is deblurred with the same
kernel otherwise we introduce new errors in the kernel estimation (see bottom right). This
experiment justifies our choice of a 300× 300 search window for the blind deblurring
algorithm.

Figure 3.35: Comparison of the effect of grid size. The image resolution is 720×480 and
we generate local blur kernels in 24×36, 12×18, 4×6, and 2×3 locations,
respectively. There is no significant quality difference when we choose a grid
resolution higher than 4×6.

The runtime of the whole algorithm could be further reduced. We provided speed
measurements of our single-threaded implementation, but as the algorithm contains a large
number of FFTs, it could be greatly accelerated with parallel processing on multiple cores
or even mobile GPUs or DSPs.
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3.5.4 Failure cases

Our QR restoration algorithm can estimate and remove only uniform blur, therefore it
fails in case of significant rotational motion or strong rolling shutter distortions in the
image (see video supplement in Appendix). We also assume that the wearable device view
is close to perpendicular to the visual code and that the user actually wants to scan the
code. Blind non-uniform deblurring is computationally too demanding [245] to perform
on current generation mobile devices. However, the uniform blur assumption is usually
valid in the search window of our user interface if the code occupies a smaller region of
the image.

We assume QR-specific gradient statistics in the whole restoration window which is
violated if the code is placed in front of a complex background. To succeed, either the
background must be a plain color, or the code must be segmented in a preprocessing step,
for which algorithms do exist [209].

3.5.5 Issues with sensor data

As shown in the experiments, the proposed algorithm is able to restore even slightly
non-uniformly blurred images. However, there are limitations and assumptions we need
to keep in mind. Our image estimation step requires a good kernel estimate so a good
calibration is crucial for success. The selected gyro-camera calibration method is sensitive
to the initialization values which are not trivial to find for different smartphone models.

We need to assume that a short sequence with detectable feature tracks for calibration
before deblurring exists. However, the calibration does not need to be done every time
but only when the camera settings change. We expect that future camera and sensor APIs
like StreamInput [337] will provide better synchronization capabilities that allow precise
calibration.

As the camera is not exactly in the middle of the device, the rotation coordinate frame
is not exactly in the middle of the image and the generated kernels are inherently slightly
wrong even with perfect synchronization. Therefore it is important that we do not directly
use the generated kernel for deblurring but instead as a quick initial estimate for further
blind deconvolution.

Our sensor-aided blur model can generate rotational motion blur kernels at any point of
the image, but the model is incorrect if the camera undergoes significant translation or if
objects are moving in the scene during the exposure time. If not the camera but the code is
moving, the sensor readings cannot help in the initialization but the QR restoration should
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perform equally good with longer runtime. However, if both the code and the camera are
moving, the sensor-based estimate is wrong and may mislead the optimization. In extreme
cases, deblurring with the gyro-generated kernels directly may actually degrade the quality
of the images. We can rely on user input for this special case.

3.5.6 Camera response function

Cameras internally use a non-linear function that converts the scene irradiance to pixel
intensities, which can be modeled by a so called camera response function (CRF) for
each color channel. The non-linear CRF has a significant impact on deblurring algorithms
because our blur models assume a linear relationship [224]. The reason why manufacturers
apply a non-linear function is to compensate the non-linearities of the human eye and to
enhance the look of the image. The CRF is different for each camera model and even for
different capture modes of the same camera [251]. Some manufacturers disclose their
CRFs but for the wide variety of smartphones only few data is available. The CRF of
digital cameras can be calibrated for example using exposure bracketing [46] but the
current widespread smartphone APIs do not allow exposure control. New camera APIs
on iOS since version 6, and on Android since version 5.0, and custom APIs such as the
FCam [163] allow more control over the camera but are only available for a very limited
set of devices. To overcome this limitation on devices where the linear RAW image data
is not accessible, we follow the approach of [136] and assume the CRF to be a simple
gamma curve with exponent 2.2. While this indeed improves the quality of our deblurred
images, an online photometric calibration algorithm that tracks the automatic capture
settings remains an open question.

3.5.7 Color images

Our algorithms were formulated for grayscale images which is sufficient for typical
barcode applications, but needs to be extended for colored barcodes. The extension to
color images would be possible by solving the grayscale problem for the RGB color
channels separately; however, the color optimizations of the smartphone driver may
introduce different non-linear CRFs for each channel, which needs to be handled carefully.
The calibration of the per-channel CRFs using standard methods will become possible
with smartphone APIs that allow low-level exposure control.
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3.5.8 Multiple input images

In our proposed methods, we have not made use of the fact that in barcode scanning,
we have access to a series of degraded images from the camera stream which could be
exploited in multi-frame deblurring algorithms. However, those require precise image
alignment which is difficult under arbitrary blur and potential rolling shutter distortions.
Our attempts in multi-frame deblurring failed at the blurry image registration step, the
registration results were often worse than the original input images. This is indeed a
difficult problem and existing multiframe methods work on simulated blurry images, or
already assume a perfect alignment of the inputs. As we can also estimate the full camera
motion between the frames from the sensors, image alignment could be done with the aid
of sensor data instead of pure feature matching but then the gyroscope bias needs to be
continuously compensated.

Another possibility is to limit the image alignment and also the kernel estimation solely
on the finder patterns in the three corners of the QR code as these parts contain the cleanest
edges in the image. We know how a perfect finder pattern must look like, so once a blurred
finder pattern is found, comparing the two makes the alignment and kernel estimation
simpler (cf. [232]). As convolution is commutative, the kernel is given by non-blind
deconvolution of the blurry pattern with the sharp pattern. However, a method for robust
localization of the blurry finder pattern under arbitrary blurs remains an open question. A
detailed analysis of the challenging image registration and joint deblurring problem is an
important aspect of future work.

In some cases, the camera might capture a sharp image during processing, so it might be
advantageous to run a simple and fast decoder in parallel with deblurring. In our presented
methods, we focus on decoding a single blurry code because often there is no possibility
to retake an image. This is the case in low lighting conditions, or when the code is moving.
For example, it is impossible to capture a sharp image in the conveyor belt setting due to
fast motion, or with a wearable camera in a darker room due to long exposure time.

3.6 Conclusions

We have shown that deblurring visual codes differs from deblurring general photographs
and identified potential improvements to bring fast restoration to visual codes. First, we
have presented a fast and robust restoration-recognition algorithm for scanning motion-
blurred QR codes on mobile and wearable devices. Our method blindly estimates the blur
from the salient edges of the code in an iterative optimization scheme, alternating between
image sharpening, blur estimation, and decoding. The restored image is constrained to
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exploit the properties of QR codes which ensures fast convergence. The checksum of the
code allows early termination when the code is first readable and precludes false positive
detections. Second, we have rendered piecewise uniform blur kernels from gyroscope
measurements of the wearable device to initialize our blur removal algorithm so that less
iterations are required in the multiscale restoration loop. We have compared our QR
restoration approach with other deblurring methods from the literature. The proposed
algorithm achieves good reconstruction quality on QR codes and outperforms existing
methods in terms of speed. This speed gain makes our approaches particularly suitable for
mobile applications. We have presented PC and Android implementations of a complete
QR scanner and evaluated the algorithm on synthetic and real test images. While our
method currently does not achieve real-time performance, we believe it has the potential
of practical applicability in the close future.
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Chapter 4
Gesture control

In this chapter, we describe how wearable computers and tiny visual codes enable universal
interaction with smart appliances. We generalize the role of a universal remote control
from smartphones to any wearable computer. We then elaborate on what new possibilities
the combinations of wearables open, ask what the best way to interact with these devices
is, and review the literature on natural ways of input to wearable computers. Then, we
present a new method for recognizing in-air hand gestures on unmodified smartphones,
smartwatches, and smartglasses. Parts of these contributions result from joint work
with others at ETH Zurich. In particular, parts of the text and illustrations are taken
from joint publications with Simon Mayer [145], Jie Song, Fabrizio Pece, and Otmar
Hilliges [203, 204, 205]. Contributions of others are marked at the respective parts in
the text and listed in a detailed contribution statement in Section 5.1.5. The proposed
interaction methods are not restricted to barcode scanning but are in general well suited
for many wearable applications. We present demonstrator scenarios for interaction both
with general digital content and with tagged appliances.

4.1 Introduction

The recent advances in sensing, processing, and display technologies have enabled power-
ful personal wearable computers to fit in our hands, in our pockets, and even on our head.
Smartphones and tablets are with us throughout the day, smartwatches and smartglasses are
getting popular. These devices have become our ubiquitous communication devices [243],
and most importantly, they are able to enhance our memory [23, 189, 214, 215] and our
senses [91, 92] in performing everyday tasks. In the previous chapters, we have shown the
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advantages of personal wearable computers over dedicated scanner devices for scanning
visual tags, and we have presented advanced methods to improve their scanning reliability.
This chapter is devoted to an application area of visual codes and wearables: identifying
and controlling smart appliances.

Smartphones and tablets are applied in various scenarios for interaction with tagged
physical objects and smart appliances [24, 82, 83, 143, 144, 177, 181, 183, 185]. We
consider an appliance smart if (1) it contains an embedded computer, (2) it is connected
to the Internet and is able to communicate wirelessly with people and with other smart
objects, (3) it is potentially able to explore its context, as defined by Mattern [141].
Smart appliances can thereby expose some of their features to other appliances through
standardized protocols. For instance, an increasing number of traditional appliances allow
remote control over the Internet besides having their own physical user interface (knobs,
sliders, LCD screens, etc.). We can indeed turn any physical object smart by adding a
small embedded computer and Internet connectivity. It is, however, not straightforward
how to configure and pair new devices in a smart environment, and this is where visual
tags and wearable barcode scanning offer several advantages. The tags in form of visual
codes serve as unique object identifiers or “hyperlinks” between real objects and their
digital counterparts [114, 182]. We note here that other identification techniques (see
Section 1.1.6) might be also applied, but with the help of visual codes, determining the
position and orientation of an interaction device with respect to the real object becomes
straightforward. These properties allow for seamless input and output for appliances in
form of handheld augmented reality [82, 143, 177, 182, 235]. A few application examples
of a smartphone as universal interaction device are illustrated in Figure 4.1.

We can generalize the concept of the universal interaction device from the smartphone to
other wearable computers and most importantly, combinations of them. In our vision, the
user just needs to look in the direction of a visual code on an appliance that automatically
gets localized and scanned, while the user’s hands remain free. When it comes to other
functionality, it is still advantageous to have touch-free operation. Our wearable devices
together form a universal user interface that always accompanies us. Then, we can interact
with appliances via automatically generated appropriate user interface primitives [146] on
our devices. In the rest of the chapter, we primarily focus on smartglasses as interaction
devices but we make no restrictive assumptions about the wearable device type.

Current smartglasses such as Google Glass [289], Vuzix M100 [346], Epson Move-
rio [282], Recon (now owned by Intel) Jet [326], Osterhout R-7 [317], or other research
prototypes [121] commonly leverage smartphone technologies such as touchscreens or
acceleration sensors for user input to detect and interpret simple touch or motion gestures.
This mostly limits interaction to manipulations of 2D content – rather than 3D information
embedded into the real world. There are also a large number of research approaches how
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to extend and add more expressive natural interaction forms to wearables but they often
require special instrumentation of the user or altering the device. This can be a major
barrier to adoption, and limits seamless unencumbered user interaction.

We argue that the current touchpad- and button-centric wearable interaction can be
effectively complemented by natural hand gestures around the devices. In-air gesture
interaction is especially advantageous for smartglasses that share the user’s point of view
and allow interactions with virtual objects in augmented reality applications. Our research
is inspired by recent results on interaction methods for head-mounted displays, in particular
the work on in-air gestures and 3D mobile interaction. Similar technologies have appeared
in commercial hardware with the recently announced Microsoft HoloLens [307], to a
certain degree justifying our objectives.

Interaction with machines using in-air gestures has been investigated for a long time [116],
but robust real-time techniques have only been available with special hardware so far
(a summary of related work follows in Section 4.3). Our main interest is how we can
bring rich 3D interaction to wearable barcode scanning and in general mobile AR and
interaction without requiring external sensors or depth cameras. Our work builds upon
and extends the large body of previous research, but uses only the commonly available
features of wearable devices.

Our contributions in this chapter are threefold. First, we generalize the notion of
the smartphone as a universal interaction device to smartglasses and a combination of
wearable devices. Starting from the concept of simply outsourcing user interfaces of
smart objects to our wearable devices, we describe cross-device user interface beaming,
and the opposite direction of insourcing user interface elements from wearables to smart
objects. Second, we present a fast and robust method for in-air hand gesture recognition
on unmodified personal wearable devices. The technique uses only a single color camera
now commonplace on wearable devices. Our algorithm robustly recognizes a wide range
of discrete in-air gestures. Third, we show how to extend our method to also estimate
continuous 3D hand position for natural 3D interaction. The first contribution results
from joint work with Simon Mayer, and the second and third contributions stem from
joint work with Jie Song, Fabrizio Pece, and Otmar Hilliges. In particular, theoretical and
architectural considerations stem from common discussions, the training and evaluation of
the learning algorithms was performed by Jie Song, while the wearable implementation
and optimization is sole work of the author. Parts of the text and figures are taken from
joint publications [145, 203, 204, 205].

Camera-based gesture interaction is not limited to but is especially suitable for barcode
scanners because their cameras are always on for scanning. However, our method is
general and versatile enough for a wide range of applications. We present prototype
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implementations and demonstrate that our algorithm runs in real time on unmodified
smartphones, smartwatches, and smartglasses. Throughout this chapter, we focus on
use cases in the smart home domain, but the presented methods can also be applied
in other domains, for instance the interaction of workers with industrial robots in a
smart factory context. Before coming to our gesture recognition method, we discuss the
relevant literature in the areas of universal interaction devices in Section 4.2 and wearable
interaction techniques in Section 4.3.

(a) Visual Code Widget [183] (b) TouchProjector [24]

(c) RealityEditor [82] (d) Magic Lens Network Visualizer [143]

Figure 4.1: Handheld devices as universal remote controllers in smart environments. The
smartphone allows end users to intuitively control and configure their smart
appliances.

4.2 Towards universal user interfaces

4.2.1 User interface outsourcing

Connected everyday objects are able to outsource their input and output modalities to
the smartphone through various apps (for example Peel Smart Remote [318]) that can
act as a graphical user interface (GUI) for anything. Note that the same is possible even
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for disconnected objects that are associated with a virtual proxy [115]. Although the
virtual proxy transmits information to the display device in reality, the user can have the
impression that he or she is communicating with the object itself [141]. With such a
smartphone-based universal remote control, we can simply switch a lamp [303], control a
thermostat [311], or even control a coffee machine [335]. There are also a large number of
sport accessories [286, 347] that offer only outsourced, smartphone-based user interfaces
for size and cost reasons. The GUI primitives can be predefined or even automatically
generated from a user interface description language which is embedded in the object’s
Web representation [146]. This mechanism gives high flexibility for changing and adding
controls later, and also makes the hardware cheaper because new functions are added as
software plug-ins.

The smartphone fulfills the role of a universal interaction device [14] as it is small,
portable, always connected, and universally configurable in form of apps. While using our
smartphone to control a coffee machine seems to be rather over-engineered [180, 181],
there are a number of scenarios where an extended UI with special functions is useful
(e.g., maintenance, parts replacement, social network connection, etc.). We argue that
the true advantage of the universal interaction paradigm is not for appliances that already
possess well-engineered traditional interfaces, but it allows us to interact with things
that originally do not possess any handles/buttons, things that originally do not offer any
human-readable output capabilities. This makes it possible to digitally interact with things
that were impossible to interact with before (e.g., sensor nodes, a piece of furniture [85],
or even flower pots [302]), and to easily configure smart environments as non-technical
end users as also illustrated in Figure 4.1.

4.2.2 User interface beaming

Smartphones have visual, audio, and tactile modalities, but it might be cumbersome to take
a phone out from our pocket every time we intend to push a button or read a machine’s
sensor values. Taking the concept of universal user interfaces to the next step, we envision
interfaces in the form of a combination of always-on wearable devices. This is also in line
with the long-standing goal of wearable research on reducing the time between the user
intention and the triggered action [214].

Smartglasses offer two important advantages over smartphones. First, the cameras of
smartglasses perceive the world exactly from the user’s viewpoint. Second, smartglasses
can visualize information directly in front of the user’s eye in form of wearable augmented
reality with optical see-through displays. These properties can make smartglasses ideal
for information output from digital appliances. However, it is less clear how eyewear
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computers alone can be used for interacting with smart things: The primary input modality
for current devices is speech, which is cumbersome to use for many interaction tasks in
daily life. Additionally, shortcomings in speech recognition algorithms may render the
issuing of actuation commands even harder, especially in noisy environments. The slim
touchpads and built-in inertial sensors that most smartglasses provide are limited to a few
control scenarios. Examples include selecting an item from a list by swiping our fingers, or
by tilting our head. While thus not being ideally suited for interaction tasks, smartglasses
offer the possibility to know exactly what the user is looking at – thereby allowing the
easy and intuitive selection [145, 261] of smart things or services to interact with.

Smartwatches, in contrast, provide an always-available, wrist-worn, touch-sensitive
display on which we can render various interaction primitives. We can exploit all these
different capabilities of the different personal wearable computers by combining them into
a body area network as follows.

In [145], we have presented the concept of user interface beaming that allows users
to conveniently interact with smart things in their environment via personal wearable
computers. We can use smartglasses for appliance recognition, smartwatches for touch
control, and smartphones for mediation and main computational hub (see Figure 4.2).
Whenever a smart object is recognized in the user’s view (via visual tags or other recogni-
tion techniques), the smartphone resolves the objects’s Web representation and downloads
a standardized description [146] of the object’s user interface. When the user then looks at
his/her smartwatch, the obtained interface description is transmitted – beamed – to the
smartwatch that renders the required interaction primitives on its screen. The user can then
control the target via touch or other sensors of the smartwatch. The interface is continu-
ously updated to reflect state changes of the target object. Combining wearable computers
in this way opens up new ways of interaction with everyday appliances: It allows users to
discover, understand, and use interfaces of smart things in their surroundings seamlessly
without relying on dedicated remote controls.

4.2.3 User interface insourcing

In the beaming concept, smartglasses play the most important role because they share the
user’s viewpoint and we usually look at the object we want to interact with. Egocentric
vision and visual codes attached to appliances allow the user to easily identify the target
object1. Just-in-time generated interfaces from egocentric requests allow implicit inter-

1With today’s technology, the visual code must be close enough, but let us assume we can also scan distant
codes in the future.
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Figure 4.2: User interface beaming from a smart thing to a combination of personal
wearable computers [145]. Image credits [290, 304, 329, 330]

action, in contrast with the explicit interaction required with the “universal” smartphone
apps.

In some applications, it is also important for the object to identify the user. Contrary to
egocentric vision, we can also distinguish object-centric vision when the smart object looks
at the user, assuming the object actually has a camera. But in a connected environment,
even objects without a built-in camera may take advantage of the user’s camera and identify
the user in a challenge-response mechanism, in a way insourcing the wearable capabilities.
Imagine we want to pair two new devices with no camera but only a unique visual code
on each of them. An automatic, proximity-based pairing algorithm could take advantage
of the end-user’s wearable camera and connect the devices by photographing them next
to each other. This would be a complementary method to wireless proximity-based
authentication [193] or in general common sensory context based [86] solutions. Similarly,
we can imagine a smart supermarket shelf that must authenticate the user when he or she
wants to buy products with an age limit. The authentication functionality can be insourced
from the smartphone that knows the user’s age by other reasons. Capability insourcing
differs from simple remote sensing because in our vision, insourcing is opportunistic and
automatic, and is not explicitly configured by the user. In future applications, there might
be no need for remote control, because the appliances might be able to control themselves
in a distributed control loop using insourced sensors of other devices. We illustrate GUI
outsourcing and capability insourcing in Figure 4.3.

The mechanism of capability insourcing could indeed work similarly with any wearable
sensor, for example in the following scenarios. A typical loudspeaker has control knobs
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to set the volume but does not have any means of measuring the actual volume the
user perceives. However, the user is wearing a microphone, so the loudspeaker might
connect to that and can implement a feedback loop to keep the volume constant at a
certain level. Today’s home cinema systems allow calibration by holding a dedicated
microphone when sitting on the couch. This calibration is limited to a single spot in
the home. However, the system could opportunistically use the smartphone microphone
and recalibrate when the user is sitting somewhere else in the room2. Similarly, a smart
thermostat might have only a single point of temperature measurement at home, while the
smartphone’s temperature sensor is carried along in the home and can record a large set
of measurements to give a fine-grained picture of the heat distribution. A digital candle
might change its color based on people’s mood at the table that can be derived from
the heart rate measured by smartwatches today. Furthermore, a projection screen might
automatically adjust geometric distortion and perform brightness and color correction
based on the measurements it can get from the viewer person’s smartglasses. This is a very
important concept because it means that any functionality, and in particular any interaction
paradigm we implement for wearable computers can be re-used and insourced for any
smart appliance in the smart environment.

Figure 4.3: Left: Outsourcing the user interface from a smart object to a wearable device.
Right: Insourcing the capabilities of a wearable device into a smart object.
Image credits [271, 304, 330]

We have seen that UI outsourcing and insourcing with smartphones has many advan-
tages, however, smartglasses are better suited for a variety of tasks where free hands
and instant visual feedback are required. Even if smartglasses can take over most of the
smartphone’s functionalities, it is unclear what the easiest and most natural way to interact
with glasses is in order to effectively access and control digital content. The input on
current glasses and head-mounted displays is usually limited to a few buttons or slim
touchpads (see Figure 1.16). More importantly, the current generation of devices require
the direct physical (and even visual) attention of the user instead of focusing on the actual

2Although not opportunistically but with explicit user control, the idea has been recently implemented in
the Sonos Trueplay [336] technology.
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task. Our goal is to realize a more natural and seamless interaction without diverting the
user’s attention or disrupting the user’s actions. In the following sections, we give a short
overview of wearable natural user interfaces, and afterwards introduce a new method for
efficient hand gesture control.

4.3 Wearable gestural interaction

Wearable computers and augmented reality enable always-available user interfaces on our
body and in our close environment. We argue that small touchpads and miniature buttons
are not in line with how we manipulate the real world, and hence a poor fit for smart
device control and AR applications. Here, we review the literature on more advanced
interaction techniques that enable gestural input to our devices. From the vast amount of
previous work, we focus on a small selection of projects from the last decade that directly
or indirectly influence our research.

Ultra-mobile and wearable user interfaces have seen a lot of interest in the past.
In particular, researchers have investigated in-air gestural interaction with dedicated
wearable sensors, modified smart devices, or external infrastructure. We can catego-
rize the techniques according to the main sensing technologies they use, e.g., infrared
sensors [43, 113, 120, 155, 231], capacitive sensors [129, 151, 176, 187], acoustic sen-
sors [7, 79], muscle sensors [154, 158, 188], antennas [3, 106, 169], small magnets [77],
wearable cameras [64, 110, 148], or depth sensors [108, 156, 196, 213, 223]. All these dif-
ferent technologies have advantages and disadvantages. Ideally, our goal is to enable in-air
gesture control without any hardware modifications of off-the-shelf wearable devices.

4.3.1 Gesture control with special hardware

Infrared sensors

The UbiFinger [231] allows selection and control of Web-enabled appliances by instru-
menting the user’s finger with a bending sensor, an infrared LED, and an accelerometer.
The user can select an appliance by pointing the LED to it which also requires receivers at
the appliances. Then, simple gestures of the user are recognized based on accelerometer
data and control the selected appliance. GestureWatch [113] and AirTouch [130] use mul-
tiple infrared sensors mounted on the back of the wrist to detect freehand gestures, such as
hand swiping along the forearm. HoverFlow by Kratz el al. [120] expands the interaction
space around mobile devices. The technique recognizes coarse movement-based gestures
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(a) UbiFinger [231] (b) SenSkin [155]

(c) PocketTouch [187] (d) Skinput [79]

(e) MagiThings [109] (f) Humantenna [42]

Figure 4.4: A few wearable interaction techniques without cameras.
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as well as static position-based gestures, using an array of IR proximity sensors. A similar
setup has been used in the motion-sensing mechanical keyboard by Taylor et al. [229].
SenSkin [155] uses wristbands of IR proximity sensors for detecting coarse gestures per-
formed on the forearm. The Mime by Colaço et al. [43] specifically targets the expansion
of input capabilities of smartglasses, by combining low-power time-of-flight triangulation
module with an RGB camera. The triangulation module consists of a pulsed infrared
LED and a linear array of three photodiodes. Zhang et al. present HOBS [261] (head
orientation based selection) in which they augment smart glasses with infrared emitters
and the environment with receivers for interaction with real-world objects at a distance.
Unfortunately, IR approaches suffer from coarse sensing resolution and interference with
ambient lighting.

Acoustic sensors

The sound of the hand system by Amento et al. [7] is a small wrist-mounted microphone
that is able to distinguish finger tapping, rubbing, and flicking. Skinput by Harrison et
al. [79] is a similar always-available input modality as it uses the user’s body as an input
surface. With a bio-acoustic sensing armband, they capture mechanical vibrations of
finger taps on the forearm that propagate through the body. In contrast, the SoundWave
system [69] uses only the speaker and microphone found in commodity devices to sense
hand motion relying on the Doppler shift of a tone inaudible to humans.

Magnetic sensors

It has been also explored how magnetic field sensing can be used to track finger motion
around a device by pairing permanent magnets and magnetometers either by wearing
both like uTrack [29] or by using the device’s built-in inertial measurement unit like
Abracadabra [77], Nenya [12], or MagiThings [109]. Just like IR and acoustic sensing
solutions, magnetic field sensing can suffer from coarse sensing fidelity and input is
limited to tracking a restricted number of discrete points and often with limited degrees of
freedom.

Skin and muscle sensors

Saponas et al. [188] shows how forearm electromyography (EMG) can be used to detect
and decode human muscular movement in real time, enabling interactive finger gesture
interaction, creating an always-available input device. Similarly, Amma et al. [9] recognize
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finger gestures with a sensor array on the arm. Unfortunately, EMG requires extensive
instrumentation of the user, and is prone to calibration issues.

Minput by Harrison and Hudson [78] adds two high-speed optical tracking sensors (like
the camera of an optical mouse) on the back of a smartwatch-like mini computer. The
device itself can thus react to shifting, twisting, or even more complex motions over the
skin surface.

Ortega-Avila [158] captures in the near infrared spectrum how the tendons linked
to fingers change slightly in thickness and location when moving the fingers. They
train a classifier to recognize six different hand gestures from the measurements of NIR
photodiodes attached to the wrist. The SkinWatch [154] works with the same principle,
it detects pinching and stretching the skin around the smartwatch and translates the skin
movement into zooming functionality.

Electric and electromagnetic signals

Rekimoto’s GestureWrist and GesturePad [176] employ capacitive sensing elements that
are embedded in a wristband or in clothes, respectively. PocketTouch by Saponas et
al. [187] is a multi-touch capacitive sensor matrix attached to the back of a smartphone.
It allows full alphanumeric text entry without taking the smartphone out of the pocket.
Simple resistive 1D position sensors are applied in WatchIt [166] which enables simple
gesture interaction on a touch sensitive wristwatch or bracelet. More recently, a transparent
electric field sensing antenna has been demonstrated that enables sensing of 3D hand and
fingertip locations [129]. Other explored the design of an energy harvesting motion sensor
by Cohn et al.[41], or the Humantenna [42] that leverages the whole body for interaction.
Mirage by Mujibiya and Rekimoto [151] also senses the human body as an intruder in
a static electric field and recognizes human presence, body motion, body gesture, and
activity.

AllSee [106] enables gesture classification on passive devices such as RFID tags without
batteries using the ambient backscatter principle. The prototype harvests energy from
an RFID reader or from ambient television signals. Methods exploiting reflections and
Doppler shift of wireless radio signals include WiSee [169] and WiTrack [3]. Google
recently presented Soli [292], a tiny radar for interaction. The advantage of radio-based
solutions is that they are less privacy-concerning than cameras. It is rarely discussed,
however, where the limitations of these methods are. In particular, the interaction fidelity
is usually limited to whole-body gestures.
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4.3.2 Gesture control with camera systems

A number of camera-based systems have been proposed to extend the interaction space
beyond the buttons and touchscreens of our devices. The hands are our primary means for
interaction with our surroundings and hence hand gesture recognition has a long history in
the HCI and computer vision community. Early approaches explored the possibility to
instrument the hands with special sensor gloves or marker gloves (see [48] for a survey).
However, gloves tend to rather hinder the applications in mobile scenarios and pure vision-
based techniques gained interest. A review of older vision-based hand pose estimation
approaches is given by Erol [51] and in the thesis of Kölsch [116]. Early work focused on
hand tracking from 2D cameras. However, recognizing complex hand gestures is clearly
challenging from such 2D input. Our hands are very expressive because different hand
positions, hand orientations, and finger configurations all can have different meanings. The
high dexterity also poses a challenge in robustly recognizing the gestures for a machine.
Heuristics and pure geometric methods usually fail due to the large variation in gesture
execution, variation in hand appearance, variation in lighting conditions, and background
clutter.

Wearable cameras

Markerless tracking of the user’s outstretched palm for augmented reality has been pre-
sented by Lee and Höllerer [131]. Seo et al. [192] developed a system where virtual
objects are rendered on top of the non-dominant hand, and the user can interact with the
virtual content by simple motions of the hands. However, these methods are not designed
for more complex interaction scenarios, but rather serve AR applications where only hand
tracking is required.

The GesturePendant [64], is a chest-worn IR camera and IR illumination on a necklace
for hand sign recognition in front of the body. Similarly, the Cyclops by Chan et al. [28] is
a chest-worn 235◦ fisheye camera for full-body gesture input. The device can recognize
static and dynamic hand gestures using on motion history images and a randomized
decision forest. The CyclopsRing [27] is a similar device with a fisheye camera built
into a ring that recognizes pinch+motion gestures for controlling tagged smart appliances.
The Surround-see technique by Yang et al. [258] equips a smartphone camera with
an omni-directional mirror that enables peripheral vision around the device. From the
omnidirectional image, the system recognizes the user’s hand, detects the user’s current
activity, and also identifies nearby objects. The user’s pointing finger is segmented and
the fingertip is tracked so that pointing at and interacting with objects in the environment
become possible.
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Special eye-tracker cameras (for instance Pupil [322]) mounted in smartglasses allow
gaze-controlled interaction with objects. The drawback of these approaches is that they
require precise calibration whenever the camera was moved with respect to the eyeball.
In contrast, Pursuits [233] tracks only differential movements of the eye and allows
interaction with moving objects on a screen without calibration. It requires specially
designed dynamic graphical interfaces though.

Niikuura et al. [153] leverage IR LEDs and a 2D camera to recognize a single fingertip
for in-air typing. Higuchi [84] developed an in-air virtual keyboard for mobile devices,
Jung et al. [99] presented a similar one specifically for smartglasses. However, the
vocabulary consists of simple pinch and pointing gestures. [64, 216] classify a wider set
of discrete hand postures, e.g., for wearable sign language recognition, but also relying
on IR augmentation. The method of Li et al. [134] enables robust pixel-level hand
segmentation in ego-centric videos, which is an important first step in every egocentric
gesture recognition application, but the authors do not address the actual recognition
problem.

Gustafson et al. present the concept of imaginary interfaces [70, 71], a method that
brings spatial interaction to miniature screen-less mobile devices, using the palm of the
non-dominant hand as a universal interaction device. [70] uses a body-worn camera
and diffuse IR illumination to recognize 2D pinch gestures. In their prototype of an
ImaginaryPhone [71], tapping and sliding events in the palm are recognized by a shoulder-
worn depth camera, and the input events are transferred to an actual smartphone. Unlike
other shoulder-worn system, there is no projector or display. Digits [110] reconstructs
full 3D hand models in real time by instrumenting the inner side of the wrist with an IR
illuminator and IR camera facing towards the palm. 3D hand pose is indeed desirable for
many applications, hence researchers turned towards consumer depth cameras.

Projector-camera systems

When combined with camera or non-camera input, wearable projectors allow rendering
graphical user interface elements, hence the user can tap on virtual buttons and sliders
on a surface [148] or on his/her own body [79]. SixthSense [148] detects color-marked
fingers and simple finger gestures with a body-worn RGB camera, and allows intuitive
in-air interaction in front of body while also projecting GUI elements on the wall. Om-
niTouch [76] is a shoulder-worn projector-depth-camera system that can turn any planar
surface in the environment into a multitouch display. Pohl et al. [168] generalize this
to the concept of around-device devices, using any object in the surroundings as a user
interface. These projection techniques require the user to wear large additional devices or
the environment to be instrumented, which limits seamless interaction and may lower user
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adoption. Instead, we focus on techniques without altering the design of existing devices
or requiring any additional hardware.

(a) SixthSense [148] (b) Digits [110]

(c) Mime [43] (d) CyclopsRing [27]

(e) Learned depth camera [55] (f) Hand tracker by [196]

Figure 4.5: A few in-air interaction techniques with body-worn cameras

Depth cameras

The emergence of consumer depth cameras has enabled high-fidelity, fine-grained 3D hand
pose estimation. However, hand tracking is challenging even with depth cameras because
of the many degrees of freedom, self-occlusions, and similarity between the fingers. The
current approaches are either model-based that apply 3D hand model fitting and temporal
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tracking [156, 196, 213, 223], or data-driven [55, 108, 228] that apply machine learning
on hand silhouettes, shading, depth image, or other features.

Keskin et al. [108] introduced multi-layer randomized decision forests for hand pose
estimation. Oikonomidis et al. [156] solved the problem of articulated motion capture
of two hands, and Ballan et al. [15] proposed a method that allows to capture two hands
interacting with an additional object, using eight cameras. Real-time methods were
proposed by Ma et al. [140], Qian et al.[170], Tagliasacchi et al. [223], Sharp et al. [196],
and Sridhar et al. [213] which represent the state of the art in hand tracking with a depth
camera. Most of these methods are optimized to a particular viewpoint where a desktop
depth camera is facing the hands, although this requirement has been lifted in Sharp et
al. [196]. In wearable scenarios, however, the usage of conventional depth sensors is
prohibitive due to power consumption, heat dissipation and size. Recently, Fanello et
al. [55] try to overcome these limitations by learning a mapping from IR color to depth
using a modified RGB camera surrounded with IR LEDs. They present very accurate depth
estimates, however, the method requires hardware modification, and the color-to-depth
mapping needs to be trained for each individual.

Positioning our work

While hardware augmentations can largely enhance the interaction capabilities of the
mobile devices, they also induce two important problems. First, modifying the original
design of devices might make them cumbersome to use. Second, the social acceptance of
augmented devices may considerably decrease.

Our contribution builds upon and extends the large body of research on gesture recogni-
tion on mobile devices. Our work, though, differs from existing solutions as it leverages
only a conventional monocular colour camera, lending itself to run on unmodified devices.
We propose a randomized decision forest (RF) based algorithm to extend the interaction
space around mobile devices by detecting rich gestures performed in front of any wearable
camera.

In the next section, we shortly summarize the theory of RFs. Next, we introduce our
approach for efficient classification of 2D hand silhouettes. Subsequently, we show how to
extend this to a hybrid classification-regression scheme which is capable of successfully
learning a direct mapping from 2D color images to 3D hand positions and gestures. The
algorithm runs in real time on off-the-shelf mobile devices including resource-constrained
smartphones, smartwatches, and smartglasses. Combined with fast visual code localization
(Chapter 2), an extension to quickly recognize other objects relevant for interaction is
straightforward.
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4.4 Randomized decision forests

Our proposed gesture recognition algorithm is based on a powerful machine learning
technique named randomized decision forest or short random forests (RF) [8, 25, 45],
therefore we give here a short summary of the technique. Random forests have been
proven successful in a number of computer vision problems. Their application areas
include object detection [61], body pose estimation [199], head pose estimation [53, 54],
hand pose and state estimation [108, 196, 228] among others. These approaches rely
on depth sensing cameras, but RFs have also found applications using different sensing
modalities [111, 129, 229] for human computer interaction. Figure 4.6 illustrates some of
these applications. Our approach is inspired by these works in the field, but it presents a
much simpler and computationally inexpensive framework which is highly robust against
noise.

(a) Body pose estimation [199] (b) Head pose estimation [53]

(c) Motion gesture recognition [229] (d) Hand pose estimation [108]

Figure 4.6: Random forests are powerful tools in many computer vision tasks.

A random forest is an ensemble of decision trees (see Figure 4.7). Each tree in the
ensemble produces a noisy classification result. However, accurate classification results
can be attained by averaging the results from multiple, non-biased classifiers together.
Each tree consists of split nodes and leaf nodes. The split nodes themselves can be
seen as very primitive classifiers. Each node will evaluate a simple and computationally
inexpensive split function and as a result forward the currently evaluated datum (in our
applications a pixel) to its left or right child until the datum reaches one of the leaf nodes.
The split functions can be seen as simple questions where each answer adds a little more
information, or in other words reduces the uncertainty about the correct class label for the
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particular pixel. The features in computer vision applications can be depth values, pixel
colors, binary mask values, but also more complex entities. The split functions depend
on the actual applications. In a classification forest, each leaf node stores a probability
distribution describing the likelihood with which a datum belongs to any of the discrete
classes in the label space. Based on this distribution, a selected leaf prediction model
assigns a class label to data points that arrive in the leaf node. In contrast, in a regression
forest, the leaf nodes store a probability distribution over a continuous variable.

Figure 4.7: A decision tree for classification. Figure adapted from Antonio Criminisi [45]

In the training phase, a large set of pixels and ground truth labels are provided from
training data, and each tree is trained independently. Starting from the root, the best split
function parameters in each split node are searched that split the data into left and right
child sets. The objective for splitting is typically the information gain for classification
problems. The training is performed recursively down the tree until the maximum allowed
depth is reached or the child sets contain too few data points.

To avoid overfitting, randomness is introduced in the training process [25]. Each tree
is trained on a randomly selected subset of training data, and at each split node only a
randomly selected subset of possible parameters of the split function are considered. This
randomness is injected into the classifier only at training, and the testing phase is usually
deterministic, hence the name “randomly trained decision trees” might be closer to the
actual concept [45].

Random forests and decision tree classifiers in general trade discriminative power and
run-time performance against memory consumption. Given a complex enough problem

120



4.5 Fast gesture recognition on wearable devices

and large enough training set, trees will grow exponentially with depth. This is of course a
strong limitation for their application on resource constrained wearable platforms.

4.5 Fast gesture recognition on wearable devices

We present a machine learning method that expands the interaction space around cameras,
enabling in-air gesture interaction on commodity wearable devices. The method allows
for robust detection of gestures relying only on RGB camera input without any hardware
modifications. The algorithm is based on random forests and runs in real time and can
even be used on ultra-mobile devices such as smartwatches. To the best of our knowledge,
this is the first real-time implementation of RFs for mobile devices for a pixel labeling task.
Compared to most previous work, our algorithm does not rely on highly discriminative
depth features but works with only 2D images.

We describe a method to robustly and efficiently classify hand states (i.e., gestures) and
salient features (i.e., fingertips) using only binary segmentation masks. We also describe
techniques to make the classifier robust to in-plane rotation (i.e., wrist articulation or
rotating the device itself) and to variations in depth of the hand. We introduce different
techniques, specifically designed for wearable devices, to reduce the size of the forests
and in turn reduce the memory consumption drastically while maintaining classification
accuracy. These are necessary to fit the classifier into the limited memory of current
wearables but generalize to any computing device.

4.5.1 Method overview

We classify single pixels of binary images that correspond to the silhouette of the hand.
For the whole image, we decide for the gesture that most pixels vote for (see Figure 4.8).
We pass each pixel of the binary image down the decision trees. At an inner node of a
tree, we sample two other points from the entire image at locations that are determined
by two learnt offset vectors. Depending on the difference of the binary values at the two
offset locations and a learnt decision threshold, the pixel is forwarded to the left or right
child node (detailed explanation follows at Figure 4.11). With these simple and fast tests
at internal nodes, we have a powerful way of determining a per-pixel class label by the
time we get to a leaf node. The final class of a pixel is the average of the output of all trees
in the forest. We then pool all labels across the image and determine the gesture shown in
the image.
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Figure 4.8: From the RGB camera input, we first segment the hand pixels to get a binary
mask. Then, every pixel of the binary mask gets classified and votes for the
overall gesture of the image. Different colors correspond to different gestures.

In Figure 4.9, we give an overview of the full pipeline of our classification algorithm.
All components of the pipeline have been carefully chosen and designed with runtime and
memory efficiency in mind, in order to achieve real-time performance even on ultra-mobile
and resource restricted devices. The pipeline consists of established image processing
steps interwoven with a new, staged classification process. The algorithm processes single
camera frames and decides for the most probable gesture shown in the image.

Figure 4.9: Multi-stage classification. (1) Pre-processing segments the hand from back-
ground. (2) The DCF coarsely estimates the depth of hand and in-range frames
are forwarded. Effective range is between 15− 50 cm. (3) The SCF classi-
fies each foreground pixel into six gesture classes plus noise. (4) The PCF
classifies location of fingertips for pointing-like gestures.
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In the first step, the hand pixels are segmented to get a binary mask. The segmentation is
not perfect, so the binary mask still contains background noise which needs to be handled
in the later steps. To reduce the large variation caused by hand rotation, we perform
principal component analysis (PCA) on the binary mask and rotate the mask to a canonical
orientation. The pixels of the binary mask are classified one-be-one in the random forest
and the labels are aggregated over the image to decide for the final gesture.

We apply three cascaded random forests (introduced by Keskin et al. [108]) that each
solve a sub-problem of the whole task. Instead of training a very large forest that deals with
all the variations in the data, the cascaded architecture handles simpler tasks at each stage
which effectively reduces the size of the single forests. As the memory requirements are
growing exponentially with the depth of the trees, it is crucial to keep the depth minimal.
We connect a coarse-depth classification forest (DCF), a shape classification forest (SCF),
and a part classification forest (PCF). In this configuration, each classifier is trained on
a particular task, and images corresponding to a particular subclass are forwarded in the
following stage to the corresponding classifier that was trained on examples from that
particular subclass. As we will show, the cascaded architecture with three shallower forests
achieves equal classification accuracy at much lower memory requirements than a single
deep forest. In the next sections, we describe the components in detail.

4.5.2 Hand segmentation and preprocessing

Our algorithm takes binary images as input, so in the first step we segment the hand from
the background. Despite a vast amount of research,this problem remains a challenging task
in real time under arbitrary lighting conditions. A good summary of various techniques
is provided by [100]. We have experimented with many techniques, including adaptive
thresholding in the HSV color system (described in Section 2.3.5), Gaussian Mixture
Models (GMM), and probabilistic ways to locate the hand. However, due to the large
variation in skin color and the influence of lighting and colorful background, currently
none of these methods can provide perfect segmentation under arbitrary conditions.

We opted for a simple RGB color thresholding technique which selects the red-toned
areas of the image. This method is easy to implement on the mobile GPU, is computation-
ally cheap, and provides a good compromise between true positives and false negatives.
The above complex methods did not significantly improve the segmentation quality com-
pared to the RGB-method but require longer computational time. The little increase in
segmentation performance is not worth the increased latency over the simple technique.
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Figure 4.10: Segmentation by classification. A) Input frame. B) Foreground mask after
color thresholding. C) Small-scale noise is cleaned up by connected com-
ponent analysis; larger connected non-hand regions remain. D) Result after
classification. Colored pixels indicate class label, white pixels indicate noise
class (highlighted by a red box).

Hence, we segment the hand from the background by

St(p) =

{
1, i f min(Rt(p)−Gt(p),Rt(p)−Bt(p))> τt

0, otherwise
(4.1)

where Rt ,Gt and Bt denote the RGB-components at frame t and image pixel p, and τt is a
threshold value and St the segmentation. St(p) is binary output at pixel p, 1 at foreground
and 0 at the background. The threshold τ = K/255, and in our implementation K can be
manually set at runtime via a slider. In our experiments, 3 ≤ K ≤ 8 worked well in the
majority of tested scenes both indoors and outdoors.

This technique provides reasonable segmentation while it suffers from false positives
and creates noise outside the hand region. Some of this noise can be suppressed using
connected component analysis (CCA) but the regions of noise connected to the hand will
remain (see Figure 4.10). However, the subsequent classification algorithm can be made
robust to this type of noise as detailed below. At this stage, it is more important to attain a
segmentation that does not suffer from false negatives so that the whole contour of the
hand remains complete for accurate classification results.

In the last preprocessing step, principal component analysis (PCA) finds the in-plane
rotation of hands. Rotating the image to a canonical orientation greatly reduces the overall
complexity of the classification problem and allows shallower classification trees. In
practical implementations, it is faster to rotate the jump vectors and not the image.
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4.5.3 Hand shape classification

Recent works with random forests (e.g., [108, 199, 228]) use depth images as input
and complementary depth-invariant features for classification. These approaches use
continuous-valued features (typically simple depth differences as illustrated in the left side
of Figure 4.11), and the split functions compare the feature response against a continuous
valued threshold. We do not have depth information as today’s wearable cameras offer
only a single color camera input. Unfortunately, we cannot rely on color either as the
variation in appearance of different hands under arbitrary lighting conditions is too large
to cover all variations.

Instead, our method relies only on shape (i.e., binary masks) to infer hand features
and states. Within the classification trees, we use split criteria based on binary features.
Specifically, for each split node we learn shift vectors and a comparison threshold (see
Figure 4.11, right). When evaluating a pixel, we compare the values of the segmented
binary mask at these shifted locations and proceed traversing the tree based on the result
of the comparison (see Figure 4.12 and Figure 4.13).

(a) Features by Shotton et al. for body pose
estimation from depth images [199]

(b) Our features for shape classification from
binary images

Figure 4.11: Decisions at inner nodes are made based on comparing the values at two
offset locations with a threshold. The offset vectors and the threshold are
learned during training.

We use split criteria of the following form in the split nodes:

CL
j (v,w,Γj) = {(S, p)|Fv,w(S, p) = Γj} (4.2)

CR
j (v,w,Γj) = {(S, p)|Fv,w(S, p) 6= Γj} (4.3)

where Fj is the feature response and Γj is a selector value trained at each split node j. Here
CL

j and CR
j are the mutually exclusive sets of pixels assigned to the left and right children

of the split node. For a given segmented image S, we define the feature response at the
pixel location p as

Fv,w(p) = [S(p+ v),S(p+w)] (4.4)
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this is a 1×2 vector where v and w are (randomly) learned offsets and S(p) is the binary
pixel value at that location (see Figure 4.12). The feature response is discrete and each

Figure 4.12: Illustration of classifying a single pixel with a single decision tree. At the
split nodes, we evaluate the function Fi with the learned parameters v,w,Γ
and forward the pixel to the left or the right child node. The leaf nodes store
probability distributions over the class labels. Figure adapted from Otmar
Hilliges [204].

element of it can take on only two values; 1 for foreground and 0 for background pixels.
At evaluation time we simply compare this vector with Γj ∈ {[0,0], [1,0], [0,1], [1,1]}.
Later in this chapter, we provide pseudo-code for forest evaluation, and here Figure 4.13
illustrates how an image is processed in the classification forest.

The order in which the split functions are concatenated (the structure of a tree) is very
important for efficient classification. Intuitively, we should find the split function at each
node that separates the data the most. We can learn the “best” parameters of split function
from labeled training data, starting from the root of the tree. Recall from Section 4.4 that
this is done by randomly selecting multiple parameter candidates of the split function
and and choose the one that splits the data the best. For more details we refer the reader
to [25, 199].

As defined in Equation 4.2, our split functions at each node have three parameters:
(v,w,Γ ). The quality metric for the split thereby is typically defined by the information
gain I j at node j:

I j = H(C j)−
|CL

j |H(CL
j )+ |CR

j |H(CR
j )

|C j|
(4.5)
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Figure 4.13: Illustration of classifying the whole image with a decision forest. Each
pixel is classified by all trees in the forest and the final label is determined
by pooling over all trees. The final gesture in the image is determined by
majority vote over all pixels. Figure adapted from Otmar Hilliges [204].

where H is the Shannon entropy of the data points in set C. A decrease in entropy (a
decrease in uncertainty), denoted by I j, means increase in information. Weighting the
entropy by the cardinality of the child sets avoids splitting off children containing very
few data points. Our parameter space is not large compared to other computer vision
problems, therefore generating a relatively low number of random splits is enough at
training time. At each node j, we generate about 500 possible splits (v j,w j,Γj) and select
the one maximizing I j.

Note that due to the randomized nature of the training process, the parameters are not
guaranteed to be the best at each node of a tree, however, the whole forest overcomes this
“noise” of the single tree classifiers. The final probability distributions are also learned
from the annotated training data.

The binary features allow us to train relatively complex datasets while keeping the
computational time and memory footprint low, without sacrificing precision. Intuitively,
the binary values and the shift vectors encode the “hand shape” information and the
probability that a given pixel belongs to the hand. In other words, given the offset values,
we are able to distinguish between pixels that are inside the hand silhouette and pixels that
are outside of it. These features provide a good tradeoff between training efficiency and
testing accuracy. Because the features themselves are not depth- or rotation invariant, we
cannot constrain the jump distance of the offsets and must allow jumps to any location
in the image. This results in many more split candidates. Also note that the number
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Figure 4.14: Shape classification: each pixel is classified to one of the gestures (colors) or
noise (white). The gesture shown in the image is decided by majority vote
over the pixels.

of jump locations is also quadratically increasing with image resolution. However, the
computational cost for a single feature at training time is not high because a feature can
take only a limited number of values, namely four. We could also apply more than two
offset vectors in a split function to increase the discriminative power at one node, however,
this would strongly affect the training time as the number of offset combinations increases
exponentially.

4.5.4 Multi-stage recognition

With the described shape classification procedure, we can recognize a rich set of hand
shapes. However, to cover all variations within the training set, we potentially need to
grow a very deep forest. While even deep trees can be evaluated in a few milliseconds,
the memory footprint of the forest can quickly become an issue, as it grows exponentially
with tree depth. Instead, we opt for the above introduced multi-stage approach, where
each of the forests then needs to model less variation and hence can be comparatively
shallow. We propose to combine multiple forests that are specialized on different tasks
and modify the image before they pass it to the next stage. This results in the pipeline of
independent but inter-related classifiers illustrated in Figure 4.9.

Stage 1: Coarse depth classification

Given an input image I with associated pixels p and a segmentation S, the depth classifica-
tion forest (DCF) in the first stage infers a probability distribution P(d|p,S) over the three
coarsely quantized depth ranges and an additional noise class (i.e., our labels in the first
stage are d ∈ {close,middle,far,noise}). The role of the noise class is to filter out
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most of the noise coming from the simple segmentation. At the end of this stage, we have
the coarse depth information and also a cleaner input mask, which greatly decrease the
variation in terms of hand size and uncertainty the next stage has to deal with.

The concrete depth ranges depend on the application. For example, for the smartphone
camera we show in Section 4.9, we allow a 15−30 cm range for interaction that corre-
sponds to the middle class. For smartglasses, we need a larger interaction range from
9 cm to 39 cm measured from the camera. If the hand is too close or too far from the
camera, the pipeline stops at this point. Otherwise, the per-pixel labels d are forwarded to
the next stage.

Stage 2: Shape classification

The shape classification forest (SCF) classifies the images into (currently) six gesture
classes (see Figure 4.15). In addition, there is one no gesture class (orange in the
figures) which is needed to reject non-gesture motion in front of the camera. We recorded
“random” other hand gestures in front of the camera to represent this class in the training
data. Furthermore, there is one noise class (white) to deal with false positives in hand
segmentation from the previous step. The classification algorithm is the same as described
in Section 4.5.3 above. Figure 4.14 illustrates examples of per-pixel classification results.

Figure 4.15: The current gesture set recognized by our hand shape classifier: pinch open,

pinch close, splayed hand, flat hand, gun, pointing.

Stage 3: Part classification

Optionally, the pointing-like gestures (i.e., pointing, gun, splayed hand) enter a part
classification forest (PCF) that perform per-pixel hand part classification. In particular,
we trained this forest to separate the fingertips and the wrist for these hand shapes. These
can be used to add a pointing direction to our in-air gestures. For instance, we can detect
the number of visible fingertips, which may be mapped to different applications. Without
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depth information, we cannot classify all hand parts like [107], but we only select parts of
our interest for interaction. As practically all noise is cleaned up in the previous stages,
the PCF only needs to process images with well visible fingertips, hence a tree depth of 10
is enough for high accuracy. Example results of this stage are shown in Figure 4.9 on the
right side. The three stages are illustrated together in Figure 4.16.

Figure 4.16: Multistage classification: (A) First hand is classified into three different
coarse depth bins. (B) Next hand shape is classified into 6 classes. (C)
Finally, fingertip parts are detected by PCF. Figure adapted from Fabrizio
Pece.

Our multi-stage classification pipeline was inspired by the work of Keskin et al. [107]
for fine-grained hand part classification from depth images. Shortly after our classification
work [204], Fanello et al. [55] proposed a similar regression architecture that is able to
directly map a 2D infrared image to continuous scene depth. In the next section, we show
that our method working on binary images from regular cameras can also be extended
to depth estimation. Specifically, we extend our framework to a hybrid classification-
regression scheme, capable of learning a direct mapping from 2D images to 3D hand
positions besides the gestures. In general, the multi-stage forest architecture is appealing
for various tasks because it combines the runtime efficiency and discriminative power of
regular RFs with a reduced memory footprint, which makes it well suited for off-the-shelf
mobile devices while achieving high recognition accuracy.

4.6 Enabling 3D interaction

In the previous section, we have presented a method for recognizing 2D hand gestures from
hand silhouette images. In many applications, however, full 3D gesture recognition is also
necessary. Unfortunately, depth-sensing cameras in wearable computers are prohibitive at
the current stand of the technology due to very high power consumption. Very recently, a
few new machine learning based methods have appeared that are able to infer depth from
2D imagery [55, 125, 126]. Although the general problem of reconstructing a 3D object
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from a single 2D image is infeasible, we can investigate whether a rough mapping from
color images to depth is possible when we restrict ourselves to the specific case of hands.

In this section, we introduce our extended approach for joint classification of discrete
hand gestures and regression of the depth of the hand. We extend our 2D gesture classifi-
cation technique to a hybrid classification-regression approach that jointly detects hand
shapes and regresses the average distance of the hand from the camera. The method is
similar to the one presented above but uses hybrid classification-regression forests [25, 45].
The centroid and the average depth of the hand together allow 3D interaction in the air in
front of a wearable camera. The applied gesture set and thus the required training data
depends on the location of the wearable camera (e.g., on the arms, chest, head, etc.), here
we focus on scenarios with smartglasses only.

Next, we first shortly discuss the literature related to depth estimation with machine
learning methods. Afterwards, we describe the details of the 3D extension of our method,
and show an evaluation of both together in Section 4.8.

4.6.1 Machine learning for depth estimation

Depth sensing with cameras has always been an important research topic and several
complementary approaches have been proposed. These include passive and active stereo,
shape-from-shading, structured light, time of flight measurements, and approaches based
on structure from motion. For a detailed review, we refer the reader to [128]. These
dependencies imply lower bounds on the size, the weight, and the power consumption
of such devices. Hence, most depth sensing technologies are currently prohibitive in
wearables. We are especially interested in methods that do not require special hardware,
but try to estimate depth from images using machine learning.

Estimating depth from a single image is an ill-posed and hard problem. The theory of
estimating scene depth from scene intensity images is called shape from shading (SFS),
surveyed by [266]. Because the problem involves complex physical and geometrical mod-
els, achieving compelling SFS results requires computationally complex algorithms and
many assumptions about the scene and the environmental lighting. Therefore, researchers
have recently proposed new, data-driven approaches.

Some newer approaches exist that try to estimate surface normals [126] or scene
depth [125] from single images. These methods rely on training depth cues and spatial
relationships based on associating still images and ground-truth depth pairs, and sometimes
ground-truth semantic segmentations to then derive coarse scene depth [103]. These
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approaches make use of complex and computationally costly algorithms and are infeasible
for interactive scenarios on wearable devices.

Fanello et al. [55] have recently presented a random forest approach that automatically
learns to predict per-pixel depth values from pixel intensities in the infrared (IR) range.
Relying on IR intensity fall-off, this method requires mounting IR LEDs around the camera
and modification of the camera’s IR filter. In contrast, the extension of our technique uses
only the built-in RGB camera, and hence is suitable for off-the-shelf, unmodified wearable
devices.

4.6.2 Cascaded classification and regression forests

The pipeline presented in the previous section consists of three cascaded RF classifiers.
The first stage decides the coarse depth of the hands (close, middle, or far), the second
layer classifies the hand shape (six gestures), and the third layer recognizes hand parts
(fingertips). The input to the algorithm is a binary mask of the hand, and the output is a
gesture label. We modify the last stage of the pipeline and replace the part classification
forest to a depth regression forest (see Figure 4.17). This new last stage is able to map the
shape of the binary mask to a single depth value which corresponds to the mean distance
of the hand from the camera. This is indeed a highly uncertain problem and naı̈ve heuristic
methods based on pixel counting usually fail.

Due to the difficulty of the problem, training a single regression forest for all gestures
and all possible depths would result in very deep trees that may exceed the memory limits
of wearable devices. Therefore we opt for the same staged architecture, where the role
of the first two stages is to reduce the uncertainty the regression forest has to deal with.
This means we can use shallower trees (i.e., less memory) to get relatively good accuracy,
which will benefit devices like smartwatches and smartglasses. Previous work has also
proven that classifying the scene into coarse depth regions greatly improves the fine depth
estimation [55, 125]. We can then train separate depth regression forests for each case of
coarse depth and gesture. To further simplify the problem, we restrict ourselves to only 3
gestures.

Coarse depth classification

After the hand segmentation, we classify the binary mask into three coarse layers of
depth. We are interested in interaction in arms reach. Empirically, we found that 90 mm to
390 mm measured from smartglasses to the center of the palm is a comfortable range for
most users. We divide this distance range into three intervals: 90−150 mm, 150−240 mm
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Figure 4.17: Classification-regression pipeline: (1) Hand segmentation. (2) Coarse depth
classification. (3) Hand shape classification. (4) Fine-grained depth regres-
sion (average hand depth)

and 240− 390 mm as illustrated with color codes on the left size of Figure 4.18. Note
that the ranges increase with distance because due to the perspective view, the changes
in hand size are bigger in the close range than in the far range. With equal ranges, in the
next stage the shape classifier of the close range would have to deal with a much larger
variation than the shape classifier of the far range. With unequal ranges, we can balance
this effect. Otherwise, the DCF works the same way as in the 2D case. The per-pixel
probability distributions over coarse depth layers d ∈ {close,middle,far,noise} are
forwarded to the next stage (see Figure 4.18, left).

Figure 4.18: Classification-Regression pipeline overview. Top row: ground truth used
for training. Bottom row: posteriors outputted at each level by the forests.
Left: Coarse depth classification. Middle: Hand-shape classification. Right:
Fine-grained depth regression (average depth per hand shown at different
depth). The inset shows the error in mm compared to the ground truth. Figure
adapted from Jie Song [203].
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Shape classification

After finding the per-pixel probability of coarse depth range, the gesture classification is
performed in the second stage. We evaluate each pixel p in the foreground mask S again
get a per-pixel gesture probability distribution P(g|p,S), where g is the label for different
gestures. In our case, g ∈ {splayed hand, pinch, closed hand}. Because we cannot
yet know for sure the actual depth range here, we run separate shape classification forests
for each coarse depth layer that were trained on images of gestures at the respective
distances. The predicted posteriors are then combined:

P(g|p,S) =
L

∑
l=1

wlPl(g|p,S) (4.6)

The output posterior P(g|p,S) is the weighted sum over the estimates Pl of the three
SCFs that work on the coarse depth layers. The weights wl are the posterior probabilities
estimated by the first stage. Note that here we need to run one shape classifier for each
coarse depth interval simultaneously. In practice, this is not a problem as the trees have
only depth 15. Finally, we pool the probabilities across the image to attain the gesture in
the image P(g|S) (Figure 4.17, middle).

Depth regression

In the third stage, we switch from classification to regression forests. We want to infer a
depth value for each input pixel p. As we already know the gesture g from the previous
stage, it is sufficient to run only the regression forest trained on examples of that particular
gesture. The depth value z(p|g,S) at pixel p is calculated as

z(p|g,S) =
L

∑
l=1

wlzl(p|g,S) (4.7)

where l denotes the coarse depth level and the weights wl are again the posteriors from the
first stage. Finally, we average the per-pixel depth estimates to get a single average depth
value P(z|S) of the hand.

Differences of classification and regression forests

At forest evaluation, we follow the standard method, i.e., we pass individual pixels to
several decision trees and pool the results over all trees in the forest. At each split node,
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we evaluate a split function, passing the pixel to its left or right child, until it reaches a
leaf node. The split features and split criteria are the same as in the original method.

The classification forests in the DCF and SCF stages simply store learned, discrete
probability distributions in their leaf nodes. The output of the DCF is the most probable
coarse depth level, and the output of the SCF is the most probable gesture. The leafs of
the regression forest in the last stage store continuous distributions. As these distributions
might be multi-modal, outputting the largest mode may lead to irregular and noisy esti-
mates in a pixel neighborhood3. Therefore, we additionally perform median filtering in a
small neighborhood of each pixel.

The main difference from classification forest to regression forest is the entropy defini-
tion at training. For classification forests, we use the Shannon-entropy of the empirical
discrete distributions (of coarse depth ranges or shapes, respectively). For the regression
forest, we employ the differential entropy of the empirical continuous density P(z|S). We
model the depth distributions as 1D Gaussians. This way, the entropy definition reduces
to H(C) = log(σC), where σC is the variance of the 1D Gaussian fitted to the data points
in set C. For more details on the training process, we refer to [45]. Except the entropy
definition, the training follows the standard method (see Section 4.4) with the objective
to maximize information gain at each split node. As the depth regression problem has a
larger parameter space, we generate more random splits at training.

In the following section, we present how we acquire training data and elaborate on
implementation details for smartphones and smartglasses. Next, we report our evalua-
tions performed on low-level aspects of the algorithm, as well as on its integration with
demonstration applications.

4.7 Training data and implementation

Random forests require large amounts of training data for high classification accuracy.
Both the tree structures and the final probability distributions are learned from the annotated
training data. To get a classifier that is robust to large variations in hand shapes, hand
sizes, hand distances, and even to various executions of the same gesture, we need a large
but balanced training set. We created demonstration applications of the 2D interaction
pipeline on smartphones, and applications of the 3D interaction pipeline on smartglasses.
Because the two settings are very different in terms of camera settings and interaction
distance from the camera, we recorded different sets of training data for each pipeline.

3Note that pixel-labeling random forest models make the assumption that the pixel labels are independent
and thus in general fail to enforce spatial smoothness.
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4.7.1 Training the classification pipeline

Shape training data

To collect training data for the SCF, we recorded gestures of 20 persons performing 7
gestures under natural variation and recorded short video sequences. We also included one
no gesture class where participants casually moved their hands in front of the camera.
In total, we recorded 50,000 images with scale and orientation variations and appearance.
We split this dataset to 35,000 images for training and 15,000 images for testing in the
following section.

We chose simple uniform background for collecting data and used the same RGB-
segmentation method for labeling the hand pixels. We also recorded various unconstrained
background images to gather noise data. The thresholded artificial noise and the labeled
gesture images are combined to build synthetic training data which includes hand gestures
and realistic noise. The whole procedure is illustrated on Figure 4.19:

Figure 4.19: Generating training data for shape classification. The orange color represents
the no gesture (but hand) class, and white color represents the background
noise class. Figure adapted from Jie Song [204].

Coarse depth training data

We collected additional 8,000 images to train the DCF, covering a larger range in camera-
hand distance.
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Part training data

For fingertip classification with the PCF, we require training data of not only segmented
hands but also segmented parts of the hands. We recorded 5,000 images with a similar
method as above, but wearing colored gloves, with distinct colors at the fingertips.

Figure 4.20: Generating training data for the fingertip classification. Figure adapted from
Jie Song [204].

The number of trees in a forest and the depth of the trees are important parameters
affecting classifier performance. Increasing the number of trees may enhance the classi-
fication accuracy, but it always increases the computational cost and memory footprint
linearly. To ensure that recognition is fast enough for real-time interaction at minimum
30Hz, we use 3 trees in each forest. The trees of the DCF are of depth 10, the trees of the
SCF are of depth 20, and the trees of the PCF are of depth 15 in our implementation.

The described semi-automatic method is reasonably fast in producing a large set of
labeled training data for both perfectly segmented hands as well as realistic background
noise. We also release the collected training and test data to the public at [283].

4.7.2 Training the classification-regression pipeline

For the 3D interaction pipeline, our ground-truth images are acquired from a Creative
Senz3D [278] depth camera attached to the head of the participants. We use simple
depth thresholding and connected component analysis to attain clean segmentation of the
hand. The binary segmentation masks are used in training the coarse depth and the shape
classification forests, and the segmented depth map is used for training the fine depth
regression forest. We record training data for the different gestures separately so that the
shape labeling can be automated. The coarse depth labels are simply extracted from the

137



Chapter 4 Gesture control

depth data. We also add artificial noise to the binary segmentation in a similar way as in
creating the shape training data.

For coarse depth classification, we train a single tree of depth 8 using 8,000 training
images. This tree achieves an average classification accuracy of 90.1% in half-test-half-
train cross-validation. For shape classification in the second stage, we use 4,000 images for
training each of the three SCFs at the three coarse depth layers, in total 3×4,000= 12,000
images. In each forest, we train 3 trees of depth 15 achieving an average accuracy of
95.3%. For regression, we train one forest per coarse depth layer and per gesture, each
consisting of 6 trees. This makes up 3 layers × 3 gestures × 6 trees = 54 trees in total.
Each tree is trained to depth 16 using 4,000 training images. As we only execute one of
these regression forests at a time, the algorithm still runs in real time. The training of the
forests was performed by Jie Song.

Next, we give high-level implementation details of the algorithm described in the main
paper, as well as information on its Android implementation. To the best of our knowledge,
we present the first real-time implementation of random forests for pixel-labelling tasks
on mobile devices.

4.7.3 Pseudo-code of random forest evaluation

Given a random forest F (trained offline) and a binary foreground segmentation mask S,
the probabilities of the trained gestures can be efficiently computed using the following
algorithm.

Each tree is stored in a two-dimensional array as shown in Figure 4.21. For each tree, we
store the split parameters in split nodes in a signed char array4 (note that jump vectors
can be negative), and we represent the gesture probabilities in leaf nodes in an unsigned

char array. The leaf nodes of the regression forest store a float depth value. For a tree
with depth k, the split node indices run from 1 to 2k−1 and the leaf node indices run from
0 to 2k−1. The left and right children of node j are stored at 2 j and 2 j+1, respectively.
If a child is a leaf node, we subtract 2k− 1 from its index and load the corresponding
probability distribution from the leaf array.

We pass each foreground pixel p from the binary mask through each tree t of the
forest F . Starting at the root node we traverse down the tree left or right based on binary
decisions at each node. A test means comparing two offset mask values with the threshold
Γj ∈ {[0,0], [0,1], [1,0], [1,1]}. The two offset positions are defined by the jump vectors
v j and w j. Leaf nodes contain learnt probability distributions (PDFs) over the set of class

4Note that this data type must be explicitly enabled in the Android C++ compiler.
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Data: random forest F , binary segmentation mask S
Result: gesture probability distribution function (PDF)
forall pixels p ∈ S do

forall trees t ∈ F do
j = 1;
while isSplitNode( j) do

load v,w,Γ from tsplit( j);
Fv,w = [S(p+ v),S(p+w)];
if testFeature(Fv,w,Γ ) then

j = le f tChild( j);
else

j = rightChild( j);
end

end
load PDF from tlea f ( j);

end
average the PDFs from all trees;

end
pick most probable gesture based on all pixel labels;

Algorithm 1: Pseudo-code of forest evaluation for shape classification.

Figure 4.21: Trees are stored in 2D byte arrays. Split nodes store the decision parameters w,
v, Γ , while leaf nodes store the gesture probabilities and the noise probability.
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labels. The final label of a pixel is determined by averaging the PDFs from all trees,
and the performed gesture is decided by a majority vote over all foreground pixels in the
image.

4.7.4 Android implementation overview

Figure 4.22 gives an overview of our implementation on Android devices. Here, we
briefly summarize the most important aspects. Our recognition pipeline is written in native
C++ and handles the camera access, performs background segmentation, random forest
evaluation, gesture filtering and visualization of the different stages.

At runtime, we read images from the camera directly into an OpenGL ES texture and
perform skin detection (Equation 4.1) and bilinear downsampling on the GPU. Next, we
download the segmentation mask to the CPU and perform connected component analysis
(CC) on the binary image, and we compensate for transformations via principal component
analysis (PCA). The resulting binary mask is then classified by the DCF, SCF and, if
applicable, by the PCF. Each forest updates a label image as well as the input mask. After
classification, we upload the gesture labels and the cleaned segmentation mask back to the
GPU for display. The per-pixel label probabilities are pooled across the image to get the
overall gesture label. Finally, a low-pass filter stabilizes the class labels temporally and a
Kalman filter stabilizes the part labels spatially. The filtered gestures are injected as events
to the Java-based Android apps. Camera capture, GPU computations, CPU computations,
and user interaction run in four different synchronized threads.

Figure 4.22: Overview of the recognition engine on an Android device. The recognized
gestures can be injected into various applications built on top of our engine.
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As most of the pipeline consists of pixel-wise computations, the algorithm is well suited
for parallelization. The proposed tree storage as a matrix and tree traversal through array
indices are also suitable for GPU implementation, where the trees can be stored as textures.
We leave the GPU implementation for future work.

4.7.5 Device-specific modifications

The same architecture is portable across various Android devices, however, there are
a few differences. Most importantly, the cameras of smartphones, smartwatches, and
smartglasses have different field of view (matched to their respective applications) and
therefore different training data is required for accurate classification. It also needs to be
considered whether the user is allowed to use only left, right, or both hands. This depends
not only on user preferences, but also on social conventions (watch is usually worn on the
left hand, so gestures need to be performed with the right hand) and device properties (the
Google Glass [289] has a camera only on the right side which implies interaction with the
right hand). In general, as our hands are symmetric, it is sufficient to record training data
with only one hand, and flip the images (or the feature vectors) if we want to recognize the
other hand.

As the underlying hardware is different, adjustments may be necessary in the GPU
texture handling. In particular, some GPU drivers support reading RGBA textures while
some drivers support only BGR or other formats which needs to be handled carefully.
The memory of smartwatches is especially limited hence shallower forests are very
important. Furthermore, as the displays of the three devices are of very different size, the
GUI elements need to be designed accordingly. For instance, as on smartwatches and
smartglasses there is no space for visualizing both the camera input and the gesture labels
separately, we visualize them overlaid on top of each other in a separate rendering pass.

4.8 Evaluation

We have conducted several experiments to evaluate the performance of our algorithms.
The Android experiments were performed by the author, the Matlab experiments were
performed by Jie Song. More results can be found in [203, 204]. We first evaluate an
implementation of the 2D recognition approach with 6− 12 gestures. Afterwards, we
evaluate an implementation of the 3D approach with only 3 gestures. The latter problem
is significantly more complex in nature, hence only fewer gestures can be handled within
our given resource constraints.
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4.8.1 Gesture classification

In the first experiment, we test the performance of our classifier and we report accuracy
figures from a single SCF, trained on the entire dataset. Looking first only at the SCF
proves the discriminative power of the algorithm, and as we show later, this serves as
lower bound and the multi-stage version performs equally well or even better.

Figure 4.23: The current gesture set recognized by our classifier, two examples of each
gesture class. In addition, an example of only noise and an example of
no gesture hand are shown on the right. The perfectly labeled ground truth
gestures are shown in the white insets. Note the variation in scale and rotation
as well as robustness to false positives from the segmentation step. Figure
adapted from Fabrizio Pece [204].

Qualitative results

Figure 4.23 demonstrates qualitative results of the SCF classifying different hand gestures.
Note the variations in hand orientation, distance to the camera, and different backgrounds,
the classifier is robust to these variations. The robustness to segmentation errors is also
apparent in the figures, the background noise class is labeled white by the classifier. The
orange no gesture class represents hand poses that do not belong to the six gestures but
may happen between two gestures.

Confusion matrix

We summarize our results of the classification accuracy as a confusion matrix for the
entire gesture set, using half training-half test (Table 4.1), and leave-one-out (Table 4.2)
cross-validation methods. The confusion matrices are normalized over columns to show
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which actual classes are responsible for a given classification output. The technique
achieves a mean per-class per-frame accuracy of 98% and 93%, respectively. This means
a robust per-frame gesture classifier even without temporal filtering. In our practical
applications, we further improve the stability by adding a temporal filter over three frames,
i.e., we inject a gesture event in the application when we see the the same gesture over
three consecutive frames.

green red blue yellow magenta cyan orange
pinch open 0.98 0 0 0 0 0 0.01
pinch close 0 1.00 0 0 0 0 0.01
pointing 0.02 0 0.99 0 0 0 0
gun 0 0 0 1.00 0 0 0
splayed hand 0 0 0 0 0.99 0 0
flat hand 0 0 0 0 0.01 0.99 0.07
no gesture 0 0 0.01 0 0 0.01 0.91

Table 4.1: Confusion matrix (data from 20 users) using half training - half test cross-
validation, average accuracy is 98%. Table adapted from Jie Song [204].

green red blue yellow magenta cyan orange
pinch open 0.88 0.03 0 0 0 0 0.02
pinch close 0 0.93 0.05 0 0 0 0.01
pointing 0.02 0.01 0.90 0.04 0 0 0.01
gun 0 0 0.02 0.95 0 0 0
splayed hand 0 0 0 0.01 0.99 0 0
flat hand 0.05 0 0 0 0.01 0.99 0.11
no gesture 0.05 0.03 0.03 0 0 0.01 0.85

Table 4.2: Confusion matrix (data from 20 users) using leave-one-out cross-validation,
average accuracy 93%. Table adapted from Jie Song [204].

The effect of tree depth

The classification accuracy is increasing with the depth of the trees and the number of
trees in the forest, however, we have to trade this for increasing memory requirement
(and increasing training time). Table 4.3 and Table 4.4 summarize the classification
performance at different tree depths. In our applications, we use 3 trees of depth 20 in the
SCF which gives very good results. We report results with both leave-one-out and half
training-half testing cross-validation.
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15 16 17 18 19 20
PPCR 0.79 0.82 0.85 0.87 0.89 0.92
PFCR 0.88 0.92 0.94 0.96 0.97 0.98

Table 4.3: Per-pixel classification rate (PPCR) and per-frame classification rate (PFCR)
accuracy for half training - half-testing cross-validation of the shape classifi-
cation forest (SCF) for different tree depths. The values are given for the SCF
alone, averaged over all gestures. Figure adapted from Jie Song [204].

15 16 17 18 19 20
PPCR 0.75 0.77 0.78 0.79 0.80 0.80
PFCR 0.86 0.89 0.92 0.92 0.92 0.93

Table 4.4: Per-pixel classification rate (PPCR) and per-frame classification rate (PFCR)
accuracy for leave-one-out cross-validation of the shape classification forest
(SCF) for different tree depths. The values are given for the SCF alone, averaged
over all gestures. Figure adapted from Jie Song [204].

Staged and unstaged architecture

Figure 4.24 compares the performance of a single SCF and a combination of DCF+SCF
when large hand depth variations occur in the gesture set. The SCF alone was not able
to robustly cover this large variation within the maximum allowed tree depth (20). The
staged classifier clearly outperforms the single SCF at all tree depths.

Figure 4.24: Comparison of classification accuracy (averaged over all classes) as a function
of architecture (SCF alone vs. DCF and SCF together, different tree depths)
when large hand depth variations occur in the test gesture set.
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In our implementation, a single SCF of depth 20 with 3 trees consumes about 168 MB
memory, assuming that we store each value as a 32-bit integer or float. In contrast,
the combination of a DCF of depth 10 with 3 trees and an SCF of depth 15 with 3 trees
consumes only about 5.3 MB memory, but the staged classifier performs ∼ 30% better.
Note that the memory footprint of a forest increases exponentially with tree depth and
linearly with the number of trees. The memory requirements can be further reduced if we
store the each split parameter and each probability value as signed char and unsigned

char, respectively. Note that the jump vectors can be negative, but as we work with very
small images, the range of (−128,127) is sufficient. For storing the probabilities, the
range of (0,255) gives sufficient resolution as long as we do not have a large number of
classes.

Extended gesture set

In the above experiments, we have considered a set of six gestures. To demonstrate
the scalability and discriminative power of the approach, we have conducted further
experiments with a larger gesture set. We selected twelve gestures from the American
Sign Language alphabet (ASL) that have a unique contour. As the algorithm relies only
on binary images, differences in appearance that are fully contained within the silhouette
of a hand pose cannot be distinguished using the binary features. For example, the letters
A, M, N, S, and T produce near identical outlines. Furthermore, we excluded signs with
dynamics (i.e., motion) as we currently only recognize static gestures. Figure 4.25 shows
the confusion matrix for the twelve gestures from the ASL alphabet. On this gesture
set, we achieved similar performance to our original gestures. The overall average per-
class accuracy is 83% in leave-one-out validation. This additional experiment further
demonstrates the power of the classification algorithm and we believe that even more
complex gesture sets could be handled.

Continuous gesture switching

While our algorithm handles only static gestures, many applications require continuous
valued input. For example, imagine a gesture to control the volume of an audio player
dynamically. One possibility to do using our approach is to exploit the per-pixel nature
of the classifier. We have observed that the probabilities of symmetric gesture pairs (e.g.,
open and closed pinch) increase and decrease smoothly during the transition between the
two gestures. Figure 4.26 plots the raw, unfiltered relative probability ratio between a pair
of gestures (pinch open and pinch close). The ratio between these two values can then
be mapped to continuous inputs.
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Figure 4.25: Confusion matrix for 12 gestures selected from American Sign Language.

Figure 4.26: Continuous gesture input can be implemented by looking at the ratio of the
first two modes in the per-pixel class probability distribution.
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4.8.2 Depth estimation

In this section, we evaluate an implementation of the joint gesture-depth estimation
approach with 3 gestures. Note that this is a different test setting and not a simple extension
of the 2D experiments above. In particular, we use only 3 gestures due to the difficulty
of the problem and the given resource constraints. We compare our technique against
ground-truth (GT) data acquired from a Creative Senz3D [278] depth camera as baseline
and against a naı̈ve depth estimation technique based on raw hand size (foreground pixel
count). This naı̈ve baseline is calibrated offline and per user by moving the hand repeatedly
to and away from the camera. We record min and max pixel counts and corresponding
depth values. At runtime, we simply interpolate the depth between these two values. While
not a very robust method, this actually works reasonably well – in particular with constant
hand shape and linear motion along the z axis. Figure 4.27 visualizes the ground truth
depth map, the average hand depth calculated from the depth map, and the estimates of
our method and the naı̈ve method.

Figure 4.27: Visualization of the ground truth depth map, the average truth depth value,
and estimation of our method and the naı̈ve method.

Single gesture

Figure 4.28 plots the error of the two depth estimates as function of distance from the
camera, compared to the ground truth depth value. Our technique compares favorably
to the naı̈ve method and also tracks the ground truth well. Qualitatively, our technique
performs significantly better than the naı̈ve approach.

Multiple gestures

The experiments so far were conducted with a single gesture. A more realistic scenario
is evaluated in Figure 4.29 where we show depth estimates over 2,000 frames and under
gesture variation. In this sequence, the user shows three gestures at various depths, the
plot is divided into three areas corresponding to the different gestures. Gray rectangles
indicate the time between gestures. Note that the naı̈ve method has big jumps in these
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Figure 4.28: Depth estimation error as a function over depth. Our method (blue, average
error 24 mm) tracks the hand with significantly less error than the naı̈ve
method (orange, average error 87 mm). The error of our method increases
only slightly with distance (the maximum error is 4 cm). The error of the
naı̈ve method is higher, and increases non-linearly. Figure adapted from Jie
Song [203].

areas. Our method tracks the ground truth closely, with small recurring spikes at the
boundaries between the coarse depth levels. Recall that our three coarse depth levels are
defined as 90−150 mm, 150−240 mm and 240−390 mm, and the SCFs are switched at
the level borders. We could detect and filter the spikes, or we could train the regression
forests with training data that has more overlap across the level boundaries. In contrast,
the naı̈ve technique systematically over and undershoots the ground truth and exhibits a
much larger average error (17.3 mm vs. 81.1 mm).

4.9 Applications

To demonstrate the accuracy and robustness of our algorithm, we implemented a set of
compelling interaction techniques and application scenarios. In this section, we introduce
a subset of these; a larger selection is presented in [203, 204] and accompanying videos
(see Appendix). With these demonstrations, we would like to hint at the fact that our
technique is by no means limited to barcode scanning but opens up a wide variety of
possibilities. Our algorithm lends itself to a variety of novel interactions that extend the
input space of wearable devices. We categorize our applications by typical device type,
but we note here that any combination of these is possible, the only requirement is a color
camera.
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Figure 4.29: Depth estimation under gesture variation: the ground truth (green) is tracked
closely by our method (orange), while the naı̈ve method (blue) is significantly
worse. Figure adapted from Jie Song [203].

4.9.1 Smartphone and tablet applications

In our smartphone demonstrations, our aim is to enable low-effort gestures that comple-
ment the primary touch screen input. There are numerous interaction primitives such as
mode switches, menu selection, and certain types of navigation, where traditional input
can be complemented or even replaced by in-air gestures. Furthermore, gesture input
behind the display overcomes the issue of screen coverage on smaller touchscreens of
wearables.

Figure 4.30 illustrates a map browsing application in which the user can control map
style switching (1 and 2), zooming (3 and 4), and continuous panning (5 and 6) with in-air
gestures behind the device. This allows a new type of bi-manual interaction in which the
coarser tasks are performed by the non-dominant hand while the finer tasks are operated
on the touch screen by the dominant hand as usual.

For showcasing the continuous gesture switching, we have also implemented a magnifier
lens on the map that can be invoked by an in-air pinch open gesture. The lens magnifies
a particular area of interest on the map and can be positioned by moving the hand behind
the device. The size of the lens (and hence magnification factor) can be controlled by
opening and closing the pinch gesture. Cross-fading between the gesture probabilities
can mapped to continuous interaction. The location of the lens can then be controlled for
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Figure 4.30: A map application with bi-manual user input. Gestures by the non-dominant
hand behind the device successfully complement the touchscreen operated by
the dominant hand. (1)-(2) style switching, (3)-(4) zooming, (5)-(6) panning.

instance via the fingertip locations (see Figure 4.31). This illustrates the usefulness of
jointly recognizing gestures and fingertips.

Figure 4.31: The size of magnifier on the map can be adjusted by the continuous transitions
between the gestures pinch open and pinch close.

Next, we show a couple of scenarios for controlling smart appliances via our wearable
computers (cf. Section 4.2 on universal user interfaces). In general, an appliance can be
selected by scanning an attached tiny visual tag. Alternatively, an object can be identified
via visual features (see Section 1.1.6 on visual recognition engines). Specifically, a display
can also be recognized based on the displayed content as natural visual tag, like in previous
works of the author [143, 211].

In Figure 4.32 (1), a tablet in the kitchen is controlled using simple, effortless gestures
without touching the screen with wet hands. Here, we leverage the front-facing camera
for gesture recognition. We implemented a video player and a recipe browser application
for cooking, however, similar distant input is also often necessary in medical applications.
Figure 4.32 (2) illustrates a medical visualization system [211] that can interfaced with our
gesture recognition engine. In this concrete example, we apply the tablet’s upward-facing
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camera for recognition. Figure 4.32 (3) shows a network configuration application for
smart homes [143]. A tablet recognizes a smart electricity meter based on visual features
and visualizes its network connections. The user can accept or deny certain connections
by simple gestures.

Figure 4.32: (1) in-air gestures controlling a cooking app. (2) gesture interface of a medical
visualization screen. (3) an augmented reality network traffic visualizer.

4.9.2 Smartwatch applications

While multi-touch is an effective input method on larger-screen smartphones an tablets,
devices with a very small touch screen like smartwatches especially benefit from in-air
gestures that complement touch. Fortunately, the low computational requirements make
our approach also applicable on smartwatches. Figure 4.33 illustrates how we can control
a Web-enabled light bulb with simple gestures performed around our smartwatch.

Figure 4.33: Controlling a Web-enabled light bulb with simple gestures performed around
the smartwatch. The subsequent gun and pointing gestures change the
color of the light.

4.9.3 Smartglasses applications

We have also built proof-of-concept demonstrators on smartglasses. Our simpler gesture
method can be used to select barcodes in a picking scenario. Figure 4.34 shows screenshots
of our algorithm running on a Google Glass [289].
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Figure 4.34: (1)-(4) screenshot of our gesture classifier on Google Glass [289] smart-
glasses. (5)-(6) Barcode selection in a picking scenario.

Finally, we show two applications where it is necessary to estimate the gesture and
the hand position simultaneously, which allows the user to jointly control discrete and
continuous variables. For example, gestures and depth may be used to invoke and browse
linear list controls like selecting a contact card on smartglasses. Figure 4.35 shows a 3D
phone book application. The contact list can be invoked by the pinch gesture, then a stack
contact cards appear in 3D and the user can scroll through the cards by swiping closer
or further. The fist gesture selects a contact and places the call. Figure 4.36 illustrates a

Figure 4.35: 3D gesture control in an augmented reality phone book. The user can open
the phonebook by the pinch gesture (1)-(1), swipe through the contact cards
by moving the hand further or closer (3)-(4), and pick a contact by grabbing
it (5).

hierarchical 3D menu in which the menu and submenu items are represented as planets

152



4.10 Discussion

and moons, respectively. The 3D position of the hand is used to cycle through menu items.
Left and right swipes rotate the 3D menu, bringing the palm close to the camera expands
a menu item, submenus can be browsed with left and right swipes, and the grab (fist)
gesture selects an item. Our depth+gesture method is particularly suitable for continuous
3D manipulation of virtual objects in see-through AR scenarios, and for browsing and
selecting 3D items.

Figure 4.36: A hierarchical 3D menu system for augmented and virtual reality applications.
The menu items can be browsed by swiping left or right (1),(2),(5), submenus
can be opened by moving closer (3)-(4), and an item can be selected by
grabbing it (6).

4.10 Discussion

The initial quantitative and qualitative results of our method are promising. The clas-
sification results performed by users in different lighting conditions and with changing
backgrounds illustrates that our prototypes can be used to recognize a diverse set of
gestures on off-the-shelf tablets, smartphones, but even smartwatches and smartglasses.
To the best of our knowledge, this is the first real-time implementation of randomized
decision forests on such resource-constrained devices, with remarkable robustness for
gesture recognition. However, there are also a few issues to improve. In this section, we
outline limitations and our ideas for future work.
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4.10.1 Other gestures

Note that as our recognition engine is based on machine learning, new gestures can be
simply added by recording new examples and repeating the training. Future work could
explore the feasibility of using an even larger gesture set and more discriminative features
that go beyond classifying binary images.

Our experiment with 12 gestures showed promising results (see Figure 4.25). However,
our chosen binary features limit the type of gestures to those that produce visually dis-
tinguishable contours. In the future, we could investigate different types of features to
overcome this limitation and to exploit the additional information that is present in the
data (e.g., texture, edges). For example, a feature that captures texture information may be
able to differentiate between a left hand facing down and a right hand facing up.

In our demonstrations, we used the same gestures in all applications, however, we could
also train different decision forests for different applications. Different games require
different gestures, for example. While the classification engine could be embedded in
the wearable operation system, the app-specific (pre-trained) forests could be shipped
as plug-ins for each application. It also needs to be further explored which gestures (in
terms of duration, distance, etc.) are acceptable in public settings [5] in different cultures.
A further interesting research question to explore is how we can systematically propose
gestures so that the recognition rate will be maximized.

4.10.2 Dynamic gestures

Furthermore, the extension to dynamic gestures (e.g., by adding temporal features) should
be explored. Note that we already allow a number of continuous interactions by fingertip
tracking and continuous switch between open and closed pinch (see Figure 4.26), but our
classifier is static by design. For future work, we want to explore the possibility to capture
dynamic gestures such as flicks and swipes directly. We plan to built upon recent work
demonstrating decision forests for recognizing motion gestures [28, 229].

4.10.3 Lighting conditions

As all vision-based techniques, our method is influenced by the ambient lighting. We
demonstrated that the system can cope with a natural lighting both indoors and outdoors,
and also artificial indoor lighting. While the method is sufficiently robust to the art of
illumination, sudden changes such as entering or leaving a building or switching on strong
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direct light sources may cause an problem. Other failure cases we experienced were under
very low lighting conditions when the image was dark and suffered from color noise, or
under red-toned ambient lighting, for instance at sunset time.

4.10.4 Segmentation

While our technique is robust to false positive segmentation failure, it is sensitive to false
negatives as these erode the shape of the hand. False negatives can be counteracted by
the help of the user in setting the the skin detection parameter with a slider. We can
optionally feed back the per-pixel classification results (hand/no hand) to the segmentation
step to automatically adjust the color thresholds, but we found that the improvement in
segmentation is is not worth the extra computational effort.

Thanks to the wide variety of artificially generated background noise patterns, our
framework does not need any prior knowledge of the scene or background, but only
sufficient initial training data. This allows us to run in unconstrained environments and in
a variety of scenes. Ideally, more sophisticated and reliable skin detection mechanisms
would be desirable, perhaps also implementing the segmentation as a decision forest
classifier at the very first stage.

4.10.5 Depth estimation

Our depth estimation method also has a few limitations. First, it is not a general purpose
depth estimation technique, but is only trained to recover depth of a hand and only at close
range in front of the camera.

Second, we only regress a single depth value of the hand. While a single depth value
together with the x,y position of the hand’s centroid is sufficient for many applications,
it cannot compete with high-fidelity commercial depth cameras. The main advantage of
our method remains that RGB cameras can already be found in practically all wearable
devices, while the size and power consumption of depth cameras are still hindering their
use in small devices.

While our training data consists of gestures performed by many people at our institute,
we could not cover all variations in hand shape over the population. In particular, the
depth estimation stage obviously overestimates the distance of children hands as they are
smaller than the hands in the training data.
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Our future work will include experimenting with estimating depth of the individual
parts of the hand such as the fingertips and the palm. Given that the method operates on
hand silhouettes only, it is unclear whether this can be extended to fine-grained depth
estimates, but offline methods [125, 126] have shown promising results.

4.11 Conclusions

In this chapter, we explored new ways of interaction with tagged smart appliances via
personal wearable computers. We generalized the role of a universal interaction device
from the smartphone to other always-available wearable devices and combinations of
them. Starting from the concept of user interface outsourcing from smart appliances to
universal interaction devices, we introduced the concept of capability insourcing from our
wearables to our appliances. We explored through a few examples what new functionalities
the capability sharing allows. In particular, we highlighted that natural input techniques
implemented on our wearable computers can be applied to control our smart appliances via
the insourcing mechanism. We therefore reviewed the existing wearable natural input tech-
niques and identified the need for gestural input without hardware modifications. Next, we
proposed a novel machine learning based algorithm for robust gestural interactions around
unmodified mobile and wearable devices, including tablets, smartphones, smartwatches,
and smartglasses. To the best of our knowledge, this is the first random forest based gesture
recognizer running in real time on off-the-shelf devices. As input, the algorithm requires
only a regular color camera which is omnipresent in wearable devices. We introduced
a multi-stage classification framework in order to achieve high accuracy at low memory
footprint. Furthermore, we showed that by switching to a classification-regression pipeline,
the framework is able to estimate continuous 3D hand position for 3D mobile interaction
without a depth camera. We also proposed a number of compelling interaction scenarios
built around our gesture recognition engine, allowing for in-air gestural interaction and
smart appliance control.
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Conclusions and outlook

This chapter briefly summarizes the achievements and main contributions of this disser-
tation to the field of wearable barcode scanning. We also outline a few remaining open
issues and suggest directions for future research.

5.1 Summary of contributions

Our everyday appliances are getting smarter and are able to sense, communicate, and act
autonomously and cooperatively. Our cloud databases are storing almost unlimited infor-
mation generated about smart objects but also about virtual counterparts of conventional
objects. This enormous amount of information is becoming the fuel of a new economy,
which brings with it the fundamental prerequisite of uniquely identifying and linking
objects and information. Today, visual codes like barcodes and QR codes are the most
prevalent linking elements, but the scanning of these codes usually requires expensive
dedicated barcode scanners. In parallel, we are currently witnessing how wearable com-
puters with extensive sensing and computing capabilities are transforming from early
research prototypes to commercial products. These computers are not only serving as
ubiquitous communication tools, but are also reshaping the way we consume information,
and are also taking the role of universal interaction devices. To apply these devices as
always-available wearable barcode scanners thus seems to be a promising idea.

Our overall goal is to bring easy information access to everyone by enabling the scanning
of visual codes on commodity wearable computers. The algorithms and methods proposed
in this dissertation compensate important drawbacks of smartphones, smartwatches and
smartglasses when compared to traditional barcode scanners, and are pushing forward the
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state of the art in terms of accuracy, speed, and robustness. We presented several novel
methods, their fast and robust prototype implementations, and their evaluation in practical
settings. Our main contributions on visual code localization, motion blur compensation,
and gesture control are summarized below.

5.1.1 Visual code localization

We developed a fast and robust localization approach for both 1D and 2D visual codes in
large digital images. Our method can simultaneously localize codes of various symbol-
ogies, even at different orientations, and over a fairly wide range of scales. In addition,
the method is more robust to blur than previous approaches. Robust scanning of multiple
codes, and potentially several symbologies at the same time, is important for many enter-
prise applications. We described the implementation, optimization, and evaluation of the
algorithm on the CPU as well as on the embedded GPU of smartphones and smartglasses.

We tested the effectiveness of our implementation in qualitative and quantitative experi-
ments on images degraded by synthetic and real blur. Our results with publicly available
data sets indicate that the method provides robust orientation and scale invariance, and
localizes both 1D and 2D barcodes in sharp and blurry images. With UPC/EAN codes, we
achieve sharp detection rates similar to other approaches but with no limiting assumptions
on code size, code orientation, or code position. Additionally, our algorithm also detects
close to 17% of the blurry codes, which means in 17% of the cases, a blurry decoder can
already start decoding the barcode even before the autofocus was triggered. This results
in much faster scanning and better user experience. Furthermore, the algorithm can also
detect various sharp and blurry 2D codes.

The resolution of current generation smartphone cameras is already high enough for
decoding multiple distant codes that are cut out from a high-resolution image. Hence,
applying our localization algorithm as a preprocessing step in existing (blurry) decoding
algorithms, we can realize simultaneous scanning at a distance, which was not possible
before with consumer devices. However, the true advantage of scanning multiple small
codes is unleashed with head-mounted cameras and smartglasses. Scanning multiple
products (codes) on a shelf may soon become possible without the need for holding the
items close to the camera.
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5.1.2 Motion blur compensation

We presented a fast and robust method for reading severely blurred QR codes in images
casually captured on the go with mobile devices. Our new, practical blur removal algorithm
is specifically tailored for decoding motion-blurred QR codes on CPU- and memory-
constrained wearable computers. We improved on existing general-purpose deblurring
methods by adapting each step to the specific properties of QR codes that ensures fast
convergence to the correct solution. We also proposed and empirically evaluated a new
initialization scheme that greatly improved convergence and the quality of the results in
removing large motion blur.

We presented fast PC and Android implementations and showed in thorough experi-
ments that our iterative restoration-recognition algorithm can quickly decode QR code
images degraded by synthetic or real motion blur. From the comparison with the state of
the art, we concluded that our restoration quality is on par with existing methods while the
restoration speed is about a magnitude faster.

In addition, we presented a method to render piecewise uniform blur kernels from
built-in gyroscope measurements. This fast approximation can be used as an initialization
step for our blur removal algorithm so that less iterations are required in the multiscale
restoration loop. Edge-based and sensor-based blur estimation approaches are well appli-
cable in smartphone and smartglasses scenarios. We applied existing off-line and on-line
methods for gyroscope and camera calibration; however, a robust on-line calibration
method is still an open question.

Fast blur compensation means that no precise code alignment is required, but the user
can simply swipe the camera in front of the code. For instance, we can imagine a tablet
computer as a point of sale system for small businesses; the cashier can simply swipe
the products over the front camera. For the post and the logistics industry, blurry QR
scanning saves time because codes can be scanned without stopping the parcels. Our
restoration-recognition algorithm brings cheap wearable QR scanning one step closer to
enterprise-grade performance with a great potential for practical applicability.

5.1.3 Gesture control

We revisited the role of the smartphone as an always-available universal interaction device
and generalized the notion to other wearable devices and also combinations of them. We
described how user interface primitives of tagged smart appliances can be automatically
“outsourced” to our wearables, and introduced how capabilities of the wearables can be

159



Chapter 5 Conclusions and outlook

“insourced” to smart appliances. In particular, any advanced input method implemented on
wearables can be also insourced to other appliances in a smart environment.

Therefore, we focused our attention on improving the wearable input from small buttons
and touch screens to more natural ways like hand gestures. We proposed a fast and robust
gesture recognition algorithm for unmodified mobile and wearable devices including
tablets, smartphones, smartwatches, and smartglasses. While there is extensive prior work
on gesture recognition, our multi-stage gesture classification framework is unique in a
sense that i) it uses a single camera ii) and runs in real time iii) on resource-constrained
devices iv) without external sensors.

In addition, we showed how to extend our framework to jointly classify discrete gestures
and regress continuous 3D hand position for 3D input on smartglasses, still requiring only
monocular camera input. We evaluated our methods quantitatively and qualitatively, and
showcased various scenarios where in-air gestures successfully complement touchscreen
input, and where in-air gestures control smart appliances.

Fast and robust gesture control is not only advantageous in barcode scanning, but is in
general widely applicable in wearable augmented reality, a truly ubiquitous user interface
that seamlessly blends the physical and the digital. By bringing vision-based natural hand
gesture control even to devices that have no camera, we open the door for new smart
functionalities.

5.1.4 Demonstrators

Along with the dissertation, we have designed and implemented several showcase scenarios
and demonstrators of our contributions. All proposed algorithms have been implemented
to be compatible with various platforms (e.g., Android, iOS, Windows Phone) and de-
vice families (e.g., smartphone, smartwatches, smartglasses, tablets) with their resource
constraints in mind. Major parts of the research results of this thesis have been orally
presented at conferences [145, 203, 204, 205, 206, 208, 209, 210, 212] and demonstrated
running directly on smartphones and/or wearable devices.

Overall, we successfully addressed all challenges identified in Section 1.4, and presented
fast and robust solutions on computationally restricted wearable devices for enabling the
vision of wearable barcode scanning.
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5.1.5 Contribution statement

The contributions presented in this thesis partially rely on work and ideas of other people
as listed below:

Chapter 2: The visual code localization methods, their efficient implementations, and
their evaluation are original work of the author.

Chapter 3: Most of the blur removal work has been done by the author, except a few
implementation parts by Bachelor and Master students. Recording sensor data on the
mobile phone was implemented by Carlo Beltrame. Rendering blur kernels from sensor
data was implemented by Severin Münger. The Android camera control is partly the work
of Luc Humair. Parts of the document deblurring code from Stephan Semmler was reused
in our QR deblurring pipeline. The students have received paper co-authorship for their
contributions [210, 212].

Chapter 4: The prototype of user interface beaming is joint work with Simon Mayer
who implemented the semantic description of user interface primitives and the Web
interface of the presented smart appliances. The concept of user interface insourcing roots
in discussions with Friedemann Mattern. The gesture classification and the 3D interaction
method is the result of joint work with the Advanced Interactive Technologies Group
of ETH Zurich led by Otmar Hilliges. Most of the results have been published as peer
reviewed conference papers [203, 204, 205]. All co-authors contributed to the design of
the algorithms and to the papers. The training of the classification forest was performed
by Jie Song and Sean Fanello. The training of the classification-regression forest was
the work of Jie Song and Fabrizio Pece. The Matlab experiments for evaluation were
performed by Jie Song, the Android experiments were performed by the author. The Web
interface of the LIFX light bulb [303] is the work of Wilhelm Kleiminger. The real-time
random forest implementation on smartphones, smartwatches, and smartglasses is sole
work of the author. The applications around the algorithm, the 3D user interaction models,
and their implementations are original work of the author.

5.1.6 Other work not included in the thesis

During the PhD studies, I also had the chance to contribute to topics other than barcode
scanning, in particular mobile augmented reality and interaction. Based on my master
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thesis, together with Peter Rautek, Hartmut Seichter, and Eduard Gröller, we presented the
concept of augmented visualization [211] where a handheld mobile device acts as a magic
lens in front of a large visualization screen and allows for discovering viewer-dependent
details overlaid on the common content. With Florian Daiber and Tomer Weller, we
developed a wearable biking assistant [207] that provides instant performance feedback
and context-aware notifications overlaid on a biker’s view. During my internship at
Qualcomm Research, I had the chance to work on the Vuforia augmented reality engine
for a better tracking of textureless 3D objects. In collaboration with Simon Mayer, we
developed a system for visualizing network traffic in smart home environments [142,
143]. Also, we co-invented user interface beaming [145], a method that allows users to
conveniently interact with smart things in their environment by combining the capabilities
of various personal wearable computers. Both works make use of a simple and fast
appliance recognition technique that we presented in [144]. I also helped Frederik
Hermans and Liam McNamara in developing a new visual code whose decodability
is gracefully degrading with the scanning distance [80]. With Marian George and Mihai
Bâce, we worked on assistive technologies in the context of shopping [65] and product
assembly scenarios using smartphones and other wearable cameras. I have also supervised
various student projects on wireless sensor networks, mobile optical character recognition,
3D reconstruction, and augmented reality.

5.2 Open problems and future work

With our original goals and our accomplished contributions in mind, we now mention
some open challenges and provide directions for interesting future work.

5.2.1 Energy and durability

One of the key issues with wearable computer vision is the high computational time
with large input images, and this is also coupled with high energy consumption and heat
problems in wearable devices. We highlighted that most parts of our algorithms are
suitable for parallel processing. Shifting the processing to the GPU that has more cores at
lower frequency than the CPU means lower energy consumption. We also believe it would
be beneficial to design hybrid cameras for wearables that can be operated in two modi: a
lower quality but low-energy, always-on video capture mode, and the normal high-quality
picture capture mode. We also expect that dedicated computer vision processors will
become widespread in the close future.
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Another important issue is durability for industrial applications. An industrial scanner
should operate in a wide range of temperatures such as −30◦C to 50◦C, should be dust
and water or at least drop resistant, and should survive drops to concrete from a height of
2 meters. We believe that these requirements can be fulfilled by designing insulated and
rugged coatings for smart devices.

5.2.2 Multi image deblurring and super resolution

If we want to scan small and distant codes as well, the resolution of the image sensor may
not be high enough, so the options for super-resolution from subsequent video frames are
worth to be investigated. The subsequent frames in the camera feed are slightly shifted
recordings of the same scene, so with sub-pixel image registration techniques, it might
become possible to read codes smaller than what the actual camera resolution allows.
However, as the motion estimation needs to be very precise for this, higher than 2×
resolution increase is infeasible in practice with current super resolution algorithms. As
also mentioned in Section 3.5, having multiple images is also advantageous for deblurring,
but new robust image alignment methods are necessary. Multi image restoration with
joint alignment, deblurring, and super resolution at practical speed is a very interesting
direction for future work. Recent approaches show promising results but are still rather
slow [262]. Robust detection and decoding of tiny codes in the environment could find
numerous applications in ubiquitous computing.

5.2.3 Machine learning for image restoration

Very recently, a couple of machine learning based methods have been proposed for
denoising [56], deblurring [190, 218, 253], and also for super resolution [88, 191]. These
methods apply either random forests or deep neural networks that can learn and infer the
necessary restoration kernels by looking at degraded image patches. It is an interesting
research question how such methods would perform on visual codes or text, or whether
the special structure would allow certain speed optimizations in the training and inference.

In addition to visual codes, we could explore how our blur removal algorithm can be
applied in other domains. We think it might work for example with text deblurring where
the text consists of two-color structures. This is an important issue for an eye-worn camera
in recording personal memories, whiteboards, documents, or to-do lists. Fast blur removal
and super resolution would allow reading far away text through smartglasses.
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5.2.4 Robust visual code designs

Assuming we might soon reach the limits in how much we can improve our cameras, we
can also investigate in how we can improve the robustness of our visual codes against
known degradations. As a new research area, we can design new visual codes that are
tolerant to blur or noise at the price of possibly reduced decodable information. In [81], the
authors presented a visual code that encodes the data in the Fourier domain instead of the
spatial domain, thereby the code’s decodability is gracefully degrading with the scanning
distance. Once super resolution at practical speeds and robust code designs appear, they
will enable long-range barcode scanning with numerous practical applications.

5.2.5 Automatic camera and motion sensor calibration

We have shown in Section 3.5 that camera properties and capture settings can highly
influence the success of blur removal algorithms. In particular, signal non-linearities
introduced during the capture process may cause blur removal algorithms to fail or not
converge at all. We could overcome this in our experiments with high-end models that
allow manual control and access to linear pixel measurements. However, most devices
today – as also shown in our experiments with Google Glass – do not allow manual control
and require calibration of the camera response function (CRF). This is a crucial limitation
knowing that the CRF is different for each camera and even in different settings of the
same camera. Because wearable cameras are equipped with numerous automatic image
enhancement functionalities, the CRF actually needs to be estimated continuously. We are
not aware of any method for automatic online calibration of the CRF.

Relying on inertial sensors for blur estimation is fast, however, the quality of the
estimated kernels is largely affected by the quality of the sensor data and the calibration
of the camera and the sensors. In particular, we noticed in our experiments that the delay
between timestamps of camera frames and sensor measurements is slightly varying over
time, therefore online calibration is necessary also here. In future work, we could build on
the theory of visual-inertial odometry for online auto-calibration, keeping our resource
constraints in mind.

5.2.6 Wearable hardware development

We believe that wearable computers will become even more powerful in the close future,
mainly driven by mobile entertainment and computational photography. The high demand
of such applications will push the industry forward in developing new standards, which is
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evident when we take a look at the industry-wide Khronos standardization group. Khronos
is developing new APIs for accelerated computer graphics (OpenGL ES [314]), accelerated
computer vision (OpenVX [316]), better inter-operability and long-term convergence of
graphics and computing (Vulkan [345]), better camera handling (OpenKCam [315]), better
sensor fusion (StreamInput [337]), etc. On the hardware side, special-purpose computer
vision chips and machine learning chips are in development that will greatly accelerate
our restoration and recognition tasks.

We presented separate components for a new generation of barcode scanning; however,
integrating all these components requires further design and engineering effort. All our
algorithms have been carefully designed with resource constraints in mind, and with a
high degree of data independency (mostly per-pixel operations). These aspects make our
methods well suited for parallelization and applicable in the future, even when technology
changes.

5.2.7 New applications

We believe that using wearable computers for scanning visual codes can make daily
processes of people more efficient. We imagine, for example, a system connecting different
wearable computers to realize a personal shopping assistant. Such an assistant would
reduce the time required to find all products on the shopping list and could also automate
the checkout process. In a more general sense, the combination of the wearables allows
new, innovative applications given that the smartglasses share the user’s viewpoint, the
smartwatches provide an always-available touch screen, and the smartphone has advanced
sensors and fast Internet connectivity. In the shopping scenario, for example, the camera
of any device can be applied to scan the barcodes of articles present in the shop. Through
scanning an object, a lot of information can be retrieved, such as in which category the
products are to be found, pricing, exact names, and the location in the store. If a digital
map of the store is available, in-store navigation using the camera or other sensors of the
devices could further assist the user. These and previous examples in the text illustrate that
wearable barcode scanning could create new use cases that are not possible with today’s
technology.

5.3 Closing remarks

We have shown in this dissertation that in the area of wearable barcode scanning and
generally in the world of binary images, difficult computer vision problems like object
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(a) Object segmentation (b) Image restoration (c) Shape classification

Figure 5.1: We have shown that in the world of binary images, these generally very difficult
problems can have fast and robust solutions even on resource-constrained
wearable devices.

detection, image restoration, and shape classification can have efficient solutions even
on resource-constrained wearable devices. Our methods are pushing forward the state of
the art in terms of accuracy, speed, and robustness, and thereby help to bring the comfort,
the productivity, and the new business opportunities of wearable scanning also to the
professional users who are accustomed to the performance of their laser scanners.

Realizing our goal of easy and ubiquitous information access can have a significant
impact on business processes and mobility hardware in the enterprise domain, but it can
also bring many benefits to consumers. For employees, the smartphones and smartglasses
could be, as a first step, simply put into rugged shells and replace the expensive dedi-
cated scanning hardware. For consumers, the improved performance means that barcode
scanning gets even faster and easier facilitating price comparison, accessing product in-
formation, and building shopping lists. Tiny visual codes allow easy configuration of our
smart environment and interaction with smart appliances, while robust visual codes allow
communication over screen-camera links facilitating context-aware and location-based
services.

Overall, robust wearable barcode scanning bears the potential to become one of the
successful application domains of wearable computing, and it can assert the role of the
smartphone and pave the road for smartglasses to become the essential tools for bridging
the gap between the physical and digital world.
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[116] Mathias Kölsch. Vision Based Hand Gesture Interfaces for Wearable Computing
and Virtual Environments. PhD thesis, University of California, Santa Barbara,
2004.

[117] Carl H. Knowles. Hands-free body mounted laser scanner and method of use,
July 22 1993. WO Patent App. PCT/US1993/000,461.
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[133] Anat Levin, Yair Weiss, Frédo Durand, and William T. Freeman. Understanding
and evaluating blind deconvolution algorithms. In Proceedings of the 2009 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR ’09, pages 1964–
1971, June 2009.

180



Bibliography

[134] Cheng Li and Kris M. Kitani. Pixel-level hand detection in ego-centric videos.
In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’13, pages 3570–3577, June 2013.

[135] Tianxing Li, Chuankai An, Xinran Xiao, Andrew T. Campbell, and Xia Zhou. Real-
time screen-camera communication behind any scene. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’15, pages 197–211, New York, NY, USA, 2015. ACM.

[136] Yunpeng Li, Sing Bing Kang, Neel Joshi, Steve M. Seitz, and Daniel P. Huttenlocher.
Generating sharp panoramas from motion-blurred videos. In Proceedings of the
2010 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’10,
pages 2424–2431, June 2010.

[137] Ningzhong Liu, Xingming Zheng, Han Sun, and Xiaoyang Tan. Two-dimensional
bar code out-of-focus deblurring via the increment constrained least squares filter.
Pattern Recognition Letters, 34(2):124–130, 2013.

[138] Renting Liu and Jiaya Jia. Reducing boundary artifacts in image deconvolution. In
Proceedings of the 2008 IEEE International Conference on Image Processing, ICIP
2008, pages 505–508, Oct 2008.

[139] Yifei Lou, Ernie Esser, Hongkai Zhao, and Jack Xin. Partially blind deblurring of
barcode from out-of-focus blur. SIAM Journal on Imaging Sciences, 7(2):740–760,
2014.

[140] Ziyang Ma and Enhua Wu. Real-time and robust hand tracking with a single depth
camera. The Visual Computer, 30(10):1133–1144, 2013.

[141] Friedemann Mattern. From smart devices to smart everyday objects. In Proceedings
of the Smart Objects Conference, SOC ’03, pages 15–16, 2003.

[142] Simon Mayer, Christian Beckel, Bram Scheidegger, Claude Barthels, and Gábor
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Appendix A
The energy function of blind
deconvolution

A.1 MAP formulation

The uniform blur model is formulated as

b = k ∗ l +n

where the blurred image b is a result of convolving a sharp image l with a blur kernel k
and adding Gaussian noise n. In blind deconvolution, we know only the blurred image b
and we try to recover the latent sharp image l. This also requires estimating the blur kernel
k. The problem of finding both l and k can be formulated as minimizing the following
energy function:

argmin
l,k
||b− k ∗ l||22 +λρl(l)+ γρk(k)

To derive this energy function, we first express the noise on a single pixel. In the equations,
the index i runs over all image pixels from 1 to N.

ni = bi− (k ∗ l)i

The probability distribution of a single pixel’s additive noise is assumed to be Gaussian
with zero mean and standard deviation σ :

p(ni)∼ N(0,σ) =
1√

2πσ
exp(− 1

2σ2 n2
i )∝ e−

1
2σ2 n2

i
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Assuming that the noise on each pixel is independent and identically distributed (i.i.d.),
the probability of the image noise is the product of the pixel noise probabilities:

p(n)∝
N

∏
i=1

e−
1

2σ2 n2
i = e−

1
2σ2 ∑

N
i=1 n2

i

Now let us look at the probabilities of l and k. As Bayes’ rule says, the posterior
probability is proportional to the product of the likelihood and the prior:

p(x|y) = p(y|x)p(x)
p(y)

∝ p(y|x)p(x)

The term p(y) is a normalization factor which does not play a role in the further mini-
mization, as it will reduce to an additive constant after taking the logarithm. Introducing
independent variables l and k hence results in

p(l,k|b)∝ p(b|l,k)p(l,k) = p(b|l,k)p(l)p(k)

The maximum a posteriori (MAP) estimates of the unknowns k and l are

argmax
l,k

p(l,k|b) = argmin
l,k

[− log p(l,k|b)]

= argmin
l,k

[− log p(b|l,k)− log p(l)− log p(k)]

as maximizing the posterior probability is equivalent to minimizing its negative logarithm.

A.2 Likelihood term

The likelihood term follows from our blur model by expressing the noise term:

p(b|l,k) = p(n)∝ e−
1

2σ2 ∑
N
i=1 n2

i

− log p(b|l,k)∝C
N

∑
i=1

[ni]
2 =C

N

∑
i=1

[bi− (k ∗ l)i]
2 ∝ ||b− k ∗ l||22

with C containing all the constant terms and i indexing the pixels in the image.
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A.3 Image priors

A.3 Image priors

While the pixel values can be very different across images, the (log-)distribution of the
image derivatives follows a common pattern (see Figure A.1, left) in photographs. This
property has been successfully exploited in the solutions of various image processing
problems. This distribution is independent of the image scale and has a heavy tail which
means while most gradients are around zero (flat image areas), some large gradients are
also likely (edges). In particular, the distribution is not Gaussian. This is very unfortunate
because a Gaussian prior would make the minimization problem very simple with a closed-
form solution. Images restored with a Gaussian prior are often oversmoothed and/or
contain ringing artifacts. Instead, the distribution is usually modeled by a Hyper-Laplacian
function (see Figure A.1, right) with an exponent α < 1, best values are α ∈ [0.5,0.8].

Figure A.1: Left: A natural image prior: typical log-gradient histogram of an image. The
shape of this curve can be approximated by various parametric models. Right:
Parametric models as natural image priors.

Let us denote the x- and y-derivatives of the image l at pixel i as ∂xli and ∂yli, respectively.
The prior p(l) can then be formulated as

p(l)∝ e
− 1

2η2 ∑
N
i |∂xli|α+|∂yli|α

In general form:

p(l) =
L

∏
i=1

Φ(∇li) =
L

∏
i=1

e−φ(∇li)
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and after taking the logarithm:

− log p(l) =
L

∑
i=1

φ(∇li)

The two most commonly used curves are the Gaussian prior:

− log p(l) =
L

∑
i=1
|∇li|2 = ||∇l||22

and the hyper-Laplacian prior:

− log p(l) =
L

∑
i=1
|∇li|α

Other parametric curves are also used in the literature [58, 194].

In newest blind deconvolution algorithms [254], L0 regularization terms were proposed as
image prior. The L0 norm is a quasi norm and stands for the number of non-zero elements.
As blur smooths out sharp edges and distributes a single large gradient to multiple smaller
gradients, a blurry image has much higher L0 norm than its sharp counterpart. When
applied on the gradients, the prior

− log p(l) = ||∇li||0

enforces the sharp image to have many flat regions and sharp edges inbetween. Further-
more, in document deblurring it is also beneficial to apply a similar L0 prior also on the
pixel intensities, because the number of zeros (black text pixels) is significantly different in
a sharp document than in a gray blurred one [160]. This leads to the document deblurring
prior

− log p(l) = ||li||0 + ||∇li||0

However, the L0 regularization term is hard to tackle computationally, therefore various
approximations are used instead.

In our QR restoration algorithm, we apply the Laplacian prior (α = 1) because it matches
well the black and white code images and fast solution methods exists for minimizing the
energy function:

ρl(l) =
L

∑
i=1
|∇li|

206



A.4 Kernel priors

A.4 Kernel priors

In the simplest case, the kernel prior p(k) is assumed uniform so it is ignored. Earlier
methods applied a sum-of-exponentials prior: For a single pixel ki of the kernel k the
distribution is a sum of D exponential distributions:

p(ki)∼
D

∑
d=1

wdελd
(k) = w1λ1e−λ1k +w2λ2e−λ2k +w3λ3e−λ3k + . . .

For the whole kernel then:

p(k)∼
K

∏
k=1

D

∑
d=1

wdελd
(k)

Its negative logarithm is:

− log p(k) =−
K

∑
k=1

log
D

∑
d=1

wdελd
(k) =

=−
K

∑
k=1

log[w1λ1e−λ1k +w2λ2e−λ2k +w3λ3e−λ3k + . . . ]

Alternatively, a Gaussian gradient prior can be applied, this prior enforces connected-
ness.

p(k) =
K

∏
k=1

e−c(∆k)2

− log p(k) =C
K

∑
i=1

(∆k)2 = ||∆k||22

In most methods and also in our method, a Gaussian intensity prior is applied on the
kernel, this prior enforces small values and avoids Dirac kernels.

p(k) =
K

∏
i=1

e−k2
i = e−∑

K
i=1 k2

i

− log p(k) =
K

∑
i=1

k2
i = ||k||22

ρk(k) = ||k||22

Also, ||k||1 = ∑
K
i=1 ki = 1 is always necessary so that the blurring does not change the

overall image intensity.
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Appendix B
Video results

Large part of the research described in this thesis involves live camera stream processing
hence the results can be better presented in videos. This appendix describes the videos
attached to this document that can be downloaded from the online library of ETH Zurich:
http://doi.org/10.5905/ethz-1007-50

code localization.mp4

This video presents our fast QR code localization method [206,
209] running entirely on the GPU of a smartphone. The method
is able to detect multiple codes even at 1 m distance in full HD
resolution images.

blur removal examples.mp4

Live blur removal from QR codes on Android devices. We
show examples of some extreme blur cases and a synthetic
example running on Google Glass smartglasses. Video adapted
from [212].
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blur removal initialization.mp4

Further blur removal examples showing the superiority of our
initialization scheme. The grid starting kernel is more effective
in removing large blur.

blur removal extreme.mp4

Inverting extreme blur where the structure of the QR code is
highly distorted.

augmented reality network visualizer.mp4

Live object recognition for visualizing network traffic in smart
homes. The smart appliances in the camera’s field of view are
recognized by tiny visual tags or by their visual features, and
network connections are overlaid on the camera preview. Video
adapted from [143].

gesture control map.mp4

Bimanual interaction with a map application on a smartphone.
The dominant hand can navigate on the touch screen while the
non-dominant hand can perform gestures behind the device.
Video adapted from [204].
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gesture control magnifier.mp4

Continuous switching between gestures allows fine control of
the size of a virtual magnifier lens overlaid on a map. Video
adapted from [204].

gesture control tablet watch.mp4

Live gesture recognition running on a tablet and on a smart-
watch. The user can control videos and switch between recipes
in a cooking app. Our algorithm is simple enough to run even
on a first-generation smartwatch. Video adapted from [204].

gesture control lamp.mp4

Controlling a Web-enabled light bulb with in-air gestures. The
user can switch the lamp on and off and change the color of the
light by performing simple gestures in front of a smartphone or
a smartwatch camera.

gesture control medical.mp4

Controlling a medical visualization screen with in-air gestures.
Touching the screen is sometimes not possible in medical sce-
narios therefore in-air gestures are particularly useful for in-
teraction with the visualized content. We apply a tablet and
a smartphone here but the camera could also be built into the
screen.
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gesture control 3d phonebook.mp4

Interaction with a 3D phonebook application on smartglasses.
The user can open the contact cards with the pinch gesture,
scroll through the cards by swiping the palm forward and back-
ward, and place a call by grabbing a card. Video adapted
from [203].

gesture control 3d menu.mp4

A 3D menu application on smartglasses. The user can scroll
through menu elements by swiping the palm left or right, open
sub-menus by swiping forward or backward, and select menu
elements with the fist gesture. Video adapted from [203].
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