The Value of Handhelds in Smart Environments*

Frank Siegemund, Christian Floerkemeier, and Harald Vogt

Institute for Pervasive Computing
Department of Computer Science
ETH Zurich, Switzerland
{siegemund|floerkem|vogt } Qinf.ethz.ch

Abstract. The severe resource restrictions of computer-augmented ev-
eryday artifacts imply substantial problems for the design of applica-
tions in smart environments. Some of these problems can be overcome
by exploiting the resources, I/O interfaces, and computing capabilities
of nearby mobile devices in an ad hoc fashion. We identify the means
by which smart objects can make use of handheld devices such as PDAs
and mobile phones, and derive the following major roles of handhelds
in smart environments: (1) mobile infrastructure access point, (2) user
interface, (3) remote sensor, (4) mobile storage medium, (5) remote re-
source provider, and (6) weak user identifier. We present concrete appli-
cations that illustrate these roles, and describe how handhelds can serve
as mobile mediators between computer-augmented everyday artifacts,
their users, and background infrastructure services. The presented appli-
cations include a remote interaction scenario, a smart medicine cabinet,
and an inventory monitoring application.

1 Introduction

As pointed out by Weiser and Brown [12], ” Ubiquitous Computing is funda-
mentally characterized by the connection of everyday things in the real world
with computation”. Computer-augmented everyday artifacts — also called smart
everyday objects — epitomize this vision of Ubiquitous Computing in that they
are everyday objects augmented with small sensor-based computing platforms
(cf. Fig. 1). Smart objects are aware of their environment, can perceive their
surroundings through sensors, collaborate with peers using short-range wire-
less communication technologies, and provide context-aware services to users in
smart environments.

But the computational capabilities of smart objects are very limited because
their computing platform needs to be small and unobtrusive. Furthermore, they
do not possess conventional I/O interfaces such as keyboards or displays, which
restricts the interaction with users. And finally, because of their limited energy
resources, smart objects support only short-range communication technologies,

* Parts of this work were supported by the Smart-Its project, which is funded by the
European Commission (contract No. IST-2000-25428) and the Swiss Federal Office
for Education and Science (BBW No. 00.0281).

which makes it difficult to access background infrastructure services when no
access point is near by. Combined, all these limitations cause severe problems
for the design of applications in environments of smart objects.

Sensors

Everyday
object

Active tag with

= power supply,

= communication
modules, and

= microcontroller

Fig. 1. A smart everyday object: an egg carton augmented with a sensor-based com-
puting platform

We argue that most of these problems can be overcome when smart objects
can spontaneously access the capabilities of nearby handheld devices. In smart
environments, people move around who carry their personal devices with them.
By exploiting the features of nearby handhelds in an ad hoc fashion, new pos-
sibilities for the design of applications on smart objects evolve. We identify and
illustrate six different means by which computer-augmented everyday artifacts
can make use of handhelds: (1) as mobile infrastructure access point, (2) as user
interface, (3) as remote sensor, (4) as mobile storage medium, (5) as remote
resource provider, and (6) as weak user identifier.

Given these roles, handhelds can enrich the interactions among smart ob-
jects, users, and background infrastructure services (cf. Fig. 2). As mobile access
points, handhelds facilitate the ad hoc interaction between smart objects and a
background infrastructure. A handheld’s input and display capabilities enable
new forms of user interactions with smart objects. And finally, the cooperation
among smart objects themselves can be improved by utilizing handheld devices
as remote resource providers.

As mediators between smart objects, users, and background infrastructure
services, handhelds enable new forms of applications in smart environments. To
support this thesis, we present three applications that make extensive use of
handheld devices. We start with a remote interaction application. Here, interac-
tion patterns that people associate with a specific type of handheld device (e.g.,
making phone calls) are translated to smart environments. In particular, we as-
sign phone numbers to smart objects and describe how users can ”call” and inter-
act with objects from remote locations. The remote interaction application uses
handhelds as mobile storage medium, user interface, and weak user identifier.
We then present the Smart Medicine Cabinet. It improves medical compliance

Smart object

Smartobject | [Smartobject

Smart object

Fig. 2. Handhelds as mediators in smart environments: handheld devices enrich the
interaction between different smart objects, between smart objects and their users,
and between smart objects and background infrastructure services

and facilitates a more effective treatment of mobile patients by using handheld
devices together with ”smart medicine”. In this application, handhelds serve as
mobile infrastructure access points, and again as user interface and mobile stor-
age medium. Finally, we present an inventory monitoring application. Its goal
is to illustrate how smart objects can spontaneously outsource computations to
nearby handheld devices. It illustrates a handheld’s ability to serve as mobile
resource provider and also as user interface for smart objects.

In the following section we review related work. In section 3 we identify the
roles of handhelds in smart environments. Section 4 discusses how these roles
can actually be implemented. Sections 5 through 7 present three applications
that illustrate these roles. Section 8 concludes the paper by summarizing the
lessons learned from our applications.

2 Related Work

Gellersen et al. [6] proposes to integrate low-cost sensors into everyday objects
and mobile user devices to facilitate the development of context-aware appli-
cations. In their MediaCup project [2], active sensor tags are embedded into
everyday objects to derive and provide services based on the situational context
of users. For example, the context "meeting” can be inferred from the presence
of many hot cups in a meeting room. However, their work assumes stationary
access points that facilitate the cooperation between active artifacts and exist-
ing infrastructure services, while we explicitly focus on utilizing nearby handheld
devices in an ad-hoc fashion.

Hartwig [7] integrates Web servers into active Bluetooth-enabled tags, at-
taches them to physical objects, and controls augmented items with nearby
Bluetooth-enabled mobile phones by means of a WAP (Wireless Application
Protocol) interface. WAP is used for local interactions with augmented items,

whereas we use WAP (among other technologies) for remote interactions with
smart objects.

Want et al. [11] augments physical objects with passive RFID tags to asso-
ciate objects with a representation in the virtual world. In the Cooltown project
[8], everyday items are also equipped with tags in order to link them with a
representation in the World Wide Web. In both approaches, the functionality of
a tag consists primarily in providing a link to information in the virtual world.
As tags are usually read out by a mobile user device, the actual application is
implemented on the handheld or the backend infrastructure, but not on the tag.
In our approach, the active tags and sensors attached to physical objects pro-
cess data autonomously, derive context-information in collaboration with other
smart objects, and coordinate the actual applications. Nearby handheld devices
do not implement applications for smart objects, but are only means by which
computer-augmented artifacts can dynamically extend their own capabilities.

3 Characteristics and Roles of Handhelds in Smart
Environments

The roles of handheld devices in environments of computer augmented everyday
artifacts are manifold. Handhelds can serve as primary user interface, they can
be a mobile infrastructure access point, provide mobile data storage, act as
a user identifier, supply energy and computational resources, or offer sensing
capabilities. In this section we identify the main reasons for this versatility.
Thereby, we name important characteristics of handheld devices and from that
derive the major roles of handhelds in smart environments.

Habitual presence. As mobile phones, PDAs, and other handheld devices
are habitually carried around by their owners, they are always in range of a
smart object when a physical interaction with it is about to take place. This
is especially important because the smart objects themselves generally do not
have access to resources beyond their peers, and handheld devices are the only
local devices able to provide powerful resources and sophisticated services. The
habitual presence of handheld devices during physical interactions with smart
objects is the most important characteristic of handhelds in smart environments.
It entails their general function as mediator between smart objects, users, and
background infrastructure services, and is therefore a precondition for the roles
of handhelds presented in this paper.

Wireless network diversity. Mobile phones and PDAs usually support
both short-range as well as long-range wireless communication technologies, such
as Bluetooth, IrDA, WLAN, GSM, or UMTS. This enables handhelds to not only
interact with smart objects directly via short range communication standards
but also to relay data from augmented items to powerful computers in an in-
frastructure far away. The characteristic of wireless network diversity makes it
possible for handhelds to serve as mobile infrastructure access points.

User interface and input capabilities. Tags attached to everyday ob-
jects have to be small, unobtrusive and are ideally invisible to human users.

Consequently, they do not possess conventional buttons, keyboards, or screens.
Interaction with augmented objects therefore has to take place either implicitly
by considering sensory data of smart objects, or explicitly by using the input
and display capabilities of other devices [10]. As people are usually familiar with
the features provided by their handhelds, interactions with smart objects that
are based on these well-known interfaces should imply a more comfortable and
easy usage of smart objects. As a result, handhelds often serve as the primary
user interface for smart objects.

Perception. Handheld devices can serve as remote sensors for a smart ob-
ject, which are accessed wirelessly using a communication technology supported
by all participating devices. The way handheld devices perceive their environ-
ment strongly depends on their functionality. Cellular phones, for example, know
to what cell they currently belong and can serve as remote location sensors for
augmented items.

Mobility. Active tags can transfer data such as how to reach a smart device
from remote locations to a handheld device, where it is permanently stored and
accessible for users independent from their current location. Here, handhelds
serve as mobile storage medium for smart objects.

Table 1. The roles of handhelds in smart environments and the underlying character-
istics that entail these roles

lHandheld’s role Underlying characteristic
Mobile infrastructure access point|Wireless network diversity
User interface Input and display capabilities
Remote sensor Perception
Mobile storage medium Mobility
Remote resource provider Computational resources
Regularly refilled mobile energy reservoirs
Weak user identifier Personalization

Computational resources and regularly refilled mobile energy reser-
voirs. Although the energy consumption of a handheld device such as a cellular
phone should be as small as possible, people are used to recharge its batteries
at regular intervals. PDAs are often shipped with a cradle that offers both host
access to the device and automatic recharging. A similar procedure, however,
is not feasible for smart objects because there are just too many of them. As a
result, smart objects may exploit handheld devices in range as remote energy
reservoir, for example for carrying out complex and energy consuming compu-
tations. Because of regularly renewed energy resources, handhelds can also offer
more powerful resources regarding memory and bandwidth, which allow smart
objects to use them as remote resource providers.

Personalization. PDAs and mobile phones are most often personalized, i.e.
they belong to a certain person who uses the device exclusively. Smart devices

can therefore adapt their behavior according to the current handheld devices
in range and thereby offer functions tailored towards certain persons. In this
context, handhelds can serve as weak user identifiers.

The relation between the described characteristics of handheld devices and
the roles we derived from these characteristics are summarized in Tab. 1.

4 Interfacing Handhelds from Smart Objects

After having identified the major roles of handhelds in smart environments on a
more conceptual level (cf. Tab. 1), we now describe how these roles can actually
be implemented.

Thereby, we focus on smart objects that are equipped with BTnodes [3]. BT-
nodes are small computing platforms, consisting of a microcontroller, Bluetooth
communication modules, an autonomous power supply, and externally attached
sensor boards (cf. Fig. 3). As Bluetooth is integrated into an increasing number
of consumer devices, BTnodes are suitable to illustrate the roles of handhelds in
smart environments. These roles, however, do not depend on Bluetooth or any
other specific communication standard (cf. [9] for a discussion about communi-
cation issues in smart environments).

Connector for
power supply

4cm

[3

Microcontroller
on rear side

Y

Bluetooth
module Connectors for

sensor boards

Fig. 3. BTnodes are used as a device platform to make everyday objects ”smart”

Mobile infrastructure access point. Because of their wireless network
diversity — i.e., their support of short-range as well as wide-range communication
technologies — handheld devices can serve as mobile gateways to background
infrastructure services. Technically, this is achieved by establishing a local short-
range connection from a smart object to a handheld device, and a long range
communication link from the handheld to a background infrastructure server (cf.
Fig. 4). The wireless technology used to build up the long-range connection to
the backend infrastructure depends on the capabilities of the handheld device. In

case of PDAs this might be an IEEE 802.11 link to a base station, and a GSM
(Global System for Mobile Communication) or GPRS (General Packet Radio
Service) connection in case of mobile phones.

Short-range Long-range
link link Infrastructure
<—> <«—>
Bluetooth, GSM, Server
Infrared WLAN
Smart object Mobile infrastructure

access point

Fig. 4. Mobile access points: smart objects use nearby handheld devices to communi-
cate with background infrastructure services in an ad hoc fashion

In our applications, we have realized a handheld’s role as mobile infrastruc-
ture access point as follows. When a handheld device (e.g., a mobile phone)
comes within range of a smart object that needs to access the background in-
frastructure, the object establishes a local Bluetooth connection to the handheld.
The smart object then sends AT commands over this local Bluetooth link in or-
der to establish a long-range GSM data connection from the mobile phone to
a background infrastructure server. Given this connection, arbitrary data can
be exchanged between the smart object and the background server. There is a
standardized set of AT commands supported by all GSM-enabled mobile phones.
Besides using explicitly established GSM data connections, it is also possible for
smart objects to embed data into an SMS (Short Message Service) message.
As the latter approach does not require the overhead of GSM data connection
establishment, it is the preferred way to exchange data with a background in-
frastructure server in our applications.

User interface. The user interface and input capabilities of handheld de-
vices can be exploited by smart objects to notify users acoustically or to allow
interactions with smart items based on a graphical user interface. Mobile phones
and PDAs offer several popular features by means of which such an interaction
can be realized. They range from (1) custom alarms, (2) SMS messages, (3) WAP
pages, (4) calendar entries and business cards to (5) whole Java user interfaces
that can be downloaded over a local connection from a smart object to a hand-
held device. We have prototypically implemented all these different means to
facilitate the user interaction with smart objects. Thereby, BTnodes are used as
prototyping platform to augment everyday objects, and mobile phones or PDAs
as handheld devices.

(1) Alarms are written to cellular phones by transmitting standardized AT
commands from smart objects over a local Bluetooth connection to a mobile
phone.

(2) Similarly, smart objects initiate the exchange of SMS messages with re-
mote users by sending AT commands to a local GSM gateway. This GSM gateway
transmits the SMS messages to remote users and relays incoming messages to
the corresponding smart objects (cf. Sect. 5).

(3) User interaction with smart objects can also take place via WAP inter-
faces. In our implementation, user interaction with WAP takes place by means
of a background infrastructure service, the background infrastructure represen-
tative (BIRT) of a smart object. Smart objects synchronize their state with the
BIRT whenever an access point is in range. Based on this information, the BIRT
provides WAP pages that reflect the current state of an object. By means of their
handheld devices users can then access these WAP pages and exchange informa-
tion with the BIRT of a smart object. User input is relayed to the actual smart
object during the next synchronization phase (cf. Sect. 6).

(4) Calendar entries and business cards can be exchanged via Bluetooth
OBEX (Bluetooth object exchange protocol) with Bluetooth-enabled mobile
phones and PDAs in range of a smart object. Calendar entries can be used
as an alternative to custom alarms in mobile phones. Their advantage is that
they not only trigger an acoustic alarm at the time specified but also display
information on the handheld’s screen.

(5) Finally, we have also implemented means for more sophisticated interac-
tions with smart objects. Thereby, a Java user interface is stored on the smart
object. People can select smart objects in their environment by means of a small
program on their handheld device and download the user interface from the
selected object (cf. Sect. 7).

Remote sensor. The percepts of handheld devices are of potential interest
for smart objects, which often simply do not have sufficient resources to deploy
sophisticated sensors. Some sensor data — as, for example, the information about
the current cell id of a mobile phone — can be easily retrieved from nearby hand-
held devices. In our implementation, mobile phones can serve as remote location
sensors for smart objects. Thereby, a short-range connection is established from
a smart object to a mobile phone, whose location information is queried by
exchanging AT commands on top of the local communication link.

Mobile storage medium. Data transmitted from a smart object to a mo-
bile device is available to users independent from their current location and their
overall situational context. In our applications, smart objects transmit contact
information in form of telephone book entries and templates that specify the
commands supported by a specific smart object to mobile phones (cf. Sect. 5).
These information enable users to start an interaction with smart objects from
anywhere. As in our software package, data are transmitted to mobile phones by
sending standardized AT commands over a local Bluetooth communication link
when a user is in range of a smart object.

Remote resource provider. The previously described roles show how
handhelds mediate between smart objects and their users, or between smart
objects and background infrastructure services. As remote resource provider,
however, a handheld primarily enriches the interaction among smart objects

themselves in that it provides a platform for outsourcing complex computations
and offers sophisticated data storage capabilities. Our goal was to spontaneously
integrate handheld devices into already existing groups of collaborating smart
objects.

This goal is achieved by introducing an infrastructure layer facilitating the
collaboration among computational entities. This layer is a distributed tuple
space [4] for smart objects and handheld devices, which is part of our imple-
mentation. Smart objects that want to collaborate form a tuple space and write
their sensory data into the space. When a handheld device comes into the range
of collaborating objects it also joins this distributed tuple space. Thereby, smart
objects can instantaneously make use of the memory resources of handheld de-
vices on the basis of resource-aware tuple space operations. Our resource-aware
tuple space operations try to identify the most suitable place to store sensor
tuples. As the actual location of a tuple becomes transparent through the tuple
space, they are stored on the device with the most spare resources — which is
often the handheld device.

The most important reason for introducing the tuple space abstraction, how-
ever, is that the location where code is executed becomes transparent. This
is because all devices operate on the same data basis of the distributed tuple
space. Smart objects can therefore simply transfer code to a nearby handheld
device participating in their tuple space and thereby exploit its computational
resources. In our implementation of this concept, Java classes are stored on a
smart object that are spontaneously transmitted to nearby handheld devices
when the handheld joins the distributed tuple space (cf. Sect. 7).

Weak user identification. In many interaction scenarios, the identity of an
involved user is important for authorizing certain actions, or adapting services.
Handheld devices offer user identification capabilities in varying flavors. They
range from a PIN that is necessary to operate a mobile phone, to fingerprint
sensors. Knowledge of the PIN gives a hint on the user’s identity if one can
assume that a device is personalized to a single user, while a biometric sensor
provides much stronger confidence in the user’s identity. From the point of view
of the smart object, the downside of using an external identification mechanism
is the necessity of putting trust in the handheld’s correct operation (and in the
user, e.g. to keep the PIN secret). Since the assurance level on the identity of
the current user is usually rather low, we call this feature weak identification.
The software package we developed to demonstrate the roles of handhelds in
smart environments supports authentication using PIN codes as part of the
implemented Bluetooth protocols.

5 Smart Object-Human Interaction: as Easy as Making
Phone Calls

In this and the following two sections we present applications that illustrate
the previously identified roles of handhelds in smart environments. The applica-
tion in this section demonstrates how mobile devices serve as as mobile storage

medium, weak user identifier, and as user interface for remote interactions with
smart objects.

People usually associate a specific type of handheld device with a specific
way to interact with communication partners: teenagers write SMS messages
to arrange a fun meeting using their mobile phones, and business people orga-
nize their appointments with PDAs. Adopting device specific behavior to smart
environments while maintaining interaction patterns people expect from their
handheld devices is a key approach for successfully integrating handhelds into
smart environments.

-
Long-range §

Interaction
stubs _ Smart object Access point
\ \
L Interaction stubs Short-range
/

transmitted over link
short-range link

Smart object

Smart object

Interaction
stubs

Smart object @

A\

Fig. 5. Remote interaction with smart objects using handheld devices: when people are
in range of smart objects, handhelds serve as mobile storage medium for interaction
stubs (1); when far away, interaction stubs are executed to trigger interactions with
remote objects using the handheld as user interface (2)

In the following, we illustrate how device specific interaction patterns like
making phone calls can be used as a metaphor for implementing remote inter-
actions with smart objects. Enabling remote interactions is a two step process:
(1) when a user is in proximity of a smart object, it stores interaction stubs in
the user’s handheld device; (2) later, when not in vicinity of the object, a user
selects a suitable interaction stub stored on the handheld to trigger a remote
interaction with an augmented item (cf. Fig. 5).

The interaction stubs are the key mechanism to establish the remote com-
munication link. They consist of a human readable name for a smart object, a
set of commands that can be executed by it, and its address. In our current im-
plementation, mobile phones serve as handhelds and the actual communication
with a smart object takes place by exchanging SMS messages. Here, an interac-
tion stub is composed of a phone book entry for the smart object and an SMS
template. The phone book entry indicates the human readable name and the
object’s address, which is a telephone number in this case. The SMS template

contains a range of predefined commands that can be activated and sent to the
smart object (cf. Fig. 6).

We illustrate this approach with an office room as an example of a (rather
large) smart object. The ”smart office” knows who is currently working in it and
what noise level is inside.

Elfridge ...
[}tit:e (C41

(]

Fig. 6. Interaction stubs transmitted from smart objects to a mobile phone (phone
book entries (1), SMS templates (2)), an edited SMS template with activated command
(3), and the corresponding reply from a remote smart object (4).

A BTnode equipped with several sensors, such as a microphone, is placed
in the office and provides information about the noise level inside (cf. [1] for a
description of the sensor boards used). Furthermore, according to the concept of
weak identification we can infer from a handheld’s presence who is currently in
the room, and utilize the handheld as weak user identifier.

Given these capabilities, the smart office can keep track of entering and leav-
ing persons, maintain a short history of events, and derive its current situational
context (e.g., an ongoing meeting). Based on this information, interaction stubs
(phone book entries and SMS templates) are transmitted to a user’s handheld
device. For example, the person most frequently in the office is given a special
stub that allows her to remotely interact with the office after hours.

Interaction stubs (phone book entries and SMS templates) are transferred
over a short-range wireless link between smart object and handheld (cf. Sect.
4). These transmissions are completely transparent to the user and are initiated
by a smart object based on its current context and history information. Later,
when people want to remotely interact with the smart office, they select the
corresponding phone book entry from their phone book and compose a new SMS
message using the appropriate SMS template. The SMS message is received by
a stationary access point with a GSM gateway and relayed to the corresponding
smart object in range of the access point. The smart object then executes the

embedded commands and returns a message to the user’s mobile phone (cf.
Fig. 6). Consecutive messages can be exchanged between user and smart object.
Besides the described SMS-based approach we have also implemented a similar
solution based on WAP.

Direct remote interaction with a smart object requires a nearby stationary
access point. The next section shows how we can get rid of this stationary gate-
way by using nearby handheld devices as mobile infrastructure access points.

6 The Smart Medicine Cabinet

The smart medicine cabinet illustrates a handheld’s role as mobile infrastructure
access point, mobile storage medium, and user interface. It was designed to
improve the drug compliance of patients with chronic diseases by reminding
them to take their medicine. It also knows about its contents and can be queried
remotely with a WAP-enabled mobile phone. Interaction with the information
technology inside the cabinet is implicit — i.e., transparent for the patients —
who might not even know that the cabinet is "smart”. By using small RFID tags
attached to the folding boxes and an off-the-shelf medicine cabinet equipped with
a BTnode connected to an RFID reader, the information technology becomes
completely invisible to the users (cf. Fig. 7). When a patient removes a certain
kind of medicine she needs to take during the day, the active tag in the cabinet
establishes a connection through the user’s Bluetooth-enabled mobile phone to
a background infrastructure service querying it about prescription information
concerning this medicine. The active tag then utilizes the user’s mobile phone as
mobile storage medium and stores a corresponding alarm and a calendar entry
in it that are activated when the patient has to take the medicine.

RFID antenna

9

RFID reader

RFIDtagson _ | o UL ;"
folding boxes > . iy

Fig. 7. The smart medicine cabinet

A WAP-based interface allows patients to remotely interact with the smart
medicine cabinet — or its representation in the background infrastructure, the
background infrastructure representative (BIRT) of the cabinet. Since the pa-
tient’s mobile phone serves as mobile infrastructure access point for the cabinet,
it operates in a disconnected mode whenever there is no mobile phone present.
It hence requires a BIRT in the background infrastructure that represents the
medicine cabinet continuously. Whenever a mobile phone is in the vicinity of the
medicine cabinet and provides connectivity, the cabinet synchronizes its state
with the BIRT. Afterwards, remote WAP-based queries need to address the
BIRT of the cabinet. Information displayed on WAP pages regarding the con-
tents of the cabinet and recently taken medicine therefore reflect the status of
the cabinet during the last synchronization.

Background
i infrastructure server

GSM GSM gateway
network
<~ Web server/
WAP/servlets
Background

infrastructure
representative

I Infrastructure
[| | access over
l Bluetooth

Background
infrastructure server

GSM gat

retrieve WAP pages
WAP/servlets
Cellular phone
network Background

infrastructure
representative

©)

. J

Fig. 8. When the patient is in range of the cabinet her mobile phone serves as mobile
access point to the background infrastructure server (1), when not in range of the
cabinet she interacts with the background infrastructure representative of the cabinet
using the handheld as user interface (2)

The following technologies have been incorporated into an ordinary medicine
cabinet: (1) passive RFID tags on the folding boxes, (2) an RFID reader attached
to the medicine cabinet, and (3) a BTnode that processes the information from
the RFID reader and communicates via Bluetooth with a (4) mobile phone (cf.
Fig. 7).

An actual use case would be the following: A patient approaches the smart
medicine cabinet and takes a package out of the cabinet. The active tag in the
cabinet notices that a box of medicine disappeared and connects to a background
service (the BIRT of the cabinet). Thereby, the patient’s mobile phone acts
as a mobile infrastructure access point to the cellular phone network for the
smart object, and no stationary access point is required near the cabinet. The
Bluetooth-enabled active tag in the cabinet queries the BIRT about when the
patient has to take the medicine. It then stores a corresponding calendar entry
into her mobile phone that reminds the patient to take the medicine during the
day. While there is a connection to the background infrastructure through the
patient’s mobile phone, the cabinet also synchronizes its state with that of the
BIRT, which provides WAP pages based on this information. When the patient
visits a pharmacist, the WAP interface can be used to query the contents of the
cabinet (cf. Fig. 8). This information is a good basis for the pharmacist to decide
whether another kind of medicine is compliant to that in the smart cabinet.

7 Spontaneous Integration of Handhelds into Smart
Environments

The inventory monitoring application presented in this section illustrates a hand-
held’s role as remote resource provider and user interface. As remote resource
provider, a handheld provides data storage capabilities and serves as a plat-
form for executing computations on behalf of smart objects. The possibility to
outsource computations to nearby handheld devices also allows us to transmit so-
phisticated user interfaces, which facilitate the local user interaction with smart
objects.

As already described in Sect. 4, a handheld’s role as remote resource provider
is based on a distributed tuple space implementation. In a typical pervasive com-
puting environment, smart objects need to collaborate in order to implement an
application. Such collaborating entities form a distributed tuple space as a shared
data structure distributed over participating entities (and without the use of a
background infrastructure). Smart objects write data (e.g., perceived sensory
data) into the tuple space, read data from it, process these data, and write the
corresponding result again into the space. Thereby, the origin of data becomes
transparent for participating objects when it is not explicitly coded into tuples.
Consequently — and this is the major point — the location where code is exe-
cuted becomes irrelevant because it operates on the same data basis regardless
of the node in the distributed tuple space chosen for code execution. In order
for a handheld to serve as resource provider for smart objects, it joins their dis-
tributed tuple space and receives code from these objects. As likewise previously
mentioned (cf. Sect. 4) resource-aware tuple space operations automatically use
the memory capacity of a handheld after it has joined the tuple space.

We have implemented the idea of using handhelds as remote resource provider
and user interface for local interactions with smart objects in a software frame-
work called Smoblets. The main goals of Smoblets are to enable interactions

with smart objects without the need of a supporting backend infrastructure,
to outsource computations to handheld devices in order to save energy, and to
foster the collaboration among smart objects and handheld computers.

Smart object

Application g é’
Sensory data & 7 Handheld device
are exchanged 3 o (PDA or mobile phone)
I dire o Smoblet K
space as § a = tmrEa Smoblets Object
<

shared data selection
medium Smoblet runtime mechanism
| Data exchange

hidden in |
| tuple space |

| Distributed tuple space Distributed tuple space |

| Sensors | Bluetooth

- Smart object
Smart object
Smart object

Network of smart objects
sharing a distributed tuple space

Bluetooth stack |

Fig. 9. The Smoblet concept: ad hoc interaction with nearby handheld devices

The main components of a Smoblet system are (1) a set of Java classes — the
actual Smoblets — stored in the program memory of an active tag (a BTnode in
our case), (2) a runtime environment for the execution of Smoblets on a handheld
device, (3) a mechanism to select smart objects and to transfer Smoblets from
smart objects to handheld devices, and (4) a distributed tuple space [5] imple-
mentation that serves as a shared content-based data structure for participating
entities (cf. Fig. 9). It is important to note that smart objects themselves cannot
execute Java code; their program memory merely serves as storage medium for
the code. Java classes can only be executed on nearby handheld devices, which
communicate with the smart objects using a distributed tuple space abstraction.

A Smoblet transmission can either be initiated automatically by smart ob-
jects or manually triggered by human users. To manually initiate the transmis-
sion of Smoblets from a smart object to a handheld device, the user selects a
smart object for interaction by means of a small program on her handheld. The
device address of the object is then used to establish a connection and to retrieve
the Java classes from the smart object.

Together with the Smoblets, their functionality is moved and therefore out-
sourced from a smart object to a handheld device. Because of the distributed
tuple space the actual source of data becomes transparent for the Smoblets.
Although they are executed on the handheld they can operate on the data pro-
vided by the object they are originating from and perform computations on its
behalf that were not feasible because of the object’s limited resources. Outsourc-

ing computations from smart objects and using handhelds as remote resource
provider is the core motivation for the Smoblet idea.
We have created a Java framework that simplifies the development of Smoblets.

It provides methods to access data stored in a distributed tuple space, which
can be used to transparently access remote sensor data of smart objects via
Bluetooth. The distributed tuple space implementation provides a convenient
high-level communication abstraction to the application programmer, who does
not have to care about low-level communication issues. The tuple space also
detaches Smoblets from any particular communication technology that is being
used by the smart objects.

SmnhIEtFindEr =z 4:39 @ Smoblet Demo Predefined Context

| Inquire BT | RFID Search

elect context: Anti-theft -
Inquiry completed : Anti-theft
VS16 [00:60:57:02:54: 1F] Phone rumber: State monitorng

R [00:80:37: 16:42:146] — . essage;
=" Product has besn maved.

-H:; Call the police?

[

Sony DHR-1000

Call helpline at +41-1-383 3833 ‘] g
[] 3

| | in case of problens,

Set context
Q ;ﬁ{‘; smoblet Demo B - £ 2z ;;;‘ smoblet Demo B - £ 2.

Fig.10. A typical Smoblet interaction — after a user has searched for smart objects
(1), Smoblets are transferred to a handheld device and offer a small user interface (2),
which allows users to graphically interact with active tags and to access data shared
through the distributed tuple space (3)

To illustrate the idea of Smoblets, we have implemented an inventory moni-
toring application (cf. Fig. 10). Here, BTnodes together with sensor boards are
attached to expensive products — in our case a video cassette recorder (VCR),
but it could also be a bottle of expensive wine, a book, etc. — in order to notify
its owner or another person when it is being stolen or damaged. Smoblets stored
on the smart video cassette recorder allow a user to customize the behaviour of
the product.

The scenario is as follows: When nearby, a person selects a smart object
by using the SmobletFinder application, which triggers the transmission of the
corresponding Java code from the selected object to her handheld device (cf. Fig.
10). The code contains a small user interface for adapting the behaviour of the
smart object. Here, a user can specify a telephone number and associate messages
with certain situations the product can be in. For example, in case of damage
a notification message must be sent to a nearby repair service. The user input
(e.g., the telephone number and the message text entered into the user interface)

is embedded into a tuple and written into the underlying distributed tuple space.
As the smart object that provided the user interface is also a member of the tuple
space, it can access the information input by the user. In our implementation, the
smart object registers a callback on tuples that represent relevant user input. Is
a corresponding tuple is written into the space the smart object is automatically
notified by the tuple space implementation. Therefore, the smart object can
immediately react on the user input and adapt its behaviour accordingly. When
the user closes the application the handheld leaves the distributed tuple space.

8 Conclusion

This paper formulated and supported the hypothesis that smart objects can
provide increasingly sophisticated services to users in smart environments when
they are able to exploit the capabilities of nearby handheld devices in an ad
hoc fashion. We identified six roles that describe how smart objects can sponta-
neously make use of nearby handhelds: (1) as mobile infrastructure access point,
(2) as user interface, (3) as remote sensor, (4) as mobile storage medium, (5) as
remote resource provider, and as (6) weak user identifier. We then presented an
implementation of these roles tailored towards everyday objects which have been
augmented with Bluetooth-enabled sensor nodes. Finally, three applications — a
remote interaction scenario, a smart medicine cabinet, and an inventory moni-
toring application — illustrated some of the usage scenarios that become feasible
when smart objects are able to spontaneously collaborate with nearby handheld
computers. Table 2 summarizes the roles of handhelds in the presented applica-
tions.

Table 2. The roles of handhelds in the applications presented in this paper

| Application | Handheld’s role ‘

Remote interaction Mobile storage medium,

user interface,

weak user identifier

Smart Medicine Cabinet|Mobile infrastructure access point,
mobile storage medium,

user interface

Inventory monitoring |Remote resource provider,
user interface

Considering the presented applications, the basic function of handheld de-
vices is to mediate between smart objects and infrastructure services, between
smart objects and their users, and among smart objects themselves. For exam-
ple, in the Smart Medicine Cabinet application, a patient’s mobile phone serves

both as mobile infrastructure access point (i.e., it enables smart objects to com-
municate with background infrastructure services) and as primary user interface

(i.e.,

it facilitates the user interaction with smart objects). As a remote resource

provider a handheld provides data storage capabilities and serves as platform
for outsourcing computations from smart objects. By providing resources for
smart objects, handhelds enrich smart object’s computational abilities and their
interaction among each other.

References

1.

2.

10.

11.

12

M. Beigl and H. W. Gellersen. Smart-Its: An Embedded Platform for Smart Ob-
jects. In Smart Objects Conference (SOC) 2003, Grenoble, France, May 2003.

M. Beigl, H.W. Gellersen, and A. Schmidt. MediaCups: Experience with Design
and Use of Computer-Augmented Everyday Objects. Computer Networks, Special
Issue on Pervasive Computing, 25(4):401-409, March 2001.

J. Beutel, O. Kasten, F. Mattern, K. Roemer, F. Siegemund, and L. Thiele. Pro-
totyping Sensor Network Applications with BTnodes. January 2004. Accepted for
publication, IEEE European Workshop on Wireless Sensor Networks (EWSN 04).
N. Davies, S. Wade, A. Friday, and G. Blair. Limbo: A Tuple Space Based Platform
for Adaptive Mobile Applications. In Proceedings of the International Conference
on Open Distributed Processing/Distributed Platforms (ICODP/ICDP ’97), pages
291-302, Toronto, Canada, May 1997.

D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80-112, January 1985.

. H. W. Gellersen, A. Schmidt, and M. Beigl. Multi-Sensor Context-Awareness in

Mobile Devices and Smart Artifacts. Mobile Networks and Applications (MONET),
7(5):341-351, October 2002.

Stephan Hartwig, Jan-Peter Strémann, and Peter Resch. Wireless Microservers.
Pervasive Computing, 1(2):58-66, 2002.

T. Kindberg et al. People, Places, Things: Web Presence for the Real World. In
WMCSA 2000, Monterey, USA, December 2000.

A. Schmidt, F. Siegemund, M. Beigl, S. Antifakos, F. Michahelles, and H. W.
Gellersen. Mobile Ad-hoc Communication Issues in Ubiquitous Computing. In
Personal Wireless Communication (PWC 03), September 2003.

F. Siegemund and C. Floerkemeier. Interaction in Pervasive Computing Settings
using Bluetooth-enabled Active Tags and Passive RFID Technology together with
Mobile Phones. In IEEE Intl. Conference on Pervasive Computing and Commu-
nications (PerCom 2003), pages 378-387, March 2003.

R. Want, K. Fishkin, A. Gujar, and B. Harrison. Bridging Physical and Virtual
Worlds with Electronic Tags. In ACM Conference on Human Factors in Computing
Systems (CHI 99), Pittsburgh, USA, May 1999.

M. Weiser and J. S. Brown. The Coming Age of Calm Technology, October 1996.

