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Practical Minimalist Cryptography for RFID Privacy
Marc Langheinrich, Remo Marti

Abstract— The fear of unauthorized, hidden readouts
has dominated the RFID privacy debate. Virtually all
proposed privacy mechanisms so far require consumers
to actively and explicitly protect read access to their
tagged items – either by jamming rogue readers or by
encrypting or pseudonymizing their tags. While this ap-
proach might work well for activists and highly concerned
individuals, it is unlikely (and rather undesirable) that the
average consumer should be outfitted with RFID jamming
devices before stepping outside, or that anyone would
bother pseudonymizing every can of soda they buy with
a personal PIN code. Juels’ “minimalist cryptography”
offers a simple, yet effective identification and tracking
protection based on simple ID rotation, but it requires
that the corresponding mappings (i.e., from pseudonyms to
real IDs) are electronically exchanged whenever a product
changes hands (e.g., for buying a pack of chewing gums
at a kiosk) – a rather impractical requirement. Our work
extends Juels’ concept in order to alleviate the need for
passing ID mapping tables. Using carefully assembled sets
of IDs based on the cryptographic principle of secret
shares, we can create RFID tags that yield virtually no
information to casual “hit-and-run” attackers, but only
reveal their true ID after continuous and undisturbed
reading from up-close – something that can hardly go
unnoticed by an item’s owner. This paper introduces the
underlying mechanism of our extension to Juels’ proposal,
called “Shamir Tag”, analyzes its tracking resistance
and identification performance, and discusses deployment
aspects.

Index Terms— RFID, privacy, Shamir, minimalist cryp-
tography, secret sharing

I. INTRODUCTION

Reliably controlling access to RFID tags has long
been seen as the panacea to RFID privacy concerns.
While the comparatively effortless readout capabili-
ties of RFID (i.e., no line of sight needed) have been
the technology’s biggest trump over its predecessor,
the optical bar code, they have also dominated
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the public debate about its greatest dangers: the
alleged ability to comprehensively track and profile
consumers [1], presumably against their will and
without their knowledge, as well as its potential to
facilitate criminal searches of personal belongings
(or even entire households) with a simple sweep of
a reader [2].

Clearly, disabling tags at checkout – either by
executing a kill-command [3] that renders the tag
silent to all reader requests, or by physically clip-
ping the tag antenna [4] – provides the strongest
protection against unwanted readouts. However, per-
manently silencing RFID tags also prevents a range
of after-sales uses of tagged products, e.g., receipt-
less returns, automated recycling, or smart laundry
machines. Supporting an explicit form of access
control on tags would protect consumer privacy
while still allowing secondary uses. Out of the many
options for access control,1 so far only password-
based methods have seemed feasible for RFID tags.2

Yet even though their general principle is easy
enough for implementation on a tiny RFID tag, the
practical use of such schemes is often challenging.
This is mainly due to two factors: the employed
communication protocol, and the envisioned de-
ployment scale, which quickly render technically
feasible solutions cumbersome, if not impractical
for users.

In RFID communication, a reader typically does
not know which tags are in its vicinity. Thus, in
order to identify one or more RFID tags, it simply
sends out a broadcast message asking for all tags
(or all tags of a specific type) to reply. If password-
protected tags would simply remain silent until
the right password was used, a chicken-and-egg
problem arises: in order to identify a tag, the reader

1Access control denotes a scheme or system where access to
information, a system, or a location can be granted based on what
you know (i.e., a password), what you have (i.e., an access token),
who you are (i.e., biometrics), what you do (i.e., personal traits), or
where you are (i.e., your location).

2An excellent overview of currently proposed methods can be
found in [5].
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must know its password. But in order to select the
correct password from its list of known passwords, a
reader would first need to know which tag it is, i.e.,
it would need to identify it first. In some situations,
this look-up could be manually performed, e.g.,
by having the tag’s password (PIN) printed on the
RFID label and requiring this PIN to be entered into
a reader device prior to readout. While this would
not work very well for carts of groceries or clothing,
it is actually used for RFID tagged passports: in
order to read out the embedded RFID tag, an optical
reader first needs to read the name, date of birth, and
expiration date from the Machine Readable Zone
(MRZ), which is then used to compute the tag’s
password and initiate the RFID readout [6].

Instead of completely remaining silent, tags could
reply with a pseudonymous ID, which could then
be used by the reader to look-up a tag’s password
(or even directly its ID) [7]. While this would hide
a tag’s true ID, the fixed pseudonym would still
facilitate tracking, i.e., the re-identification of the
same tag across several readers. Other proposals
thus employ ID-chains, where the tag computes
a new ID for each readout using a cryptographic
formula [8]–[10]. As this does not allow direct
lookups anymore, readers need to initiate a key
search, where each known key is tested whether
it yields a tag’s reported, dynamic ID. Given the
envisioned deployment scale of RFID tagged items,
such schemes would quickly become unmanageable
even for personal use (let alone on an industrial
scale).

Juels [11] rightly points out that such “hard
crypto” approaches might actually not be needed
for RFID tags: in contrast to, say, internet servers,
these tags are not constantly available from almost
anywhere in the world through data networks, but
instead require that the attacker be in close physical
proximity to a tag for readout. Thus, attack models
for RFID tags need to be adapted to such realities.
Juels argues that a simple list of pseudonymous
IDs in practice works just as well, and at much
lower costs, than cryptographically computed ID-
chains, which require both costly key searches and
expensive RFID hardware. In his scheme, which
he dubs “minimalist cryptography”, Juels supposes
that an adversary is only able to periodically (i.e.,
not constantly) scan a certain tag. Tags contain
a small collection of pseudonyms and release a
different one upon each reader inquiry. Authorized

readers can store the full set of tags and thus
quickly re-identify it, while an unauthorized reader
would neither know how to map the pseudonym
to a true ID, nor be able to consistently track an
item due to the ever changing pseudonym. In order
to prevent rogue readers rapidly reading out all
available pseudonyms of a tag in a single sweep,
Juels proposes to “throttle” tag replies, effectively
limiting the number of pseudonyms a reader can
read per second (to, e.g., one).

While Juels’ scheme alleviates the need for cryp-
tographic functions on the tag, thus lowering tag
costs (and making his proposed scheme more af-
fordable), it nevertheless requires authorized readers
to obtain a tag-specific mapping table that supports
translating a pseudonym into a tag’s true ID. In
order to allow a consumer to read out the ID of an
item she just bought, this mapping table would need
to be electronically transferred to her at checkout.
While such data exchange might still be feasible in
the industrial supply chain, i.e., between retailers
and manufacturers, it significantly raises the bar for
ordinary citizens and small vendors. Imagine buying
a can of soda at a street cart, or a pack of coffee in
your favorite neighborhood deli – not only would
consumers without an electronic device of some
sort be at a disadvantage, but it is questionable
whether small business could afford the neces-
sary IT-equipment needed to support such transfer
[12]. As an alternative to an on-the-spot exchange,
one could imagine setting up a central repository
where this information could be downloaded later.
However, this download would again require some
sort of access token (e.g., a password or key),
otherwise any attacker could trivially lookup such
pseudonyms, invalidating the entire scheme.

Much more appealing are thus keyless schemes
to RFID privacy, such as Juels et al.’s blocker tag: a
specifically engineered RFID tag replies to each and
all reader requests, thus causing signal collisions
with all regular RFID tags in its vicinity, effectively
preventing any replies to reach the reader [13].
However, in order to prevent a single blocker tag
from paralyzing an entire row of checkout lanes
or loading docks, the authors propose to mark the
IDs of personal items that should be protected
with a specific privacy prefix, and subsequently
limit the blocker tag to only block tag readouts
of this particular ID-space. This again prompts the
need for some sort of access control for setting
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this prefix, putting us back to square one. Fishkin
et al. [14] instead propose a simple but intuitive
distance-based access control scheme, where tags
measure the noise level in a reader’s signal and
infer the relative distance of the reader. Based on the
reader’s distance, tags can then reply with different
levels of detail, i.e., they can remain silent for far
away readers, reveal a partial ID for closer ones, or
disclose their full ID to nearby readers. While this
approach would work without any explicit access-
control management schemes, it hardly seems feasi-
ble in the foreseeable future, especially for low-cost
passive RFID tags. Apart from the increased costs
for the required on-tag circuitry to detect the signal
to noise ratio, distance-based authentication might
also not always yield the desired functionality, e.g.,
when passing narrow passageways or small store
entrances.

This paper presents an alternative RFID privacy
scheme that combines the hardware simplicity of
Juels’ “minimalist cryptography” approach with the
much lower infrastructure requirements of a keyless
access control model. While we also use a set of
pseudonyms in each tag to prevent direct item iden-
tification and hamper traceability, our pseudonyms
can be cryptographically combined to yield the true
ID of an item, without the need for external mapping
tables. Just as in Juels’ scheme, access control is
limited by the “throttled” replies of a tag, effectively
limiting the information an unauthorized reader can
obtain from an item. Our system thus discloses an
item’s ID only after a thorough scan, i.e., only after
a reader has assembled enough pseudonyms of an
item in order to reassemble the original ID. An
RFID-tagged shirt, for example, could still inform
a smart laundry machine of the correct water tem-
perature after a few spins of the drum, but casually
passing a reader while wearing the shirt would not
allow for enough information to be read out. Our
approach is based on the idea of shared secrets [15],
in which a piece of information is broken into many
smaller parts that individually yield no information
about the original information.

The remainder of this paper is structured as
follows. We begin in section II with describing
the two concepts underlying our proposed mech-
anism: bit-throttling and shared secrets. Section III
then describes how these can be combined into a
cryptographically lightweight solution, our so-called
“Shamir Tag”, which effectively hampers unautho-

rized identification and tracking. It also offers a
detailed analysis of the capabilities and limits of
Shamir Tags, followed by a discussion of practical
deployment issues in section IV. We close with con-
clusions and an outlook on future work in section
V.

II. FUNDAMENTAL CONCEPTS

The main goal of our privacy-friendly RFID tag
is to hide the true ID (e.g., its Electronic Product
Code [16], EPC for short) of an RFID-tagged item,
so that unauthorized readers cannot secretly spy out
our belongings, while legitimate parties (including
ourselves) can still enjoy the benefits of automatic
identification. This rules out logical or physical tag
deactivation solutions – our tags should eventually
reply to authorized reader requests. Additionally,
unauthorized readers should not be able to repeat-
edly read the same ID from one of our tags, even
if they cannot resolve it, as they would still be
able to track our movements this way.3 Thirdly, we
neither want to manage passwords nor pseudonym-
tables, as any such scheme would quickly become
infeasible in consumer scenarios.

As we pointed out in the introduction above,
Juels’ “minimalist cryptography” approach [11] fits
the first two requirements nicely, without any need
for costly crypto-circuitry on the tags: by simply
storing a set of, say, 10 pseudonyms instead of a
single true ID, only authorized readers will be able
to translate a tag pseudonym into the corresponding
item’s EPC.4 Additionally, by throttling tag replies,
an unauthorized reader would only be able to read
(on average) one of these pseudonyms each time
the item is in range, thus making it much harder
to repeatedly track the item. Our third requirement,
however, is violated in Juels’ scheme by the need for
active exchange of such pseudonyms-to-ID-tables:
A consumer buying a new sweater would first need
to obtain the translation for the embedded RFID
chip, in order to be able to use it in her smart
laundry machine, or during a warranty replacement.

3Note that such fixed IDs would not need to be unique to allow
tracking, as even classes of tags can form unique constellations that
can act as identifiers [8].

4Juels actually describes a much more elaborate and cryptographi-
cally secure system in [11] – the multi-pseudonym version is simply
the most basic form of privacy protection that can be implemented
with his protocol. These additional elements, however, do not concern
privacy protection but rather RFID security aspects, such as protection
from cloning attacks.
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While in theory trivial, the organizational complex-
ity of transferring the corresponding lookup table for
an item to a user-controlled system at the point of
sales seems hardly feasible. One obstacle is the rate
of technological adoption: each user would need to
carry a compatible electronic device (e.g., an NFC-
enabled [17] mobile phone) with the corresponding
software installed for receiving the transfer – even
assuming an optimistic rate of adoption, it would
take many years until a majority of shoppers would
own and regularly carry such a device. Another
problem is costs: While large supermarkets could
in principle outfit all their checkout-lanes with such
transfer stations, these upgrades would involve sig-
nificant costs without providing any benefit to re-
tailers. Smaller shops and kiosks, however, without
an integrated electronic sales system, would need to
update their entire procurement, inventory, and sales
operation – an investment that could easily dwarf
their yearly revenues. Last but not least, unless pay-
ment is directly integrated into this data exchange,
the additional overhead of performing this transfer
could quickly frustrate shoppers and slow-down
checkout-times, even without any technical glitches
(which might require periodic updates of both sales
systems and consumer software, especially during
early deployment).

What is missing from this simple approach, then,
is a way to encapsulate the true ID of an item into
the tag itself, without requiring authorized readers
to know a corresponding password or translation
table. At the same time, however, it must remain
reasonably hard for an attacker to read out this ID
directly. Our solution is based on two fundamental
concepts, time-delayed identification and shared se-
crets, which together fulfill our above-stated privacy
goals. These will be discussed in the following
paragraphs.

A. Time-Delayed Identification with Bit-Throttling
An obvious solution is to retain Juels’ idea of

limiting the amount of data disclosure per time
frame, yet keeping the original ID of the tag intact,
i.e., not replacing it with pseudonyms that would
require costly translation-table management. Instead
of replying with its full ID, tags would only reply
with a few bits at a time, either in a well-known
order or randomly (which would entail sending
information about this random order back to the
reader as well).

As pointed out in the introduction, however, tags
need a unique ID in order to be addressable by
a reader. How could the reader discern multiple
tags replying with individual bits each, without
mixing up two or more bits from different tags?
The solution is to have each tag reply with a ran-
domly generated temporary ID upon the initial tag
interrogation. Subsequent communication between
reader and tag then proceeds under this temporary
ID, until the tag is powered down again, ready to
create a new temporary ID upon the next activation.
This protocol is known as the Q protocol, which
is standard for all RFID tags implementing the so-
called EPC RFID Class-1 Generation-2 UHF air
interface [3] (also called “Gen-2 tags”). While Gen-
2 tags use this protocol to shorten communication
times,5 we would employ it as a true temporary
identifier as long as not all bits of the tag’s true
ID have been disclosed.

In order for the reader to be able to put the
individual bits into the correct order, we will need
to enclose information about their original position
into the reply as well. This additional data will
introduce communication overhead and thus slow
down transmission rates – but this is what bit-
throttling tries to achieve anyway, so we will not
need to be too concerned. However, finding an
efficient scheme might still be desirable, as this
would help to reduce tag complexity and energy
usage (during readouts), thus ultimately reducing
costs.

One intriguing idea would be to re-use the tem-
porary identifier as implicit information about the
following order of bits. We simply systematically
enumerate all possible bit-orderings and let our
temporary identifier designate the permutation that
designates the chosen order. E.g., the 3! = 6
possible ways of sending 3 bits could be enumerated
as {0=(123), 1=(132), 2=(213), 3=(231), 4=(312),
5=(321)}. A tag using a temporary ID of 3 would
thus indicate that it would first send its 2nd bit, then
its 3rd bit, and then its 1st bit.

However, given that a 96-bit EPC would allow
for 96! ≈ 10150 ≈ 2499 different orderings, one
would need a 499-bit identifier to uniquely express
every single order possible. This would not only re-
quire using a much larger random number generator

5The randomly generated Q-bit ID is only 16 bits long, making it
much shorter than the tag’s 96-bit EPC, thus significantly reducing
communication overhead [3].
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Fig. 1. A 96-bit EPC Code (GID-96). The EPC tag data specification [16] defines a number of data formats for an EPC label. Shown
above is the “General Identifier” (GID-96), a newly defined format for identifying the manufacturer, item, and individual serial number of
an object. The actual format used is described in the 8-bit header (cf. table I below).

(RNG) on the tag,6 but also the implementation of
corresponding logic circuits that could select and
execute the ordered disclosure of 96 bits according
to a 499-bit identifier.

Much more feasible might thus be prepending
a simple 7-bit ordinal (for a 96-bit EPC) to each
bit value, resulting in a sevenfold communication
overhead, but greatly simplifying the process, as
tags would only need to store a temporary bit
mask indicating the bits already sent, and repeatedly
executing the built-in 16-bit RNG for randomly
determining the next unsent bit that should be
transmitted. In its simplest form, bits could also be
transmitted sequentially, starting from the least or
most significant bit.

TABLE I

THE EPC TAG DATA FORMATS AND THEIR HEADERS [16].

Header Code and Size
01 reserved
0010 1111 DOD-96
0011 0000 Serialized Global Trade Item Nr. SGTIN-96
0011 0110 Serialized Global Trade Item Nr. SGTIN-198
0011 0001 Serial Shipping Container Code SSCC-96
0011 0010 Serialized Global Location Nr. SGLN-96
0011 1001 Serialized Global Location Nr. SGLN-195
0011 0011 Global Returnable Asset Identifier GRAI-96
0011 0111 Global Returnable Asset Identifier GRAI-170
0011 0100 Global Inidvidual Asset Identifier GIAI-96
0011 1000 Global Inidvidual Asset Identifier GIAI-202
0011 0101 General Identifier GID-96

How effective would such a protection be? While
we evaluate our proposed approach in section III
more formally, we can already venture qualitative
estimates here. Using a sequential (i.e., non-random)
bit disclosure scheme would face two problems, as
Fig. 1 illustrates: Starting from the left-most bit
of an EPC-tag, this would first disclose an item’s
header, which defines the format of the following

6Current Gen-2 tags only need a 16-bit RNG. Alternatively, one
could chain the output of several runs, yet even then much larger
memory banks would be required.

identifier. While most items would use the “GID-
96” header 0011 0101 [16], resulting in minimal
disclosure (cf. table I above), items issued by the
U.S. military might use the “DOD-96” header 0010
1111, which is the only header starting with 0010,
thus disclosing military-issued items after only four
bits. Beginning from the other end of the tag ID
first discloses an item’s serial number, which limits
the informational value of such data yet greatly
enhances the traceability of such bits. A random bit
disclosure alleviates some of these concerns, as bits
can arrive in any order from any part of the item’s
ID, making it difficult to track items. However, since
each bit must include its positional information,
even very few bits could already disclose unusual bit
combinations (thus increasing traceability) or even
manufacturer or item data (e.g., knowing bits three
and four would be enough to identify the DOD-96
header).

Hence, while bit-throttling is a priori a very
simple and reasonably effective scheme to imple-
ment a password-less hard-to-track RFID tag, the
potential for disclosing sensitive information with
only a few bits significantly affects its protection
from identification attacks.7 We therefore need a
way to keep our password-less approach, but protect
the tag data better.

B. Tag IDs as Shared Secrets

Instead of keeping the true ID of the tag in
plaintext, we could encrypt it so that knowing the
individual bits would not directly yield information
about serial numbers, manufacturers, or tag issuers
(e.g., the U.S. military). This is, after all, what most
RFID privacy proposals, including Juels’ minimalist
one, are about: they replace the true ID of an
item with seemingly random information. However,

7Section III-A discusses how bit-throttling can still support item
identification in industrial logistic applications.
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as we pointed out above, proposed schemes for
resolving such (apparent) randomness into a true
ID requires passwords, online lookup services, or
translation tables – thus creating an infrastructural
burden.

An alternative to this would be to keep the
simple approach taken by Juels, but constructing
the individual pseudonyms in such a way that –
once most or all of them have been read – they
can be used to directly reassemble the hidden ID
of the tag. Just like in our bit-throttling approach
above, the information would be released slowly
over time, yet instead of releasing the individual bits
of the true ID (which might still disclose sensitive
information), we release individual pseudonyms that
can be reassembled into the true ID.

Encoding a secret number into a number of
individual pieces that, taken by themselves, yield
no information about the secret, is a well-known
concept in the field of cryptography, and is typically
called secret sharing. In a secret sharing scheme,
each participant receives a share that is a part of a
secret. The secret can only be recovered if enough
participants cooperate in recombining their shares.
A typical real-world application for such a scheme
is granting access to a joint account, but only if
all account holders are present (and present their
shares). Schemes that allow a reconstruction of the
secret with only t out of n participants involved8

are called (t,n)-threshold schemes. They fulfill the
following properties:
• No subset of participants smaller than a thresh-

old t can gain information on the secret s, even
when cooperating with each other.

• Any subset equal to or larger than a threshold
t can reconstruct the secret s at any time.

One of the most famous (t,n)-threshold schemes
was introduced by Shamir in 1979 [15]. It is based
on polynomials, and in particular on the observation
that a polynomial of degree t − 1 is defined by t
suitable coordinate-pairs (xi, yi). To encode a secret
s for n participants with a threshold t, one chooses
a random polynomial of degree t − 1 that crosses
the y-axis at the value of s. The n participants are
each given exactly one point on the polynomial’s
curve, thus allowing any t members to compute the
exact polynomial and thus the y-intercept s.

8This might be useful, e.g., for granting access to the account if
already a majority of account holders is present.

The reconstruction of the secret is essentially
a polynomial interpolation based on the Lagrange
formula. Since only the y-intercept is of interest, it
can be simplified to the following formula (with k
being the number of shares):

s = q(0) =
k∑

i=1

yi

∏
1≤j≤k,i6=j

xj

xj − xi

(1)

In practice, computing the secret s given large
numbers of shares (e.g., thousands) quickly be-
comes infeasible. Calculations are therefore carried
out in a finite field modulo p (written as Zp), with
p being a large prime number, equal or larger than
the largest secret s that should be encoded. Not only
does this reduce the size of exponents, but it also
removes the need for floating point operations, as
all computations are performed using integers (thus
eliminating the numerical error that would occur
with fractional numbers).

A comprehensive discussion of this topic is be-
yond the scope of this paper, but an excellent intro-
duction, as well as efficient algorithms for solving
(1) above, can be found in [18].

So how can we make use of such a secret
sharing scheme in the context of RFID? Using
Shamir shares, remedying Juels’ simplistic (in a
good sense!) pseudonym approach is straightfor-
ward. Instead of storing random pseudonyms, our
RFID tags are initialized with a selected set of n
shares encoding the tag’s respective ID. Depending
on tag memory and desired privacy level, we can
use fewer or more shares to encode the tag ID:
the more shares we use, the harder it will be for
an attacker to track an item. Similarly, the longer
it takes the tag to emit the required number of t
shares (depending on our throttle rate r), the harder
it will be for an attacker to identify our item.9 Due
to the basic properties of Shamir’s scheme, reading
out less than t tags (even t− 1) will reveal nothing
about the tag’s true ID – though the active throttling
should keep the chances of accidentally disclosing
close to t shares rather low. However, once t or more
tags have been read (i.e., after a tag has been read
out continuously for a long enough period of time),
any reader can compute the tag’s ID, without the
need for manually exchanging translation tables.

9Recall that the values of n and t in a Shamir scheme do not have
to be secret. Thus, in order to simplify operations, an RFID Shamir
scheme would simply use fixed known values for both parameters.
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Fig. 2. Probability of Identification. A simple multi-ID tag with 10
shares/pseudonyms as proposed by Juels [11] is less effective when
multiple tagged items are carried.

We again postpone the detailed analysis to section
III below, and only assess the immediate effects
of such a scheme here, i.e., the protection from
tracking and identification attacks.

In contrast to our previously proposed simple bit-
throttling, the use of Shamir shares effectively pre-
vents the partial disclosure of any tag information:
As long as less than t shares have been collected,
no information about the encoded ID is known.
Shares are given out one by one, in a throttled
manner, so that no reader can read more than a few
shares at once. Any such subset of shares yields no
information at all about the tag’s ID.

The ratio between t and n can be used to con-
trol traceability and identification: Using a large
n increases the resistance to tracking, as more
shares (i.e., pseudonyms) lower the chances for an
unauthorized reader to re-identify our item when it
passes the same reader at a later time (or a different
reader that is connected to the same system). By
keeping t small, we can still allow the identification
of an item in a reasonable amount of time, as not
all n shares need to be disclosed.

Obviously, tracking resistance degrades with the
number of items we are wearing/carrying. If we
have only a single tag with n shares (pseudonyms),
only one in n reading attempts (on average) will
results in a duplicate share being read. However,
when carrying i such tags, the chances increase
again that one of them replies with a previously
disclosed share. The probability for a reader of
finding at least one known share is simply 1 minus
the probability of reading no matching share:

P (X ≥ 1) = 1−
(
n− 1

n

)i

(2)

Fig. 2 plots an example using n = 10 shares. For
example, when carrying four such tags, (2) tells us
that a reader would have a 1 − (9/10)4 = 34.39%
chance of reading a previously disclosed share, i.e.,
on every third read attempt.

Of course, this computation assumes that each
of the pseudonyms or shares is unique, which
holds true for the basic scheme by Juels. Shamir
shares, however, are computed separately and can
very well overlap between different items. So while
encountering a simple pseudonym twice practically
guarantees that the same item has been passing the
reader, the fact that the same share has been seen
twice should not necessarily imply that it has been
the same item.

In practice, however, the space of all possible
shares will be very large compared to the number
of actually tagged items. Recall that the large prime
number p that defines the finite field in which we
carry out our computation must be at least as large
as our biggest secret s that we want to encode.
The size of p thus defines the range of possible y-
values that our shares can take. For the x-values
in our computation (cf. (1)), we want to make sure
that we have enough options for choosing n shares
(remember that operations are carried out in Zp,
i.e., integer space). The range of q(x) should thus
be at least as large as n, possibly slightly larger,
especially for small values of n. The total number
of possible shares would then be p× q.

For example, if we want to encode a 96-bit EPC
with n = 10 shares, our prime number p would need
to be at least as big as 296 ≈ 8·1028, and our range of
x-values should allow for at least 10 values, better
yet 100. The entire Shamir space p×q(x) would thus
contain 1030 possible shares. This is much larger
than the potential number of tagged items in the
world, even when assuming hundreds of billions of
items (1012). The chances that any two items would
by chance feature one and the same point in a space
as large as 1030 are for all practical purposes zero
(i.e., shares will be more or less unique).

Having unique shares not only makes tracking
easier, it also opens up the possibility of gradually
enumerating all shares of an item (this applies
equally to Juels’ pseudonyms) and thus eventually
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identifying it (which is unique to our approach,
however): As soon as an attacker is able to read not
only one, but two or more shares or pseudonyms
of the same item (e.g., if the throttling rate is
not slow enough, or if the person lingers in front
of a reader for a longer-than-expected time), these
shares or pseudonyms form ID-chains, which can
be connected (like a puzzle over time) whenever an
overlapping share or pseudonym is found in a log
file.

So while Shamir shares effectively protect the
contents of the tag from casual observers without
the overhead of any password management, they
don’t protect well from tracking attacks. Moreover,
many short encounters can potentially be assembled
into a complete set of t ≤ n shares, thus allowing
the retroactive identification and tracking of items.
Taken by itself, then, a shared secret does not seem
to help much either.

III. THE SHAMIR TAG

If bit-throttling protects from tracking attacks, but
fails to protect the tag information, while Shamir
shares hide tag data very well, but are open to
tracking attacks – how would a combination of these
two options work?

Our proposed solution to our initial problem
– hiding tag information and item traces without
requiring costly password management – combines
the encoding of EPC data into Shamir shares with
the bitwise release of information. We call such tags
“Shamir Tags”. Shamir Tags can be constructed for
any kind of tag information s (e.g., an EPC GID-96
code), simply by creating a set of n Shamir shares
that encode the secret value s, and then concate-
nating both, the (x, y) values of each share and the
concatenated shares themselves, into a single long
bit-string. Note that the order of the shares does not
matter, as long as they all conform to a previously
chosen format.

Fig. 3 shows the principal construction of a
Shamir Tag using a practical example: An item’s 96-
bit EPC is considered a shared secret s, for which
t = n = 3 shares are then computed (using, e.g.,
an algorithm as described in [18]). Each share is
randomly drawn from a polynomial in the Shamir
space p×q, with p being a prime number larger than
the largest secret s = 296 and q being large enough
to allow a variety of different x values to choose

from – in this example we chose q = 1024 = 210,
though with only 3 shares, we could have used as
few as 3 bits (as 23 > 3). The t = n = 3 shares
are concatenated into a single bit-string of constant
length (x0|y0|x1|y1|x2|y2), which in turn is stored on
the item’s RFID tag instead of its true EPC. Section
IV-A below discusses the choice of parameters in
more detail.

During readout (i.e., after being powered by a
reader’s field), the tag first chooses a temporary
random ID (e.g., a 16-bit RNG as described in
section II-A above) in order to be addressable by the
reader. The random ID does not allow tracking or
identification, as it is regenerated every time the tag
moves out of a reader’s field. The tag then responds
to an ID inquiry with a time-delayed, random (i.e.,
non-sequential) bitstream, prepending a simple o-
bit ordinal in front of each payload bit in order
to indicate this bit’s position. This stream does not
have to be uniform over time – in our example in
Fig. 3 the tag immediately discloses 16 bits and
only then continues to return single bits at a time,
until all 318 bits have been disclosed. As soon as
the reader has received enough bits to reconstruct at
least t shares, it can then calculate the item’s true
EPC and identify it.

Note that the value of t must not be known
in advance. Given a random selection of shares,
a reader could in practice always verify the cor-
rectness of intermediate results by recomputing the
secret s while omitting an arbitrary share from the
result. If s changes, only t or fewer shares have
been read. If all n shares have already been read,
it is very likely that t = n holds (while one might
easily construct a counter example to this heuristic,
the random selection of shares would make this
extremely unlikely to appear in practice). However,
the values of t and n might equally well be defined
within an RFID-standard, as they don’t constitute
secret information.

The following sections analyze the feasibility and
performance of this approach from three different
angles. First, we need to know how well such tags
will actually work for authorized readers, i.e., the
owner of an item. Secondly, we need to analyze how
unauthorized readers are prevented from identifying
the item easily. Last but not least, the tracking
protection needs to be examined. We will continue
to use the construction parameters presented in
Fig. 3, i.e., Shamir Tags consisting of three 106-
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Fig. 3. Principal Construction of a Shamir Tag. Based on the tag’s “true” ID, e.g., its EPC-code, multiple Shamir shares are concatenated
to form the tag’s new ID, which is then stored on the tag. Upon reader inquiry, an initial set of random bits is released, with subsequent
throttled single-bit releases. Eventually, all bits will be released and only then can the original “true” ID be computed.

bit Shamir shares (total of 318 bits), though many
other values are possible. Section IV-A will discuss
the parameter choices in detail.

A. Authorized Identification Performance

In order for our system to be usable, it is im-
portant that applications typically do not have to
wait for minutes or hours before a tag-ID can be
reconstructed from the read bits. It is only the fast
hit-and-run skimming attacks, as well as careless
catch-all readers, that we want to prevent from
identifying our tags.

The main difference that we assume between an
authorized and an unauthorized party is that the
former one already knows the tag, while the latter
one has not seen it before. Thus, we want our
system to allow private citizens or merchants to
quickly identify their own tags, given a small list
or database. This database might have been received
from a supplier enumerating today’s shipment, or be
the result of smart laundry machines or wardrobes
silently reading out whatever clothes have been put
in by their owner. The idea is that there should be no
need to transfer this information between owners in
advance, but it might speed up operations, especially
in the logistics domain.

The question then becomes how fast we can
perform this lookup, or more precisely: How many
bits do we need to uniquely identify an item from a
certain known item population? Assuming that bits
are uniformly distributed, about half of the popu-
lation should have a 1 in a particular position, the
other half a 0. This reasoning can easily be extended
to apply to multiple bit positions: each additional
bit lowers the chances by 50% that items in the
population will share this particular combination of
bits. The number of items i in a population of B
bit-strings that share a certain combination of b bits
is thus

i =
B

2b
. (3)

Table II shows values of i for different bit com-
binations of length b and varying tag populations
B = {100, 103, . . . , 1010}. For example, in row
20 we see that a specific combination of 20 bits
from different positions in the ID would on average
only be found in 0.95 items in a population of 1
million items. 20 bits should therefore be enough
to uniquely identify an item within 1 million items.
Since we use randomly chosen Shamir shares for
the creation of our Shamir Tags, we can assume
a uniform distribution of 0s and 1s in each tag,
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TABLE II

NUMBER OF ITEMS IDENTIFIED BY BIT-COMBINATIONS OF DIFFERENT LENGTHS

1 

Bits ↓   Items →  100  1 000  10 000  100 000  1 000 000  10 000 000  100 000 000  1 000 000 000  10 000 000 000 

1  50  500  5 000  50 000  500 000  5 000 000  50 000 000  500 000 000  5 000 000 000 

2  25  250  2 500  25 000  250 000  2 500 000  25 000 000  250 000 000  2 500 000 000 

3  13  125  1 250  12 500  125 000  1 250 000  12 500 000  125 000 000  1 250 000 000 

4  6  63  625  6 250  62 500  625 000  6 250 000  62 500 000  625 000 000 

5  3  31  313  3 125  31 250  312 500  3 125 000  31 250 000  312 500 000 

6  2  16  156  1 563  15 625  156 250  1 562 500  15 625 000  156 250 000 

7  0.78  8  78  781  7 813  78 125  781 250  7 812 500  78 125 000 

8  0.39  4  39  391  3 906  39 063  390 625  3 906 250  39 062 500 

9  0.20  2  20  195  1 953  19 531  195 313  1 953 125  19 531 250 

10  0.10  0.98  10  98  977  9 766  97 656  976 563  9 765 625 

11  0.05  0.49  5  49  488  4 883  48 828  488 281  4 882 813 

12  0.02  0.24  2  24  244  2 441  24 414  244 141  2 441 406 

13  0.01  0.12  1  12  122  1 221  12 207  122 070  1 220 703 

14  0.01  0.06  0.61  6  61  610  6 104  61 035  610 352 

15  0.00  0.03  0.31  3  31  305  3 052  30 518  305 176 

16  0.00  0.02  0.15  2  15  153  1 526  15 259  152 588 

17  0.00  0.01  0.08  0.76  8  76  763  7 629  76 294 

18  0.00  0.00  0.04  0.38  4  38  381  3 815  38 147 

19  0.00  0.00  0.02  0.19  2  19  191  1 907  19 073 

20  0.00  0.00  0.01  0.10  0.95  10  95  954  9 537 

 

and thus use (3) for determining the number of
bits needed to reasonably identify a Shamir Tag
in a particular population of B − 1 other Shamir
Tags. Note that (3) is completely independent of the
actual length of the ID bit-string. For example, in a
population of 1 million items, 977 have an overlap
of b = 10 bits (see row 10) – whether the ID uses
100 or 300 bits.

Table II thus allows us to determine the minimum
number of bits required to uniquely identify a per-
sonal item with high probability. Assuming 50 000
personal items, a random 16-bit “fingerprint” from
a readout should typically be enough to uniquely
identify an item from a list of cached entries (use the
column for 100 000 items and divide by two). Using
simple heuristics, even millions of items could be
reliably identified with such a 16-bit fingerprint. For
example, commercial IT-systems would be able to
roughly know which goods should be where and at
what time (e.g., goods that had already been put on
the shelves would not be expected at the loading
dock), which would allow merchants to identify
their goods directly from the initial 16-bit substring.

B. Protection from Unauthorized Identification

If identification is thus instantaneous for owners,
why should others have a more difficult time?
Obviously, if the attacker has no known list of
items to choose from (i.e., a lookup-table that lists
all personal items, or a list of today’s shipment),

identifying a 318-bit item (as in our example in
Fig. 3) with only 16 bits is impossible. Since the
true ID of an item is not stored, but only a random
set of Shamir shares, there is also no danger of
leaking a particular piece of information, e.g., the
manufacturer or the country of origin, from such a
bit-combination.

Even if an attacker would have access to such a
lookup-table, identification remains difficult, given
the potential size of the surveyed set. For exam-
ple, if a clothing store would remember all the
items it ever sold, it would still not be able to re-
identify customers with sufficient certainty, as new
customers with “similar looking” items might also
enter the store. Assuming as few as 10 million items
in circulation, a bit-combination of 16 bits would
already yield an uncertainty of 153 items (see row
16 of table II) – with or without the help of a
look-up table. While 10 million sounds like a lot,
note that even a relatively small city of of 20 000
citizens would only need 500 items per person – a
value that is easily reached within several weeks,
even if only a fraction of all groceries and clothes
would be tagged. Taking a small metropolitan area
with 1 million citizens and as many as 1000 items
per person, we would quickly reach 1 billion tags.
If we assume 10 000 tagged personal items (still
well below what an authorized party could reliably
identify, cf. section III-A above), we get over 10
billion items that one would need to choose from,
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000101111010101111101011010100011011010…0110111101001

Tag 3

Readout 3

111000011101010001010111010101101010100…1010101110101

Tag 1

Original Readout

Tag 2

111000011101010001010111010101101010100…1010101110101

Tag 1

Readout 1

Readout 2

010100111000110101010110010100001010101…1010100001100

Fig. 4. Examples of Bit-Overlaps. Given an original readout of tag 1, subsequent readouts might share the same 16-bit readouts yet be
from different tags. If fewer bits overlap (readouts 2 and 3), even more uncertainty remains.

with only 16 bits known. E.g., a smart bomb that
would be programmed to detonate when a certain
known tag would pass (this is a popular scenario
in the debate surrounding ePassports) would get
more than 150 000 false positives (see row 16, last
column, in table II).

C. Protection from Unauthorized Tracking

Section II-A above already pointed out the ad-
vantages of bit-throttling for preventing tracking
attacks: in order to track a single tag across multiple
readers, an attacker would need to repeatedly get
the same bit-combination, in order to associate
these readings with one and the same tag. As we
pointed out above, knowing a subset of 16 bits in
a population of, say, 10 billion items still leaves a
margin of error of over 150 000 items. Fig. 4 gives
such an example in “readout 1”: although it overlaps
with the original readout in all 16 bit positions, both
readouts are from different tags (tag 1 and tag 2).

Note, however, that in order to associate two
different 16-bit-combinations with each other, they
must actually be from the same 16 bit positions.
So the above margin of error only applies if two
readings would actually return, say, bits 0–15 in
both cases. Much more likely would be that the
first reading would return, e.g., bits 0–15, while the
second reading would return some other bits, maybe
10–25 – yielding an overlap of only 5 bits, and thus
increasing the margin of error to over 312 million
items (cf. line 5, last column, table II). An example
is shown in Fig. 4: readouts 2 and 3 both share a
5-bit overlap (underlined) with the original readout,
yet from this information alone it is impossible to
discern tag 3 from the previously read tag 1.

In order to properly assess the tracking protection
that our proposed scheme offers, we thus have to

compute the average number of overlapping bits
that occur between any two readouts. In our ex-
ample scheme described in Fig. 3 above, two short
readouts could in theory overlap in up to 16 bits.10

In practice, however, much lower overlaps are to be
expected. The expected number of overlapping bits
between any two readouts can be computed using
the hypergeometric distribution (see, e.g., [19]), a
standard means for computing the probability that a
draw of N balls from a set of n black and m white
balls will draw k black balls:

P (X = k) =

(
n
k

)(
m

N−k

)(
m+n

N

) (4)

In our particular case, we would draw N = 16
balls (i.e., bit positions) from a set of m + n =
318 balls (cf. Fig. 3) total, which contains exactly
n = 16 black balls (i.e., the 16 previously returned
bit positions). The probability that we will find an
overlap of k bit positions can thus be computed as
follows:

P (X = k) =

(
16
k

)(
318−16
16−k

)(
318
16

) (5)

If we want to compute the probability that we
have at least an overlap of k bit-positions, we need
to sum up (5) for all overlaps equal or greater than
k. Our answer is thus

P (X ≥ k) =
16∑

j=k

(
16
j

)(
318−16
16−j

)(
318
16

) . (6)

This distribution is listed in the first three columns
(labeled “# matching bit positions for 1 tag”) of

10The 16-bit number applies if we look only at the first bulk set of
returned bits, cf. Fig. 3. Obviously, if tags stay longer in the vicinity
of a reader, more bits might be read out on each tag.
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TABLE III

PROBABILITIES OF OVERLAPPING BIT-POSITIONS IN REPEATED READOUTS (16 BIT, 10 TAGS, EXACTLY X TAGS MATCH)

Page 1 calculations.xlsx

What Are The Chances of Reading Out The Same Bits Again?
Shamir Shares: 3 #bits= 106

Number of Items Per Person: i= 10 Number of bits that overlap between any 
Number of potential inter-tag overlaps: j= 100 two readings (on average):

Total Number of Bits per Item: N= 318 per item
Number of Bits Previously Read ("red balls"): M= 16 5.03% Expected Value: 16

Sample Size: n= 16

# matching bit positions for 1 tag  exactly ... tags match x or more bits from previously read set of tags expected
x exactly Log (10^x) at least 0 1 2 3 4 5 6 7 8 9 10 value

0 42.8838% ‐0.3677 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 10.000000 0.002103
1 38.2518% ‐0.4173 57.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 99.79% 9.997897 1.234172
2 14.9421% ‐0.8256 18.86% 0.00% 0.00% 0.00% 0.00% 0.04% 0.38% 2.22% 9.00% 23.93% 37.70% 26.72% 8.763724 5.466070
3 3.3779% ‐1.4714 3.92% 1.83% 9.00% 19.93% 26.14% 22.51% 13.29% 5.45% 1.53% 0.28% 0.03% 0.00% 3.297654 2.766431
4 0.4921% ‐2.3079 0.54% 57.93% 32.50% 8.21% 1.23% 0.12% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.531223 0.479107
5 0.0487% ‐3.3124 0.05% 94.91% 4.97% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.052116 0.048583
6 0.0034% ‐4.4732 0.00% 99.65% 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.003533 0.003363
7 0.0002% ‐5.7851 0.00% 99.98% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000170 0.000164
8 0.0000% ‐7.2481 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000006 0.000006
9 0.0000% ‐8.8660 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
10 0.0000% ‐10.6471 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
11 0.0000% ‐12.6049 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
12 0.0000% ‐14.7604 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
13 0.0000% ‐17.1459 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
14 0.0000% ‐19.8149 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
15 0.0000% ‐22.8675 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
16 0.0000% ‐26.5516 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
17 0.0000% #NUM! 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
18 0.0000% #NUM! 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
19 0.0000% #NUM! 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
20 0.0000% #NUM! 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000

100.0000%

at least ... tags match x or more bits from previously read set of tags
x >=1 >=2 >=3 >=4 >=5 >=6 >=7 >=8 >=9 10

0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.79%
2 100.00% 100.00% 100.00% 100.00% 99.95% 99.58% 97.35% 88.35% 64.42% 26.72%
3 98.17% 89.17% 69.24% 43.10% 20.59% 7.30% 1.85% 0.32% 0.03% 0.00%
4 42.07% 9.56% 1.36% 0.13% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%
5 5.09% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
6 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
11 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
13 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
14 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
17 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
18 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
19 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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TABLE IV

SAME AS TABLE III, BUT “AT LEAST” X TAGS MATCH

Page 1 calculations.xlsx

What Are The Chances of Reading Out The Same Bits Again?
Shamir Shares: 3 #bits= 106

Number of Items Per Person: i= 10 Number of bits that overlap between any 
Number of potential inter-tag overlaps: j= 100 two readings (on average):

Total Number of Bits per Item: N= 318 per item
Number of Bits Previously Read ("red balls"): M= 16 5.03% Expected Value: 16

Sample Size: n= 16

# matching bit positions for 1 tag  exactly ... tags match x or more bits from previously read set of tags expected
x exactly Log (10^x) at least 0 1 2 3 4 5 6 7 8 9 10 value

0 42.8838% ‐0.3677 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 10.000000 0.002103
1 38.2518% ‐0.4173 57.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 99.79% 9.997897 1.234172
2 14.9421% ‐0.8256 18.86% 0.00% 0.00% 0.00% 0.00% 0.04% 0.38% 2.22% 9.00% 23.93% 37.70% 26.72% 8.763724 5.466070
3 3.3779% ‐1.4714 3.92% 1.83% 9.00% 19.93% 26.14% 22.51% 13.29% 5.45% 1.53% 0.28% 0.03% 0.00% 3.297654 2.766431
4 0.4921% ‐2.3079 0.54% 57.93% 32.50% 8.21% 1.23% 0.12% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.531223 0.479107
5 0.0487% ‐3.3124 0.05% 94.91% 4.97% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.052116 0.048583
6 0.0034% ‐4.4732 0.00% 99.65% 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.003533 0.003363
7 0.0002% ‐5.7851 0.00% 99.98% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000170 0.000164
8 0.0000% ‐7.2481 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000006 0.000006
9 0.0000% ‐8.8660 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
10 0.0000% ‐10.6471 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
11 0.0000% ‐12.6049 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
12 0.0000% ‐14.7604 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
13 0.0000% ‐17.1459 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
14 0.0000% ‐19.8149 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
15 0.0000% ‐22.8675 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
16 0.0000% ‐26.5516 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
17 0.0000% #NUM! 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
18 0.0000% #NUM! 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
19 0.0000% #NUM! 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000
20 0.0000% #NUM! 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000000 0.000000

100.0000%

at least ... tags match x or more bits from previously read set of tags
x >=1 >=2 >=3 >=4 >=5 >=6 >=7 >=8 >=9 10

0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.79%
2 100.00% 100.00% 100.00% 100.00% 99.95% 99.58% 97.35% 88.35% 64.42% 26.72%
3 98.17% 89.17% 69.24% 43.10% 20.59% 7.30% 1.85% 0.32% 0.03% 0.00%
4 42.07% 9.56% 1.36% 0.13% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%
5 5.09% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
6 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
11 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
13 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
14 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
17 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
18 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
19 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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table III. For example, there is a 42.8838% chance
that the second readout (the “draw” of the balls) will
have no overlap with the set of bit positions read out
the first time (i.e., the 16 black balls marked in the
total set of 318 balls), and a 38.2518% chance that
these two readouts overlap in exactly 1 bit position
(cf. rows 0 and 1 in table III). Column 2 simply
shows the logarithmic value of the first column,
in order to accommodate the small numbers. The
third column finally gives the cumulative numbers
described in (6), i.e., the probability that at least
this many bit positions overlap (obviously, there is
a 100% probability that there is an overlap of 0
bits or more). Row “x=2” can be read as: “There
is an 18.86%-chance of finding an overlap of 2 or
more bit positions”. Looking at row 8, we can find
that there is only a rather small chance of actually
reading the same combination of 8 bit-positions
twice (about 10−7); for bit-combinations of length
x=12, e.g., this would be as low as 10−14.

Using standard combinatorics (see, e.g., [19]),
we can also compute the expected value E(X) of
our hypergeometric distribution, i.e., the expected
number of overlapping bit positions between two
readouts:

E(X) = n · M
N

= 16 · 16

318
= 0.805 (7)

This means that the returned bit-positions from

a newly read tag will overlap, on average, in only
0.8 positions from a previous tag. This sounds like
a very good result, as the discriminatory power
of 1 or 2 bits is very low in pretty much any
tag population. However, as we have discussed in
section II-B above, people might carry more than
one tagged item, thus increasing the chances of
finding overlapping readouts (cf. Fig. 2). We thus
need to adjust our above analysis to take multiple
tags into account.

D. Multi-Item Tracking
While the expected number of overlapping bit

positions between two readouts is as low as 0.8, the
fact that a person will usually carry more than one
tagged item will create more chances that overlap-
ping bit positions can be found. Simply multiplying
the expected number of overlapping bit-positions by
the number of tags is of course not correct. Our goal
is to compute the probability that j or more tags of
a readout have an overlap of k or more bit-positions
with a set of i previously read tags. The results are
given in table IV above – subsequently we provide
a step-by-step computation of these numbers.

Recall the above probability P (X≥k) as de-
scribed in (6). It can be expressed as follows:
Pk : Probability that 1 item has overlap of k or

more bit-positions with 1 previously read item.
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P k : Probability that 1 item has overlap of less than
k bit-positions with 1 previously read item.

In order to extend this computation to multiple
items, we first try to find the probability that our
recently read bit-combination matches one or more
previously read items. We can express this proba-
bility Q as follows:
Qi,k : Probability that 1 item has overlap of k or

more bit-positions with 1 or more previously
read items, given i items.

Qi,k : Probability that 1 item has overlap of k
or more bit-positions with no previously read
item, given i items.

We can easily compute Qi,k, as this is simply the
probability that we find no overlap of k or more
bits (i.e., P k) in i consecutive experiments (one
experiment for each of the i items):

Q = P
i
= (1− P )i (8)

Knowing Q, we can now compute Q:

Q = (1−Q) = 1− (1− P )i (9)

With Qi,k we thus know the probability that a
newly read-out tag has an overlap of k or more
bit-positions with i or more previously read items.
However, as the current readout also comprises
more than 1 tag, we will need to extend this again
to allow multiple readouts to match i or more
previously read items. We begin again by expressing
this probability, let us call it R, formally:
Ri,k : Probability that 1 or more items (out of

i items) have an overlap of k or more bit-
positions with 1 or more previously read items
(out of i items).

Ri,k : Probability that none of i items has an over-
lap of k or more bit-positions with 1 or more
previously read items (out of i items).

Again, computing the inverse probability R is
fairly easy, as it is simply the probability of a single
tag not matching 1 or more previously read items
(which we called Q) for i consecutive trials:

R = Q
i
= (1− P )i2 (10)

This observation allows us to compute R directly
as

R = (1−R) = 1− (1− P )i2 . (11)

It is not trivial to generalize from this equation,
i.e., to not only get the probability that one or more
items have an overlap, but j or more. We again
begin by formally describing the probabilities that
we are looking for:
Si,j,k : Probability that j or more items (out of

i items) have an overlap of k or more bit-
positions with 1 or more previously read items
(out of i items).

Si,j,k : Probability that less than j items have an
overlap of k or more bit-positions with 1 or
more previously read items (out of i items).

We first observe that “less than j items” simply
means “0 items, 1 item, 2 items, . . . or j−1 items”.
We can thus simply sum up the probabilities for
these different cases (i.e., “0 items match”, “1 item
matches”, etc.) in order to compute S. While the
probability that no item matches is simply R (cf.
(10)), we need yet another probability, let us call it
T , that describes how exactly j items match k bits
or more out of the previously read i items:
Tj,i,k : Probability that exactly j items (out of i

items) have an overlap of k or more bit-
positions with 1 or more previously read items
(out of i items).

Computing Tj,i,k is straightforward. The proba-
bility that exactly 1 item matches (T1) is simply
the probability that only item 1 matches, plus the
probability that only item 2 matches, etc. We already
computed the probability that a single item matches
k bits from a pool of i items – recall the definition
of Qi,k above. The probability that out of i items
only a single one matches, is simply i experiments
in a row with only one success (i.e., Q) and i − 1
failures (i.e., Q). As we have i such items, and each
one could be the single matching item, we have to
multiply this probability by i:

T1 = i ·Q ·Qi−1
(12)

For the case “exactly 2 items match” (T2), we
have 2 successes and i− 2 failures. However, there
are many more combinations for which particular
two items match – namely

(
i
2

)
. T2 is thus

T2 =

(
i

2

)
Q2 ·Qi−2

. (13)

We can generalize this formula to Tj as follows:
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Tj =

(
i

j

)
Qj ·Qi−j

(14)

We can now compute Sj and with this Sj as
follows. Recall that Sj was simply the probability
that no item matches (R) plus the probability that
one item matches (T1), etc., up to a match of j − 1
items:

Sj = R +

j−1∑
m=1

Tm (15)

Sj = 1− Sj = 1−

(
R +

j−1∑
m=1

Tm

)
(16)

= 1−

(
R +

j−1∑
m=1

(
i

m

)
Qm ·Qi−m

)
Table IV shows the values of Sj with j =

{1, . . . , 8}, while table III shows the intermediate
results of Tj . The final column in table III also
lists the expected values, i.e., the expected number
of tags that have an overlap of x bit-positions per
readout (for x = {1, . . . , 8}).

From these results, we can for example deduct
that on average, only 3.298 tags have a bit-overlap
of 3 or more bits when two 10-item sets are read
(see row “x=3”, column “expected value” in table
III). Table IV shows that on average, every second
readout will find at least 1 tag with a bit-position
overlap of 4, but finding 4 or more tags with a bit-
position overlap of 4 will only occur at every 800th

readout. Finding anything more than 7 overlapping
bit-positions is very unlikely, even when requiring
only 1 item to have such an overlap (see row “x=7”,
column “>=1” in table IV). In most cases, 7 or 8
tags will have an overlap of 2 bit positions with a
previous readout (see row “x=2”, column “>=7” in
table IV), but already finding an overlap of 3 bit-
position is much less likely: typically no more than
5 tags have that many overlapping bit-positions (see
row “x=3”, where columns “>=0” through “>=5”
represent over 90% of all cases).

Coming back to our original question of how well
Shamir Tags could be tracked in practice (section
III-C), we can now turn to table II to see the
effects of typical bit-overlaps. For example, finding
an overlap at as many as 4 bit-positions,11 given a

11Cf. row “x=4” in table IV: Finding 4 overlapping bit-positions
happens in less than 50% of all cases, and for 1 or 2 tags only.

population of several million tags, more than half
a million items would share those same 4 bit val-
ues. Consequently, if a reader repeatedly encounters
those 4 bit-positions with identical values, tracking
is difficult. Even when up to 7 bit-positions overlap,
which is an extremely unlikely case, this only yields
a resolution of 10 000 items in a (small) population
of 1 million.

IV. DISCUSSION

We now discuss practical aspects of designing a
privacy protection system based on Shamir Tags. In
particular, we need to find suitable values for the
number and size of the Shamir shares, as well as
the bit disclosure parameters. We will also need to
think about practical attacks and deployment costs.

A. System Parameters
We based our analysis above on a Shamir Tag

with 3 shares, totalling 318 bits and disclosing 16
bits upon first read (cf. Fig. 3). Obviously, other
choices are possible.

Fig. 5 gives an overview of the readout process
and its corresponding system parameters. After a
reader has powered a Shamir Tag at time tB, an
initial set of bits is disclosed in bulk. The size of this
set should be such that a tag can instantly be iden-
tified from a known (i.e., cached) tag population.
We call this number CIL – the cached identification
limit. After an initial delay of TD, the tag then
releases individual bits (cf. Fig. 3) at a constant
disclosure rate δ. If the tag leaves the reader vicinity
at time tE (i.e., before all bits have been disclosed),
the thus obtained random bit-substring does not
allow the reader to infer the item’s true ID. Only
if the reader powers the tag for the entire interval
TF = TD + (TotalBits− CIL)/δ can the tag’s true
ID be computed from scratch.12

The size of CIL depends on the envisioned cached
population, e.g., the size of a personal household, or
the number of items arriving daily at an industrial
loading dock. It should be large enough so that the
particular amount of bits is able to differentiate all
items currently in the cache. Table II already gave
an overview of possible choices for CIL. While
private citizens might not have more than a few

12This of course assumes that no cached information is available –
otherwise one can guess the remaining bits based on the known tag
population (cf. section III-A).
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Bits
Disclosed

All

Full Disclosure Time TF

Random
Substring

Disclosure Rate δ

Cached
Identification

Limit (CIL)

Delay TD

Time
None

Limit (CIL)

Complete Identification tCBegin Readout tB End Readout tE Complete Identification tCBegin Readout tB End Readout tE

Fig. 5. System Parameters. After disclosing an initial number of CIL bits for cached identification, bits are randomly disclosed at a rate
of δ bits per seconds after a delay of TD seconds. Only if the readout process ends at or after tc has been reached (i.e., after TF seconds),
the full ID can be reconstructed.

thousand tagged items, it might be desirable to plan
for larger populations, in particular for being able to
support industrial scenarios. With our choice of 16
bits, some 50 000 cached items can be reasonably
identified. Using as many as 20 bits would support a
reliable identification among 1 million cached items.

After having disclosed CIL bits, the remaining
number of bits on a Shamir Tag should be large
enough to make brute-force attacks infeasible. Ob-
viously, using more Shamir shares on each tag
will help, yet only until the tags begin the bitwise
release after the time interval TD. Assuming a target
disclosure interval TF , increasing the number of
Shamir shares requires increasing the disclosure rate
δ accordingly. This means that during the interval
TF − TD, the effect of a larger number of shares is
nullified. Our initial choice of only 3 Shamir shares
per tag leaves enough bits after the initial disclosure
(about 300 bits) to render brute-force infeasible,
while requiring only 318 bit total tag payload.

Also during the initial interval TD, tracking re-
sistance is improved by using a larger number of
shares on a tag, as fewer bit positions will overlap
between individual readouts. Again, after interval
TD, the steeper rate of δ (assuming that we want
to keep TF constant) will gradually diminish this
advantage.

Given these observations, the main system design
parameters will be the size of CIL and the total
number of Shamir shares on each tag, as well
as the envisioned full disclosure time interval TF

and the initial delay TD. Reasonable values for TD

would be several seconds, maybe up to 10, which
would eliminate the majority of all unauthorized
gate disclosures (e.g., readers in doors), as people
would pass through in a few seconds and thus only
disclose the initial CIL bits. For the overall time
needed to read out a complete tag, TF might be as
much as several minutes, which would still allow
storage applications and customer returns, but would
require an unauthorized reader to follow a mobile
user for prolonged time in order to continuously
power the tag.

Fig. 6 shows the relationship between the size
of CIL and the number of Shamir shares stored
on the tag. It uses the cumulative overlap value
(COV) of a 10-tag readout with another 10-tag
readout to illustrate the traceability protection levels
of different parameter choices. COV is computed
directly from the last column (“expected value”) in
table III by summing up the individual expected
position-overlap values E(x):

COV = E(20) · 20 +
0∑

i=19

(
E(i)−

20∑
j=i+1

E(j)

)
· i

(17)
Our initial choice of 3 Shamir shares and a CIL

of 16 bit has a COV of 22.65 bits – using 4 shares
would bring it down to 19.01 bits. Note that the
value of COV is simply for comparison purposes,
it does not mean that there is a position overlap
of 22 bits when comparing two readouts! However,
it illustrates that, for a given CIL, one should aim
for a larger number of shares in order to lower the
chances for bit overlaps from disclosing the initial
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Fig. 6. Illustrating the Tradeoff between Initial Bit Disclosure (CIL) and Number of Shamir Shares Using the Cumulative Overlap Value
(COV). By summing up the individual expected overlap values in table III for different choices of CIL and number of Shamir shares, we
can illustrate the traceability of a certain choice of parameters. Lower values of COV are better.

set of bits. For example, to provide the same level of
protection when increasing CIL from 16 to 20 bits,
we can see in Fig. 6 that we should use at least 5
shares (which has a COV of 21.98).

B. Attacks
While our analysis has shown that each read-

out will only share a few bit-positions with other
readouts, a careful study of a reader’s log file
might still reveal patterns and trends that could
support the tracking of tagged items. Below we list
some options for analyzing such overlaps, though
an exhaustive treatment of the data mining aspects
of such information is beyond the scope of this
paper. Perhaps the most important aspect of any
such attack is that it basically remains opportunistic,
i.e., it might be able to uncover partial tracks of
selected items, yet this will very much depend on
the law of large numbers and pure chance.

We would like to stress our initial goals again: to
construct a system that will prevent casual and acci-
dental (i.e., unwanted) readouts – not to offer 100%-
percent protection from identification and traceabil-
ity. If an attacker is determined to track a known
target over the course of days and months, doing so
through someone’s shopping items or clothing might
very well be possible, even if they are protected
by Shamir Tags. However, there should in any case
be easier and more reliable methods at such an
attacker’s disposal (e.g., tracking devices or cell
phone logs). Having said that, we still need to point
out our system’s weaknesses:

a) Windowing: A windowing attack utilizes
the fact that out of the total tag population, the
spatial distribution of tags is highly variable. For
example, while a reader installed in the main train
station of a city might see not only the tags of
the local citizens, but also those from visitors and
tourists, a reader installed in a small neighborhood
supermarket might see much fewer tags over the
course of days and month. Putting a reader in front
of a small office building will most likely encounter
only a few thousand tags from less than 100 people,
few enough so that tracking is possible even with
position-overlaps of 5 or 6 bits. Table II shows that
with a 6 bit overlap, a small population of several
hundred tags could potentially be tracked.

b) Merging: A merging attack tries to rec-
oncile multiple substring readouts into larger frag-
ments, very much like a crossword or sudoku puz-
zle. In our example in Fig. 4, the overlapping bits
of readout 2 could be used to construct a more
complete version of the original readout from tag
1. Note, however, that an attacker would also need
to take into account alternative hypotheses, as the
original readout could have equally likely been from
tag 2. Consequently, the original readout would need
to be combined with the data from both readout 1
and readout 2 to create two hypothetical tags, of
which only one (the combination with readout 2)
would actually represent an existing tag. Combining
the original readout with readout 1 will create a
(most likely) non-existent tag, as it combines bits
from two different tags (tag 1 and tag 2). With
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feature more overlapping bit-values than those from different people. However, the large standard deviations around those means make it
difficult to infer “sameness” from such an average figure.

thousands of tags sharing the same 5 or 6 bit
positions, the repeated combination of overlapping
bits will quickly create a combinatorial explosion, as
n overlapping tags result in

(
n
2

)
possible combina-

tions. For example, finding some 10 000 overlapping
bit-strings in a reader’s log, one could construct 50
million possible combinations.

c) Statistical Analysis: While the number of
overlapping bit positions (cf. tables III and IV) is
irrespective of the similarity of the encountered tags,
the actual number of overlapping bit-values across
all carried tags might be larger if one encounters
a previously read-out set of tags. This could allow
an attacker to infer whether the just-read set of bits
is from a previously encountered set, thus aiding
with a merging attack. Again, combinatorics quickly
makes such an attack expensive, as a pairwise com-
parison requires

(
n
2

)
operations (just as in a merging

attack). In order to get a feel for the discriminatory
power of such a heuristic, we simulated different
populations sizes of 100, 1000, 10 000 and 100 000
people, each carrying 10 tags. In each experiment,
we performed 2000 random readouts from the pop-
ulation. We then conducted a pairwise comparison
among those 2000 readouts, resulting in

(
2000

2

)
=

1 999 000 comparisons. For each comparison, we
noted whether the two readouts were from the same
person or a different one. A comparison implied
matching each of the 10 bit-readouts with all 10
other bit-masks from the other readout, resulting in
100 bit-mask comparisons. Note that we explicitly
did not discard comparisons where one or more bits

did have different values. While these are clearly
from different tags, we cannot discard the entire
match, as a person might have simply exchanged
one item for another. We instead computed an
average bits matched as follows: For each of the
10 bit-masks from the first readout, the maximum
bit overlap with any of the other readouts’ bit-masks
is determined. These 10 maximums are normalized
and used as an overall overlap characteristic for
the readout pair. Fig. 7 summarizes the mean and
standard deviation for the four different user bases
we performed this experiment on. Table V summa-
rizes the results from the corresponding t-tests. The
differences are almost always statistically significant
(α < 0.05, see last row), except for the largest
population, where the 2000 readouts produced only
very few reads from identical persons.13

C. Deployment

In contrast to most of today’s proposed RFID
privacy technology [5], deploying Shamir Tags is
simple and cost-efficient. This is due to two reasons:

13In order to perform t-test comparisons on our data, we needed
to have the same number of observations in both data sets. To
do so, we randomly selected as many results from the “different”-
set as we had results in the “same”-set (since we typically got
many fewer results from the “same” person). Randomized selection
was performed on the raw text file containing one result per line,
using the free line randomization tool rl from Arthur de Jong (see
ch.tudelft.nl/˜arthur/rl/). In total, we always had

`
2000

2

´
=

1999 000 observations, so one can compute the total number of
“different”-observations that we got by subtracting the number of
“same”-observations in table V from 1 999 000.
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TABLE V

t-TESTS FOR SIMULATION RESULTS USING DIFFERENT POPULATION SIZES. FOR COMPARISON PURPOSES, THE RESULTS FOR THE

“DIFFERENT”-SETS ARE RANDOMLY CHOSEN SUBSETS TO MATCH THE SIZE OF THE CORRESPONDING “SAME”-SET.

Population (People) 100 1000 10000 100000
Bit‐Overlap (Values) w/ Same Different Same Different Same Different Same Different

Mean 1.60580 1.49087 1.62039 1.49541 1.61146 1.50000 1.55833 1.52500
Variance 0.04715 0.04140 0.04967 0.03990 0.05557 0.04209 0.02949 0.05500

Observations 19817 19817 2070 2070 192 192 24 24
t Stat 5.4240E+01 1.9433E+01 4.7194E+00 5.4654E‐01

P(T<=t) one‐tail 0.0000E+00 1.0652E‐77 2.2821E‐06 2.9498E‐01
t Critical one‐tail 1.6449E+00 1.6456E+00 1.6529E+00 1.7139E+00

1) No cryptographic functionality on the tag
or in the reader: Shamir Tags simply store
a (large) number. Any needed cryptographic
operations are either employed during tag
creation (at the manufacturer’s site), or in the
application reading the tag (for recombining
the Shamir shares). Neither the reader nor
the tags will need any modification from to-
day’s standards, except for bit-throttling sup-
port. The required random number generator
(RNG) for creating temporary session IDs (cf.
section II-A) is already part of today’s tag
standards [3].

2) Moderate size requirements: Shamir Tags can
work with as few as 40 bytes of tag memory.
Today’s passive RFID tags already feature
several hundred bits of memory, some more
than 1000 bits [20]. While using a 318-bit
Shamir share for storing a 96-bit EPC will
increase costs over storing the data in plaintext
on the tag, the added costs are minimal, as
today’s majority of costs for manufacturing
an RFID-tag comes from assembling chip and
antenna, not from the chip’s silicon [21].

Due to our initial design goal of abolishing
the need for passwords and lookup-lists, no added
point-of-sales requirements would be introduced,
i.e., consumers would not require specific privacy-
enabling equipment (e.g., a “guardian” device, such
as a special mobile phone) to enjoy a basic level of
protection right after purchase.

V. CONCLUSIONS

The analysis above has shown that our approach
is able to provide instant identification of personal
(i.e., known) items, using an initially disclosed set
of bits. At the same time, it is able to provide
protection from unauthorized identification, as items
can only be identified if all bits on the tag have

been disclosed, which requires a significant amount
of reading time due to the employed bit-throttling
mechanism. If, however, all bits have been read,
the original ID of the tagged item can easily be
computed, alleviating the need for cumbersome (and
costly) password management. Last but not least,
our method is also effective against unauthorized
tracking, since the random selection of individual
bits leads only to small overlaps, which will in most
cases not be enough to repeatedly track an item with
any reasonable confidence.

Together with corresponding legislation that
makes the unauthorized reading of tags a crime,
citizens could rest assured that unscrupulous retail-
ers cannot claim accidental readouts, as the initial
CIL would allow them to immediately identify their
own goods (i.e., those not already sold). Storing sets
of bits from unknown or already sold merchandise
would be in clear violation of existing laws and
could thus be persecuted, given a corresponding
auditing process. Clearly, our solution does not
protect against persistent attackers who devote much
time and energy to secretly follow mobile users
or install hidden reading devices in places where
individuals rest for extended periods of time (e.g.,
public transportation). However, given our aim of
providing basic protection for cheap and abundant
items such as clothing or groceries, such an attacker
might favor more efficient surveillance capabilities
in the first place.
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