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Abstract

A wireless sensor network is a collection of tiny, autonomously powered
devices — commonly called sensor nodes — endowed with sensing, com-
munication, and processing capabilities. Once deployed over a region
of interest, sensor nodes can collect fine-grained measurements of phys-
ical variables, like the temperature of a glacier or the concentration of
a pollutant. To report their readings to one or more data sinks, sensor
nodes communicate using their integrated radio-transceivers and build
ad-hoc — possibly multi-hop — relay networks. Thanks to the potentially
large number of nodes they are composed of and their ability to oper-
ate unattended for long periods of time, wireless sensor networks allow
monitoring the environment at an unprecedented spatial and temporal
scale.

However, enabling a wireless sensor network to reliably report large
quantities of data over long periods of time is still a challenging goal.
In particular, since the operation of the radio is known to be the major
factor of energy consumption on sensor nodes, limiting communication
is crucial for increasing the lifetime of the network. On the other hand,
meeting the requirements of wireless sensor network applications may
require sensor nodes to collect and report large amounts of sensor read-
ings. The efficient operation of a wireless sensor network thus requires
careful scheduling of node participation in sensing and communication.
Beyond the role that medium access control and routing protocols may
play in this context, so-called sensor selection algorithms can provide
for significant communication savings by identifying subsets of the de-
ployed nodes that are sufficient to comply with the application require-
ments.

This thesis argues for endowing sensor selection algorithms with the
ability to dynamically adapt to the observed data and to the local topol-
ogy of the network. The presented work offers novel sensor selection
strategies that can continuously tune their parameters in a distributed
fashion, thereby relying on no or only little a priori knowledge about
the phenomena of interest. In particular, the thesis first addresses the
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sensor selection problem in the time domain by considering scenarios
in which sensor nodes autonomously adapt their data reporting rate.
To this end, nodes report their sensor readings along with a forecast-
ing model, which the sink can in turn use to estimate future readings.
Nodes can thus suppress data communication as long as the estimation
error at the sink does not grow beyond a pre-specified, application-
dependent threshold. Since the choice of a proper forecasting model
is instrumental in allowing for high communication savings, this the-
sis proposes a generic and lightweight procedure to perform adaptive
model selection on sensor nodes. The proposed algorithm concurrently
maintains and evaluates the performance of a set of models on the nodes
and lets them report to the sink the model with the lowest expected
communication overhead. Second, the thesis addresses the sensor se-
lection problem in the spatial domain, in particular for applications
requiring spatial coverage of a region of interest. It proposes a novel
sensor ranking strategy to efficiently schedule the activation of sensor
nodes across the deployment region. Information about the local net-
work topology is used to determine the actual relevance of a node for
the current sensing task. The resulting ranking of the nodes, properly
combined with randomization techniques, is then used to select sub-
sets of nodes whose activation can guarantee compliance with specific
application requirements.

The sensor selection strategies proposed in this thesis require little
memory and computational resources, and are thus implementable on
resource-constrained wireless sensor network platforms. Their practical
feasibility is evaluated by means of simulations, experiments on a small-
scale deployment, and in the context of a concrete application scenario,
namely the monitoring of noise pollution levels in urban environments.

The contribution of this thesis is therefore threefold: it describes the
design of novel temporal and spatial sensor selection algorithms; it pro-
vides an implementation of these algorithms on simulators and state-of-
the-art wireless sensor network platforms; and it describes a thorough
performance evaluation based on simulations, real-world experiments,
and a specific application scenario. Taken together, these contributions
constitute a step towards enabling long-term environmental monitoring
applications using wireless sensor networks.



Kurzfassung

Ein drahtloses Sensornetz ist ein Verbund kleiner elektronischer Geréte
— sogenannte Sensorknoten —, welche iiber eine Energiequelle sowie
iber Daterfassungs-, Kommunikations- und Rechenfihigkeiten verfii-
gen. Ausgebracht in der Umgebung konnen Sensorknoten Messun-
gen einer physikalischen Grosse, z.B. der Temperatur eines Gletsch-
ers, durchfithren. Um die einzelnen Messergebnisse eines jeden Sen-
sorknotens einzusammeln, bilden diese mittels ihres integrierten Funk-
moduls ein Ad-hoc-Kommunikationsnetz, iiber welches dann die jew-
eiligen Nachrichten, moglicherweise iiber mehrere Zwischenstationen,
zu einer bzw. zu mehreren Datensenken verschickt werden. Dank der
grossen Anzahl ausgebrachter Knoten und ihrer Féhigkeit, fiir lange
Zeit wartungsfrei operieren zu konnen, ermdglichen Sensornetze eine
detaillierte Vermessung verschiedenster physikalischer Grossen.

Trotz aller technischer Fortschritte stellt der Betrieb eines Sensornet-
zes iiber einen langeren Zeitraum hinweg jedoch noch immer eine Her-
ausforderung dar. Wahrend eine detaillierte Messung und die zeitnahe
Ubermittlung von Daten oft Hauptanforderungen an eine Sensornet-
zanwendung sind, sollte gleichzeitig das Funkmodul als Hauptenergie-
verbraucher moglichst selten verwendet werden. Der effiziente Betrieb
eines Sensornetzes setzt daher eine sorgfiltige Planung der einzelnen
Sensorknotenaktivititen — d.h. dem Erheben von Messdaten sowie
deren Ubermittlung — voraus. In diesem Zusammenhang konnen so-
genannte Sensor-Selektionsalgorithmen eine wichtige Rolle spielen. In-
dem sie in Abhéngigkeit von den jeweiligen Qualitdtsanforderungen
der Sensornetzanwendung lediglich eine Untermenge von Sensorknoten
auswihlen, welche zu einem gegebenen Zeitpunkt messen bzw. kommu-
nizieren miissen, konnen sie signifikante Energieeinsparungen erreichen
und so unabhéngig von den eingesetzten Medienzugriffs- und Routing-
Protokollen die Lebensdauer des Sensornetzes merklich verlangern.

Diese Arbeit erweitert bestehende Sensor-Selektionsalgorithmen um
die Fahigkeit, sich an den konkreten Datenverlauf und die lokale Topolo-
gie des Netzes anzupassen und dabei kein — bzw. nur ein Minimum
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an — A-priori-Wissen iiber das zu beobachtende Phianomen zu nutzen.
Statt dessen werden die Selektionsparameter stetig und in einem verteil-
ten Verfahren angepasst. In einem ersten Schritt wird ein Verfahren
vorgestellt, welches es Sensorknoten erlaubt, ihre Dateniibertragungsrate
selbstindig an das beobachtete Phanomen anzupassen. Dazu iibertra-
gen die Knoten der Datensenke zuséatzlich zu den aktuellen Messwerten
ein Vorhersagemodell, welches die Senke ihrerseits fiir die Abschétzung
zukiinftiger Messwerte nutzen kann. Solange die Senke sukzessive Mess-
werte innerhalb gegebener Fehlergrenzen abschétzen kann, konnen Sen-
sorknoten von einer Ubertragung dieser Messwerte absehen. Das vor-
gestellte Verfahren ermoglicht es den Knoten, mehrere Kandidaten fiir
das zu verwendende Modell gleichzeitig vorzuhalten und in jeder Sit-
uation das jeweils beste Modell dynamisch auszuwahlen. In einem
zweiten Schritt betrachtet diese Arbeit die raumliche Auswahl von Sen-
sorknoten in Anwendungen, die einen bestimmten Teilbereich eines Ge-
biets mit ihren Messungen abzudecken versuchen. Dabei wird eine neue
Strategie, welche die Rangordnung von Sensorknoten fiir eine spezifis-
che Messaufgabe anhand von Informationen iiber die lokale Topologie
des Netzes berechnet, prasentiert. Diese Rangordnung, kombiniert mit
passenden Randomisierungsverfahren, erlaubt schliesslich die Auswahl
einer Untermenge von Sensorknoten, deren Aktivierung zur Erfiillung
der Anwendungsanforderungen ausreicht.

Die in dieser Arbeit vorgeschlagenen Sensor-Selektionsalgorithmen
beanspruchen nur wenig Rechenleistung und Speicher, was ihren Ein-
satz auch auf dusserst ressourcenbeschréankten Sensorknoten ermoglicht.
Der praktische Einsatz der Algorithmen wurde sowohl mit Hilfe um-
fangreicher Simulationen als auch durch praktische Experimente mit
prototypischer Hardware und im Rahmen eines spezifischen Anwen-
dungszenarios, der Uberwachung von Umgebungslirm, untersucht.

Die vorliegende Arbeit liefert somit drei Hauptbeitrige: Sie schligt
neue Algorithmen fiir die zeitliche und raumliche Sensorselektion vor;
sie beschreibt eine Implementierung dieser Algorithmen auf Simula-
toren und auf aktuellen Sensorknoten; und sie bietet eine detaillierte
Leistungsanalyse der Algorithmen basierend auf Simulationen, Experi-
menten und der Diskussion eines konkreten Anwendungszenarios. Zu-
sammengenommen stellen diese Beitrdge einen wichtigen Schritt zur
Realisierung langlebiger Anwendungen zum Uberwachen der Umwelt
mittels drahtloser Sensornetze dar.



Riassunto

Una rete di sensori ¢ un sistema costituito da minuscoli dispositivi,
detti nodi sensore, che vengono tipicamente alimentati a batterie e
dispongono di un processore, una o pitt memorie dati, sensori di vario
tipo nonché un trasmettitore. Una volta distribuiti su di un area che
si vuole monitorare, i nodi sensore acquisiscono campioni di variabili
fisiche, come la temperatura di un ghiacciaio o la concentrazione di
un agente inquinante. Per comunicare 1 dati raccolti ad una stazione
base 1 nodi sensore formano una rete ad-hoc, e generalmente multi-
hop, utilizzano i loro trasmettitori. Una rete di sensori pud operare
autonomamente per lunghi periodi e supportare un elevato numero di
nodi, permettendo cosi di acquisire misure ad elevata granularita, sia
spaziale che temporale, di una o piu variabili fisiche.

Rendere una rete di sensori capace di far pervenire alla stazione base
grandi quantita di dati durante lunghi periodi di tempo ¢ tuttavia an-
cora un problema aperto. In particolare, I'utilizzo del trasmettitore
comporta un elevato dispendio di energia per i nodi sensore e limi-
tarne la frequenza di attivazione ¢ dunque necessario per prolungare
la durata operativa della rete. Allo stesso tempo, molte delle appli-
cazioni nel contesto delle quali le reti di sensori trovano il loro utilizzo
richiedono frequenti comunicazioni con la stazione base per permettere
ai nodi sensore di inviare regolarmente i dati acquisiti. Una attenta pi-
anificazione delle attivazioni dei singoli nodi é quindi necessaria al fine
di operare in modo efficiente una rete di sensori. In questo contesto,
i cosiddetti algoritmi di selezione dei sensori permettono di limitare
il numero di comunicazioni totali con la stazione base individuando
adeguati sottoinsiemi di nodi la cui attivazione permette di soddisfare
1 requisiti dell’applicazione. Tali algoritmi, tuttavia, presuppongono
spesso la disponibilita di informazioni sulle caratteristiche dei fenomeni
che si vogliono osservare.

Questa tesi propone quindi di eliminare, o ridurre, la necessita di tale
conoscenza pregressa dotando gli algoritmi di selezione dei sensori della
capacita di adattarsi continuamente alla dinamica del segnale misurato
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e alla topologia della rete. La tesi si rivolge in un primo tempo al prob-
lema della selezione dei sensori nel dominio del tempo considerando
algoritmi che permettono ai nodi sensori di stabilire autonomamente la
frequenza con cui comunicano i loro dati alla stazione base. A questo
scopo 1 nodi inviano, insieme al dato misurato, un modello di predi-
zione che permette di stimare il valore dei prossimi campioni. La co-
municazione con la stazione base puo quindi essere sospesa fin quando
Perrore di stima, cioé la differenza tra il valore effettivamente misurato
e quello stimato dal modello, non supera una predeterminata soglia
di tolleranza. Considerando che una adeguata scelta del modello di
predizione é cruciale per massimizzare i risparmi in termini di comuni-
cazione, questa tesi propone una procedura generica per effettuare la
scelta di tale modello in modo adattivo e direttamente sui nodi sensori.
L’algoritmo proposto mantiene un set di modelli e ne valuta continua-
mente le prestazioni permettendo cosi al nodo di selezionare, e comuni-
care alla stazione base, solo il modello in grado di garantire il maggior
risparmio in termini di comunicazione. La tesi considera poi anche il
problema della selezione dei sensori nel dominio dello spazio ed in par-
ticolare nel contesto di applicazioni che richiedono copertura spaziale
di una specifica regione. La tesi introduce quindi una nuova strategia
di selezione dei nodi in grado di garantire, entro predefiniti limiti di er-
rore, la copertura della regione da monitorare. A questo scopo vengono
utilizzate informazioni sulla topologia della rete ed applicate adeguate
tecniche di randomizzazione.

Gli algoritmi di selezione dei sensori presentate in questa tesi richiedono
una quantita di memoria dati e capacita di calcolo compatibili con
le pitt comuni piattaforme sperimentali attualmente disponibili. Le
prestazioni degli algoritmi presentati sono inoltre dimostrate da esper-
imenti su simulatore e piccole reti di sensori nonché dall’analisi di uno
specifico scenario applicativo: il monitoraggio del rumore ambientale.

I risultati di questa tesi possono essere riassunti nella somma di tre
contributi. II primo consiste nella progettazione di nuove tecniche di
selezione dei sensori. Il secondo nella implementazione di tali tecniche
su simulatori e su nodi sensori. Ed il terzo nella valutazione delle
prestazioni degli algoritmi tramite simulazioni ed esperimenti, nonché
l’accurata analisi di uno specifico scenario applicativo. Considerati nel
loro insieme, questi contributi costituiscono un passo verso la realiz-
zazione di reti di sensori capaci di monitorare fenomeni ambientali per
lunghi periodi di tempo e senza alcun intervento umano.



Contents

i
IKurzfassung] v
[Riassuntol vii
1. Introduction| 1
[[.1. The Sensor Selection Probleml . . . ... .. ... ... 4
[1.2. 'Temporal Sensor Selection| . . . . . . . ... ... ... 7
[L1.3. Spatial Sensor Selection| . . . . . . . .. ... ... ..., 9
(I.4. Summary ot Contributions| . . . . ... ... ... ... 10
(Lo, Outhinel . . . . . . . . . 12

2. Background| 13
2.1. Wireless Sensor Networks . . . . . . . ... ... .. .. 13
2.2, Hardware and Software Platforms . . . . ... .. . .. 15
(2.2.1. The Tmote Sky Sensor Node| . . . . . . . . . .. 15

[2.2.2. 'The TinyOS Embedded Operating System|. . . . 18

2.2.3. The Matlab and Castalla Simulators . . . . . . . 19

[2.3. Definitions, Notation, and Assumptions . . . . . . . . . 21
2.3.1. Network and Communication Modell . . . . . .. 21

2.3.2. Region of Interest (Rol)|. . . . . ... ... ... 21

[2.3.3. Sampling Rates and Sensing Model. . . . . . .. 22

[2.3.4. Synchronization and Localization|. . . . . . . .. 23

2.3.5. Routingl . . . . ... ... ... ... ... 23

3. Temporal Sensor Selection| 25
13.1. The Dual Prediction Scheme (DPS)| . . . . . ... ... 27
B.1.1. Prediction Models and Parameter Estimationl . . 29

B.2. Related Workl . . . . ... ... ... ... ....... 32
[3.3. An Implementation of the DPS Based on the LMS Adap- |

| tive Filterl . . . . . ..o oL 35
[3.3.1. Adaptive Filters and the LMbS Algorithm| 35




Contents

[3.3.2. Implementation of the DPS Using the LMS| . . . 39
[3.3.3. Experimental Results| . . . . .. ... ... ... 43

13.4. Adaptive Model Selection (AMS)[. . . .. ... ... .. 45
13.4.1. Performance istimatesl . . . . .. ... ... .. 47
[3.4.2. Racing Mechanism|. . . . . ... ... ... ... 49
3.4.3. AMS Algorithm| . . . ... ... ... ... ... 50

[3.0. Experimental Evaluation of the AMS . . . . ... . .. ol
[3.0.1. Experimental Setup| . . . . . .. ... ... 23
13.0.2.  Performance of the AR-AMSI . . . . . . ... .. 57
13.0.3.  Performance of the KES-AMS . . . .. ... ... 61

[3.6. Ewvaluation of the AMS on a Real WSN Deployment| . . 63
[3.7. SUMMATY|. .+ + « v v v v e e e e e e 69
4. Spatial Sensor Selection| 71
4.1. Field Reconstruction in WSNg . . . . . ... ... . .. 72
4.2, Related Workl . . . ... .. ... ... ... ... ... 74
4.2.1. Field Reconstruction| . . . ... ... ... ... 75
1.2.2. Coverage Preserving Algorithms| . . . . . . . .. 7
14.2.3. Random Sampling| . . . . . .. .. ... ..... 80
1.2.4. Utility-Based Sensor Selection| . . . . . . . . .. 82
4.2.5. Model-Based Sensor Selection ] . . . . . . . . .. 83
4.2.6. Computation ot Aggregates . . . . . . . . . . .. 84

14.3. Irregular Sampling in WSNs and the AC'T Reconstruc- |
| tion Algorithm|. . . . . . ... . ... ... .. .... 85
1.4. 'T'he Coverage Configuration Protocol and its Use in Field |
| Reconstruction Applications| . . . .. . ... ... ... 89
1.5. Adaptive Sensor Rankingl . . . . . ... ... ... ... 91
14.5.1. Sensor Ranking Based on Local Densities) . . . . 92
14.5.2. Sensor Ranking Using Inverse Distance Weighting] 94
14.5.3. Inverse Distance Weighting and Random Sampling 96

1.6. bExperimental Results) . . . . . . ... .. ... ... .. 97
14.6.1. Experimental Setup| . . . . . . . . ... ... .. 97
M.6.2. 1-Dimensional Casel . . . . . .. ... ... ... 102
K4.6.3. 2-Dimensional Casel . . . . . .. ... ... ... 109

K.7. Adaptive Random Sensor Selection (ARS). . . . . . . . 111
4. 7.1. Random Sensor Selectionl . . . . . ... ... .. 112
1.7.2. Coverage by Randomly Deployed Sensor Nodes| . 114
1.7.3. Determination ot the Probability of Activation| . 115

‘. 7.4. bExperimental Results| . . . . .. ... ... ... 117




Contents

Xi

1.8. Integration of Sensor Selection and Routingl . . . . . . . 119
1.9, Summary|. . . .. ... 122

5. Environmental Noise Monitoring — An Application Sce- |
[_nariol 125
b.1. Motivation and Background| . . . ... ... ... ... 126
0.2. Related Workl . . . .. ... ... ... ... ... ... 130
[0.3. Application Requirements and Applicability ot Sensor |

| Selection| . . . . . ... 131
0.3.1. Computation ot Noise Indicators| . . . . . . . .. 132

[0.3.2. Application Requirements . . . . . . . . . . . .. 133

[6.3.3. Applicability of Sensor Selection| . . . . . . . .. 137

0.4, Capturing Noise Levels Using Wireless Sensor Nodes| . . 138
b.4.1. The SBTS80 Sensor Board| . . . . . .. ... ... 139

0.4.2. The I'moteinventl . . . . . ... ... ... ... 140

[0.4.3. 'T'mote Sky and Noise Level Meter] . . . . . . .. 147

b.0. Capturing Noise Levels Using Mobile Phones| . . . . . . 148
p.0.1. Experimental Setup| . . . . . . . ... ... ... 150

[0.0.2. Experimental Results| . . . ... ... ... ... 151

[0.6. Summary|. . . . . . ... 159
6. Tools and Libraries| 161
06.1. TinyLAB|. . .. ... ... ... ... ... ... ... 161
6.1.1. Writing TinyLAB Applications| . . . . . . . . .. 162

6.2. A TinyOS Library tor Adaptive Model Selection| . . . . 164
I[._Conclusions and Outlook 171
[(.1. Contributions . . . . . . . . .. ... ... 171
[(.2. Limitations and Future Workl . . . . . . . . .. ... .. 172
[(.2.1. Adaptive Model Selection| . . . . . . . ... ... 173

[(.2.2. Sensor Ranking| . . . . . . ... ... ... ... 174

[7.3. Concluding Remarks| . . . . . . ... .. ... ... .. 175
IAppendices| 177
[A. The ACT Algorithm)| 179
A.1. I-Dimensional Casel . . . . . ... ... ... ... 180
A.2. 2-Dimensional Casel . . . . .. .. ... .. ... .... 182

IA.3. Invertibility and Condition Number of the Matrix '[] . . 183

A4 BEstimationof Ml . . . . . . . ... ... ... ... .. 185



xli Contents

A5, Remarkd . . . . ... ... 186
IB. The Collection Tree Protocol (CTP)| 189
Bibliography| 193

curnical Vi Sivia Santi 219



1. Introduction

Wireless sensor networks (WSNs) are systems of tiny, battery-powered
computers endowed with sensing and wireless communication capabil-
ities, which are commonly known as sensor nodes [2,/52]. Typical ap-
plication scenarios for WSNs envision a large number of sensor nodes
being distributed at various locations over a region of interest to cap-
ture data about some physical quantity, like temperature, atmospheric
pressure, or a pollutant concentration [10,30,/185,[186]. Sensor read-
ings are then processed locally or reported to a central server and used
to achieve application specific goals. In a typical environmental moni-
toring scenario, for instance, the application goal consists in capturing
the temporal and spatial development of the observed physical quan-
tity (hereinafter also referred to as signal or sensor field) within some
user-defined accuracy. To report their readings to one or more data
collectors, sensor nodes communicate through their integrated radio
transceivers and collaboratively build an ad-hoc, possibly multi-hop
relay network.

Since the wireless channel is an inherently unreliable medium, com-
munication among nodes and, thus, data reporting, may fail or suffer
high and variable latencies. Also, since the wireless channel is a shared
resource, the data throughput of a single sensor node typically decreases
as the density of communicating nodes increases [77]. This makes it
desirable to limit communication among nodes so as to increase the
overall reliability and data throughput of the network. Furthermore,
radio communication is usually the major cause for energy consump-
tion in wireless sensor networks [104,154,211]. Consequently, limiting
radio usage is the most effective way to increase network lifetime and,
indeed, saving communication is the prime concern for the design of
basic services and applications in WSNs.

Following this major optimization guideline that requires limiting ra-
dio usage in WSNs, the research community proposed a variety of pro-
tocols for achieving efficient and reliable sensor data gathering. These
include several power-aware medium access protocols and reliable rout-
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ing schemes [31},68,[104,/196]. Although research questions on these is-
sues are still far from settled, WSN prototypes able to guarantee reliable
data collection are now available |31}68).

Assuming a WSN is able to reliably deliver data packets, a question
that remains open is whether all nodes should actually participate in
a sensing task or not. In a target detection and tracking application,
for instance, one could try to select a subset of the nodes to guarantee
spatial coverage and put the rest to sleep so as to save energy. Upon
detection of a target, activating the sleeping nodes may then guarantee
better tracking performance, although at the cost of increased overall
energy consumption [205,212]. In other scenarios, environmental scien-
tists may be interested in observing the behavior of a sensor field over
large areas [37,190]. Letting all the available sensor nodes continuously
collect data may rapidly deplete network resources. With a careful co-
ordination of node activations, however, one can significantly improve
network lifetime.

Algorithms dealing with the scheduling of the sensing activity of sen-
sor nodes are usually referred to as sensor selection algorithms, since
they select which nodes should participate in the sensing task [211].
Trading off energy consumption (due to sensing and communication)
with data granularity, sensor selection algorithms allow the optimiza-
tion of resource usage within a WSN and, consequently, the improve-
ment of its lifetime and reliability. Sensor selection is usually performed
at the application layer, since the question about which nodes should
actively sense and report their observations depends on the specific ap-
plication requirements. For instance, sensor selection strategies must
take into account the expected lifetime of the network and the desired
level of data granularity.

In the context of this work, we mainly focus on field estimation appli-
cations in which the ultimate goal of the network is the reconstruction,
at a central server, of the temporal and spatial development of a spe-
cific physical phenomenon. The reconstruction of a sensor field from its
scattered samples can be performed using standard signal processing
techniques [56,/126(171]. To ensure a reliable reconstruction, however, a
sufficiently large number of nodes must sample the sensor field at suffi-
ciently close time intervals, i.e., the spatial and temporal sampling rates
of the network must be sufficiently high. The default values of these
rates are often fixed a priori on the basis of conservative estimates of
the data accuracy requirements of the application in combination with



other constraints, like the total number of available nodes and the area
of the region to cover. However, the values of the sampling rates ac-
tually necessary to comply with the application quality requirements
may change over time and across different sectors of the network, since
they depend on the actual dynamics of the observed signal and even on
the physical topology of the network. In particular, it may be possible
to, at least temporarily, reduce these rates without affecting the over-
all data quality. Clearly, reducing the spatial sampling rate allows for
energy savings since only a subset of the nodes will be active in each
sampling interval. Similarly, reducing the temporal sampling rate pre-
serves resources since the nodes are required to sense and communicate
data less frequently. By determining which sensors should participate
in a given sensing task, sensor selection algorithms control the spatial
and temporal data sampling and reporting rates of the network. In
the remainder of this work, we will refer to spatial and temporal sen-
sor selection strategies to indicate algorithms operating on either the
spatial or the temporal sampling and reporting rate of the network,
respectively.

In this thesis, we describe the design, development and testing of
practical temporal and spatial sensor selection strategies for distributed,
wireless sensing systems. In particular, we focus on typical environmen-
tal monitoring scenarios requiring long-term data collection. Drawing
and improving upon existing work, we provide practical strategies that
are able to limit the overall energy consumption of the network while
guaranteeing the accuracy of the reconstructed data. Our approaches
provide significant reductions in data communication, even if no or only
little a priori knowledge of the signals of interest is available. Further-
more, the little computational and memory resources our algorithms
draw upon, makes them executable on state-of-the-art WSN prototyp-
ing platforms. To demonstrate the actual feasibility of the designed
algorithms and to assess their performance, we report experimental re-
sults gathered through extensive simulation studies and a small-scale

WSN deployment.

In the following section [1.1], we provide a closer view of the sensor
selection problem and the challenges related to the design and imple-
mentation of algorithms seeking its solution. We then go into the details
of temporal and spatial sensor selection strategies in sections [I.2] and
[1.3] respectively. Finally, we summarize the contributions of this thesis
in section and provide an overview of its content in section |1.5]
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1.1. The Sensor Selection Problem

The typical task of a WSN consists in gathering measurements of a
sensor field over a region of interest (Rol) for a possibly long period of
time. The spatial and temporal frequency of the measurements may
vary significantly depending on the specific application scenario. How-
ever, irrespectively of the application, limiting radio usage is crucial in
preserving the scarce energy resources of sensor nodes. This requires
us to not only constrain the number of data packets exchanged among
nodes, but also to reduce the amount of time during which the ra-
dio circuitry is powered on. Indeed, keeping the radio in idle listening
mode may be nearly as expensive, in terms of energy expenditures,
as using it for sending and receiving data [154]. Additionally, some
applications may require the use of energy-hungry sensors, whose acti-
vation can drain a non-negligible amount of current. In general, sensor
nodes frequently participating in sensing and communication activities
may quickly deplete their energy supply and thus become unavailable.
This progressive failing of single sensor nodes may, in turn, rapidly
compromise the ability of the network to comply with the application
requirements and, in fact, make it unusable. These considerations show
that a careful scheduling of the participation of sensor nodes in sensing
and communication is instrumental in ensuring reliable and long-lasting
operations of a WSN.

The problem of selecting, at the desired time instants, a subset of
sensors able to comply with the quality requirements of the application
while limiting the overall network resource consumption, is known in
the literature as the sensor selection or sensor tasking problem [211]
and can be seen as a particular instance of the sensor role assignment
problem [61]. In this context, sensor selection algorithms or strategies,
are procedures able to select, according to some trade-off, the above
mentioned subsets. In the following sections and [[.3] we detail,
for specific application scenarios, how sensor selection algorithms can
operate to optimize the temporal and spatial activation intervals of the
nodes in a WSN. Before going into further details, however, we would
like to point out here the major challenges and design guidelines related
to the definition of sensor selection strategies.

First, sensor selection can be performed using centralized or dis-
tributed approaches. The work presented in [46|, for instance, proposes
a centralized approach to determine which nodes hold data whose in-
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formation content is likely to maximize the probability of a user query
to be answered correctly. This approach requires comprehensive infor-
mation about the network (e.g., physical and logical topology), or an
estimation thereof, to be known at a central server. If the properties
of the network change over time, as it is actually common in WSN
settings, the information at the server may rapidly become stale and
thus potentially hamper the performance of sensor selection algorithms
that rely on this information. On the other hand, providing the server
with frequent updates on network status may cause a high, and clearly
undesirable, communication overhead. Approaches performing sensor
selection based on centralized decisions [46/69,120}203] may thus fail to
perform efficiently in WSNs settings, especially as the number of nodes
within the network and its physical area increase. On the other hand,
distributed approaches typically offer only approximate or probabilistic
solutions to the sensor selection problem [14152,1205]. However, they
usually also provide for significantly lower overhead and higher adaptiv-
ity to changing network and environmental conditions. In other words,
“to achieve scalability and autonomy, sensor tasking and control have to
be carried out in a distributed fashion, largely using only local informa-
tion available to each sensor”|211} page 135]. In our approach to sensor
selection in WSNs, we sought distributed algorithms that let individual
nodes autonomously decide wether or not to participate in the sensing
task. In particular, we show that it is possible to achieve significant
savings in terms of energy spent for data collection and communication
by making this decision depend on the actual dynamics of the observed
signals and, possibly, the local topology of the network [116,(163,166].

Data-dependency is indeed a further factor influencing the design and
performance of sensor selection strategies. To illustrate this point we
report an example, described in [211} Section 5.3], concerning the lo-
calization of a stationary source using a set of sensor nodes deployed in
a square region. One of the nodes, elected as the leader, collects sensor
measurements and selectively interrogates its peers for their data to
bring the uncertainty on the estimate of the position of the source un-
der a desired threshold. To this end, it first applies a nearest neighbor
(NN) strategy, that makes it trigger data reporting from the nearest
node whose measurements have not yet been included. This simple se-
lection strategy takes into account the physical topology of the network
but does not adapt to the actual information content of the collected
data. An alternative strategy to solve this source localization problem
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consists of performing sensor selection using a more elaborate metric.
For instance, relying on the Mahalanobis distance [211, page 150] al-
lows the algorithm to maximize the information gain obtainable by the
incorporation of a new data sample. Using this metric, the choice of the
nth sensor required to deliver its reading depends on both its position
and the actual measurements delivered by the previously interrogated
n — 1 nodes. In this context, the sensor selection process becomes
data-dependent. In this thesis, we show that the ability to adapt to
the actual signal dynamics may be instrumental in improving the per-
formance of sensor selection algorithms working in the field estimation
scenarios we are interested in.

The availability of reliable models to represent the physical phe-
nomena the network is set up to observe may also open several pos-
sibilities for the design and implementation of sensor selection algo-
rithms [46,76,(144]. In particular, exploiting the a priori information
made available by the models may make the selection process more
efficient. For instance, knowing that the phenomenon of interest can
be well represented in a certain function space enables the adoption of
techniques seeking for the computation of the coefficients of the signal
in this space instead of a complete data collection |76]. In many practi-
cal situations, however, there may be little or no a priori information on
the signals of interests [62]. In these scenarios, model-based approaches
loose their appeal, since their performance may degrade significantly as
the actual characteristics of the signal differ from those of the assumed
model. In the context of our work, we are mainly interested in en-
vironmental monitoring scenarios that are exploratory in nature and
for which usually limited or no a priori information is available [62].
Therefore, we avoid the use of specific models to represent the signals
of interest.

Another factor that may influence the sensor selection process is the
interplay with protocols working at different levels of abstraction [151,
183,211]. In particular, routing protocols rely on a subset of nodes to
be active to relay sensor data to a central server. Using the same subset
of nodes to gather sensor measurements may provide for energy savings
since it would not require the activation of additional sensors. On the
other hand, preserving nodes involved in sensing activities to be used
also as data routers may help in balancing the energy consumption
across nodes. In the context of spatial sensor selection, we explicitly
investigate the potential synergies between sensor selection and routing
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as a means to increase network lifetime.

Some authors also investigated the possibility of concurrently opti-
mizing both the temporal and spatial sampling rate of a WSN and thus
developed spatio-temporal sensor selection strategies [46,(175]. Indeed,
we will show that our temporal sensor selection strategy, presented in
detail in chapter [3 implicity performs also a spatial sensor selection.
Furthermore, our temporal sensor selection strategy can be easily ex-
tended to exploit spatial dependencies among the measurements and
thus provide for further communication savings. Our approach to the
spatial sensor selection problem, whose details are reported in chapter
[], assumes the network is required to report data at regular time inter-
vals and thus will not focus on the issue of determining the temporal
sampling rate of the network.

In the following two sections, we provide more specific considerations
in order to clarify our approach to the sensor selection problem in both
the temporal and spatial domains.

1.2. Temporal Sensor Selection

In typical WSN deployments, sensor nodes are required to sample a
certain physical quantity at regular time intervals and report these
readings to a central data collector [19,30}71},[121}/139,/185]. In a fire
detection scenario, for instance, monitoring the risk of fire breakouts
may require air temperature readings to be periodically collected at
several locations over a remote forest region. Similarly, the availabil-
ity of fine-grained, real-time data about the water temperature below
the sea surface may help fishermen in improving the efficiency of their
fishing activities [199].

In these scenarios, sensor nodes assumed to collect sensor readings
using a common and fixed sampling interval A, and required to re-
port them to the sink directly upon collection. The network can thus
persist in sleep statelﬂ, wake up only every Ar seconds to provide for
sampling and data reporting and immediately go back to sleep. This
duty-cycled operation mode, to which we also refer to as the default
monitoring scheme, clearly allows to save energy, since the network
is not required to be active continuously. However, letting all nodes
report their readings at each sampling round may still cause a rapid

1 In the common WSN jargon, a network is in sleep state when its nodes have their circuitry
powered off and can thus neither communicate nor perform sensing or computation.
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depletion of their batteries.

Since subsequent readings collected by the same sensor are likely to
be correlated, it may be possible to reduce the data reporting rate with-
out affecting the overall accuracy of the collected data. In this context,
temporal sensor selection strategies may help in determining the ac-
tually necessary reporting rate. In particular, a widely investigated
approach to reduce communication in such continuous monitoring sce-
narios is based on time series forecasting [46,97,/114,/116,122,|134,144]
166,194, 207]. These temporal sensor selection strategies still require
the nodes to collect data every Ap, but allow to reduce the actual num-
ber of samples that must reach the central server in order to guarantee
the collected data to lie within a given error threshold. To this end,
a sensor node can locally compute an adequate prediction model that
can provide for reliable estimates of future sensor readings. This model,
along with the corresponding parameters, can then be reported to the
sink, which will use it in the successive sampling rounds to compute
estimates of the data collected at the node. Since the node can locally
monitor the error between the estimates and the actual sensor readings,
it can suppress communication with the sink as long as this error does
not exceed the pre-specified threshold. In the absence of notifications
from the node, the sink can thus assume that the estimate computed
using the shared prediction model is within the allowed error bound.

This temporal sensor selection strategy, named dual prediction scheme
or DPS [166], may provide for significant communication and energy
savings if adequate prediction models are used [46},97,114,/144/166|[194,
207]. However, many prediction techniques, like, e.g., Kalman filter-
ing [97,/101], rely on the specification of parameters whose computation
may be computationally expensive or require a priori knowledge of the
signals of interest. On the other hand, using a pre-computed set of
parameters may make the model unable to follow the actual signal dy-
namics and thus seriously hamper the achievable communication sav-
ings. Thus, adequate procedures to select suitable prediction models
and compute their parameters on sensor nodes are required. To this
end, we introduce a generic and lightweight adaptive model selection
framework, that allows sensor nodes to autonomously determine a good
model choice. The rationale of our approach consists in letting sensor
nodes run a proper set of candidate prediction models and assess their
performance in an online fashion, as sensor data is collected. Using
adequate performance metrics, our framework makes sensor nodes able
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to select, among the set of candidates, the model that allows for the
highest achievable communication savings [116].

Other approaches to the temporal sensor selection problem avoid the
use of prediction models. In event detection applications, for instance,
very basic sensor selection mechanisms increase the sampling frequency
of the nodes when a specific pattern is detected or decrease it when
nothing of interest is happening [39]. In our thesis, however, we mainly
focus on prediction-based temporal sensor selection algorithms leverag-
ing the DPS data collection strategy sketched above.

1.3. Spatial Sensor Selection

In the previous section, we discussed how temporal sensor selection
strategies may allow to reduce the data reporting rate of sensor nodes by
exploiting the correlation between subsequent sensor readings. When
the number and density of the nodes is sufficiently high, correlation be-
tween readings collected by nearby nodes is also likely to appear. The
presence of this correlation may thus again enable the use of adequate
sensor selection techniques to reduce the average number of nodes re-
quired to sample or report data. In general, spatial sensor selection is
applicable whenever the actual density of the deployed nodes is higher
than strictly necessary to comply with the accuracy requirements of
the application. In these scenarios, the activation of all nodes at each
sampling round may no longer be necessary nor desired. Thus, spatial
sensor selection algorithms can pick up an adequate subset of nodes
whose activation can provide for the application requirements to be
fulfilled.

For instance, in surveillance and tracking applications the network is
usually required to continuously provide for complete coverage of the
region of interest. To this end, the application typically assumes each
node to be able to cover the area span by a discus centered at the node
itself and having sensing radius (or range) Rs. Thus, guaranteeing
coverage of the area of interest requires each point of the area to lie
within the sensing range of at least one node. Clearly, if the average
distance between nodes is sufficiently small, it is possible to provide
coverage activating only a subset of the available nodes. Spatial sensor
selection protocol working along this rationale are known as coverage
preserving protocols [188.205,209,210].

The selection criteria used to determine the set of active nodes clearly
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depend on the application and its specific quality requirements. In the
context of our work on spatial sensor selection, we focus on applications
having the reconstruction of a sensor field as their ultimate goal. In
this specific setting, the network is required to provide, at each sam-
pling round, a sufficiently high number of samples of the sensor field.
In particular, these samples must be sufficiently representative to allow
adequate reconstruction algorithms to compute, within a given accu-
racy, the values of the field over the whole region of interest. To this
end, the necessary number of readings, and thus of selected sensors,
and their spatial distribution over the region of interest depend on the
requirements of the specific reconstruction algorithm used at the cen-
tral server. In chapter 4] we show that, under specific assumptions,
the problem of selecting an adequate subset of sampling nodes for the
purpose of field reconstruction can be reduced to a coverage problem.
Thus, assuming that the value of the sensing range R, of the nodes can
be linked to the desired reconstruction accuracy, coverage preserving
algorithms can be leveraged as spatial sensor selection strategies also
in the context of sensor field reconstruction applications.

Spatial sensor selection may also come into play to perform dis-
tributed computation of aggregates [14},44,/109,|120] or to provide for
multi-resolution storage within a WSN [62]. In the context of our work,
however, we mainly focus on the sensor field reconstruction scenarios
discussed above.

1.4. Summary of Contributions

The main goal of this thesis is to design and implement practical strate-
gies for performing temporal and spatial sensor selection in WSNs. In
designing our sensor selection algorithms, we focus on three main op-
timization goals. First, we aim at limiting the number of total data
acquisitions and transmissions necessary to comply with the accuracy
requirements of the application. Second, we attempt to devise compu-
tationally efficient strategies with low memory footprints, which can be
implemented on resource-poor sensor nodes. Third, we seek to avoid
or limit the use of a priori information about the signals of interest,
which helps to lower the number of parameters that the user or the
application is required to define prior to operations.

These three goals are supported by three distinct contributions.

First, we investigate the sensor selection problem in the t#me domain
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and propose novel techniques to perform prediction-based data collec-
tion. We provide an implementation of the dual prediction scheme
based on the least-mean-square linear filter [166] and discuss the down-
side of using an approach based on the a priori selection of a specific
prediction model. To deal with this issue, we propose an adaptive
model selection scheme (called AMS) that allows sensor nodes to au-
tonomously select the statistically most suitable model among a set of
candidates [116]. We propose an implementation of the AMS based on
autoregressive models (AR), named AR-AMS, and test its performance
on 14 sensor time series retrieved from real WSN deployments. Our
simulation results demonstrate the versatility of the proposed frame-
work and its ability to achieve higher communication savings achievable
with respect to a “classical” dual prediction scheme [116]|. Further, we
propose an alternate, more generic and lightweight implementation of
the AMS based on exponential smoothing (ES) models, to which we
refer to as the ES-AMS. This second version of the AMS achieves com-
parable performance, in terms of communication savings, with respect
to the previous implementation, but offers both lower computational
overhead and memory overhead. To demonstrate the suitability of the
ES-AMS to be executed on real WSN platforms, we also implemented
it as a TinyOSH application and tested its behavior on a small-scale
WSN deployment.

Second, we address the sensor selection problem in the spatial domain
and provide an overview of approaches that address it from several dif-
ferent perspectives. In particular, we focus our attention on applica-
tions having the reconstruction of a sensor field as their ultimate goal.
For these applications, we show that the spatial sensor selection prob-
lem can be reduced to a coverage problem. We thus leverage the CCP
coverage preserving protocol [205] as a sensor selection strategy and in-
troduce a novel sensor ranking heuristic that enables a reduction of its
communication overhead. The heuristic ranks the relevance of a node
for the sensing task based on its position with respect to nearby located
nodes. This strategy allows the protocol to quickly select a subset of
nodes that can provide complete coverage of the region of interest, and
thus improve upon the performance of the original implementation of
the CCP protocol. Further, we leverage the same heuristic to design
a novel, adaptive random sensor selection strategy (ARS) [163]. Our
analysis of the performance of the ARS shows that it can offer high

2 TinyOS is the de-facto standard operating systems for WSNs [118,/189].
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levels of coverage of the region of interest while activating a signifi-
cantly lower number of nodes with respect to a simple random selection
strategy. Finally, we investigate the potential synergies between sen-
sor selection and routing, and briefly discuss the interplay of our ARS
strategy with a state-of-the-art routing protocol.

Third, we provide a thorough analysis of an intriguing application
scenario for WSNs: the monitoring of noise pollution in urban areas.
In particular, we distill the application requirements and analyze the
suitability of our sensor selection strategies in this context. Further-
more, we report our experiences in using different WSN platforms, as
well as mobile phones, as noise pollution sensors 57,164} 165,167].

1.5. Qutline

The remainder of this thesis is organized as follows. Chapter [2| pro-
vides a brief overview of WSNs and the main software and hardware
platforms we make us of in the context of this work. Further, it allows
us to introduce some definitions, notation and assumptions we will re-
fer to in the rest of the thesis. In chapter [3] we report in detail our
approach to the temporal sensor selection problem based on time se-
ries prediction. Chapter || presents our spatial sensor selection strategy
and the related experimental evaluation, as well as a thorough analysis
of related work. Chapter [5| reports our experience in using WSNs for
environmental noise monitoring, while the following chapter [6] provides
details of the software tools and libraries we implemented in the con-
text of this work. Finally, we provide our conclusions, along with some
considerations about promising directions for further investigations, in
chapter [7]
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In the previous chapter, we described the main challenges related to
the solution of the sensor selection problem in wireless sensor net-
works (WSNs) and outlined the main contributions of this thesis. For
the reader unfamiliar with the field of WSNs, we provide here a brief
overview of the challenges related to the design, implementation, and
deployment of these systems. Further, we describe the set of hardware
and software platforms we make use of in the context of our work.
Finally, we describe the mathematical notation, the models and as-
sumptions we rely on for designing and evaluating our sensor selection
protocols. In the remainder of this thesis, we will briefly recall or refer
to the content reported in this chapter whenever necessary or appropri-
ate. The reader familiar with the broader field of WSNs can therefore
skip this chapter and still smoothly follow the rest of the thesis.

2.1. Wireless Sensor Networks

In 1999, Kahn, Katz, and Pister, describe the rising of a new category
of systems made of “very compact, autonomous and mobile nodes, each
containing one or more sensors, computation and communication ca-
pabilities, and a power supply” [100]. Likely to become as cheap and
small as grains of sand, Kahn et al. envision these nodes, also dubbed
motes or sensor nodes, to be deployed in hundreds or thousands of
units over large regions and to operate unattended for days, weeks or
years. Building the particles of a smart dust, they note, sensor nodes
can perform fine-grained measurements of physical properties of the en-
vironment, like temperature, humidity, or sound. The collected sensor
data can then be stored and processed locally and/or reported back to
a central server for further analysis. To this end, nodes use their in-
built communication module to cooperatively build a multi-hop data-
relaying network. The possible applications of these wireless networks
of sensor nodes seemed countless and ranged “from sensor-rich smart
spaces to self-identification and history tracking for virtually any kind
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of physical object” [100].

In their seminal paper, Kahn et al. noted that the research chal-
lenges towards the realization of working WSNs were, as partially still
are, numerous, new and all but trivial. In particular, in contrast to
traditional wired and wireless networks, WSNs must be able to op-
erate without relying on a fixed infrastructure, like ad-hoc networks.
With respect to the latter, however, WSNs also present several unique
characteristics [52,]125]. For instance, sensor nodes have only little
computational and memory resources and dispose of limited and usu-
ally non-renewable power supply. Since running out of power would
make a node, and eventually the whole network, unusable, optimiz-
ing power consumption is a primary concern in WSNs. Additionally,
communication in WSNs is usually short-range and the topology of the
network may change frequently due to hardware and software failures
or instability of the communication channel. Dealing with these un-
certainties and dynamics is mandatory for WSNs to work reliably over
long periods of time. Further, since the density of nodes in a WSN
may be much higher than in traditional ad hoc networks, scalability
becomes a crucial issue [52,[125]. At the same time, the application
may exploit this high density to optimize nodes’ activations. As fur-
ther outlined in [125], another peculiar characteristic of WSNs is that
they typically do not rely on point-to-point communication. Indeed,
due to high numbers of nodes and the possibly large deployment re-
gions, nodes are typically unaware of the whole size and topology of
the network. Therefore, addressing single nodes in the network may
be impractical and inefficient. Instead, nodes may be addressed using
specific attributes, like their positions or available sensors and data.

The design and implementation of protocols and algorithms for WSNs
must thus take into account the limited power supply and poor com-
putational and memory resources of sensor nodes, the high number of
nodes and their potential unreliability as well as the unpredictability
of the environment. These factors pose strong requirements on the ro-
bustness and scalability of protocols working at the physical, MAC or
routing layer. Furthermore, the design and implementation of basic ser-
vices like localization and synchronization as well as application-level
algorithms cannot abstract from the above mentioned issues, since this
would likely result in inefficient solutions.

In the last decade, WSNs have been a field of active research and by
now a large literature on protocols and algorithms for WSNs is avail-
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able [104,179,211|. Furthermore, moving from and beyond the smart-
dust vision, several experiments showed the potential of WSNs to be
used in a plethora of different application contexts. For instance, in en-
vironmental monitoring, to observe birds’ habitats and habits, [73)185]
or to investigate the growth model of redwood trees [30]. Or in pre-
cision agriculture, to study the influence of environmental parameters
on food quality [10,/71]. Further, in fire detection, avalanche preven-
tion, and countless additional civil and military application scenar-
ios [11},/12,22,99,{103.106}/129,/176|,186,201].

However, enabling a wireless sensor network to reliably report large
quantities of data over long periods of time is still a challenging goal
[12,20]. For instance, comprehensive tools to inspect and debug the net-
work at run-time are still scarce and require field expertise to be used.
Furthermore, many of the existing protocols and algorithms may only
be able to work reliable in specific application scenarios, and robust,
generic solutions are barely available. In this context, the definition
of a distinctive approach to the design and deployment of WSNs “still
requires further research and experience” [20).

2.2. Hardware and Software Platforms

The previously cited work by Kahn et al. [100] as well as a series of
other seminal papers [52,[85], represent early results in the research
field of WSNs. In the years to follow, several researchers and projects
contributed to the development of hardware and software platforms for
WSN prototyping. Among these, we selected for our work a set of well-
known platforms like the T'mote Sky sensor node, the TinyOS operating
system, and the Castalia simulator. Furthermore, we made extensive
use of the Matlab computing environment. In the following, we provide
a brief description of these platforms and motivate our choices.

2.2.1. The Tmote Sky Sensor Node

The smart dust prototype of 1999 showed the possibility of building
sensor nodes the size of just a few cubic millimeters, but several, more
powerful, generations of sensor nodes followed. There exist a number
of surveys on hardware platforms for prototyping WSN systems. In
particular, we refer the interested reader to Tatiana Bokareva’s Min:
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Hardware Surveyﬂ to The Sensor Network Museum project ﬂ, or the
Embedded Wisents Platform Survey [13]. Here, we would like to intro-
duce in more detail the Tmote Sky sensor node, which we used as a
reference prototyping platform for the considerations and experiments
presented in the following chapters.

Evolved from the TelosB family of motes [43,|154], the Tmote Sky
has been commercialized by Moteiv Corp. [136], a UC-Berkeley spin-
off, from 2004 until the end of 2007. The Tmote Sky features a Texas
Instruments M SP430 F1611, 16-bit RISC processor that can operate
at extremely low power levelsf| The internal oscillator of the M S P430
F'1611 can operate at a maximum of 8MHz and can be activated in
as few as 6us, thus allowing the processor to switch very efficiently
from sleep to active mode. The Tmote Sky is further equipped with
10kB of RAM, while a 48kB flash memory is available for safely stor-
ing programs and data. For communication, the Tmote Sky relies on
the Chipconf] wireless transceiver CC2420, an IEEE 802.15.4 com-
pliant radio operating at 2.4GHz and offering data rates of 250kbps.
Two 1.5V, AA batteries provide the power supply when the node is
not plugged-in through its embedded USB-adapter. Two photodiodes,
the Hamamatsu S1087 and S1087-01, allow the Tmote to measure
the photosynthetically active radiation (PAR) and total solar radia-
tion (TSR), respectively. Further, the Sensirion SHT11 (or SHT15)
sensor provides for (calibrated) humidity and temperature data. As
basic actuators, the Tmote Sky also features three external LEDs of
different colors. Additional sensors and actuators (a microphone, an
accelerometer and a speaker) are available on a twin version of the
Tmote Sky, dubbed Tmote Invent, which also features a practical and
elegant packaging. Both platforms are shown in figure [2.1]

To substantiate the often-cited argument that radio communication
is the main factor of power consumption on a sensor node, we report
in table some relevant figures regarding the current drained by the
Tmote in different operating modalities. The values reported in the
table are taken from [154] and the Tmote Sky’s datasheet [137].

If we assume the batteries of a mote offer a total capacity of 2000
mAh, keeping the microcontroller uninterruptedly active will make the

! www.cse.unsw.edu.au/"sensar/hardware/hardware_survey.html

2 www.snm.ethz.ch
3 lti.com/msp430

4 www.chipcon.com
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(a) {b)

Figure 2.1.: The Tmote Sky (a), and Tmote invent (b) WSN platforms.

Table 2.1.: Current consumption of the Tmote Sky sensor node under typical op-
erating conditions (nominal values).

Operating condition Current consumption
Mote standby 5.1 pA

MCU idle, oscillator on 54.4 pA

MCU active 1.8 mA

Radio transmitting at 0 dBm 17.4 mA

Radio receiving 19.7 mA

Radio on, oscillator on 365 pA

Idle mode, oscillator off 20 pA

Flash memory (active current, read) 4 mA

Flash memory (active current, write/erase) | 20 mA

node run out of power in about 46 days. If, concurrently, the node
continuously transmits data, the batteries will be empty after just 4
days. Although simplistic, this computation gives a feeling of the bur-
den radio communication constitutes on the energy budget of a node.
We should also notice that, in terms of drained current, writing data
on the flash memory can be as expensive as radio communication. Fur-
thermore, power consumption due to sensing is not always negligible.
Indeed, while the Sensirion SHT'11 light sensor requires only 25uA to
perform one 12-bit measurement per secondﬂ, the on-board microphone
of the Tmote invent drains as much as 2.3mA of current . If the
microphone remains active for a prolonged time, for instance to record
the call of a bird or estimate the current noise level, its contribution is
not negligible in the total energy budget of a node.

5 www.sensirion.ch/en/01_humidity_sensors/02_humidity_sensor_sht11l.htm
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2.2.2. The TinyOS Embedded Operating System

There exist several operating systems specifically designed for WSNs.
Some examples include TinyOS [118,[189], Contiki [50], BTnut, and
Mantis [21]. As was the case for hardware platforms, however, it is be-
yond of the scope of this chapter to provide an exhaustive survey of such
systems. Instead, we would like to focus on TinyOS, which is largely
considered the de-facto standard operating system for WSNs. More
details about alternative systems, like those cited above, are available
in [13}21}50}/174].

TinyOS is an open-source, flexible, and energy-aware operating sys-
tem specifically designed to support WSNs applications. It features
a component-based architecture that allows programmers to combine
small modules of code, called components, into more complex programs.
In the TinyOS jargon, the process of combining independent modules
through their interfaces is called wiring. The final binary image of the
program includes only those components necessary to implement the
application logic that has been, explicitly or implicitly, wired. In this
sense, TinyOS enables developers to build an application-specific oper-
ating system, saving precious memory resources on the nodes. Indeed,
the whole TinyOS core fits in less than 400 bytes and a typical com-
plete application performing sensing and communication is usually only
about 15kB in size [118].

Typical events in WSN scenarios, like reception of a radio packet or
the collection of a specific sensor value, may occur unpredictably and
require a timely reaction of the operating system. To this end, TinyOS
supports an event-based concurrency model. It allows the program-
mer to define events to which the operating system reacts immediately
leveraging the so-called split-phase operation mode. In this way, event
handlers can preempt less time-critical code, which is accordingly in-
cluded in TinyOS tasks.

TinyOS is written in nesC [67], a programming language specifically
designed to support a component-based architecture, event-based con-
currency model, and split-phase operation mode. nesC is an extension
of the C language [105] and is also the language of choice for writing
TinyOS applications.

The first version of TinyOS, known as TinyOS 1.x and released in
2002, was replaced in November 2006 by the first stable release of

6 www.btnode.ethz.ch
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TinyOS 2.0. This second version is currently used by more than 500
research groups and its wide developer and user base makes TinyOS the
de-facto standard operating system for developing WSN applications
[189].

2.2.3. The Matlab and Castalia Simulators

As we mentioned several times, WSNs are envisioned to be made of
hundreds or thousands of tiny sensor nodes, possibly deployed in harsh
environments. Unexpected behaviors and errors occurring after deploy-
ment may hamper network performance or even make it unusable [20].
A thorough analysis and testing of the algorithms running on the nodes
prior to deployment is therefore crucial to limit the occurrence of such
unexpected problems. To this end, the use of small scale test deploy-
ments and simulation is mandatory [12)].

Some authors criticize the use of simulation as an investigation tool
as too simplistic and unable to capture the complex conditions in which
WSNss are envisioned to operate. In particular, the common assumption
of perfectly circular radio coverage is doomed to failure in real WSN
settings [107]. On the other hand, this assumption is widely used in the
literature since it allows us to derive useful general results [161]. Since
our main interest is in developing algorithms working at the application
level, we abstract several low-level issues and also resort to the usual
assumption of perfectly circular radio coverage. Whenever necessary
or opportune, we discuss the effects of non-ideality on the behavior
of our algorithms and propose possible countermeasures. With this
premises in mind, we now introduce the simulators we considered in
our investigations, namely the Matlab computing environment and the
Castalia sensor network simulator.

Matlab[] is a well-known platform for numerical computation. It al-
lows the user to easily manage and visualize data and provides a large
number of built-in mathematical functions and specialized computa-
tional tools. For instance, it offers several interpolation methods for
signal reconstruction, or a toolbox with specialized time series analysis
functionalities. As we will show in the next chapters, we implemented
our sensor selection algorithms as Matlab applications and performed
most of our experimental evaluations using these implementations. Al-
though Matlab does not provide any realistic radio or channel models,

7 www .mathworks.com
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it allowed us to gain insights on the ideal performance of our algo-
rithms and thus to set a sort of benchmark towards which the effect of
non-ideality can be investigated.

To perform our preliminary study on the interplay between spa-
tial sensor selection and routing reported in section 4.8, we used the
Castaliaf| WSN simulator [26,[153]. Castalia is a simulator for WSNs
implemented on top of the OMNeT ++ platformP} OMNeT++ is a dis-
crete event simulation environment that thanks to its excellent mod-
ularity is particularly suited to support frameworks for specialized re-
search fields. For instance, the Mobility Framework (MF) supports
simulation of mobile networks, while the INET framework enables
the modeling of several Internet protocols. OMNeT++ is written in
C++, 1s well-documented, and features a graphical interface that eases
development and debugging. Additionally, a wide community of re-
searchers and developers support OMNeT+-+ and continuously pro-
vide new modules and improvements of existing code. The comfortable
initial training, the modularity, and the possibility of programming in
an object-oriented language (C+-+) are among the reasons that led
us to prefer the OMNeT++ platform, and thus Castalia, over other
available simulators like the well-known ns-21 and the related exten-
sions for wireless sensor networks (e.g., SensorSim [148]). Nonetheless,
in the last years Castalia has been steadily improved [26,[153] and its
enhanced 2.0 version has been recently released [ Furthermore, an in-
creasing number of researchers resort to this simulator to support their
investigations [17,27,192].

In the context of our work, we refer to version 1.3 of Castalia, which
builds upon version 3.3 of OMNet++-. In this version, Castalia features
advanced channel and radio models, a MAC protocol with a large num-
ber of tunable parameters and a highly flexible model for simulating
physical processes. In particular, Castalia provides bundled support
for the C'C2420 radio controller, which is the on-board transceiver of
the Tmote Sky, our reference sensor node platform. Being a simulator
originally developed for testing MAC protocols, Castalia still offers only
basic support for routing protocols. However, thanks to its excellent
modularity, inherited from OMNet -+ +, Castalia can be easily extended

8 |castalia.npc.nicta.com.au

9 v omnetpp.org

10nsnam.isi.edu/nsnam

11 Castalia 2.0 has been released on May 8th, 2009.
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and adapted to include new or improved components. In particular, to
perform the experiments presented in section 4.8 we implemented the
CTP routing protocol [58,68|] as a flexible Castalia module.

2.3. Definitions, Notation, and Assumptions

In this section, we provide the definition of some basic notions, the
mathematical notation, and an introduction to the main assumptions
we will refer to throughout this work.

2.3.1. Network and Communication Model

We represent a WSN as a directed graph G = (V, E), where V is the set
of all nodes and E is the set of edges between nodes. The cardinality
of V' represents the total number of nodes N in the network, i.e.,
Niot = |V|. Without any loss of generality, we assume all nodes in V
to be assigned an unique identifier, and we refer to node n; (or node
i) as the node that has identifier ¢ in V. If node ¢ can communicate
directly with node j, a correspondent edge e;; exists in . In particular,
we assume the transmission range of all nodes within the network to be
isotropic and equal to R;,. Under this assumption, the set E is defined
as:

Nnodes
E= | {eyli.j € Vid; < Ry} (2.1)
i=1
where d;; is the Euclidean distance between nodes ¢ and j.

We refer to the communication neighborhood of a node n; as the set
of nodes V; defined as:

Nnodes

Vi= |J {nli,j e Vidy < R} (2.2)

j=1,5i

2.3.2. Region of Interest (Rol)

We consider settings in which a WSN is deployed either on a segment
of length L, or on a rectangular region of sides L, and L,. We refer to
these two deployment types as the 1- and 2-dimensional case, respec-
tively. When the values of L, and L, coincide, we may refer to both of
them using the symbol L.
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2.3.3. Sampling Rates and Sensing Model

We assume the network is set up to gather the samples of a physical
variable, like temperature or humidity, over a given period of time
and specific spatial region. In particular, we assume that the physical
variable, also referred to as sensor field or signal, can be represented
as a continuous function of time t and location s f(¢,s). The network
can thus gather discrete samples of f at arbitrary time instants ¢
and locations s;, provided a sensor node is present at position s; and
performs sensing at time ¢;. In the context of this work, we assume the
nodes to become active, and thus possibly perform sampling, at regular
time intervals t, = kA,;, where A; is the desired temporal sampling
rate, or temporal resolution, typically expressed in seconds. For our
considerations, we usually abstract from the specific value of A; and
refer to the time instant kA; as £, or k. Accordingly, we may indicate
the discrete samples f(k,s;) as fr;. When referring to the values of
f collected at a specific location but different time instants, we may
use the simpler notation fi for fi;. Similarly, if samples are collected
at a specific time instant k, but at different locations s;, we may use
the notation f; for fi.;. We refer to a single sampling operation as a
sampling round. During a single round, all the nodes or a subset of
them may actively sample the sensor field.

If the nodes are deployed over a 1-dimensional Rol, we may indicate
the position s; of a node n; as x;. Accordingly, in the 2-dimensional
case we have s; = (x;,y;). Definitions and notation relative to the spa-
tial sampling rate or spatial resolution Ay of the network are reported
in detail in section |4.3] and we thus omit them here. However, we an-
ticipate that we define the sensing area of a node as a discus Dpg_(c)
having the node itself as its center ¢ and a radius given by the sensing
range Rs. The latter may represent a physical rangﬂ or a “virtual”
distance the node may be able to cover.

In the following chapters, we do not specifically address issues related
to the presence of noise in the data. However, we assume the samples
fri of the sensor field f to be affected by a zero-mean Gaussian noise
of known standard deviation. A sample fj; can thus be represented as

~ ~

f(k,s;) = f(k,si) +v(k,s;), where f(k,s;) are is the correspondent
sample of the “ideal”, noise-free sensor field f and v(k, s;) the realiza-

12E.g., for a infrared sensor, the maximal distance at which the sensor can detect the presence of
a person within a given accuracy.
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tion of a Gaussian random variable v with mean p = 0 and standard
deviation o,, computed at time k at node 7.

2.3.4. Synchronization and Localization

In order to make the network wake up at predefined time instants ¢,
the nodes are required to be, at least loosely, synchronized. To this
end, we assume one of the protocols known in literature to be applicable
[159]. As for localization, we assume the node can retrieve their position
autonomously, for instance using a GPS sensor, or through one of the
available localization algorithms [29}113}|149].

2.3.5. Routing

In our investigations, we assume the network to rely on a suitable rout-
ing protocol to report sensor readings to one or more data sinks [104]
chapter 11]. In general, we do not refer to nor depend upon a specific
protocol choice. However, in section we provide a discussion on the
interplay between sensor selection and routing, and use the CTP data
collection protocol as a reference routing scheme. For the interested
reader, we provide a description of the CTP protocol in appendix [B]

In the context of this work, the terms, sink, central server, data
collector, and base station are perfectly interchangeable.






3. Temporal Sensor Selection

In this chapter, we investigate the sensor selection problem in the time
domain and present the first contributions of this thesis. In particu-
lar, we introduce two novel temporal sensor selection algorithms that
leverage what we call the dual prediction scheme (DPS)H [116}[166].
As discussed in section [I.2] the DPS is a generic technique to perform
temporal sensor selection in wireless sensor networks (WSNs) and is ap-
plicable in scenarios in which data collection must be performed within
a pre-specified accuracy [166|. In particular, using the DPS it is possible
to guarantee that the deviation between the sensor readings available
at the sink and the actual values collected at the nodes does not exceed
a given error threshold. To this end, the DPS instantiates identical
prediction models at the sensor nodes and the data sink. Using this
shared model, a node and the sink can compute the same estimations
of future sensor readings. Sensor nodes can then continuously monitor
the actual prediction error, i.e., the deviation between the estimated
readings and the locally collected samples. If the prediction error does
not exceed the given threshold, data communication between the node
and the sink can be suppressed, since the estimation computed at the
sink does comply with the accuracy requirements of the application.
On the other hand, if the prediction error does exceed the threshold,
the node must accordingly notify the sink and possibly update the
prediction model. The use of the DPS can significantly improve the
lifetime of a WSN, since reducing communication is an effective way to
preserve energy resources on sensor nodes.

The effectiveness of the DPS greatly depends on the choice of predic-
tion model. One such model is the least-mean-square (LMS) adaptive
filter [83], which demonstrates well the energy preservation potential
of the DPS approach. In a first contribution, we evaluated the use of
LMS on real data sets and showed that the LMS can provide for more
than 90% of communication savings with respect to the default data

1 Xu et al. [207] introduced the notion of dual prediction-based reporting in the context of WSNs.
However, we have been the first to refer to this general approach as the dual prediction scheme
[166].
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collection scheme, in which all the collected samples are transmitted
to the sink [166]. However, the actual achievable communication sav-
ings in turn depend on the specific values chosen for the LMS filter
parameters. Since even for the same time series the optimal param-
eter choice may vary over time, fixing these values a priori is usually
impractical [116],[166]. Thus, adequate adaptive parameter estimation
procedures are needed. To address this issue, which is common also to
other instantiations of the DPS, we introduce our second contribution,
the adaptive model selection (AMS) scheme.

The AMS is a generic framework for the implementation of the DPS.
It lets sensor nodes maintain a set of candidate models that are period-
ically updated and evaluated. The set of candidates may include both
different models, as well as several instances of the same model, corre-
sponding to different parameter sets. Using an adequate performance
measure, a sensor node can then periodically select the best perform-
ing model and thus adapt to changing data dynamics. We evaluated
the performance of the AMS using two different sets of candidate mod-
els, namely autoregressive prediction models and exponential smoothing
prediction models. In both cases, the AMS provides for nearly the same
communication savings achievable with the optimal a posteriori model
choice [116]. In addition, we provide an implementation of the AMS as
a TinyOS library, for which we validated its performance on a small-
scale deployment.

The remainder of this chapter is structured as follows: first, we pro-
vide a detailed description of the characteristics of the DPS in section
B.Il We describe related work in section [3.2] and present our instan-
tiation of the DPS using the LMS adaptive filter in section [3.3] We
introduce the AMS and provide the related experimental evaluation in
sections and [3.5] respectively. Finally, we report on our experiences
in running the AMS on a small-scale lab deployment in section |3.6|
Section closes with a brief summary of this chapter.

Most of the contents of this chapter are also reported in [116,/166].
The design of the AMS and its implementation based on autoregressive
models is the outcome of joint work with Yann-Aél Le Borgne and
Gianluca Bontempi of the Université Libre de Bruxelles.
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3.1. The Dual Prediction Scheme (DPS)

In typical WSN deployments, sensor nodes collect and report samples
of a physical variable at regular time intervals [19,30,71}/121}/139,/185].
Thus, each sensor on a node captures a time series representing the
development in time, at the location of the node, of the sensed vari-
able. Since the values of a physical phenomenon, like air tempera-
ture or humidity, typically do not vary at random over time, succes-
sive elements of the captured time series are likely to be correlated.
Therefore, it is often possible to derive adequate time series forecasting
models that can be used to estimate, given a set of past observations,
the values of the observed physical variable one or more time steps
ahead [97,[114,|116,122,(144,|145,166,(194]. As discussed above, if a sen-
sor node and the sink (to which the node reports its data) share the
same prediction model, they can both compute the same estimations
of the upcoming sensor readings. Since the sensor node also holds the
collected samples, it can compute, after the i-th sampling operation,
the actual estimation error e;. Clearly, e; represents the accuracy with
which the sink can “reconstruct” the current sensor reading, even if does
not receive any notification from the node. Thus, if e; does not exceed
a given error budget or error threshold €., no communication be-
tween the node and the sink is needed. On the other hand, if ¢; > €42
the node must send the sink a correspondent notification. This message
typically includes the actual current reading and, possibly, the informa-
tion necessary to update the prediction model at the sink. The process
is then repeated for the successive sampling operations.

This data reporting strategy, which we refer to as the dual predic-
tion scheme or DPS [166], can significantly reduce the amount of data
communication between the node and the sink. At the same time, the
DPS can guarantee the estimation error relative to each data sample
to be within the interval (—eaz, +€maz)-

An important assumption the DPS relies upon is that sensor nodes
will typically collect sensor readings at a rate that is higher than strictly
required for complying with the application requirements. Under such
circumstances, the DPS can provide for communication savings since
it can detect possibly existing redundancy in the collected samples. In
many WSN deployments the temporal sampling rate is fixed a priori on
the basis of empirical considerations and other requirements, such as
network lifetime [10}(19,30}71,/121}/185]. Irrespectively of the applica-
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tion scenario, most deployments will set the sampling rate high enough
to avoid loosing important features that may show up unexpectedly
in the data. Furthermore, the sampling rate is usually constant over
time and equal for all the nodes in the network, even though the char-
acteristics of the observed phenomenon may vary over both time and
space. Therefore, it is reasonable to assume that the collected samples
contain redundant information, at least over some intervals of time and
across some sectors of the network. This redundancy can be eliminated
by letting sensor nodes wake up and collect data at a lower frequency.
However, this may cause a degradation of the accuracy of the collected
data without providing for significant energy savings. In particular, we
should recall that the energy consumption of many real-world sensors
is significantly smaller than the energy required for communication, as
also discussed in section 2.2.1] In these cases, and considering that in
real deployments sensor nodes are likely to be required to wake up reg-
ularly anyway (e.g., to maintain time synchronization), assuming that
a sensor operation is performed at each wake up is expected to have a
negligible impact on the overall energy budget of a node.

Data collection based on the DPS also assumes reliable communi-
cation between the node and the sink. Indeed, if the node sends a
notification that does not reach the sink, the latter erroneously consid-
ers its current data estimation to be within the error threshold e,,,,. In
typical WSN deployments communication links may often be unreliable
and messages losses can and do occur [19,[185]. In this case, as we also
point out in [166], including a sequence number in each message can at
least make the sink recognize that one or more notifications from the
node have been lost. Thus, if the sink detects a jump in the sequence
number of the messages received from a specific node, it can possibly
start a dedicated procedure to recover the missing samples, or sim-
ply tag the affected estimations as potentially unreliable. Additionally,
setting a limit to the maximum number of consecutive communication
suppressions may also enable a timely detection of message losses. In-
deed, a node may be forced to send a notification each time a watchdog
timer T, expires, irrespective of the actual value of the prediction er-
ror. If the sink does not receive any messages as its timer T}, expires,
it assumes that a notification has been lost or the node is currently un-
available. For the remainder of this chapter, we assume the use of both
sequence numbers and watchdog timers to be a sufficient countermea-
sure to cope with possible message losses. The proper value of the timer
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T, depends on the specific application, but it is assumed to be large
enough so as to have only a negligible influence on the performance of
the DPS.

Assuming reliable communication, although with the limitations dis-
cussed above, the actual communication savings achievable using the
DPS depend on the ability of the chosen prediction model to estimate
future sensor readings. The predictive ability of a model may depend
on several factors, and it is usually hard to select a priori the optimal
prediction model for a specific forecasting task [64},65,122,134]. In the
context of the DPS, the predictive ability may depend on the nature
of the observed phenomenon, the error threshold e,,,,, or the sampling
rate. Furthermore, the same model may show different performance if
applied to distinct segments of the same time series or to series cap-
tured by neighboring nodes. Therefore, adapting the chosen prediction
model to the actual collected data is instrumental in improving per-
formance of the DPS. We provide more quantitative considerations on
the issues of model choice and adaptation in section below, af-
ter having introduced some basic notions on prediction models and the
necessary mathematical notation.

3.1.1. Prediction Models and Parameter Estimation

Let X = (X, X1, Xo,...) be the time series representing the sequence
of sensor measurements X; € R collected at time instants £ =0, 1,2, ...,
k€N, and let Xyg.4q = (Xo, X1, Xo, ..., X1, Xj) be the sequence of
observations from time 0 up to time instant t.ﬂ Using a prediction
model h(Xhk, On,k) it is possible to compute an estimate XkH of the
upcoming time series element Xy 1 as:

Xii1 = h(Xnx, Oni)- (3.1)

A prediction model h(Xy k, Onk) is a mapping that takes as input a
subset Xy, k of the past time series elements, and a vector of Ny model
parameters O = (01,0s,...,0n,), with Ny € Nt. We stress the
dependency of vectors Xk and 0y, on the model h and on the time
instant k& by means of the subscript (h, k).

To clarify the role of the vectors Xy x and Ok, let us consider a

2 If AT is the sampling interval and sampling starts at time ¢ = 0, sensor readings are collected
at instants tp, = kAT, k =0,1,.... Since the actual value of AT is irrelevant at this point, we
refer to the sampling instants as k = 0,1, 2, ..., for simplicity.
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simple example of time series forecasting based on linear regression.
Assuming that a time series X evolves linearly with the time k, a
forecast of the element of the time series at time step k£ + 1 can be
computed using the following equation:

X1 = a+ bk +1). (3.2)

In equation we assume that the parameters a and b have been
estimated using a regression procedure over the past N elements of the
time series, i.e., minimizing the sum of the square errors (least-square
criterion):

N-1
(ak, bk) = argmin(a’b) Z (Xkﬂ — Xk,i)z. (3.3)

i=0
We emphasize the time-dependence of parameters a and b by the use
of the subscript k. Using Equation , the parameter vector Oy =
(ak, bg), is estimated using the past N elements of the series up to
time instant & and therefore Xy x = Xg_n41:. We can thus rewrite

equation in the form of equation [3.1] as:

Xir1 = h(Xnk, Onp) = h(Xpeni1as (ar, b)), (3.4)

for which we know A to be a linear model and the parameters (ay, by)
to be estimated using the least-square criterion as in equation 3.3 In
general, vectors Xpx and 6k are modified at each time instant k to
take into account the newest collected element of the time series. From
now on, we will refer to a change in Xy x or Oy x as a model update.
The values of the parameters a and b could also be fixed a priori,
possibly on the basis of some historical data or other available side
information. However, this choice would make the model unable to
adapt to the actual collected data and thus possibly hamper its pre-
dictive ability. Therefore, choosing a model to perform time series
forecasting requires determining both a model “template” (constant,
linear, quadratic), which fixes the number and the nature of the model
parameters, and an adequate procedure to compute and update these
parameters. In the context of the DPS, the nodes can store the last
collected elements of the time series and use them to update the model
parameters. To this end, the parameter estimation procedure must be
executable on resource-constrained wireless sensor nodes. This require-
ment may disqualify several classes of models as potential candidates



3.1. The Dual Prediction Scheme (DPS)

to implement the DPS.

For instance, ARIMAH models represent a widely used class of predic-
tion models. They have been successfully adopted to describe a large
variety of phenomena, from financial to environmental time series [122].
Additionally, the Box-Jenkins method provides an analytical proce-
dure to estimate the optimal ARIMA model parameters for a given
time series [28]. However, this procedure requires a computationally
expensive estimation of the sample autocorrelation and partial auto-
correlation functions of the series, which in turn can only be reliably
estimated from a large (typically > 50) number of samples [28]|. Us-
ing ARIMA models to implement the DPS would thus require running
the Box-Jenkins selection procedure on sensor nodes. However, since
sensor nodes typically feature only few kilobytes of RAM and poor
computational capabilities [154], this is actually impractical. Further-
more, the use of sophisticated (and expensive) predictors like ARIMA
models does not guarantee for the computation of more reliable predic-
tions [122].

Besides ARIMA models, there exist of course several other generic
model “templates” that can be used to perform time series predic-
tion [64,]122,134]. But selecting an appropriate model for a given
forecasting task is a not trivial procedure. A popular survey on time
series predictions, written back in 1985, concluded that the need to
“establish some basis for choosing among these and other approaches
to time series forecasting” was one of the major challenges for future
research [64]. An analogous statement concludes, twenty years later, a
revised and extended version of that survey paper [65].

In several application scenarios model selection is based on a priori
knowledge or the judgment of an expert [8,[122]. Automatic selection
procedures have also been investigated [8,/122,|124,/184] but, as men-
tioned above, these procedures may be computationally expensive and
require large sets of historical data to be available. In the context of
WSNs, the computation of model parameters could also be delegated
to a central server, once a sufficient amount of sensor readings have
been collected. The server could then notify its model choice back to
the nodes and run the DPS as usual. However, this centralized solution
does not scale well as the network size increases. Furthermore, the ini-
tial model choice may need periodical refinements to take into account
changes in the data, which cannot be done from the predicted values

3 Auto-Regressive Integrated Moving Average.
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but which requires that the server is supplied with “fresh” sensor read-
ings. This, in turn, would require the nodes to periodically transmit a
potentially large amount of consecutive sensor readings. Therefore, we
believe that performing model selection on the nodes is, in spite of the
above sketched challenges, the most reasonable approach to provide for
efficient implementations of the DPS.

In the light of these considerations, it is not surprising that exist-
ing implementations of the DPS basically differ in terms of the model
used to perform forecasting, and the related procedures used to update
model parameters. In the following section [3.2] we discuss some in-
teresting implementations of the DPS that have been presented within
the WSN research community. We then present our own approaches in

sections [3.3] and [3.4]

3.2. Related Work

Several authors within the WSN research community considered the
potential of prediction-based techniques to optimize data collection.
In [144,145] Olston et al. propose one of the first, and simplest, imple-
mentations of the DPS. To this end, they leverage an approach that
had been originally developed to speed up data retrieval from remote
databases, known as quasi-copies [6]. Quasi-copies are replicas of data
stored in a remote database that are cached at a user’s site. This repli-
cas are allowed to deviate from the true, centrally stored values in a
controlled fashion. In particular, the cached copies are guaranteed to
lie within a given range from the actual values. In the context of WSNs,
the quasi-copies approach can be implemented by installing appropri-
ate data filters at each sensor node. These filters drop all the readings
being +e,,,. off the last sensor measurements that has been sent to the
sink, where e,,,, is the tolerated error on the collected data. Thus, the
resulting data copy at the sink consists in a piecewise constant approx-
imation of the actual time series observed at the nodes. This approach
actually consist in performing time series prediction using a “naive”, or
constant model [122], which just provides the last recorded (i.e., sent)
measurement as the forecast for the next sensor readings. In [144] Ol-
ston et al. also propose to make the actual error threshold e,,,, adapt to
the current data transmission costs and to the individual data change
rates experienced at each node. Lazaridis and Mehrotra [114] also in-
vestigate using the constant model to provide for prediction-based data
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collection in WSNs.

As we show in section [3.5 the constant model, hereinafter also re-
ferred to as CM, performs surprisingly well in practical settings. Fur-
thermore, it actually constitutes a sort of minimal effort implementa-
tion of the DPS and thus can be used as the default model choice.
However, the simplicity of the CM often does not allow to exploit the
temporal correlation of successive elements of a time series fully. There-
fore, several authors proposed using more sophisticated prediction tech-
niques to implement the DPS.

For instance, Jain et al. [97] propose an implementation of the DPS
based on the Dual Kalman Filter (DKF) architecture. In the DKF
approach each remote source (i.e., sensor node) involved in a specific
sensing task runs an instance of a Kalman filter and performs linear
prediction on smoothed sensor readings. As in the “usual” DPS, data
sources send updates to a central server only when the prediction er-
ror exceeds a pre-specified error threshold. The central server holds
as many Kalman filters as the number of remote sources. In this way,
the server is able to mirror the filters installed at the data sources and
thus reconstruct the values observed at each sensor node using either
the received actual data, when available, or the computed predictions.
In order to use the Kalman filter for data streams prediction given a
sequence of noisy observations, a model of the observed phenomenon
must be provided to the filter (obviously, both server and nodes must
feed the Kalman filter with the same model to be able to work coher-
ently), i.e., the statistical properties of both the observed phenomenon
and the noise process must be known a priori [101]. This limits the
applicability of this method as a general framework for sensor data
forecasting in WSNs, since a priori knowledge of the observed time
series is often unavailable or unreliable.

In our own work [166], discussed also in the next section , we
propose an implementation of the DPS that allows to overcome the
problem of defining a priori knowledge on the signals of interest. To this
end, we suggest using (linear) adaptive filters, which are able to learn
signal statistics on the fly, and can continuously and autonomously
adapt to changes [82]. In particular, we instantiate the DPS using the
lightweight LMS adaptive predictor, which basically performs linear
regression over the past n readings available at the sink. This approach
performs well on real-world sensor data, and requires only few memory
and computational resources. Its major drawback lies in the need for



Chapter 3. Temporal Sensor Selection

defining the number of samples needed, i.e., the actual value of n, a
priori. One thus needs to have an adequate method to estimate this
model parameter on the fly, i.e., as data collection is performed.

Automatic estimation procedures to determine model parameters are
also missing in the approach presented by Tulone and Madden [194]. In
their work, the authors instantiate the DPS using autoregressive (AR)
models, but do not provide a method for on-line, automatic selection
of the autoregressive order of the model (see also section for more
details on autoregressive models). On the other hand, they propose
an interesting policy for choosing an adequate point in time to update
the autoregressive coefficients of the model. To this end, they define,
besides the error budget €4, a second threshold 0 (0 < § < €00)-
As soon as the number of occurrences in which the prediction error
is bigger than ¢ exceeds a third given threshold a, a model update is
performed. In our work, we address the issue of automatic estimation
of model parameters by introducing a generic framework for model
selection, as described in section |3.4]

The above discussed techniques mainly focus on time series predic-
tion as a mathematical tool to perform temporal sensor selection in
WSNs. Other approaches leverage prediction-based data collection that
also takes into account the spatial dimension. For instance, Goel and
Imilienski [69] suggest to visualize a snapshot of the sensor readings
in the network as an optical image. With this premise, the authors
suggest to resort to the MPEG@ standard for video compression to
predict future sensor readings. This requires a base station to first
collect enough sensor readings from the sensors to generate a suitable
prediction-model, which is valid over a limited time interval. The model
is then propagated to the sensor nodes, which send their readings only
if they significantly differ from those predicted by the model. A sim-
ilar, model-driven approach is proposed by Deshpande et al. [46]. In
this case, a spatio-temporal prediction model is learnt from historical
data and is then used to estimate sensor readings in the current time
period. The estimation computed by the model can possibly be refined
by interrogating the sensor network for some specific current readings.
Guestrin et al. [76] propose to build a model of the data in the network
using kernel linear regression and let the nodes transmit only signif-
icant changes in the model coefficients instead of raw data. In [115],
principal component analysis (PCA) is used to identify minimal subsets

4 Moving Picture Experts Group [117].
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of nodes whose readings allow to predict the values sensed at any node
in the network. The subsets then provide sensor readings in a round
robin fashion, so that the overall resource consumption is reduced and
balanced across the nodes.

This chapter focuses on the temporal sensor selection problem only
and thus we do not address prediction-based techniques working in
the spatial domain. Notwithstanding, we investigate the spatial sensor
selection problem in chapter [4]

3.3. An Implementation of the DPS Based on the
LMS Adaptive Filter

To enable a lightweight and flexible implementation of the DPS, we
propose to make use of the least-mean-square (LMS) adaptive filter |82,
83/,166]. The LMS has very low computational overhead and memory
footprint, and can therefore be easily implemented on sensor nodes.
Furthermore, it does not require a priori knowledge of the statistical
properties of the observed signals [82,83]. In particular, the LMS can
adapt on the fly to the actual signal dynamics and can thus be applied
to a variety of real-world phenomena. Moreover, nodes do not need to
be assisted by a central entity to run the LMS, since no global model
parameters need to be defined. Its only drawback, which it shares
with other DPS instantiations, is that each node’s individual model
parameters can really only be set optimally during data collection (in
the case of LMS this is the filter length Ny j/¢ and its step-size u). We
will address this later (in section by proposing a novel generic on-
line parameter estimation and model selection framework, called AMS.

In the following, we first introduce basic notions on adaptive filters
and the LMS, and show how the latter can be used to perform time
series prediction. We then discuss the details of our implementation of
the DPS using the LMS, and finally present the related experimental
evaluation based on several data sets collected in real WSN deploy-
ments.

3.3.1. Adaptive Filters and the LMS Algorithm

In order to formally define the LMS, we first introduce the generic
structure of a linear adaptive filter. To this end, the samples of a
physical variable X are assumed to be available at discrete time instant
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tr = kAT, k = 1,2,.... Thus, every AT time units (e.g., seconds) a
new sample X} (short for Xy, ) of the signal is available. At each time
step tr, a linear adaptive filter of filter length Ny,¢ takes as input
the newest collected sample of the signal X, along with the precedent
Niys — 1, and computes the filter output Y} as:

Npps—1
Yi= > wiixXpi (3.5)
i=0
Setting a weights vector w;, = wi g, wak,...,WN, sk and defin-
ing the sample vector X; = X, Xy—1, ..., Xp—N,,o+1, We can rewrite

equation |3.5| above in a more compact form as the scalar product:

Yi = wy, - X7, (3.6)

where (.)7 is the transposition operator. The output of the filter is thus
the linear combination of the last Nyjs¢ samples of the input signal X,
each one of them being weighted by a time-varying filter coefficient w; .
The filter output Y} is then compared to a reference value ka (d for
desired). ka represents the sample, at time ¢, of a reference signal Y¢
to which the filter tries to adapt. In other words, the filter performs
optimally if Y} = ka,k = 1,2,.... Thus, the error signal e; = ka - Y
at time instant ¢; is fed back to the filter and used to update the filter
weights. Figure [3.1](a) shows the generic structure of an adaptive filter
working along the rationale described above.

The weights vector w,, is modified at each time step k& according to
a given optimality criterion, which is typically the minimization of the
mean square error (MSE), i.e., the average power of the error signal
e. Without going into details, we point out that the choice of the
MSE as the optimality criterion implies that the error function J(w),
which describes the dependency of the MSE on the filter weights w,
is a quadratic function. Thus, J(w) has a unique absolute minimum
point w’, i.e., a unique optimal solution that minimizes the MSE [83).
The filter weights are updated at each step k in order to iteratively
approach this minimum point. The error e; gives the adaptation algo-
rithm a measure of the extent of the correction that needs to be applied
to the filter weights in order to reduce, at the subsequent step k+1, the
expected error power E{eg.1}. If the statisticsﬂ of the involved signals

® The most important values are: the autocorrelation matrix of the input signal; the cross-
correlation vector of the input; and the reference signal.



3.3. An Implementation of the DPS Based on the LMS Adaptive Filter

37

Xk Adaptive

Filter

(a)
X X T X, At e
k Delay AT k=1,  Adaptive | A k
Filter - !

(b)

Figure 3.1.: Adaptive filter: (a) generic structure, (b) as a prediction filter.

were stationary and known a priori, the set of optimal filter weights w®"
that minimizes the MSE could be computed through the Wiener-Hopf
equation [82,|146]. In practical scenarios, however, a priori knowledge
of the signal statistics may be unavailable or unreliable. Adaptive fil-
ters can learn these statistics from the data and adapt to their changes
by updating the filter weights w. In this sense, adaptive filters provide
a tracking capability, since they are able, in a non-stationary environ-
ment, to track variations in the statistics of the input data, provided
that these variations are sufficiently slow [82].

Adaptive filters are usually categorized depending on the specific
method used to update the filter weights, and a large number of such
adaptive algorithms is available in the literature [82]. The choice of one
method over another is determined by the trade-off among different fac-
tors, like rate of convergence, robustness, computational complexity, or
numerical properties. The LMS is one of the most successfully applied
adaptive algorithms. Despite its simplicity, it provides for good per-
formance in a wide spectrum of applications [83]. The equations that
define the LMS algorithm are reported in table [3.1 The parameter u
regulates the convergence speed of the weights adaptation procedure,



38 Chapter 3. Temporal Sensor Selection

as we detail below. Like any other adaptive filter, the LMS algorithm
can be used to perform prediction when the general filter structure in
figure[3.1](a) is refined as in the predictive structure of 3.1(b). Making a
predictor out of an adaptive filter requires delaying the current sample
X} by one step and using it as the reference signal ka. The filter then
computes an estimation X} of the input signal at step k as a linear com-

bination of the Npys¢ previous readings { Xx—1, Xi—2, .-+, Xp-N,us )
. Nrpus
X, = Z Wi g % Xpi. (3.7)
=1

The prediction error is then computed and fed back to adapt the filter
weights. The characteristics of the adaptation process can be controlled
through two parameters: the step-size p, that appears in the weight
update equation in table [3.1], and the filter length Npjys. Using the
notation introduced in section [3.1.1}, we thus have:

X1 = h(X k-1 k- Npms]s (W0, Wiks - - WNp sk s Nears)),  (3.8)

where the model A is the LMS filter.

The step-size u is a critical parameter for the practical implementa-
tion of the LMS, since it tunes the convergence speed of the algorithm.
The theoretical convergence analysis of the LMS is still a field of ac-
tive research and a direct mathematical theory for its stability is still
far from being complete [83]. Indeed, even though the filter was intro-
duced as early as 1959, only very recently the first rigorous equation for
a necessary stability bound on the step-size parameter p of the LMS
has been provided [32]. Nonetheless, there also exists a practical crite-
rion for a straightforward computation of the value of y from a small
set of observations, as we point out in the next section [3.3.2]

The number of filter weights, normally referred to as the filter length
Nras, mainly determines the computational load and memory foot-
print of the filter. From the equations reported in table [3.1], and re-
calling that w and X are vectors with Npass elements, it follows that
the LMS algorithm requires 2Ny 75 + 1 multiplications and 2Ny /¢ ad-
ditions per iteration. In particular, Nyjs¢ multiplications and Npsg
additions are required for computing the filter output Y, while Nyysg
additions and Ny ;¢4 1 multiplications are required to update the filter
coefficients w,. Thus, in order to keep the computational load of the



3.3. An Implementation of the DPS Based on the LMS Adaptive Filter 39

filter low, the number of weights Ny /¢ must be kept as low as possi-
ble. Our experimental evaluation shows that the filter performs well
even with Nyys = 4,...,10. We also point out that increasing the
value of Npyrs does not necessarily improve the performance of the fil-
ter. In particular, increasing Ny ;s above a theoretically determinable
threshold value N7%, ¢ will even result in performance losses [83).

For further details about the characteristics and application fields of
the LMS algorithm we refer to [83]. In the following, we will explain how
this algorithm can be used to provide for an efficient implementation
of the DPS.

Table 3.1.: The LMS Algorithm

Y = w, X, Filter output

er =Y -, Error signal

Wy = Wy, + pX,ep || Weights adaptation

3.3.2. Implementation of the DPS Using the LMS

As we show in the next section [3.3.3] using the LMS for implementing
the DPS allows the algorithm to significantly reduce the amount of
data a node is required to report to its sink. At the same time, the
collected data can be guaranteed to lie within a given maximum error
budget e,,4.- This reduction is achieved by letting the node switch as
frequently as possible from a normal operational mode to a so-called
stand-alone mode, in which the node does not need to report sensor
readings to the sink. In order to be able to run the prediction algorithm,
the node needs to go through an initialization phase. These three basic
states of node operation are described in the remainder of this section.

Initialization Mode. When the node starts collecting and reporting data,
it runs in initialization mode. During this phase, no prediction is per-
formed and the both the node and the sink use the available actual
samples to compute an estimation of the step-size u. To ensure con-
vergence, the step-size u must satisfy the following condition [83]:

0<pu< (3.9)

1
Ex
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where E'x indicates the mean input power computed as:

1 &
_ 2
Ex = — - ;—1: 1X| (3.10)

and M is the number of samples used to train the filter [82]. Since the
input mean power Ex is time-varying, an approximation Ex can be
computed over (at least) the first Ny g samples and used to compute
the upper bound in inequality above. In practical applications,
the step-size u can be assigned a value about two orders of magnitude
smaller than this bound [135]. To take into account changes in the
signal dynamics, the node should periodically recompute the value of p,
and communicate it to the sink. Furthermore, including a mechanism
to allow for an on-line estimation of the optimal filter length Nyrg
would also be appropriate. Such a mechanism could be implemented
using the AMS framework discussed in section [3.4]

Once the initialization phase is completed, both the node and the
sink start performing prediction on the collected readings and operate
in either normal or stand-alone mode, as explained below.

Normal Mode. When working in normal mode, both the node and
the sink use the last Npjsg readings to compute a prediction for the
upcoming measurement, and update the set of filter coefficients w on
the basis of the actual prediction error, using the equation given in
table B.l The default start value for the filter coefficients is assumed
to be w[0] = 0. Unlike other adaptive algorithms, the LMS ensures that
multiple instances of the filter fed with the same sequence of data and
sharing the same set of initial weights w[0] (and, of course, the same
values for Npjs and p), compute the same set of filter coefficients and
thus the same predictions at each time instant k.

As long as the prediction error exceeds the user defined error budget
emaz, the node keeps working in normal mode, thus collecting and re-
porting its readings to the sink. When the prediction error drops below
the threshold e,,,, for Nypyg consecutive steps, the node switches to
stand-alone mode. As long as the node remains in the normal mode,
the sink lets the prediction filter run over the received sensor readings,
in order to update the filter weights w coherently with the node.
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Stand-Alone Mode. When working in stand-alone mode, the node keeps
collecting data and computes the prediction at each time step. As long
as the prediction error remains below the given threshold e,,q., the
node discards the reading and feeds the filter with the prediction X
instead of with the real data X;. This ensures that the state of the
filter at the node remains consistent with the state of the filter at the
sink. Feeding the filter with its own prediction causes the prediction
error to be zero and thus the filter weights to be left unchanged. This is
another advantage of using this technique: while staying in stand-alone
mode, the node can omit updating its weights, thus saving half of the
computational overhead. If at time instant k£ the node observes that
the prediction error exceeds the threshold e, .., it will report the read-
ing X} to the sink and switch back to normal mode. While the node
operates in stand-alone mode, the sink interprets the lack of readings
from the node as successful predictions, i.e., that the predicted readings
are a good enough approximation of the real readings at the node, and
thus continues to use the values from its own prediction filter[]

Figure illustrates how our scheme works. We let our algorithm
(with Npys = 5 and = 107°) run on a set of temperature readings
obtained from a real world sensor [19], as shown in Figure 3.2(a). Fig-
ure [3.2(b) shows a detailed view of the outlined area in subfigure (a),
with an overlapping plot of the corresponding filter output. Subfig-
ure (c¢) shows the prediction error of the data points in subfigure (b),
including highlights (with a cross) for those readings that the node ef-
fectively needs to report to the sink in order to guarantee an accuracy
emar Of £0.5°C. We see that as soon as the error exceeds the given
threshold, the corresponding sensor reading is sent to the sink and the
filter restarts adapting to the real data, thus causing the prediction
error to decrease. As soon as the error remains below +£0.5°C' for at
least Npyrs = 5 readings, the node stops reporting data (i.e., switches
again to stand-alone mode).

We should also point out that an outlier detection|| mechanism could
be easily embedded into our scheme. Since the occurrence of outliers
may disturb the operation of any prediction filter, it is good practice to
include some automatic procedure for their detection. For instance, an

6 Obviously, the absence of a message might also be due to a crash or battery failure at the

node, so we assume that nodes send readings or at least status messages at regular intervals,
so that the sink can easily recognize the absence of an expected message. To this end, a loose
synchronization between the sink and the nodes is required.

T An outlier is a “data value that is unusually large or small” |122, page 609).
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Figure 3.2.: The LMS at work: (a) real sensor readings, (b) real and predicted
sensor readings (close-up of the framed area in subfigure (a)), (c) pre-
diction error.
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adequate threshold may be defined either by the user or by the node
itself (e.g., as a multiple of the mean error). A sensor reading whose
corresponding prediction error is larger than this threshold could thus
be classified as an outlier and discarded. In this case, the discarded
data can be replaced by the corresponding prediction.

3.3.3. Experimental Results

Finally, we present the experimental results obtained by applying our
LMS-based DPS to several publicly available data sets. In particu-
lar, we used temperature readings collected within the Intel Berkeley
Research Lab deployment [19]. These data sets include humidity, tem-
perature, light and voltage readings collected, once every 31 seconds,
by 54 Mica2Dot sensor nodes [43]. The nodes were deployed across a
floor of the Intel Lab building and collected sensor readings between
February 28 and April 5, 2004.

Four our empirical study, we picked 4 of these 54 motes, namely
motes 1, 11, 13, and 49, which were distributed in different sectors
of the deployment area. We applied our scheme to the data reported
by the temperature sensors of these four motes between March 6 and
March 9, 2004. Since the main goal of the DPS is to reduce data com-
munication between the node and the data sink, we use the number
of updates the nodes send to the sink during operation as the per-
formance metric of choice. We define this metric, named the relative
update rate, as the ratio of the number of updates effectively sent when
running the DPS to the number of updates that would have been sent
by the default monitoring scheme. The results reported in this section
have been obtained implementing the LMS-based DPS in Matlab (see
section [2.2.3)).

Figure [3.3| shows the relative update rate (in percentage) of mote 11
for three different parameter sets plotted over the error budget e,q.-
As we can see, a minimum accuracy of 0.5°C' can be guaranteed while
transmitting only about 10% of the collected sensor readings. This
significant reduction in data communication is due to the remarkable
tracking capability of the LMS algorithm. Moreover, no significant
changes in the performance are observed when varying the number
of filter weights from Ny = 4 to Npys = 10. Since the number of
operations to be performed at each time step grows proportionallyf| with

8 We recall from section that the computational cost per iteration of the LMS algorithm is
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Figure 3.3.: Relative update rate for mote 11.

Nrars, this value should be kept as small as possible. The tested values
of Npas allow us to keep the computational overhead and memory
footprint extremely low. For instance, with Nyjyr¢ = 4 the node must
perform at most 17 operations each 31 seconds and needs to store only
the last 4 sensor readings in addition to the 4 filter coefficients and the
filter parameters.

We also obtained encouraging results for the data collected by other
motes. For instance, figure [3.4] shows the relative update rate of mote
49. The small performance loss with respect to mote 11 is due to the
fact that the samples collected by mote 49 are more spiky than those
of mote 11. Following these abrupt changes requires the LMS to send
more updates. Finally, figure shows the performance obtained with
two additional data sets, namely those collected by mote 1 and 13.
Mote 1 is located far away from both mote 11 and 49, while mote 13
lies in the same room as mote 11. Also with these data sets we obtained
very good results in terms of data reduction.

4Nppms + 1 when the node operates in normal mode and 2Ny s in stand-alone mode.
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The above discussed results show the potential communication sav-
ings achievable using LMS as the prediction model of choice for im-
plementing the DPS. As we also mentioned above, one drawback of
this approach is the fact that the filter length Nyasg is fixed a priori al-
though its optimal value can only be determined during data collection.
To cope with this problem, common to other implementations of the
DPS, we propose a generic framework for on-line parameter estimation
and model selection, the AMS, which is described in detail in the next
section 3.4l

3.4. Adaptive Model Selection (AMS)

In section we discussed the challenge represented by the selection
of an adequate model for supporting a given forecasting task. Further-
more, we stressed the importance of progressively refining the values
of the parameters of the selected model in order to ensure its ability
to follow changing signal dynamics. However, many of the approaches
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Figure 3.5.: Relative update rate for motes 1, 11, 13, and 49, for a filter length
Nrvs = 4.

presented in section [3.2], including our own work on the LMS-based
DPS, do not provide any parameter update procedure, or alternatively
suggest methods that require collaboration with the sink or high com-
putational costs and memory usage. Furthermore, none of the previ-
ously described DPS implementations provides a way to monitor the
performance of the used prediction model. However, monitoring the
communication gains achieved by the DPS using different models would
allow one to correct a possibly inappropriate initial model or parameter
choice on the fly.

To overcome these drawbacks, we designed a generic framework for
online model selection. The rationale of our adaptive model selection
(AMS) framework is to let the sensor nodes run a set of different predic-
tion models and evaluate, for each of these models and at each sampling
round, a quality measure that describes the efficiency of the model in
the currently engaged DPS. In this way, each time data communication
is required, the nodes can select the currently best performing model
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out of the set of candidates and send it to the sink, which will use it to
predict future sensor readings until the next update is received.

In principle, the AMS can be implemented with an arbitrary number
of models of the same class or of different type. For instance, the set
of candidate models could be represented by several LMS filters corre-
sponding to different values of Nyjrg. Or by the constant model, an
instance of the LMS, and a few ARIMA models. However, the com-
putational load and memory footprint of the AMS increase with the
number and complexity of the models. Therefore, along with the gen-
eral AMS framework presented in section below, we also propose
two specific implementations of an AMS-based DPS.

Our first prototypical implementation of the AMS restricts the set
of candidates to the constant model (CM) and a few representatives
of the autoregressive (AR) model class. This choice is mainly driven
by the fact that AR models have been widely used to implement the
DPS in WSNs. However, AR models may be difficult to compute and
maintain, and thus only a few of them may be included in the set of can-
didate models [116]. We therefore propose a second, more lightweight
and generic implementation of the AMS, suitable for currently avail-
able sensor networks platforms, that relies on exponential smoothing
(ES) models. ES models guarantee good behavior on a number of dif-
ferent time series and are computationally cheap to maintain [64,65].
Therefore, we propose this class of models as the most appropriate for
implementing the AMS algorithm and we refer to this implementation
as the ES-AMS. We provide a formal definition of both AR and ES
models in section [3.5.11

In the following, we first clarify the performance metric the AMS
uses to select the best performing model out of the set of candidates.
We then describe the racing mechanism, which can be used to dis-
card poorly performing models from the set of candidates. Finally, we
present the AMS algorithm and discuss some relevant implementation
issues. The experimental evaluation of the AR-AMS and ES-AMS is
then provided in the following section [3.5

3.4.1. Performance Estimates

As sketched above, a sensor node running the AMS maintains a set
of Nans candidate prediction models {h,} = hn(Xp, 5, 0n, 1), 1 <
n < Napg, which are possibly updated at each time instant k. For
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each model h,, a given quality measure is recursively estimated, and
the model that optimizes this performance indicator is selected as the
current model,

As we stated previously, the main goal of the DPS is to reduce the
number of updates between a sensor node and the sink. To measure
the performance of the DPS we thus resort to the relative update rate,
as already done in section [3.3.3] The relative update rate is the ratio
of the number of updates effectively sent when running the DPS to the
number of updates that would have been sent by the default monitoring
scheme. Let Uy, 1 be the relative update rate for the model h,, at time
k, where Uy, 1 = 1,1 < n < Nyps. Uy, i can be recursively computed
as

(k’ — 1) * Uhn,k—l + 1

Uh, b = . , (3.11)
if an update is needed at time k, or as
k—1)«Uy
U,k = ( ) * Ui (3.12)

"> i )
otherwise. The relative update rate for the default monitoring scheme
is 1, since it requires the transmission of all the collected readings, and
thus any lower value indicates a gain in terms of data communication.
We usually report the update rate as a percentage, thus U, = 1
means that 100% of the collected samples have been actually transmit-
ted to the sink.

Performance assessment in terms of update rate has been considered
in several implementations of the DPS [97] 114166, 194]. However,
we have been the first in suggesting to use this indicator to measure
model performance on the node, in order to enable a flexible model
choice [116].

In the context of the AMS it may also be useful to consider the size
of a model update, in terms of number of parameters (and thus num-
ber of bytes) to be transmitted, as part of the performance indicator.
Indeed, different models within the set of candidates may require a
variable number of elements to be sent at each update. For instance,
the default monitoring mode only requires sending the current sensor
readings, while, in general, updating a model h,, requires sending both
the input values X3, ; and the model parameters ), ;. To take into
account the packet size of a single model update we introduce an alter-
native performance indicator, the weighted relative update rate, which
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we define as follows:

Whn,k = Uhn,k * Chn (3.13)

Ch, 1s the ratio of the number of bytes required to send an update
of model h,, to the number of bytes required to send an update in the
default monitoring mode. We refer to C},, as the model cost. The
weighted relative update rate 1, ; measures the savings in terms of
data rate for model A, at time k with respect to the default monitoring
mode. When the costs C},, of the models h,, differ significantly, the
weighted relative update rate represents a “fairer” indicator of the actual
performance of the individual models. When all models have the same
cost, the weighted relative update rate and the relative update rate are
equivalent.

3.4.2. Racing Mechanism

The number and type of models included in the set of candidates may
vary depending on the application, and the available computational re-
sources and memory resources. However, some of the models initially
included in the set may turn out to perform poorly in terms of relative
update rate or weighted relative update rate. Since maintaining these
models wastes precious computational and memory resources, it is de-
sirable to discard them as soon as possible from the set of candidates. In
this context, the racing mechanism [124] offers an effective approach for
the automatic identification of models that persistently perform poorly
with respect to other candidates. The rationale of the racing mech-
anism is to determine, on the basis of hypothesis testing [80], what
models among a set of candidates are significantly outperformed by
others. For instance, let h* = argmany, W), 1 be the model with the
lowest relative data rate at time instant £ among the set of candidate
models, and let A,y 1 = Wi, & — Wi 1. be the difference between the
estimated weighted relative update rates of any model h,, and h*. Re-
lying on the Hoeffding bound [87], a distribution free statistical bound,
the racing mechanism assumes with probability 1 — ¢ that A* truly
outperforms h,, if

In(1/9)

A owyve > R
(hnvhn)’k 2]€ )

(3.14)
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where R is the range taken by the random variable A, j+). Thanks
to the lack of parametric assumptions, the Hoeffding bound requires
no other information than the range of values taken by the random
variables considered, which is known at the nodes. Indeed, since 0 <
Wi, x < Cp, and 0 < Wie, < O+, it follows that R = C),, + Cj+, and
the bound for discarding model h,, is therefore given by:

In(1/6)
2k
The racing mechanism allows to discard poorly performing models

from the set of candidates among which the AMS chooses the current

model. Since the bound gets tighter as k increases, only one model is

A, vy > (Chy, + Che)

(3.15)

eventually maintained on the sensor node. However, since the rationale
of the AMS is to maintain a set of models running concurrently on
the node, the racing process should be aborted once the cardinality
of the set of remaining models reaches a desired size. Furthermore,
discarded models could be periodically readmitted into the set to take
into account possible changes in the data dynamics. Alternatively,
discarded models could be replaced by other candidate models, keeping
the total number of maintained models constant.

3.4.3. AMS Algorithm

Algorithms [3.1] and [3.2] show the pseudocode of the AMS and its aux-
iliary function updateModel, respectively. The AMS algorithm takes as
inputs the error tolerance e,,,,, the number of candidate models N ,/5,
the set of models {h,,}, and their corresponding costs {Cy,, I} The out-
put of the algorithm is the best performing model h*, to which we also
refer to as the current model. When data collection starts, the AMS
initializes all the models {h,}, sets the current model to be the one with
the lowest model cosﬂ, and sends the first update to the sink. Then, at
each data collection round k, the AMS runs the function updateModel
for each model in the set of candidates. The function first updates the
model h,, including the newly collected sensor reading X} and then es-
timates the new value for the relative update rate Uy, ;. To this end,
the function computes the current prediction using the wvirtual model
hy j—1- The parameters of hy . ; are not updated with Xy, since they

9 The model costs must all be set to 1 if the relative update rate is used as performance indicator.

10We recommend to include the constant model in every implementation of the AMS, which has
cost = 1, and represents a good default model choice.
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represent the parameters that the sink would have used to compute the
prediction if h, were the current model. Thus, a virtual model is only
updated when the prediction error exceeds e,,,., since in this case the
node would have accordingly sent an update to the sink. Thus, the
function updateModel computes the prediction X using hy ;. Then,

depending on the value of the prediction error X — X}, the relative
update rate is computed according to equations [3.11] and [3.12]

After running the function updateModel for all models, control re-
turns to AMS, which then behaves as if it were a “classical” DPS scheme.
It therefore checks wether the absolute value of the difference between

the reading estimation Xk, computed at the sink using the current
model A*, and the actual sensor value X does not exceed e,,,,. If the
error threshold is exceeded, the model showing the lowest value for the
relative update rate is chosen as the new current model h*. Accord-
ingly, a model update composed of the current reading Xy, the input
values Xy 1, the model A*, and the parameters 8-, is sent to the sink.
Then, if required, the racing mechanism is run in order to discard or
exchange poorly performing models.

Algorithms and can easily be adapted to support alternative
metrics rather than the relative update rate to determine the perfor-
mance of the models. For instance, using the weighted relative update
rate (cf. section would require just a few straightforward modifi-
cations.

3.5. Experimental Evaluation of the AMS

This section shows the ability of the AMS to ensure that the commu-
nication savings obtained using the DPS are always close or equal to
those obtainable with the a posteriori best performing model. To per-
form our experimental study, we implemented the AMS in Matlab using
two different sets of candidate models. The first includes the constant
model and 5 different autoregressive models (AR-AMS), while the sec-
ond comprises exponential smoothing models with variable parameters
(ES-AMS). We retrieved several data sets from real WSN deployments
and used them as our test signals. To be able to compare results from
data sets related to different sensors, we also introduced a generalized
error threshold k.. In the following, we first describe the details of our
experimental setup, and provide then the actual results in sections|3.5.2

and [3.5.3]
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Algorithm 3.1 AMS - Adaptive model selection Algorithm
Require: €0, Nays, {hn},{Ch,}
Ensure: h* = argminy, Uy,
k+1
X < getNewReading()
forn=1 to NAMS do
hp1 < initialize(h,,,X;)
hz,l — hn,l
Uhn,l +—1
end for
h* < argming,,Ch,
sendUpdate(X,h*)
loop
kE+—k+1
Xj < getNewReading()
X, « predictReading(h*)
forn =1 to NAMS do
B ges Py 15U ke < updateModel(hy, g —1,h; 1, Xk)
end for
if (| Xy — Xi| > €mas) then
h* < argming, Uy, k
sendUpdate(Xy,h*)
{hn} < racing({h,})
end if
end loop

Algorithm 3.2 updateModel - Algorithm for model updates

Require: k7 Xk; Cmazx, hn,k—l’ hz7k—1’ Uh"’k_l
Ensure: h, i, Up,
hy i <— updateModel(hy, g—1,Xk)
X, + predictReading(h) ,_;)
hx’k V. updateModel(hxk,lan)
if (|Xk — Xk| > emaac) then
U, . = kDU poatl
hok = 7k
hz,k’ = hn,k

else
(k*l)*Uhn,kfl
Unpo = —5 22—

end if
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3.5.1. Experimental Setup

We implemented the DPS using both autoregressive (AR) models [116]
and exponential smoothing (ES) models. We provide here some basic
notation and notions about these two model classes. We then introduce
the data sets used for our evaluation as well as the definition of our
generalized error threshold.

Autoregressive Models. We provide an implementation of the AMS us-
ing AR models for two main reasons. First, they have been shown to
be both theoretically and experimentally good candidates for time se-
ries predictions [28,[122]. Second, model parameters can be estimated
by the means of the recursive least square (RLS) algorithm [5], which
allows adapting the parameters to the underlying time series in an on-
line fashion, without the need of storing large sets of past data. Time
series forecasting using AR models is performed by regressing the value
X}, of the time series X at time instant k£ against the elements of the
time series at the previous p time instants (Xz_1, Xp—2, ..., Xx—p). The
prediction at time £ + 1 is thus obtained as:

Xk;—i—l =01 X, + 60X 1+ ...+ HpXk;—p—&—l (316)

where (61,02, ...,0,) are the autoregressive coeflicients and p is the or-
der of the AR model, which is thus denoted as AR(p). Following the
notation introduced in section , let O appy e = (O 02 -, Opk)
be the row vector of parameters and X 4pp)x = (X, Xp—1, Xp—p+1) be
the row vector of inputs for a model AR(p) at time instant k. Then
the scalar product:

X1 = Oare)e - X s (3.17)

returns the prediction at time instant k& + 1. The parameters 6 45«
can be computed by means of the RLS algorithm, which consists in
a computationally thrifty set of equations that allows to recursively
update the parameters 6 4g(,) . as new observations become available
[5]. The related computational cost for an update of the vector 8 4z x
is 3p3 4+ 5p? 4 4p. For our experimental evaluation, we implemented the
AR-AMS using the constant model (CM) and autoregressive models of
orders 1 to 5.
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Exponential Smoothing Models. Fxponential smoothing is the technique
behind a class of prediction models with excellent predictive ability and
very low computational and memory requirements. ES models are cur-
rently considered one of the most general and efficient approaches to
time series prediction [45,/65,90]. Furthermore, recently published re-
sults cast exponential smoothing methods in a sound theoretical frame-
work showing their equivalence, in terms of predictive ability, to the
widely used ARIMA modeld"] [45]/64,/65], which are however signifi-
cantly more expensive in terms of computation and memory usage.

There exist few subclasses of exponential smoothing models, which
differ in the number of parameters needed to specify the model and
the way these parameters are updated as new data becomes avail-
able [65,90]. The simplest exponential smoothing model computes a
weighted average of the past elements of the time series and returns this
value as the forecast for the next element. Slightly more sophisticated
models include a so-called “trend component” that follows the possible
presence of a local linear trend in the time series. Damping parameters
or a seasonal component (to take into account non stationarity and
periodicity in the data) may also further improve the predictive ability
of the model, but often require a disproportional increase in computa-
tion and memory usage [65]. A subclass known as double exponential
smoothing (DES) is widely used in practice and offers a very good trade
off between predictive ability and resource consumption [65]. We there-
fore propose to use this particular subclass of models for implementing
the AMS [ Using a DES model, the value X}, of the time series at
m time steps ahead of k£ can be estimated, at time step k, using the
following simple linear equation:

Xk(m) =L +m-b. (318)

The values of L and b, can be in turn recursively computed as
follows:

Lk = Lk;—l + bk;_1 + a - e
br. = br—1 + afey,

where e represents the one-step forecast error, formally defined as:

(3.19)

UFor instance, the simple exponential smoothing model is equivalent to the ARIMA(0,1,1)
model; double exponential smoothing (also known as Holt’s linear method) is equivalent to
the ARIMA(0,2,2) model 122, p. 373].

12In particular, we consider here DES models with additive trends. Models with multiplicative
trends are less oftenused and rarely provide better performance [63].
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€L — Xk — X}C,l(l) (320)

The two parameters o and S that appear in equation [3.19] are the
smoothing constants of the model and may take values in the inter-
val [0,1]. Thus, following the notation introduced in section [3.1.1]
a double exponential smoothing model h at time k is described as
hi = { Xk, «, 8, Lk, b }. Therefore, no past elements of the time series
other than the current reading X; must be stored, and a model update
only requires performing few simple operations, as shown in equation
3.19. The forecast Xk+m is basically a weighted average of past ob-

servations, to which recent data contributes with a higher weight than
past data. In particular, past readings are weighted with coefficients
that decrease exponentially as the time lag from the current reading
increases, as a closer inspection of equation [3.19 shows. The time con-
stant of this exponential decrease is determined by the values of the
smoothing parameters a and 3, hence the name of this class of models.
For our experimental evaluation, we considered a set of DES models
with parameters o and g varying with steps of 0.1 in the intervals
[0.1,1] and [0, 1], respectively. We point out that the ES model with
parameters (« = 1, 8 = 0) corresponds to the constant model.

Data sets. 'To evaluate the performance of the considered implementa-
tions of the AMS, we selected 20 publicly available data sets collected
in real WSN deployments. The data sets have been selected so as to
represent, different test signals in terms of the nature of the observed
phenomenon, signal dynamic, sampling frequency, and length. Table
3.2 lists their names and main characteristics.

The Heater data measures the temperature of a heater as cold water
flows, as reported in [178]. The I Light data set relates to the readings
collected by the light sensor of mote 7 during the first 11 days of the
Intel Lab deployment, which has already been described in section [3.3.3].
The Monte Temp and Monte Hum data sets were collected between
March 23, and April 23, 2006, by sensors 3073 and 3074 of node 9,
in the Montepaldi Farm deployment [71]. The data sets Midra ST1,
Midra ST2 and Midra ST3 report soil temperature data registered from
January 1, 2006 to March 30, 2006, at three different plantﬁ cultivated

13Midra ST1 refers to plant 1, Midra ST2 to plant 2 and Midra ST3 to plant 3.
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in the greenhouse of the Midra’| Consortium in Florence (Italy). These
datasets represent the development of a physical phenomenon within
a given time frame but at different sampling locations. The Monte
STS3a, Monte ST3h and Monte ST3c data sets report data collected by
the same physical sensor but in three subsequent time periods.ﬂ All
data refers to the soil temperature collected by sensor 3073 on node 3
in the Montepaldi Farm deployment [71]. The last 10 data sets have
been retrieved from the historical database of the National Data Buoy
Center (NDBC) [139], and refer to data collected by buoy 41012 during
the whole year 2005. We should point out here that we used the 6 data
sets with identifier 5 to 10 in table only for the evaluation of the
ES-AMS.

Table 3.2.: Data sets used as test signals for evaluating the performance of the
AR-AMS and ES-AMS.

N° Data set name Sensed variable Sampling  Period Source
1 S Heater Temperature 3seconds  2h30min  [178]
2 ILight Light 31 seconds 8 days [19]
3 M Hum Humidity 10 minutes 30 days [71]
4 M Temp Temperature 10 minutes 30 days [71]
5 Midra ST1 Soil temperature 10's 3 months  [71]
6  Midra ST2 Soil temperature 10 s 3 months  [71]
7 Midra ST3 Soil temperature 10 s 3 months  [71]
8  Monte ST3a Soil temperature < lmin 2 months  [71]
9 Monte ST3b Soil temperature < lmin 2 months  [71]
10 Monte ST3c Soil temperature < lmin 2 months  [71]
11 NDBC WD Wind direction 1 hour 1 year [139)]
12 NDBC WSPD  Wind speed 1 hour 1 year [139)]
13 NDBC DPD Dominant wave period 1 hour 1 year [139]
14 NDBC AVP Average wave period 1 hour 1 year [139)]
15 NDBC BAR Air pressure 1 hour 1 year [139]
16 NDBC ATMP  Air temperature 1 hour 1 year [139)]
17 NDBC WTMP Water temperature 1 hour 1 year [139]
18 NDBC DEWP  Dewpoint temperature 1 hour 1 year [139)]
19 NDBC GST Gust speed 1 hour 1 year [139]
20 NDBC WVHT Wave height 1 hour 1 year [139)]

Generalized Error Threshold k.. To be able to compare results obtained
from different data sets, the error threshold e,,,; is computed propor-

Multidisciplinary Institute for Development, Research and Applications.

15Monte ST3a reports data collected from January 1, 2007 to February 28, 2007, Monte ST3b
from March 1, 2007 to April 30, 2007 and Monte ST3c¢ from May 1, 2007 to June 30, 2007.
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tionally to the range r of the signal, using a given factor k.. For the
data sets described above, we computed the range r as the difference
between the maximum and minimum values in the time series. We let
the value of k, vary between a minimum of 0.01 and a maximum of
0.1. The case k. = 0.01 accounts for scenarios in which high preci-
sion is required, while k. = 0.1 corresponds to a very rough bound on
the tolerated error. For instance, the range of Midra ST1 data set is
r = 31.25° and a generic error thresholds k. of 0.01 corresponds to an
accuracy of e, = ker = 0.3°. Such an accurate temperature moni-
toring may be required, for example, for biological studies aimed at the
analysis of plant growth [30]. On the other hand, k. = 0.1 corresponds
to a tolerance e,,,, = ke.r = 3°C, which could be appropriate for a
watering system to be triggered.

3.5.2. Performance of the AR-AMS

We discuss now the performance of the AR-AMS, which we imple-
mented using the constant model (CM) and five autoregressive models
of orders 1 to 5 (AR1, ..., AR5) as candidate models. We present
our results both in terms of relative update rate and weighted rela-
tive update rate. We also discuss the convergence rate of the racing
mechanism, as well as the average gains (in terms of weighted update
rate) obtained as the generalized error threshold k. increases. For our
evaluation, we used both the first 4 data sets listed in table [3.2] and all
the NDBC data sets (data sets 11 through 20 in the table).

Table reports the relative update rate obtained when running the
DPS with model selection based on the AR-AMS using k. = 0.01. Bold
faced figures indicate the best performing models, i.e., all models that
are not significantly outperformed by the model with the best (i.e.,
lowest) update rate.ﬁ As shown in table , in most cases AR models
outperform the CM. It also shows that their performance is usually sta-
tistically equivalent, regardless of the model order. However, the CM
performed significantly better than any AR model in three time series
(namely I Light, NDBC DPD and NDBC WSPD) and yielded simi-
lar performance for two time series (NDBC AWP and NDBC GST).
These apparent deficiencies of AR models are due to the nature of those
time series, qualitatively characterized by sudden and sharp changes.
These abrupt changes cause the variance in the estimation of the AR

16Gignificance is assessed using a one tailed t-test with respect to best model, p < .05.
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Table 3.3.: Relative update rate for DPS run with the AR-AMS model selection
procedure (k. = 0.01). Bold faced numbers indicate models that yielded
the best performances (one tailed t-test with respect to best model,

p < .05).
CM AR1 AR2 AR3 AR4 AR5 AMS
S Heater 74 75 61 59 59 59 AR3
I Light 38 40 39 40 40 39 CM
M Hum 53 53 49 50 49 49 AR4
M Temp 48 48 45 45 44 44 AR4

NDBC DPD 65 85 80 80 80 80 CM
NDBC AWP 72 73 73 73 73 73 CM
NDBC BAR ol 20 39 39 39 37 AR5
NDBC ATMP 39 39 36 36 36 36 ARS3
NDBC WTMP 27 27 21 21 21 20 AR5
NDBC DEWP o7 52 52 52 52 52 ARS3
NDBC WSPD 74 84 82 83 83 83 CM
NDBC WD 85 81 81 81 81 81 ARI1
NDBC GST 80 81 80 80 80 81 CM
NDBC WVHT 58 56 56 56 56 56 ARS3

coefficients to increase, making the models unstable and thus allowing
a simple CM to provide better performances in terms of update rates
(with gains of about 15% with respect to AR models for NDBC DPD
and gains up to 8% for NDBC' WPSD over a one year period). The last
column of Table [3.3| shows the model that yielded the lowest update
rate, which was consequently selected by the AMS procedure.

Further, we assess the performances of the AMS in terms of the
weighted relative update rate Wy, = Uy, * C}, introduced in sec-
tion [3.4.1] The model costs Cj, are computed assuming that each data
sample and parameter can be stored in one byte. Accordingly, the con-
stant model requires 1 byte to be sent to the sink, while the update of
an AR(p) model requires 2p bytes (p bytes for the initial input values
and p bytes for the parameters). The length Lj; of both header and
footer of a packet, to which we also refer to as the packet overhead,
depends on the specific communication protocol. Since the overhead
of a TinyOS packet ranges between 12 and 36 bytes, we considered an
average packet overhead of 24 bytes for our experiments. Thus, the
number of bytes that need to be transmitted in the default monitoring
scheme is just Ly s+ 1, while updating a model AR(p) requires sending
Lys + 2p bytes. The cost Cypy) is thus simply computed as the ratio
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Table 3.4.: Weighted relative update rate for DPS run with the AR-AMS model
selection procedure (k. = 0.01). Bold faced numbers indicate models
that yielded the best performances (one tailed t-test with respect to
best model, p < .05).

CM AR1 AR2 AR3 AR4 AR5 AMS

S Heater 74 78 68 70 76 81 AR2
I Light 38 42 44 48 51 53 CM
M Hum 53 55 55 60 62 66 CM
M Temp 48 50 50 54 56 60 CM

NDBC DPD 65 89 89 95 102 109 CM
NDBC AWP 72 I6) 81 88 93 9 CM
NDBC BAR o1 52 44 47 49 50 AR2
NDBC ATMP 39 41 40 43 46 49 CM
NDBC WTMP 27 28 23 25 27 28 AR2
NDBC DEWP o7 54 o8 62 67 71 AR1
NDBC WSPD 74 87 92 99 106 113 CM
NDBC WD 85 84 91 98 104 111 AR1
NDBC GST 80 84 90 9 103 110 CM
NDBC WVHT 58 58 63 67 71 76 CM

24+ 2p/24 + 1.

Table [3.4) reports the performances of the CM and AR(p) models in
terms of the weighted relative update rate, computed according to the
considerations reported above. Since the cost of the CM is 1, the first
columus of table 3.3 and [3.4] are identical. On the other hand, there is a
general deterioration of performances of AR models. Indeed, although
AR models still show a better predictive ability, the cost associated
with sending their parameters lower their overall performance. Out of
all tested time series, AR models only outperformed the CM five times
(on S Heater, NDBC BAR, NDBC WTMP, and NDBC DEWP). The
AR models eventually selected by AMS were AR(2) (three times) and
AR(1) (twice). As before, the rightmost column of table [3.4] lists the
model that yielded the lowest weighted update rate for each time series.

We further analyze the convergence speed obtained when relying on
the racing mechanism. To this end, we considered the first 1000 el-
ements of all the available time series and used the weighted update
rate metric Wy, ; to evaluate performance of competing models with a
confidence 1 — & = 0.95%. The number of time steps needed by the
racing mechanism to discard poorly performing models depends on the
nature of the time series. The convergence to a single best model in less
than 1000 time instants was obtained in four cases. For other cases,
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Figure 3.6.: Relative update rate as the generalized error threshold k. increases.

subsets of two or three remaining models were still in competition after
1000 time instants. The performances of those remaining models were
ranging from less than 1% up to 5%, and the a posteriori best model
was always part of the remaining set. AR(4) and AR(5) were discarded
in all cases due to the overhead incurred in sending their parameters
to the sink. For five time series, AR(3) and AR(4) were in the remain-
ing candidates models, while for the other nine time series, either CM,
AR(1), or both were still competing after the 1000™ time step.
Finally, figure reports the relative update rate obtained for each
of the considered 14 time series, as the accuracy threshold k. is relaxed.
For these experiments, the AMS was run using the weighted relative
update rate of competing models as its performance indicator. Figure
3.6/ shows that for k, = 0.05, which corresponds to good approximation
of the sensed phenomenon, less than 20% of data actually needs to be
sent to the sink (on average) with respect to the default monitoring
scheme. The update rate further decreases as the value of k. increases.
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Figure 3.7.: Relative update rates for the ES-AMS and the optimal a posteriori
model for each data set.

Furthermore, the predictive capacity of any method tends to converge
to that of the constant model as k. increases. In particular, for values
of k. higher than 0.1, the use of the AR-AMS does not provide, in
general, for significantly better gains in terms of update rate than those
guaranteed by the use of the simple CM.

3.5.3. Performance of the ES-AMS

As done above for the AR-AMS, we use the relative update rate to
assess the performance of the ES-AMS procedure. In particular, for all
the data sets reported in table [3.2] we compute, along with the update
rate reached by the ES-AMS, both the update rate of the optimal a
posteriori model within the exponential smoothing model class, and
the update rate of the optimal a posteriori model in the autoregressive
model class. The optimal a posteriori model is the model that, among
those available, reaches the lowest relative data rate at the end of the
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Figure 3.8.: Optimal a posteriori values of the smoothing parameter « for all the
20 considered data sets and three different values of k..

observation period. In other words, it is the model we would have
liked to know at the beginning of the observation. We computed the
optimal a posteriori model also using AR models in order to compare
the results obtained with the ES-AMS with those achieved by the AR-
AMS. Figure shows the relative update rate obtained for all data
sets when k., = 0.01. The performance of the ES-AMS in terms of
update rate is very close to that of the optimal a posteriori model, for
all the 20 data sets. Furthermore, the ES-AMS often outperforms even
the optimal a posteriori AR model.

In this chapter, we stated several times that the need for on-line
model selection in the context of the DPS is mainly due to the fact
that there is in fact no general a priori best model choice. In particular,
the predictive ability of a model may depend upon the nature of the
data being collected, the default sampling rate, or the approximation
threshold e,,,,. Figures and support this statement by showing
the values assumed by the smoothing parameters o and 3 for the 20
data sets as the generalized error thresholds k. increases. For instance,
for data sets 8, 9, and 10, the value of the parameter a for k., = 0.01
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Figure 3.9.: Optimal a posteriori values of the smoothing parameter S for all the
20 considered data sets and three different values of k..

is 1, 0.7, and 0.9 respectively. As reported in table [3.2] these data sets
correspond to time series captured by one and the same sensor over
subsequent time periods. In order to show the effect of a bad model
choice of the relative update rate, we consider an example based on
data sets 8 and 9. While for data set 8 the best model choice is the
constant model (v = 1, 8 = 0), the optimal a posteriori model for data
set 9is (o = 0.7, = 0.1). For data set 9 the optimal a posteriori
model reaches a relative update rate of 76.69%. while the constant
model manages to achieve 87.93%. This shows that even for the same
sensor, the optimal model choice may vary significantly over time.

3.6. Evaluation of the AMS on a Real WSN
Deployment

In this section, we finally report about our experience in testing the
ES-AMS framework on a lab-scale WSN deployment. In order to run
the AMS on sensor nodes, we implemented it as a TinyOS application,
which is described in detail in section [6.2, The application collects
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sensor readings at regular time intervals and reports them to a data
sink using the DPS strategy. Each time an update is sent to the sink
a (possibly new) model is selected from the set of candidates using
the AMS strategy. In particular, we implemented the ES-AMS model
selection strategy, which constructs the set of candidates using ES mod-
els corresponding to different values of the smoothing constants a and
B. As we also detail in section [6.2] in our current implementation we
let @ and [ vary, with step 0.1, within the intervals [0.1, 1] and [0, 1],
respectively. Thus, the number of models in the set of candidates is
Nanvs = Ny - Ng = 10 - 11 = 110, where N, and Np represent the
considered number of different values of the parameters a and 3, re-
spectively.

We thus deployed 10 nodes in our lab and let them run the ES-
AMS for several days. The nodes collected temperature readings from
the external temperature sensor of the Tmote Sky (see also section
2.2.1)). To observe the behavior of the ES-AMS under different oper-
ating conditions, we let the nodes collect sensor data at different rates
and using different error thresholds. Table shows a list of the 10
nodes included in the deployment and their corresponding values of the
sampling interval (reported in seconds) and error threshold (reported
in degree Celsius). Figure shows our experimental setting.ﬂ The
sink node, placed in the lower right corner of the deployment area,
forwarded the readings it received from the nodes to a desktop com-
puter running our TinyLAB tool (see section [6.1). Using TinyLAB we
were able to immediately import the data in Matlab, visualize it in
real-time, and then comfortably perform the offline analysis presented
below, which refers to the first two hours of data collection.

To results obtained in this simple experimental setting are qualita-
tively very similar to those discussed in section [3.5.3] In particular,
figure 3.1](a) shows the relative update rate achieved by the ES-AMS
for node 1 as a function of time. The red horizontal line in this plot
represents the relative update rate achieved by the optimal a posteri-
ori model at the end of the observation period. This line represents
the performance eventually achieved by a DPS running a single model,
whereby the latter corresponds to the model, within the set of can-
didates, that achieves the maximal achievable communication savings.
As we can see, the performance of the ES-AMS asymptotically con-

17The nodes have been connected to a power outlet using USB cables, but they reported data to
the sink using wireless communication.
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Table 3.5.: Relevant parameter settings for the 10 nodes included in the

deployment.

Node ID | Role | Sampling interval (s) | Error threshold (°C)
0 sink - -

1 sensor | 5 0.1
2 sensor | 10 0.1
3 sensor | 15 0.1
4 sensor | 0.5
5 sensor | 10 0.5
6 sensor | 15 0.5
7 sensor | 5 1
8 sensor | 10 1
9 sensor | 15 1

Figure 3.10.: Experimental setting.



Chapter 3. Temporal Sensor Selection

verges to that of the a posteriori optimum. Further, figure[3.11]b) and
3.11|(c) show the values of the smoothing constants of the current model
h* selected by node 1 as a function of time. The a posteriori optimal
model for node 1 has smoothing constants equal to (a, 5) = (0.8,0).
We can again observe that the ES-AMS eventually selects the “optimal”
values of the smoothing constants.

As shown in table node 1 represents the sensor operating under
the more stringent conditions both in terms of sampling rate and error
threshold. To show that the above reported considerations hold also
for the other nodes within the deployment, we now consider the per-
formance of node 9, which operates under the less stringent conditions.
In particular, figure shows, for node 9 the same data as figure
3.11, and allows to make the same considerations reported above con-
cerning the asymptotically optimal behavior of the ES-AMS. However,
we should also note that in this case the optimal relative update rate
reaches the extremely low value of 0.5%. This is due to the fact that
during the observation period the temperature in the room where the
nodes were deployed varied mainly within an interval of about 1°C.
Since for node 9 the error threshold was set to 1°C/, only very few
updates have been necessary to comply with the defined accuracy re-
quirements. In general, if the variability range of the signal is not at
least few times higher than the error threshold e,,,, the communica-
tion gains achievable using the ES-AMS are minimal. In these cases,
using a simple DPS running the constant model can usually ensure high
performance with minimal effort. In real deployments, however, it is
not always possible to know a priori the variability range of the signal,
which may anyway vary over time and depend on the specific location
of the nodes. For instance, even in our small indoor deployment the
variability range of the temperature measured by nodes placed near
a window may rapidly sink if the window is left open for about 10
minutes. Such “unpredictable” events may induce an approximatively
linear increase or decrease of the signal that the constant model cannot
follow efficiently. Therefore, unless a reliable estimation of the signal
dynamic is available, the use of the ES-AMS should be preferred over
implementations of the DPS that do not provide for automatic model
selection. In particular, our results show that the ES-AMS can ensure
nearly optimal communication savings without the need of any a priori
information on the signals of interest.
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and (3 (b) of the current model h*, as a function of time. In brackets
the correspondent values for the a posteriori optimal model.
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3.7. Summary

In this chapter, we focused on the DPS as a generic method to perform
temporal sensor selection in WSN. In this context, we first provided
an in-depth description of the main characteristics of the DPS and
outlined the assumptions it relies upon as well as the requirements it
must comply with. Then, we described a lightweight implementation
of the DPS based on the LMS adaptive filter. Our LMS-based DPS
achieved significant communication savings with respect to the default
monitoring mode on several real-world data sets. We then introduced
the AMS, an adaptive model selection algorithm that enables sensor
nodes to autonomously select, out of a set of candidates, the best per-
forming model to run the DPS. The AMS allows to overcome the main
drawback of the LMS-based DPS and several other existing implemen-
tations, namely the lack of adequate procedures for automated model
selection and online parameter estimation. We suggested two different
implementations of the AMS based on autoregressive and exponential
smoothing models and analyzed their performance on a large number
of data sets retrieved from real WSN deployments. Our experimental
evaluation showed the ability of the AMS to provide for a good model
choice requiring limited computational and memory resources. Finally,
we reported our experiences in running the AMS on a small scale indoor
WSN deployment.






4. Spatial Sensor Selection

In the previous chapter, we showed how the temporal data report-
ing interval of each sensor in a wireless sensor network (WSN) can be
controlled using adequate temporal sensor selection strategies. In this
context, we assumed that all the nodes in the network collect data
at regular time intervals A;, but only a subset of them actually im-
mediately report their readings to the data collector. We believe this
approach to be appropriate for small networks and in general when
the spatial density of the data is low. But as network size and node
redundancy increase, data collected by neighboring nodes may become
unnecessarily redundant. Indeed, if the actual density of the deployed
nodes is higher than strictly required to comply with the accuracy re-
quirements of the application, making all nodes collect data at each
sampling round may no longer be necessary nor convenient. In these
cases, spatial sensor selection strategies may come into play to individ-
uate, possibly at each sampling round, an adequate subset of nodes to
perform sampling and data reporting.

The selection criteria used to determine the set of active nodes clearly
depend on the specific requirements of the application. In this chapter,
we focus on applications having the reconstruction of a sensor field as
their ultimate goal. We thus investigate the design of spatial sensor
selection strategies able to comply with the requirements of such ap-
plications. In this context, we first show that the field reconstruction
problem can be properly formalized as a coverage problem. We thus
suggest to use the well-known coverage configuration protocol (CCP)
by Xing et al. [205], as a basic technique to perform spatial sensor se-
lection. We then address some inefficiencies of CCP and propose novel
heuristics to improve its performance. In particular, we introduce a
technique to rank the relevance of single sensor nodes for the global
sensing task. Using this ranking for guiding the sensor selection pro-
cess, we can significantly reduce the control overhead of CCP. Further,
we show that our sensor ranking method can be successfully adopted
also to improve the performance of selection strategies based on ran-
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dom node activations. Finally, we also consider the possibility to use
our sensor ranking strategy to influence the activity of a node as a data
router. To this end, we analyze the interplay of our optimized random
sensor selection strategy with the CTP data collection protocol [58,68].

In the next section 4.1 we provide a more detailed definition of the
field reconstruction problem in WSN. We then review related work in
section 4.2\ In section 4.3 we show under which assumptions the field
reconstruction problem can be reduced to a coverage problem. We then
summarize and discuss the relevant aspects of the CCP protocol, as well
as its applicability to the field reconstruction scenario in section [4.4]
We then introduce our sensor ranking technique and optimized version
of CCP in section 4.5l In section [£.6] we report experimental results
showing the ability of our sensor ranking strategy to reduce the over-
head of CCP. In section 4.7, we present and evaluate the performance
of our sensor ranking strategy when used in conjunction with a random
sensor selection scheme. We further discuss the interplay between sen-
sor selection and routing in section 4.8 Finally, section 4.9|summarizes
and concludes the chapter.

4.1. Field Reconstruction in VWSNs

In a typical monitoring application based on WSNs, the goal of the net-
work consists in capturing, possibly at regular time intervals, the values
of a sensor field over a target area. Since a WSN can only sample the
sensor field at discrete, typically irregularly spaced locations, adequate
reconstruction algorithms to compute the values of the field at any
point of the region of interest (Rol) must be applied. Leveraging the
terminology commonly used in image processing literature [75,132,/180],
we refer to the process of computing the values of the sensor field over
the target area, starting from the samples collected by the WSN, as the
field reconstruction or field recovery process. Further, we refer to the
set of positions at which the samples are collected as a sampling geome-
try or sampling pattern. If the samples are collected over a regular grid
we accordingly speak of regular or uniform sampling geometry [132).
Since the positions of the samples coincide with the positions of the
nodes that collected them, a subset of nodes actively sampling the
sensor field constitutes a sampling geometry. In this context, sensor
selection strategies can help in individuating adequate subset of nodes,
and thus sampling geometries, whose readings, once reported at the
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central data collector, can enable reliable reconstruction of the sensor
field of interest. To this end, the characteristics and requirements of
the specific algorithm used at the central server must be known. In the
following, we briefly discuss the criteria that, in our opinion, should
guide the choice of an adequate reconstruction algorithm to be used in
the context of WSNs.

The field reconstruction problem has been studied in several research
fields beyond WSNs, like in computer vision, and for medicine, astron-
omy, or geophysics applications [126}/146]. Accordingly, a vast litera-
ture on theoretical principles and practical algorithms for performing
field reconstruction is available [126,/195|. Several techniques, how-
ever, cannot be applied to reconstruct sensor fields sampled by a WSN.
Indeed, many algorithms require the samples to be available over a
grid [146,/171,|195], while others work properly only for sampling ge-
ometries resulting from the perturbation (jittering) of a uniform pat-
tern [42,126]. Clearly, these assumption are not likely to be met for
the sampling patterns typically offered by a WSN.

Indeed, in real WSN deployments the actual spatial distributions of
the nodes may be highly irregular and poorly controllable [10}/19,37,
185,186, [190]. Irregularities may result from specific characteristics
of the terrain and practical difficulties in placing the nodes with care
at the “correct” positions [63]. Furthermore, nodes could move after
deployment due to the action of weather (e.g., wind, rain), animals or
humans. Therefore, assuming a regular, or controlled, placement of
sensor nodes in WSNs is often unrealistic. For this reason, algorithms
performing reconstruction from samples collected by a WSN must be
able to cope with arbitrary, irregular sampling geometries.

In this context, we found the ACT reconstruction algorithm [56]
75,1169,(180] to be particularly suited to be used in WSN settings.
The ACT is a well-known technique to process medical or geophysics
data [158,182] and is particularly robust against the presence of large
gaps between, or dense clusters of, samples [75]. Furthermore, it has
been shown to achieve better reconstruction performance with respect
to other specialized algorithms and with different kind of data [75]|[158|
182]. Although the ACT is a well-known, generic technique to perform
reconstruction from scattered samples, it has received only little atten-
tion in the WSN literature [143152]. In the context of our work, we
assume the ACT to be the reconstruction algorithm of choice. With this
assumption, justified by the wide applicability and good performance
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of the ACT, we show that the problem of selecting favorable sampling
geometries for field reconstruction can be reduced to a coverage prob-
lem. This makes it possible to leverage coverage preserving algorithms
as sensor selection strategies in the field reconstruction scenarios we
are considering. In particular, the well-known coverage configuration
protocol (CCP) [205], can be adapted without difficulties to our ap-
plication context, although it was tailored for surveillance and target
detection applications.

Before going into further details, however, we first review related
wok in the following section 4.2l We will then come back to the ACT
algorithm and the requirements it poses on the sampling geometry in
section 4.3

4.2. Related Work

Several authors within and beyond the WSN research community in-
vestigated the spatial sensor selection problem, contributing a large
number of interesting approaches. In the following, we introduce the
contributions that most closely relate to our own work and outline their
main merits as well as possible drawbacks. For the sake of simplicity,
we classify related work into six different categories and discuss it in
just as many subsections. However, some efforts may belong to and
thus be mentioned within more than one category.

We start our exposition with the presentation of approaches focus-
ing on the field reconstruction problem in WSNs. Since we reduce the
problem of sensor selection for the purpose of field reconstruction to a
coverage problem, we move on presenting relevant coverage preserving
algorithms. Afterwards, we review approaches leveraging random sam-
pling techniques to perform spatial sensor selection. These latter ap-
proaches are relevant to our work since they relate to the contributions
presented in section 4.7 For the sake of completeness, we also briefly
review wutility- and model-based sensor selection algorithms as well as
techniques focusing on the computation of aggregates. The approaches
belonging to these three latter categories, however, only partially relate
to our work. Therefore, skipping their discussion will not hamper the
reader to follow the rest of the chapter.
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4.2.1. Field Reconstruction

Sensor selection algorithms focusing on field reconstruction applica-
tions aim at controlling the number and spatial distribution of the
nodes so as to enable an accurate recovery of the sensor field. Several
authors addressed the thereby arising challenges and proposed interest-
ing approaches to deal with them on both the theoretical and practical

side [16],37,/941[05] 123, [127,[140| 143, [152, 155,157,175, 203, 213).

Willet et al. reckon that “high spatial densities of sensors are desir-
able for achieving high resolution and accurate estimates of the envi-
ronmental conditions, but high densities also place heavy demands on
bandwidth and energy consumption for communication.” [203]. To help
reduce the number of sensing nodes in such high density scenarios, they
propose a two-step approach based on a preview and a refinement step.
The network is first divided into regular cells using recursive dyadic par-
titioning. Each cell corresponds to a logical cluster, and for each cluster
a node is assumed to take over the role of clusterhead. In the preview
phase, a subset of the nodes samples and reports data to the sink. As
data makes its way towards the sink, each clusterhead performs data
aggregation by fitting piecewise linear models called platelets [204] to
the sensor measurements. The more homogenous the data, the fewer
number of platelets (and, thus, number of bits) is needed to represent
them. Since the sensor field is assumed to be piecewise homogeneous,
the use of platelets allows to significantly reduce the amount of infor-
mation that must eventually reach the sink. Across the boundaries
between homogenous regions, however, the field exhibits abrupt spatial
changes and thus the possibility to aggregate data decreases. Observing
the aggregated data, the sink can individuate (boundary) regions with
high information content and thus trigger a refinement step to gather
additional data from these regions. This approach, dubbed Backcast-
ing, has proven very efficient in detecting boundary regions and thus
allowing to reconstruct piecewise smooth fields. However, the approach
does not extend to the general field reconstruction setting we consider
in our work. Additionally, the sampling pattern is considered to be a
regular grid and the extension of the approach to irregular geometries
is not investigated.

Other approaches elaborating on the classical rate-distortion prob-
lem, like those reported in [123}[155,|156], assume uniform sampling
geometry and sensor fields with very specific characteristics (e.g., sta-
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tionary Gaussian fields).

Moving beyond the assumption of uniform nodes deployments, the
approach presented in [152] lets the sensor nodes construct a sampling
geometry that resembles a binary blue noise sampling pattern. The
main feature of a blue noise pattern consists of having a spectrum
with very little low-frequency content and no concentrated spikes of en-
ergy [132]. Thanks to these characteristics, fields sampled using a blue
noise pattern can be reconstructed without aliasing effects. Or, better
said, aliasing appears on the recovered field as diffused noise instead of
in the form of visible artifacts [42,]132]. There exist standard methods
to generate a blue noise pattern starting from some random distribu-
tions, and the authors of [152] present a modification of such methods
that is suitable to be used in WSN settings. A distributed algorithm to
generate approximate blue-noise sampling patterns is described, while
performance is evaluated considering an optimal, centralized solution.
The main rationale of the distributed algorithm is to make nodes de-
cide about their deactivation by setting appropriate backoff timers.
Nodes whose deactivation timers exceeds some pre-defined threshold
will remain active and contribute to the generation of the blue noise
sampling geometry. The main disadvantage of this approach lies in the
need to transmit the deactivation beacons, especially considering that
the algorithm tries to maximize the number of nodes that deactivate
themselves.

Dong et al. [48] investigate the impact of the sampling geometry on
the quality of the reconstruction of a 1-dimensional signal. They con-
sider both uniform and random sampling geometries and resort to a
nearest neighbor linear estimator that minimizes the MMSHT as a re-
construction technique. Their asymptotic analysis shows that, in the
case of high signal-to-noise-ratio (SNR), uniform geometries allow to
achieve significantly better reconstruction with respect to random ones.
However, the gains in selecting a uniform sampling pattern shrink as
the SNR decreases. This latter result is particularly interesting since
it suggests that, under the given assumptions, random sensor selection
can provide for performance comparable to that of more complex selec-
tion schemes. We elaborate more on the potential of random sampling
in sections [4.2.3] and .71

In a series of publications Nordio et al. [140-143| studied some theo-
retical issues related to the problem of field reconstruction from nonuni-

! Minimum mean square error.
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form samples in the context of wireless sensor networks. In particular,
they investigate the performance of linear reconstruction filters for ban-
dlimited signals [142]. They provide analytical expressions for the mean
square error (MSE) of the reconstruction in the asymptotical case in
which both the bandwidth of the signal and the number of nodes grows
to infinity [141,142]. In their study, the authors also investigate the
influence of noise in the measurements and errors in the estimation of
the positions of the nodes [142]. Further, they show that in order to
analyze the reconstruction problem exactly it is necessary to dispose
of the analytical expression of the eigenvalue distribution of the recon-
struction matrix [143]. Since this expression is unknown, they provide
an approximation thereof and use it as the basis for their analysis.
The results presented by Nordio et al. [140-{143|, although retrieved for
an asymptotical case and mostly only for 1-dimensional fields, allow
to characterize the reconstruction performance of specific linear filters
with respect to several parameters like the number of sensing nodes
or the level of noise in the data. In our approach, we do not consider
theoretical performance in terms of MSE but focus on more practical
methods for providing appropriate sampling geometries.

4.2.2. Coverage Preserving Algorithms

In surveillance and target detection and tracking scenarios, WSNs are
typically required to provide spatial coverage over a region of interest
at each time instant. In these scenarios, sensor nodes are equipped
with sensors enabling the detection of the phenomenon of interest, e.g.,
the presence of a vehicle or person, with good accuracy up to a certain
distance, which is referred to as the sensing range R4 of the node. For
instance, typical infrared sensors may allow to detect a human intruder
present at up to R; = 3m from the node itself. Assuming isotropic
sensor behavior, the area covered by a node can be modeled as a discus
Dr_ (c) having the node itself as its center ¢ and a radius given by
the sensing range R,. Guaranteeing constant coverage thus requires
scheduling node activations so that, at each time instant, each point
of the Rol lies within the sensing range of at least one node. More
precisely, this type of coverage is known in the literature as 1-coverage.
Generalizing the definition, a sensor selection algorithm can guarantee
k-coverage if, at each time instant, each point of the Rol is within the
sensing range of at least k sensors [205,211]. For instance, points A, B,
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and C' in Figure 4.1] are, respectively, 1-,2-, and 3-covered, while point
D lies outside the area covered by the nodes and is therefore uncovered
or O-covered.

Figure 4.1.: Area covered by three nodes having all the same sensing range Rj.
Points A, B, C, and D are 1-, 2-, 3-, and O-covered, respectively.

Coverage preserving algorithms represent an important category of
spatial sensor selection methods, and their use is relevant also for field
reconstruction applications. Indeed, as we mentioned in the introduc-
tion to this chapter and in section {.1], the problem of providing favor-
able sampling geometries for the ACT reconstruction algorithm may
be reduced to the problem of finding a set of nodes that guarantees for
1-coverage of the Rol.

A central contribution in analyzing the coverage problem in WSNs is
offered by Xing et al. in [205]. The authors present theoretical results
relating the two concepts of connectivity and coverage. In particular,
they show that if the radio range of the nodes Ry, fulfills the condition
2R; < R;. and the Rol is 1-covered in the sense we explained above,
then 1-connectivity is also guaranteed. The result is also extended
to the general case of k-coverage and k—connectivityﬂ Besides these
important theoretical results, the authors also present a coverage con-
figuration protocol, dubbed CCP, which we describe in detail in section
i.4] Nodes running CCP decide upon their activation by evaluating if
their sensing area is already covered by other nodes that previously de-
clared themselves as active. If a node finds itself to be covered by active

2 A network is said to be k-connected if, to disconnect it, & nodes must be removed.
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neighbors, it remains idle. Otherwise, it becomes active and communi-
cates its decision through a dedicated broadcast message. Possibly, a
node can decide to withdraw from the set of active nodes, if it is eligible
to do so. In sections [4.4] and we show how it is possible to modify
the CCP so as to reduce its overhead and thus make it better suitable
to be used in the field reconstruction scenario we are considering.

Other coverage-preserving algorithms work along the same rationale
of the CCP protocol [188]. However, they propose a different technique
to determine whether the sensing area of a node is covered by its ac-
tive neighbors. Instead, the PEAS algorithm presented in [209] uses a
different, pull-based approach. To determine whether to become active
or not, sensor nodes broadcast a probing message appropriately set-
ting their transmission range to the desired probing range R,. Active
nodes receiving such probing messages also broadcast a reply to signal
their activity. If the probing node does not receive any of these replies
before a timeout expires, it becomes active. Otherwise, it turns itself
off until the next probing round. This approach works well under the
assumption of isotropic antenna patterns and adjustable transmission
ranges. Unfortunately, both assumptions are hardly met in real WSN
deployments.

Several authors also considered the coverage problem in settings in
which the active nodes are selected (or deployed) at random over the
Rol [40,110}/111},/200]. For instance, the results presented in [110],
recently reprinted in [111], show the asymptotic conditions necessary
to guarantee that a region is (almost always) k-covered by a set of n
nodes. The nodes are assumed to have all the same sensing range r
and be active or inactive with probability p and (1 — p), respectively.
The results are reported for the case in which the Rol is the unit square
and the nodes are deployed on a uniform grid, uniformly at random or
according to a Poisson distribution with rate n. The conditions for k-
coverage, although derived for the asymptotic case in which the number
of nodes n goes to infinity, can be used to compute rough estimates
also for real WSN deployments, as claimed in [110,/111]. In [200] Wan
and Y1 consider the same problem for both the cases in which the
nodes are deployed according to a Poisson or uniform point process.
In particular, they show how the probability of coverage changes as
the sensing range and number of nodes vary. Furthermore, they note
that their results and those reported in [110,/111] are not consistent,
probably due to a different handling of the boundary conditions. For
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further results we refer the interested reader to [40,66,79] and [210].
In section [4.7, we show how these theoretical results can influence the
design of sensor selection strategies based on random node activations.
Interesting approaches based on random sampling are also discussed in

the following section [4.2.3].

4.2.3. Random Sampling

Random sampling occurs in WSNs when sensor nodes decide about
their participation in, or are selected for, sensing using a randomized
approach. For instance, in a random sensor selection (RSS) scheme,
sensor nodes are active with probability p and idle with probability
1 — p. Assuming all nodes share the same value of p, the expected
total number of active nodes at each data collection round is p - Ny,
where N;y; is the total number of nodes in the network. If data packet
losses are rare, p- Ny, also approximates the average number of sensor
readings reaching the sink. The appeal on RSS as a sensor selection
strategy clearly lies in its simplicity and very limited control overhead.
Furthermore, it provides for a straightforward way to balance the (sens-
ing) workload across the nodes. Furthermore, in some cases RSS may
perform comparably to, or even better than, other, more sophisticated
sensor selection strategies [120].

In field reconstruction applications, however, the simple RSS strategy
may also incur significant performance losses with respect to other ap-
proaches [48,152]. In particular, the blue noise sampling strategy [152]
described in subsection [£.2.1] clearly outperforms the plain RSS. Dong
et al. [48] also investigate the performance of the RSS with respect
to a scheduling approach that activates a deterministic set of equally
spaced nodes. For a 1-dimensional field, they provide asymptotical ex-
pressions of the reconstruction error (distortion) with respect to the
number of collected samples. Their analysis shows that in scenarios in
which the signal to noise ratio (SNR) is high, the advantage of con-
structing uniform sampling geometries is substantial. When the SNR
is low, however, the performance loss due to the use of the RSS is dras-
tically reduced. Furthermore, they confirm previously presented results
showing that in the case of nonuniform sampling the accuracy of the
reconstruction is mainly determined by the maximum distance between
any two adjacent samples [56,/181]. Furthermore, they also provide an
analytical expression for the probability distribution of the maximum
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distance between samples.

We should notice that the above mentioned efforts always considered
the simple RSS approach in which the probability of activation p is
fixed and equal for all the nodes. As we show in section [£.7] however,
making this value depend upon local information available at the nodes
may significantly improve the performance of a RSS strategy.

In [96] Iyer and Kleinrock present an interesting approach that even-
tually makes sensor nodes individually tune their probability of acti-
vation p. In particular, they model each node as a player of the Gur
Game [193]. In this game a player repeatedly and autonomously takes
a binary decision (i.e., “yes” or “no”) and communicates it to a “referee”.
The referee then calculates a function r(k) of the total number of play-
ers k that took a positive decision. Each player receives this value as
a feedback on her previous decision, which is evaluated to have been
“correct” with probability (k) or “wrong” with probability 1 — r(k).
Each player can thus take her next decision on the basis of the feed-
back from the referee. A high value of r(k) signals that the referee did
not approve the global behavior of the players and thus wants to force
them to modify their decisions. In a WSN scenario, the central server
takes over the role of the referee and sends its feedback to the nodes
after each data collection round. Using the Gur Game approach, the
server can induce the nodes to modify their individual behavior in or-
der to reach a global, common goal, specified as achieving the optimal
number of active nodes. The question of whether this approach can
actually bring the network to a stable, optimal state, remains unan-
swered. Furthermore, providing feedback to all nodes in the network
after each data collection round may require a disproportionate amount
of communication. For the sake of completeness we should also men-
tion that this approach is only apparently a random sampling scheme.
Indeed, a node is always either in a “stay idle” or “participate” state,
but the transitions between these two states depend on the probability
r(k) and a pre-specified inertia.

Other approaches investigating random sensor selection techniques
include [14]. In their work Bash et al. [14] focus on applications requir-
ing the computation of aggregates from samples picked uniformly at
random over the set of all nodes. In these scenarios, all sensors are re-
quired to report their data with the same probability p, irrespective of
their position and local density. The authors propose an approximate
solution to this problem that select specific locations in the networks to
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be sampled and then uses geographic routing to route the query to the
node s closest to this location. The node then decides whether to accept
the task and report its data, depending on both the area of its Voronoi
cell A(s), which must be precomputed, and a user-defined threshold 7
which is distributed to all nodes. In particular, the node reports its
value with probability min(A(s),7)/A(s). This simple heuristic man-
ages to balance the probability of nodes with high and small Voronoi
cells to report their values. This method differs from our approach since
it aims at “flattening” the areas covered by the nodes, while we aim at
exploiting the differences in these values to optimize the participation
of the sensors in sensing and communication. Furthermore, the method
proposed in [14] doesn’t scale well with the number of samples needed
and the size of the network, since it may require several attempts to
retrieve one single sample, thereby possibly sending multiple requests
along very similar paths.

4.2.4. Utility-Based Sensor Selection

In section [1.1| we introduced the idea that the sensor selection problem
can be treated formally as an optimization problem in which the cost
function summarizes the energy expenditures of the network while the
utility function captures the information content of the data. Several
authors addressed the problem along this line and provided interesting
contributions [23},33,/34,44.|98].

In [33] and [34], for instance, Byers and Nasser provide a simple
framework to perform utility-based sensor selection in WSNs, also in-
cluding a combined optimization of routing and sensing roles. They,
however, focus on the general applicability of their approach and the
heuristic used to make sensors decide upon their role does not include
any considerations related to the actual accuracy of the sensed data.
In particular, the authors underline “the importance of providing geo-
graphically distributed sets of reporting sensors” for many applications,
but do not focus on this issue in their work. As we will detail in section
(4.3 the actual spatial distribution of the sensing nodes is crucial in
determining the accuracy of the reconstruction of a sensor field.

In their work Byers and Nasser considered a global utility function
whose value monotonically increases with the number of sensing nodes.
They also underline that in many practical scenarios there will be a
diminishing marginal return, i.e., the advantage of adding new data
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diminishes as the number of total collected samples increases. Bian et
al. studied the formal properties of this class of utility functions, also
dubbed submodular functions, in the context of WSNs [23]|. In par-
ticular, they show that the utility-based sensor selection problem can
be expressed as a linear program of polynomial size and can thus be
solved exactly in polynomial time. Computing such solution, however,
requires all sensor utilities and costs to be known at a central location,
which is clearly unpractical in typical WSN settings. This result is,
however, particularly interesting since it allows to set a benchmark by
indicating the optimal, centralized solution towards which the perfor-
mance of other, distributed approaches can be evaluated. In the same
work Bian et. al also studied the properties of supermodular utility
functions, for which “the benefit of combining two (disjoint) sets |of
sensors| is at least as large as the sum of the individual benefits” [23].
For this class of utility functions, however, they conjecture the sensor
selection problem to be NP-complete and show other related theoretical
results.

Focusing on the computation of aggregates like mean, median and
maximum, Das and Kempe [44] show that the solution of the sensor se-
lection problem can be found solving an appropriately defined k-median
problem, for which good and practical approximation algorithms are
known. Other approaches propose elegant theoretical frameworks to
compute approximate solutions to the sensor selection problem [98§]
but they rely on centralized computations and the proposed results are
thus hardly applicable in real WSN settings. In our approach to the
sensor selection problem, we do not resort to the utility-based formal-
ization discussed above. Instead, we rely on existing practical protocols
and aim at improving their performance.

4.2.5. Model-Based Sensor Selection

Model-driven sensor selection strategies have been widely investigated
to optimize data collection in WSNs [46|,[76,144} 198,206, 212], as also
already discussed in chapter 3| In our work, we avoid the use of pre-
defined models to describe the signal of interest and make use of only
limited a-priori knowledge. This allows to design more generically ap-
plicable and robust sensor selection strategies. However, if the signal
dynamics are stable and known in advance, model-based approaches
represent valuable and interesting alternatives.
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For instance, knowing that the sensor field of interest can be well rep-
resented in a certain function space enables the adoption of techniques
seeking for the computation of the coefficients of the signal in this basis
instead of a complete data collection [76]. Clearly, this allows to save
communication, since in place of a large amount of raw data, only few
coefficients must be sent to the data collector. On the other hand, de-
termining the proper function space is not trivial, but crucial for the
successful adoption of this technique. Desphande et al. [46] suggest to
build a multivariate model of the data collected by the network and
use it to answer user queries. To build such model, they exploit spatio-
temporal correlations in the data, whose occurrence must however be
built-in a-priori. If the uncertainty on the query answer is higher than
a given threshold, the model is updated collecting new data from se-
lected sensor nodes. If analytical models of the sensor field and its
correlation structure are known, a large set of distributed source cod-
ing techniques also becomes available [155]/156,(170,206]. However, as
noted in 81|, “in many applications prior knowledge of the precise cor-
relation in the data is unavailable, making it difficult or impossible to
apply such distributed source coding techniques.”

4.2.6. Computation of Aggregates

Sensor selection algorithms also come into play when the network is
required to compute aggregate values over the Rol instead of provid-
ing complete field reconstruction. Aggregate information like mean,
median or maximum value of a sensor field or network parameter may
indeed be of great interested for many applications. Although our work
considers the problem of complete reconstruction of a sensor field, and
not on the computation of its aggregates, we briefly mention some in-
teresting approaches the reader is referred to.

In [120], Lin et al. propose region sampling, a technique to com-
pute approximate aggregates when only a pre-specified energy budget
is available. Region sampling partitions the network in £ regions, within
which sensor values are collected and aggregated. With an adequate
choice of the regions, the approximation error can be bounded. To this
end, a set of statistics is collected during network operation and used to
perform a centralized choice of the nodes from which samples must be
retrieved. As already discussed in section [4.2.3 Bash et al. [14] propose
a method for enabling computation of aggregates for scenarios in which
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all sensors are required to report their data with the same probability
p. In [109], Kuhn et al. provides theoretical results to address the k-
selection problem, consisting in finding, out of a set of n element, the
k' smallest of these elements. They show that this problem can be
efficiently solved using both randomized and deterministic algorithms.
Das and Kempe [44] propose a technique to select nearly optimal sub-
sets of sensors that can predict the value of certain aggregate functions
within a given error.

4.3. lrregular Sampling in WSNs and the ACT
Reconstruction Algorithm

The problem of reconstructing a sensor field from its irregular sam-
ples has been studied in several different contexts, and has received
increasing attention in the last decades [126]. Thanks to the achieved
results, the mathematical theory of irregular sampling is by now well-
established. However, practical solutions to perform reconstruction
from scattered samples are still scarce. One of the major problems
in this context is the definition of the formal conditions that the sam-
pling geometry must fulfill in order to make the reconstruction prob-
lem numerically tractable [126]. In a series of publications Feichtinger,
Grochenig, Strohmer and Scherzer [56,75,(169,/180] address this prob-
lem and provide a robust and efficient numerical method for field recon-
struction from irregular samples. Their algorithm, known as the ACT,
draws upon the observation that fitting the samples f(s;) of a spatial
field by a trigonometric polynomia]ﬂ p (of appropriate order and period)
makes the reconstruction problem numerically tractable. Furthermore,
they provide extensive experimental results showing the superior re-
construction performance and higher computational efficiency of their
method with respect to other approaches. Last but not least, they also
provide formal requirements the sampling geometry must fulfill in order
to enable robust and efficient reconstruction.

The ACT has often been used to process data in medicine or explo-
ration geophysics [158,/182], but has received only little attention in the
WSN literature [143,(152]. In the context of our work, we suggest to
resort to the ACT algorithm [56,|75,/169,/180] to perform sensor field

3 A trigonometric polynomial is a finite linear combination of sine and cosine functions. The
order M of the polynomial indicates the number of different frequencies for which sine and
cosine functions are generated.
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reconstruction in WSNs. Its use allows to achieve good reconstructions
without posing unrealistic requirements on the sampling geometry. Fur-
thermore, experimental results showed its ability to cope with datasets
of different nature and size [158,|182]. Therefore, the ACT appears a
suitable tool for performing reconstruction from samples collected in
WSN settings. For the interested reader, we provide a detailed descrip-
tion of the ACT in appendix [A] In the following, we briefly summarize
its main characteristics and focus on the requirements the sampling
geometry must fulfill to enable robust and efficient reconstruction. In
particular, we show how the use of the ACT allows to reduce the prob-
lem of selecting favorable sampling geometries to a coverage problem.

We first consider a 1-dimensional sensor field f sampled at r scattered
locations s;,7 = 1,...,r over the segment [0,1]. Without any loss
of generality, we assume the sampling points to be numbered so that
0 <s1 <8 <...<s <1 The ACT reconstructs the sensor field
f by fitting its samples with a trigonometric polynomial p,; of order
M and period 1. The optimal reconstructing polynomial pj, is the one
that solves the least squares problem:

ij|p}‘w(sj) - f(s])\z = minimum in Py, (4.1)
j=1

where the minimum is taken over the space of all polynomials Py, of
order M and period 1. The order M of the polynomial is determined
by the bandwidth B, of the field f, while the weights w;, 7 =1,...,r
depend on the sampling locations only. We show in appendix[Alhow to
properly set these values. If the bandwidth of the signal is unknown,
the so-called multilevel version of the ACT, dubbed ML-ACT, allows
to estimate it on the fly, as reconstruction is performed [169]. The set
of 2M + 1 coeflicients aj; that generates the polynomial pj,, is the
solution to the linear system:

a=T"b. (4.2)

T is a square matrix of dimensions (2M + 1) x (2M + 1) and b
a vector of length 2M + 1. As shown in appendix [A] the matrix T
has a Toeplitz structure and, thus, efficient methods to perform its
inversion, necessary for solving system [.2] become available. In their
work, Feichtinger at al. suggest to use the conjugate gradient iterative
method [70] to perform the inversion of 7. The name ACT actually
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summarizes the main features of this algorithm: the presence of the
adaptive (A) weights w;, the use of the conjugate (C) gradient method,
and the Toeplitz (T) structure of the matrix 7.

For a (unique) solution of system [4.2] to exist, the invertibility of T’
is a necessary and sufficient condition. The actual quality of the re-
construction, however, also depends on the spectral properties of the
matrix T', which are characterized by the value of its condition num-
belﬂ In particular, the lower the condition number, the more robustly
and efficiently the solution of system can be computed. Thus, the
possibility to bound the value of the condition number k(7T") of T, al-
lows to formally characterize the reconstruction performance of the
ACT. Since the entries of the matrix T" depend on the sampling geom-
etry only, controlling the values of the sampling locations s; allows to
control the performance of the ACTP]

In the 1-dimensional case, it can be shown that the matrix T is in-
vertible if at least 2M + 1 samples are available. Furthermore, its
condition number can be guaranteed to be bound (by a known value)
if the maximal gap Ay between adjacent samples is lower than 1/2M,
which represents the Nyquist limit [75]. In a WSN setting, the sam-
pling locations s; represent the positions of nodes actively sampling and
reporting data. Thus, if the sensor nodes are assumed to have a “vir-
tual” sensing range Rs; = Ag/2, guaranteeing the fulfillment of both
the above mentioned conditions requires providing 1-coverage of the
segment [0,1]. Indeed, as shown in figure and discussed in [205],
if 1-coverage is guaranteed with sensing range R, = A/2, then the
maximal gap between a node and its closest neighbors is 2R, = A,.

In the 2-dimensional case, the geometry of the problem is more com-
plex. However, as detailed in appendix [A] it is still possible to bound
the condition number of the matrix 7' by providing 1-coverage of the
region of interest. Assuming the sensor field f to have equal band-
width in both the x and y directions, the reconstructing polynomial
p to look for has order M in both directions. The formulation of the
least square problem is still valid, provided the sampling locations
s; = (x;,y;) belong to the unit square [0, 1]x[0, 1], and the weights w;

4 The condition number of a matrix A is defined as the ratio between the norm of the matrix

and the norm of its inverse, i.e., ¢(A) = Hzl“léll‘\l' For the computation of the condition number,

usually the Ly norm is used.

® For a given value of M, the condition number of the matrix T is smallest (= 1) when the
sampling geometry is a uniform grid. Thus, to improve the quality of the reconstruction, the
sampling points should be as uniformly spaced as possible.
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are set as shown in appendix [Al In this setting, the coefficients of the
reconstruction polynomial can still be computed by solving system [4.2]
where T and b are a (2M +1)% x (2M +1)? square matrix and a vector
with (2M + 1)? entries, respectively. For the matrix T to be invertible,
the number of collected samples r must be at least (2M + 1)?. This
condition is necessary, but not sufficient, to guarantee the invertibility
of T. If the sampling locations s;,j = 1,...,r provide l-coverage of
the square [0, 1] x [0, 1] with Ry = A;/2 and Ay < (n2/(4nM), then T
is invertible and its condition number is bounded (by a known value).

Rs R.s-‘, Rs
—a *—— —o o o ® — — o ®
m n, ny n ;s BN Ry hy 1y, n, ny,
>2R - =2R;

Figure 4.2.: Example of sensor nodes deployment in the 1-dimensional case. If the
nodes share the same value of the sensing range R, and the deployment
area is l-covered, then the maximal distance between a node and its
farthest active neighbors is 2R;.

Summarizing the considerations reported above, sampling geometries
that provide 1-coverage of the Rol also allow for an efficient and robust
execution of the ACT. The value of the “virtual” sensing range R
of the nodes n; located at positions s;,7 = 1,...,r, depends on the
bandwidth of the sensor field of interest and the extension of the Rol.
If the Rol is the unitary segment, then Ry = A,/2, with Ay < 1/2M
and the number of collected nodes r is at least 2M + 1. If the nodes
are deployed over the unit square, then Ry = A;/2, Ay < In2/(47M),
and r > (2M + 1)? [75]. An appropriate scaling allows to apply these
results also to segments or squares of arbitrary dimensions [75,(181].

In the context of our work, we assume an estimation of the value of
the spatial bandwidth of the signal, and, thus, of Ay, to be known.
Alternatively, A, represents the maximal achievable spatial resolution.
In this case, the multilevel version of the ACT [75,/169] can come into
play to provide a “best-effort” signal reconstruction starting from the
available samples. In either case, the problem of providing for appropri-
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ate sampling geometries can clearly be restated as a coverage problem.
Thus, to design our sensor selection strategy for field reconstruction
applications we draw upon existing work on coverage preserving al-
gorithms. In particular, we resort to the CCP protocol by Xing et
al. [205], already cited in section [£.2.2] and investigate its adaptabil-
ity to our application scenario. This choice is motivated by the fact
that CCP outperforms other state-of-the-art coverage protocols both
in terms of communication overhead and of number of nodes that need
to be active to provide for the desired level of coverage [205]. There-
fore, CCP appears as one of the most efficient available protocols to
generate coverage preserving sampling geometries in WSNs, and, thus,
constitutes an ideal starting point for our investigations. In the fol-
lowing section [4.4], we provide a more detailed description of the main
features of CCP and discuss some of its limitations.

4.4. The Coverage Configuration Protocol and its
Use in Field Reconstruction Applications

Nodes running CCP [205] are assumed to wake up periodically and
advertise their presence using HELLO messages. After wake up, a node
enters (and stays for a time 7;) in the LISTEN phase, during which
it collects information about the presence, position and state of its
neighbors by listening to their HELLO messages. Some of the neighbors
are likely to have been selected for sensing before and therefore to be in
ACTIVE state. These nodes must advertise their activity by sending
HELLO messages with high enough frequency. After completing the
LISTEN phase, the node computes if its sensing area (i.e., the discus
centered at the node and having radius Ry) is already covered by active
neighbors. If yes, the node can go back to sleep. Otherwise, it enters a
JOIN phase in which it persists at most until a timer 7} expires. The
node decides to enter the ACTIVE state if none of its neighbors has
advertised itself as active before T} expires or if its sensing area is not
covered by its active neighbors. If, on the contrary, these neighbors
are found to be able to cover the sensing area of the node, it can go
back to sleep. While in ACTIVE state, nodes continuously collect
messages from their neighbors and accordingly reconsider their state.
Possibly, they can decide to enter the WITHDRAW state if they realize
that coverage is guaranteed also without their contribution. Before
abandoning the ACTIVE state, however, nodes wait for a timer 7T, to
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expire.

A crucial factor influencing the practical implementation and per-
formance of CCP is the choice of adequate values for the timers T},
and Tyithdraw- In [205], the authors suggest to randomize the values of
these timers to prevent collisions among nodes concurrently deciding
about joining or withdrawing the set of active nodes. Using this ran-
dom strategy, the values of the join and withdraw timers T}y, (7) and

Twithdraw(1) of a node n; are drawn at random from a uniform distribu-

tion between 0 and T;75F or T,74%0, ., respectively. T700" and TUHT,
represent the maximal values allowed for the join and withdraw timers.
In [205] it is suggested to set the values of T4 and T4, according

join withdraw
to the network density. In particular, in denser networks nodes should

be given more time to collect ACTIVE or WITHDRAW messages from
their (crowded) neighborhoods and, thus, the values of the TTf and

e ey timers should be accordingly increased. The authors of [205]
further suggest that the expiration time of the join and withdraw timers
should be ideally linked to the “utility” of a node for the sensing task.
In particular, nodes covering more uncovered area should be assigned
shorter join timers. However, the definition of proper heuristics to rank
the relevance of a sensor has not been further investigated. In the next
section we propose different strategies to provide for this ranking
and, thus, allow for a more effective determination of the values of the

timers Tjoin () and Tiyitnaraw(?) of a node n;.

Properly setting the values of the timers T}y, (7) and Tiyitndraw(2) be-
comes an even more critical issue when the CCP is used in field recon-
struction scenarios, instead of for the surveillance and target tracking
applications it was originally designed for. Indeed, CCP aims at pro-
viding continuous and complete coverage of the Rol over time. To this
end, inactive nodes wake up frequently to listen to messages from their
neighbors, which may become active or inactive at any instant. Since
nodes communicate their joining of or withdrawing from the set of ac-
tive nodes through a broadcast message, the communication overhead
of CCP grows significantly with the number of state changes. In partic-
ular, in its very initial phase CCP may activate a number of nodes that
is significantly higher than strictly necessary for providing coverage.
The protocol can then fix this problem by making nodes turn inactive
at a later stage and thus amortize over time this initial overhead. But
if CCP is used to provide a sampling geometry for field reconstruction,
the relative cost of activating a high number of nodes in its initial stage
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becomes far more significant. Indeed, in typical field reconstruction
scenarios the network does not operate continuously, but in a round-
based fashion. All sensor nodes wake up at predefined intervals A,
perform sampling and, possibly, data communication and go back to
sleep. Therefore, although the usage of CCP may still be useful, its cost
will be dominated by the number of nodes that decide to become active
and then withdraw in the very first phase of the execution of the pro-
tocol. Additionally, each time a node receives a JOIN or WITHDRAW
message from a neighbor, it must perform computation to establish
whether its sensing area is covered by its currently active neighbors or
not. If nodes change their state frequently (for instance due to instable
links and thus missing notifications) the computational overhead of the
protocol rises quickly. Furthermore, if the WITHDRAW notification
of a node n; is lost, part of the network may remain uncovered, since
neighbors of the node n; may still count on its coverage and erroneously
decide to withdraw. Thus, limiting the number of potential withdraws
implicitly enhances the reliability of the protocol.

These considerations show that, even if CCP can be used as a sen-
sor selection strategy in field reconstruction applications, some of its
features may become drawbacks to take into account. In particular,
in order to reduce the protocol overhead, it is crucial to minimize the
number of nodes becoming active during the inital phase of its exe-
cution. To this end, it is particularly important to properly set the
values of the timers Tjyn (7). In the next section , we introduce new
heuristics to properly set the values of these timers. In section 4.6, we
show that our approach allows to reduce the control overhead of CCP
with respect to the random strategy suggested in [205] by more than
10%, on average.

4.5. Adaptive Sensor Ranking

The considerations reported in the previous section show that, for the
purpose of field reconstruction, the sampling pattern offered by a WSN
should provide for 1-coverage of the Rol, with an appropriate, data-
dependent value of the sensing range R;. An appropriate sensor se-
lection strategy should therefore aim at providing coverage while mini-
mizing the total number of active nodes. Thus, CCP, or other coverage
preserving protocols, can be used in this context to provide for good
sampling geometries. However, as we also pointed out in section [4.4]
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the communication and computational overhead of such protocols is all
but negligible, especially if used to generate a short-lived sampling con-
figuration. Using CCP as our reference coverage preserving protocol,
we now suggest a set of heuristics that allow to improve its perfor-
mance. In particular, we propose different strategies to rank the utility
of a node n; for the sensing task and, thus, to determine the value of its
activation timer Tjy;, (7). Our ranking method aims at extending the
CCP protocol presented in [205] and, as we show in section , allow
to improve its performance.

4.5.1. Sensor Ranking Based on Local Densities

As mentioned in [205], the amount of uncovered area a node n; is
able to cover can represent a measure of its relevance to the sensing
task. An estimation of this amount could be well approximated by
the area of the Voronoi cell of the node [9]. For instance, several field
reconstruction algorithms weight the influence of single samples on the
global reconstruction using the area of the correspondent Voronoi cells
[75,/126]. However, distributed computation of the Voronoi cells in a
sensor network requires knowledge of the neighborhood of a node over
several hops and an overall high messaging and computational overhead
[15]. On the other hand, a centralized computation has well-known
drawbacks in terms of scalability and capacity to adapt to changing
network topology.

As also shown in [75], a crude estimate of the value of the area of
a Voronoi cell is often sufficient to weight the importance of single
samples for the field reconstruction process. In particular, the local
density of the samples can provide for an estimation of the desired
individual weights. 