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= WSN: compound of senoodes ° , ° O o
= Sensor nodes °

Computation
Wireless communication
Sensing

Tiny size, low cost
Power supply

= Challenge: Minimize energy consumption
One approach: Only subset of nodes active
Helps to reduce overall communication




The Sensor Selection Problem

= Which nodes, out of those deployed, should actively
collect/transmit sensor readings?
Spatial sensor selection algorithms

= When should a node collect/transmit sensor readings?
Temporal sensor selection algorithms

= Challenges
Reduce communication
Guarantee data accuracy
Cope with limited resources



Contributions

1) Prediction-based data collection (Temporal sensor selection)

1a) Algorithm based on least mean square (LMS) adaptive filter
1b) Adaptive model selection (AMS) algorithm

2) Coverage preserving algorithms (Spatial sensor selection)

2a) Optimization of the coverage configuration protocol (CCP)
2b) Adaptive random sensor selection (ARS) algorithm

3) Application scenario: Environmental noise monitoring
3a) Analysis
3b) Evaluation of platforms



Outline

= Prediction-based data collection in WSNs

The adaptive model selection algorithm (AMS)
Rationale, implementations, experimental results
Limitations and outlook

= Spatial coverage in WSNs

Optimizing the coverage configuration protocol (CCP)
Adaptive sensor ranking, experimental results
Limitations and outlook

= Conclusions



Prediction-Based Data Collection in WSNs

= Sensor nodes
Read sensor(s) at regular time intervals (e.g., 10 minutes)
Compute and transmit prediction model to the sink(s)

= Sink nodes
Uses prediction model to estimate future sensor readings

Receives updates from nodes when prediction error higher than
application-specific threshold (E.g., £ 0.5°C for temperature readings)

= Dual prediCtion scheme (DPS) #of transmitted samples
Performance measure: Update rate [ up fo time stepk

'k #of collected samples
up to time stepk



DPS — Challenges

= Choosing the “right” prediction model

Constant model [Olston et al., 2003], Kalman filter [Jain et al., 2004], Dead
reckoning [Tilak, 2005], LMS adaptive filter [Santini et al., 2006],
Autoregressive models [Tulone et al., 2006]

= Limited resources
Computation and memory

= Adapt to actual (changing) signal dynamics
Lack of a priori knowledge
Need for online model update procedures



Adaptive Model Selection (AMS) Algorithm
(Contribution 1b)
= Set of N arbitrary candidate models
E.g., linear models corresponding to different sets of parameters

"= Online performance estimation
Update rate (or variants thereof)

= Model selection
Each time an update is required
Model minimizing the performance measure is sent to the sink

= QOther features
Racing mechanism to prune poor performing models



AMS - Implementation

= Composition of set of models
Determines computational overhead and memory footprint

= Autoregressive (AR) models (AR-AMS)
Order p -> number of parameters
Recursive least square (RLS) procedure to compute parameters

= Exponential smoothing (ES) models (ES-AMS)

Linear predictors, smoothing constants a and B (O<a <1, 0< B <1)



AMS — Datasets for Simulation Study

2h30min e——— [Stenman et al., 1996]

N® Data set name  Sensed variable Sampling Period

) S Heater Temperature 3 seconds

2 I Light Light 31 seconds 8 days

3 M Hum Humidity 10 minutes 30 days
4 M Temp Temperature 10 minutes 30 days
5 Midra ST1 Soil temperature 10 s 3 months
6 Midra ST2 Soil temperature 10 s 3 months
7 Midra ST3 Soil temperature 10 s 3 months
8 Monte ST3a Soil temperature < 1min 2 months
9 Monte ST3b Soil temperature < Imin 2 months
10 Monte ST3c Soil temperature < 1min 2 months
11  NDBC WD Wind direction 1 hour 1 year

12 NDBC WSPD  Wind speed 1 hour 1 year

13 NDBC DFPD Dominant wave period 1 hour 1 year

14 NDBC AVP Average wave period 1 hour 1 year

15 NDBC BAR Air pressure 1 hour 1 year

16 NDBC ATMP  Air temperature 1 hour 1 year

17 NDBC WTMP Water temperature 1 hour 1 year

18 NDBC DEWP  Dewpoint temperature 1 hour 1 year

19 NDBC GST Gust speed 1 hour 1 year

20 NDBC WVHT Wave height 1 hour 1 year

2—— Intel Lab data

Good Food project
deployments

USA - National Data
Buoy Center



Performance of AR-AMS

CM_ARI_AR2 AR3 AR4 AR5 AMs)| " Model set

S Heater mmp[72 75 61 (59) 59 59 {AR?)\ Constant model (CM)
I Light 38) 40 30 40 40 39| CM

M Hum 55 53 49 50 (29) 49 [ AR4 ‘ and AR models of

M Temp 48 48 45 45 (TM) 44| AR4 order1to5

NDBC DPD @ 8 80 80 80 80| M
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\/ Matlab




Performance of ES-AMS
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ES-AMS as TinyOS Library

= TinyOS

= De-facto standard operating system for WSNs

= Test deployment: 9 Tmote Sky nodes
= Sensor: temperature

= Sampling interval: 5 - 15 seconds
“ Error threshold: 0.1 -1 °C

= Model set

= Exponential smoothing models
" 0=0.1:0.1:1, B=0:0.1:1




AMS — Limitations and Outlook

= DPS generally assumes reliable communication
Need to take into account communication failures

= Update rate computed over the whole observation period
Inertia in reacting to changes in best performing model
Moving average would make AMS more reactive
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Spatial Coverage in WSNs

= Point covered if within sensing range R _
of at least one node

= Coverage preserving algorithms
Spatial sensor selection

= Coverage configuration protocol
[Xing et al., 2005]




Coverage Configuration Protocol (CCP)

= Listen phase

Collect information on
communication neighborhood

= Activation phase
Join timer ]}(1) for each node 1
Random value between 0 and 7™

= Withdrawal phase

= Potential for optimization

Reduce number of withdrawals to
reduce communication

Adaptive values for timers T](l)




Reducing Communication Overhead of CCP
(Contribution 2a)

= Length of 7(i) depends on probability that the node i must

become active
E.g., nodes with less neighbors should activate first
Determine “rank” ¥/, for every node 1

= Adaptive sensor ranking strategy
Local network topology
IDW: Inverse distance weighting [Shepard, 1968]



Adaptive Sensor Ranking

= Rank of node 1
;

For each neighbor j: ¢U = _F

s Sector 1

For each sector k: /=

J 7
1 Nsets i g
o
Sensorrank: Y/, =—— ) Y. B ¢ ®
"] N
Nsets k=1 n

Sector 3



Strategies to Set the Activation Timers

IDW strategy
T.(i) proportional to 1-y,

"= |DW-random strategy
T.(i) proportional to a random value between 0 and 1-y,

= Density (C) strategy
T (i) proportional to the density of neighbors within communication range

= Density (S) strategy
T (i) proportional to the density of neighbors within sensing range

= Random strategy (CCP)

T'.(i) random value between 0 and 7™



CCP + Adaptive Sensor Ranking — Results ()

Percentage of active nodes after the withdrawal phase
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CCP + Adaptive Sensor Ranking — Results (Il)

Total communication overhead
(in percentage with respect to the overhead of the random strategy)
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Limitations and Outlook

= Performance evaluation based on Matlab

Need to include realistic communication/energy model
(E.g., Castalia WSN simulator)
Quantify savings in terms of activation time

= QOpen challenge: Integration with routing
Use sensor ranking to influence nodes’ availability as data routers
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Conclusions

= Sensor selection problem
Solutions needed to optimize energy consumption in WSNs

= Qur contributions
Temporal: LMS-DPS algorithm / AMS algorithm
Spatial: CCP optimization / ARS algorithm
Application scenario: Noise monitoring

= Results demonstrate importance of adaptability
Adapting to data dynamics
Adapting to local topology
Considering resource constrained implementations
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