
Smart Identification Frameworks for Ubiquitous
Computing Applications?

Kay Römer1, Thomas Schoch1, Friedemann Mattern1, and Thomas D̈ubendorfer2

1 Institute for Pervasive Computing
Department of Computer Science

ETH Zurich, CH–8092 Zurich, Switzerland
{roemer,schoch,mattern }@inf.ethz.ch

2 Computer Engineering and Networks Lab
Department of Electrical Engineering

ETH Zurich, CH–8092 Zurich, Switzerland
duebendorfer@tik.ee.ethz.ch

Abstract. We present our results of the conceptual design and the implementa-
tion of ubiquitous computing applications using smart identification technologies.
First, we describe such technologies and their potential application areas, then
give an overview of some of the applications we have developed. Based on the
experience we have gained from developing these systems, we point out design
concepts that we have found useful for structuring and implementing such appli-
cations. Building upon these concepts, we have created two frameworks based on
Jini (i.e., distributed Java objects) and Web Services to support the development
of ubiquitous computing applications that make use of smart identification tech-
nology. We describe our prototype frameworks, discuss the underlying concepts
and present some lessons learned.
Keywords: Ubiquitous Computing, RFID Tags, Virtual Counterparts, Jini, Web
Services

1 Introduction

Object tagging is an enabling concept for many interesting ubiquitous computing (“ubi-
comp”) applications [19]. By attaching small electronic tags to physical objects, these
objects can be automatically identified and located when brought into the vicinity of a
tag detection system. Our goal is to support the development of applications that make
use of smart identification technology by providing suitable abstractions and concepts
and by incorporating these concepts into a framework. Since identification of real-world
objects is the prerequisite for ”smart” behavior, the framework should also support basic
functionality for smart objects such as associating specific information and functional-
ity with objects and providing an artifact memory. Furthermore, it should support event
propagation, location management, and some other basic services for smart objects.

One example of a promising object tagging technology is passive radio frequency
identification (RFID), where tags do not need their own power source and cost only a
? A preliminary version of this paper appeared at PerCom 2003, the IEEE Intl. Conf. on Perva-

sive Computing and Communications.



few tens of cents. State-of-the-art RFID systems such as the Phillips Icode system [21]
allow the simultaneous detection of a few hundred tags within a space of up to one cubic
meter. Typically, such tags not only hold a unique ID, but also provide a small amount
of non-volatile read/write memory of up to about 100 bytes.

Besides passive RFID systems, other identification systems also exist. Bar codes are
a classical technology for tagging physical objects, but they need line-of-sight to the
reader and have other drawbacks that make them less attractive for ubicomp applica-
tions. In contrast to passive RFID systems, active RFID systems have built-in batteries
enabling them to transmit their data over distances of up to 100m. Disadvantages are
their larger size and the higher price compared with passive systems. In the future, we
also envisage small modules based on RF technologies similar to Bluetooth, WLAN or
UMTS for tagging physical objects. Their main advantage is that they can cover a larger
area and provide additional functionality such as transmitting sensor values. Currently,
however, they have disadvantages with respect to size, price, and energy consumption
that are similar to those of active RFID systems.

Despite their simplicity and current limitations, such passive RFID-based identifica-
tion systems enable the implementation of a wide range of novel ubicomp applications
by bridging the gap between the physical world (i.e., tagged real-world objects) and
the virtual world (i.e., application software or service infrastructure). One example is
tagged products (“smart products”) that make new services and new cost-saving busi-
ness processes possible. They bring benefits in the areas of source verification, coun-
terfeit protection, one-to-one marketing, maintenance and repair, theft and shrinkage,
recall actions, safety and liability, disposal and recycling as well as mass customizing
[3]. Smart objects thus lead to more effective supply chain management systems, prod-
uct life cycle management processes, and customer relationship management processes
in the consumer goods industry [7]. However, the use of novel identification technolo-
gies is not limited to these classical business processes – many new and innovative
applications are possible when real-world objects become “smart” by having informa-
tion attached to them and being directly associated to backend IT systems or linked to
services on the Internet.

Over the last two years we have developed a number of identification-based appli-
cations in areas such as smart games, home automation, and office automation. These
applications are typically based on non-trivial interactions between multiple tagged
objects. We have found that existing ubicomp infrastructures such as Savant [12],
Cooltown [8], one.world [5], Gaia OS [13], and Stanford Interactive Workspaces [6] do
not provide appropriate application level frameworks to substantially support the imple-
mentation of our applications. Although these infrastructures provide useful program-
ming primitives, there is quite a large gap between these primitives and the necessary
functionality of ubicomp applications based on the smart identification technologies
that we have in mind.

In order to better understand the requirements of smart identification-based ubicomp
applications and to proceed towards an application model, we first implemented from
scratch a set of different prototype applications as presented in Section 2. The only piece
of software they had in common was the driver software for the RFID system. Based
on our experience with these applications, we identified a number of tasks common



Fig. 1.Screenshot of the Smart Tool Box Application.

to this type of application, which led to an application model and the design of con-
cepts that we found useful for structuring and implementing applications using tagged
physical objects. Based on those mechanisms, we then designed and implemented two
application level frameworks to support the development of tag-based ubicomp appli-
cations. The implementation of two different application level frameworks enabled us
to evaluate slightly different design decisions, and to compare implementations based
on different programming platforms such as Sun’s Jini on the one hand and Microsoft’s
.Net Web Services on the other hand.

In the next section we first present a short overview of some of the applications
we have developed. They will serve as a basis for identifying the general design con-
cepts that we present in Section 3. These concepts should form the basis of a generic
ubicomp framework. After a description of our two prototype frameworks in Section
4, we compare and evaluate some of the underlying ideas and draw conclusions for a
more elaborate implementation of our concepts in Section 5. We conclude by mention-
ing related work and giving a short outlook. The focus of the paper lies in concepts and
suitable application frameworks, since these should serve as a basis for future systems
of cooperating smart real-world objects.

2 Selected Ubicomp Applications

We outline below the type of applications we intend to support with our framework by
sketching some of the prototypical smart identification-based ubicomp applications we
have developed over recent years. Note that all the applications are based on multiple
interacting tagged physical objects.

Smart Tool Box.Tools are equipped with RFID tags, and the tool box contains a mobile
RFID system (including a tag reader antenna integrated into the tool box) [9]. The tool
box issues a warning for safety reasons if a worker attempts to leave the building site (or
a sensitive maintenance area such as an airplane) while any tools are missing from his



or her box. The box also monitors how often and for how long tools have been in use.
Based on this information, tools can be replaced before they wear out. Additionally,
the tool owner can charge for tool rental based on actual tool usage. Figure 1 shows a
screenshot of this application.

Smart Supply Chain. Smart identification technology can significantly improve the
efficiency of supply chains and the internal logistics processes of companies [7]. In
such scenarios, the automatic identification and localization of goods at instance level
can help to prevent faulty deliveries and speed up the whole business process. In our
demo application, we simulate a small supply chain. It consists of two companies that
bottle mineral water, one retail store, two freight companies, and one mineral water
wholesaler. The retail store can send orders to the wholesaler, and the wholesaler can
send orders to its two bottlers. The contractor of an order is responsible for having a
freight company deliver the goods to the orderer. Every bottle of mineral water, the
box containing the bottles, and the container for the boxes are tagged. RFID readers
are installed at nine focal points along the supply chain to check whether the correct
quantity of goods and the correct product instances have passed a particular focal point.
If something goes wrong, a warning message is issued to the warehouse management
system, which can decide on further action. Besides the tracking of goods, the bottles
also monitor the temperature at every location and issue an alarm message if the current
temperature exceeds a predefined temperature range. In addition, locations and objects
can be queried for statistical information as a basis for future optimization of the whole
supply chain.

RFID Chef. In this application [10], grocery items are equipped with RFID tags (in-
stead of the bar codes that are commonly used today). When placed on a kitchen counter
with an integrated RFID reader, a nearby display suggests dishes that could be prepared
with the grocery items available, or shows missing ingredients. The suggested dishes
not only depend on the available ingredients, but also on the preferences of the cook,
who might for example prefer vegetarian or Asian dishes. To implement this function-
ality, the cook is identified by an RFID tag with the form factor of a credit card, carried
in his or her wallet.

Smart Playing Cards.Ordinary playing cards are equipped with RFID tags. An RFID
antenna mounted beneath a table monitors the players’ game moves. A nearby display
shows the score and the winner, and it raises a cheat alarm if any of the players do not
follow suit. It also gives hints to beginners by assessing the players’ moves and sending
the hints to the player’s PDA. This is implemented by having each card remember the
context in which it has been played and whether the trick in question was won or lost.
[14] contains a detailed description of the system.

3 Design Concepts

The above-mentioned applications were initially developed from scratch. From these
initial practical experiences, we identified common issues concerning the applications
and came up with some general design concepts. In the following, we introduce the
abstractions and design concepts we found. The subsequent section then shows how



some of these abstractions and design concepts were incorporated into our application
level frameworks.

Location. The notion of location is a central concept for most of the applications. In
general, location can be based on geographic information such as coordinates, or on
more abstract symbolic information, such as room numbers. A tagging system can pro-
vide both kinds of information. If the geographic position of the tag reader is known, the
location of the tagged objects can be estimated. This information is useful in the Smart
Supply Chain application, for example, where the distance between two distribution
centers is relevant for the transportation of goods. The symbolic location information is
normally determined by the tag reader and its detection range. In the Smart Tool Box
application, all the tools within the range of the tool box antenna are supposed to belong
in the same tool box.

Neighborhood.We use symbolic location information to explicitly support the concept
of neighborhood. As in the Smart Tool Box example, “cooperating” physical objects are
often collocated. Thus, the neighborhood concept is a relation between objects that are
close to each other, making them potential candidates for collaboration. Note that we
advocate a symbolic meaning of closeness that might differ from the Euclidian distance
– two objects in different corners of a room might be closer to each other in a symbolic
sense than two objects in two different rooms separated by a wall.

Location Management.The management of locations refers to two similar but differ-
ent issues. On the one hand, physical objects can contain other physical objects (e.g., a
box that contains bottles). On the other hand, symbolic locations are usually ordered in
a hierarchical way (e.g., a room is part of a building). Both concepts can be combined
(e.g., a bottle is in a box, the box is located in a particular warehouse).

Location management should also consider two other aspects. One refers to the
dynamic behavior of the containment relationship as in the Smart Tool Box example
where tools are frequently put into and taken out of the tool box. The other aspect refers
to the evolution of location hierarchies over time. The warehouse in the Smart Supply
Chain example may be reorganized so that the location hierarchy needs to be adapted.

Time. Some of the applications require a notion of time. The Smart Tool Box, for
example, has to determine the amount of real time that has elapsed between removing
a tool from the box and replacing it. The Smart Playing Cards application knows which
player played which card by means of the temporal order of the cards played. In general,
there is a need to time-stamp such events. In the case of multiple tag readers, the time
stamps of events originating from different readers should be comparable, even if some
of the readers have been offline during event generation.

Composition.Physical objects are often an aggregation of other physical objects (e.g.,
a truck that transports bottles consists of thousands of different parts which might all be
tagged). Many applications are only interested in manipulating a composite object in or-
der to perform a certain manipulation on all the objects contained within that composite
object (e.g., it is highly inefficient to communicate with all tagged parts of a truck if the
new location of the whole truck needs to be set). In order to support such situations, it is
necessary to explicitly model “part of” relationships between objects. This relationship



can also be used to inherit properties. For example, it is not necessary that each part of
a truck stores the same location information. If a part needs to know its location, it can
ask its parent node in the hierarchy.

Note that composition is different from the neighborhood concept since neighbor-
ing objects do not necessarily belong to the same composite object. This concept also
differs from the containment relationship. The containment relationship has to consider
dynamic aspects in terms of the insertion and removal of objects, whereas the compo-
sition concept is more static. Objects in such a relationship depend on each other and
cannot easily be inserted or removed without changing the nature or functionality of the
objects (e.g., we can take objects out of a cupboard without changing the properties of
the cupboard, but if we take the door off the cupboard, the cupboard becomes a shelf).

Linkage of the Physical and Virtual World. In order to enable a software application
to react to actions in the physical world, a link has to be established between tagged
physical objects in the real world and the application. Since RFID systems detect the
presence and absence of tags in a certain physical space, this link can be established
by notifying the applications of tags entering and leaving the space. A natural way
to model these notifications is by means of an event notification system. The system
has to support at least two basic events,enter(X) and leave(X) , which are sent
to the application when a tag with identity X enters and leaves the detection range of
the detection system respectively. Additionally, applications need a way of expressing
their interest in a subset of all possible tags, since a single RFID reader might be used
simultaneously by multiple applications. Note that the tag detection system and the
application may run on different systems and platforms, as for example in the Smart
Tool Box application, which consists of a mobile tag detection system in the tool box
cooperating with a fixed system located in the workshop, which runs the backend part
of the application.

Although from an abstract point of view the tag detection system detects entering
and leaving tags, matters are complicated by the actual low-level interface provided by
the tag detection system and certain application requirements. The Icode RFID system
[21], for example, periodically scans (typically at sub-second intervals) for present tags
by sending a short RF pulse and waiting for answers from the tags. When receiving the
pulse, a tag waits a random number of discrete time slots before answering in order to
avoid time-consuming collisions with other tags transmitting concurrently. The maxi-
mum number of time slotsN which a tag may wait before answering influences both the
time needed for a single scan and the expected number of collisions. A smallN results
in fast scans (down to 60ms according to [18]) but many collisions, whereas a largeN
results in slow scans (more than one second) but few collisions. The best value forN
depends on the actual number of tags present. Since this number is typically unknown,
non-trivial algorithms are needed to achieve good detection performance [18].

This kind of low-level interface has several implications. Firstly, applications are
typically only interested in changes in the detected set of tags, that is, they want to
receive enter and leave event notifications. So an appropriate software component has
to convert scan results to event notifications. However, this component’s task is non-
trivial, since the scan results are typically imperfect due to tag collisions, that is, not all
tags are detected in every scan. This can result in event flickering – the rapid generation



of alternating leave and enter events for a tag that is in fact present all the time. Filters
that cancel out spurious leave/enter events are required in the event of such imperfect
tag detection.

Secondly, many applications require that objects be detected as quickly as possible.
This is necessary if tags stay in the detection range for only a fairly short period of time.
Even if the tags stay long enough, long delays in tag detection can cause problems with
human-computer interaction. The Smart Playing Cards application exemplifies this, be-
cause the user expects an immediate reaction from the system when placing a card on
the table.

History. Some applications not only react immediately to tagged objects entering and
leaving the reading range, but subsequently also query objects on their history. Consider
the Smart Tool Box example, where tools can be queried regarding how long they were
used in which tool box on which building site. Therefore, a generic mechanism for
logging and querying the history of physical objects would seem appropriate.

Context. Typically the application’s action when a tag enters or leaves the reader’s
range depends not only on the identity of the tag, but also on the context such as the
earlier presence or absence of other tags. Consider for example the RFID Chef appli-
cation: the dishes that have to be displayed when a new grocery item is placed on the
kitchen counter not only depend on the grocery item itself, but also on the cook. In the
Smart Playing Cards application, the action taken when a playing card enters or leaves
the antenna’s range depends on the other playing cards currently lying on the table.

Often applications are only interested in events within a certain context. Consider
again the Smart Playing Cards example where, for a game like whist, the application
only wants to be informed when the last of four players has played his or her card in
the trick. Such a selection of events can be performed at several levels, for example in
the application. However, the scalability and performance of a system can be increased
by performing this selection as close as possible to the source of events. This, however,
requires a way of expressing the event contexts in which applications are interested.

State and Behavior.Applications typically assign state and behavior to physical ob-
jects. In the Smart Tool Box application, for example, the state of a physical object (i.e.,
a tool) consists of its usage pattern.

The applications also differ in the way they assign behavior to physical objects. In
the RFID Chef application, for example, all the grocery items have a “common” behav-
ior – displaying a suitable list of dishes. In the Smart Tool Box application, however,
physical objects have a more “individual” behavior – calculating tool usage, for exam-
ple. Moreover, a single physical object can contribute to the behavior of more than one
other physical object. In the Smart Playing Cards application, for example, a single card
contributes to the “usage context” of all the other playing cards on the table. A flexible
mechanism is therefore needed for assigning state and behavior to physical objects.

Virtual Counterparts. Due to resource limitations, neither the physical object nor the
tag is able to implement all of the above concepts. Therefore, a digital representation
is needed – the virtual counterpart of a tagged object – that can adopt this role. An
application does not directly interact with the objects themselves, but with their virtual



counterparts. In the Smart Toolbox example, the tool usage pattern is stored in the
virtual counterpart. The tag is only used as a link to its virtual counterpart.

Identification and Address. As pointed out above, we use the tag attached to the ob-
ject as a pointer to its virtual counterpart. This means that the tag must provide some
information on how an application can access the virtual counterpart. To identify the
corresponding counterpart, each counterpart requires a unique identifier. An application
also has to locate the virtual counterpart, which may reside somewhere on the Internet.
For this purpose, a structured addressing scheme and an underlying directory service is
necessary.

The identification or the address of a counterpart can be stored on the tag. The
minimum information that is needed is a unique tag ID, which can then be mapped to the
identifier or the address of the counterpart by an appropriate service in the infrastructure.

Life-Cycle Management.Life-cycle management deals with the instantiation, migra-
tion, and destruction of virtual counterparts. After a tag has been attached to a physical
object, a virtual counterpart has to be created. After a tagged object has been destroyed,
its virtual counterpart might also be destroyed to save resources. However, destruction
is optional, since the virtual counterpart may exist “forever”. For performance reasons,
a virtual counterpart might also migrate to a place where communication with its tagged
object is more efficient.

Communication Infrastructure. All the applications we have developed so far make
use of a communication infrastructure to access background services, such as the virtual
counterpart of an object or an object history storage service. In environments or in
scenarios where a wired Internet infrastructure is not present, we assume a wireless
connection, such as IP over Bluetooth, WLAN, or UMTS. However, there may not
always be global connectivity, as in the case of the Smart Tool Box application. The
tool box contains a mobile RFID system and an associated computing system, which
together are able to operate offline. The tool box is only connected to the background
communication infrastructure when it is returned to the workshop. Such disconnected
operations should also be supported by a general application framework for RFID-based
applications.

4 Framework Prototype Implementations

In order to evaluate the concepts described in Section 3, we implemented two prototype
systems that build on these concepts. One is based on Jini (i.e., distributed Java objects),
while the other uses Web Services as the underlying platform. By using these prototype
systems to (re-)implement tag-based ubicomp applications, we wanted to gain expe-
rience that would be useful for a more elaborate future implementation of a general
platform for smart identification-based applications.

4.1 Jini Approach

For our first framework, we implemented the concepts outlined in Section 3 in a Jini-
based [20] infrastructure for virtual counterparts (VCs). Figure 2 shows an overview of



VL

VC

ED

ED

leave

VCM

context AM

VCR LUS

lookup

queryenter, enter,
leave,

store,

register,

VCES
RFID system

RFID system

map

code
download

Fig. 2. Infrastructure Overview of the Jini Approach.

the system architecture. RFID systems are connected to event drivers (EDs) that gen-
erate enter and leave events from periodical tag scans. The EDs act as producers for
the virtual counterpart event service (VCES). The VCES delivers events to the virtual
counterpart manager (VCM), and to specific counterparts. The VCM acts as an execu-
tion environment for counterparts. Upon the first sighting of a tagged object or location,
it consults the virtual counterpart repository (VCR) to obtain counterpart executables
for the tag or the specific location. Counterparts register with the look-up service (LUS)
so that cooperating counterparts can find each other. The artifact memory (AM) acts
as a place for persistently storing and retrieving counterpart state and event histories.
Small amounts of state can also be stored in the tag memory by sending appropriate
store events to the VCES.

Event Driver. The event driver maps the output of the RFID reader to enter and leave
events. As mentioned in Section 3, typical RFID readers perform scans and return a pos-
sibly incomplete list of currently present tags. By calculating the difference between
successive detection rounds, a list of entering tags and a list of leaving tags is deter-
mined. By removing from these lists tags that leave and reenter in rapid succession, we
can avoid the event flickering mentioned above. From the resulting tag lists, enter and
leave event notifications are generated. Both enter and leave events contain a tag ID, a
location ID, and a time stamp.

Our current event driver implementation uses a so-called RFID framework [4],
which provides an abstract tag reader interface and already implements the mecha-
nisms outlined above. Additionally, this framework supports a wide variety of RFID
hardware.

Virtual Counterpart Event Service. Event producers and consumers advertise and
subscribe to the VCES by specifying the types of events they want to generate or re-
ceive. Based on this information, the VCES forwards events to interested subscribers
only. The VCES can tell producers not to produce events if nobody is interested in them.

Subscriptions can optionally contain a rule for specifying context events. Such a
rule consists of event declarations and an executable. The program consists of a list
of condition–action specifications. Each condition specifies an event pattern using a
composite event language similar to the Cambridge Composite Event Language [11].
The action part emits one or more events based on the parameters of the matched event
pattern.



virtual counterparts

physical objects

(1) (2) (3) (4)

Fig. 3.Virtual Counterparts: (1) VC, (2) VMC, (3) VL, (4) VML.

Virtual Counterparts. Counterparts are digital representations of real-world objects.
We differentiate between two classes of counterparts: counterparts that represent physi-
cal objects (so-called Virtual Counterparts or VCs) and counterparts that represent phys-
ical locations (so-called Virtual Locations or VLs). Mainly for performance reasons we
have introduced so-called Meta Counterparts, which represent a whole set of physical
objects (so-called Virtual Meta Counterparts or VMCs) or physical locations (so-called
Virtual Meta Locations or VMLs). Since a meta counterpart manages a whole set of
physical entities, the resource overhead per physical entity is much lower when using
a meta counterpart than when using lots of ordinary counterparts. These concepts are
also illustrated in Figure 3.

A VC is implemented as a Jini service with its own execution thread. A VC can
communicate with other virtual counterparts by sending events or by invoking remote
methods using Java RMI. The only difference between a VC and a VMC is that there
is a one-to-one mapping between tag IDs and VCs, whereas there is a many-to-one
mapping of tag IDs to VMCs. A VL is the digital representation of a location that is
monitored by an RFID reader. The implementation is the same as for the VC except
for the fact that the VL also maintains a list of VCs currently present at that location.
Additionally, a VL forwards all received events to the VCs in that list. Similar to VMCs,
VMLs represent a set of locations (or RFID readers), such as a set of shelves in a retail
store.

Virtual Counterpart Manager. A VCM acts as an execution environment for the var-
ious types of virtual counterparts. It is also responsible for counterpart instantiation,
migration, and destruction. For this purpose, the VCM monitors tagged objects by sub-
scribing to enter and leave events.

If the VCM receives an enter event, it first consults the look-up service for match-
ing counterpart instances. If no counterpart exists, the VCM consults the counterpart
repository, which maps tag and location IDs to URLs. The URLs point to Java archive
(JAR) files which contain code, resources, and arbitrary additional data for the respec-



tive virtual counterparts. The VCM downloads this code, executes it in a separate thread,
and registers the counterpart with the look-up service. If on the other hand the look-up
service already contains matching counterpart instances executing in a different VCM
instance, the VCM asks the counterpart to migrate to the new location. However, the
counterpart may choose to disregard this request. If the VCM receives a leave event, it
asks the respective counterpart to clean up and exit. As with migration, the counterpart
may choose to disregard this request.

Once a counterpart is up and running, it can subscribe to events, program the VCES
for context events, use the LUS to look-up cooperating counterparts, and store and
retrieve state information using the artifact memory. Counterparts are Java objects that
provide an event API and a set of interface methods to the VCM. Counterparts cooperate
by using events or Java RMI.

Note that it is possible to implement abstract virtual counterparts that have no phys-
ical equivalent by selecting an unused tag ID and manually sending enter/leave events
with this ID to the VCM.

Virtual Counterpart Repository. The VCR consists of two components – a mapping
facility that maps tag and location IDs to URLs, and an HTTP server for download-
ing the counterpart executables. By mapping multiple IDs to the same URL, we can
implement meta-counterparts (or meta-locations) that correspond to multiple physical
objects (or locations). Managing a whole set of similar objects (such as playing cards)
by a single meta-counterpart is more efficient than having a distributed implementation
with many communicating counterparts.

Look-up Service.The LUS is somewhat similar to the VCR in that it maps location
and tag IDs to virtual counterparts. However, in contrast to the VCR it returns point-
ers to executing counterpart objects, whereas the VCR returns pointers to static Java
code which is used to instantiate the virtual counterparts. Again, meta-counterparts (lo-
cations) are implemented by mapping multiple IDs to the same counterpart (location).
Normally, the LUS and the other Jini infrastructure components are totally transparent
to the application developers since these components are only used internally by our
framework to manage the registration of new VCs. However, it is possible for the appli-
cation developers to contact the LUS and query it for VCs, infrastructure components
such as the VCM, or 3rd party services.

Artifact Memory. The AM stores state information in the form of attribute/value pairs
and event histories. It is implemented as an abstract virtual counterpart. Other virtual
counterparts can send predefined events (store state, retrieve state, store event, query
events) to the AM. The query event can be used to issue queries to the AM regarding
multiple events, such as “which objects were at location X at time T”. The AM inter-
nally uses JDBC to open a connection to an SQL relational database. The AM creates
one table for persistent state and one table for each event type in the database. The per-
sistent state table has two columns; an attribute column and a value column. The table
for a particular event type has one column for each parameter of this event type. The
entry event table, for example, has three columns for its three attributes (tagID, loca-
tionID, timestamp). The AM query language is plain SQL, which is passed through to



Virtual Counterpart

Web Services

3) set new location

Location Manager
Hierarchy

Web Services

Tagged Object
RFID Tags1) detects &

reads URI

UDDI Hierarchy
UDDI Servers

Tag Detection System
RFID System

A) registers once 4) registers repeated

2) resolves URI

(hierarchy optional)

Fig. 4. Infrastructure Overview of the Web Service Approach.

the database unmodified. However, to simplify frequently used requests, some powerful
new query commands have been added:

– find(TAG, TIME): location of TAG at TIME
– with(TAG, TIME): returns the set of tags at the same location as TAG at TIME
– look(LOC, TIME): set of tags at location LOC at TIME
– history(TAG): list of recent locations visited by TAG

More information on the concepts and implementation of the Jini approach can be found
in [2].

4.2 Web Services Approach

Another approach to implementing the concepts described in Section 3 is the use of
Web Services. Web Services seem to be appropriate for several reasons. Firstly, the
client/server paradigm is useful for modeling virtual counterparts – on the one hand,
the virtual counterpart can provide its functionality as a service, and on the other hand
tag-based applications can act as clients. Secondly, Web Services also provide a service
description and discovery framework, which can be used to describe and locate virtual
counterparts. Thirdly, Web Services build on open standards such as the Simple Object
Access Protocol (SOAP), making them universally applicable. Fourthly, the framework
can then easily communicate with third-party Web Services on the Internet.

Figure 4 shows the main components of the infrastructure. The tag detection system
scans for tagged objects within its reading range. If a tagged object is detected, the
system reads a URI from the memory of the tag. The URI consists of the identifier and
the DNS-like address of the virtual counterpart. This URI is used by the tag detection
system to contact a hierarchy of Universal Service Discovery and Description Interface



(UDDI) servers. These UDDI servers use the DNS-like address to retrieve the Web
server on which the virtual counterpart is running as a regular Web Service. In the next
step, the tag detection system sets the new location of the tagged object (i.e., the location
determined by the tag reader) in its virtual counterpart. The virtual counterpart uses this
location information to register itself with a hierarchy of location managers. Since all
virtual counterparts have to register themselves with this hierarchy, a virtual counterpart
can ask the hierarchy who its neighbors are.

In the following, each system component mentioned above will be explained in
more detail, with a focus on those issues that are different from our Jini-based applica-
tion framework described in Section 4.1.

Tagged Object.The framework is designed to support various tagging technologies.
Up to now, however, we have only implemented support for passive RFID technology.
A tag only needs to store a Universal Resource Identifier (URI), which is used as a
pointer to the virtual counterpart. As in our other approach, we have made use of the
RFID framework [4]. Only a simple bridge had to be developed to couple the RFID
framework with our system.

Tag Detection System.The tag detection system is the actual component that bridges
the gap between the physical world and the digital world. On the one hand, the system
communicates with the tag, which resides on a real-world object. On the other hand,
it also contacts the virtual counterpart of the tagged object to report the new location
of the tagged object. A tag detection system is initialized with its physical or symbolic
location and uses this information as the new location for all the tagged objects within its
range. More sophisticated tag detection systems may calculate the position of a tagged
object within the detection range more precisely (e.g., by measuring signal strength).

After a tagged object has entered the reading range of an antenna, the tag detection
system reads the tag’s memory, which contains the URI of the virtual counterpart. In
order to set the new location of the tagged object in its virtual counterpart, the tag
detection system first has to contact the UDDI hierarchy to resolve the URI. The UDDI
hierarchy returns the Web server on which the virtual counterpart resides. Using this
information, the tag detection system can set the new location in the virtual counterpart.

UDDI Hierarchy. Within the Web Services framework, the UDDI defines how infor-
mation about services can be stored and retrieved. A UDDI server acts as a database
for service information, and implements the UDDI. The most important information
that a UDDI server stores is the service description and the location of the service. Web
Service Description Language (WSDL) is used to describe the service interface, so that
clients can access the service. A Web Service that is up and running has to register itself
on a UDDI server with its Web server address, so that clients can locate the service.

Originally, the UDDI servers were intended to establish a service cloud. This means
that all UDDI servers belonging to a service cloud have to store information about all
services worldwide, that is, a change on one UDDI server is propagated to all others
within the cloud. However, we believe this will lead to scalability issues if a large num-
ber of objects are tagged. We have therefore extended the UDDI service cloud structure
with a DNS-like partitioning that distributes all service information across the UDDI



servers without redundancies (with the exception of some backup servers for reliability
reasons).

The UDDI server generates a universal and unique identifier (UUID) if a service
is registered for the first time. We also use this UUID as the unique name for a vir-
tual counterpart. This UUID is a random number and has no structure. A structured
identifier is necessary if we want to structure UDDI servers in a DNS-like style. We
have therefore introduced addresses for the UDDI servers, also in a DNS-like style.
The URI of a virtual counterpart consists of this DNS-like address and the UUID
(e.g., uri:pharma.foopharma:40a96d21-ee00-0000-0080-e698e3243f5a). In this exam-
ple “pharma.foopharma” denotes the UDDI server on which the virtual counterpart is
registered. The DNS-like structure is used to find the UDDI server within the UDDI
hierarchy. “40a96d21-ee00-0000-0080-e698e3243f5a” denotes the virtual counterpart.
It is unique for each tagged object and independent of the UDDI server, allowing the
virtual counterpart to migrate within the UDDI hierarchy. Each tag detection system
possesses a UDDI client. This client uses the DNS-like address to find the appropriate
UDDI server to retrieve the Web server on which the service (i.e., the virtual counter-
part) is running.

Virtual Counterpart. As mentioned above, every virtual counterpart is implemented
as a Web Service that runs on a Web server somewhere on the Internet. The interface
of such a virtual counterpart is different for different types of tagged objects. A mini-
mal set of functions is common to all virtual counterparts and therefore supported by
all counterpart implementations. Besides some auxiliary methods, a virtual counterpart
provides methods to set and get the current location and retrieve the location history, as
well as some methods for adding and removing parent and child nodes depending on
its position in a composition tree (if this object is part of a composite object). All other
methods that are specific to a tagged object have to extend this minimal interface.

Location Manager. While the UDDI hierarchy tracks the whereabouts of virtual coun-
terparts, the location manager hierarchy tracks the whereabouts of the tagged objects.
Since every virtual counterpart has to register itself with the appropriate location man-
ager for its tagged object, the location manager is able to determine the neighbors of
a tagged object. Hence a virtual counterpart can ask the location manager for all other
virtual counterparts of tagged objects that are close to its own tagged object.

Location information is modeled as coordinates. Besides the geographic informa-
tion, the location information also contains hierarchically classified symbolic names.
The location managers are arranged in a tree structure. The root location manager is
responsible for the whole world. Child nodes constitute a partition of their parent node.
When a virtual counterpart has to register itself with the root location manager, the root
location manager delegates this registration to the node that covers the smallest space
in which the tagged object is contained.

Besides implementing the neighborhood concept, the location manager also imple-
ments the containment concept. When an object may contain other objects (such as a
warehouse that contains boxes of bottles), the location manager in charge of the ware-
house space maintains a link to the virtual counterpart of the containing object.



5 Experiences with the Frameworks

In this section we present our experiences with the two frameworks based on Jini and
Web Services. Firstly, we describe the implementation of a complex application with
both frameworks. Secondly, we present a performance analysis of various aspects of the
two framework implementations. We conclude this section by discussing some of the
design decisions.

5.1 Sample Application

We used the prototype frameworks described in Section 4 to implement a number of
applications. Here, we want to describe our experiences with the implementation of the
Smart Supply Chain mentioned earlier in the paper. We will first describe the implemen-
tation of this application using the Jini-based framework. This will then be followed by
a discussion of the differences between that and an implementation using the framework
based on Web Services.

Jini Approach. You will remember from Section 2 that our supply chain consists of
bottlers, retail stores, wholesalers, and freight companies. Each supply chain element
is equipped with one or more tag reading systems in order to monitor in- and outgoing
tagged goods (i.e., bottles and boxes). Each such tag reading system is represented by a
virtual location (VL). Additionally, there is a software component called the warehouse
management system associated with each supply chain element. This component is
closely linked to the VLs of the corresponding supply chain element, implements most
of the application logic, and provides a graphical user interface to monitor and control
various aspects of the supply chain.

Both the bottles and the boxes are individually tagged, such that their presence can
be detected by one of the tag reading systems of the supply chain elements. Each bottle
and each box is represented by a separate virtual counterpart (VC). Bottle VCs register
for temperature events in order to check that storage temperatures are complied with.
If bottles or boxes move along the supply chain, their VCs migrate to the VLs of the
corresponding supply chain element.

The warehouse management system provides the following functionality (see also
Figure 5):

– It displays the VLs associated with the managed supply chain element. For each
VL, a list of associated VCs of bottles and boxes is displayed. Additional detailed
information can be displayed for each VC and the physical object associated with
it.

– Both VLs and VCs can send status events (e.g., non-compliant temperature de-
tected, incorrect delivery), which the management system subscribes to and dis-
plays.

– Orders can be sent to upstream elements in the supply chain.
– Both VLs and VCs can be queried on their transit times through the supply chain

for statistical reporting purposes.



Fig. 5.User Interface of the Warehouse Management System.

The last item in the above list is implemented using the artifact memory (AM). Each VL
and VC stores entry events, exit events, and temperature events in the AM, and these
can subsequently be retrieved for statistical analysis. Additionally, the AM is used to
store the state information of the VCs in order to support their migration.

Overall, the framework provided useful abstractions for implementing this appli-
cation in a structured way. Once the developer is familiar with these abstractions, the
development effort is well below that for an implementation from scratch. However, we
also encountered a number of problems during the development process, which we will
now describe.

The implementation of a VC as a Jini service with its own execution thread provides
a good decoupling of individual VCs, but suffers from a rather large resource require-
ment. Hence, overall resource consumption may be a problem where there are large
quantities of goods (i.e., bottles and boxes). We tried to reduce resource consumption
by implementing a box as a meta counterpart (VMC) that managed the bottles contained
in the box. However, this turned out to be impossible due to the static mapping of tags
to VMCs in the framework, which precluded moving a bottle from one box to another.



This static mapping of tag IDs to counterparts also complicates the introduction of new
goods, since this requires a new entry to be manually added to the mapping list.

The missing option of grouping VCs and VLs in a hierarchical way according to
their location complicated the implementation of queries across sets of VCs (e.g., a
query to obtain the number of goods on all shelves of a wholesaler). Such queries in-
volved looking up all the affected counterparts and issuing the query individually to
each counterpart. A mechanism to issue a query to a whole set of VCs as a single oper-
ation would be handy.

One further problem was caused by the implementation of the event notification
system, which resulted in a significant programming overhead. Since the event argu-
ments are implemented as Java Objects, the programmer has to provide marshalling
code for them. Also, the receiver of an event has to check event arguments for type con-
formity as well as having to cast Java Objects to the expected argument types. Remote
method invocation systems such as Java RMI do a much better job of supporting the
programmer in this respect.

One potential problem relates to the lookup service, which we used as a repository
for all VCs. The use of a single service instance might become a bottleneck if a large
number of counterparts were used.

Web Services Approach.Most of the problems encountered with the Jini-based frame-
work can be resolved when using the framework based on Web Services. As with the
first approach, bottles and boxes are implemented as virtual counterparts. However, the
box is a composite counterpart that contains the counterparts of six bottles. Hence, all
the bottles located in a box can be manipulated by manipulating their box. Also, the lo-
cation hierarchy supports queries relating to all counterparts at a specified location (e.g.,
a query to obtain the quantity of goods on all the shelves of a wholesaler). Last but not
least, the UDDI hierarchy supports a more flexible mapping of tag IDs to counterparts
and removes the limitations of a single repository as used in the Jini framework.

What remains unsolved also with this second implementation are the performance
and resource consumption issues. Each counterpart is implemented as a Web Service,
which implies a significant resource overhead. Additionally, method invocation perfor-
mance is rather poor, since this involves constructing and parsing complex SOAP mes-
sages. The following section contains a more detailed analysis of these performance
overheads.

5.2 Performance

We conducted performance measurements for two concrete platforms: Sun’s Jini imple-
mentation and Microsoft’s .NET Web Services. The tests were performed on 451 MHz
Intel Pentium III PCs with 256 MB of RAM running Windows XP, connected by a 100
Mbps Ethernet network. For the tests, we used a simple application that implements
counterparts as described in Section 4 using Jini and .NET respectively. We examined
the memory footprint of the two runtime environments and the memory footprint of
each virtual counterpart in the test application. Additionally, we measured the amount
of time required to perform a counterpart lookup followed by the invocation of a simple
method on the counterpart. We performed 20 runs and calculated averages.



The tests show that Jini currently performs much better than .NET Web Services.
The memory footprint of the Jini runtime environment is 9564 kB, whereas the .NET
runtime consumes 17332 kB. Each additional virtual counterpart consumes at least 1.84
kB with Jini, and at least 1640.97 kB with the .NET implementation. Jini also performs
better with respect to the execution time of method invocations. One service lookup and
the invocation of a simple method take on average 198.8 ms with a deviation of 7.2 ms
for Jini. The .NET Web Services needs 814.8 ms on average with a deviation of 121.8
ms. Note that this refers to a best case scenario, where the first UDDI server contains
the registered service and only a single simple method is called.

5.3 Discussion

The two frameworks differ with respect to some architectural concepts. One difference
is the usage of the tag ID. In the first framework, the tag ID is used by several back-
ground entities, whereas in the second framework, the tag is only used to establish the
link between the physical world and the virtual world. The latter allows infrastructure
services to be decoupled by hiding low-level details. The frameworks also differ in how
they manage the addressing hierarchy, the structuring hierarchy of tagged objects, and
the location hierarchy. The second framework makes these hierarchies and their under-
lying models explicit, whereas the first framework does not explicitly consider them,
making it more difficult to use the concepts in an application. Another difference is
the support of migration and history – the first framework provides dedicated entities
that incorporate these concepts, whereas the second framework does not possess such
entities. Also, the first framework introduces meta-counterparts and meta-locations, but
these do not figure in the second framework. These concepts were intended to reduce
resource consumption and improve performance. However, during our experiments it
turned out that they are currently too inflexible to be of practical use in many applica-
tions. The challenge now consists of fixing these problems and combining the proven
concepts of both prototypes into an encompassing framework. The experiments also
revealed that current Web Service implementations are rather inefficient – at least for
the type of applications we have in mind.

6 Related Work

Several other trials exist that aim to provide support for applications based on smart
objects. The work of the MIT Auto-ID Center [15] comes closest to our intention of
providing a framework for smart objects. The goal of the Auto-ID center and its spon-
soring companies is to replace the traditional bar code with passive RFID tags. For this,
the whole spectrum of components for such a solution, ranging from low-level pro-
tocols for the communication between tag and reader to an XML-based language for
exchanging information about products, is investigated. The middleware that controls
the readers and processes the tag IDs is called Savant [12]. The Savants form a tree,
with the edge Savants directly controlling the RFID readers and storing the tags IDs,
and the internal savants aggregating the data received from their child nodes. Savants
also provide a means of notifying external programs of tag information, and they run



tasks that have to be registered with a Savant. One aspect that is lacking in this approach
is the virtual counterpart that actively reacts to changes in the real-world – Savants only
manage passive database entries.

Cooltown [8] and the associated CoolBase infrastructure aim to give people, places,
and things a Web presence. This Web presence has a similar function to that of our
virtual counterparts. The use of well-known Web technology is both an advantage and
a disadvantage. On the one hand, this technology is proven and widely available, but on
the other hand we think there is an important difference between Web applications and
ubicomp applications. Due to its origin, the Web is document-centric. Although it has
been augmented with ways of including dynamic distributed applications (e.g., SOAP),
it still retains its inherent hypertext nature. On the other hand, ubicomp applications are
more akin to dynamic distributed applications. The emerging XML-based Web infras-
tructure (i.e., Web Services) might support the needs of tag-based ubicomp applications
in the future. However, our experience indicates that the performance of current Web
Services implementations is not adequate to support such large-scale applications.

The Stanford Interactive Workspaces project [6] aims to provide a support infras-
tructure for interactive rooms equipped with large displays and other wireless devices
for interaction. The main focus of the project, however, is to support user interaction
and group work in augmented rooms. The i-Land and Roomware [16] projects have a
similar focus. Although these infrastructures provide good and useful concepts for mod-
eling and implementing ubiquitous computing applications, they focus mainly on HCI
issues and how to support users with many portable and stationary electronic devices.
In our systems, we focus on everyday items that do not have any additional electronics
except an almost invisible tag. With such enhanced everyday items we want to enable
new ubiquitous computing applications – where the items do not necessarily have to
interact with users.

Projects such as Gaia [13], One.World [5], Microsoft Easy Living [1], and CORTEX
[17] aim to develop an infrastructure to support augmented environments in a fairly
broad sense. They provide basic abstractions and mechanisms for coping with the dy-
namics and device heterogeneity of pervasive computing environments. On top of these
mechanisms they provide application models that are still rather generic. There is quite
a large gap between the abstractions provided by these projects and frameworks such
as our own, which support a rather specific application model (that of multi-object, tag-
based applications in our case). Although those infrastructures try to achieve different
goals, some of their underlying concepts and components are similar. Gaia, for example,
provides a concept calleddigital entitywhich is similar to our virtual counterpart. Like
many other systems, Gaia also uses events as a basic communication abstraction. How-
ever, Gaia is intended to support the rather broad application domain of so-called active
spaces. In contrast, our frameworks are specifically tailored for tag-based applications.
That is, our frameworks support a rather narrow application domain, but provide a num-
ber of specialized mechanisms to substantially support the development of applications
based on smart identification technology.



7 Conclusion and Outlook

Based on our experiences with several prototype applications, we came up with a set
of basic functions and services, and an application model for smart identification-based
ubicomp applications. We built two prototype frameworks based on different underlying
platforms to support the development of such applications. Initial experience shows
that application development and maintenance can be significantly simplified by using
such application-level frameworks, which are tailored to the specific needs of tag-based
applications. In the future we not only intend to support other tagging systems, but also
sensing devices giving rise to another class of interesting applications.

Our two prototypical frameworks have covered various aspects, but only to a certain
depth. In the future we want to investigate some concepts in more detail in order to come
up with a single framework that is based on well-suited concepts and also possesses the
necessary level of performance.

8 Acknowledgments

We would like to acknowledge Daniel Schädler for his work on the Web Services frame-
work, Tobias Schẅagli for his work on the performance test, Marc Langheinrich and
Harald Vogt for their work on the RFID Chef, Matthias Lampe for his work on the Smart
Tool Box, and Philip Graf, Martin Hinz, Svetlana Domnitcheva, and Vlad Coroama for
their help with the Smart Playing Cards.

References

1. B. Brummit, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easy Living: Technologies for
Intelligent Environments. InHUC 2000, Bristol, UK, September 2000.

2. T. Dübendorfer. An Extensible Infrastructure and a Representation Scheme for Distributed
Smart Proxies of Real World Objects. Master’s thesis, ETH Zurich, 2001. Also available as
technical report TR-359.

3. E. Fleisch and M. Dierkes. Betriebswirtschaftliche Anwendungen des Ubiquitous Comput-
ing – Beispiele, Auswirkungen und Visionen. In F. Mattern, editor,Total Vernetzt. Springer,
Heidelberg, Germany, 2003.

4. C. Floerkemeier, M. Lampe, and T. Schoch. The Smart Box Concept for Ubiquitous Com-
puting Environments. InSmart Objects Conference (sOc) 2003, Grenoble, France, May
2003.

5. R. Grimm.System Support for Pervasive Applications. PhD thesis, University of Washing-
ton, Department of Computer Science and Engineering, December 2002.

6. B. Johanson, A. Fox, and T. Winograd. The Interactive Workspaces Project: Experiences
with Ubiquitous Computing Rooms.IEEE Pervasive Computing, 1(2):71–78, April 2002.

7. A. Kambil and D. Brooks. Auto-ID across the value chain: from dramatic potential to greater
efficiency & profit. Technical Report ACN-AUTOID-BC-001, MIT Auto-ID Center Cam-
bridge, 2002.

8. T. Kindberg et al. People, Places, Things: Web Presence for the Real World. InWMCSA
2000, Monterey, USA, December 2000.

9. M. Lampe and M. Strassner. The Potential of RFID for Moveable Asset Management. In
Workshop on Ubiquitous Commerce, Ubicomp 03, Seattle, USA, October 2003.



10. M. Langheinrich, F. Mattern, K. R̈omer, and H. Vogt. First Steps Towards an Event–Based
Infrastructure for Smart Things. InUbiquitous Computing Workshop, PACT 2000, Philadel-
phia, USA, October 2000.

11. G. J. Nelson.Context-Aware and Location Systems. PhD thesis, University of Cambridge,
1998.

12. Oat Systems and MIT Auto-ID Center. The Savant. Technical Report MIT-AUTOID-TM-
003, MIT Auto-ID Center, May 2002.

13. M. Roman, C. Hess, and R. Campbell. Gaia: An OO Middleware Infrastructure for Ubiqui-
tous Computing Environments. InECOOP Workshop on Object-Orientation and Operating
Systems (ECOOP-OOOSWS) 2002, Malaga, Spain, June 2002.

14. K. Römer and S. Domnitcheva. Smart Playing Cards – A Ubiquitous Computing Game.
Journal for Personal and Ubiquitous Computing, 6(6), November 2002.

15. S. Sarma, D. Brock, and K. Ashton. The Networked Physical World – Proposals for Engi-
neering the Next Generation of Computing, Commerce & Automatic Identification. Techni-
cal Report MIT-AUTOID-WH-001, MIT Auto-ID Center, October 2000.

16. P. Tandler. Software Infrastructure for Ubiquitous Computing Environments: Supporting
Synchronous Collaboration with Heterogeneous Devices. InUbicomp 2001, Atlanta, USA,
September 2001.

17. P. Verissimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, and J. Kaiser. CORTEX: To-
wards Supporting Autonomous and Cooperating Sentient Entities. InEuropean Wireless
2002, Florence, Italy, February 2002.

18. H. Vogt. Efficient Object Identification with Passive RFID Tags. InPervasive 2002, pages
98–113, Zurich, Switzerland, August 2002.

19. R. Want, K. Fishkin, A. Gujar, and B. Harrison. Bridging Physical and Virtual Worlds with
Electronic Tags. InACM Conference on Human Factors in Computing Systems (CHI 99),
Pittsburgh, USA, May 1999.

20. Jini Architecture Specification. www.sun.com/jini/specs/.
21. The Philips I–Code System. www-us2.semiconductors.philips.com/identification/-

products/icode.


