
A Performance Evaluation Of The Collection Tree Protocol
Based On Its Implementation For The

Castalia Wireless Sensor Networks Simulator

Ugo Colesanti
Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma
colesanti@dis.uniroma1.it

Silvia Santini∗
Institute for Pervasive Computing

ETH Zurich
santinis@inf.ethz.ch

Technical Report Nr. 681
Department of Computer Science

ETH Zurich
August 31, 2010

Abstract

Many wireless sensor network applications rely on the availability of a collection service
to route data packets towards a sink node. The service is typically accessed through well-
defined interfaces so as to hide the details of its implementation. Providing for efficient
network operation, however, often requires investigating the interplay between specific
collection services and application-level algorithms. To enable a smooth evaluation of
these mutual dependencies, we implemented a reference collection protocol, known as
CTP, as a module for the Castalia wireless sensor networks simulator. Castalia is a well-
known and widely used simulator but its standard distribution only provides for a basic
collection module. By implementing a more advanced protocol like CTP we extend and
improve the application scope of Castalia. In this report, we describe our implementation
and present a study of the performance of CTP. All the software modules developed in
the context of this work are available upon request from the authors.

1 Introduction

A wireless sensor network (WSN) is a collection of tiny, autonomously powered devices –
commonly called sensor nodes – that are endowed with sensing, communication, and pro-
cessing capabilities [14, 1]. Typical application scenarios for WSNs envision a large number
of nodes being distributed at various locations over a region. Once deployed, sensor nodes
can capture data about some physical quantity, like temperature, atmospheric pressure or a
pollutant concentration [34, 9, 3, 35]. Sensor readings are then usually reported to a central
server, also called the sink node, where they are further processed according to the application
requirements. To report their readings to one or more data collectors, sensor nodes communi-
cate through their integrated radio-transceivers and collaboratively build an ad-hoc, possibly
multi-hop relay network.

∗Corresponding author.

1

Within the last decade, the WSN research community proposed a plethora of algorithms
and protocol aiming at guaranteeing efficient and reliable data collection. These include sev-
eral power-aware medium access protocols and reliable routing schemes [37, 10, 17, 20]. In
particular, the Collection Tree Protocol (CTP) provides for “best-effort anycast datagram com-
munication to one of the collection roots in a network ” [15, 17, 18]. CTP is widely regarded
as a reference protocol for performing data collection in WSNs and its specification is pro-
vided in TinyOS1 Enhancement Proposal 123 [15]. Gnawali et al. also report a throughout
description and performance evaluation of CTP in realistic settings, demonstrating the ability
of the protocol to reliably and efficiently report data to a central collector [17, 18]. A TinyOS
implementation of CTP is available within the TinyOS 2.1 distribution and therefore directly
usable for implementing WSNs applications. In particular, application-level modules can call
a generic collection service which is in turn implemented through CTP.

This level of abstraction is usually highly desirable, since the actual protocol implementing
the collection service can (theoretically) be changed without affecting the functioning of the
related calling and called modules. However, when developing WSN applications it is often
crucial to work with actual implementations of generic services, like CTP as a collection
primitive, so as to investigate possible pitfalls and potential for cross-layer optimizations.
This in turn often requires to resort to simulation as an investigation tool, especially as the
number of nodes grows, due to the well-known burdens connected with the deployment of
WSNs. Additionally, simulation results offer a benchmark towards which experimental data
can then be compared.

In the context of our work, we make use of the Castalia WSN simulator. The standard
Castalia distribution, however, does not yet include an implementation of CTP. We there-
fore implemented a corresponding CTP module, so as to have it available for our research on
application-level algorithms. In this report, we provide a detailed description of our imple-
mentation of CTP for the Castalia simulator and report a corresponding performance analysis
of the protocol. We believe this report to constitute a very useful reference for researchers in-
terested in working with CTP. Furthermore, all the software artifacts developed in the context
of this work are available from the authors upon request.

In the remainder of this report we will first provide some background information about
Castalia and CTP in section 2. We will then focus on the description of CTP’s implementation
for the Castalia simulator in section 3. In section 5, we will report an analysis of the perfor-
mance of CTP based on a simulation study whose setup is described in section 4. Finally, 6
concludes the report.

2 Background

This section provides background information about data collection in WSNs, CTP, and the
Castalia simulator. The reader familiar with these topics can easily skip this section and
proceed to the description of CTP’s Castalia-based implementation reported in section 3.
1TinyOS is a well-known operating system and programming environment for wireless sensor networks. For
more information see also the TinyOS project’s website: www.tinyos.net.

2

2.1 Data collection in wireless sensor networks

As stated in TinyOS TEP 119, data collection is one of the fundamental primitives for imple-
menting WSN applications [16]. A typical collection protocol provides for the construction and
maintenance of one or more routing trees having each a so-called sink node as their root. A
sink can store the received packets or forward them to an external network, typically through
a reliable and possibly wired communication link. Within the network, nodes forward packets
through the routing tree up to (at least) one of the sinks. To this end, each node selects one
of its neighboring nodes as its parent. Nodes acting as parents are responsible of handling
the packets they receive from their children and further forwarding them towards the sink.
To construct and maintain a routing tree a collection protocol must thus first of all define a
metric each node can use to select its parent. The distance in hops to the sink or the quality
of the local communication link (or a function thereof) can for instance be used as metrics
for parent selection. In either cases, nodes need to collect information about their neigh-
boring nodes in order to compute the parent selection metric. To this end, nodes regularly
exchange corresponding messages, usually called beacons, that contain information about, e.g.,
the (estimated) distance in hops of the node to the sink or its residual energy.

Collection protocols mainly differ in the definition of the parent selection metric and the
way they handle critical situations like the occurrence of routing loops. On this regard, TinyOS
TEP 119 specifies the requirements a collection protocol for WSNs must be able to comply
with. First of all, it should be able to properly estimate the (1-hop) link quality. Second, it
must have a mechanism to detect (and repair) routing loops. Last but not least, it should
be able to detect and suppress duplicate packets, which can be generated as a consequence of
lost acknowledgments.

Although these requirements may sound simple to fulfill, collection protocols providing
for high data delivery ratios are rare. The main factor hampering the performance of such
protocols is the instability of wireless links. In particular, as pointed out in [17], the quality of
a link may vary significantly, and quickly, over time. Also, the estimation of the link quality is
often based on correctly received packets only; clearly, this introduce a bias in the estimation
since information about dropped packets is lost. The Collection Tree Protocol (CTP) by
Gnawali et al. directly addresses these problems and can reach excellent delivery performance,
as we also show in section 5. CTP, which is described in detail below, became quickly popular
within the WSNs research community [15, 21, 22]. Nonetheless, a CTP module supporting
several WSN hardware platforms (MicaZ, Telosb/TmoteSky, TinyNode) is available for the
TinyOS 2.1 distribution.

2.2 The Collection Tree Protocol (CTP)

CTP uses routing messages (also called beacons) for tree construction and maintenance, and
data messages to report application data to the sink. The standard implementation of CTP
described in [15] and evaluated in [17, 18] consists of three main logical software components:
the Routing Engine (RE), the Forwarding Engine (FE), and the Link Estimator (LE). In
the following, we will focus on the main role taken over by these three components, while in
section 3 we will provide in-depth descriptions of their features.

Routing Engine. The Routing Engine, an instance of which runs on each node, takes care
of sending and receiving beacons as well as creating and updating the routing table. This table

3

holds a list of neighbors from which the node can select its parent in the routing tree. The
table is filled using the information extracted from the beacons. Along with the identifier of
the neighboring nodes, the routing table holds further information, like a metric indicating
the “quality” of a node as a potential parent.

In the case of CTP, this metric is the ETX (Expected Transmissions), which is communi-
cate by a node to its neighbors through beacons exchange. A node having an ETX equal to
n is (expected to be) able to deliver a data packet to the sink with a total of n transmissions.
The ETX of a node is defined as the “ETX of its parent plus the ETX of its link to its parent”
[15]. More precisely, a node first computes, for each of its neighbors, the link quality of the
current node-neighbor link. This metric, to which we refer to as the 1-hop ETX, or ETX1hop,
is computed by the LE. For each of its neighbors the node then sums up the 1-hop ETX with
the ETX the corresponding neighbors had declared in their routing beacons. The result of
this sum is the metric which we call the multi-hop ETX, or ETXmhop. Since the ETXmhop

of a neighbor quantifies the expected number of transmissions required to deliver a packet to
a sink using that neighbor as a relay, the node clearly selects the neighbor corresponding to
the lowest ETXmhop as its parent. The value of this ETXmhop is then included by the node
in its own beacons so as to enable lower level nodes to compute their own ETXmhop. Clearly,
the ETXmhop of a sink node is always 0.

The frequency at which CTP beacons are sent is set by the Trickle algorithm [24]. Using
Trickle, each node progressively reduces the sending rate of the beacons so as to save energy
and bandwidth. The occurrence of specific events such as route discovery requests may however
trigger a reset of the sending rate. Such resets are necessary in order to make CTP able to
quickly react to topology or environmental changes, as we will also detail in section 3.3.

Forwarding Engine. The Forwarding Engine, as the name says, takes care of forwarding
data packets which may either come from the application layer of the same node or from
neighboring nodes. As we will detail in section 3.4, the FE is also responsible of detecting
and repairing routing loops as well as suppressing duplicate packets. As mentioned above,
the ability of detecting and repairing routing loops and the handling of duplicate packets are
two of the tree features TinyOS TEP 119 requires to be part of a collection protocol [16].
The third one, i.e., a mean to estimate the 1-hop link quality, is handled in CTP by the Link
Estimator.

Link Estimator. The Link Estimator takes care of determining the inbound and outbound
quality of 1-hop communication links. As mentioned before, we refer to the metric that
expresses the quality of such links as the 1-hop ETX. The LE computes the 1-hop ETX
by collecting statistics over the number of beacons received and the number of successfully
transmitted data packets. From these statistics, the LE computes the inbound metric as the
expected number of transmission attempts required by the neighbor to successfully deliver
a beacon. Similarly, the outbound metric represents the expected number of transmission
attempts required by the node to successfully deliver a data packet to its neighbor.

To gather the necessary statistics and compute the 1-hop ETX, the LE adds a 2 byte
header and a variable length footer to outgoing routing beacons. To this end, as shown in
figure 1, routing beacons are passed over by the RE to the LE before transmission. The
fine-grained structure of LE’s header and footer will be described in section 3.2.

Upon reception of a beacon, the LE extracts the information from both the header and

4

Figure 1: Message flow and modules interactions.

footer and includes it in the so-called link estimator table [17]. This table holds a list of
identifiers of the neighbors of a node, along with related information, like their 1-hop ETX or
the amount of time elapsed since the ETX of a specific neighbor has been updated. In contrast
to the routing table, which is maintained by the RE, the link estimator table is created and
updated by the LE. These tables are however tightly coupled. For instance, the RE can force
the LE to add an entry to the link estimator table or to block a removal. The latter case
occurs when one of the neighbors is the sink node. Similarly, the LE can signal the eviction
of a specific node from the link estimator table to the RE, which in turn accordingly removes
the entry corresponding to the same node in the routing table. The information available
from the link estimator table is used to fill the footer of outgoing beacons, so that nodes can
efficiently share neighborhood information. However, the space available in the footer may
not be sufficient to include all the entries of the neighborhood table in one single beacon.
Therefore, the entries to send are selected following a round robin procedure over the link
estimator table.

Interfaces. As we will also detail in the following section 3, the three components RE, FE,
and LE do not work independently but interact through a set of well-defined interfaces. For
instance, the RE needs to pull the 1-hop ETX metric from the LE to compute the multi-hop
ETX. On the other side, the FE must obtain the identifier of the current parent from the RE
and check the congestion status of the neighbors with the RE. As schematically depicted in
figure 1, these interactions are managed by specific interfaces. In the following section 3, we
will explicitly mention these interfaces whenever necessary or appropriate.

5

2.3 Castalia and OMNeT++

There exist a plethora of different frameworks that provide comfortable simulation environ-
ments for WSNs applications. Their survey is beyond the scope of this report and the inter-
ested reader is referred to [19, 13]. In the context of our work, we are interested in simulation
environments that provide for modularity, realistic radio and channel models, and, at the
same time, comfortable programming. To the best of our knowledge, among the currently
available frameworks the Castalia WSNs simulator emerges for its quality and completeness
[26, 21, 27, 33]. Castalia provides a generic platform to perform “first order validation of
an algorithm before moving to an implementation on a specific platform” [2]. It is based
on the well-known OMNet++ simulation environment, which mainly provides for Castalia’s
modularity.

OMNeT++ is a discrete event simulation environment that thanks to its excellent modu-
larity is particularly suited to support frameworks for specialized research fields. For instance,
it supports the Mobility Framework (MF) to simulate mobile networks, or the INET framework
that models several internet protocols. OMNeT++ is written in C++, is well documented
and features a graphical environment that eases development and debugging. Additionally, a
wide community of contributors supports OMNeT++ by continuously providing updates and
new frameworks. The comfortable initial training, the modularity, the possibility of program-
ming in an object-oriented language (C++), are among the reasons that led us to prefer the
OMNeT++ platform, and thus Castalia, over other available network simulators like the well-
known ns2 and the related extensions for WSNs (e.g., SensorSim [30]). Nonetheless, in the
last years Castalia has been continuously improved [7, 31] and there is an increasing number
of researchers using Castalia to support their investigations [8, 36, 5, 22, 4].

In the context of this work, we make use of version 1.3 of Castalia, which builds upon
version 3.3 of OMNeT++. In this version, Castalia features advanced channel and radio
models, a MAC protocol with large number of tunable parameters and a highly flexible model
for simulating physical processes. In contrast to other frameworks for wireless sensor networks,
Castalia offers exhaustive models for simulating both the radio channel and the physical layer
of the radio module. In particular, Castalia provides bundled support for the CC2420 radio
controller, which is the transceiver of choice for the TelosB/TmoteSky platform [12, 32]. This
is particularly relevant to us since the Tmote Sky is our reference hardware platform.

3 Implementation of CTP

Being a simulator originally developed mainly for MAC protocols testing, Castalia offers only a
basic hop distance routing layer in its original distribution. Thanks to the excellent modularity
inherited from OMNeT++, however, Castalia can be easily extended and adapted to include
new components. Hence, we have implemented a CTP routing module for Castalia that
mimics, as far as possible, TinyOS 2.1 reference implementation of CTP [15, 17]. The hop
distance routing protocol available in the standard Castalia distribution can be transparently
replaced by our CTP module.

Figure 2 shows the basic architecture of our implementation. The three modules Link
Estimator, Routing Engine, and Forwarding Engine clearly provide the same functionalities of
the correspondent components described in section 2.2. The full implementation is included in
a compound module, which we dubbed CTPRouting, and that includes also the CTPProtocol
module. CTPProtocol provides marshaller functionalities by managing incoming and outgoing

6

messages between the CTPRouting compound module and its internal components. Thus,
only the CTPProtocol module is connected to the input and output gates of the CTPRouting
compound module. The LE, RE, and FE must therefore interact with the CTPProtocol
module to dispatch their messages to other (internal or external) modules. The dotted lines in
figure 2 represent direct method calls.2 Indeed, the internal modules of a compound module
may use a common set of functions. These function may be implemented in only one of the
modules and used by the others through the above mentioned direct calls.

Figure 2 also shows that our CTPRouting module interacts with the application and
physical layers through the Application and TunableMAC modules, respectively. In particular,
our CTPRouting module implements the same connections to both the Application and the
TunableMAC modules as Castalia’s default routing module. Embedding our implementation
of CTP within the standard distribution of Castalia is thus straightforward, since it can
transparently replace the default routing module. However, since CTP poses some constraints
on the underlying MAC layer, a few changes to the TunableMAC module have been necessary
in order to make our CTPRouting module work. We describe these changes in section 3.5.

Routing
Engine

Forwarding
Engine

Link
Estimator

CTP
Protocol

Application ModuleApplication Module

TunableMAC ModuleTunableMAC Module

direct
method

calls

CTPRouting Compound Module

Figure 2: Architecture of the CTPRouting compound module.

The values of the relevant parameters of our Castalia-based implementation of CTP are
listed in the corresponding ctpRouting.ini configuration file. We would like to point out
that our Castalia-based implementation of CTP has been developed on top of the versions
3.3 and 1.3 of OMNeT++ and Castalia, respectively. Although these distribution are by now
out-of-date3, the considerations reported below still hold and the developed software modules
would need minor adjustments only in order to run on the newer versions of the platforms.

In the remainder of this section we will describe our implementation of the LE, RE, and
2Please refer to the OMNeT++ user manual for a formal definition of module, compound module, direct method
call and their usage [29].

3As of August 2010, versions 4.1 and 3 of OMNeT++ and Castalia are available.

7

FE and then detail about the changes we had to carry out on the TunableMAC module. We
will particularly focus on the most tricky implementation issues and thus assume the reader
has some familiarity with the topic at hand. Before going into further details, however, we
first describe the structure of both the routing and data messages handled by CTP. Within
each of the following subsections we organized the content in paragraphs so as to improve the
readability of the text.

Figure 3: Structure of CTP’s routing, data, and acknowledgments packets.

3.1 CTP routing and data packets

As mentioned in section 2.2, CTP relies on the exchange of routing messages for tree con-
struction and maintenance and on data messages to report the application payload to the
sink. In the TinyOS 2.1 implementation, routing and data packets are structured as schemat-
ically reported in figure 3. Clearly, we defined the same structure for the packets used by our
Castalia-based implementation of CTP.

PHY and MAC overhead. Figure 3 shows that both routing and data packet carry a
total of 18 bytes of information added by the physical (PHY) and data link layer (MAC).
These include the 6 bytes of the PHY header, the 10 bytes of the MAC header and the 2
bytes of the MAC footer, which we will describe in more detail in section 3.5. These 18 bytes
constitute a fixed overhead that is attached to any routing or data packet that is sent through
the wireless transceiver. Within Castalia, the TunableMAC module takes care of setting the
values of these bytes and adding them to transiting packets. In TinyOS 2.1 the same role is
taken over by the controller of the radio.

CTP data frame. Before being passed to the radio data packets are handled by the FE,
which schedules their transmission at the routing layer. The FE adds 8 bytes of control
information to transiting data packets, namely the CTP data frame shown in figure 3. Figure
4b reports the structure of this 8 bytes long frame added by the FE. The first two bits of the
first byte include the P (Pull) and C (Congestion) flags. The former is used to trigger the

8

CP reserved Parent

Parent ETX

ETX

0 8 16

CP reserved THL

0 8 16

ETX

Origin

SeqNo CollectId

0 8 16

SeqNoRsrvd.NE

LinkEtx1

NodeId1

LinkEtx2

NodeId2

NodeId2

......

c. LE header and footer

a. CTP Routing Frame

b. CTP Data Frame

Figure 4: Structure of CTP’s routing (a) and data (b) frames, along with the header and
footer added by the LE (c).

sending of beacon frames from neighbors for topology update, while the latter allows a node to
signal that it is congested. As we will detail in section 3.4, if a node receives a routing beacon
from a neighbor with the C flag set, it will stop sending packets to this neighbor and look for
alternatives routes, so as to release the congested node. The last 6 bits of the first byte are
reserved for future use (e.g., additional flags). The second byte reports the THL (Time Has
Lived) metric. The THL is a counter that is incremented by one at each packet forwarding and
thus indicates the number of hops a packet has effectively traveled before reaching the current
node. The third and fourth bytes are reserved for the (multi-hop) ETX metric, which we
introduced in section 2, while the fifth and sixth constitute the Origin field, which includes the
identifier of the node that originally sent the packet. The originating node also sets the 1-byte
long SeqNo field, which specifies the sequence number of the packet. Further, the CollectId
is an identifier specifying which instance of a collection service is intended to handle the
packet. Indeed, in TinyOS 2.1 CTP can manage multiple application level components. Each
of these components is assigned a unique CollectId identifier, which allows differentiating one
application flow from the other [15]. Figure 3 finally shows that data packets carry a payload
of n bytes, whereby the actual length n of the payload clearly depends on the application
logic.

CTP routing frame. As mentioned above, CTP relies on information shared by neighbor-
ing nodes through the sending of routing packets in order to build and maintain the routing
tree. While data packets are handled by the FE only, routing packets are generated and
processed by both the RE and LE. As shown in figure 3 routing packets carry, in addition to
the PHY and MAC overhead, a 2 bytes header and a variable length footer which are set by

9

the LE and will be described in the following section 3.2. The actual CTP routing frame is
5 bytes long and its fine-grained structure is reported in figure 4a. As for data frames, the
first byte of a CTP routing frame includes the P and C flags and 6 unused bits. The second
and third bytes host the Parent field, which specifies the identifier of the parent of the node
sending the beacon. The fourth and fifth byte finally include the (multi-hop) ETX metric.
Please note that while the multi-hop path ETX is stored over 2 bytes, the 1-hop ETX only
needs 1 byte.

Acknowledgments. For the sake of completeness figure 3 also shows the structure of ac-
knowledgment (Ack) packets, which are used to notify the successful reception of a data packet
to the sender of the packet. Since CTP makes use of link-layer acknowledgments, Ack packets
only include PHY and MAC layer information for a total of 11 bytes.

3.2 Link Estimator module

As discussed in section 2.2 and reported in [17], the Link Estimator is mainly responsible for
determining the quality of the communication link. In TinyOS 2.1, the LE is implemented by
the LinkEstimatorP.nc component, located in in the folder /tos/lib/net/4bitle.4

LE header and footer. Figure 4c shows the structure of the header and footer added by
the LE to routing packets before they are passed over to the radio for transmission. The first
byte of the header, namely the NE (Number of Entries) field, encodes the length of the footer.
This value is actually encoded in 4 bits only while the remaining 4 are reserved for future
use. The second byte includes the SeqNo field, which represents a sequence number that is
incremented by one at every beacon transmission. By counting the number of beacons actually
received from each neighbor and comparing this number with the corresponding SeqNo, the
LE can estimate the number of missing beacons over the total number of beacons sent by a
specific neighbor.

While the header has a fixed length of 2 bytes, the footer has a variable length which is
upper bounded by the residual space available on the beacon. The footer carries a variable
number of <etx,address> couples, each of 3 bytes in length, including the 1-hop ETX (1 byte)
and the address (2 bytes) of neighboring nodes. Please recall that the 1-hop ETX requires
only 1 byte to be stored while the multi-hop ETX requires 2 bytes. As mentioned in section
2.2, the entries included in LE’s footer are selected following a round robin procedure over the
link estimator table. Since the maximal length of the footer is of 45 bytes, the total size of a
routing packet from 25 to 70 bytes, as also shown in figure 3.

Although the use of the footer is foreseen in CTP’s original design [17, 18], the TinyOS
2.1 implementation of CTP does not make use of it and so neither does our Castalia-based
implementation5.

Computation of the 1-hop ETX. For each neighbor, the LE determines the 1-hop ETX
considering the quality of both the ingoing and outgoing links. The quality of the outgoing link
is computed as follows. Let nu be the number of unicast packets sent by the node (including
4For the sake of simplicity, we assume that for all the TinyOS paths listed in this report the root / refers to
the root of the TinyOS 2.1 distribution (e.g., tinyos-2.x/).

5Another implementation of the LE, described in revision 1.8 of TEP 123 and available in /tos/lib/net/le
does use the footer.

10

retransmissions) and na the corresponding number of received acknowledgments. The quality
of the outgoing link is then simply computed as the ratio:

Qu =
nu
na
. (1)

If na = 0 then Qu is set equal to “the number of failed deliveries since the last successful
delivery” [17]. Following the link estimation method proposed in [38], the LE computes the first
value of Qu after a number wu of unicast packets has been sent. The values of nu and na are
then reset and, after wu transmissions, a new value ofQu is computed. This windowing method
basically allows to “sample” the value of Qu at a frequency specified by wu. We should recall at
this point that the value of Qu is computed for the link to a specific neighbor. Therefore, the
values of nu and na clearly refer only to the packets and acknowledgment exchanged with that
specific neighbor. Furthermore, we would like to outline that in order to count the number of
successfully acknowledged packets, the LE must retrieve (from the link layer) the information
stored on the Ack bit of a packet. More specifically, in our Castalia-based implementation
the TunableMAC module pushes this information to the FE immediately upon reception of
an acknowledgment. The FE, in turn, signals this reception to the LE.

As soon as a new value of Qu is available, it is passed to the function that computes the
overall 1-hop ETX. Beside the quality of the outgoing link, however, this function takes into
account also the quality of the ingoing one. If nb is the number of beacons received by a
node from a specific neighbor and Nb is the total number of beacons broadcasted by the same
neighbor, then the quality of the corresponding (ingoing) link is given by the ratio:

Qb =
nb
Nb
. (2)

As for Qu, the values of Qb are computed over a window of length wb. This means that every
wb receptions of a beacon from a given neighbor a new value of Qb is computed. Before being
forwarded to the function that eventually determines the 1-hop ETX, however, the value of
Qb is passed through an exponential smoothing filter. This filter averages the new value of Qb
and that of previous samples but weighting the latter according to an exponentially decaying
function. In mathematical notation, the kth sample of Qb, indicated as Qb[k], is computed as:

Qb[k] = αb
nb
Nb

+ (1− αb)Qb[k − 1]. (3)

In the equation above, αb is a smoothing constant that can take values between 0 and 1,
and the values of nb and Nb are computed over a window of length wb, as explained above.
For the TinyOS 2.1 implementation of CTP, the values of αb, wb, and wu are specified in
the file /tos/lib/4bitle/LinkEstimatorP.nc as the ALPHA, BLQ_PKT_WINDOW, and
DLQ_PKT_WINDOW constants, respectively. Our Castalia-based implementation uses the
same variable names and values, which are reported, for the sake of completeness, in table 1.
To avoid floating point operations the computation of the 1-hop ETX is done using integer
values only. Consequently, a scaling of the involved variables is necessary in order to avoid a
significant loss of precision due to truncation. This is why the value of the constant ALPHA
in /tos/lib/4bitle/LinkEstimatorP.nc is set to 9 instead of 0.9. Clearly, also the other
quantities involved in the computation must be accordingly scaled. Eventually, this causes the
value of both the 1-hop and multi-hop ETX to actually represent the tenfold of the expected
number of transmissions. The parent selection procedure requires finding the neighbor with

11

Link Estimator
Parameter Value Unit
αETX 0.9 -
αb 0.9 -
wb 3 packets
wu 5 packets
Size of link estimator table 10 entries
Header length 2 bytes
Footer length < 45 bytes

Table 1: Values of relevant parameters of the Link Estimator module.

the lowest ETX, irrespectively of the absolute values, and it is thus not affected by the above
mentioned scaling. For further details on this issue we refer the reader to the well-documented
/tos/lib/4bitle/LinkEstimatorP.nc file.

Each time a new value of Qu or Qb for a specific neighbor is available, the 1-hop ETX
metric relative to the same neighbor is accordingly updated. As for Qb, the update procedure
uses an exponential smoothing filter. Let Q be the new value of either Qu or Qb and ETXold

1hop

the previously computed value of the 1-hop ETX. The updated value of the ETX1hop is then
computed as follows:

ETX1hop = αETXQ+ (1− αETX)ETXold
1hop. (4)

In the standard implementation of the LE the smoothing constant αETX is set to 0.9. As men-
tioned above, however, the value of αETX used within the /tos/lib/4bitle/LinkEstimatorP.nc
file is the tenfold of the “theoretical” one, thus 9 instead of 0.9.

After each update, the value of the 1-hop ETX is stored in the link estimator table along
with the corresponding neighbor identifier.

Insertion/eviction procedure of the link estimator table. When a beacon from a
neighbor that is not (yet) included in the link estimator table is received, the LE first checks
whether there is a free slot in the table to allocate the newly discovered neighbor. If the link es-
timator table is not filled, the LE simply inserts the new entry in one of the free available slots.
In the TinyOS 2.1 implementation of CTP the maximal number of neighbors that can be in-
cluded in the link estimator table is 10. A different value can be used by accordingly setting the
variable NEIGHBOR_TABLE_SIZE in the file /tos/lib/net/4bitle/LinkEstimator.h.

If the link estimator table is filled but it includes at least one entry that is not valid, then
the LE replaces the first found non valid entry with the new neighbor. An entry of the link
estimator table becomes valid as soon as it is included in the table and turns not valid if it is
not updated within a fixed timeout. For instance, the entry corresponding to a neighbor that
(even if only temporarily) loses connectivity may become not valid. Beside the valid flag the
LE also sets, for each entry of the link estimator table, a mature and pinned flag. The former
is set to 1 when the first estimation of the 1-hop ETX of a new entry of the neighborhood
table becomes available. This happens after at least one value of Qb or Qu can be computed.
Instead, the pinned flag, or pin bit, is set to 1 if the multi-hop ETX of a node is 0, and thus
the node is the root of a routing tree, or if a neighbor is the currently selected parent. The

12

pin bit is set at the routing layer and its value is propagated to the LE and its link estimator
table.

If the link estimator table is filled and all of its entries are valid, then the LE verifies if
there exist (valid, mature, and non pinned) entries whose 1-hop ETX is higher than a given
threshold. This threshold is set to a high value6 and it thus allows individuating unreliable
communication partners. Among these nodes, the one with the worst (i.e., highest) 1-hop
ETX is evicted from the table and the new neighbor is inserted in place of it. The value of the
1-hop ETX of the new neighbor is irrelevant at this point since it is not yet available. Indeed,
the computation of the 1-hop ETX can only start after a node has been inserted in the link
estimator table and the values of Qu and Qb start being computed.

If none of the entries of the link estimator table is eligible for eviction as described above,
then the LE determines whether to insert the new neighbor anyway or discard it. The LE
forces an insertion of the new neighbor in two cases. First, if it is the root of a routing tree and
thus the multi-hop ETX declared in the received beacon is set to 0. Second, if the multi-hop
ETX of the new neighbor is lower (i.e., better) than at least one of the (valid, mature, and non
pinned) entries of the routing table. This latter step clearly requires contacting the Routing
Engine in order to retrieve the information related to the multi-hop ETX. To this end, the
LE requests the RE to return the value of the so-called compare bit. If the compare bit is set
to 1, then the new neighbor must be inserted, if it set to 0 the new neighbor is discarded.

If the LE determines the new neighbor should be inserted, then it randomly chooses one
the existing (non pinned) entries and replaced it with the new neighbor. The flow chart
corresponding to the above described eviction/insertion procedure is reported in figure 5.

The white bit. In the original design of CTP [17] not all beacons received from neighbors
that are not included in the link estimator table are considered for insertion. In particular,
upon reception of such a beacon the LE first checks if the corresponding probability of de-
coding error (averaged over all symbols) is higher than a given quality threshold. Better said,
the LE requires the physical layer to return the value of 1 bit of information, the so-called
white bit. If the bit is set to 1, then the packet is considered for insertion otherwise it is
immediately discarded. The white bit thus “provides a fast and inexpensive way to avoid
borderline or marginal links” [17]. In the TinyOS 2.1 implementation of the LE, however,
this information is not considered during the neighbor eviction process and so neither does
our Castalia-based implementation. We refer to the CompareBit.shouldInsert function in
/tos/lib/net/ctp/RoutingEngine.nc for further details on this issue.

4-bits Link Estimator. As the above description makes clear the LE has two main tasks:
populating the link estimator table with the “best possible” neighbors and computing their
1-hop ETX. To comply with both tasks, the LE retrieves information from TunableMAC, FE,
and RE modules. In particular, the LE needs to retrieve the values of the ack, white, pin, and
compare bits, which have been described above. Since it makes use of these 4 state bits, the
LE is also called 4-bit LE.

Differences between actual implementation and original design. The actual default
implementation of the Link Estimator in TinyOS 2.1 can be found in /tos/lib/net/4bitle
655 in the TinyOS 2.1 implementation of CTP. See also the EVICT_EETX_THRESHOLD constant in
/tos/lib/net/4bitle/LinkEstimatorP.nc).

13

Figure 5: Insertion policy for LE’s link estimator table.

14

and is described in revision 1.15 of TEP 123 [15]. As noted above, this implementation (and
thus also our Castalia-based one) differs from CTP’s original design in two points. First, the
white bit is not considered during the LE’s table insertion/eviction procedure. Second, the
entries included in the footer of routing beacons are not used for populating the link estimator
and routing tables.

3.3 Routing Engine module

The main tasks of the Routing Engine consist in sending beacons, filling the routing table,
keeping it up to date, and selecting a parent in the routing tree towards which data frames
must be routed. We recall at this point that CTP’s routing frames are 5 bytes long, as shown
in figure 4a. To derive the total size of a beacon, however, the overhead (headers and footers)
added by the LE and the physical and link layers must also be considered, as we discussed in
section 3.1.

Frequency of beacons sending. The frequency at which beacons are sent is controlled
according to the Trickle algorithm [24]. Using Trickle a beacon is sent at a random instant
within a given time interval, whose minimal length Iminb is set a priori. The length Ib of the
interval is doubled after each transmission so that the frequency at which beacons are sent is
progressively reduced. In order to avoid a too long absence of beacon transmissions, however,
a maximal length of the sending interval, which we refer to as Imaxb , is fixed a priori. Both
the values of Iminb and Imaxb must be specified when the Routing Engine is initialized (in the
TinyOS 2.1 implementation, this is done at line 134 of the file /tos/lib/net/ctp/CtpP.nc).
As usual, our implementation of the RE uses the same values of its TinyOS 2.1 counterpart,
as also summarized in table 2.

The occurrence of specific events can cause the value of Ib to be reset (through a call of
the resetInterval command in the TinyOS 2.1 implementation). These events include the
detection of: a routing loop; a congested node; a node with the pull (P) flag set to 1. As we
will detail below, the reception of a data frame whose multi-hop ETX is lower than that of the
receiver may signal the existence of a routing loop. If this is the case, the FE triggers a topology
update through the triggerRouteUpdate interface, which is in turn implemented in the RE.
When a node needs a topology update (e.g., since it has no route to the sink), it sets the pull
flag of its outgoing packets to 1. Nodes receiving a beacon or data frame with the pull flag set
reset their beacon sending interval. Finally, if a node gets congested, i.e., its forwarding queue
is half full, it sets the correspondent flag of its packet to 1. Again, nodes receiving beacons
or data frames with the congestion flag set must reset the value of Ib. The actual TinyOS
2.1 implementation of the RE, however, does not reset the value of Ib if a congestion flag
is set. Our Castalia-based implementation, on the contrary, does provide this functionality
and thus the ability of quickly handling congestions. If the command resetInterval is
called too frequently, however, the timer whose expiration triggers the sending of a beacon is
continuously reset and thus never fires. This may happen if routing loops or congested nodes
are often detected and has the nasty consequence of blocking beacon transmissions. To avoid
such situations, our Castalia-based implementation of CTP uses a fading flag that inhibits a
timer reset if there is a beacon sending event already scheduled and the value of the sending
interval is already equal to Iminb .

15

Routing Engine
Parameter Value Unit
Minimal length of the beacon window 63 ms
Maximal length of the beacon window 250 s
Size of the routing table 10 entries
Parent switch threshold 15 -
Parent refresh period 8 s
Beacon Packet size 5 bytes

Table 2: Values of relevant parameters of the Routing Engine module.

Routing table updates. The RE further takes care of updating the routing table by re-
trieving information about available neighbors, their selected parent, congestion status and
multi-hop ETX. The routing table is updated asynchronously upon reception of routing
frames and, in the TinyOS 2.1 implementation, it contains up to 10 entries (see also the
TREE_ROUTING_TABLE_SIZE constant in /tos/lib/ctp/CtpP.nc). The eviction pro-
cedure described in the previous section allows keeping only the most reliable neighbors in
both the link estimator and the routing tables.

Parent selection procedure. The parent selection procedure is repeated periodically7 or
called asynchronously when one of the following events occurs: a beacon is sent; a neighbor
is unreachable (thus its entry in the link estimator table is not valid); a neighbor is no longer
congested; the currently selected parent gets congested; the node has no route to the sink.

Among those included in the routing table only neighbors having a valid path to the sink,
that are not congested and are not children of the current node are eligible to be selected
as the parent node. Among eligible neighbors, the node with the lowest multi-hop ETX is
selected as the parent node.

A new parent is selected if one of the two following conditions is fulfilled.
First, if the current parent is congested and there exists a neighbor whose multi-hop ETX is

strictly lower than the multi-hop ETX of the current parent plus a threshold value ETXcon
switch,

then this neighbor is selected as the new parent. The threshold ETXcon
switch is necessary to

avoid selecting as the new parent a neighbor which is actually a child of the current node. By
definition, a child is 1-hop away from the parent and thus has a multi-hop ETX which is at
least the parent’s multi-hop ETX + 1. The “natural” value for the threshold ETXcon

switch is
therefore 1. However, since the the ETX actually represents ten times the expected number
of transmissions, as explained in 3.2, the ETXcon

switch threshold is equal to 10.
Second, if the current parent is not congested, a parent switch may still take place. To this

end, the multi-hop ETX of a neighbor increased by a threshold ETXnocon
switch must be strictly

lower than the multi-hop ETX of the current parent. If this condition is fulfilled, then the
corresponding neighbor is selected as the new parent. In the TinyOS 2.1 implementation
of CTP the value of ETXnocon

switch is 1.5. However, due to the usual scaling, the value of the
PARENT_SWITCH_THRESHOLD constant in /tos/lib/net/ctp/TreeRouting.h is set
to 15.
7In the TinyOS 2.1 implementation of CTP, the length of this period is set to 8 seconds (see also the BEA-
CON_INTERVAL parameter in /tos/lib/net/ctp/TreeRouting.h).

16

3.4 Forwarding Engine module

The main task of the Forwarding Engine consist in forwarding data packets received from
neighboring nodes as well as sending packets generated by the application module of the
node. Additionally, the FE is responsible for recognizing the occurrence of duplicate packets
and routing loops. Last but not least, the FE also works as a snooper and listens to data
packets addressed to other nodes in order to timely detect a topology update request or a
congestion status.

Packet queue and retransmissions. The FE stores the data packets to send in a FIFO
queue whose length is set to 12 in the TinyOS 2.1 implementation (see the FORWARD_COUNT
constant in /tos/lib/net/ctp/CtpP.nc). To forward a packet, the FE first retrieves the iden-
tifier of the current parent from the RE. If the parent is not congested the FE calls the send
procedure thereby appending to the packet the 8 bytes long CTP data frame shown in figure
4b. Otherwise, if the parent is congested, it waits until the congestion status of the parent
changes or a new parent is selected. After sending a packet the FE awaits for a corresponding
acknowledgment before removing it from the head of the queue. If the acknowledgment is not
received within a given time interval, the FE will try and retransmit it until a pre-specified
maximum of retransmission attempts have been performed. After the maximal number of
retransmission attempts have been reached, the packet is discarded. In the TinyOS 2.1 imple-
mentation the maximal number of retransmissions is set to 30 (see also the MAX_RETRIES
parameter in /tos/lib/net/ctp/CtpForwardingEngine.h), and so it is in our Castalia-based
version.

Congestion flag. If a node is chosen as parent from several neighbors, or if it must perform
many retransmissions attempts, the queue of its FE may quickly fill up with unsent packets.
Since this may eventually cause the node to drop further incoming packets the FE notifies
this congestion status by setting the C flag of outgoing data frames to 1. In particular, the
FE declares the node as congested as soon as half of its packet queue is full. Additionally,
the FE also notifies the congestion status to the RE, which takes care of setting also the C
flag of routing frames to 1. This simple mechanism allows the protocol to (re-)distribute the
communication load over of the network since a congested node is unlikely to be selected as
parent (see also section 3.3). Optionally, the FE can call the command setClientCongested
to force the RE to reset the beacon sending interval as soon as a congestion state is detected.
Despite increasing the number of transmitted beacons, this option allows nodes to timely
notify their congestion status, thus improving the reactiveness of the network. Our simulation
study showed that by activating this option we often can significantly decrease the number of
packets dropped due to congested nodes. For this reason the setClientCongested option is
always enabled in our Castalia-based implementation of CTP.

Duplicate packets. In order to detect duplicate packets, the FE evaluates the tuple<Origin,
CollectId, SeqNo, THL> for each incoming data packet. As described in section 2.2, the Ori-
gin parameter specifies the identifier of the node which originally sent the packet; SeqNo is
the sequence number of the current frame; and the THL is the hop count of the packet. The
CollectId field identifies a specific instance of CTP. If only a single instance of CTP is active,
the CollectId field is not relevant and can be ignored during duplicate detection. Thus, the
tuple <Origin, CollectId, SeqNo, THL> represents a unique packet instance. By comparing

17

Forwarding Engine
Parameter Value Unit
Forwarding queue size 12 packets
LRU Cache size 4 packets
Max tx retries 30 -
TX_OK backoff 15.6 - 30.3 ms
TX_NOACK backoff 15.6 - 30.3 ms
CONGESTION backoff 15.6 - 30.3 ms
LOOP backoff 62.5 - 124 ms
Header size 8 bytes

Table 3: Values of relevant parameters of the Forwarding Engine module.

the value of the tuple of an incoming packet with that of the packets stored in the forwarding
queue, the FE can detect duplicates. The FE also maintains an additional cache to store the
last 4 successfully transmitted packets. Using this cache, duplicates detection can be per-
formed also over recently transmitted packets that are no more available in the forwarding
queue.

Routing loops. The FE also features a mechanism to detect the occurrence of routing
loops. To this end, the FE compares the (multi-hop) ETX of each incoming packet with the
(multi-hop) ETX of the current node. In particular, since the ETX is an additive metric
over the whole routing path and the current node is selected as a parent by the sender of the
packet, then the ETX of the sender must be strictly higher than the ETX of the receiver (i.e.,
the current node). If this is not the case, the FE executes a loop management procedure that
first of all starts the so-called LOOP backoff timer, resets the beacon sending interval and sets
the pull flag to 1 in order to force a topology update. The FE does not forward any packets
until the expiration of the LOOP timer so that the radio is used to propagate routing beacons
and repair the routing loop. The LOOP timer is thus usually significantly higher than the
beacon sending interval. It is important to note that if a data packet is forwarded during the
execution of the loop management procedure, then the packet continues being forwarded over
the loop until a new path to the sink is established. Since the THL field is increase at each
retransmission, the packet cannot be erroneously recognized as a duplicate.

FE’s snooping mechanism. A further interesting feature of the FE consists in its ability to
overhear unicast data packets addressed to other nodes. This behavior, referred to as snooping,
allows CTP to quickly react to congestion notifications or topology update requests carried
by the C and P flags of the snooped data frame. In TinyOS 2.1, the Snoop interface used
by the FE is implemented within the CC2420ActiveMessageP component, which is located
in the /tos/chips/cc2420/ folder. In our Castalia-based implementation, the TunableMAC
module notifies the FE when such snooped packets are available. To this end, we created a
new MAC_2_NETWORK_SNOOP_MSG message within the TunableMAC module, as we detail in the
following section 3.5.

Backoff timers. Last but not least, the FE also manages the backoff timers, i.e., the
timers regulating collision avoidance mechanisms. In particular, the FE sets the TX_OK,

18

TX_NOACK, CONGESTION, and LOOP backoff timers. The first timer is started after
each successful packet transmission to balance channel reservation between nodes. The sec-
ond has the same function but is activated if the intended receiver of a packet fails to return
the corresponding acknowledgment. The CONGESTION backoff timer is started when a con-
gestion status of the selected parent is detected. When this timer expires, the status of the
parent is evaluated again. Finally, the LOOP timer starts when a loop is detected, as described
above. Table 3 lists the value of these timers used in both TinyOS 2.1 and our Castalia-based
implementation of CTP.

3.5 TunableMAC module

TunableMAC is the name of the module that implements MAC functionalities in Castalia.
Unfortunately, TunableMAC does not implement all the features that CTP requires to be
available at the MAC layer and we thus accordingly modified it and added the required
features.

RE and FE’s packet queues. For instance, in the TinyOS 2.1 implementation of CTP
the RE and the FE both make use of the AMSend TinyOS interface, which offers primitives
for sending radio packets. In particular, the RE and the FE use two different instances of
this interface. Each of these instances holds its own packet queue (with a maximum length
of one packet each) and the radio component alternatively selects packets from either queues.
Instead, the TunableMAC component relies on a single message queue with a freely config-
urable maximum length.8 To reproduce in Castalia the same behavior of the TinyOS AMSend
interface we thus added a second message queue in TunableMAC and configured the length
of both queues to be of 1 packet. Messages coming from the RE or FE are then appropriately
added to the corresponding queue. Routing and data frames can be easily distinguished since
the former are broadcast messages while the latter unicast packets.

FE’s snooping mechanism. As mentioned in section 3.4, the FE implements a snooping
mechanism to timely detect congestion notifications and topology update requests. Since the
TunableMAC module is actually designed to discard unicast packets that are not addressed
to the current node, a little modification has been necessary to enable FE’s snooping mecha-
nism. In particular, we have disabled the packet deletion procedure and implemented a new
mechanism that inserts a snooped packet in a MAC_2_NETWORK_SNOOP_MSG message, which is
in turn passed to the CTPRouting compound module and finally to the FE module.

Link-layer acknowledgments. An additional feature we needed to add to the TunableMAC
module concerns data link-layer acknowledgments. In particular, CTP requires the receiver of
a unicast packet to explicitly acknowledge a successful reception (at the data link-layer) to the
sender of the packet. However, TunableMAC does not provide for data link-layer acknowledge-
ments. In order to enhance TunableMAC with this additional feature we first investigated
how data link-layer acknowledgments are handled by the Chipcon CC2420, the radio chip
embedded on the Telosb/Tmote Sky platform. In particular, upon receiving a unicast packet
8The length of the queue can be set in the omnetpp.ini configuration file. Please refer to the OMNet++ user
manual [29] for further information.

19

at the MAC level, the CC2420 controller automatically generates an acknowledgment mes-
sage and sends it to the sender of the packet. To this end, the corresponding option must be
enabled on the radio chip [11]. On the other side, the sender keeps the packet in its queue (at
the MAC level) and awaits for an acknowledgment. Upon reception of the acknowledgment
the sender sets the isAck flag on the packet to 1 and triggers the sendDone event that is then
handled at the routing layer. The packet is passed as a parameter along with the sendDone
event and then removed from the queue so that the next sending operation can be executed.
The isAck flag signals the successful reception of the packet to the routing layer of the sender.
For further details about this split-phase mechanism, typical of the TinyOS operating system,
as well as for more information about the handling of acknowledgments within the CC2420
please refer to [25] and [28, Sect. 5], respectively.

To emulate the behavior of the CC2420 within the TunableMAC module, we first made it
immediately send an acknowledgment message back to the transmitter as soon as an unicast
packet is received (at the MAC level). Additionally, we defined a new OMNet++ message9,
called MAC_2_NETWORK_SEND_DONE, which is sent by the TunableMAC to the CT-
PRouting module upon reception of an acknowledgment.

Backoff timers. Regarding (MAC level) backoff timers, we would like to point out that the
TinyOS 2.1 distribution the backoff timers of the CC2420 are managed by the component
/tos/chips/cc2420/csma/CC2420CsmaP.nc. In particular, the values of the initial and con-
gestion backoff timers are set by calling the interfaces initialBackoff and congestionBackoff
of the BMAC protocol. The former timer determines the delay of the first transmission at-
tempt while the second is used in the case a busy channel is detected by the radio while sensing
the carrier. Both values are chosen uniformly at random within a pre-specified time intervals,
as detailed in table 4. TinyOS 2.1’s /tos/chips/cc2420/CC2420.h file reports the values of
these intervals expressed as number of ticks of a 32kHz clock while table 4 reports these same
values in milliseconds.

The last parameter specified in table 4 is the acknowledgment timeout. This timeout sets
the maximal time interval a sender waits for a packet to be acknowledged. If this timeout
expires before an acknowledgment has been received, then the packet is passed back to the
routing layer along with a message signalling the missing acknowledgment. Clearly, lower-
ing the acknowledgment timeout may increase the throughput of the radio but at the same
time cause unnecessary packet retransmissions. Within TinyOS 2.1 the acknowledgment time-
out (CC2420_ACK_WAIT_DELAY) is set in the /tos/cc2420/cc2420.h file and expressed as the
number of ticks of a 32kHz clock.

Packet overhead. Last but not least, we would like to quantify the overhead in terms of
bytes that are attached at the MAC layer to both routing and data frames in order to make
CTP work. To this end, we focus on the structure of the packets handled by the CC2420
radio chip, which is used on several WSN prototyping platforms, like the Tmote Sky. Within
TinyOS 2.1, the structure of the MAC overhead is defined in the cc2420_header_t struct in
the /tos/chips/cc2420/CC2420.h file, also reported in figure 6. This figure shows that the
9Please refer to the OMNet++ manual for messages definition and handling [29].

20

TunableMAC
Parameter Value Unit

Initial Backoff range 0.3 - 10 ms
Congestion Backoff range 0.3 - 2.4 ms

PHY overhead 6 bytes
MAC overhead 12 bytes
Ack Packet size 11 bytes
Ack timeout 7.8 ms

Table 4: Values of relevant parameters of the TunableMAC module.

1 typede f nx_struct cc2420_header_t {
2 nxle_uint8_t length ;
3 nxle_uint16_t f c f ;
4 nxle_uint8_t dsn ;
5 nxle_uint16_t destpan ;
6 nxle_uint16_t dest ;
7 nxle_uint16_t s r c ;
8 nxle_uint8_t type ;
9 } cc2420_header_t ;

Figure 6: The cc2420_header_t file.

MAC header contains 7 fields for a total of of 11 bytes. The first field (1 byte) specifies the
total length of the packet. The fcf and dsn fields occupy 3 bytes and define the values of
the Frame Control Field (FCF) and of the Data Sequence Number (DSN). Further, the three
field destpan, dest and src contains the addresses of the sender and intended receiver(s) of
the packet. Finally, the field type represents the payload of the MAC layer and indicates the
AM (Active Message) identifier of a TinyOS packet [23, Sect. 6].

For the sake of completeness, figure 7 reports the generic packet format of a IEEE 802.15.4
frame, which is the standard used by the CC2420. This figure shows the control fields added
at both the physical (PHY) and data link (MAC) layers. In particular, the PHY layer adds 3
pieces of information for a total of 6 bytes: 4 for the preamble sequence, 1 for frame delimiter,
and 1 for the frame length. The MAC layer, in turn, adds further 5 fields, two of which, the
address information and the payload, of variable length. Comparing figures 6 and 7 we can
see that there are several differences. First of all, the length field is assigned to the PHY layer
in figure 6 but appears in the MAC overhead defined by the cc2420_header_t struct. Second,
the frame check sequence (FCS) field, which is assigned to the MAC layer in figure 7 does not
appear in the cc2420_header_t struct. To be coherent with the IEEE 802.15.4 standard we
thus removed the 1 byte of the length field from the computation of the MAC overhead and
added the 2 bytes of the FCS field. We therefore consider a MAC overhead of 12 bytes, 10 for
the header and 2 for the footer, as depicted in figure 3. Also according to figure 3 (and figure
7), we consider a PHY overhead of 6 bytes.

The length of packets used for acknowledging the reception of a data message must be
considered separately. Indeed, acknowledgments are generated within the CC2420 controller
and the corresponding packet format is described in [11, p.22]. According to this format, an
acknowledgment packet has a total size of 11 bytes, 5 of which represent MAC layer overhead,

21

Figure 7: Schematic view of the IEEE 802.15.4 packet format [11].

while the other 6 are assigned by the physical layer, as shown in figure 3 and summarized in
table 4.

4 Performance evaluation: setup and metrics

To test our implementation of the CTP protocol and investigate its performance under different
conditions, we performed a simulation study. Before going into the analysis of experimental
results in section 5, we describe here our simulation setup and the metrics we defined to
observe and evaluate the behavior of CTP.

4.1 Simulation setup

Network topology. To perform our tests, we consider a rectangular region of side lengths
Lx and Ly and area A = Lx · Ly over which we deploy a total number of Nnodes nodes.
The nodes are assumed to be deployed uniformly at random, i.e., the x and y coordinates
of the sensor nodes within the area A are the realizations of independent random variables
uniformly distributed between 0 and Lx and between 0 and Ly, respectively. This physical
topology is a common choice in sensor network literature and it often allows to benchmark
protocols’ performance. The network is assumed to have a single data sink at position (xs, ys).
To understand the influence of the physical topology on the performance of CTP, we run
our simulations on a high number Nnet of different random network configurations. Table 5
summarizes the typical values we used for the parameters introduced above (and those defined
below). Unless specified differently, we refer to these values for all the experiments presented
in the next section 5.

Radio model. We assume all nodes in the network to have antennas with a omnidirectional
radiation pattern and the wireless channel to be described by the log shadowing model. With
this model, the reduction in power density of an electromagnetic radiation, called the path
loss (PL), is a function of the distance d from the transmitter. In particular, the PL can be
expressed as:

PL(d) = PL(d0) + η · 10Log(d
d0

) +Xσ. (5)

22

Parameter Value Unit
Topology
Lx 250 meters
Ly 250 meters
Nnodes 100 -
(xs, ys) (0, 0) meters
Radio model
d0 1 meters
PL(d0) 54.2247 dB
η 2.4 -
Xσ 0 -
RTX 50 meters
Data Traffic
Ts(time) 5 seconds
Ip [0.5, 1] with step 0.05 -
|Ip| 11 -
Physical Process
Nsources 1 -
K 1 -
a 2 -
V1(0) 10 -
si(0) = (xi(0), yi(0)) (125, 125) meters
General
Nnet 50 -
Nrounds 50 -

Table 5: Relevant parameters of our experimental setup and their correspondent values.

In equation 5 PL(d0) represents the (known) path loss at a reference distance d0, η is the
path loss exponent, and Xσ is a gaussian zero-mean random variable with standard deviation
σ. Table 5 summarizes the values we assigned to these parameters in the context of our
simulation study. With this set of parameters and assuming the absence of any interference,
the communication range of the radio is 50 meters. For a detailed description about the
derivation of this value please refer to Castalia 1.3’s user manual [6]. To determine whether
packets transmitted by nearby nodes collide or not we resort to the additive interference
model [6]. Taking into account the possibility of collisions clearly makes the experimental
results presented in section 5 more realistic.

Data traffic. To generate data traffic, we consider a typical data collection scenario. We
assume that the nodes are required to provide “snapshots” of the values of a physical phe-
nomenon at regular time intervals. The temporal sampling frequency Fs(time) is fixed a priori
and equal for all nodes, i.e., the network is programmed to wake up every Ts(time) = F−1

s(time)

seconds, sample the physical phenomenon (e.g., gather a reading from the temperature sen-
sor), send the data to a central sink and go to sleep again. To transport the collected data to
the sink the network establish, after each wake-up, a data collection tree using the CTP pro-
tocol. We refer to the sequence wake-up−sample−send−go to sleep again as round or epoch.

23

For each of the generated network configuration we run the simulation for a number of rounds
Nrounds. This is necessary to gather relevant statistics for the specific network configuration.
Nonetheless, the actual simulation results are affected by the presence of several sources of
randomness, like the amount and origin of the generated data traffic or communication failures
due to collisions. As reported in table 5, we consider a value of Nrounds equal to 50 to be
sufficient to gather statistically significant results.

To generate data traffic, we let selected subsets of the nodes transmit their data packets.
In particular, we let the nodes decide with probability p whether they actually participate in
the sensing task. At each round, each node chooses a number between 0 and 1 uniformly at
random. If the value is lower than p, then the node will sense and transmit data, otherwise it
will not. Thus, a value of p of 0.6 implies that a node will participate in the sensing task with
a probability of 60%. In this preliminary study, the value of p is assumed to be known a priori
and be the same for all nodes.To observe the behavior of the network as the number of nodes
participating in the sensing task varies, we let p assume values in the set Ip = 0.5 : 0.05 : 1,
thus from 0.5 to 1 with steps of 0.05 (so we consider a total of |Ip| = 11 different values of p).

In our experiments we thus consider, for each of the Nnet network configurations, a total
of Nrounds for each of the |Ip| values of p. We therefore collect a total of Nnet×Nrounds× |Ip|
datasets. Considering the values reported in table 5 this equals to 27500 datasets from which
we can gather significant statistics.

It is here important to underline that although only a subset of the nodes actually gathers
and transmits data, all Nnodes +1 nodes in the network participate in the construction of the
collection tree and thus, contribute to the data reporting.

Physical process. To simulate a physical process whose samples are collected and reported
to the sink by the sensor nodes, we used the correspondent built-in primitive of the Castalia
simulator. In particular, Castalia allows to generate a sensor field whose value at position s
and time t is given by the superimposition of the effects of a number Nsources sources. The
value of the ith source at time t is indicated as Vi(t) and must be given as input. The value
of the sensor field at each position s and time t is then expressed by the following equation:

V (s, t) = sumNsources
i=1 =

Vi(s, t)

(K · di(t) + 1)a
(6)

where di(t) is the distance of point s from the ith source at time t and K and a are
parameters that control the way a source value spreads over space and time.

Since the actual values of the physical process are not critical for this study, we set K and
a to the default values, as reported in table 5. The sources are supposed to be “static”, i.e.,
during the simulation their position si and the value they assume at that position does not
change over time.

Timing. We assume the nodes in the network to be synchronized so that wake-up and
sleep cycles can be easily scheduled. In particular, we let the nodes wake up every minute and
remain active for 16 seconds before turning their radios and all other circuitries off again. Since
the sleep phase lasts for 44 seconds the duty cycle of the complete data collection protocol
is 26.6% (100 · 16

16+44). The active phase is divided in three successive intervals: the startup,
the CTP setup, and the data transmission intervals. In the startup phase, which lasts in total
just for few microseconds, nodes power up their circuitries and set their radios’ duty cycle to

24

be 100%. Immediately after startup nodes enter the CTP setup phase during which nodes
exchange beacons and establish a routing tree having the sink as its root. We set the total
duration of this phase to be 11 seconds. This value has been set empirically and could clearly
be reduced if our CTP implementation is used in different scenarios. After completion of the
CTP setup phase the actual data collection can start. During this phase, which lasts for 5
seconds, node send their data (assumed they have been selected for data sampling) and act as
forwarder for other nodes’ data packets. The sink node is assumed to have unlimited power
supply and is thus always active.

4.2 Metrics

We evaluate the performance of CTP through a set of metrics that can outline the most
significant features of the protocol. Table 6 summarizes the notation we will use in this
section to define such metrics, which are in turn reported in table 7.

Data delivery ratio. The very first metric we are interested is the data delivery ratio
(DDR). We define the DDR as the ratio between the number Nsen of data values collected and
sent by the nodes and the number Nrec of data values received at the sink (without counting
duplicates). We preferred to name this metric data delivery ratio, instead of packet delivery
ratio, to stress the fact that it does only take into account the number of data values that the
network can successfully deliver to the sink. Clearly, a DDR equal to 1 means indicates that
the network can deliver all the data to the sink. In the worst case, none of the collected data
values reaches the sink. This may happen if the sink is disconnected from the network and
causes the DDR to be zero. If the unlikely case that no single data value is collected by the
nodes, and thus Nsen = Nrec = 0, the value of the DDR is forced to be 1.

Parameter Description
Nsen Number of data values collected and sent by the

nodes.
Nrec Number of data packets received at the sink (without

counting duplicates).
Nbeac Total number of beacons sent in the network (control

traffic).
Ndata Total number of data packets sent by the network

(data traffic) to deliver the Nsen data values to the
sink

Ndup Total number of duplicate data packets received at
the sink

Table 6: Basic quantities used to defined the metrics listed in table 7.

Control overhead. A second interesting metric, which we named the control overhead
(COV), allows quantifying the total amount of traffic that is generated in order to dispatch
the Nsen data values to the sink. To this end, we define the total traffic due to data trans-
mission as Ndata and the control traffic necessary to setup and maintain the CTP routing
structure as Ncontrol. Ndata is given by the sum of the total number of data packets sent by

25

Acronym Name
DDR Data delivery ratio
COV Control overhead
AvgTHL Average number of hops
MaxTHL Maximal number of hops
Ndup Number of duplicate packets Ndup

Table 7: Metrics used to evaluate the performance of CTP.

the application layer (Nsen) and the total number of data packets forwarded by each node, in-
cluding retransmissions due to missing acknowledgments (which may result in the generation
of duplicate packets). On the other hand, Ncontrol includes the total amount of beacons sent
throughout the network to establish and maintain the routing tree. Since acknowledgments
are managed at the radio level, we do not account for them in Ncontrol.

Hop count. Further interesting properties of CTP’s routing tree are the average and maxi-
mal number of hops packets travel before reaching the sink. Indeed, the routing tree generated
by CTP changes depending on the physical topology of the network, thus on the network con-
figuration at hand, and the specific condition of the wireless channel. This translates in
possibly different numbers of hops traveled by a packet, on average and worst case, before
reaching the sink. As detailed in section 2.2 the THL is a counter that is incremented by
one at each packet forwarding and thus indicates the number of hops a packet has effectively
traveled before reaching the sink. We will thus consider the average and maximal THL as
additional metrics to describe the performance of CTP and refer to them as AvgTHL and
MaxTHL, respectively.

Duplicate packets. As described in section 3.4 CTP features a mechanism to detect du-
plicate packets. Nonetheless, a given number of duplicates may reach the sink thus inducing
an unnecessary overhead. In order to quantify this overhead, we count the total number of
duplicate packets Ndup.

5 Performance evaluation: analysis of experimental results

In this section we finally report an evaluation of the performance of CTP based on its im-
plementation for the Castalia simulator. To this end, we report and comment experimental
results related to the metrics introduced in the previous section, i.e., the data delivery ratio,
the control overhead, the hop count, and the number of duplicate packets.

5.1 Data delivery ratio

To evaluate the ability of CTP to reliably report data to a central sink, we compute the DDR
achieved in 50 different network configurations. As detailed in section 4.1 we generate the
network configurations uniformly at random and, for each configuration and value of p, we
run 50 rounds. At each round, nodes wake up, construct the routing tree and use it to report
data to the sink. Each nodes generates a data packet with probability p. We repeated this
experiment for several values of p, ranging from 0.5 to 1, thus only a (randomly selected)

26

fraction of the nodes actually transmits data packets. However, all the nodes collaborate in
relaying the packets by keeping their radio active. For each round and network, we then
computed the DDR as the ratio between the number of packets delivered to the sink and
the number of packets originally transmitted by the nodes. For further details about the
simulation setup, please refer to section 4.1.

Figure 8 shows the number of sent and received packets for one of the 50 generated network
configurations (network 2) and three different values of the probability of activation p. This
plot shows that when the probability of activation p is 0.5 the number of received packets
almost always coincides with the number of sent packets. Thus, the DDR of CTP for the
corresponding network configuration is equal to 1 (or 100%). As the value of p and thus the
total number of packets sent by nodes increases, the DDR decreases. This is due to the fact
that increasing the number of transmissions causes more collisions and congestions, and thus
packet losses, to occur.

The matrix plots reported in figure 9 show the DDR for all the 50 networks and 50 rounds
and the two values of p 0.5 and 1. A pixel of this matrix represents the DDR measured for
the network configuration indicated on the y-axis and the round specified on the x-axis. For
instance, the second row (from the bottom) shows the DDR for network 2 over the 50 rounds.
The color of each pixel codes the actual value of the DDR, according to the scale reported on
the right side of the plot. Figure 9 shows that the DDR of networks 1 and 40 is constantly
zero. This is due to the fact that for these configurations the sink is disconnected and thus
no single data packets manages to reach the sink. For all other networks, when p = 0.5 the
DDR is almost always above 95%. On the other side, especially for p = 1, there are several
cases in which the DDR is as low as 80% or even lower. For instance, network 41 shows a very
bad performance for p = 1. This is due to the particular topology of this network, depicted
in figure 10. Network 41 has indeed three nodes close to the sink that can act as last-hop
relays for data packets. But before reaching one of these three nodes the packets must first
be routed through one of their neighbors. However, the distance between these latter nodes
and the three relay nodes is 50m, which coincides with the transmission range of the nodes.
Therefore, this hop towards the sink is very unstable and several retransmissions may be
necessary to successfully deliver a packet. This causes a general slowdown of the protocol
since packets remain in the transmission queue until they have been acknowledged or they are
dropped after a maximum number of retransmission attempts (30 in our simulations). As a
consequence, the buffer may quickly fill up with packets waiting to be sent and thus become
unable to accept new incoming packets, which must thus be dropped. Since the whole data
traffic must be conveyed through the three “last mile” nodes, the number of packets dropped
for full buffer may be high, causing the poor performance in terms of DDR. Additionally, in
our simulation setup the network turns off after a certain timeout. Clearly, packets residing
in the buffer as this timeout expires must be dropped too.

Unfavorable topologies like the one of network 41 may cause CTP to yield a very low DDR.
However, the average DDR achieved by CTP on the large and diverse set of configurations
we considered is highly satisfactory. This is also confirmed by figures 11 and 12. The first
reports the overall average DDR (computed over all configurations and rounds) as the value
of p increases. Each blue dot on this plot represents the average DDR of a single network
configuration (computed over the 50 rounds). For each value of p, the set of blue dots give
a measure of the standard deviation of the average DDR. The second reports the minimum,
average, and maximum DDR (computed over the 50 rounds) for all network configurations
and p = 0.5 and p = 1. Please note that we compute these statistics on the data corresponding

27

to all networks but configurations 1 and 40.

5.2 Control Overhead

A further interesting metric to evaluate the performance of CTP is the control overhead. As
specified in section 4.1, we define the control overhead as the ratio between the number of data
packets sent (or forwarded) by the nodes and the number of routing beacons sent throughout
the network to establish and maintain the routing tree. We refer to this quantities as the data
traffic and control traffic, respectively.

Figure 13 shows the control and data traffic for network 2, over all rounds and for p = 0.5,
p = 0.75, and p = 1. The number of both control and data packets oscillates around an
average value, while their ratio, thus the control overhead, decreases as p increases. This is
also outlined in figure 14 that visualizes the control overhead for network 2. As p increases, the
number of data packets sent throughout the network increases and thus the control overhead
decreases. This means that, as expected, the effort invested in building and maintaining the
routing becomes less predominant as the number of data packets forwarded through the tree
increases. This applies to all network configurations and rounds, as shown by figure 15. Figures
16 and 17 also allow to appreciate the variability of the control overhead over all networks,
round and values of p. In particular, figure 16 shows that networks 14 and 25 have an average
control overhead significantly higher than the overall average. This is due to the fact these
configurations have small clusters of (at least two) nodes that are disconnected from the rest
of the network but within the communication range of each other. The nodes in these clusters
will thus exchange a high number of control packets in an attempt to establish a route to the
sink. Also, since in this situation the pull flag is set to 1, the nodes will exchange control
beacons at the maximal rate.

5.3 Hop count

Figures 18 and 19 show the average and maximal value of the Time Has Lived (THL) metric
for all packets that reach the sink in every round and for all the 50 network configurations.
These plots show that, for p = 0.5, both the average and maximal values of the THL for
a specific network configuration are constant across the 50 rounds. On the contrary, when
p = 1, both the average and maximum THL are more variable, since the network must deal
with a higher number of packets and, thus, possibly congested routes.

Figures 20 and 21 also show the overall average and maximal THL for the different values
of p considered in the experiment. The blue dots represents the average over 50 rounds of
the average and maximal THL for each of the 50 network configurations. In three cases, not
shown in figure 21, the (average) maximal number of hops is higher than 30. In particular,
this happens for network 28, round 19 (MaxTHL is 35); network 16, round 42 (MaxTHL is
35); network 33, round 12 (MaxTHL is 49). For all other rounds and networks, the maximal
THL is always lower than 30. Such high values of THL are usually due to the occurrence of
routing loops. In the vast majority of the cases, however, the overall average THL is between
5 and 6 while the maximal THL is between 10 and 17, as shown in figures 20 and 21.

5.4 Duplicate packets

A further interesting metric to consider when evaluating the performance of CTP is the num-
ber of duplicate packets eventually reaching the sink. As detailed in section 3.4, duplicate

28

packets are generated when acknowledgments get lost or are not received within a given time-
out. Figure 22 shows the number of duplicate packets for all network configurations and
rounds, while figure 23 shows the corresponding average for each network and over all net-
works as p increases. As expected, the number of duplicate packets increases as the value of
p increases. The presence of duplicate packets clearly contributes to congest the network and
thus negatively affects the performance of CTP.

6 Conclusions

This reports provides a detailed description of the implementation of the Collection Tree Pro-
tocol for the Castalia wireless sensor networks simulator. The report focuses on particularly
tricky implementation issues and represents an handy reference for other researchers inter-
ested in working with CTP or re-implementing it for other platforms. The validity of the
implementation has been tested through an extensive simulation study, which also confirmed
the convincing performance of CTP in terms of data delivery ratio.

29

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor Networks:
A Survey. Computer Networks, 38(4):393–422, March 2002.

[2] Athanassios Boulis et al. Castalia: A Simulator for Wireless Sensor Networks. http:
//castalia.npc.nicta.com.au/.

[3] Aline Baggio. Wireless Sensor Networks in Precision Agriculture. In Proceedings of the
First Workshop on Real-World Wireless Sensor Networks (REALWSN 2005), Stockholm,
Sweden, June 2005.

[4] Manohar Bathula, Mehrdad Ramezanali, Ishu Pradhan, Nilesh Patel, Joe Gotschall, and
Nigamanth Sridhar. A Sensor Network System for Measuring Traffic in Short-Term Con-
struction Work Zones. In Proceedings of the 5th IEEE International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS 2009), pages 216–230, Marina del Rey,
CA, USA, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] Lorenzo Bergamini, Carlo Crociani, and Andrea Vitaletti. Simulation vs Real Testbeds:
A Validation of WSN Simulators. Technical Report 3, Sapienza Università di Roma,
Dipartimento di Informatica e Sistemistica Antonio Ruberti, 2009.

[6] Athanassios Boulis. Castalia User Manual (version 1.3). http://castalia.npc.nicta.
com.au/pdfs/Castalia%20-%20User%20Manual.pdf.

[7] Athanassios Boulis. Castalia: Revealing Pitfalls in Designing Distributed Algorithms
in WSN. In Proceedings of the 5th International Conference on Embedded Networked
Sensor Systems (SenSys 2007), pages 407–408, Sydney, Australia, 6-7 November 2007.
Demonstration session.

[8] Athanassios Boulis, Ansgar Fehnker, Matthias Fruth, and Annabelle McIver. CaVi –
Simulation and Model Checking forWireless Sensor Networks. In Proceedings of the Fifth
International Conference on Quantitative Evaluation of Systems (QEST 2008), pages
37–38, Saint Malo, France, September 14-17 2008.

[9] Phil Buonadonna, David Gay, Joseph M. Hellerstein, Wei Hong, and Samuel Madden.
TASK: Sensor Network in a Box. In Proceedings of the 2nd IEEE European Workshop on
Wireless Sensor Networks and Applications (EWSN 2005), Istanbul, Turkey, February
2005.

[10] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer. Dozer: Ultra-Low Power
Data Gathering in Sensor Networks. In Proceedings of the 6th International Conference
on Information Processing in Sensor Networks (IPSN 2007), Cambridge, MA, USA, April
2007.

[11] ChipCon 2420 Datasheet. http://focus.ti.com/lit/ds/symlink/cc2420.pdf.

[12] Crossbow Technology Inc. www.xbow.com.

[13] J. E. Egea-López, A. Vales-Alonso, P. S. Martínez-Sala, J. Pavón-Mariï£¡o, and García-
Haro. Simulation Tools for Wireless Sensor Networks. In International Symposium on

30

Performance Evaluation of Computer and Telecommunication Systems (SPECTS 2005),
Philadelphia, PA, USA, July 2005.

[14] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next Century
Challenges: Scalable Coordination in Sensor Networks. In Proceedings of the 5th annual
ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom
1999), pages 263 – 270, Seattle, WA, USA, 1999.

[15] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, Sukun Kim, Philip Levis, and
Alec Woo. TinyOS Enhancement Proposal (TEP) 123: The Collection Tree Protocol
(CTP). www.tinyos.net/tinyos-2.x/doc/pdf/tep123.pdf.

[16] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, and Philip Levis. TinyOS En-
hancement Proposal (TEP) 119: Collection. www.tinyos.net/tinyos-2.x/doc/pdf/
tep119.pdf.

[17] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, and Philip Levis. CTP: Robust
and Efficient Collection through Control and Data Plane Integration. Technical report,
The Stanford Information Networks Group (SING), 2008. http://sing.stanford.edu/
pubs/sing-08-02.pdf.

[18] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis.
Collection Tree Protocol. In Proceedings of the 7th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys 2009), Berkeley, CA, USA, November 2009.

[19] Miloš Jevtić, Nikola Zogović, and Goran Dimić. Evaluation of Wireless Sensor Network
Simulators. In Proceedings of the 17th Telecommunications Forum (TELFOR 2009),
Belgrade, Serbia, November 2009.

[20] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless Sensor Net-
works. John Wiley and Sons, 2005.

[21] Alireza Khadivi and Martin Hasler. Fire Detection and Localization Using Wireless
Sensor Networks. Sensor Applications Experimentation and Logistics, 29:16–26, 2010.

[22] JeongGil Ko, Tia Gao, and Andreas Terzis. Empirical Study of a Medical Sensor Ap-
plication in an Urban Emergency Department. In Proceedings of the 4th International
Conference on Body Area Networks (BodyNets 2009), Los Angeles, CA, USA, April 2009.

[23] Philip Levis. TinyOS Enhancement Proposal (TEP) 116: Packet Protocols. www.tinyos.
net/tinyos-2.x/doc/pdf/tep116.pdf.

[24] Philip Levis, Neil Patel, David Culler, and Scott Shenker. A Self-Regulating Algorithm
for Code Maintenance and Propagation in Wireless Sensor Networks. In Proceedings of
the 1st USENIX Conference on Networked Systems Design and Implementation (NSDI
2004), San Francisco, CA, USA, March 2004.

[25] Philipp Levis and David Gay. TinyOS Programming. Cambridge University Press, 2009.

[26] Andreas Meier, Mehul Motani, Hu Siquan, and Simon Künzli. DiMo: Distributed Node
Monitoring in Wireless Sensor Networks. In Proceedings of the 11th International Sym-
posium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM
2008), pages 117–121, Vancouver, Canada, New York, NY, USA, October 2008. ACM.

31

[27] Andreas Meier, Matthias Woehrle, Mischa Weise, Jan Beutel, and Lothar Thiele. NoSE:
Efficient Maintenance and Initialization of Wireless Sensor Networks. In Proceedings of
the 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON 2009, pages 395–403, Rome, Italy, Piscataway,
NJ, USA, 2009. IEEE Press.

[28] David Moss, Jonathan Hui, Philip Levis, and Jung Il Choi. TinyOS Enhancement Pro-
posal (TEP) 126: CC2420 Radio Stack. www.tinyos.net/tinyos-2.x/doc/pdf/tep126.
pdf.

[29] OMNeT++User Manual (Version 3.2). www.omnetpp.org/doc/omnetpp33/manual/usman.html.

[30] Sung Park, Andreas Savvides, and Mani B. Srivastava. SensorSim: a Simulation Frame-
work for Sensor Networks. In Proceedings of the 3rd ACM International Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2000), pages
104–111, Boston, MA, USA, August 2000.

[31] Hai N. Pham, Dimosthenis Pediaditakis, and Athanassios Boulis. From Simulation to Real
Deployments in WSN and Back. In Proceedings of the IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM 2007), pages 1–6,
Helsinki, Finland, June 18-21 2007.

[32] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling Ultra-Low Power
Wireless Research. In Proceedings of the 4th International Conference on Information
Processing in Sensor Networks: Special track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS 2005), pages 364–369, Los Angeles, CA, USA,
April 2005.

[33] Thomas Schmid, Zainul Charbiwala, Roy Shea, and Mani Srivastava. Temperature Com-
pensated Time Synchronization. IEEE Embedded Systems Letters (ESL), 1(2):37–41,
August 2009.

[34] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David Culler.
An Analysis of a Large Scale Habitat Monitoring Application. In Proceedings of the Second
ACM Conference on Embedded Networked Sensor Systems (SenSys 2004), Baltimore, MD,
USA, November 2004.

[35] Igor Talzi, Andreas Hasler, Stephan Gruber, and Christian Tschudin. PermaSense: In-
vestigating Permafrost with a WSN in the Swiss Alps. In Proceedings of the Fourth ACM
Workshop on Embedded Networked Sensors (EmNets 2007), Cork, Ireland, June 2007.

[36] Simon Tschirner, Liang Xuedong, and Wang Yi. Model-based Validation of QoS Proper-
ties of Biomedical Sensor Networks. In Proceedings of the 8th ACM International Con-
ference On Embedded Software, pages 69–78, Atlanta, GA, USA, October 2008.

[37] Tijs van Dam and Koen Langendoen. An Adaptive Energy-Efficient MAC Protocol for
Wireless Sensor Networks. In Proceedings of the First International Conference on Em-
bedded Networked Sensing Systems (SenSys 2003), pages 171 – 180, New York, NY, USA,
2003.

32

[38] Alec Woo, Terence Tong, and David Culler. Taming the Underlying Challenges of Reliable
Multihop Routing in Sensor Networks. In Proceedings of the 1st ACM International
Conference on Embedded Networked Sensor Systems (SenSys 2003), pages 14–27, Los
Angeles, CA, USA, November 2003.

33

0 10 20 30 40 50

50

70

90

110

Round

N
um

be
r

of
 p

ac
ke

ts

(a) Network 2, p = 0.5

Sent
Received

0 10 20 30 40 50

50

70

90

110

Round

N
um

be
r

of
 p

ac
ke

ts

(b) Network 2, p = 0.75

Sent
Received

0 10 20 30 40 50

50

70

90

110

Round

N
um

be
r

of
 p

ac
ke

ts

(c) Network 2, p = 1

Sent
Received

Figure 8: Number of sent and received packets for the network configuration 2 and p = 0.5,
p = 0.75, and p = 1.

34

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

Round

N
et

w
or

k
co

nf
ig

ur
at

io
n

Data Delivery Ratio for p = 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

Round

N
et

w
or

k
co

nf
ig

ur
at

io
n

Data Delivery Ratio for p = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: DDR for all the network configurations and rounds, for p = 0.5 and p = 1.

35

−50 0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300

x

y

Topology of network 41

Sink
Nodes

Figure 10: Physical topology of network configuration no 41.

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

1.1
Average data delivery ratio

Probability of activation p

D
at

a
de

liv
er

y
ra

tio

Figure 11: Average data delivery ratio for all networks and values of p.

36

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

0

0.
2

0.
4

0.
6

0.
81

1.
2

M
in

im
um

, a
ve

ra
ge

, a
nd

 m
ax

im
um

 d
at

a
de

liv
er

y
ra

tio
, p

 =
 0

.5

N
et

w
or

k
co

nf
ig

ur
at

io
n

Data delivery ratio

M
in

im
um

A
ve

ra
ge

M
ax

im
um

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

0

0.
2

0.
4

0.
6

0.
81

M
in

im
um

, a
ve

ra
ge

, a
nd

 m
ax

im
um

 d
at

a
de

liv
er

y
ra

tio
, p

 =
 1

N
et

w
or

k
co

nf
ig

ur
at

io
n

Data delivery ratio

M
in

im
um

A
ve

ra
ge

M
ax

im
um

Figure 12: Minimum, average, and maximum data delivery ratio for all networks and p = 0.5
and p = 1.

37

0 10 20 30 40 50
0

500

1000

1500

2000

Round

N
um

be
r

of
 p

ac
ke

ts
Network 2, p = 0.5

Control
Data

0 10 20 30 40 50
0

500

1000

1500

2000

Round

N
um

be
r

of
 p

ac
ke

ts

Network 2, p = 0.75

Control
Data

0 10 20 30 40 50
0

500

1000

1500

2000

Round

N
um

be
r

of
 p

ac
ke

ts

Network 2, p = 1

Control
Data

Figure 13: Number of control and data packets sent throughout network 2 for p = 0.5,
p = 0.75, and p = 1.

38

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Round

C
on

tr
ol

 o
ve

rh
ea

d
Network 2, p = 0.5

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Round

C
on

tr
ol

 o
ve

rh
ea

d

Network 2, p = 0.75

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Round

C
on

tr
ol

 o
ve

rh
ea

d

Network 2, p = 1

Figure 14: Control overhead for network 2 for p = 0.5, p = 0.75, and p = 1.

39

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

round

ne
tw

or
k

co
nf

ig
ur

at
io

n

Control overhead for p=0.5

0

1

2

3

4

5

6

7

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

round

ne
tw

or
k

co
nf

ig
ur

at
io

n

Control overhead for p = 1

0

1

2

3

4

5

6

7

Figure 15: Control overhead for all networks and rounds, for p = 0.5 and p = 1.

40

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

024681012

M
in

im
um

, a
ve

ra
ge

, a
nd

 m
ax

im
um

 c
on

tr
ol

 o
ve

rh
ea

d,
 p

 =
 0

.5

N
et

w
or

k
co

nf
ig

ur
at

io
n

Control overhead

M

in
im

um
A

ve
ra

ge
M

ax
im

um

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

024681012

M
in

im
um

, a
ve

ra
ge

, a
nd

 m
ax

im
um

 c
on

tr
ol

 o
ve

rh
ea

d,
 p

 =
 1

N
et

w
or

k
co

nf
ig

ur
at

io
n

Control overhead

M

in
im

um
A

ve
ra

ge
M

ax
im

um

Figure 16: Minimum, average, and maximum control overhead for all networks and p = 0.5
and p = 1.

41

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6

7

8

9
Average control overhead

Probability of activation p

C
on

tr
ol

 o
ve

rh
ea

d

Figure 17: Average control overhead for all networks as p increases.

42

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

Round

N
et

w
or

k
co

nf
ig

ur
at

io
n

Average number of hops for p = 0.5

0

1

2

3

4

5

6

7

8

9

10

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

Round

N
et

w
or

k
co

nf
ig

ur
at

io
n

Average number of hops for p = 1

0

1

2

3

4

5

6

7

8

9

10

Figure 18: Average THL for all the network configurations and rounds and p = 0.5 and p = 1.

43

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

Round

N
et

w
or

k
co

nf
ig

ur
at

io
n

Maximum number of hops for p = 0.5

5

10

15

20

25

30

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

Round

N
et

w
or

k
co

nf
ig

ur
at

io
n

Maximum number of hops for p = 1

5

10

15

20

25

30

Figure 19: Maximum THL for all the network configurations and rounds and p = 0.5 and
p = 1.

44

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1

2

3

4

5

6

7

8
Average number of hops

Probability of activation p

N
um

be
r

of
 h

op
s

Figure 20: Average THL for all networks as p increases.

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 2

 4

 6

 8

10

12

14

16

18

20

22

24

26

28

30
Maximum number of hops

Probability of activation p

N
um

be
r

of
 h

op
s

Figure 21: Maximum THL for all networks as p increases.

45

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

Round

N
et

w
or

k
co

nf
ig

ur
at

io
n

Number of duplicate packets for p = 0.5

0

5

10

15

20

25

30

35

40

45

50

55

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

10

15

20

25

30

35

40

45

50

Round

N
et

w
or

k
co

nf
ig

ur
at

io
n

Number of duplicate packets for p = 1

0

5

10

15

20

25

30

35

40

45

50

55

Figure 22: Number of duplicate packets for all the network configurations and rounds for
p = 0.5 and p = 1.

46

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 2

 4

 6

 8

10

12

14

16

18

20

22

24

26

28

30
Average number of duplicate packets

Probability of activation p

N
um

be
r

of
 d

up
lic

at
e

pa
ck

et
s

Figure 23: Average number of duplicate packets for all networks as p increases.

47

