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Visual codes are everywhere



Ubiquitous wearable scanners allow us to access 

information on every physical object
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Wearable barcode scanning

Smartphones, tablets, watches, glasses

 are always with us

 have cameras, sensors, intuitive UI

 are easily programmable

wearable barcode scanningtraditional barcode scanning

Barcode scanners

 are expensive

 are used by only few people

 use proprietary protocols
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Challenges

no laser for 
localization

(multiple) 
small codes

defocus and 
motion blur

limited input 
capabilities



 Make wearable barcode scanning an attractive 

alternative of traditional laser scanning

 by compensating the shortcomings, 

and adding new features

 by leveraging the advanced computing and sensing

capabilities of the wearables
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Research goals
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Contributions

Fast and robust

localization 

of visual tags

MUM’13, ICASSP’14

Part I

Fast and robust

blur compensation

for scanners

WSCG’15, ISWC’15

Part II

Fast and robust

gesture control

for wearables

BSN’14, UIST’14, CHI’15

Part III
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Fast and robust code localization

goals: invariant to size, orientation, blur, symbology



 1D barcodes contain lots of edges

blur deletes many of them

 2D barcodes contain lots of corners

blur smears corners but they still remain corners

 codes are almost always black and white

blur mixes black and white to gray

detect areas with edges and/or corners &

low saturation in HSV color space
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Observations
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Joint 1D and 2D barcode localization for smartphones

1D

2D
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Live localization on the mobile GPU



smartglasses
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Results

Our method 

 can localize visual codes of various symbologies

 with performance like the state of the art

 without assumptions on code size, code orientation, or code position, 

while it is more robust to blur

 is portable to GPU and a wide range of devices

blurrysmallbig tilted
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Multiple codes

sharp

2D works well in both cases1D sensitive to blur

blurry
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Extension to blurry 1D codes

Low S1 and S2

Rectangle 

detection in 

the saturation 

channel
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Fast and robust code localization allows:

 scanning multiple codes simultaneously

 scanning visual codes from further away

 scanning blurry codes in the whole image
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motion blur makes the codes unreadable

Motion blur compensation

we recover the information from motion-blurred QR codes

gabor.soros@inf.ethz.ch

our input our output
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Basics of blurry image formation
uniform blur model

sharp scene

𝑰
blurry scene

𝑰 ∗ 𝒌
observed image

𝑩 = 𝑰 ∗ 𝒌 + 𝒏

convolution with a

blur kernel 𝒌
adding camera 

noise 𝒏
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Blur removal problem

=

deconvolution:

𝑩 = ? ∗ 𝒌 + 𝒏
blind deconvolution:

𝑩 = ? ∗ ?+ 𝒏

∗
a motion blur

kernel

∗
identity (Dirac)

kernel

∗
a defocus blur

kernel
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Blind deconvolution for QR scanning?

Existing blind deconvolution algorithms

 are slow even on PC

 are tuned to natural images

 usually fail on QR codes (structure very different!)

outputs of some previous methods
input



 blur can be estimated from the many QR edges

 but we need to suppress the small structures

 QR codes do not need to look good for decoding

 in contrast to photographs, where restoration quality counts, 

our main concern is speed

 QR codes include error correction / checksum

 the algorithm can stop when the checksum is correct

 false decoding is practically impossible

 only partially restored codes might be decoded too
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Observations for deblurring QR codes
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Restoration-recognition loop

We follow a common recipe for blind deconvolution:

 alternate between solving for I and solving for k

 suppress noise and boost edges: enforce QR properties

 try to decode at every iteration

 repeat on several scales

argmin
𝐼,𝑘

𝐵 − 𝑘 ∗ 𝐼 + λ𝐼𝑝𝐼 𝐼 + λ𝑘𝑝𝑘(𝑘)

I QR

I’k

Blind deconvolution via energy minimization

B
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experiments (synthetic blur)

quality is on par with the state of the art, and a magnitude faster

[Cho2009]
0.48s

[Sun2013]
217.73s 

[Xu2010]
0.96s 

[Xu2013]
1.05s (GPU) 

input

[Perrone2014]
171.90s

[Pan2014]
12.74s

ours
0.61s

ground truth[Pan2013]
133.8s 
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experiments (real blur)

1.69s 2.82s

18.62s 12.52s14.65s

14.37s
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Live deblurring on a smartphone

input

estimated

image

estimated

kernel

camera view

search window



additional clues:
 the blur is ’encoded’ in the image of point light sources

 wearables have inertial sensors

 rotational motion blur is dominant – use gyroscopes

 reconstruct the camera motion, render the blur kernel
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Can we make it even faster?

virtual point

light source

virtual

camera
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Rendering blur kernels for initialization

captured frame generated kernels deblurred frame

Rotational blur depends on the 

position in the image
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Patch-wise restoration

We can initialize the restoration loop with the rendered kernels



Fast and robust blur 

removal allows:

 scanning in low lighting

 scanning moving codes

 and tiny or distant codes 

(super resolution)
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Codes for interaction with smart objects

[Rohs 2005]

[Heun 2013a]

[Ballagas 2006]

[Heun 2013b][Mayer 2012]

[Chan 2015][Mayer 2014]
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Outsourcing user interfaces

[fitbit activity tracker]

The smartphone is becoming a 

universal interaction device.

[LIFX light bulb]

[Nespresso coffee machine] volume

How about other wearables?

[Wahoo cycling sensor]
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Joint work with Simon Mayer

cross-device automatic GUI generation: user interface beaming

Outsourcing user interfaces
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Gesture recognition on wearables

Joint work with Jie Song, Fabrizio Pece, Otmar Hilliges
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Live gesture recognition on mobile devices



input segmentation labeled output

Gesture classification as pixel labeling

36



...

F0
< Г0

> Г0

F1 F2

F3 F4 F5 F6

< Г2< Г1> Г1 > Г2

vw

v

w

...

F0(w,v):

F2(w,v):

Pixel labeling with a decision tree

37



1. pooling over trees:

this pixel is ’red’

T1

T2

T3

2. pooling over all pixels:

this gesture is ’red’

Pixel labeling with a decision forest
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close

middle

far

Coarse 

Depth 

Classification
Shape

Classification

pinch

point

splayed

palm

Part 

Classification

Pixel labeling with multi-stage decision forests
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Enabling 3D interaction
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Depth

Regression

145 mm

323 mm

211 mm

282 mm
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Gestures + depth for 3D interaction



42

Fast and robust gesture recognition allows:

 natural input to wearables

 easy control for scanners

 universal interaction with smart objects

(through user interface outsourcing)



In the world of binary images, generally very difficult 

computer vision problems like … 

… can have fast and robust solutions even on 

resource-constrained wearable devices.
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Conclusions

object segmentation image restoration shape classification



Our solutions

 are pushing forward the state of the art in terms of 

accuracy, robustness, and speed

 can help to make wearable barcode scanning a 

promising alternative to traditional barcode scanning

 will potentially make wearables the essential tools for 

bridging the gap between the physical and the digital

world.
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Conclusions
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Thank you!




