
Diss. ETH Nr. 18668

Adaptive Sensor Selection Algorithms

for Wireless Sensor Networks

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by
Silvia Santini

Dottore in Ingegneria delle Telecomunicazioni
University of Rome �La Sapienza�

born November 15, 1978
citizen of Italy

accepted on the recommendation of
Prof. Dr. Friedemann Mattern, examiner
Prof. Dr. Wendi Heinzelman, co-examiner

Prof. Dr. Kay Römer, co-examiner

2009

Abstract

A wireless sensor network is a collection of tiny, autonomously powered
devices � commonly called sensor nodes � endowed with sensing, com-
munication, and processing capabilities. Once deployed over a region
of interest, sensor nodes can collect �ne-grained measurements of phys-
ical variables, like the temperature of a glacier or the concentration of
a pollutant. To report their readings to one or more data sinks, sensor
nodes communicate using their integrated radio-transceivers and build
ad-hoc � possibly multi-hop � relay networks. Thanks to the potentially
large number of nodes they are composed of and their ability to oper-
ate unattended for long periods of time, wireless sensor networks allow
monitoring the environment at an unprecedented spatial and temporal
scale.

However, enabling a wireless sensor network to reliably report large
quantities of data over long periods of time is still a challenging goal.
In particular, since the operation of the radio is known to be the major
factor of energy consumption on sensor nodes, limiting communication
is crucial for increasing the lifetime of the network. On the other hand,
meeting the requirements of wireless sensor network applications may
require sensor nodes to collect and report large amounts of sensor read-
ings. The e�cient operation of a wireless sensor network thus requires
careful scheduling of node participation in sensing and communication.
Beyond the role that medium access control and routing protocols may
play in this context, so-called sensor selection algorithms can provide
for signi�cant communication savings by identifying subsets of the de-
ployed nodes that are su�cient to comply with the application require-
ments.

This thesis argues for endowing sensor selection algorithms with the
ability to dynamically adapt to the observed data and to the local topol-
ogy of the network. The presented work o�ers novel sensor selection
strategies that can continuously tune their parameters in a distributed
fashion, thereby relying on no or only little a priori knowledge about
the phenomena of interest. In particular, the thesis �rst addresses the

iv Abstract

sensor selection problem in the time domain by considering scenarios
in which sensor nodes autonomously adapt their data reporting rate.
To this end, nodes report their sensor readings along with a forecast-
ing model, which the sink can in turn use to estimate future readings.
Nodes can thus suppress data communication as long as the estimation
error at the sink does not grow beyond a pre-speci�ed, application-
dependent threshold. Since the choice of a proper forecasting model
is instrumental in allowing for high communication savings, this the-
sis proposes a generic and lightweight procedure to perform adaptive
model selection on sensor nodes. The proposed algorithm concurrently
maintains and evaluates the performance of a set of models on the nodes
and lets them report to the sink the model with the lowest expected
communication overhead. Second, the thesis addresses the sensor se-
lection problem in the spatial domain, in particular for applications
requiring spatial coverage of a region of interest. It proposes a novel
sensor ranking strategy to e�ciently schedule the activation of sensor
nodes across the deployment region. Information about the local net-
work topology is used to determine the actual relevance of a node for
the current sensing task. The resulting ranking of the nodes, properly
combined with randomization techniques, is then used to select sub-
sets of nodes whose activation can guarantee compliance with speci�c
application requirements.
The sensor selection strategies proposed in this thesis require little

memory and computational resources, and are thus implementable on
resource-constrained wireless sensor network platforms. Their practical
feasibility is evaluated by means of simulations, experiments on a small-
scale deployment, and in the context of a concrete application scenario,
namely the monitoring of noise pollution levels in urban environments.
The contribution of this thesis is therefore threefold: it describes the

design of novel temporal and spatial sensor selection algorithms; it pro-
vides an implementation of these algorithms on simulators and state-of-
the-art wireless sensor network platforms; and it describes a thorough
performance evaluation based on simulations, real-world experiments,
and a speci�c application scenario. Taken together, these contributions
constitute a step towards enabling long-term environmental monitoring
applications using wireless sensor networks.

Kurzfassung

Ein drahtloses Sensornetz ist ein Verbund kleiner elektronischer Geräte
� sogenannte Sensorknoten �, welche über eine Energiequelle sowie
über Daterfassungs-, Kommunikations- und Rechenfähigkeiten verfü-
gen. Ausgebracht in der Umgebung können Sensorknoten Messun-
gen einer physikalischen Grösse, z.B. der Temperatur eines Gletsch-
ers, durchführen. Um die einzelnen Messergebnisse eines jeden Sen-
sorknotens einzusammeln, bilden diese mittels ihres integrierten Funk-
moduls ein Ad-hoc-Kommunikationsnetz, über welches dann die jew-
eiligen Nachrichten, möglicherweise über mehrere Zwischenstationen,
zu einer bzw. zu mehreren Datensenken verschickt werden. Dank der
grossen Anzahl ausgebrachter Knoten und ihrer Fähigkeit, für lange
Zeit wartungsfrei operieren zu können, ermöglichen Sensornetze eine
detaillierte Vermessung verschiedenster physikalischer Grössen.

Trotz aller technischer Fortschritte stellt der Betrieb eines Sensornet-
zes über einen längeren Zeitraum hinweg jedoch noch immer eine Her-
ausforderung dar. Während eine detaillierte Messung und die zeitnahe
Übermittlung von Daten oft Hauptanforderungen an eine Sensornet-
zanwendung sind, sollte gleichzeitig das Funkmodul als Hauptenergie-
verbraucher möglichst selten verwendet werden. Der e�ziente Betrieb
eines Sensornetzes setzt daher eine sorgfältige Planung der einzelnen
Sensorknotenaktivitäten � d.h. dem Erheben von Messdaten sowie
deren Übermittlung � voraus. In diesem Zusammenhang können so-
genannte Sensor-Selektionsalgorithmen eine wichtige Rolle spielen. In-
dem sie in Abhängigkeit von den jeweiligen Qualitätsanforderungen
der Sensornetzanwendung lediglich eine Untermenge von Sensorknoten
auswählen, welche zu einem gegebenen Zeitpunkt messen bzw. kommu-
nizieren müssen, können sie signi�kante Energieeinsparungen erreichen
und so unabhängig von den eingesetzten Medienzugri�s- und Routing-
Protokollen die Lebensdauer des Sensornetzes merklich verlängern.

Diese Arbeit erweitert bestehende Sensor-Selektionsalgorithmen um
die Fähigkeit, sich an den konkreten Datenverlauf und die lokale Topolo-
gie des Netzes anzupassen und dabei kein � bzw. nur ein Minimum

vi Kurzfassung

an � A-priori-Wissen über das zu beobachtende Phänomen zu nutzen.
Statt dessen werden die Selektionsparameter stetig und in einem verteil-
ten Verfahren angepasst. In einem ersten Schritt wird ein Verfahren
vorgestellt, welches es Sensorknoten erlaubt, ihre Datenübertragungsrate
selbständig an das beobachtete Phänomen anzupassen. Dazu übertra-
gen die Knoten der Datensenke zusätzlich zu den aktuellen Messwerten
ein Vorhersagemodell, welches die Senke ihrerseits für die Abschätzung
zukünftiger Messwerte nutzen kann. Solange die Senke sukzessive Mess-
werte innerhalb gegebener Fehlergrenzen abschätzen kann, können Sen-
sorknoten von einer Übertragung dieser Messwerte absehen. Das vor-
gestellte Verfahren ermöglicht es den Knoten, mehrere Kandidaten für
das zu verwendende Modell gleichzeitig vorzuhalten und in jeder Sit-
uation das jeweils beste Modell dynamisch auszuwählen. In einem
zweiten Schritt betrachtet diese Arbeit die räumliche Auswahl von Sen-
sorknoten in Anwendungen, die einen bestimmten Teilbereich eines Ge-
biets mit ihren Messungen abzudecken versuchen. Dabei wird eine neue
Strategie, welche die Rangordnung von Sensorknoten für eine spezi�s-
che Messaufgabe anhand von Informationen über die lokale Topologie
des Netzes berechnet, präsentiert. Diese Rangordnung, kombiniert mit
passenden Randomisierungsverfahren, erlaubt schliesslich die Auswahl
einer Untermenge von Sensorknoten, deren Aktivierung zur Erfüllung
der Anwendungsanforderungen ausreicht.
Die in dieser Arbeit vorgeschlagenen Sensor-Selektionsalgorithmen

beanspruchen nur wenig Rechenleistung und Speicher, was ihren Ein-
satz auch auf äusserst ressourcenbeschränkten Sensorknoten ermöglicht.
Der praktische Einsatz der Algorithmen wurde sowohl mit Hilfe um-
fangreicher Simulationen als auch durch praktische Experimente mit
prototypischer Hardware und im Rahmen eines spezi�schen Anwen-
dungszenarios, der Überwachung von Umgebungslärm, untersucht.
Die vorliegende Arbeit liefert somit drei Hauptbeiträge: Sie schlägt

neue Algorithmen für die zeitliche und räumliche Sensorselektion vor;
sie beschreibt eine Implementierung dieser Algorithmen auf Simula-
toren und auf aktuellen Sensorknoten; und sie bietet eine detaillierte
Leistungsanalyse der Algorithmen basierend auf Simulationen, Experi-
menten und der Diskussion eines konkreten Anwendungszenarios. Zu-
sammengenommen stellen diese Beiträge einen wichtigen Schritt zur
Realisierung langlebiger Anwendungen zum Überwachen der Umwelt
mittels drahtloser Sensornetze dar.

Riassunto

Una rete di sensori è un sistema costituito da minuscoli dispositivi,
detti nodi sensore, che vengono tipicamente alimentati a batterie e
dispongono di un processore, una o più memorie dati, sensori di vario
tipo nonché un trasmettitore. Una volta distribuiti su di un area che
si vuole monitorare, i nodi sensore acquisiscono campioni di variabili
�siche, come la temperatura di un ghiacciaio o la concentrazione di
un agente inquinante. Per comunicare i dati raccolti ad una stazione
base i nodi sensore formano una rete ad-hoc, e generalmente multi-
hop, utilizzano i loro trasmettitori. Una rete di sensori può operare
autonomamente per lunghi periodi e supportare un elevato numero di
nodi, permettendo cosi di acquisire misure ad elevata granularità, sia
spaziale che temporale, di una o più variabili �siche.

Rendere una rete di sensori capace di far pervenire alla stazione base
grandi quantità di dati durante lunghi periodi di tempo è tuttavia an-
cora un problema aperto. In particolare, l'utilizzo del trasmettitore
comporta un elevato dispendio di energia per i nodi sensore e limi-
tarne la frequenza di attivazione è dunque necessario per prolungare
la durata operativa della rete. Allo stesso tempo, molte delle appli-
cazioni nel contesto delle quali le reti di sensori trovano il loro utilizzo
richiedono frequenti comunicazioni con la stazione base per permettere
ai nodi sensore di inviare regolarmente i dati acquisiti. Una attenta pi-
ani�cazione delle attivazioni dei singoli nodi è quindi necessaria al �ne
di operare in modo e�ciente una rete di sensori. In questo contesto,
i cosiddetti algoritmi di selezione dei sensori permettono di limitare
il numero di comunicazioni totali con la stazione base individuando
adeguati sottoinsiemi di nodi la cui attivazione permette di soddisfare
i requisiti dell'applicazione. Tali algoritmi, tuttavia, presuppongono
spesso la disponibilità di informazioni sulle caratteristiche dei fenomeni
che si vogliono osservare.

Questa tesi propone quindi di eliminare, o ridurre, la necessità di tale
conoscenza pregressa dotando gli algoritmi di selezione dei sensori della
capacità di adattarsi continuamente alla dinamica del segnale misurato

viii Riassunto

e alla topologia della rete. La tesi si rivolge in un primo tempo al prob-
lema della selezione dei sensori nel dominio del tempo considerando
algoritmi che permettono ai nodi sensori di stabilire autonomamente la
frequenza con cui comunicano i loro dati alla stazione base. A questo
scopo i nodi inviano, insieme al dato misurato, un modello di predi-
zione che permette di stimare il valore dei prossimi campioni. La co-
municazione con la stazione base può quindi essere sospesa �n quando
l'errore di stima, cioè la di�erenza tra il valore e�ettivamente misurato
e quello stimato dal modello, non supera una predeterminata soglia
di tolleranza. Considerando che una adeguata scelta del modello di
predizione è cruciale per massimizzare i risparmi in termini di comuni-
cazione, questa tesi propone una procedura generica per e�ettuare la
scelta di tale modello in modo adattivo e direttamente sui nodi sensori.
L'algoritmo proposto mantiene un set di modelli e ne valuta continua-
mente le prestazioni permettendo così al nodo di selezionare, e comuni-
care alla stazione base, solo il modello in grado di garantire il maggior
risparmio in termini di comunicazione. La tesi considera poi anche il
problema della selezione dei sensori nel dominio dello spazio ed in par-
ticolare nel contesto di applicazioni che richiedono copertura spaziale
di una speci�ca regione. La tesi introduce quindi una nuova strategia
di selezione dei nodi in grado di garantire, entro prede�niti limiti di er-
rore, la copertura della regione da monitorare. A questo scopo vengono
utilizzate informazioni sulla topologia della rete ed applicate adeguate
tecniche di randomizzazione.
Gli algoritmi di selezione dei sensori presentate in questa tesi richiedono

una quantità di memoria dati e capacità di calcolo compatibili con
le più comuni piattaforme sperimentali attualmente disponibili. Le
prestazioni degli algoritmi presentati sono inoltre dimostrate da esper-
imenti su simulatore e piccole reti di sensori nonché dall'analisi di uno
speci�co scenario applicativo: il monitoraggio del rumore ambientale.
I risultati di questa tesi possono essere riassunti nella somma di tre

contributi. Il primo consiste nella progettazione di nuove tecniche di
selezione dei sensori. Il secondo nella implementazione di tali tecniche
su simulatori e su nodi sensori. Ed il terzo nella valutazione delle
prestazioni degli algoritmi tramite simulazioni ed esperimenti, nonché
l'accurata analisi di uno speci�co scenario applicativo. Considerati nel
loro insieme, questi contributi costituiscono un passo verso la realiz-
zazione di reti di sensori capaci di monitorare fenomeni ambientali per
lunghi periodi di tempo e senza alcun intervento umano.

Contents

Abstract iii

Kurzfassung v

Riassunto vii

1. Introduction 1
1.1. The Sensor Selection Problem 4
1.2. Temporal Sensor Selection 7
1.3. Spatial Sensor Selection 9
1.4. Summary of Contributions 10
1.5. Outline . 12

2. Background 13
2.1. Wireless Sensor Networks 13
2.2. Hardware and Software Platforms 15

2.2.1. The Tmote Sky Sensor Node 15
2.2.2. The TinyOS Embedded Operating System 18
2.2.3. The Matlab and Castalia Simulators 19

2.3. De�nitions, Notation, and Assumptions 21
2.3.1. Network and Communication Model 21
2.3.2. Region of Interest (RoI) 21
2.3.3. Sampling Rates and Sensing Model 22
2.3.4. Synchronization and Localization 23
2.3.5. Routing . 23

3. Temporal Sensor Selection 25
3.1. The Dual Prediction Scheme (DPS) 27

3.1.1. Prediction Models and Parameter Estimation . . 29
3.2. Related Work . 32
3.3. An Implementation of the DPS Based on the LMS Adap-

tive Filter . 35
3.3.1. Adaptive Filters and the LMS Algorithm 35

x Contents

3.3.2. Implementation of the DPS Using the LMS . . . 39
3.3.3. Experimental Results 43

3.4. Adaptive Model Selection (AMS) 45
3.4.1. Performance Estimates 47
3.4.2. Racing Mechanism 49
3.4.3. AMS Algorithm 50

3.5. Experimental Evaluation of the AMS 51
3.5.1. Experimental Setup 53
3.5.2. Performance of the AR-AMS 57
3.5.3. Performance of the ES-AMS 61

3.6. Evaluation of the AMS on a Real WSN Deployment . . 63
3.7. Summary . 69

4. Spatial Sensor Selection 71
4.1. Field Reconstruction in WSNs 72
4.2. Related Work . 74

4.2.1. Field Reconstruction 75
4.2.2. Coverage Preserving Algorithms 77
4.2.3. Random Sampling 80
4.2.4. Utility-Based Sensor Selection 82
4.2.5. Model-Based Sensor Selection 83
4.2.6. Computation of Aggregates 84

4.3. Irregular Sampling in WSNs and the ACT Reconstruc-
tion Algorithm . 85

4.4. The Coverage Con�guration Protocol and its Use in Field
Reconstruction Applications 89

4.5. Adaptive Sensor Ranking 91
4.5.1. Sensor Ranking Based on Local Densities 92
4.5.2. Sensor Ranking Using Inverse Distance Weighting 94
4.5.3. Inverse Distance Weighting and Random Sampling 96

4.6. Experimental Results 97
4.6.1. Experimental Setup 97
4.6.2. 1-Dimensional Case 102
4.6.3. 2-Dimensional Case 109

4.7. Adaptive Random Sensor Selection (ARS) 111
4.7.1. Random Sensor Selection 112
4.7.2. Coverage by Randomly Deployed Sensor Nodes . 114
4.7.3. Determination of the Probability of Activation . 115
4.7.4. Experimental Results 117

Contents xi

4.8. Integration of Sensor Selection and Routing 119
4.9. Summary . 122

5. Environmental Noise Monitoring � An Application Sce-
nario 125
5.1. Motivation and Background 126
5.2. Related Work . 130
5.3. Application Requirements and Applicability of Sensor

Selection . 131
5.3.1. Computation of Noise Indicators 132
5.3.2. Application Requirements 133
5.3.3. Applicability of Sensor Selection 137

5.4. Capturing Noise Levels Using Wireless Sensor Nodes . . 138
5.4.1. The SBT80 Sensor Board 139
5.4.2. The Tmote invent 140
5.4.3. Tmote Sky and Noise Level Meter 147

5.5. Capturing Noise Levels Using Mobile Phones 148
5.5.1. Experimental Setup 150
5.5.2. Experimental Results 151

5.6. Summary . 159

6. Tools and Libraries 161
6.1. TinyLAB . 161

6.1.1. Writing TinyLAB Applications 162
6.2. A TinyOS Library for Adaptive Model Selection 164

7. Conclusions and Outlook 171
7.1. Contributions . 171
7.2. Limitations and Future Work 172

7.2.1. Adaptive Model Selection 173
7.2.2. Sensor Ranking 174

7.3. Concluding Remarks 175

Appendices 177

A. The ACT Algorithm 179
A.1. 1-Dimensional Case . 180
A.2. 2-Dimensional Case . 182
A.3. Invertibility and Condition Number of the Matrix T . . 183
A.4. Estimation of M . 185

xii Contents

A.5. Remarks . 186

B. The Collection Tree Protocol (CTP) 189

Bibliography 193

Curriculum Vitae Silvia Santini 219

1. Introduction

Wireless sensor networks (WSNs) are systems of tiny, battery-powered
computers endowed with sensing and wireless communication capabil-
ities, which are commonly known as sensor nodes [2, 52]. Typical ap-
plication scenarios for WSNs envision a large number of sensor nodes
being distributed at various locations over a region of interest to cap-
ture data about some physical quantity, like temperature, atmospheric
pressure, or a pollutant concentration [10, 30, 185, 186]. Sensor read-
ings are then processed locally or reported to a central server and used
to achieve application speci�c goals. In a typical environmental moni-
toring scenario, for instance, the application goal consists in capturing
the temporal and spatial development of the observed physical quan-
tity (hereinafter also referred to as signal or sensor �eld) within some
user-de�ned accuracy. To report their readings to one or more data
collectors, sensor nodes communicate through their integrated radio
transceivers and collaboratively build an ad-hoc, possibly multi-hop
relay network.

Since the wireless channel is an inherently unreliable medium, com-
munication among nodes and, thus, data reporting, may fail or su�er
high and variable latencies. Also, since the wireless channel is a shared
resource, the data throughput of a single sensor node typically decreases
as the density of communicating nodes increases [77]. This makes it
desirable to limit communication among nodes so as to increase the
overall reliability and data throughput of the network. Furthermore,
radio communication is usually the major cause for energy consump-
tion in wireless sensor networks [104, 154, 211]. Consequently, limiting
radio usage is the most e�ective way to increase network lifetime and,
indeed, saving communication is the prime concern for the design of
basic services and applications in WSNs.

Following this major optimization guideline that requires limiting ra-
dio usage in WSNs, the research community proposed a variety of pro-
tocols for achieving e�cient and reliable sensor data gathering. These
include several power-aware medium access protocols and reliable rout-

2 Chapter 1. Introduction

ing schemes [31, 68, 104, 196]. Although research questions on these is-
sues are still far from settled, WSN prototypes able to guarantee reliable
data collection are now available [31,68].

Assuming a WSN is able to reliably deliver data packets, a question
that remains open is whether all nodes should actually participate in
a sensing task or not. In a target detection and tracking application,
for instance, one could try to select a subset of the nodes to guarantee
spatial coverage and put the rest to sleep so as to save energy. Upon
detection of a target, activating the sleeping nodes may then guarantee
better tracking performance, although at the cost of increased overall
energy consumption [205,212]. In other scenarios, environmental scien-
tists may be interested in observing the behavior of a sensor �eld over
large areas [37,190]. Letting all the available sensor nodes continuously
collect data may rapidly deplete network resources. With a careful co-
ordination of node activations, however, one can signi�cantly improve
network lifetime.

Algorithms dealing with the scheduling of the sensing activity of sen-
sor nodes are usually referred to as sensor selection algorithms, since
they select which nodes should participate in the sensing task [211].
Trading o� energy consumption (due to sensing and communication)
with data granularity, sensor selection algorithms allow the optimiza-
tion of resource usage within a WSN and, consequently, the improve-
ment of its lifetime and reliability. Sensor selection is usually performed
at the application layer, since the question about which nodes should
actively sense and report their observations depends on the speci�c ap-
plication requirements. For instance, sensor selection strategies must
take into account the expected lifetime of the network and the desired
level of data granularity.

In the context of this work, we mainly focus on �eld estimation appli-
cations in which the ultimate goal of the network is the reconstruction,
at a central server, of the temporal and spatial development of a spe-
ci�c physical phenomenon. The reconstruction of a sensor �eld from its
scattered samples can be performed using standard signal processing
techniques [56,126,171]. To ensure a reliable reconstruction, however, a
su�ciently large number of nodes must sample the sensor �eld at su�-
ciently close time intervals, i.e., the spatial and temporal sampling rates
of the network must be su�ciently high. The default values of these
rates are often �xed a priori on the basis of conservative estimates of
the data accuracy requirements of the application in combination with

3

other constraints, like the total number of available nodes and the area
of the region to cover. However, the values of the sampling rates ac-
tually necessary to comply with the application quality requirements
may change over time and across di�erent sectors of the network, since
they depend on the actual dynamics of the observed signal and even on
the physical topology of the network. In particular, it may be possible
to, at least temporarily, reduce these rates without a�ecting the over-
all data quality. Clearly, reducing the spatial sampling rate allows for
energy savings since only a subset of the nodes will be active in each
sampling interval. Similarly, reducing the temporal sampling rate pre-
serves resources since the nodes are required to sense and communicate
data less frequently. By determining which sensors should participate
in a given sensing task, sensor selection algorithms control the spatial
and temporal data sampling and reporting rates of the network. In
the remainder of this work, we will refer to spatial and temporal sen-
sor selection strategies to indicate algorithms operating on either the
spatial or the temporal sampling and reporting rate of the network,
respectively.

In this thesis, we describe the design, development and testing of
practical temporal and spatial sensor selection strategies for distributed,
wireless sensing systems. In particular, we focus on typical environmen-
tal monitoring scenarios requiring long-term data collection. Drawing
and improving upon existing work, we provide practical strategies that
are able to limit the overall energy consumption of the network while
guaranteeing the accuracy of the reconstructed data. Our approaches
provide signi�cant reductions in data communication, even if no or only
little a priori knowledge of the signals of interest is available. Further-
more, the little computational and memory resources our algorithms
draw upon, makes them executable on state-of-the-art WSN prototyp-
ing platforms. To demonstrate the actual feasibility of the designed
algorithms and to assess their performance, we report experimental re-
sults gathered through extensive simulation studies and a small-scale
WSN deployment.

In the following section 1.1, we provide a closer view of the sensor
selection problem and the challenges related to the design and imple-
mentation of algorithms seeking its solution. We then go into the details
of temporal and spatial sensor selection strategies in sections 1.2 and
1.3, respectively. Finally, we summarize the contributions of this thesis
in section 1.4 and provide an overview of its content in section 1.5.

4 Chapter 1. Introduction

1.1. The Sensor Selection Problem

The typical task of a WSN consists in gathering measurements of a
sensor �eld over a region of interest (RoI) for a possibly long period of
time. The spatial and temporal frequency of the measurements may
vary signi�cantly depending on the speci�c application scenario. How-
ever, irrespectively of the application, limiting radio usage is crucial in
preserving the scarce energy resources of sensor nodes. This requires
us to not only constrain the number of data packets exchanged among
nodes, but also to reduce the amount of time during which the ra-
dio circuitry is powered on. Indeed, keeping the radio in idle listening
mode may be nearly as expensive, in terms of energy expenditures,
as using it for sending and receiving data [154]. Additionally, some
applications may require the use of energy-hungry sensors, whose acti-
vation can drain a non-negligible amount of current. In general, sensor
nodes frequently participating in sensing and communication activities
may quickly deplete their energy supply and thus become unavailable.
This progressive failing of single sensor nodes may, in turn, rapidly
compromise the ability of the network to comply with the application
requirements and, in fact, make it unusable. These considerations show
that a careful scheduling of the participation of sensor nodes in sensing
and communication is instrumental in ensuring reliable and long-lasting
operations of a WSN.

The problem of selecting, at the desired time instants, a subset of
sensors able to comply with the quality requirements of the application
while limiting the overall network resource consumption, is known in
the literature as the sensor selection or sensor tasking problem [211]
and can be seen as a particular instance of the sensor role assignment
problem [61]. In this context, sensor selection algorithms or strategies,
are procedures able to select, according to some trade-o�, the above
mentioned subsets. In the following sections 1.2 and 1.3, we detail,
for speci�c application scenarios, how sensor selection algorithms can
operate to optimize the temporal and spatial activation intervals of the
nodes in a WSN. Before going into further details, however, we would
like to point out here the major challenges and design guidelines related
to the de�nition of sensor selection strategies.

First, sensor selection can be performed using centralized or dis-
tributed approaches. The work presented in [46], for instance, proposes
a centralized approach to determine which nodes hold data whose in-

1.1. The Sensor Selection Problem 5

formation content is likely to maximize the probability of a user query
to be answered correctly. This approach requires comprehensive infor-
mation about the network (e.g., physical and logical topology), or an
estimation thereof, to be known at a central server. If the properties
of the network change over time, as it is actually common in WSN
settings, the information at the server may rapidly become stale and
thus potentially hamper the performance of sensor selection algorithms
that rely on this information. On the other hand, providing the server
with frequent updates on network status may cause a high, and clearly
undesirable, communication overhead. Approaches performing sensor
selection based on centralized decisions [46,69,120,203] may thus fail to
perform e�ciently in WSNs settings, especially as the number of nodes
within the network and its physical area increase. On the other hand,
distributed approaches typically o�er only approximate or probabilistic
solutions to the sensor selection problem [14, 152, 205]. However, they
usually also provide for signi�cantly lower overhead and higher adaptiv-
ity to changing network and environmental conditions. In other words,
�to achieve scalability and autonomy, sensor tasking and control have to
be carried out in a distributed fashion, largely using only local informa-
tion available to each sensor� [211, page 135]. In our approach to sensor
selection in WSNs, we sought distributed algorithms that let individual
nodes autonomously decide wether or not to participate in the sensing
task. In particular, we show that it is possible to achieve signi�cant
savings in terms of energy spent for data collection and communication
by making this decision depend on the actual dynamics of the observed
signals and, possibly, the local topology of the network [116,163,166].

Data-dependency is indeed a further factor in�uencing the design and
performance of sensor selection strategies. To illustrate this point we
report an example, described in [211, Section 5.3], concerning the lo-
calization of a stationary source using a set of sensor nodes deployed in
a square region. One of the nodes, elected as the leader, collects sensor
measurements and selectively interrogates its peers for their data to
bring the uncertainty on the estimate of the position of the source un-
der a desired threshold. To this end, it �rst applies a nearest neighbor
(NN) strategy, that makes it trigger data reporting from the nearest
node whose measurements have not yet been included. This simple se-
lection strategy takes into account the physical topology of the network
but does not adapt to the actual information content of the collected
data. An alternative strategy to solve this source localization problem

6 Chapter 1. Introduction

consists of performing sensor selection using a more elaborate metric.
For instance, relying on the Mahalanobis distance [211, page 150] al-
lows the algorithm to maximize the information gain obtainable by the
incorporation of a new data sample. Using this metric, the choice of the
nth sensor required to deliver its reading depends on both its position
and the actual measurements delivered by the previously interrogated
n − 1 nodes. In this context, the sensor selection process becomes
data-dependent. In this thesis, we show that the ability to adapt to
the actual signal dynamics may be instrumental in improving the per-
formance of sensor selection algorithms working in the �eld estimation
scenarios we are interested in.

The availability of reliable models to represent the physical phe-
nomena the network is set up to observe may also open several pos-
sibilities for the design and implementation of sensor selection algo-
rithms [46, 76, 144]. In particular, exploiting the a priori information
made available by the models may make the selection process more
e�cient. For instance, knowing that the phenomenon of interest can
be well represented in a certain function space enables the adoption of
techniques seeking for the computation of the coe�cients of the signal
in this space instead of a complete data collection [76]. In many practi-
cal situations, however, there may be little or no a priori information on
the signals of interests [62]. In these scenarios, model-based approaches
loose their appeal, since their performance may degrade signi�cantly as
the actual characteristics of the signal di�er from those of the assumed
model. In the context of our work, we are mainly interested in en-
vironmental monitoring scenarios that are exploratory in nature and
for which usually limited or no a priori information is available [62].
Therefore, we avoid the use of speci�c models to represent the signals
of interest.

Another factor that may in�uence the sensor selection process is the
interplay with protocols working at di�erent levels of abstraction [151,
183, 211]. In particular, routing protocols rely on a subset of nodes to
be active to relay sensor data to a central server. Using the same subset
of nodes to gather sensor measurements may provide for energy savings
since it would not require the activation of additional sensors. On the
other hand, preserving nodes involved in sensing activities to be used
also as data routers may help in balancing the energy consumption
across nodes. In the context of spatial sensor selection, we explicitly
investigate the potential synergies between sensor selection and routing

1.2. Temporal Sensor Selection 7

as a means to increase network lifetime.
Some authors also investigated the possibility of concurrently opti-

mizing both the temporal and spatial sampling rate of a WSN and thus
developed spatio-temporal sensor selection strategies [46,175]. Indeed,
we will show that our temporal sensor selection strategy, presented in
detail in chapter 3, implicity performs also a spatial sensor selection.
Furthermore, our temporal sensor selection strategy can be easily ex-
tended to exploit spatial dependencies among the measurements and
thus provide for further communication savings. Our approach to the
spatial sensor selection problem, whose details are reported in chapter
4, assumes the network is required to report data at regular time inter-
vals and thus will not focus on the issue of determining the temporal
sampling rate of the network.
In the following two sections, we provide more speci�c considerations

in order to clarify our approach to the sensor selection problem in both
the temporal and spatial domains.

1.2. Temporal Sensor Selection

In typical WSN deployments, sensor nodes are required to sample a
certain physical quantity at regular time intervals and report these
readings to a central data collector [19, 30, 71, 121, 139, 185]. In a �re
detection scenario, for instance, monitoring the risk of �re breakouts
may require air temperature readings to be periodically collected at
several locations over a remote forest region. Similarly, the availabil-
ity of �ne-grained, real-time data about the water temperature below
the sea surface may help �shermen in improving the e�ciency of their
�shing activities [199].
In these scenarios, sensor nodes assumed to collect sensor readings

using a common and �xed sampling interval ∆T , and required to re-
port them to the sink directly upon collection. The network can thus
persist in sleep state1, wake up only every ∆T seconds to provide for
sampling and data reporting and immediately go back to sleep. This
duty-cycled operation mode, to which we also refer to as the default
monitoring scheme, clearly allows to save energy, since the network
is not required to be active continuously. However, letting all nodes
report their readings at each sampling round may still cause a rapid

1 In the common WSN jargon, a network is in sleep state when its nodes have their circuitry
powered o� and can thus neither communicate nor perform sensing or computation.

8 Chapter 1. Introduction

depletion of their batteries.

Since subsequent readings collected by the same sensor are likely to
be correlated, it may be possible to reduce the data reporting rate with-
out a�ecting the overall accuracy of the collected data. In this context,
temporal sensor selection strategies may help in determining the ac-
tually necessary reporting rate. In particular, a widely investigated
approach to reduce communication in such continuous monitoring sce-
narios is based on time series forecasting [46, 97, 114, 116, 122, 134, 144,
166, 194, 207]. These temporal sensor selection strategies still require
the nodes to collect data every ∆T , but allow to reduce the actual num-
ber of samples that must reach the central server in order to guarantee
the collected data to lie within a given error threshold. To this end,
a sensor node can locally compute an adequate prediction model that
can provide for reliable estimates of future sensor readings. This model,
along with the corresponding parameters, can then be reported to the
sink, which will use it in the successive sampling rounds to compute
estimates of the data collected at the node. Since the node can locally
monitor the error between the estimates and the actual sensor readings,
it can suppress communication with the sink as long as this error does
not exceed the pre-speci�ed threshold. In the absence of noti�cations
from the node, the sink can thus assume that the estimate computed
using the shared prediction model is within the allowed error bound.

This temporal sensor selection strategy, named dual prediction scheme
or DPS [166], may provide for signi�cant communication and energy
savings if adequate prediction models are used [46,97,114,144,166,194,
207]. However, many prediction techniques, like, e.g., Kalman �lter-
ing [97,101], rely on the speci�cation of parameters whose computation
may be computationally expensive or require a priori knowledge of the
signals of interest. On the other hand, using a pre-computed set of
parameters may make the model unable to follow the actual signal dy-
namics and thus seriously hamper the achievable communication sav-
ings. Thus, adequate procedures to select suitable prediction models
and compute their parameters on sensor nodes are required. To this
end, we introduce a generic and lightweight adaptive model selection
framework, that allows sensor nodes to autonomously determine a good
model choice. The rationale of our approach consists in letting sensor
nodes run a proper set of candidate prediction models and assess their
performance in an online fashion, as sensor data is collected. Using
adequate performance metrics, our framework makes sensor nodes able

1.3. Spatial Sensor Selection 9

to select, among the set of candidates, the model that allows for the
highest achievable communication savings [116].
Other approaches to the temporal sensor selection problem avoid the

use of prediction models. In event detection applications, for instance,
very basic sensor selection mechanisms increase the sampling frequency
of the nodes when a speci�c pattern is detected or decrease it when
nothing of interest is happening [39]. In our thesis, however, we mainly
focus on prediction-based temporal sensor selection algorithms leverag-
ing the DPS data collection strategy sketched above.

1.3. Spatial Sensor Selection

In the previous section, we discussed how temporal sensor selection
strategies may allow to reduce the data reporting rate of sensor nodes by
exploiting the correlation between subsequent sensor readings. When
the number and density of the nodes is su�ciently high, correlation be-
tween readings collected by nearby nodes is also likely to appear. The
presence of this correlation may thus again enable the use of adequate
sensor selection techniques to reduce the average number of nodes re-
quired to sample or report data. In general, spatial sensor selection is
applicable whenever the actual density of the deployed nodes is higher
than strictly necessary to comply with the accuracy requirements of
the application. In these scenarios, the activation of all nodes at each
sampling round may no longer be necessary nor desired. Thus, spatial
sensor selection algorithms can pick up an adequate subset of nodes
whose activation can provide for the application requirements to be
ful�lled.
For instance, in surveillance and tracking applications the network is

usually required to continuously provide for complete coverage of the
region of interest. To this end, the application typically assumes each
node to be able to cover the area span by a discus centered at the node
itself and having sensing radius (or range) Rs. Thus, guaranteeing
coverage of the area of interest requires each point of the area to lie
within the sensing range of at least one node. Clearly, if the average
distance between nodes is su�ciently small, it is possible to provide
coverage activating only a subset of the available nodes. Spatial sensor
selection protocol working along this rationale are known as coverage
preserving protocols [188,205,209,210].
The selection criteria used to determine the set of active nodes clearly

10 Chapter 1. Introduction

depend on the application and its speci�c quality requirements. In the
context of our work on spatial sensor selection, we focus on applications
having the reconstruction of a sensor �eld as their ultimate goal. In
this speci�c setting, the network is required to provide, at each sam-
pling round, a su�ciently high number of samples of the sensor �eld.
In particular, these samples must be su�ciently representative to allow
adequate reconstruction algorithms to compute, within a given accu-
racy, the values of the �eld over the whole region of interest. To this
end, the necessary number of readings, and thus of selected sensors,
and their spatial distribution over the region of interest depend on the
requirements of the speci�c reconstruction algorithm used at the cen-
tral server. In chapter 4 we show that, under speci�c assumptions,
the problem of selecting an adequate subset of sampling nodes for the
purpose of �eld reconstruction can be reduced to a coverage problem.
Thus, assuming that the value of the sensing range Rs of the nodes can
be linked to the desired reconstruction accuracy, coverage preserving
algorithms can be leveraged as spatial sensor selection strategies also
in the context of sensor �eld reconstruction applications.
Spatial sensor selection may also come into play to perform dis-

tributed computation of aggregates [14, 44, 109, 120] or to provide for
multi-resolution storage within a WSN [62]. In the context of our work,
however, we mainly focus on the sensor �eld reconstruction scenarios
discussed above.

1.4. Summary of Contributions

The main goal of this thesis is to design and implement practical strate-
gies for performing temporal and spatial sensor selection in WSNs. In
designing our sensor selection algorithms, we focus on three main op-
timization goals. First, we aim at limiting the number of total data
acquisitions and transmissions necessary to comply with the accuracy
requirements of the application. Second, we attempt to devise compu-
tationally e�cient strategies with low memory footprints, which can be
implemented on resource-poor sensor nodes. Third, we seek to avoid
or limit the use of a priori information about the signals of interest,
which helps to lower the number of parameters that the user or the
application is required to de�ne prior to operations.
These three goals are supported by three distinct contributions.
First, we investigate the sensor selection problem in the time domain

1.4. Summary of Contributions 11

and propose novel techniques to perform prediction-based data collec-
tion. We provide an implementation of the dual prediction scheme
based on the least-mean-square linear �lter [166] and discuss the down-
side of using an approach based on the a priori selection of a speci�c
prediction model. To deal with this issue, we propose an adaptive
model selection scheme (called AMS) that allows sensor nodes to au-
tonomously select the statistically most suitable model among a set of
candidates [116]. We propose an implementation of the AMS based on
autoregressive models (AR), named AR-AMS, and test its performance
on 14 sensor time series retrieved from real WSN deployments. Our
simulation results demonstrate the versatility of the proposed frame-
work and its ability to achieve higher communication savings achievable
with respect to a �classical� dual prediction scheme [116]. Further, we
propose an alternate, more generic and lightweight implementation of
the AMS based on exponential smoothing (ES) models, to which we
refer to as the ES-AMS. This second version of the AMS achieves com-
parable performance, in terms of communication savings, with respect
to the previous implementation, but o�ers both lower computational
overhead and memory overhead. To demonstrate the suitability of the
ES-AMS to be executed on real WSN platforms, we also implemented
it as a TinyOS2 application and tested its behavior on a small-scale
WSN deployment.
Second, we address the sensor selection problem in the spatial domain

and provide an overview of approaches that address it from several dif-
ferent perspectives. In particular, we focus our attention on applica-
tions having the reconstruction of a sensor �eld as their ultimate goal.
For these applications, we show that the spatial sensor selection prob-
lem can be reduced to a coverage problem. We thus leverage the CCP
coverage preserving protocol [205] as a sensor selection strategy and in-
troduce a novel sensor ranking heuristic that enables a reduction of its
communication overhead. The heuristic ranks the relevance of a node
for the sensing task based on its position with respect to nearby located
nodes. This strategy allows the protocol to quickly select a subset of
nodes that can provide complete coverage of the region of interest, and
thus improve upon the performance of the original implementation of
the CCP protocol. Further, we leverage the same heuristic to design
a novel, adaptive random sensor selection strategy (ARS) [163]. Our
analysis of the performance of the ARS shows that it can o�er high

2 TinyOS is the de-facto standard operating systems for WSNs [118,189].

12 Introduction

levels of coverage of the region of interest while activating a signi�-
cantly lower number of nodes with respect to a simple random selection
strategy. Finally, we investigate the potential synergies between sen-
sor selection and routing, and brie�y discuss the interplay of our ARS
strategy with a state-of-the-art routing protocol.
Third, we provide a thorough analysis of an intriguing application

scenario for WSNs: the monitoring of noise pollution in urban areas.
In particular, we distill the application requirements and analyze the
suitability of our sensor selection strategies in this context. Further-
more, we report our experiences in using di�erent WSN platforms, as
well as mobile phones, as noise pollution sensors [57,164,165,167].

1.5. Outline

The remainder of this thesis is organized as follows. Chapter 2 pro-
vides a brief overview of WSNs and the main software and hardware
platforms we make us of in the context of this work. Further, it allows
us to introduce some de�nitions, notation and assumptions we will re-
fer to in the rest of the thesis. In chapter 3, we report in detail our
approach to the temporal sensor selection problem based on time se-
ries prediction. Chapter 4 presents our spatial sensor selection strategy
and the related experimental evaluation, as well as a thorough analysis
of related work. Chapter 5 reports our experience in using WSNs for
environmental noise monitoring, while the following chapter 6 provides
details of the software tools and libraries we implemented in the con-
text of this work. Finally, we provide our conclusions, along with some
considerations about promising directions for further investigations, in
chapter 7.

2. Background

In the previous chapter, we described the main challenges related to
the solution of the sensor selection problem in wireless sensor net-
works (WSNs) and outlined the main contributions of this thesis. For
the reader unfamiliar with the �eld of WSNs, we provide here a brief
overview of the challenges related to the design, implementation, and
deployment of these systems. Further, we describe the set of hardware
and software platforms we make use of in the context of our work.
Finally, we describe the mathematical notation, the models and as-
sumptions we rely on for designing and evaluating our sensor selection
protocols. In the remainder of this thesis, we will brie�y recall or refer
to the content reported in this chapter whenever necessary or appropri-
ate. The reader familiar with the broader �eld of WSNs can therefore
skip this chapter and still smoothly follow the rest of the thesis.

2.1. Wireless Sensor Networks

In 1999, Kahn, Katz, and Pister, describe the rising of a new category
of systems made of �very compact, autonomous and mobile nodes, each
containing one or more sensors, computation and communication ca-
pabilities, and a power supply� [100]. Likely to become as cheap and
small as grains of sand, Kahn et al. envision these nodes, also dubbed
motes or sensor nodes, to be deployed in hundreds or thousands of
units over large regions and to operate unattended for days, weeks or
years. Building the particles of a smart dust, they note, sensor nodes
can perform �ne-grained measurements of physical properties of the en-
vironment, like temperature, humidity, or sound. The collected sensor
data can then be stored and processed locally and/or reported back to
a central server for further analysis. To this end, nodes use their in-
built communication module to cooperatively build a multi-hop data-
relaying network. The possible applications of these wireless networks
of sensor nodes seemed countless and ranged �from sensor-rich smart
spaces to self-identi�cation and history tracking for virtually any kind

14 Chapter 2. Background

of physical object � [100].

In their seminal paper, Kahn et al. noted that the research chal-
lenges towards the realization of working WSNs were, as partially still
are, numerous, new and all but trivial. In particular, in contrast to
traditional wired and wireless networks, WSNs must be able to op-
erate without relying on a �xed infrastructure, like ad-hoc networks.
With respect to the latter, however, WSNs also present several unique
characteristics [52, 125]. For instance, sensor nodes have only little
computational and memory resources and dispose of limited and usu-
ally non-renewable power supply. Since running out of power would
make a node, and eventually the whole network, unusable, optimiz-
ing power consumption is a primary concern in WSNs. Additionally,
communication in WSNs is usually short-range and the topology of the
network may change frequently due to hardware and software failures
or instability of the communication channel. Dealing with these un-
certainties and dynamics is mandatory for WSNs to work reliably over
long periods of time. Further, since the density of nodes in a WSN
may be much higher than in traditional ad hoc networks, scalability
becomes a crucial issue [52, 125]. At the same time, the application
may exploit this high density to optimize nodes' activations. As fur-
ther outlined in [125], another peculiar characteristic of WSNs is that
they typically do not rely on point-to-point communication. Indeed,
due to high numbers of nodes and the possibly large deployment re-
gions, nodes are typically unaware of the whole size and topology of
the network. Therefore, addressing single nodes in the network may
be impractical and ine�cient. Instead, nodes may be addressed using
speci�c attributes, like their positions or available sensors and data.

The design and implementation of protocols and algorithms for WSNs
must thus take into account the limited power supply and poor com-
putational and memory resources of sensor nodes, the high number of
nodes and their potential unreliability as well as the unpredictability
of the environment. These factors pose strong requirements on the ro-
bustness and scalability of protocols working at the physical, MAC or
routing layer. Furthermore, the design and implementation of basic ser-
vices like localization and synchronization as well as application-level
algorithms cannot abstract from the above mentioned issues, since this
would likely result in ine�cient solutions.

In the last decade, WSNs have been a �eld of active research and by
now a large literature on protocols and algorithms for WSNs is avail-

2.2. Hardware and Software Platforms 15

able [104, 179, 211]. Furthermore, moving from and beyond the smart-
dust vision, several experiments showed the potential of WSNs to be
used in a plethora of di�erent application contexts. For instance, in en-
vironmental monitoring, to observe birds' habitats and habits, [73,185]
or to investigate the growth model of redwood trees [30]. Or in pre-
cision agriculture, to study the in�uence of environmental parameters
on food quality [10, 71]. Further, in �re detection, avalanche preven-
tion, and countless additional civil and military application scenar-
ios [11,12,22,99,103,106,129,176,186,201].
However, enabling a wireless sensor network to reliably report large

quantities of data over long periods of time is still a challenging goal
[12,20]. For instance, comprehensive tools to inspect and debug the net-
work at run-time are still scarce and require �eld expertise to be used.
Furthermore, many of the existing protocols and algorithms may only
be able to work reliable in speci�c application scenarios, and robust,
generic solutions are barely available. In this context, the de�nition
of a distinctive approach to the design and deployment of WSNs �still
requires further research and experience� [20].

2.2. Hardware and Software Platforms

The previously cited work by Kahn et al. [100] as well as a series of
other seminal papers [52, 85], represent early results in the research
�eld of WSNs. In the years to follow, several researchers and projects
contributed to the development of hardware and software platforms for
WSN prototyping. Among these, we selected for our work a set of well-
known platforms like the Tmote Sky sensor node, the TinyOS operating
system, and the Castalia simulator. Furthermore, we made extensive
use of the Matlab computing environment. In the following, we provide
a brief description of these platforms and motivate our choices.

2.2.1. The Tmote Sky Sensor Node

The smart dust prototype of 1999 showed the possibility of building
sensor nodes the size of just a few cubic millimeters, but several, more
powerful, generations of sensor nodes followed. There exist a number
of surveys on hardware platforms for prototyping WSN systems. In
particular, we refer the interested reader to Tatiana Bokareva's Mini

16 Chapter 2. Background

Hardware Survey1, to The Sensor Network Museum project 2, or the
Embedded Wisents Platform Survey [13]. Here, we would like to intro-
duce in more detail the Tmote Sky sensor node, which we used as a
reference prototyping platform for the considerations and experiments
presented in the following chapters.
Evolved from the TelosB family of motes [43, 154], the Tmote Sky

has been commercialized by Moteiv Corp. [136], a UC-Berkeley spin-
o�, from 2004 until the end of 2007. The Tmote Sky features a Texas
Instruments MSP430 F1611, 16-bit RISC processor that can operate
at extremely low power levels.3 The internal oscillator of theMSP430
F1611 can operate at a maximum of 8MHz and can be activated in
as few as 6µs, thus allowing the processor to switch very e�ciently
from sleep to active mode. The Tmote Sky is further equipped with
10kB of RAM, while a 48kB �ash memory is available for safely stor-
ing programs and data. For communication, the Tmote Sky relies on
the Chipcon4 wireless transceiver CC2420, an IEEE 802.15.4 com-
pliant radio operating at 2.4GHz and o�ering data rates of 250kbps.
Two 1.5V, AA batteries provide the power supply when the node is
not plugged-in through its embedded USB-adapter. Two photodiodes,
the Hamamatsu S1087 and S1087-01, allow the Tmote to measure
the photosynthetically active radiation (PAR) and total solar radia-
tion (TSR), respectively. Further, the Sensirion SHT11 (or SHT15)
sensor provides for (calibrated) humidity and temperature data. As
basic actuators, the Tmote Sky also features three external LEDs of
di�erent colors. Additional sensors and actuators (a microphone, an
accelerometer and a speaker) are available on a twin version of the
Tmote Sky, dubbed Tmote Invent, which also features a practical and
elegant packaging. Both platforms are shown in �gure 2.1.
To substantiate the often-cited argument that radio communication

is the main factor of power consumption on a sensor node, we report
in table 2.1 some relevant �gures regarding the current drained by the
Tmote in di�erent operating modalities. The values reported in the
table are taken from [154] and the Tmote Sky's datasheet [137].
If we assume the batteries of a mote o�er a total capacity of 2000

mAh, keeping the microcontroller uninterruptedly active will make the

1 www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html
2 www.snm.ethz.ch
3 ti.com/msp430
4 www.chipcon.com

www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html
www.snm.ethz.ch
ti.com/msp430
www.chipcon.com

2.2. Hardware and Software Platforms 17

Figure 2.1.: The Tmote Sky (a), and Tmote invent (b) WSN platforms.

Table 2.1.: Current consumption of the Tmote Sky sensor node under typical op-
erating conditions (nominal values).

Operating condition Current consumption
Mote standby 5.1 µA
MCU idle, oscillator on 54.4 µA
MCU active 1.8 mA
Radio transmitting at 0 dBm 17.4 mA
Radio receiving 19.7 mA
Radio on, oscillator on 365 µA
Idle mode, oscillator o� 20 µA
Flash memory (active current, read) 4 mA
Flash memory (active current, write/erase) 20 mA

node run out of power in about 46 days. If, concurrently, the node
continuously transmits data, the batteries will be empty after just 4
days. Although simplistic, this computation gives a feeling of the bur-
den radio communication constitutes on the energy budget of a node.
We should also notice that, in terms of drained current, writing data
on the �ash memory can be as expensive as radio communication. Fur-
thermore, power consumption due to sensing is not always negligible.
Indeed, while the Sensirion SHT11 light sensor requires only 25µA to
perform one 12-bit measurement per second5, the on-board microphone
of the Tmote invent drains as much as 2.3mA of current [137]. If the
microphone remains active for a prolonged time, for instance to record
the call of a bird or estimate the current noise level, its contribution is
not negligible in the total energy budget of a node.

5 www.sensirion.ch/en/01_humidity_sensors/02_humidity_sensor_sht11.htm

www.sensirion.ch/en/01_humidity_sensors/02_humidity_sensor_sht11.htm

18 Chapter 2. Background

2.2.2. The TinyOS Embedded Operating System

There exist several operating systems speci�cally designed for WSNs.
Some examples include TinyOS [118, 189], Contiki [50], BTnut6, and
Mantis [21]. As was the case for hardware platforms, however, it is be-
yond of the scope of this chapter to provide an exhaustive survey of such
systems. Instead, we would like to focus on TinyOS, which is largely
considered the de-facto standard operating system for WSNs. More
details about alternative systems, like those cited above, are available
in [13,21,50,174].
TinyOS is an open-source, �exible, and energy-aware operating sys-

tem speci�cally designed to support WSNs applications. It features
a component-based architecture that allows programmers to combine
small modules of code, called components, into more complex programs.
In the TinyOS jargon, the process of combining independent modules
through their interfaces is called wiring. The �nal binary image of the
program includes only those components necessary to implement the
application logic that has been, explicitly or implicitly, wired. In this
sense, TinyOS enables developers to build an application-speci�c oper-
ating system, saving precious memory resources on the nodes. Indeed,
the whole TinyOS core �ts in less than 400 bytes and a typical com-
plete application performing sensing and communication is usually only
about 15kB in size [118].
Typical events in WSN scenarios, like reception of a radio packet or

the collection of a speci�c sensor value, may occur unpredictably and
require a timely reaction of the operating system. To this end, TinyOS
supports an event-based concurrency model. It allows the program-
mer to de�ne events to which the operating system reacts immediately
leveraging the so-called split-phase operation mode. In this way, event
handlers can preempt less time-critical code, which is accordingly in-
cluded in TinyOS tasks.
TinyOS is written in nesC [67], a programming language speci�cally

designed to support a component-based architecture, event-based con-
currency model, and split-phase operation mode. nesC is an extension
of the C language [105] and is also the language of choice for writing
TinyOS applications.
The �rst version of TinyOS, known as TinyOS 1.x and released in

2002, was replaced in November 2006 by the �rst stable release of

6 www.btnode.ethz.ch

www.btnode.ethz.ch

2.2. Hardware and Software Platforms 19

TinyOS 2.0. This second version is currently used by more than 500
research groups and its wide developer and user base makes TinyOS the
de-facto standard operating system for developing WSN applications
[189].

2.2.3. The Matlab and Castalia Simulators

As we mentioned several times, WSNs are envisioned to be made of
hundreds or thousands of tiny sensor nodes, possibly deployed in harsh
environments. Unexpected behaviors and errors occurring after deploy-
ment may hamper network performance or even make it unusable [20].
A thorough analysis and testing of the algorithms running on the nodes
prior to deployment is therefore crucial to limit the occurrence of such
unexpected problems. To this end, the use of small scale test deploy-
ments and simulation is mandatory [12].
Some authors criticize the use of simulation as an investigation tool

as too simplistic and unable to capture the complex conditions in which
WSNs are envisioned to operate. In particular, the common assumption
of perfectly circular radio coverage is doomed to failure in real WSN
settings [107]. On the other hand, this assumption is widely used in the
literature since it allows us to derive useful general results [161]. Since
our main interest is in developing algorithms working at the application
level, we abstract several low-level issues and also resort to the usual
assumption of perfectly circular radio coverage. Whenever necessary
or opportune, we discuss the e�ects of non-ideality on the behavior
of our algorithms and propose possible countermeasures. With this
premises in mind, we now introduce the simulators we considered in
our investigations, namely the Matlab computing environment and the
Castalia sensor network simulator.
Matlab7 is a well-known platform for numerical computation. It al-

lows the user to easily manage and visualize data and provides a large
number of built-in mathematical functions and specialized computa-
tional tools. For instance, it o�ers several interpolation methods for
signal reconstruction, or a toolbox with specialized time series analysis
functionalities. As we will show in the next chapters, we implemented
our sensor selection algorithms as Matlab applications and performed
most of our experimental evaluations using these implementations. Al-
though Matlab does not provide any realistic radio or channel models,

7 www.mathworks.com

www.mathworks.com

20 Chapter 2. Background

it allowed us to gain insights on the ideal performance of our algo-
rithms and thus to set a sort of benchmark towards which the e�ect of
non-ideality can be investigated.
To perform our preliminary study on the interplay between spa-

tial sensor selection and routing reported in section 4.8, we used the
Castalia8 WSN simulator [26, 153]. Castalia is a simulator for WSNs
implemented on top of the OMNeT++ platform9. OMNeT++ is a dis-
crete event simulation environment that thanks to its excellent mod-
ularity is particularly suited to support frameworks for specialized re-
search �elds. For instance, the Mobility Framework (MF) supports
simulation of mobile networks, while the INET framework enables
the modeling of several Internet protocols. OMNeT++ is written in
C++, is well-documented, and features a graphical interface that eases
development and debugging. Additionally, a wide community of re-
searchers and developers support OMNeT++ and continuously pro-
vide new modules and improvements of existing code. The comfortable
initial training, the modularity, and the possibility of programming in
an object-oriented language (C++) are among the reasons that led
us to prefer the OMNeT++ platform, and thus Castalia, over other
available simulators like the well-known ns-210 and the related exten-
sions for wireless sensor networks (e.g., SensorSim [148]). Nonetheless,
in the last years Castalia has been steadily improved [26, 153] and its
enhanced 2.0 version has been recently released 11. Furthermore, an in-
creasing number of researchers resort to this simulator to support their
investigations [17,27,192].
In the context of our work, we refer to version 1.3 of Castalia, which

builds upon version 3.3 of OMNet++. In this version, Castalia features
advanced channel and radio models, a MAC protocol with a large num-
ber of tunable parameters and a highly �exible model for simulating
physical processes. In particular, Castalia provides bundled support
for the CC2420 radio controller, which is the on-board transceiver of
the Tmote Sky, our reference sensor node platform. Being a simulator
originally developed for testing MAC protocols, Castalia still o�ers only
basic support for routing protocols. However, thanks to its excellent
modularity, inherited from OMNet++, Castalia can be easily extended

8 castalia.npc.nicta.com.au
9 www.omnetpp.org
10nsnam.isi.edu/nsnam
11Castalia 2.0 has been released on May 8th, 2009.

castalia.npc.nicta.com.au
www.omnetpp.org
nsnam.isi.edu/nsnam

2.3. De�nitions, Notation, and Assumptions 21

and adapted to include new or improved components. In particular, to
perform the experiments presented in section 4.8, we implemented the
CTP routing protocol [58, 68] as a �exible Castalia module.

2.3. De�nitions, Notation, and Assumptions

In this section, we provide the de�nition of some basic notions, the
mathematical notation, and an introduction to the main assumptions
we will refer to throughout this work.

2.3.1. Network and Communication Model

We represent a WSN as a directed graph G = (V,E), where V is the set
of all nodes and E is the set of edges between nodes. The cardinality
of V represents the total number of nodes Ntot in the network, i.e.,
Ntot = |V |. Without any loss of generality, we assume all nodes in V
to be assigned an unique identi�er, and we refer to node ni (or node
i) as the node that has identi�er i in V . If node i can communicate
directly with node j, a correspondent edge eij exists in E. In particular,
we assume the transmission range of all nodes within the network to be
isotropic and equal to Rtx. Under this assumption, the set E is de�ned
as:

E =

Nnodes⋃
i=1

{eij|i, j ∈ V, dij ≤ Rtx} (2.1)

where dij is the Euclidean distance between nodes i and j.
We refer to the communication neighborhood of a node ni as the set

of nodes Vi de�ned as:

Vi =

Nnodes⋃
j=1,j 6=i

{nj|i, j ∈ V, dij ≤ Rtx} (2.2)

2.3.2. Region of Interest (RoI)

We consider settings in which a WSN is deployed either on a segment
of length Lx or on a rectangular region of sides Lx and Ly. We refer to
these two deployment types as the 1- and 2-dimensional case, respec-
tively. When the values of Lx and Ly coincide, we may refer to both of
them using the symbol L.

22 Chapter 2. Background

2.3.3. Sampling Rates and Sensing Model

We assume the network is set up to gather the samples of a physical
variable, like temperature or humidity, over a given period of time
and speci�c spatial region. In particular, we assume that the physical
variable, also referred to as sensor �eld or signal, can be represented
as a continuous function of time t and location s f(t, s). The network
can thus gather discrete samples of f at arbitrary time instants tk
and locations si, provided a sensor node is present at position si and
performs sensing at time tk. In the context of this work, we assume the
nodes to become active, and thus possibly perform sampling, at regular
time intervals tk = k∆t, where ∆t is the desired temporal sampling
rate, or temporal resolution, typically expressed in seconds. For our
considerations, we usually abstract from the speci�c value of ∆t and
refer to the time instant k∆t as tk or k. Accordingly, we may indicate
the discrete samples f(k, si) as fk,i. When referring to the values of
f collected at a speci�c location but di�erent time instants, we may
use the simpler notation fk for fk,i. Similarly, if samples are collected
at a speci�c time instant k, but at di�erent locations si, we may use
the notation fi for fk,i. We refer to a single sampling operation as a
sampling round. During a single round, all the nodes or a subset of
them may actively sample the sensor �eld.
If the nodes are deployed over a 1-dimensional RoI, we may indicate

the position si of a node ni as xi. Accordingly, in the 2-dimensional
case we have si = (xi, yi). De�nitions and notation relative to the spa-
tial sampling rate or spatial resolution ∆s of the network are reported
in detail in section 4.3, and we thus omit them here. However, we an-
ticipate that we de�ne the sensing area of a node as a discus DRs(c)
having the node itself as its center c and a radius given by the sensing
range Rs. The latter may represent a physical range12 or a �virtual�
distance the node may be able to cover.
In the following chapters, we do not speci�cally address issues related

to the presence of noise in the data. However, we assume the samples
fk,i of the sensor �eld f to be a�ected by a zero-mean Gaussian noise
of known standard deviation. A sample fk,i can thus be represented as
f(k, si) = f̃(k, si) + ν(k, si), where f̃(k, si) are is the correspondent
sample of the �ideal�, noise-free sensor �eld f̃ and ν(k, si) the realiza-

12E.g., for a infrared sensor, the maximal distance at which the sensor can detect the presence of
a person within a given accuracy.

23

tion of a Gaussian random variable ν with mean µ = 0 and standard
deviation σν, computed at time k at node i.

2.3.4. Synchronization and Localization

In order to make the network wake up at prede�ned time instants tk,
the nodes are required to be, at least loosely, synchronized. To this
end, we assume one of the protocols known in literature to be applicable
[159]. As for localization, we assume the node can retrieve their position
autonomously, for instance using a GPS sensor, or through one of the
available localization algorithms [29,113,149].

2.3.5. Routing

In our investigations, we assume the network to rely on a suitable rout-
ing protocol to report sensor readings to one or more data sinks [104,
chapter 11]. In general, we do not refer to nor depend upon a speci�c
protocol choice. However, in section 4.8 we provide a discussion on the
interplay between sensor selection and routing, and use the CTP data
collection protocol as a reference routing scheme. For the interested
reader, we provide a description of the CTP protocol in appendix B.
In the context of this work, the terms, sink, central server, data

collector, and base station are perfectly interchangeable.

3. Temporal Sensor Selection

In this chapter, we investigate the sensor selection problem in the time
domain and present the �rst contributions of this thesis. In particu-
lar, we introduce two novel temporal sensor selection algorithms that
leverage what we call the dual prediction scheme (DPS)1 [116, 166].
As discussed in section 1.2, the DPS is a generic technique to perform
temporal sensor selection in wireless sensor networks (WSNs) and is ap-
plicable in scenarios in which data collection must be performed within
a pre-speci�ed accuracy [166]. In particular, using the DPS it is possible
to guarantee that the deviation between the sensor readings available
at the sink and the actual values collected at the nodes does not exceed
a given error threshold. To this end, the DPS instantiates identical
prediction models at the sensor nodes and the data sink. Using this
shared model, a node and the sink can compute the same estimations
of future sensor readings. Sensor nodes can then continuously monitor
the actual prediction error, i.e., the deviation between the estimated
readings and the locally collected samples. If the prediction error does
not exceed the given threshold, data communication between the node
and the sink can be suppressed, since the estimation computed at the
sink does comply with the accuracy requirements of the application.
On the other hand, if the prediction error does exceed the threshold,
the node must accordingly notify the sink and possibly update the
prediction model. The use of the DPS can signi�cantly improve the
lifetime of a WSN, since reducing communication is an e�ective way to
preserve energy resources on sensor nodes.
The e�ectiveness of the DPS greatly depends on the choice of predic-

tion model. One such model is the least-mean-square (LMS) adaptive
�lter [83], which demonstrates well the energy preservation potential
of the DPS approach. In a �rst contribution, we evaluated the use of
LMS on real data sets and showed that the LMS can provide for more
than 90% of communication savings with respect to the default data

1 Xu et al. [207] introduced the notion of dual prediction-based reporting in the context of WSNs.
However, we have been the �rst to refer to this general approach as the dual prediction scheme
[166].

26 Chapter 3. Temporal Sensor Selection

collection scheme, in which all the collected samples are transmitted
to the sink [166]. However, the actual achievable communication sav-
ings in turn depend on the speci�c values chosen for the LMS �lter
parameters. Since even for the same time series the optimal param-
eter choice may vary over time, �xing these values a priori is usually
impractical [116, 166]. Thus, adequate adaptive parameter estimation
procedures are needed. To address this issue, which is common also to
other instantiations of the DPS, we introduce our second contribution,
the adaptive model selection (AMS) scheme.

The AMS is a generic framework for the implementation of the DPS.
It lets sensor nodes maintain a set of candidate models that are period-
ically updated and evaluated. The set of candidates may include both
di�erent models, as well as several instances of the same model, corre-
sponding to di�erent parameter sets. Using an adequate performance
measure, a sensor node can then periodically select the best perform-
ing model and thus adapt to changing data dynamics. We evaluated
the performance of the AMS using two di�erent sets of candidate mod-
els, namely autoregressive prediction models and exponential smoothing
prediction models. In both cases, the AMS provides for nearly the same
communication savings achievable with the optimal a posteriori model
choice [116]. In addition, we provide an implementation of the AMS as
a TinyOS library, for which we validated its performance on a small-
scale deployment.

The remainder of this chapter is structured as follows: �rst, we pro-
vide a detailed description of the characteristics of the DPS in section
3.1. We describe related work in section 3.2, and present our instan-
tiation of the DPS using the LMS adaptive �lter in section 3.3. We
introduce the AMS and provide the related experimental evaluation in
sections 3.4 and 3.5, respectively. Finally, we report on our experiences
in running the AMS on a small-scale lab deployment in section 3.6.
Section 3.7 closes with a brief summary of this chapter.

Most of the contents of this chapter are also reported in [116, 166].
The design of the AMS and its implementation based on autoregressive
models is the outcome of joint work with Yann-Aël Le Borgne and
Gianluca Bontempi of the Université Libre de Bruxelles.

3.1. The Dual Prediction Scheme (DPS) 27

3.1. The Dual Prediction Scheme (DPS)

In typical WSN deployments, sensor nodes collect and report samples
of a physical variable at regular time intervals [19,30,71,121,139,185].
Thus, each sensor on a node captures a time series representing the
development in time, at the location of the node, of the sensed vari-
able. Since the values of a physical phenomenon, like air tempera-
ture or humidity, typically do not vary at random over time, succes-
sive elements of the captured time series are likely to be correlated.
Therefore, it is often possible to derive adequate time series forecasting
models that can be used to estimate, given a set of past observations,
the values of the observed physical variable one or more time steps
ahead [97,114,116,122,144,145,166,194]. As discussed above, if a sen-
sor node and the sink (to which the node reports its data) share the
same prediction model, they can both compute the same estimations
of the upcoming sensor readings. Since the sensor node also holds the
collected samples, it can compute, after the i-th sampling operation,
the actual estimation error ei. Clearly, ei represents the accuracy with
which the sink can �reconstruct� the current sensor reading, even if does
not receive any noti�cation from the node. Thus, if ei does not exceed
a given error budget or error threshold emax, no communication be-
tween the node and the sink is needed. On the other hand, if ei ≥ emax
the node must send the sink a correspondent noti�cation. This message
typically includes the actual current reading and, possibly, the informa-
tion necessary to update the prediction model at the sink. The process
is then repeated for the successive sampling operations.

This data reporting strategy, which we refer to as the dual predic-
tion scheme or DPS [166], can signi�cantly reduce the amount of data
communication between the node and the sink. At the same time, the
DPS can guarantee the estimation error relative to each data sample
to be within the interval (−emax,+emax).
An important assumption the DPS relies upon is that sensor nodes

will typically collect sensor readings at a rate that is higher than strictly
required for complying with the application requirements. Under such
circumstances, the DPS can provide for communication savings since
it can detect possibly existing redundancy in the collected samples. In
many WSN deployments the temporal sampling rate is �xed a priori on
the basis of empirical considerations and other requirements, such as
network lifetime [10, 19, 30, 71, 121, 185]. Irrespectively of the applica-

28 Chapter 3. Temporal Sensor Selection

tion scenario, most deployments will set the sampling rate high enough
to avoid loosing important features that may show up unexpectedly
in the data. Furthermore, the sampling rate is usually constant over
time and equal for all the nodes in the network, even though the char-
acteristics of the observed phenomenon may vary over both time and
space. Therefore, it is reasonable to assume that the collected samples
contain redundant information, at least over some intervals of time and
across some sectors of the network. This redundancy can be eliminated
by letting sensor nodes wake up and collect data at a lower frequency.
However, this may cause a degradation of the accuracy of the collected
data without providing for signi�cant energy savings. In particular, we
should recall that the energy consumption of many real-world sensors
is signi�cantly smaller than the energy required for communication, as
also discussed in section 2.2.1. In these cases, and considering that in
real deployments sensor nodes are likely to be required to wake up reg-
ularly anyway (e.g., to maintain time synchronization), assuming that
a sensor operation is performed at each wake up is expected to have a
negligible impact on the overall energy budget of a node.

Data collection based on the DPS also assumes reliable communi-
cation between the node and the sink. Indeed, if the node sends a
noti�cation that does not reach the sink, the latter erroneously consid-
ers its current data estimation to be within the error threshold emax. In
typical WSN deployments communication links may often be unreliable
and messages losses can and do occur [19,185]. In this case, as we also
point out in [166], including a sequence number in each message can at
least make the sink recognize that one or more noti�cations from the
node have been lost. Thus, if the sink detects a jump in the sequence
number of the messages received from a speci�c node, it can possibly
start a dedicated procedure to recover the missing samples, or sim-
ply tag the a�ected estimations as potentially unreliable. Additionally,
setting a limit to the maximum number of consecutive communication
suppressions may also enable a timely detection of message losses. In-
deed, a node may be forced to send a noti�cation each time a watchdog
timer Tw expires, irrespective of the actual value of the prediction er-
ror. If the sink does not receive any messages as its timer Tw expires,
it assumes that a noti�cation has been lost or the node is currently un-
available. For the remainder of this chapter, we assume the use of both
sequence numbers and watchdog timers to be a su�cient countermea-
sure to cope with possible message losses. The proper value of the timer

3.1. The Dual Prediction Scheme (DPS) 29

Tw depends on the speci�c application, but it is assumed to be large
enough so as to have only a negligible in�uence on the performance of
the DPS.
Assuming reliable communication, although with the limitations dis-

cussed above, the actual communication savings achievable using the
DPS depend on the ability of the chosen prediction model to estimate
future sensor readings. The predictive ability of a model may depend
on several factors, and it is usually hard to select a priori the optimal
prediction model for a speci�c forecasting task [64,65,122,134]. In the
context of the DPS, the predictive ability may depend on the nature
of the observed phenomenon, the error threshold emax, or the sampling
rate. Furthermore, the same model may show di�erent performance if
applied to distinct segments of the same time series or to series cap-
tured by neighboring nodes. Therefore, adapting the chosen prediction
model to the actual collected data is instrumental in improving per-
formance of the DPS. We provide more quantitative considerations on
the issues of model choice and adaptation in section 3.1.1 below, af-
ter having introduced some basic notions on prediction models and the
necessary mathematical notation.

3.1.1. Prediction Models and Parameter Estimation

Let X = 〈X0, X1, X2, . . .〉 be the time series representing the sequence
of sensor measurementsXk ∈ R collected at time instants k = 0, 1, 2, . . .,
k ∈ N, and let X[0:k] = 〈X0, X1, X2, . . . , Xk−1, Xk〉 be the sequence of
observations from time 0 up to time instant t.2 Using a prediction
model h(Xh,k,θh,k) it is possible to compute an estimate X̂k+1 of the
upcoming time series element Xk+1 as:

X̂k+1 = h(Xh,k,θh,k). (3.1)

A prediction model h(Xh,k,θh,k) is a mapping that takes as input a
subset Xh,k of the past time series elements, and a vector of Nθ model
parameters θh,k = (θ1, θ2, . . . , θNθ), with Nθ ∈ N+. We stress the
dependency of vectors Xh,k and θh,k on the model h and on the time
instant k by means of the subscript (h, k).
To clarify the role of the vectors Xh,k and θh,k, let us consider a

2 If ∆T is the sampling interval and sampling starts at time t = 0, sensor readings are collected
at instants tk = k∆T , k = 0, 1, Since the actual value of ∆T is irrelevant at this point, we
refer to the sampling instants as k = 0, 1, 2, . . ., for simplicity.

30 Chapter 3. Temporal Sensor Selection

simple example of time series forecasting based on linear regression.
Assuming that a time series X evolves linearly with the time k, a
forecast of the element of the time series at time step k + 1 can be
computed using the following equation:

X̂k+1 = a+ b(k + 1). (3.2)

In equation 3.2 we assume that the parameters a and b have been
estimated using a regression procedure over the past N elements of the
time series, i.e., minimizing the sum of the square errors (least-square
criterion):

(ak, bk) = argmin(a,b)

N−1∑
i=0

(X̂k−i −Xk−i)
2. (3.3)

We emphasize the time-dependence of parameters a and b by the use
of the subscript k. Using Equation 3.3, the parameter vector θh,k =
(ak, bk), is estimated using the past N elements of the series up to
time instant k and therefore Xh,k = X[k−N+1:k]. We can thus rewrite
equation 3.2 in the form of equation 3.1 as:

X̂k+1 = h(Xh,k,θh,k) = h(X[k−N+1:k], (ak, bk)), (3.4)

for which we know h to be a linear model and the parameters (ak, bk)
to be estimated using the least-square criterion as in equation 3.3. In
general, vectors Xh,k and θh,k are modi�ed at each time instant k to
take into account the newest collected element of the time series. From
now on, we will refer to a change in Xh,k or θh,k as a model update.
The values of the parameters a and b could also be �xed a priori,

possibly on the basis of some historical data or other available side
information. However, this choice would make the model unable to
adapt to the actual collected data and thus possibly hamper its pre-
dictive ability. Therefore, choosing a model to perform time series
forecasting requires determining both a model �template� (constant,
linear, quadratic), which �xes the number and the nature of the model
parameters, and an adequate procedure to compute and update these
parameters. In the context of the DPS, the nodes can store the last
collected elements of the time series and use them to update the model
parameters. To this end, the parameter estimation procedure must be
executable on resource-constrained wireless sensor nodes. This require-
ment may disqualify several classes of models as potential candidates

3.1. The Dual Prediction Scheme (DPS) 31

to implement the DPS.
For instance, ARIMA3 models represent a widely used class of predic-

tion models. They have been successfully adopted to describe a large
variety of phenomena, from �nancial to environmental time series [122].
Additionally, the Box-Jenkins method provides an analytical proce-
dure to estimate the optimal ARIMA model parameters for a given
time series [28]. However, this procedure requires a computationally
expensive estimation of the sample autocorrelation and partial auto-
correlation functions of the series, which in turn can only be reliably
estimated from a large (typically > 50) number of samples [28]. Us-
ing ARIMA models to implement the DPS would thus require running
the Box-Jenkins selection procedure on sensor nodes. However, since
sensor nodes typically feature only few kilobytes of RAM and poor
computational capabilities [154], this is actually impractical. Further-
more, the use of sophisticated (and expensive) predictors like ARIMA
models does not guarantee for the computation of more reliable predic-
tions [122].
Besides ARIMA models, there exist of course several other generic

model �templates� that can be used to perform time series predic-
tion [64, 122, 134]. But selecting an appropriate model for a given
forecasting task is a not trivial procedure. A popular survey on time
series predictions, written back in 1985, concluded that the need to
�establish some basis for choosing among these and other approaches
to time series forecasting� was one of the major challenges for future
research [64]. An analogous statement concludes, twenty years later, a
revised and extended version of that survey paper [65].
In several application scenarios model selection is based on a priori

knowledge or the judgment of an expert [8, 122]. Automatic selection
procedures have also been investigated [8, 122, 124, 184] but, as men-
tioned above, these procedures may be computationally expensive and
require large sets of historical data to be available. In the context of
WSNs, the computation of model parameters could also be delegated
to a central server, once a su�cient amount of sensor readings have
been collected. The server could then notify its model choice back to
the nodes and run the DPS as usual. However, this centralized solution
does not scale well as the network size increases. Furthermore, the ini-
tial model choice may need periodical re�nements to take into account
changes in the data, which cannot be done from the predicted values

3 Auto-Regressive Integrated Moving Average.

32 Chapter 3. Temporal Sensor Selection

but which requires that the server is supplied with �fresh� sensor read-
ings. This, in turn, would require the nodes to periodically transmit a
potentially large amount of consecutive sensor readings. Therefore, we
believe that performing model selection on the nodes is, in spite of the
above sketched challenges, the most reasonable approach to provide for
e�cient implementations of the DPS.
In the light of these considerations, it is not surprising that exist-

ing implementations of the DPS basically di�er in terms of the model
used to perform forecasting, and the related procedures used to update
model parameters. In the following section 3.2, we discuss some in-
teresting implementations of the DPS that have been presented within
the WSN research community. We then present our own approaches in
sections 3.3 and 3.4.

3.2. Related Work

Several authors within the WSN research community considered the
potential of prediction-based techniques to optimize data collection.
In [144,145] Olston et al. propose one of the �rst, and simplest, imple-
mentations of the DPS. To this end, they leverage an approach that
had been originally developed to speed up data retrieval from remote
databases, known as quasi-copies [6]. Quasi-copies are replicas of data
stored in a remote database that are cached at a user's site. This repli-
cas are allowed to deviate from the true, centrally stored values in a
controlled fashion. In particular, the cached copies are guaranteed to
lie within a given range from the actual values. In the context of WSNs,
the quasi-copies approach can be implemented by installing appropri-
ate data �lters at each sensor node. These �lters drop all the readings
being ±emax o� the last sensor measurements that has been sent to the
sink, where emax is the tolerated error on the collected data. Thus, the
resulting data copy at the sink consists in a piecewise constant approx-
imation of the actual time series observed at the nodes. This approach
actually consist in performing time series prediction using a �naïve�, or
constant model [122], which just provides the last recorded (i.e., sent)
measurement as the forecast for the next sensor readings. In [144] Ol-
ston et al. also propose to make the actual error threshold emax adapt to
the current data transmission costs and to the individual data change
rates experienced at each node. Lazaridis and Mehrotra [114] also in-
vestigate using the constant model to provide for prediction-based data

3.2. Related Work 33

collection in WSNs.

As we show in section 3.5, the constant model, hereinafter also re-
ferred to as CM, performs surprisingly well in practical settings. Fur-
thermore, it actually constitutes a sort of minimal e�ort implementa-
tion of the DPS and thus can be used as the default model choice.
However, the simplicity of the CM often does not allow to exploit the
temporal correlation of successive elements of a time series fully. There-
fore, several authors proposed using more sophisticated prediction tech-
niques to implement the DPS.

For instance, Jain et al. [97] propose an implementation of the DPS
based on the Dual Kalman Filter (DKF) architecture. In the DKF
approach each remote source (i.e., sensor node) involved in a speci�c
sensing task runs an instance of a Kalman �lter and performs linear
prediction on smoothed sensor readings. As in the �usual� DPS, data
sources send updates to a central server only when the prediction er-
ror exceeds a pre-speci�ed error threshold. The central server holds
as many Kalman �lters as the number of remote sources. In this way,
the server is able to mirror the �lters installed at the data sources and
thus reconstruct the values observed at each sensor node using either
the received actual data, when available, or the computed predictions.
In order to use the Kalman �lter for data streams prediction given a
sequence of noisy observations, a model of the observed phenomenon
must be provided to the �lter (obviously, both server and nodes must
feed the Kalman �lter with the same model to be able to work coher-
ently), i.e., the statistical properties of both the observed phenomenon
and the noise process must be known a priori [101]. This limits the
applicability of this method as a general framework for sensor data
forecasting in WSNs, since a priori knowledge of the observed time
series is often unavailable or unreliable.

In our own work [166], discussed also in the next section 3.3, we
propose an implementation of the DPS that allows to overcome the
problem of de�ning a priori knowledge on the signals of interest. To this
end, we suggest using (linear) adaptive �lters, which are able to learn
signal statistics on the �y, and can continuously and autonomously
adapt to changes [82]. In particular, we instantiate the DPS using the
lightweight LMS adaptive predictor, which basically performs linear
regression over the past n readings available at the sink. This approach
performs well on real-world sensor data, and requires only few memory
and computational resources. Its major drawback lies in the need for

34 Chapter 3. Temporal Sensor Selection

de�ning the number of samples needed, i.e., the actual value of n, a
priori. One thus needs to have an adequate method to estimate this
model parameter on the �y, i.e., as data collection is performed.
Automatic estimation procedures to determine model parameters are

also missing in the approach presented by Tulone and Madden [194]. In
their work, the authors instantiate the DPS using autoregressive (AR)
models, but do not provide a method for on-line, automatic selection
of the autoregressive order of the model (see also section 3.5 for more
details on autoregressive models). On the other hand, they propose
an interesting policy for choosing an adequate point in time to update
the autoregressive coe�cients of the model. To this end, they de�ne,
besides the error budget emax, a second threshold δ (0 < δ < emax).
As soon as the number of occurrences in which the prediction error
is bigger than δ exceeds a third given threshold a, a model update is
performed. In our work, we address the issue of automatic estimation
of model parameters by introducing a generic framework for model
selection, as described in section 3.4.
The above discussed techniques mainly focus on time series predic-

tion as a mathematical tool to perform temporal sensor selection in
WSNs. Other approaches leverage prediction-based data collection that
also takes into account the spatial dimension. For instance, Goel and
Imilienski [69] suggest to visualize a snapshot of the sensor readings
in the network as an optical image. With this premise, the authors
suggest to resort to the MPEG4 standard for video compression to
predict future sensor readings. This requires a base station to �rst
collect enough sensor readings from the sensors to generate a suitable
prediction-model, which is valid over a limited time interval. The model
is then propagated to the sensor nodes, which send their readings only
if they signi�cantly di�er from those predicted by the model. A sim-
ilar, model-driven approach is proposed by Deshpande et al. [46]. In
this case, a spatio-temporal prediction model is learnt from historical
data and is then used to estimate sensor readings in the current time
period. The estimation computed by the model can possibly be re�ned
by interrogating the sensor network for some speci�c current readings.
Guestrin et al. [76] propose to build a model of the data in the network
using kernel linear regression and let the nodes transmit only signif-
icant changes in the model coe�cients instead of raw data. In [115],
principal component analysis (PCA) is used to identify minimal subsets

4 Moving Picture Experts Group [117].

3.3. An Implementation of the DPS Based on the LMS Adaptive Filter 35

of nodes whose readings allow to predict the values sensed at any node
in the network. The subsets then provide sensor readings in a round
robin fashion, so that the overall resource consumption is reduced and
balanced across the nodes.
This chapter focuses on the temporal sensor selection problem only

and thus we do not address prediction-based techniques working in
the spatial domain. Notwithstanding, we investigate the spatial sensor
selection problem in chapter 4.

3.3. An Implementation of the DPS Based on the

LMS Adaptive Filter

To enable a lightweight and �exible implementation of the DPS, we
propose to make use of the least-mean-square (LMS) adaptive �lter [82,
83, 166]. The LMS has very low computational overhead and memory
footprint, and can therefore be easily implemented on sensor nodes.
Furthermore, it does not require a priori knowledge of the statistical
properties of the observed signals [82, 83]. In particular, the LMS can
adapt on the �y to the actual signal dynamics and can thus be applied
to a variety of real-world phenomena. Moreover, nodes do not need to
be assisted by a central entity to run the LMS, since no global model
parameters need to be de�ned. Its only drawback, which it shares
with other DPS instantiations, is that each node's individual model
parameters can really only be set optimally during data collection (in
the case of LMS this is the �lter length NLMS and its step-size µ). We
will address this later (in section 3.4) by proposing a novel generic on-
line parameter estimation and model selection framework, called AMS.
In the following, we �rst introduce basic notions on adaptive �lters

and the LMS, and show how the latter can be used to perform time
series prediction. We then discuss the details of our implementation of
the DPS using the LMS, and �nally present the related experimental
evaluation based on several data sets collected in real WSN deploy-
ments.

3.3.1. Adaptive Filters and the LMS Algorithm

In order to formally de�ne the LMS, we �rst introduce the generic
structure of a linear adaptive �lter. To this end, the samples of a
physical variable X are assumed to be available at discrete time instant

36 Chapter 3. Temporal Sensor Selection

tk = k∆T , k = 1, 2, Thus, every ∆T time units (e.g., seconds) a
new sample Xk (short for Xtk) of the signal is available. At each time
step tk, a linear adaptive �lter of �lter length NLMS takes as input
the newest collected sample of the signal X, along with the precedent
NLMS − 1, and computes the �lter output Yk as:

Yk =

NLMS−1∑
i=0

wi+1,kXk−i. (3.5)

Setting a weights vector wk = w1,k, w2,k, . . . , wNLMS ,k, and de�n-
ing the sample vector Xk = Xk, Xk−1, . . . , Xk−NLMS+1, we can rewrite
equation 3.5 above in a more compact form as the scalar product:

Yk = wk ·XT
k , (3.6)

where (.)T is the transposition operator. The output of the �lter is thus
the linear combination of the last NLMS samples of the input signal X,
each one of them being weighted by a time-varying �lter coe�cient wi,k.
The �lter output Yk is then compared to a reference value Y d

k (d for
desired). Y d

k represents the sample, at time tk, of a reference signal Y d

to which the �lter tries to adapt. In other words, the �lter performs
optimally if Yk = Y d

k ,k = 1, 2, Thus, the error signal ek = Y d
k − Yk

at time instant tk is fed back to the �lter and used to update the �lter
weights. Figure 3.1(a) shows the generic structure of an adaptive �lter
working along the rationale described above.
The weights vector wk is modi�ed at each time step k according to

a given optimality criterion, which is typically the minimization of the
mean square error (MSE), i.e., the average power of the error signal
e. Without going into details, we point out that the choice of the
MSE as the optimality criterion implies that the error function J(w),
which describes the dependency of the MSE on the �lter weights w,
is a quadratic function. Thus, J(w) has a unique absolute minimum
point wopt, i.e., a unique optimal solution that minimizes the MSE [83].
The �lter weights are updated at each step k in order to iteratively
approach this minimum point. The error ek gives the adaptation algo-
rithm a measure of the extent of the correction that needs to be applied
to the �lter weights in order to reduce, at the subsequent step k+1, the
expected error power E{ek+1}. If the statistics5 of the involved signals

5 The most important values are: the autocorrelation matrix of the input signal; the cross-
correlation vector of the input; and the reference signal.

3.3. An Implementation of the DPS Based on the LMS Adaptive Filter 37

+
+

_
Adaptive

Filter

(a)

+
+

_
Adaptive

FilterDelay ΔT

(b)

kX

d
kY

kY ke

kX 1−kX kekX̂

Figure 3.1.: Adaptive �lter: (a) generic structure, (b) as a prediction �lter.

were stationary and known a priori, the set of optimal �lter weights wopt

that minimizes the MSE could be computed through the Wiener-Hopf
equation [82, 146]. In practical scenarios, however, a priori knowledge
of the signal statistics may be unavailable or unreliable. Adaptive �l-
ters can learn these statistics from the data and adapt to their changes
by updating the �lter weights w. In this sense, adaptive �lters provide
a tracking capability, since they are able, in a non-stationary environ-
ment, to track variations in the statistics of the input data, provided
that these variations are su�ciently slow [82].
Adaptive �lters are usually categorized depending on the speci�c

method used to update the �lter weights, and a large number of such
adaptive algorithms is available in the literature [82]. The choice of one
method over another is determined by the trade-o� among di�erent fac-
tors, like rate of convergence, robustness, computational complexity, or
numerical properties. The LMS is one of the most successfully applied
adaptive algorithms. Despite its simplicity, it provides for good per-
formance in a wide spectrum of applications [83]. The equations that
de�ne the LMS algorithm are reported in table 3.1. The parameter µ
regulates the convergence speed of the weights adaptation procedure,

38 Chapter 3. Temporal Sensor Selection

as we detail below. Like any other adaptive �lter, the LMS algorithm
can be used to perform prediction when the general �lter structure in
�gure 3.1(a) is re�ned as in the predictive structure of 3.1(b). Making a
predictor out of an adaptive �lter requires delaying the current sample
Xk by one step and using it as the reference signal Y d

k . The �lter then
computes an estimation X̂k of the input signal at step k as a linear com-
bination of the NLMS previous readings {Xk−1, Xk−2, . . . , Xk−NLMS

}:

X̂k =

NLMS∑
i=1

wi,k ∗Xk−i. (3.7)

The prediction error is then computed and fed back to adapt the �lter
weights. The characteristics of the adaptation process can be controlled
through two parameters: the step-size µ, that appears in the weight
update equation in table 3.1, and the �lter length NLMS. Using the
notation introduced in section 3.1.1, we thus have:

X̂k+1 = h(X[k−1,k−NLMS], (w0,k, w1,k, . . . , wNLMS ,k, µ,NLMS)), (3.8)

where the model h is the LMS �lter.
The step-size µ is a critical parameter for the practical implementa-

tion of the LMS, since it tunes the convergence speed of the algorithm.
The theoretical convergence analysis of the LMS is still a �eld of ac-
tive research and a direct mathematical theory for its stability is still
far from being complete [83]. Indeed, even though the �lter was intro-
duced as early as 1959, only very recently the �rst rigorous equation for
a necessary stability bound on the step-size parameter µ of the LMS
has been provided [32]. Nonetheless, there also exists a practical crite-
rion for a straightforward computation of the value of µ from a small
set of observations, as we point out in the next section 3.3.2.
The number of �lter weights, normally referred to as the �lter length

NLMS, mainly determines the computational load and memory foot-
print of the �lter. From the equations reported in table 3.1, and re-
calling that w and X are vectors with NLMS elements, it follows that
the LMS algorithm requires 2NLMS +1 multiplications and 2NLMS ad-
ditions per iteration. In particular, NLMS multiplications and NLMS

additions are required for computing the �lter output Yk, while NLMS

additions and NLMS+1 multiplications are required to update the �lter
coe�cients wk. Thus, in order to keep the computational load of the

3.3. An Implementation of the DPS Based on the LMS Adaptive Filter 39

�lter low, the number of weights NLMS must be kept as low as possi-
ble. Our experimental evaluation shows that the �lter performs well
even with NLMS = 4, . . . , 10. We also point out that increasing the
value of NLMS does not necessarily improve the performance of the �l-
ter. In particular, increasing NLMS above a theoretically determinable
threshold value N opt

LMS will even result in performance losses [83].
For further details about the characteristics and application �elds of

the LMS algorithm we refer to [83]. In the following, we will explain how
this algorithm can be used to provide for an e�cient implementation
of the DPS.

Table 3.1.: The LMS Algorithm

Yk = wkXk Filter output

ek = Y d
k − Yk Error signal

wk+1 = wk + µXkek Weights adaptation

3.3.2. Implementation of the DPS Using the LMS

As we show in the next section 3.3.3, using the LMS for implementing
the DPS allows the algorithm to signi�cantly reduce the amount of
data a node is required to report to its sink. At the same time, the
collected data can be guaranteed to lie within a given maximum error
budget emax. This reduction is achieved by letting the node switch as
frequently as possible from a normal operational mode to a so-called
stand-alone mode, in which the node does not need to report sensor
readings to the sink. In order to be able to run the prediction algorithm,
the node needs to go through an initialization phase. These three basic
states of node operation are described in the remainder of this section.

Initialization Mode. When the node starts collecting and reporting data,
it runs in initialization mode. During this phase, no prediction is per-
formed and the both the node and the sink use the available actual
samples to compute an estimation of the step-size µ. To ensure con-
vergence, the step-size µ must satisfy the following condition [83]:

0 ≤ µ ≤ 1

EX
(3.9)

40 Chapter 3. Temporal Sensor Selection

where EX indicates the mean input power computed as:

EX =
1

M
·
M∑
k=1

|Xk|2 (3.10)

and M is the number of samples used to train the �lter [82]. Since the
input mean power EX is time-varying, an approximation ĒX can be
computed over (at least) the �rst NLMS samples and used to compute
the upper bound in inequality 3.9 above. In practical applications,
the step-size µ can be assigned a value about two orders of magnitude
smaller than this bound [135]. To take into account changes in the
signal dynamics, the node should periodically recompute the value of µ,
and communicate it to the sink. Furthermore, including a mechanism
to allow for an on-line estimation of the optimal �lter length NLMS

would also be appropriate. Such a mechanism could be implemented
using the AMS framework discussed in section 3.4.

Once the initialization phase is completed, both the node and the
sink start performing prediction on the collected readings and operate
in either normal or stand-alone mode, as explained below.

Normal Mode. When working in normal mode, both the node and
the sink use the last NLMS readings to compute a prediction for the
upcoming measurement, and update the set of �lter coe�cients w on
the basis of the actual prediction error, using the equation given in
table 3.1. The default start value for the �lter coe�cients is assumed
to be w[0] = 0. Unlike other adaptive algorithms, the LMS ensures that
multiple instances of the �lter fed with the same sequence of data and
sharing the same set of initial weights w[0] (and, of course, the same
values for NLMS and µ), compute the same set of �lter coe�cients and
thus the same predictions at each time instant k.

As long as the prediction error exceeds the user de�ned error budget
emax, the node keeps working in normal mode, thus collecting and re-
porting its readings to the sink. When the prediction error drops below
the threshold emax for NLMS consecutive steps, the node switches to
stand-alone mode. As long as the node remains in the normal mode,
the sink lets the prediction �lter run over the received sensor readings,
in order to update the �lter weights w coherently with the node.

3.3. An Implementation of the DPS Based on the LMS Adaptive Filter 41

Stand-Alone Mode. When working in stand-alone mode, the node keeps
collecting data and computes the prediction at each time step. As long
as the prediction error remains below the given threshold emax, the
node discards the reading and feeds the �lter with the prediction X̂k

instead of with the real data Xk. This ensures that the state of the
�lter at the node remains consistent with the state of the �lter at the
sink. Feeding the �lter with its own prediction causes the prediction
error to be zero and thus the �lter weights to be left unchanged. This is
another advantage of using this technique: while staying in stand-alone
mode, the node can omit updating its weights, thus saving half of the
computational overhead. If at time instant k the node observes that
the prediction error exceeds the threshold emax, it will report the read-
ing Xk to the sink and switch back to normal mode. While the node
operates in stand-alone mode, the sink interprets the lack of readings
from the node as successful predictions, i.e., that the predicted readings
are a good enough approximation of the real readings at the node, and
thus continues to use the values from its own prediction �lter.6

Figure 3.2 illustrates how our scheme works. We let our algorithm
(with NLMS = 5 and µ = 10−5) run on a set of temperature readings
obtained from a real world sensor [19], as shown in Figure 3.2(a). Fig-
ure 3.2(b) shows a detailed view of the outlined area in sub�gure (a),
with an overlapping plot of the corresponding �lter output. Sub�g-
ure (c) shows the prediction error of the data points in sub�gure (b),
including highlights (with a cross) for those readings that the node ef-
fectively needs to report to the sink in order to guarantee an accuracy
emax of ±0.5◦C. We see that as soon as the error exceeds the given
threshold, the corresponding sensor reading is sent to the sink and the
�lter restarts adapting to the real data, thus causing the prediction
error to decrease. As soon as the error remains below ±0.5◦C for at
least NLMS = 5 readings, the node stops reporting data (i.e., switches
again to stand-alone mode).
We should also point out that an outlier detection7 mechanism could

be easily embedded into our scheme. Since the occurrence of outliers
may disturb the operation of any prediction �lter, it is good practice to
include some automatic procedure for their detection. For instance, an

6 Obviously, the absence of a message might also be due to a crash or battery failure at the
node, so we assume that nodes send readings or at least status messages at regular intervals,
so that the sink can easily recognize the absence of an expected message. To this end, a loose
synchronization between the sink and the nodes is required.

7 An outlier is a �data value that is unusually large or small � [122, page 609].

42 Chapter 3. Temporal Sensor Selection

Figure 3.2.: The LMS at work: (a) real sensor readings, (b) real and predicted
sensor readings (close-up of the framed area in sub�gure (a)), (c) pre-
diction error.

3.3. An Implementation of the DPS Based on the LMS Adaptive Filter 43

adequate threshold may be de�ned either by the user or by the node
itself (e.g., as a multiple of the mean error). A sensor reading whose
corresponding prediction error is larger than this threshold could thus
be classi�ed as an outlier and discarded. In this case, the discarded
data can be replaced by the corresponding prediction.

3.3.3. Experimental Results

Finally, we present the experimental results obtained by applying our
LMS-based DPS to several publicly available data sets. In particu-
lar, we used temperature readings collected within the Intel Berkeley
Research Lab deployment [19]. These data sets include humidity, tem-
perature, light and voltage readings collected, once every 31 seconds,
by 54 Mica2Dot sensor nodes [43]. The nodes were deployed across a
�oor of the Intel Lab building and collected sensor readings between
February 28 and April 5, 2004.
Four our empirical study, we picked 4 of these 54 motes, namely

motes 1, 11, 13, and 49, which were distributed in di�erent sectors
of the deployment area. We applied our scheme to the data reported
by the temperature sensors of these four motes between March 6 and
March 9, 2004. Since the main goal of the DPS is to reduce data com-
munication between the node and the data sink, we use the number
of updates the nodes send to the sink during operation as the per-
formance metric of choice. We de�ne this metric, named the relative
update rate, as the ratio of the number of updates e�ectively sent when
running the DPS to the number of updates that would have been sent
by the default monitoring scheme. The results reported in this section
have been obtained implementing the LMS-based DPS in Matlab (see
section 2.2.3).
Figure 3.3 shows the relative update rate (in percentage) of mote 11

for three di�erent parameter sets plotted over the error budget emax.
As we can see, a minimum accuracy of 0.5◦C can be guaranteed while
transmitting only about 10% of the collected sensor readings. This
signi�cant reduction in data communication is due to the remarkable
tracking capability of the LMS algorithm. Moreover, no signi�cant
changes in the performance are observed when varying the number
of �lter weights from NLMS = 4 to NLMS = 10. Since the number of
operations to be performed at each time step grows proportionally8 with

8 We recall from section 3.3.1 that the computational cost per iteration of the LMS algorithm is

44 Chapter 3. Temporal Sensor Selection

Figure 3.3.: Relative update rate for mote 11.

NLMS, this value should be kept as small as possible. The tested values
of NLMS allow us to keep the computational overhead and memory
footprint extremely low. For instance, with NLMS = 4 the node must
perform at most 17 operations each 31 seconds and needs to store only
the last 4 sensor readings in addition to the 4 �lter coe�cients and the
�lter parameters.
We also obtained encouraging results for the data collected by other

motes. For instance, �gure 3.4 shows the relative update rate of mote
49. The small performance loss with respect to mote 11 is due to the
fact that the samples collected by mote 49 are more spiky than those
of mote 11. Following these abrupt changes requires the LMS to send
more updates. Finally, �gure 3.5 shows the performance obtained with
two additional data sets, namely those collected by mote 1 and 13.
Mote 1 is located far away from both mote 11 and 49, while mote 13
lies in the same room as mote 11. Also with these data sets we obtained
very good results in terms of data reduction.

4NLMS + 1 when the node operates in normal mode and 2NLMS in stand-alone mode.

3.4. Adaptive Model Selection (AMS) 45

Figure 3.4.: Relative update rate for mote 49.

The above discussed results show the potential communication sav-
ings achievable using LMS as the prediction model of choice for im-
plementing the DPS. As we also mentioned above, one drawback of
this approach is the fact that the �lter length NLMS is �xed a priori al-
though its optimal value can only be determined during data collection.
To cope with this problem, common to other implementations of the
DPS, we propose a generic framework for on-line parameter estimation
and model selection, the AMS, which is described in detail in the next
section 3.4.

3.4. Adaptive Model Selection (AMS)

In section 3.1 we discussed the challenge represented by the selection
of an adequate model for supporting a given forecasting task. Further-
more, we stressed the importance of progressively re�ning the values
of the parameters of the selected model in order to ensure its ability
to follow changing signal dynamics. However, many of the approaches

46 Chapter 3. Temporal Sensor Selection

Figure 3.5.: Relative update rate for motes 1, 11, 13, and 49, for a �lter length
NLMS = 4.

presented in section 3.2, including our own work on the LMS-based
DPS, do not provide any parameter update procedure, or alternatively
suggest methods that require collaboration with the sink or high com-
putational costs and memory usage. Furthermore, none of the previ-
ously described DPS implementations provides a way to monitor the
performance of the used prediction model. However, monitoring the
communication gains achieved by the DPS using di�erent models would
allow one to correct a possibly inappropriate initial model or parameter
choice on the �y.

To overcome these drawbacks, we designed a generic framework for
online model selection. The rationale of our adaptive model selection
(AMS) framework is to let the sensor nodes run a set of di�erent predic-
tion models and evaluate, for each of these models and at each sampling
round, a quality measure that describes the e�ciency of the model in
the currently engaged DPS. In this way, each time data communication
is required, the nodes can select the currently best performing model

3.4. Adaptive Model Selection (AMS) 47

out of the set of candidates and send it to the sink, which will use it to
predict future sensor readings until the next update is received.
In principle, the AMS can be implemented with an arbitrary number

of models of the same class or of di�erent type. For instance, the set
of candidate models could be represented by several LMS �lters corre-
sponding to di�erent values of NLMS. Or by the constant model, an
instance of the LMS, and a few ARIMA models. However, the com-
putational load and memory footprint of the AMS increase with the
number and complexity of the models. Therefore, along with the gen-
eral AMS framework presented in section 3.4.3 below, we also propose
two speci�c implementations of an AMS-based DPS.
Our �rst prototypical implementation of the AMS restricts the set

of candidates to the constant model (CM) and a few representatives
of the autoregressive (AR) model class. This choice is mainly driven
by the fact that AR models have been widely used to implement the
DPS in WSNs. However, AR models may be di�cult to compute and
maintain, and thus only a few of them may be included in the set of can-
didate models [116]. We therefore propose a second, more lightweight
and generic implementation of the AMS, suitable for currently avail-
able sensor networks platforms, that relies on exponential smoothing
(ES) models. ES models guarantee good behavior on a number of dif-
ferent time series and are computationally cheap to maintain [64, 65].
Therefore, we propose this class of models as the most appropriate for
implementing the AMS algorithm and we refer to this implementation
as the ES-AMS. We provide a formal de�nition of both AR and ES
models in section 3.5.1.
In the following, we �rst clarify the performance metric the AMS

uses to select the best performing model out of the set of candidates.
We then describe the racing mechanism, which can be used to dis-
card poorly performing models from the set of candidates. Finally, we
present the AMS algorithm and discuss some relevant implementation
issues. The experimental evaluation of the AR-AMS and ES-AMS is
then provided in the following section 3.5.

3.4.1. Performance Estimates

As sketched above, a sensor node running the AMS maintains a set
of NAMS candidate prediction models {hn} = hn(Xhn,k,θhn,k), 1 ≤
n ≤ NAMS, which are possibly updated at each time instant k. For

48 Chapter 3. Temporal Sensor Selection

each model hn, a given quality measure is recursively estimated, and
the model that optimizes this performance indicator is selected as the
current model.
As we stated previously, the main goal of the DPS is to reduce the

number of updates between a sensor node and the sink. To measure
the performance of the DPS we thus resort to the relative update rate,
as already done in section 3.3.3. The relative update rate is the ratio
of the number of updates e�ectively sent when running the DPS to the
number of updates that would have been sent by the default monitoring
scheme. Let Uhn,k be the relative update rate for the model hn at time
k, where Uhn,1 = 1, 1 ≤ n ≤ NAMS. Uhn,k can be recursively computed
as

Uhn,k =
(k − 1) ∗ Uhn,k−1 + 1

k
, (3.11)

if an update is needed at time k, or as

Uhn,k =
(k − 1) ∗ Uhn,k−1

k
, (3.12)

otherwise. The relative update rate for the default monitoring scheme
is 1, since it requires the transmission of all the collected readings, and
thus any lower value indicates a gain in terms of data communication.
We usually report the update rate as a percentage, thus Uhn,k = 1
means that 100% of the collected samples have been actually transmit-
ted to the sink.
Performance assessment in terms of update rate has been considered

in several implementations of the DPS [97, 114, 166, 194]. However,
we have been the �rst in suggesting to use this indicator to measure
model performance on the node, in order to enable a �exible model
choice [116].
In the context of the AMS it may also be useful to consider the size

of a model update, in terms of number of parameters (and thus num-
ber of bytes) to be transmitted, as part of the performance indicator.
Indeed, di�erent models within the set of candidates may require a
variable number of elements to be sent at each update. For instance,
the default monitoring mode only requires sending the current sensor
readings, while, in general, updating a model hn requires sending both
the input values Xhn,k and the model parameters θhn,k. To take into
account the packet size of a single model update we introduce an alter-
native performance indicator, the weighted relative update rate, which

3.4. Adaptive Model Selection (AMS) 49

we de�ne as follows:

Whn,k = Uhn,k ∗ Chn. (3.13)

Chn is the ratio of the number of bytes required to send an update
of model hn to the number of bytes required to send an update in the
default monitoring mode. We refer to Chn as the model cost. The
weighted relative update rate Whn,k measures the savings in terms of
data rate for model hn at time k with respect to the default monitoring
mode. When the costs Chn of the models hn di�er signi�cantly, the
weighted relative update rate represents a �fairer� indicator of the actual
performance of the individual models. When all models have the same
cost, the weighted relative update rate and the relative update rate are
equivalent.

3.4.2. Racing Mechanism

The number and type of models included in the set of candidates may
vary depending on the application, and the available computational re-
sources and memory resources. However, some of the models initially
included in the set may turn out to perform poorly in terms of relative
update rate or weighted relative update rate. Since maintaining these
models wastes precious computational and memory resources, it is de-
sirable to discard them as soon as possible from the set of candidates. In
this context, the racing mechanism [124] o�ers an e�ective approach for
the automatic identi�cation of models that persistently perform poorly
with respect to other candidates. The rationale of the racing mech-
anism is to determine, on the basis of hypothesis testing [80], what
models among a set of candidates are signi�cantly outperformed by
others. For instance, let h∗ = argminhnWhn,k be the model with the
lowest relative data rate at time instant k among the set of candidate
models, and let ∆(hn,h∗),k = Whn,k−Wh∗,k be the di�erence between the
estimated weighted relative update rates of any model hn and h∗. Re-
lying on the Hoe�ding bound [87], a distribution free statistical bound,
the racing mechanism assumes with probability 1 − δ that h∗ truly
outperforms hn if

∆(hn,h∗n),k > R

√
ln(1/δ)

2k
, (3.14)

50 Chapter 3. Temporal Sensor Selection

where R is the range taken by the random variable ∆(hn,h∗). Thanks
to the lack of parametric assumptions, the Hoe�ding bound requires
no other information than the range of values taken by the random
variables considered, which is known at the nodes. Indeed, since 0 ≤
Whn,k ≤ Chn and 0 ≤ Wh∗,k ≤ Ch∗, it follows that R = Chn + Ch∗, and
the bound for discarding model hn is therefore given by:

∆(hn,h∗),k > (Chn + Ch∗)

√
ln(1/δ)

2k
. (3.15)

The racing mechanism allows to discard poorly performing models
from the set of candidates among which the AMS chooses the current
model. Since the bound gets tighter as k increases, only one model is
eventually maintained on the sensor node. However, since the rationale
of the AMS is to maintain a set of models running concurrently on
the node, the racing process should be aborted once the cardinality
of the set of remaining models reaches a desired size. Furthermore,
discarded models could be periodically readmitted into the set to take
into account possible changes in the data dynamics. Alternatively,
discarded models could be replaced by other candidate models, keeping
the total number of maintained models constant.

3.4.3. AMS Algorithm

Algorithms 3.1 and 3.2 show the pseudocode of the AMS and its aux-
iliary function updateModel, respectively. The AMS algorithm takes as
inputs the error tolerance emax, the number of candidate models NAMS,
the set of models {hn}, and their corresponding costs {Chn}9. The out-
put of the algorithm is the best performing model h∗, to which we also
refer to as the current model. When data collection starts, the AMS
initializes all the models {hn}, sets the current model to be the one with
the lowest model cost10, and sends the �rst update to the sink. Then, at
each data collection round k, the AMS runs the function updateModel
for each model in the set of candidates. The function �rst updates the
model hn including the newly collected sensor reading Xk and then es-
timates the new value for the relative update rate Uhn,k. To this end,
the function computes the current prediction using the virtual model
hvn,k−1. The parameters of hvn,k−1 are not updated with Xk, since they

9 The model costs must all be set to 1 if the relative update rate is used as performance indicator.
10We recommend to include the constant model in every implementation of the AMS, which has
cost = 1, and represents a good default model choice.

3.5. Experimental Evaluation of the AMS 51

represent the parameters that the sink would have used to compute the
prediction if hn were the current model. Thus, a virtual model is only
updated when the prediction error exceeds emax, since in this case the
node would have accordingly sent an update to the sink. Thus, the
function updateModel computes the prediction X̂k using hvn,k−1. Then,

depending on the value of the prediction error X̂k − Xk, the relative
update rate is computed according to equations 3.11 and 3.12.
After running the function updateModel for all models, control re-

turns to AMS, which then behaves as if it were a �classical� DPS scheme.
It therefore checks wether the absolute value of the di�erence between
the reading estimation X̂k, computed at the sink using the current
model h∗, and the actual sensor value Xk does not exceed emax. If the
error threshold is exceeded, the model showing the lowest value for the
relative update rate is chosen as the new current model h∗. Accord-
ingly, a model update composed of the current reading Xk, the input
values Xh∗,k, the model h∗, and the parameters θh∗,k is sent to the sink.
Then, if required, the racing mechanism is run in order to discard or
exchange poorly performing models.
Algorithms 3.1 and 3.2 can easily be adapted to support alternative

metrics rather than the relative update rate to determine the perfor-
mance of the models. For instance, using the weighted relative update
rate (cf. section 3.4.1) would require just a few straightforward modi�-
cations.

3.5. Experimental Evaluation of the AMS

This section shows the ability of the AMS to ensure that the commu-
nication savings obtained using the DPS are always close or equal to
those obtainable with the a posteriori best performing model. To per-
form our experimental study, we implemented the AMS in Matlab using
two di�erent sets of candidate models. The �rst includes the constant
model and 5 di�erent autoregressive models (AR-AMS), while the sec-
ond comprises exponential smoothing models with variable parameters
(ES-AMS). We retrieved several data sets from real WSN deployments
and used them as our test signals. To be able to compare results from
data sets related to di�erent sensors, we also introduced a generalized
error threshold ke. In the following, we �rst describe the details of our
experimental setup, and provide then the actual results in sections 3.5.2
and 3.5.3.

52 Chapter 3. Temporal Sensor Selection

Algorithm 3.1 AMS - Adaptive model selection Algorithm

Require: emax, NAMS, {hn},{Chn}
Ensure: h∗ = argminhnUhn,k

k ← 1
Xk ← getNewReading()
for n = 1 to NAMS do
hn,1 ← initialize(hn,X1)
hvn,1 ← hn,1
Uhn,1 ← 1

end for
h∗ ← argmin{hn}Chn

sendUpdate(Xk,h
∗)

loop
k ← k + 1
Xk ← getNewReading()
X̂k ← predictReading(h∗)
for n = 1 to NAMS do
hn,k,h

v
n,k,Uhn,k ← updateModel(hn,k−1,h

v
n,k−1,Xk)

end for
if (|X̂k −Xk| ≥ emax) then
h∗ ← argmin{hn}Uhn,k

sendUpdate(Xk,h
∗)

{hn} ← racing({hn})
end if

end loop

Algorithm 3.2 updateModel - Algorithm for model updates

Require: k, Xk, emax, hn,k−1, h
v
n,k−1, Uhn,k−1

Ensure: hn,k, Uhn,k

hn,k ← updateModel(hn,k−1,Xk)

X̂k ← predictReading(hVn,k−1)

hVn,k ← updateModel(hVn,k−1,X̂k)

if (|X̂k −Xk| ≥ emax) then

Uhn,k =
(k−1)∗Uhn,k−1+1

k

hvn,k = hn,k
else
Uhn,k =

(k−1)∗Uhn,k−1

k

end if

3.5. Experimental Evaluation of the AMS 53

3.5.1. Experimental Setup

We implemented the DPS using both autoregressive (AR) models [116]
and exponential smoothing (ES) models. We provide here some basic
notation and notions about these two model classes. We then introduce
the data sets used for our evaluation as well as the de�nition of our
generalized error threshold.

Autoregressive Models. We provide an implementation of the AMS us-
ing AR models for two main reasons. First, they have been shown to
be both theoretically and experimentally good candidates for time se-
ries predictions [28, 122]. Second, model parameters can be estimated
by the means of the recursive least square (RLS) algorithm [5], which
allows adapting the parameters to the underlying time series in an on-
line fashion, without the need of storing large sets of past data. Time
series forecasting using AR models is performed by regressing the value
Xk of the time series X at time instant k against the elements of the
time series at the previous p time instants (Xk−1, Xk−2, ..., Xk−p). The
prediction at time k + 1 is thus obtained as:

X̂k+1 = θ1Xk + θ2Xk−1 + ...+ θpXk−p+1 (3.16)

where (θ1, θ2, ..., θp) are the autoregressive coe�cients and p is the or-
der of the AR model, which is thus denoted as AR(p). Following the
notation introduced in section 3.1.1, let θAR(p),k = (θ1,k, θ2,k, ..., θp,k)
be the row vector of parameters and XAR(p),k = (Xk, Xk−1, Xk−p+1) be
the row vector of inputs for a model AR(p) at time instant k. Then
the scalar product:

X̂k+1 = θAR(p),k ·XT
AR(p),k (3.17)

returns the prediction at time instant k + 1. The parameters θAR(p),k

can be computed by means of the RLS algorithm, which consists in
a computationally thrifty set of equations that allows to recursively
update the parameters θAR(p),k as new observations become available
[5]. The related computational cost for an update of the vector θAR(p),k

is 3p3 +5p2 +4p. For our experimental evaluation, we implemented the
AR-AMS using the constant model (CM) and autoregressive models of
orders 1 to 5.

54 Chapter 3. Temporal Sensor Selection

Exponential Smoothing Models. Exponential smoothing is the technique
behind a class of prediction models with excellent predictive ability and
very low computational and memory requirements. ES models are cur-
rently considered one of the most general and e�cient approaches to
time series prediction [45, 65, 90]. Furthermore, recently published re-
sults cast exponential smoothing methods in a sound theoretical frame-
work showing their equivalence, in terms of predictive ability, to the
widely used ARIMA models11 [45, 64, 65], which are however signi�-
cantly more expensive in terms of computation and memory usage.
There exist few subclasses of exponential smoothing models, which

di�er in the number of parameters needed to specify the model and
the way these parameters are updated as new data becomes avail-
able [65, 90]. The simplest exponential smoothing model computes a
weighted average of the past elements of the time series and returns this
value as the forecast for the next element. Slightly more sophisticated
models include a so-called �trend component� that follows the possible
presence of a local linear trend in the time series. Damping parameters
or a seasonal component (to take into account non stationarity and
periodicity in the data) may also further improve the predictive ability
of the model, but often require a disproportional increase in computa-
tion and memory usage [65]. A subclass known as double exponential
smoothing (DES) is widely used in practice and o�ers a very good trade
o� between predictive ability and resource consumption [65]. We there-
fore propose to use this particular subclass of models for implementing
the AMS.12 Using a DES model, the value Xk+m of the time series at
m time steps ahead of k can be estimated, at time step k, using the
following simple linear equation:

X̂k(m) = Lk +m · bk. (3.18)

The values of Lk and bk can be in turn recursively computed as
follows:

Lk = Lk−1 + bk−1 + α · ek
bk = bk−1 + αβek,

(3.19)

where ek represents the one-step forecast error, formally de�ned as:

11For instance, the simple exponential smoothing model is equivalent to the ARIMA(0,1,1)
model; double exponential smoothing (also known as Holt's linear method) is equivalent to
the ARIMA(0,2,2) model [122, p. 373].

12In particular, we consider here DES models with additive trends. Models with multiplicative
trends are less oftenused and rarely provide better performance [65].

3.5. Experimental Evaluation of the AMS 55

ek = Xk − X̂k−1(1) (3.20)

The two parameters α and β that appear in equation 3.19, are the
smoothing constants of the model and may take values in the inter-
val [0, 1]. Thus, following the notation introduced in section 3.1.1,
a double exponential smoothing model h at time k is described as
hk = {Xk, α, β, Lk, bk}. Therefore, no past elements of the time series
other than the current reading Xk must be stored, and a model update
only requires performing few simple operations, as shown in equation
3.19. The forecast X̂k+m is basically a weighted average of past ob-
servations, to which recent data contributes with a higher weight than
past data. In particular, past readings are weighted with coe�cients
that decrease exponentially as the time lag from the current reading
increases, as a closer inspection of equation 3.19 shows. The time con-
stant of this exponential decrease is determined by the values of the
smoothing parameters α and β, hence the name of this class of models.
For our experimental evaluation, we considered a set of DES models
with parameters α and β varying with steps of 0.1 in the intervals
[0.1, 1] and [0, 1], respectively. We point out that the ES model with
parameters (α = 1, β = 0) corresponds to the constant model.

Data sets. To evaluate the performance of the considered implementa-
tions of the AMS, we selected 20 publicly available data sets collected
in real WSN deployments. The data sets have been selected so as to
represent di�erent test signals in terms of the nature of the observed
phenomenon, signal dynamic, sampling frequency, and length. Table
3.2 lists their names and main characteristics.
The Heater data measures the temperature of a heater as cold water

�ows, as reported in [178]. The I Light data set relates to the readings
collected by the light sensor of mote 7 during the �rst 11 days of the
Intel Lab deployment, which has already been described in section 3.3.3.
The Monte Temp and Monte Hum data sets were collected between
March 23, and April 23, 2006, by sensors 3073 and 3074 of node 9,
in the Montepaldi Farm deployment [71]. The data sets Midra ST1,
Midra ST2 andMidra ST3 report soil temperature data registered from
January 1, 2006 to March 30, 2006, at three di�erent plants13 cultivated

13Midra ST1 refers to plant 1, Midra ST2 to plant 2 and Midra ST3 to plant 3.

56 Chapter 3. Temporal Sensor Selection

in the greenhouse of the Midra14 Consortium in Florence (Italy). These
datasets represent the development of a physical phenomenon within
a given time frame but at di�erent sampling locations. The Monte
ST3a, Monte ST3b and Monte ST3c data sets report data collected by
the same physical sensor but in three subsequent time periods.15 All
data refers to the soil temperature collected by sensor 3073 on node 3
in the Montepaldi Farm deployment [71]. The last 10 data sets have
been retrieved from the historical database of the National Data Buoy
Center (NDBC) [139], and refer to data collected by buoy 41012 during
the whole year 2005. We should point out here that we used the 6 data
sets with identi�er 5 to 10 in table 3.2 only for the evaluation of the
ES-AMS.

Table 3.2.: Data sets used as test signals for evaluating the performance of the
AR-AMS and ES-AMS.

N◦ Data set name Sensed variable Sampling Period Source

1 S Heater Temperature 3 seconds 2h30min [178]
2 I Light Light 31 seconds 8 days [19]
3 M Hum Humidity 10 minutes 30 days [71]
4 M Temp Temperature 10 minutes 30 days [71]
5 Midra ST1 Soil temperature 10 s 3 months [71]
6 Midra ST2 Soil temperature 10 s 3 months [71]
7 Midra ST3 Soil temperature 10 s 3 months [71]
8 Monte ST3a Soil temperature < 1min 2 months [71]
9 Monte ST3b Soil temperature < 1min 2 months [71]
10 Monte ST3c Soil temperature < 1min 2 months [71]
11 NDBC WD Wind direction 1 hour 1 year [139]
12 NDBC WSPD Wind speed 1 hour 1 year [139]
13 NDBC DPD Dominant wave period 1 hour 1 year [139]
14 NDBC AVP Average wave period 1 hour 1 year [139]
15 NDBC BAR Air pressure 1 hour 1 year [139]
16 NDBC ATMP Air temperature 1 hour 1 year [139]
17 NDBC WTMP Water temperature 1 hour 1 year [139]
18 NDBC DEWP Dewpoint temperature 1 hour 1 year [139]
19 NDBC GST Gust speed 1 hour 1 year [139]
20 NDBC WVHT Wave height 1 hour 1 year [139]

Generalized Error Threshold ke. To be able to compare results obtained
from di�erent data sets, the error threshold emax is computed propor-

14Multidisciplinary Institute for Development, Research and Applications.
15Monte ST3a reports data collected from January 1, 2007 to February 28, 2007, Monte ST3b
from March 1, 2007 to April 30, 2007 and Monte ST3c from May 1, 2007 to June 30, 2007.

3.5. Experimental Evaluation of the AMS 57

tionally to the range r of the signal, using a given factor ke. For the
data sets described above, we computed the range r as the di�erence
between the maximum and minimum values in the time series. We let
the value of ke vary between a minimum of 0.01 and a maximum of
0.1. The case ke = 0.01 accounts for scenarios in which high preci-
sion is required, while ke = 0.1 corresponds to a very rough bound on
the tolerated error. For instance, the range of Midra ST1 data set is
r = 31.25◦, and a generic error thresholds ke of 0.01 corresponds to an
accuracy of emax = ker = 0.3o. Such an accurate temperature moni-
toring may be required, for example, for biological studies aimed at the
analysis of plant growth [30]. On the other hand, ke = 0.1 corresponds
to a tolerance emax = ker = 3◦C, which could be appropriate for a
watering system to be triggered.

3.5.2. Performance of the AR-AMS

We discuss now the performance of the AR-AMS, which we imple-
mented using the constant model (CM) and �ve autoregressive models
of orders 1 to 5 (AR1, . . ., AR5) as candidate models. We present
our results both in terms of relative update rate and weighted rela-
tive update rate. We also discuss the convergence rate of the racing
mechanism, as well as the average gains (in terms of weighted update
rate) obtained as the generalized error threshold ke increases. For our
evaluation, we used both the �rst 4 data sets listed in table 3.2 and all
the NDBC data sets (data sets 11 through 20 in the table).
Table 3.3 reports the relative update rate obtained when running the

DPS with model selection based on the AR-AMS using ke = 0.01. Bold
faced �gures indicate the best performing models, i.e., all models that
are not signi�cantly outperformed by the model with the best (i.e.,
lowest) update rate.16 As shown in table 3.3, in most cases AR models
outperform the CM. It also shows that their performance is usually sta-
tistically equivalent, regardless of the model order. However, the CM
performed signi�cantly better than any AR model in three time series
(namely I Light, NDBC DPD and NDBC WSPD) and yielded simi-
lar performance for two time series (NDBC AWP and NDBC GST).
These apparent de�ciencies of AR models are due to the nature of those
time series, qualitatively characterized by sudden and sharp changes.
These abrupt changes cause the variance in the estimation of the AR

16Signi�cance is assessed using a one tailed t-test with respect to best model, p < .05.

58 Chapter 3. Temporal Sensor Selection

Table 3.3.: Relative update rate for DPS run with the AR-AMS model selection
procedure (ke = 0.01). Bold faced numbers indicate models that yielded
the best performances (one tailed t-test with respect to best model,
p < .05).

CM AR1 AR2 AR3 AR4 AR5 AMS
S Heater 74 75 61 59 59 59 AR3
I Light 38 40 39 40 40 39 CM
M Hum 53 53 49 50 49 49 AR4
M Temp 48 48 45 45 44 44 AR4
NDBC DPD 65 85 80 80 80 80 CM
NDBC AWP 72 73 73 73 73 73 CM
NDBC BAR 51 50 39 39 39 37 AR5
NDBC ATMP 39 39 36 36 36 36 AR3
NDBC WTMP 27 27 21 21 21 20 AR5
NDBC DEWP 57 52 52 52 52 52 AR3
NDBC WSPD 74 84 82 83 83 83 CM
NDBC WD 85 81 81 81 81 81 AR1
NDBC GST 80 81 80 80 80 81 CM
NDBC WVHT 58 56 56 56 56 56 AR3

coe�cients to increase, making the models unstable and thus allowing
a simple CM to provide better performances in terms of update rates
(with gains of about 15% with respect to AR models for NDBC DPD
and gains up to 8% for NDBC WPSD over a one year period). The last
column of Table 3.3 shows the model that yielded the lowest update
rate, which was consequently selected by the AMS procedure.

Further, we assess the performances of the AMS in terms of the
weighted relative update rate Whi,k = Uhi,k ∗ Chi introduced in sec-
tion 3.4.1. The model costs Chi are computed assuming that each data
sample and parameter can be stored in one byte. Accordingly, the con-
stant model requires 1 byte to be sent to the sink, while the update of
an AR(p) model requires 2p bytes (p bytes for the initial input values
and p bytes for the parameters). The length Lhf of both header and
footer of a packet, to which we also refer to as the packet overhead,
depends on the speci�c communication protocol. Since the overhead
of a TinyOS packet ranges between 12 and 36 bytes, we considered an
average packet overhead of 24 bytes for our experiments. Thus, the
number of bytes that need to be transmitted in the default monitoring
scheme is just Lhf + 1, while updating a model AR(p) requires sending
Lhf + 2p bytes. The cost CAR(p) is thus simply computed as the ratio

3.5. Experimental Evaluation of the AMS 59

Table 3.4.: Weighted relative update rate for DPS run with the AR-AMS model
selection procedure (ke = 0.01). Bold faced numbers indicate models
that yielded the best performances (one tailed t-test with respect to
best model, p < .05).

CM AR1 AR2 AR3 AR4 AR5 AMS
S Heater 74 78 68 70 76 81 AR2
I Light 38 42 44 48 51 53 CM
M Hum 53 55 55 60 62 66 CM
M Temp 48 50 50 54 56 60 CM
NDBC DPD 65 89 89 95 102 109 CM
NDBC AWP 72 75 81 88 93 99 CM
NDBC BAR 51 52 44 47 49 50 AR2
NDBC ATMP 39 41 40 43 46 49 CM
NDBC WTMP 27 28 23 25 27 28 AR2
NDBC DEWP 57 54 58 62 67 71 AR1
NDBC WSPD 74 87 92 99 106 113 CM
NDBC WD 85 84 91 98 104 111 AR1
NDBC GST 80 84 90 96 103 110 CM
NDBC WVHT 58 58 63 67 71 76 CM

24 + 2p/24 + 1.

Table 3.4 reports the performances of the CM and AR(p) models in
terms of the weighted relative update rate, computed according to the
considerations reported above. Since the cost of the CM is 1, the �rst
columns of table 3.3 and 3.4 are identical. On the other hand, there is a
general deterioration of performances of AR models. Indeed, although
AR models still show a better predictive ability, the cost associated
with sending their parameters lower their overall performance. Out of
all tested time series, AR models only outperformed the CM �ve times
(on S Heater, NDBC BAR, NDBC WTMP, and NDBC DEWP). The
AR models eventually selected by AMS were AR(2) (three times) and
AR(1) (twice). As before, the rightmost column of table 3.4 lists the
model that yielded the lowest weighted update rate for each time series.

We further analyze the convergence speed obtained when relying on
the racing mechanism. To this end, we considered the �rst 1000 el-
ements of all the available time series and used the weighted update
rate metric Whi,t to evaluate performance of competing models with a
con�dence 1 − δ = 0.95%. The number of time steps needed by the
racing mechanism to discard poorly performing models depends on the
nature of the time series. The convergence to a single best model in less
than 1000 time instants was obtained in four cases. For other cases,

60 Chapter 3. Temporal Sensor Selection

0.01

0%

20%

R
el

at
iv

e
up

da
te

 r
at

e

Accuracy k

40%

60%

80%

100%

0.02 0.05 0.1 0.2

e

Figure 3.6.: Relative update rate as the generalized error threshold ke increases.

subsets of two or three remaining models were still in competition after
1000 time instants. The performances of those remaining models were
ranging from less than 1% up to 5%, and the a posteriori best model
was always part of the remaining set. AR(4) and AR(5) were discarded
in all cases due to the overhead incurred in sending their parameters
to the sink. For �ve time series, AR(3) and AR(4) were in the remain-
ing candidates models, while for the other nine time series, either CM,
AR(1), or both were still competing after the 1000th time step.
Finally, �gure 3.6 reports the relative update rate obtained for each

of the considered 14 time series, as the accuracy threshold ke is relaxed.
For these experiments, the AMS was run using the weighted relative
update rate of competing models as its performance indicator. Figure
3.6 shows that for ke = 0.05, which corresponds to good approximation
of the sensed phenomenon, less than 20% of data actually needs to be
sent to the sink (on average) with respect to the default monitoring
scheme. The update rate further decreases as the value of ke increases.

3.5. Experimental Evaluation of the AMS 61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

dataset

U
pd

at
e

R
at

e

Update rate for es−ams and optimal a−posteriori models fo each dataset

es−ams
optimum a−posteriori (es)
optimum a−posteriori (ar)

Figure 3.7.: Relative update rates for the ES-AMS and the optimal a posteriori
model for each data set.

Furthermore, the predictive capacity of any method tends to converge
to that of the constant model as ke increases. In particular, for values
of ke higher than 0.1, the use of the AR-AMS does not provide, in
general, for signi�cantly better gains in terms of update rate than those
guaranteed by the use of the simple CM.

3.5.3. Performance of the ES-AMS

As done above for the AR-AMS, we use the relative update rate to
assess the performance of the ES-AMS procedure. In particular, for all
the data sets reported in table 3.2, we compute, along with the update
rate reached by the ES-AMS, both the update rate of the optimal a
posteriori model within the exponential smoothing model class, and
the update rate of the optimal a posteriori model in the autoregressive
model class. The optimal a posteriori model is the model that, among
those available, reaches the lowest relative data rate at the end of the

62 Chapter 3. Temporal Sensor Selection

1 2 3 4 5 6 7 8 9 1011121314151617181920

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dataset

α
Optimal a−posteriori values for smoothing parameter α

kε = 0.01

kε = 0.05

kε = 0.1

1 2 3 4 5 6 7 8 9 1011121314151617181920

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dataset

β

Optimal a−posteriori values for smoothing parameter β

kε = 0.01

kε = 0.05

kε = 0.1

Figure 3.8.: Optimal a posteriori values of the smoothing parameter α for all the
20 considered data sets and three di�erent values of ke.

observation period. In other words, it is the model we would have
liked to know at the beginning of the observation. We computed the
optimal a posteriori model also using AR models in order to compare
the results obtained with the ES-AMS with those achieved by the AR-
AMS. Figure 3.7 shows the relative update rate obtained for all data
sets when ke = 0.01. The performance of the ES-AMS in terms of
update rate is very close to that of the optimal a posteriori model, for
all the 20 data sets. Furthermore, the ES-AMS often outperforms even
the optimal a posteriori AR model.

In this chapter, we stated several times that the need for on-line
model selection in the context of the DPS is mainly due to the fact
that there is in fact no general a priori best model choice. In particular,
the predictive ability of a model may depend upon the nature of the
data being collected, the default sampling rate, or the approximation
threshold emax. Figures 3.8 and 3.9 support this statement by showing
the values assumed by the smoothing parameters α and β for the 20
data sets as the generalized error thresholds ke increases. For instance,
for data sets 8, 9, and 10, the value of the parameter α for ke = 0.01

3.6. Evaluation of the AMS on a Real WSN Deployment 63

1 2 3 4 5 6 7 8 9 1011121314151617181920

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dataset

α

Optimal a−posteriori values for smoothing parameter α

kε = 0.01

kε = 0.05

kε = 0.1

1 2 3 4 5 6 7 8 9 1011121314151617181920

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dataset

β

Optimal a−posteriori values for smoothing parameter β

kε = 0.01

kε = 0.05

kε = 0.1

Figure 3.9.: Optimal a posteriori values of the smoothing parameter β for all the
20 considered data sets and three di�erent values of ke.

is 1, 0.7, and 0.9 respectively. As reported in table 3.2, these data sets
correspond to time series captured by one and the same sensor over
subsequent time periods. In order to show the e�ect of a bad model
choice of the relative update rate, we consider an example based on
data sets 8 and 9. While for data set 8 the best model choice is the
constant model (α = 1, β = 0), the optimal a posteriori model for data
set 9 is (α = 0.7, β = 0.1). For data set 9 the optimal a posteriori
model reaches a relative update rate of 76.69%, while the constant
model manages to achieve 87.93%. This shows that even for the same
sensor, the optimal model choice may vary signi�cantly over time.

3.6. Evaluation of the AMS on a Real WSN

Deployment

In this section, we �nally report about our experience in testing the
ES-AMS framework on a lab-scale WSN deployment. In order to run
the AMS on sensor nodes, we implemented it as a TinyOS application,
which is described in detail in section 6.2. The application collects

64 Chapter 3. Temporal Sensor Selection

sensor readings at regular time intervals and reports them to a data
sink using the DPS strategy. Each time an update is sent to the sink
a (possibly new) model is selected from the set of candidates using
the AMS strategy. In particular, we implemented the ES-AMS model
selection strategy, which constructs the set of candidates using ES mod-
els corresponding to di�erent values of the smoothing constants α and
β. As we also detail in section 6.2, in our current implementation we
let α and β vary, with step 0.1, within the intervals [0.1, 1] and [0, 1],
respectively. Thus, the number of models in the set of candidates is
NAMS = Nα · Nβ = 10 · 11 = 110, where Nα and Nβ represent the
considered number of di�erent values of the parameters α and β, re-
spectively.
We thus deployed 10 nodes in our lab and let them run the ES-

AMS for several days. The nodes collected temperature readings from
the external temperature sensor of the Tmote Sky (see also section
2.2.1). To observe the behavior of the ES-AMS under di�erent oper-
ating conditions, we let the nodes collect sensor data at di�erent rates
and using di�erent error thresholds. Table 3.5 shows a list of the 10
nodes included in the deployment and their corresponding values of the
sampling interval (reported in seconds) and error threshold (reported
in degree Celsius). Figure 3.10 shows our experimental setting.17 The
sink node, placed in the lower right corner of the deployment area,
forwarded the readings it received from the nodes to a desktop com-
puter running our TinyLAB tool (see section 6.1). Using TinyLAB we
were able to immediately import the data in Matlab, visualize it in
real-time, and then comfortably perform the o�ine analysis presented
below, which refers to the �rst two hours of data collection.
To results obtained in this simple experimental setting are qualita-

tively very similar to those discussed in section 3.5.3. In particular,
�gure 3.11(a) shows the relative update rate achieved by the ES-AMS
for node 1 as a function of time. The red horizontal line in this plot
represents the relative update rate achieved by the optimal a posteri-
ori model at the end of the observation period. This line represents
the performance eventually achieved by a DPS running a single model,
whereby the latter corresponds to the model, within the set of can-
didates, that achieves the maximal achievable communication savings.
As we can see, the performance of the ES-AMS asymptotically con-

17The nodes have been connected to a power outlet using USB cables, but they reported data to
the sink using wireless communication.

3.6. Evaluation of the AMS on a Real WSN Deployment 65

Table 3.5.: Relevant parameter settings for the 10 nodes included in the
deployment.

Node ID Role Sampling interval (s) Error threshold (◦C)
0 sink - -
1 sensor 5 0.1
2 sensor 10 0.1
3 sensor 15 0.1
4 sensor 5 0.5
5 sensor 10 0.5
6 sensor 15 0.5
7 sensor 5 1
8 sensor 10 1
9 sensor 15 1

Figure 3.10.: Experimental setting.

66 Chapter 3. Temporal Sensor Selection

verges to that of the a posteriori optimum. Further, �gure 3.11(b) and
3.11(c) show the values of the smoothing constants of the current model
h∗ selected by node 1 as a function of time. The a posteriori optimal
model for node 1 has smoothing constants equal to (α, β) = (0.8, 0).
We can again observe that the ES-AMS eventually selects the �optimal�
values of the smoothing constants.

As shown in table 3.5 node 1 represents the sensor operating under
the more stringent conditions both in terms of sampling rate and error
threshold. To show that the above reported considerations hold also
for the other nodes within the deployment, we now consider the per-
formance of node 9, which operates under the less stringent conditions.
In particular, �gure 3.12 shows, for node 9 the same data as �gure
3.11, and allows to make the same considerations reported above con-
cerning the asymptotically optimal behavior of the ES-AMS. However,
we should also note that in this case the optimal relative update rate
reaches the extremely low value of 0.5%. This is due to the fact that
during the observation period the temperature in the room where the
nodes were deployed varied mainly within an interval of about 1◦C.
Since for node 9 the error threshold was set to 1◦C, only very few
updates have been necessary to comply with the de�ned accuracy re-
quirements. In general, if the variability range of the signal is not at
least few times higher than the error threshold emax, the communica-
tion gains achievable using the ES-AMS are minimal. In these cases,
using a simple DPS running the constant model can usually ensure high
performance with minimal e�ort. In real deployments, however, it is
not always possible to know a priori the variability range of the signal,
which may anyway vary over time and depend on the speci�c location
of the nodes. For instance, even in our small indoor deployment the
variability range of the temperature measured by nodes placed near
a window may rapidly sink if the window is left open for about 10
minutes. Such �unpredictable� events may induce an approximatively
linear increase or decrease of the signal that the constant model cannot
follow e�ciently. Therefore, unless a reliable estimation of the signal
dynamic is available, the use of the ES-AMS should be preferred over
implementations of the DPS that do not provide for automatic model
selection. In particular, our results show that the ES-AMS can ensure
nearly optimal communication savings without the need of any a priori
information on the signals of interest.

3.6. Evaluation of the AMS on a Real WSN Deployment 67

 0 10 20 30 40 50 60 70 80 90 100 110 120
 0%

 10%

 20%

 30%

 40%

 50%

time (minutes)

R
el

at
iv

e
up

da
te

 r
at

e
Node 1

(a) Relative update rate (U
opt

 = 15%)

ES−AMS
Optimal a posteriori

 0 10 20 30 40 50 60 70 80 90 100 110 120
 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

time (minutes)

S
m

oo
th

in
g

co
ns

ta
nt

(b) Value of the smoothing constant α (α
opt

 = 0.8)

 0 10 20 30 40 50 60 70 80 90 100 110 120
 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

time (minutes)

S
m

oo
th

in
g

co
ns

ta
nt

(c) Value of the smoothing constant β (β
opt

 = 0)

Figure 3.11.: Relative update rate (a), and values of the smoothing constant α (b)
and β (b) of the current model h∗, as a function of time. In brackets
the correspondent values for the a posteriori optimal model.

68 Chapter 3. Temporal Sensor Selection

 0 10 20 30 40 50 60 70 80 90 100 110 120
 0%

 10%

 20%

 30%

 40%

 50%

time (minutes)

R
el

at
iv

e
up

da
te

 r
at

e

Node 9

(a) Relative update rate (U
opt

 = 0.5%)

ES−AMS
Optimal a posteriori

 0 10 20 30 40 50 60 70 80 90 100 110 120
 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

time (minutes)

S
m

oo
th

in
g

co
ns

ta
nt

(b) Value of the smoothing constant α (α
opt

 = 0.6)

 0 10 20 30 40 50 60 70 80 90 100 110 120
 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

time (minutes)

S
m

oo
th

in
g

co
ns

ta
nt

(c) Value of the smoothing constant β (β
opt

 = 0.1)

Figure 3.12.: Relative update rate (a), and values of the smoothing constant α (b)
and β (b) of the current model h∗, as a function of time. In brackets
the correspondent values for the a posteriori optimal model.

3.7. Summary 69

3.7. Summary

In this chapter, we focused on the DPS as a generic method to perform
temporal sensor selection in WSN. In this context, we �rst provided
an in-depth description of the main characteristics of the DPS and
outlined the assumptions it relies upon as well as the requirements it
must comply with. Then, we described a lightweight implementation
of the DPS based on the LMS adaptive �lter. Our LMS-based DPS
achieved signi�cant communication savings with respect to the default
monitoring mode on several real-world data sets. We then introduced
the AMS, an adaptive model selection algorithm that enables sensor
nodes to autonomously select, out of a set of candidates, the best per-
forming model to run the DPS. The AMS allows to overcome the main
drawback of the LMS-based DPS and several other existing implemen-
tations, namely the lack of adequate procedures for automated model
selection and online parameter estimation. We suggested two di�erent
implementations of the AMS based on autoregressive and exponential
smoothing models and analyzed their performance on a large number
of data sets retrieved from real WSN deployments. Our experimental
evaluation showed the ability of the AMS to provide for a good model
choice requiring limited computational and memory resources. Finally,
we reported our experiences in running the AMS on a small scale indoor
WSN deployment.

4. Spatial Sensor Selection

In the previous chapter, we showed how the temporal data report-
ing interval of each sensor in a wireless sensor network (WSN) can be
controlled using adequate temporal sensor selection strategies. In this
context, we assumed that all the nodes in the network collect data
at regular time intervals ∆t, but only a subset of them actually im-
mediately report their readings to the data collector. We believe this
approach to be appropriate for small networks and in general when
the spatial density of the data is low. But as network size and node
redundancy increase, data collected by neighboring nodes may become
unnecessarily redundant. Indeed, if the actual density of the deployed
nodes is higher than strictly required to comply with the accuracy re-
quirements of the application, making all nodes collect data at each
sampling round may no longer be necessary nor convenient. In these
cases, spatial sensor selection strategies may come into play to individ-
uate, possibly at each sampling round, an adequate subset of nodes to
perform sampling and data reporting.

The selection criteria used to determine the set of active nodes clearly
depend on the speci�c requirements of the application. In this chapter,
we focus on applications having the reconstruction of a sensor �eld as
their ultimate goal. We thus investigate the design of spatial sensor
selection strategies able to comply with the requirements of such ap-
plications. In this context, we �rst show that the �eld reconstruction
problem can be properly formalized as a coverage problem. We thus
suggest to use the well-known coverage con�guration protocol (CCP)
by Xing et al. [205], as a basic technique to perform spatial sensor se-
lection. We then address some ine�ciencies of CCP and propose novel
heuristics to improve its performance. In particular, we introduce a
technique to rank the relevance of single sensor nodes for the global
sensing task. Using this ranking for guiding the sensor selection pro-
cess, we can signi�cantly reduce the control overhead of CCP. Further,
we show that our sensor ranking method can be successfully adopted
also to improve the performance of selection strategies based on ran-

72 Chapter 4. Spatial Sensor Selection

dom node activations. Finally, we also consider the possibility to use
our sensor ranking strategy to in�uence the activity of a node as a data
router. To this end, we analyze the interplay of our optimized random
sensor selection strategy with the CTP data collection protocol [58,68].
In the next section 4.1, we provide a more detailed de�nition of the

�eld reconstruction problem in WSN. We then review related work in
section 4.2. In section 4.3, we show under which assumptions the �eld
reconstruction problem can be reduced to a coverage problem. We then
summarize and discuss the relevant aspects of the CCP protocol, as well
as its applicability to the �eld reconstruction scenario in section 4.4.
We then introduce our sensor ranking technique and optimized version
of CCP in section 4.5. In section 4.6, we report experimental results
showing the ability of our sensor ranking strategy to reduce the over-
head of CCP. In section 4.7, we present and evaluate the performance
of our sensor ranking strategy when used in conjunction with a random
sensor selection scheme. We further discuss the interplay between sen-
sor selection and routing in section 4.8. Finally, section 4.9 summarizes
and concludes the chapter.

4.1. Field Reconstruction in WSNs

In a typical monitoring application based on WSNs, the goal of the net-
work consists in capturing, possibly at regular time intervals, the values
of a sensor �eld over a target area. Since a WSN can only sample the
sensor �eld at discrete, typically irregularly spaced locations, adequate
reconstruction algorithms to compute the values of the �eld at any
point of the region of interest (RoI) must be applied. Leveraging the
terminology commonly used in image processing literature [75,132,180],
we refer to the process of computing the values of the sensor �eld over
the target area, starting from the samples collected by the WSN, as the
�eld reconstruction or �eld recovery process. Further, we refer to the
set of positions at which the samples are collected as a sampling geome-
try or sampling pattern. If the samples are collected over a regular grid
we accordingly speak of regular or uniform sampling geometry [132].
Since the positions of the samples coincide with the positions of the
nodes that collected them, a subset of nodes actively sampling the
sensor �eld constitutes a sampling geometry. In this context, sensor
selection strategies can help in individuating adequate subset of nodes,
and thus sampling geometries, whose readings, once reported at the

4.1. Field Reconstruction in WSNs 73

central data collector, can enable reliable reconstruction of the sensor
�eld of interest. To this end, the characteristics and requirements of
the speci�c algorithm used at the central server must be known. In the
following, we brie�y discuss the criteria that, in our opinion, should
guide the choice of an adequate reconstruction algorithm to be used in
the context of WSNs.

The �eld reconstruction problem has been studied in several research
�elds beyond WSNs, like in computer vision, and for medicine, astron-
omy, or geophysics applications [126, 146]. Accordingly, a vast litera-
ture on theoretical principles and practical algorithms for performing
�eld reconstruction is available [126, 195]. Several techniques, how-
ever, cannot be applied to reconstruct sensor �elds sampled by a WSN.
Indeed, many algorithms require the samples to be available over a
grid [146, 171, 195], while others work properly only for sampling ge-
ometries resulting from the perturbation (jittering) of a uniform pat-
tern [42, 126]. Clearly, these assumption are not likely to be met for
the sampling patterns typically o�ered by a WSN.

Indeed, in real WSN deployments the actual spatial distributions of
the nodes may be highly irregular and poorly controllable [10, 19, 37,
185, 186, 190]. Irregularities may result from speci�c characteristics
of the terrain and practical di�culties in placing the nodes with care
at the �correct� positions [63]. Furthermore, nodes could move after
deployment due to the action of weather (e.g., wind, rain), animals or
humans. Therefore, assuming a regular, or controlled, placement of
sensor nodes in WSNs is often unrealistic. For this reason, algorithms
performing reconstruction from samples collected by a WSN must be
able to cope with arbitrary, irregular sampling geometries.

In this context, we found the ACT reconstruction algorithm [56,
75, 169, 180] to be particularly suited to be used in WSN settings.
The ACT is a well-known technique to process medical or geophysics
data [158, 182] and is particularly robust against the presence of large
gaps between, or dense clusters of, samples [75]. Furthermore, it has
been shown to achieve better reconstruction performance with respect
to other specialized algorithms and with di�erent kind of data [75,158,
182]. Although the ACT is a well-known, generic technique to perform
reconstruction from scattered samples, it has received only little atten-
tion in the WSN literature [143, 152]. In the context of our work, we
assume the ACT to be the reconstruction algorithm of choice. With this
assumption, justi�ed by the wide applicability and good performance

74 Chapter 4. Spatial Sensor Selection

of the ACT, we show that the problem of selecting favorable sampling
geometries for �eld reconstruction can be reduced to a coverage prob-
lem. This makes it possible to leverage coverage preserving algorithms
as sensor selection strategies in the �eld reconstruction scenarios we
are considering. In particular, the well-known coverage con�guration
protocol (CCP) [205], can be adapted without di�culties to our ap-
plication context, although it was tailored for surveillance and target
detection applications.

Before going into further details, however, we �rst review related
wok in the following section 4.2. We will then come back to the ACT
algorithm and the requirements it poses on the sampling geometry in
section 4.3.

4.2. Related Work

Several authors within and beyond the WSN research community in-
vestigated the spatial sensor selection problem, contributing a large
number of interesting approaches. In the following, we introduce the
contributions that most closely relate to our own work and outline their
main merits as well as possible drawbacks. For the sake of simplicity,
we classify related work into six di�erent categories and discuss it in
just as many subsections. However, some e�orts may belong to and
thus be mentioned within more than one category.

We start our exposition with the presentation of approaches focus-
ing on the �eld reconstruction problem in WSNs. Since we reduce the
problem of sensor selection for the purpose of �eld reconstruction to a
coverage problem, we move on presenting relevant coverage preserving
algorithms. Afterwards, we review approaches leveraging random sam-
pling techniques to perform spatial sensor selection. These latter ap-
proaches are relevant to our work since they relate to the contributions
presented in section 4.7. For the sake of completeness, we also brie�y
review utility- and model-based sensor selection algorithms as well as
techniques focusing on the computation of aggregates. The approaches
belonging to these three latter categories, however, only partially relate
to our work. Therefore, skipping their discussion will not hamper the
reader to follow the rest of the chapter.

4.2. Related Work 75

4.2.1. Field Reconstruction

Sensor selection algorithms focusing on �eld reconstruction applica-
tions aim at controlling the number and spatial distribution of the
nodes so as to enable an accurate recovery of the sensor �eld. Several
authors addressed the thereby arising challenges and proposed interest-
ing approaches to deal with them on both the theoretical and practical
side [16,37,94,95,123,127,140,143,152,155,157,175,203,213].

Willet et al. reckon that �high spatial densities of sensors are desir-
able for achieving high resolution and accurate estimates of the envi-
ronmental conditions, but high densities also place heavy demands on
bandwidth and energy consumption for communication.� [203]. To help
reduce the number of sensing nodes in such high density scenarios, they
propose a two-step approach based on a preview and a re�nement step.
The network is �rst divided into regular cells using recursive dyadic par-
titioning. Each cell corresponds to a logical cluster, and for each cluster
a node is assumed to take over the role of clusterhead. In the preview
phase, a subset of the nodes samples and reports data to the sink. As
data makes its way towards the sink, each clusterhead performs data
aggregation by �tting piecewise linear models called platelets [204] to
the sensor measurements. The more homogenous the data, the fewer
number of platelets (and, thus, number of bits) is needed to represent
them. Since the sensor �eld is assumed to be piecewise homogeneous,
the use of platelets allows to signi�cantly reduce the amount of infor-
mation that must eventually reach the sink. Across the boundaries
between homogenous regions, however, the �eld exhibits abrupt spatial
changes and thus the possibility to aggregate data decreases. Observing
the aggregated data, the sink can individuate (boundary) regions with
high information content and thus trigger a re�nement step to gather
additional data from these regions. This approach, dubbed Backcast-
ing, has proven very e�cient in detecting boundary regions and thus
allowing to reconstruct piecewise smooth �elds. However, the approach
does not extend to the general �eld reconstruction setting we consider
in our work. Additionally, the sampling pattern is considered to be a
regular grid and the extension of the approach to irregular geometries
is not investigated.

Other approaches elaborating on the classical rate-distortion prob-
lem, like those reported in [123, 155, 156], assume uniform sampling
geometry and sensor �elds with very speci�c characteristics (e.g., sta-

76 Chapter 4. Spatial Sensor Selection

tionary Gaussian �elds).
Moving beyond the assumption of uniform nodes deployments, the

approach presented in [152] lets the sensor nodes construct a sampling
geometry that resembles a binary blue noise sampling pattern. The
main feature of a blue noise pattern consists of having a spectrum
with very little low-frequency content and no concentrated spikes of en-
ergy [132]. Thanks to these characteristics, �elds sampled using a blue
noise pattern can be reconstructed without aliasing e�ects. Or, better
said, aliasing appears on the recovered �eld as di�used noise instead of
in the form of visible artifacts [42,132]. There exist standard methods
to generate a blue noise pattern starting from some random distribu-
tions, and the authors of [152] present a modi�cation of such methods
that is suitable to be used in WSN settings. A distributed algorithm to
generate approximate blue-noise sampling patterns is described, while
performance is evaluated considering an optimal, centralized solution.
The main rationale of the distributed algorithm is to make nodes de-
cide about their deactivation by setting appropriate backo� timers.
Nodes whose deactivation timers exceeds some pre-de�ned threshold
will remain active and contribute to the generation of the blue noise
sampling geometry. The main disadvantage of this approach lies in the
need to transmit the deactivation beacons, especially considering that
the algorithm tries to maximize the number of nodes that deactivate
themselves.
Dong et al. [48] investigate the impact of the sampling geometry on

the quality of the reconstruction of a 1-dimensional signal. They con-
sider both uniform and random sampling geometries and resort to a
nearest neighbor linear estimator that minimizes the MMSE1 as a re-
construction technique. Their asymptotic analysis shows that, in the
case of high signal-to-noise-ratio (SNR), uniform geometries allow to
achieve signi�cantly better reconstruction with respect to random ones.
However, the gains in selecting a uniform sampling pattern shrink as
the SNR decreases. This latter result is particularly interesting since
it suggests that, under the given assumptions, random sensor selection
can provide for performance comparable to that of more complex selec-
tion schemes. We elaborate more on the potential of random sampling
in sections 4.2.3 and 4.7.
In a series of publications Nordio et al. [140�143] studied some theo-

retical issues related to the problem of �eld reconstruction from nonuni-

1 Minimum mean square error.

4.2. Related Work 77

form samples in the context of wireless sensor networks. In particular,
they investigate the performance of linear reconstruction �lters for ban-
dlimited signals [142]. They provide analytical expressions for the mean
square error (MSE) of the reconstruction in the asymptotical case in
which both the bandwidth of the signal and the number of nodes grows
to in�nity [141, 142]. In their study, the authors also investigate the
in�uence of noise in the measurements and errors in the estimation of
the positions of the nodes [142]. Further, they show that in order to
analyze the reconstruction problem exactly it is necessary to dispose
of the analytical expression of the eigenvalue distribution of the recon-
struction matrix [143]. Since this expression is unknown, they provide
an approximation thereof and use it as the basis for their analysis.
The results presented by Nordio et al. [140�143], although retrieved for
an asymptotical case and mostly only for 1-dimensional �elds, allow
to characterize the reconstruction performance of speci�c linear �lters
with respect to several parameters like the number of sensing nodes
or the level of noise in the data. In our approach, we do not consider
theoretical performance in terms of MSE but focus on more practical
methods for providing appropriate sampling geometries.

4.2.2. Coverage Preserving Algorithms

In surveillance and target detection and tracking scenarios, WSNs are
typically required to provide spatial coverage over a region of interest
at each time instant. In these scenarios, sensor nodes are equipped
with sensors enabling the detection of the phenomenon of interest, e.g.,
the presence of a vehicle or person, with good accuracy up to a certain
distance, which is referred to as the sensing range Rs of the node. For
instance, typical infrared sensors may allow to detect a human intruder
present at up to Rs = 3m from the node itself. Assuming isotropic
sensor behavior, the area covered by a node can be modeled as a discus
DRs(c) having the node itself as its center c and a radius given by
the sensing range Rs. Guaranteeing constant coverage thus requires
scheduling node activations so that, at each time instant, each point
of the RoI lies within the sensing range of at least one node. More
precisely, this type of coverage is known in the literature as 1-coverage.
Generalizing the de�nition, a sensor selection algorithm can guarantee
k-coverage if, at each time instant, each point of the RoI is within the
sensing range of at least k sensors [205,211]. For instance, points A, B,

78 Chapter 4. Spatial Sensor Selection

and C in Figure 4.1 are, respectively, 1-,2-, and 3-covered, while point
D lies outside the area covered by the nodes and is therefore uncovered
or 0-covered.

Figure 4.1.: Area covered by three nodes having all the same sensing range Rs.
Points A, B, C, and D are 1-, 2-, 3-, and 0-covered, respectively.

Coverage preserving algorithms represent an important category of
spatial sensor selection methods, and their use is relevant also for �eld
reconstruction applications. Indeed, as we mentioned in the introduc-
tion to this chapter and in section 4.1, the problem of providing favor-
able sampling geometries for the ACT reconstruction algorithm may
be reduced to the problem of �nding a set of nodes that guarantees for
1-coverage of the RoI.
A central contribution in analyzing the coverage problem in WSNs is

o�ered by Xing et al. in [205]. The authors present theoretical results
relating the two concepts of connectivity and coverage. In particular,
they show that if the radio range of the nodes Rtx ful�lls the condition
2Rs ≤ Rtx and the RoI is 1-covered in the sense we explained above,
then 1-connectivity is also guaranteed. The result is also extended
to the general case of k-coverage and k-connectivity2. Besides these
important theoretical results, the authors also present a coverage con-
�guration protocol, dubbed CCP, which we describe in detail in section
4.4. Nodes running CCP decide upon their activation by evaluating if
their sensing area is already covered by other nodes that previously de-
clared themselves as active. If a node �nds itself to be covered by active

2 A network is said to be k-connected if, to disconnect it, k nodes must be removed.

4.2. Related Work 79

neighbors, it remains idle. Otherwise, it becomes active and communi-
cates its decision through a dedicated broadcast message. Possibly, a
node can decide to withdraw from the set of active nodes, if it is eligible
to do so. In sections 4.4 and 4.5 we show how it is possible to modify
the CCP so as to reduce its overhead and thus make it better suitable
to be used in the �eld reconstruction scenario we are considering.

Other coverage-preserving algorithms work along the same rationale
of the CCP protocol [188]. However, they propose a di�erent technique
to determine whether the sensing area of a node is covered by its ac-
tive neighbors. Instead, the PEAS algorithm presented in [209] uses a
di�erent, pull-based approach. To determine whether to become active
or not, sensor nodes broadcast a probing message appropriately set-
ting their transmission range to the desired probing range Rp. Active
nodes receiving such probing messages also broadcast a reply to signal
their activity. If the probing node does not receive any of these replies
before a timeout expires, it becomes active. Otherwise, it turns itself
o� until the next probing round. This approach works well under the
assumption of isotropic antenna patterns and adjustable transmission
ranges. Unfortunately, both assumptions are hardly met in real WSN
deployments.

Several authors also considered the coverage problem in settings in
which the active nodes are selected (or deployed) at random over the
RoI [40, 110, 111, 200]. For instance, the results presented in [110],
recently reprinted in [111], show the asymptotic conditions necessary
to guarantee that a region is (almost always) k-covered by a set of n
nodes. The nodes are assumed to have all the same sensing range r
and be active or inactive with probability p and (1 − p), respectively.
The results are reported for the case in which the RoI is the unit square
and the nodes are deployed on a uniform grid, uniformly at random or
according to a Poisson distribution with rate n. The conditions for k-
coverage, although derived for the asymptotic case in which the number
of nodes n goes to in�nity, can be used to compute rough estimates
also for real WSN deployments, as claimed in [110, 111]. In [200] Wan
and Yi consider the same problem for both the cases in which the
nodes are deployed according to a Poisson or uniform point process.
In particular, they show how the probability of coverage changes as
the sensing range and number of nodes vary. Furthermore, they note
that their results and those reported in [110, 111] are not consistent,
probably due to a di�erent handling of the boundary conditions. For

80 Chapter 4. Spatial Sensor Selection

further results we refer the interested reader to [40, 66, 79] and [210].
In section 4.7, we show how these theoretical results can in�uence the
design of sensor selection strategies based on random node activations.
Interesting approaches based on random sampling are also discussed in
the following section 4.2.3.

4.2.3. Random Sampling

Random sampling occurs in WSNs when sensor nodes decide about
their participation in, or are selected for, sensing using a randomized
approach. For instance, in a random sensor selection (RSS) scheme,
sensor nodes are active with probability p and idle with probability
1 − p. Assuming all nodes share the same value of p, the expected
total number of active nodes at each data collection round is p · Ntot,
where Ntot is the total number of nodes in the network. If data packet
losses are rare, p ·Ntot also approximates the average number of sensor
readings reaching the sink. The appeal on RSS as a sensor selection
strategy clearly lies in its simplicity and very limited control overhead.
Furthermore, it provides for a straightforward way to balance the (sens-
ing) workload across the nodes. Furthermore, in some cases RSS may
perform comparably to, or even better than, other, more sophisticated
sensor selection strategies [120].
In �eld reconstruction applications, however, the simple RSS strategy

may also incur signi�cant performance losses with respect to other ap-
proaches [48,152]. In particular, the blue noise sampling strategy [152]
described in subsection 4.2.1, clearly outperforms the plain RSS. Dong
et al. [48] also investigate the performance of the RSS with respect
to a scheduling approach that activates a deterministic set of equally
spaced nodes. For a 1-dimensional �eld, they provide asymptotical ex-
pressions of the reconstruction error (distortion) with respect to the
number of collected samples. Their analysis shows that in scenarios in
which the signal to noise ratio (SNR) is high, the advantage of con-
structing uniform sampling geometries is substantial. When the SNR
is low, however, the performance loss due to the use of the RSS is dras-
tically reduced. Furthermore, they con�rm previously presented results
showing that in the case of nonuniform sampling the accuracy of the
reconstruction is mainly determined by the maximum distance between
any two adjacent samples [56, 181]. Furthermore, they also provide an
analytical expression for the probability distribution of the maximum

4.2. Related Work 81

distance between samples.

We should notice that the above mentioned e�orts always considered
the simple RSS approach in which the probability of activation p is
�xed and equal for all the nodes. As we show in section 4.7, however,
making this value depend upon local information available at the nodes
may signi�cantly improve the performance of a RSS strategy.

In [96] Iyer and Kleinrock present an interesting approach that even-
tually makes sensor nodes individually tune their probability of acti-
vation p. In particular, they model each node as a player of the Gur
Game [193]. In this game a player repeatedly and autonomously takes
a binary decision (i.e., �yes� or �no�) and communicates it to a �referee�.
The referee then calculates a function r(k) of the total number of play-
ers k that took a positive decision. Each player receives this value as
a feedback on her previous decision, which is evaluated to have been
�correct� with probability r(k) or �wrong� with probability 1 − r(k).
Each player can thus take her next decision on the basis of the feed-
back from the referee. A high value of r(k) signals that the referee did
not approve the global behavior of the players and thus wants to force
them to modify their decisions. In a WSN scenario, the central server
takes over the role of the referee and sends its feedback to the nodes
after each data collection round. Using the Gur Game approach, the
server can induce the nodes to modify their individual behavior in or-
der to reach a global, common goal, speci�ed as achieving the optimal
number of active nodes. The question of whether this approach can
actually bring the network to a stable, optimal state, remains unan-
swered. Furthermore, providing feedback to all nodes in the network
after each data collection round may require a disproportionate amount
of communication. For the sake of completeness we should also men-
tion that this approach is only apparently a random sampling scheme.
Indeed, a node is always either in a �stay idle� or �participate� state,
but the transitions between these two states depend on the probability
r(k) and a pre-speci�ed inertia.

Other approaches investigating random sensor selection techniques
include [14]. In their work Bash et al. [14] focus on applications requir-
ing the computation of aggregates from samples picked uniformly at
random over the set of all nodes. In these scenarios, all sensors are re-
quired to report their data with the same probability p, irrespective of
their position and local density. The authors propose an approximate
solution to this problem that select speci�c locations in the networks to

82 Chapter 4. Spatial Sensor Selection

be sampled and then uses geographic routing to route the query to the
node s closest to this location. The node then decides whether to accept
the task and report its data, depending on both the area of its Voronoi
cell A(s), which must be precomputed, and a user-de�ned threshold τ
which is distributed to all nodes. In particular, the node reports its
value with probability min(A(s), τ)/A(s). This simple heuristic man-
ages to balance the probability of nodes with high and small Voronoi
cells to report their values. This method di�ers from our approach since
it aims at ��attening� the areas covered by the nodes, while we aim at
exploiting the di�erences in these values to optimize the participation
of the sensors in sensing and communication. Furthermore, the method
proposed in [14] doesn't scale well with the number of samples needed
and the size of the network, since it may require several attempts to
retrieve one single sample, thereby possibly sending multiple requests
along very similar paths.

4.2.4. Utility-Based Sensor Selection

In section 1.1 we introduced the idea that the sensor selection problem
can be treated formally as an optimization problem in which the cost
function summarizes the energy expenditures of the network while the
utility function captures the information content of the data. Several
authors addressed the problem along this line and provided interesting
contributions [23,33,34,44,98].
In [33] and [34], for instance, Byers and Nasser provide a simple

framework to perform utility-based sensor selection in WSNs, also in-
cluding a combined optimization of routing and sensing roles. They,
however, focus on the general applicability of their approach and the
heuristic used to make sensors decide upon their role does not include
any considerations related to the actual accuracy of the sensed data.
In particular, the authors underline �the importance of providing geo-
graphically distributed sets of reporting sensors� for many applications,
but do not focus on this issue in their work. As we will detail in section
4.3, the actual spatial distribution of the sensing nodes is crucial in
determining the accuracy of the reconstruction of a sensor �eld.
In their work Byers and Nasser considered a global utility function

whose value monotonically increases with the number of sensing nodes.
They also underline that in many practical scenarios there will be a
diminishing marginal return, i.e., the advantage of adding new data

4.2. Related Work 83

diminishes as the number of total collected samples increases. Bian et
al. studied the formal properties of this class of utility functions, also
dubbed submodular functions, in the context of WSNs [23]. In par-
ticular, they show that the utility-based sensor selection problem can
be expressed as a linear program of polynomial size and can thus be
solved exactly in polynomial time. Computing such solution, however,
requires all sensor utilities and costs to be known at a central location,
which is clearly unpractical in typical WSN settings. This result is,
however, particularly interesting since it allows to set a benchmark by
indicating the optimal, centralized solution towards which the perfor-
mance of other, distributed approaches can be evaluated. In the same
work Bian et. al also studied the properties of supermodular utility
functions, for which �the bene�t of combining two (disjoint) sets [of
sensors] is at least as large as the sum of the individual bene�ts� [23].
For this class of utility functions, however, they conjecture the sensor
selection problem to be NP-complete and show other related theoretical
results.
Focusing on the computation of aggregates like mean, median and

maximum, Das and Kempe [44] show that the solution of the sensor se-
lection problem can be found solving an appropriately de�ned k-median
problem, for which good and practical approximation algorithms are
known. Other approaches propose elegant theoretical frameworks to
compute approximate solutions to the sensor selection problem [98]
but they rely on centralized computations and the proposed results are
thus hardly applicable in real WSN settings. In our approach to the
sensor selection problem, we do not resort to the utility-based formal-
ization discussed above. Instead, we rely on existing practical protocols
and aim at improving their performance.

4.2.5. Model-Based Sensor Selection

Model-driven sensor selection strategies have been widely investigated
to optimize data collection in WSNs [46, 76, 144, 198, 206, 212], as also
already discussed in chapter 3. In our work, we avoid the use of pre-
de�ned models to describe the signal of interest and make use of only
limited a-priori knowledge. This allows to design more generically ap-
plicable and robust sensor selection strategies. However, if the signal
dynamics are stable and known in advance, model-based approaches
represent valuable and interesting alternatives.

84 Chapter 4. Spatial Sensor Selection

For instance, knowing that the sensor �eld of interest can be well rep-
resented in a certain function space enables the adoption of techniques
seeking for the computation of the coe�cients of the signal in this basis
instead of a complete data collection [76]. Clearly, this allows to save
communication, since in place of a large amount of raw data, only few
coe�cients must be sent to the data collector. On the other hand, de-
termining the proper function space is not trivial, but crucial for the
successful adoption of this technique. Desphande et al. [46] suggest to
build a multivariate model of the data collected by the network and
use it to answer user queries. To build such model, they exploit spatio-
temporal correlations in the data, whose occurrence must however be
built-in a-priori. If the uncertainty on the query answer is higher than
a given threshold, the model is updated collecting new data from se-
lected sensor nodes. If analytical models of the sensor �eld and its
correlation structure are known, a large set of distributed source cod-
ing techniques also becomes available [155, 156, 170, 206]. However, as
noted in [81], �in many applications prior knowledge of the precise cor-
relation in the data is unavailable, making it di�cult or impossible to
apply such distributed source coding techniques.�

4.2.6. Computation of Aggregates

Sensor selection algorithms also come into play when the network is
required to compute aggregate values over the RoI instead of provid-
ing complete �eld reconstruction. Aggregate information like mean,
median or maximum value of a sensor �eld or network parameter may
indeed be of great interested for many applications. Although our work
considers the problem of complete reconstruction of a sensor �eld, and
not on the computation of its aggregates, we brie�y mention some in-
teresting approaches the reader is referred to.
In [120], Lin et al. propose region sampling, a technique to com-

pute approximate aggregates when only a pre-speci�ed energy budget
is available. Region sampling partitions the network in k regions, within
which sensor values are collected and aggregated. With an adequate
choice of the regions, the approximation error can be bounded. To this
end, a set of statistics is collected during network operation and used to
perform a centralized choice of the nodes from which samples must be
retrieved. As already discussed in section 4.2.3, Bash et al. [14] propose
a method for enabling computation of aggregates for scenarios in which

4.3. Irregular Sampling in WSNs and the ACT Reconstruction Algorithm 85

all sensors are required to report their data with the same probability
p. In [109], Kuhn et al. provides theoretical results to address the k-
selection problem, consisting in �nding, out of a set of n element, the
kth smallest of these elements. They show that this problem can be
e�ciently solved using both randomized and deterministic algorithms.
Das and Kempe [44] propose a technique to select nearly optimal sub-
sets of sensors that can predict the value of certain aggregate functions
within a given error.

4.3. Irregular Sampling in WSNs and the ACT

Reconstruction Algorithm

The problem of reconstructing a sensor �eld from its irregular sam-
ples has been studied in several di�erent contexts, and has received
increasing attention in the last decades [126]. Thanks to the achieved
results, the mathematical theory of irregular sampling is by now well-
established. However, practical solutions to perform reconstruction
from scattered samples are still scarce. One of the major problems
in this context is the de�nition of the formal conditions that the sam-
pling geometry must ful�ll in order to make the reconstruction prob-
lem numerically tractable [126]. In a series of publications Feichtinger,
Gröchenig, Strohmer and Scherzer [56, 75, 169, 180] address this prob-
lem and provide a robust and e�cient numerical method for �eld recon-
struction from irregular samples. Their algorithm, known as the ACT,
draws upon the observation that �tting the samples f(si) of a spatial
�eld by a trigonometric polynomial3 p (of appropriate order and period)
makes the reconstruction problem numerically tractable. Furthermore,
they provide extensive experimental results showing the superior re-
construction performance and higher computational e�ciency of their
method with respect to other approaches. Last but not least, they also
provide formal requirements the sampling geometry must ful�ll in order
to enable robust and e�cient reconstruction.
The ACT has often been used to process data in medicine or explo-

ration geophysics [158,182], but has received only little attention in the
WSN literature [143, 152]. In the context of our work, we suggest to
resort to the ACT algorithm [56, 75, 169, 180] to perform sensor �eld

3 A trigonometric polynomial is a �nite linear combination of sine and cosine functions. The
order M of the polynomial indicates the number of di�erent frequencies for which sine and
cosine functions are generated.

86 Chapter 4. Spatial Sensor Selection

reconstruction in WSNs. Its use allows to achieve good reconstructions
without posing unrealistic requirements on the sampling geometry. Fur-
thermore, experimental results showed its ability to cope with datasets
of di�erent nature and size [158, 182]. Therefore, the ACT appears a
suitable tool for performing reconstruction from samples collected in
WSN settings. For the interested reader, we provide a detailed descrip-
tion of the ACT in appendix A. In the following, we brie�y summarize
its main characteristics and focus on the requirements the sampling
geometry must ful�ll to enable robust and e�cient reconstruction. In
particular, we show how the use of the ACT allows to reduce the prob-
lem of selecting favorable sampling geometries to a coverage problem.
We �rst consider a 1-dimensional sensor �eld f sampled at r scattered

locations sj, j = 1, . . . , r over the segment [0, 1]. Without any loss
of generality, we assume the sampling points to be numbered so that
0 ≤ s1 < s2 < . . . < sr < 1. The ACT reconstructs the sensor �eld
f by �tting its samples with a trigonometric polynomial pM of order
M and period 1. The optimal reconstructing polynomial p∗M is the one
that solves the least squares problem:

r∑
j=1

wj|p∗M(sj)− f̃(sj)|2 = minimum inPM , (4.1)

where the minimum is taken over the space of all polynomials PM of
order M and period 1. The order M of the polynomial is determined
by the bandwidth Bs of the �eld f , while the weights wj, j = 1, . . . , r
depend on the sampling locations only. We show in appendix A how to
properly set these values. If the bandwidth of the signal is unknown,
the so-called multilevel version of the ACT, dubbed ML-ACT, allows
to estimate it on the �y, as reconstruction is performed [169]. The set
of 2M + 1 coe�cients a∗M that generates the polynomial p∗M , is the
solution to the linear system:

a = T−1b. (4.2)

T is a square matrix of dimensions (2M + 1) × (2M + 1) and b
a vector of length 2M + 1. As shown in appendix A, the matrix T
has a Toeplitz structure and, thus, e�cient methods to perform its
inversion, necessary for solving system 4.2, become available. In their
work, Feichtinger at al. suggest to use the conjugate gradient iterative
method [70] to perform the inversion of T . The name ACT actually

4.3. Irregular Sampling in WSNs and the ACT Reconstruction Algorithm 87

summarizes the main features of this algorithm: the presence of the
adaptive (A) weights wj, the use of the conjugate (C) gradient method,
and the Toeplitz (T) structure of the matrix T .
For a (unique) solution of system 4.2 to exist, the invertibility of T

is a necessary and su�cient condition. The actual quality of the re-
construction, however, also depends on the spectral properties of the
matrix T , which are characterized by the value of its condition num-
ber4. In particular, the lower the condition number, the more robustly
and e�ciently the solution of system 4.2 can be computed. Thus, the
possibility to bound the value of the condition number k(T) of T , al-
lows to formally characterize the reconstruction performance of the
ACT. Since the entries of the matrix T depend on the sampling geom-
etry only, controlling the values of the sampling locations sj allows to
control the performance of the ACT5.
In the 1-dimensional case, it can be shown that the matrix T is in-

vertible if at least 2M + 1 samples are available. Furthermore, its
condition number can be guaranteed to be bound (by a known value)
if the maximal gap ∆s between adjacent samples is lower than 1/2M ,
which represents the Nyquist limit [75]. In a WSN setting, the sam-
pling locations sj represent the positions of nodes actively sampling and
reporting data. Thus, if the sensor nodes are assumed to have a �vir-
tual� sensing range Rs = ∆s/2, guaranteeing the ful�llment of both
the above mentioned conditions requires providing 1-coverage of the
segment [0, 1]. Indeed, as shown in �gure 4.3 and discussed in [205],
if 1-coverage is guaranteed with sensing range Rs = ∆s/2, then the
maximal gap between a node and its closest neighbors is 2Rs = ∆s.
In the 2-dimensional case, the geometry of the problem is more com-

plex. However, as detailed in appendix A, it is still possible to bound
the condition number of the matrix T by providing 1-coverage of the
region of interest. Assuming the sensor �eld f to have equal band-
width in both the x and y directions, the reconstructing polynomial
p to look for has order M in both directions. The formulation of the
least square problem 4.1 is still valid, provided the sampling locations
sj = (xj, yj) belong to the unit square [0, 1]x[0, 1], and the weights wj

4 The condition number of a matrix A is de�ned as the ratio between the norm of the matrix
and the norm of its inverse, i.e., c(A) = ‖A‖

‖A−1‖ . For the computation of the condition number,

usually the L2 norm is used.
5 For a given value of M , the condition number of the matrix T is smallest (= 1) when the
sampling geometry is a uniform grid. Thus, to improve the quality of the reconstruction, the
sampling points should be as uniformly spaced as possible.

88 Chapter 4. Spatial Sensor Selection

are set as shown in appendix A. In this setting, the coe�cients of the
reconstruction polynomial can still be computed by solving system 4.2,
where T and b are a (2M +1)2× (2M +1)2 square matrix and a vector
with (2M + 1)2 entries, respectively. For the matrix T to be invertible,
the number of collected samples r must be at least (2M + 1)2. This
condition is necessary, but not su�cient, to guarantee the invertibility
of T . If the sampling locations sj, j = 1, . . . , r provide 1-coverage of
the square [0, 1]× [0, 1] with Rs = ∆s/2 and ∆s < ln2/(4πM), then T
is invertible and its condition number is bounded (by a known value).

Figure 4.2.: Example of sensor nodes deployment in the 1-dimensional case. If the
nodes share the same value of the sensing range Rs, and the deployment
area is 1-covered, then the maximal distance between a node and its
farthest active neighbors is 2Rs.

Summarizing the considerations reported above, sampling geometries
that provide 1-coverage of the RoI also allow for an e�cient and robust
execution of the ACT. The value of the �virtual� sensing range Rs

of the nodes nj located at positions sj, j = 1, . . . , r, depends on the
bandwidth of the sensor �eld of interest and the extension of the RoI.
If the RoI is the unitary segment, then Rs = ∆s/2, with ∆s < 1/2M
and the number of collected nodes r is at least 2M + 1. If the nodes
are deployed over the unit square, then Rs = ∆s/2, ∆s < ln 2/(4πM),
and r ≥ (2M + 1)2 [75]. An appropriate scaling allows to apply these
results also to segments or squares of arbitrary dimensions [75,181].
In the context of our work, we assume an estimation of the value of

the spatial bandwidth of the signal, and, thus, of ∆s, to be known.
Alternatively, ∆s represents the maximal achievable spatial resolution.
In this case, the multilevel version of the ACT [75, 169] can come into
play to provide a �best-e�ort� signal reconstruction starting from the
available samples. In either case, the problem of providing for appropri-

4.4. The Coverage Con�guration Protocol and its Use in Field Reconstruction
Applications 89

ate sampling geometries can clearly be restated as a coverage problem.
Thus, to design our sensor selection strategy for �eld reconstruction
applications we draw upon existing work on coverage preserving al-
gorithms. In particular, we resort to the CCP protocol by Xing et
al. [205], already cited in section 4.2.2, and investigate its adaptabil-
ity to our application scenario. This choice is motivated by the fact
that CCP outperforms other state-of-the-art coverage protocols both
in terms of communication overhead and of number of nodes that need
to be active to provide for the desired level of coverage [205]. There-
fore, CCP appears as one of the most e�cient available protocols to
generate coverage preserving sampling geometries in WSNs, and, thus,
constitutes an ideal starting point for our investigations. In the fol-
lowing section 4.4, we provide a more detailed description of the main
features of CCP and discuss some of its limitations.

4.4. The Coverage Con�guration Protocol and its

Use in Field Reconstruction Applications

Nodes running CCP [205] are assumed to wake up periodically and
advertise their presence using HELLO messages. After wake up, a node
enters (and stays for a time Tl) in the LISTEN phase, during which
it collects information about the presence, position and state of its
neighbors by listening to their HELLO messages. Some of the neighbors
are likely to have been selected for sensing before and therefore to be in
ACTIVE state. These nodes must advertise their activity by sending
HELLO messages with high enough frequency. After completing the
LISTEN phase, the node computes if its sensing area (i.e., the discus
centered at the node and having radius Rs) is already covered by active
neighbors. If yes, the node can go back to sleep. Otherwise, it enters a
JOIN phase in which it persists at most until a timer Tj expires. The
node decides to enter the ACTIVE state if none of its neighbors has
advertised itself as active before Tj expires or if its sensing area is not
covered by its active neighbors. If, on the contrary, these neighbors
are found to be able to cover the sensing area of the node, it can go
back to sleep. While in ACTIVE state, nodes continuously collect
messages from their neighbors and accordingly reconsider their state.
Possibly, they can decide to enter the WITHDRAW state if they realize
that coverage is guaranteed also without their contribution. Before
abandoning the ACTIVE state, however, nodes wait for a timer Tw to

90 Chapter 4. Spatial Sensor Selection

expire.

A crucial factor in�uencing the practical implementation and per-
formance of CCP is the choice of adequate values for the timers Tjoin
and Twithdraw. In [205], the authors suggest to randomize the values of
these timers to prevent collisions among nodes concurrently deciding
about joining or withdrawing the set of active nodes. Using this ran-
dom strategy, the values of the join and withdraw timers Tjoin(i) and
Twithdraw(i) of a node ni are drawn at random from a uniform distribu-
tion between 0 and Tmaxjoin or Tmaxwithdraw, respectively. T

max
join and Tmaxwithdraw

represent the maximal values allowed for the join and withdraw timers.
In [205] it is suggested to set the values of Tmaxjoin and Tmaxwithdraw according
to the network density. In particular, in denser networks nodes should
be given more time to collect ACTIVE or WITHDRAW messages from
their (crowded) neighborhoods and, thus, the values of the Tmaxjoin and
Tmaxwithdraw timers should be accordingly increased. The authors of [205]
further suggest that the expiration time of the join and withdraw timers
should be ideally linked to the �utility� of a node for the sensing task.
In particular, nodes covering more uncovered area should be assigned
shorter join timers. However, the de�nition of proper heuristics to rank
the relevance of a sensor has not been further investigated. In the next
section 4.5 we propose di�erent strategies to provide for this ranking
and, thus, allow for a more e�ective determination of the values of the
timers Tjoin(i) and Twithdraw(i) of a node ni.

Properly setting the values of the timers Tjoin(i) and Twithdraw(i) be-
comes an even more critical issue when the CCP is used in �eld recon-
struction scenarios, instead of for the surveillance and target tracking
applications it was originally designed for. Indeed, CCP aims at pro-
viding continuous and complete coverage of the RoI over time. To this
end, inactive nodes wake up frequently to listen to messages from their
neighbors, which may become active or inactive at any instant. Since
nodes communicate their joining of or withdrawing from the set of ac-
tive nodes through a broadcast message, the communication overhead
of CCP grows signi�cantly with the number of state changes. In partic-
ular, in its very initial phase CCP may activate a number of nodes that
is signi�cantly higher than strictly necessary for providing coverage.
The protocol can then �x this problem by making nodes turn inactive
at a later stage and thus amortize over time this initial overhead. But
if CCP is used to provide a sampling geometry for �eld reconstruction,
the relative cost of activating a high number of nodes in its initial stage

4.5. Adaptive Sensor Ranking 91

becomes far more signi�cant. Indeed, in typical �eld reconstruction
scenarios the network does not operate continuously, but in a round-
based fashion. All sensor nodes wake up at prede�ned intervals ∆t,
perform sampling and, possibly, data communication and go back to
sleep. Therefore, although the usage of CCP may still be useful, its cost
will be dominated by the number of nodes that decide to become active
and then withdraw in the very �rst phase of the execution of the pro-
tocol. Additionally, each time a node receives a JOIN or WITHDRAW
message from a neighbor, it must perform computation to establish
whether its sensing area is covered by its currently active neighbors or
not. If nodes change their state frequently (for instance due to instable
links and thus missing noti�cations) the computational overhead of the
protocol rises quickly. Furthermore, if the WITHDRAW noti�cation
of a node ni is lost, part of the network may remain uncovered, since
neighbors of the node ni may still count on its coverage and erroneously
decide to withdraw. Thus, limiting the number of potential withdraws
implicitly enhances the reliability of the protocol.
These considerations show that, even if CCP can be used as a sen-

sor selection strategy in �eld reconstruction applications, some of its
features may become drawbacks to take into account. In particular,
in order to reduce the protocol overhead, it is crucial to minimize the
number of nodes becoming active during the inital phase of its exe-
cution. To this end, it is particularly important to properly set the
values of the timers Tjoin(i). In the next section 4.5, we introduce new
heuristics to properly set the values of these timers. In section 4.6, we
show that our approach allows to reduce the control overhead of CCP
with respect to the random strategy suggested in [205] by more than
10%, on average.

4.5. Adaptive Sensor Ranking

The considerations reported in the previous section show that, for the
purpose of �eld reconstruction, the sampling pattern o�ered by a WSN
should provide for 1-coverage of the RoI, with an appropriate, data-
dependent value of the sensing range Rs. An appropriate sensor se-
lection strategy should therefore aim at providing coverage while mini-
mizing the total number of active nodes. Thus, CCP, or other coverage
preserving protocols, can be used in this context to provide for good
sampling geometries. However, as we also pointed out in section 4.4,

92 Chapter 4. Spatial Sensor Selection

the communication and computational overhead of such protocols is all
but negligible, especially if used to generate a short-lived sampling con-
�guration. Using CCP as our reference coverage preserving protocol,
we now suggest a set of heuristics that allow to improve its perfor-
mance. In particular, we propose di�erent strategies to rank the utility
of a node ni for the sensing task and, thus, to determine the value of its
activation timer Tjoin(i). Our ranking method aims at extending the
CCP protocol presented in [205] and, as we show in section 4.6, allow
to improve its performance.

4.5.1. Sensor Ranking Based on Local Densities

As mentioned in [205], the amount of uncovered area a node ni is
able to cover can represent a measure of its relevance to the sensing
task. An estimation of this amount could be well approximated by
the area of the Voronoi cell of the node [9]. For instance, several �eld
reconstruction algorithms weight the in�uence of single samples on the
global reconstruction using the area of the correspondent Voronoi cells
[75, 126]. However, distributed computation of the Voronoi cells in a
sensor network requires knowledge of the neighborhood of a node over
several hops and an overall high messaging and computational overhead
[15]. On the other hand, a centralized computation has well-known
drawbacks in terms of scalability and capacity to adapt to changing
network topology.
As also shown in [75], a crude estimate of the value of the area of

a Voronoi cell is often su�cient to weight the importance of single
samples for the �eld reconstruction process. In particular, the local
density of the samples can provide for an estimation of the desired
individual weights. Similarly, it is possible to rank the relevance of
a node for a sensing task depending on the number of nodes within
its communication or sensing neighborhood. Indeed, a node in a low
density neighborhood has a higher probability to become active with
respect to nodes with a very high number of neighbors. Accordingly, the
values of the join timer Tjoin(i) of node ni could be set as proportional
to the local density, so that nodes with fewer neighbors will be the �rst
to decide upon their activation. This method is particularly simple
to implement since it only requires the knowledge of the number of
neighbors of a node ni. On the other hand, it does not allow for a �ne-
grained ranking since nearby nodes will likely have the same number

4.5. Adaptive Sensor Ranking 93

of neighbors and thus activate simultaneously. Thus, in order to avoid
a high number of collisions, this method should be properly re�ned,
possibly including some form of randomization. Furthermore, if the
communication range Rtx is signi�cantly larger than the desired sensing
range Rs, the resulting sensor ranking may be misleading. In this case,
it is still possible to consider only those neighbors that lie within the
sensing rangeRs of the node ni. To this end, however, the distance of all
neighbors to ni must be known. We will refer to these two strategies
for determining the sensor ranking as density (C) and density (S),
where the C and S letters indicate that only neighbors within the
communication or the sensing range are considered, respectively.

Figure 4.3.: Possible con�gurations of the sensing neighborhood of a node.

The major drawback of a ranking based on local density consists in
the fact that it does not take into account the actual geometry of the
neighborhood of the node under consideration. Figure 4.3(a) and 4.3(b)
show an example of two nodes n1 and n2 having both seven neighbors
within their sensing range. If ranked by local density, n1 and n2 would
be assigned the same rank. However, their actual utilities for the sens-
ing task di�er signi�cantly. Indeed, the sensing area of node n1 would
remain uncovered even if all its neighbors were active. Thus, it must
become active irrespectively of the decisions of its neighbors and the
ideal value of its activation timer is Tjoin(1) = 0. On the contrary, three
out of the four nearest neighbors of node n2 can completely cover its
sensing area, if they become active before Tjoin(2) expires. Therefore,
the value of the activation timer should be set so as to give n2 enough
time to observe whether its nearest neighbors becomes active or not.
Clearly, the �nal outcome depends on the actual geometry of the whole
network, but it is reasonable to assume that nodes with further away

94 Chapter 4. Spatial Sensor Selection

neighbors are more likely to become active anyway and, thus, should
be given shorter activation timers. In section 4.6, we show that den-
sity (C) performance gives poor performance, at least if 2Rs ≤ Rtx.
Considering only neighbors within the sensing range allows for some
improvements, but only for low values of the average network density.

4.5.2. Sensor Ranking Using Inverse Distance Weighting

To amend for the above mentioned drawbacks of a ranking based on the
local density, we suggest here an alternative ranking method. In par-
ticular, we take into account, for the computation of the rank of a node
ni, also the relative distances between the node ni and its (sensing)
neighbors. Intuitively, the absence of nearby neighbors should make
the rank of a node increase, signalling that the node has a high prob-
ability to be required to become active. On the contrary, the presence
of neighbors at very close distance from the node should make its rank
decrease, and thus the value of its activation timer increase. To this
end, each neighbor nj of a node ni can be assigned a weight φij that is
inversely proportional to its Euclidean distance dij from the node ni.
Using the values φij it is then possible to compute a weighted local den-
sity Ψi of the node ni that represents its ranking for the determination
of the activation order.
Inverse distance weighting (IDW) is a technique often used in �eld

reconstruction algorithms to determine the appropriate weights of indi-
vidual samples [126,172]. In this context, the weights can be computed
using an arbitrary function φ and an appropriate normalization, as
shown in [172]. Using IDW for ranking the priority with which sensor
nodes should activate, however, poses an additional problem. Let us
consider again �gure 4.3. Node n3 has, exactly as node n2, four near-
est neighbors all at the same distance. In the �rst case, however, the
four neighbors span a rather small circular sector having the node at
its center. In the latter case, on the contrary, the four neighbors are
distributed nearly �uniformly� around the node n2. A method based
on IDW would assign this two nodes the same rank, although node n3

has a higher probability to be required to become active than node n2.
To cope with this problem, we take into account not only the number
and distance of the neighbors but also information about their relative
position to each other.
Combining the above reported considerations, we de�ne the φij and

4.5. Adaptive Sensor Ranking 95

Ψi as follows. First, the neighbors are divided into Nsets sets Sik, k =
1, .., Nsets. If the network is deployed on a line (1-dimensional case), the
node ni can assign each neighbor nj to its �left� (|si| >= sj) or �right�
((|si| < sj) neighborhood, thus Nsets = 2. If the nodes are deployed on
a plane (2-dimensional case), the sets correspond to Nsets = 4 circular
sectors spanning the circle centered on the node and having radius Rs.
If all sets are non-empty, the node computes, for each neighbor nj, an
inverse distance weighting function φ(dij) = φij. There exist several
di�erent functions that can provide for a proper IDW metric [172], but
we consider here a simple linear weighting and set

φij = 1− dij
αRs

. (4.3)

In both the 1- and 2-dimensional case, we found that setting α = 1
provides for highest performance gains. For the following considerations
we therefore assume α = 1. This also implies that only those neighbors
whose distance dij to ni is strictly smaller than Rs, are considered
for computing the rank of the sensors, since the weights φij must be
positive values.
The contribution of all neighbors in a sector k is then computed as:

Ψik =
1

1 +
∑Nik

j=1 φij
, (4.4)

where Nik is the number of neighbors included in the set Sik. Ψik

basically represents the weighted local density of the node ni, relative
to the sector k. We can also rewrite equation 4.4 as:

Ψik =
1∑Nik

j=0 φij
(4.5)

where the �neighbor� of index j = 0 corresponds to the node ni itself
and, thus, di0 = 0. For each set k the value Ψik represents a measure
of the importance of the node ni to �cover� the region spanned by the
set k. For an empty set this value is clearly equal to 1. An appropriate
aggregate (e.g., minimum or average) of the Ψik then gives the desired
ranking Ψi of the node ni. Our simulation results showed the average
to be the more appropriate aggregation function. Thus, we set:

Ψi =
1

Nsets

Nsets∑
k=1

Ψik (4.6)

96 Chapter 4. Spatial Sensor Selection

The value of Ψi asymptotically goes to zero as the number of nodes
in each set k increases. If the node ni has no neighbors in its sensing
range, Ψi reaches its maximum value 1. The activation timer of the
node ni can then be accordingly set as

Tjoin(i) = Tmaxjoin (1−Ψi). (4.7)

We refer to this strategy for setting the activation timers as the idw
method. In section 4.6 we show that it allows for performance improve-
ments with respect to both the density (C) and density (S) methods,
although it requires only minimal additional computational and mem-
ory overhead.
In static networks, however, the idw method (as well as the density

(C) and density (S) strategies) has an important drawback. If nodes do
not change their position or do so only infrequently with respect to the
temporal sampling rate of the network, the ranking of the nodes given
by the above described methods will be the same in every round. This
means that, up to little di�erences due to possible communication fail-
ures, the same set of nodes will become active in every round. Clearly,
this hampers the possibility to balance the overall energy consumption
due to participation in sensing. To cope with this problem, we resort
to randomization, as explained in the next section.

4.5.3. Inverse Distance Weighting and Random Sampling

The Ψi de�ned in equation 4.6 can be interpreted as the probability
of the node ni to become active in a given sampling round. Indeed,
if ni has no neighbors closer than αRs, it is forced to become active
and, thus, its probability of activation is 1. In the other extreme case
in which it has Ni neighbors at its same position (thus, dij = 0, j =
1, . . . , Ni), its probability of activation will simply be 1/Ni. In other
words, the node should ideally become active once every Ni rounds
since its shares the �sensing responsibility� for its sensing area with Ni

�identical� peers. In all intermediate cases the presence of a neighbor
nj at a certain distance dij will �relieve� the node ni of an amount of
its sensing responsibility that is inversely proportional to the distance
dij.
To mitigate the load balancing ine�ciency of the idw strategy, we

thus suggest to use the value of Ψi as a probabilistic ranking of the
node. In other words, the value of the timer Tjoin(i) of a node ni can

4.6. Experimental Results 97

be set as:

Tjoin(i) = Tmaxjoin · p(Ψi). (4.8)

where p(Ψi) is a value drawn at random from a uniform distribution
between 0 and 1 − Ψi. In the following section 4.6, we show that this
strategy, dubbed idw random, not only allows to better balance energy
consumption due to sensing across the nodes in a network, but can also
outperform other methods in terms of number of active nodes. How-
ever, also using the idw random strategy nodes with higher ranks are
required to become active more often than low-rank nodes. Therefore,
high rank nodes will likely drain their batteries sooner than others and,
thus, the load balancing problem discussed above, although mitigated,
still persists. As discussed in [151], an e�ective way to preserve the en-
ergy of high rank nodes consists in limiting their participation in other
network activities, like, e.g., data routing. In section 4.8, we show
how the sensor ranking strategies presented above can be leveraged for
balancing nodes participation in sensing and routing.

4.6. Experimental Results

We report experimental results showing the ability of the heuristics dis-
cussed in the previous section to provide for good sampling geometries
while limiting the number of active nodes. Our experimental setup and
the metrics used to measure performance are described in detail in the
next section 4.6.1. We then report our simulation results for the 1- and
2-dimensional cases in sections 4.6.2 and 4.6.3, respectively.

4.6.1. Experimental Setup

We consider a network of Ntot nodes deployed uniformly at random over
either a segment of length Lx (1-dimensional case) or a rectangular
region of sides Lx and Ly (2-dimensional case). We assume that all
nodes have a �xed communication range of Rtx meters and that we can
rely on the communication model discussed in section 2.3. Further,
we assume that the application requires to retrieve data with a spatial
resolution of ∆s meters and we thus set Rs = ∆s/2.
We implemented the CCP protocol in Matlab, a well-known simula-

tion environment already described in section 2.2.3. We compare the
performance of the CCP coverage protocol using di�erent methods to

98 Chapter 4. Spatial Sensor Selection

determine the values of the timers Tjoin. In particular, we consider the
heuristics random, density (C), density (S), idw, and idw-random. As
discussed previously, the random strategy, proposed in [205], lets the
value of the timers Tj be independently drawn from a uniform distribu-
tion between 0 and Tmaxjoin . The second and third method set the values
of the timers depending on the local density, computed considering all
neighbors within the communication or sensing range, respectively. The
higher the number of neighbors, the higher the corresponding value of
the timer Tjoin, in either case. The idw strategy ranks the sensor nodes
according to the metric de�ned in equation 4.6 and makes nodes with
higher rank to activate �rst. Finally, the idw-random combines both
the ranking provided by the idw strategy and an appropriate random-
ization, as discussed in section 4.5.3. We assume the value of Tmaxjoin to
be �xed a priori and available to all nodes.

In all our experiments, we consider the following setting. At pre-
de�ned time intervals k∆t, k = 1, 2, . . ., all nodes in the network wake
up and collect information about their neighborhood for a time interval
Tl, which sets the length of the initial listen phase. After Tl expires, we
can thus assume every node ni to hold an updated list of its neighbors,
along with their positions. Then, the network enters the activation
phase in which each node determines whether it must become active or
not. The order in which nodes decide upon their activation depends on
the values of the timers Tjoin and is therefore determined by the strat-
egy used to set these values. After the timer Tmaxjoin expires, all nodes
are assumed to have decided upon their activation and the network can
thus enter the withdrawal phase. In this phase, nodes possibly withdraw
from the set of active nodes if they found their active neighbors to be
able to cover their sensing area. The order in which nodes decide upon
their withdrawal is the same order used in the activation phase. This
can be easily implemented by making nodes start a withdraw timer
Tw = Tmaxjoin immediately after they make the decision to become active.
The total duration of the listen, activation and withdraw phases is,
therefore, Ttot = Tl + 2Tmaxjoin . During this interval sensor nodes must
keep their radio circuitry powered on to receive and send noti�cations
about possible activations and withdrawals. Therefore, the value of Ttot
should be kept small, so as to limit energy consumption. Also, to save
additional energy, nodes that do not become active during the activa-
tion phase can immediately switch o� their radio and go back to sleep,
unless they are required to remain active for routing purposes. On this

4.6. Experimental Results 99

regard we should also recall that, if the communication range is at least
twice as big as the sensing range, connectivity can be guaranteed by
the set of active nodes [205]. In this case, inactive nodes can switch o�
their radios as soon as their activation timer expires without further
restrictions.

We assume the network can rely on one of the routing protocols
available in the literature to report data back to the central server [1,3].
However, we require information about neighbors' positions to be avail-
able in the routing table. With these assumptions, the listen phase de-
scribed above simply reduces to an access to the information available
at the routing layer. Assuming a stable network, this information does
not change frequently, and thus the rank of the nodes will remain stable
across successive sampling rounds. A long listen phase that can guar-
antee su�cient information about the neighborhood to be collected,
therefore, is only necessary at the very beginning of network operation.
Later, we can assume Tl = 0 and make the node use the previously
computed value of the sensor rank as the current value. Before going
back to sleep again, each node can then update the value of its rank by
including the contribution of newly added neighbors or discarding that
of missing ones. This mechanism clearly introduces some latency in the
ability of the node to evaluate its sensing rank, but allows to simplify
and increase the energy e�ciency of our modi�ed version of CCP. The
initial value of Tl can be set proportionally to the average density of
the network, as suggested in [205].

Making the nodes wake up at prede�ned time intervals and operate
using a shared timer Tmaxjoin requires the network to be, at least loosely,
synchronized. To this end, we assume one of the protocols known
in literature to be applied [159]. As for localization, we assume the
node can retrieve their position autonomously, for instance using a
GPS sensor, or through one of the available localization algorithms
[29,113,149].

The main goal of introducing new heuristics to determine the ac-
tivation timers of the nodes is that of reducing the total number of
nodes that become active during the activation phase. This allows to
reduce the communication overhead of the CCP protocol, and thus its
energy consumption, since each node ni that becomes active broad-
casts a corresponding noti�cation to its NCi neighbors. Thus, if Ctx
and Crx represents the cost of transmitting and receiving a packet, re-
spectively, the communication cost due to the activation of a node ni

100 Chapter 4. Spatial Sensor Selection

is CAi = Ctx + NCi · Crx. If SANbw is the set of the NANbw nodes that
activate before the withdraw phase starts, then the total cost of the
activation phase in terms of communication is given by:

CA =
∑

j∈SANbw

(Ctx +NCj · Crx) = NANbwCtx + Crx
∑

j∈SANbw

NCi. (4.9)

Similarly, if SWN is the set of the NWN nodes that decide to leave
the set of active nodes during the withdraw phase, the total cost of this
phase in terms of communication is given by:

CW =
∑
j∈SWN

(Ctx +NCj · Crx) = NWNCtx + Crx
∑
j∈SWN

NCj. (4.10)

Thus, the total cost in terms of communication due to the use of the
modi�ed version of the CCP protocol presented above is

CCCP = CA + CW . (4.11)

In equation 4.11 we neglect the cost of the listen phase. Indeed,
neighborhood discovery must be performed anyway for routing pur-
poses. Thus, we focus on the additional overhead due to the action
of the CCP protocol only, which is expressed by equation 4.11. The
costs Ctx and Crx can be set using, for instance, the method proposed
in [84]. However, since we are concerned only with the number of pack-
ets that are transmitted and received, we can simply assign a unitary
value to both Ctx and Crx. On some platforms the cost related to the
transmission of packet may be higher then the cost of receiving one6.
However, for several other nodes, including the Tmote Sky, our refer-
ence platform, Ctx = Crx holds and we thus report our results under
this assumption.
During the activation and withdraw phase, sensor nodes must keep

their radios in idle listening, since they cannot predict the time instants
at which neighbors will possibly send their activation or withdraw bea-
cons. This additional source of energy consumption is not included in
equation 4.11 since it is common to all the strategies considered to set
the activation timers. However, reducing the number of nodes becom-
ing active in the activation phase allows to switch o� more nodes earlier,

6 For instance, the transceiver of the TinyNode 184 draws 25mA of current in transmit mode and
only 3mA in receive mode (nominal values) [173].

4.6. Experimental Results 101

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
100%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

L
x
=100m, R

tx
=10m, Δ

s
 =5m, N

tot
=100

(a)
Percentage of active nodes before the withdraw phase

density (C)
density (S)
random
idw
idw−random

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
100%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

(b)
Percentage of active nodes after the WITHDRAW phase

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
100%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

(c)
Percentage of the RoI being covered by the active nodes

(with respect to the maximal achievable coverage)

Figure 4.4.: Number of active nodes before (a) and after (b) the withdraw phase,
and percentage of the RoI being covered by the active nodes (c). Re-
sults in (a) and (b) are in percentage with respect to the total available
number of nodes Ntot. Results in (c) are in percentage with respect to
the coverage achievable by the activation of all the Ntot available nodes.
Experimental setting (1-dimensional case): Lx = 100m, Rtx = 10m,
Deltas = 5m, Ntot = 100.

102 Chapter 4. Spatial Sensor Selection

and, thus, to reduce the amount of time these nodes must persist in
idle listening. Using platforms with low energy consumption in receiv-
ing mode, like the TinyNode 184 [173], would allow to signi�cantly
reduce the impact of idle listening on the total energy consumption of
CCP. To this end, we should simply accordingly set the costs Ctx and
Crx that appear in equation 4.11. As explained above, however, we
report our experimental results for the case Ctx = Crx = 1.
Another parameter that is important to observe is the total number

of nodes that remain active after the withdrawal phase, NANaw. If
nodes do not die or run out of batteries while the CCP is operating
sensor selection, we clearly have: NANaw = NANbw −NWN . As we will
detail below, the ranking strategies we consider achieve, on average,
the same values of NANaw. On the contrary, they may show consistent
di�erences in terms of NANbw and NWN . In other words, all strategies
allow to achieve complete coverage of the RoI, but at di�erent costs.
To gather statistically signi�cant values of the above described met-

rics, we run the CCP over 25 di�erent random network con�gurations.
For ranking strategies involving elements of randomness (namely the
random and idw-random methods), we run 25 trials for each con�gu-
ration.

4.6.2. 1-Dimensional Case

We begin the evaluation of our ranking strategies showing experimental
results obtained in the 1-dimensional case. Unless speci�ed otherwise,
we consider a RoI of length Lx = 100m and communication range Rtx

of the nodes equal to 10m. The virtual sensing range of the nodes is
set as ∆s/2, where ∆s is the maximum allowed distance between an
(active) node and its closest (active) neighbor.
Figure 4.4 shows the performance of all the considered strategies, for

25 di�erent random con�gurations and when ∆s = 5 and Ntot = 100.
Figure 4.4(a) shows the percentage of nodes (with respect to the total
number of nodes Ntot) that become active during the activation phase.
As we can see, the idw and idw-random strategies outperform the other
methods in nearly every case, since they require a smaller number of
nodes to become active. In particular, they both perform better than
the random strategy, which was proposed in [205].
Figure 4.4(b) also shows the percentage of active nodes, but after the

withdrawal phase has been run. The di�erent strategies require, up to

4.6. Experimental Results 103

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 1%
 2%
 3%
 4%
 5%
 6%
 7%
 8%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

Lx=100m, Rtx=10m, Δs =5m, Ntot=100

strategy: random
Standard deviation of the percentage of active nodes before and after the withdrawal phase

before withdraw
after withdraw

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 1%
 2%
 3%
 4%
 5%
 6%
 7%
 8%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

strategy: idw−random
Standard deviation of the percentage of active nodes before and after the withdrawal phase

before withdraw
after withdraw

Figure 4.5.: Standard deviation of the number of active nodes before and after the
withdraw phase, for the random and idw-random strategies. Results
are in percentage with respect to the total available number of nodes
Ntot. Experimental setting (1-dimensional case): Lx = 100m, Rtx =
10m, Deltas = 5m, Ntot = 100.

some small random �uctuations, the same number of nodes to remain
active in order to cover the RoI with the required resolution. Thus, the
additional overhead caused by the random, density (C), and density
(S) methods with respect to the idw, and idw-random strategies does
not pay o� with better performance in terms of number of eventually
active nodes.
For the sake of completeness, �gure 4.4(c) also shows the level of

coverage reached by the set of active nodes. As expected, all strategies
reach complete coverage of the RoI, or, better said, the same level of
coverage that is achievable by activating all the deployed nodes. Indeed,
the values reported in �gure 4.4(c) are normalized to the maximum
achievable coverage, which for some con�gurations is slightly smaller
than 100% of the RoI.
For the random and idw-random strategies, the values reported in

�gure 4.4 have been averaged over 25 runs. To give a feeling of the
�uctuations that can a�ect this average value, we report the standard
deviation of the number of active nodes before and after the withdrawal
phase for both random and idw-random in �gure 4.5. As we can see,
the standard deviation of the idw-random strategy is in general smaller

104 Chapter 4. Spatial Sensor Selection

than the corresponding value of the simple random method. The overall
limited variability of the results across the 25 trials allows to consider
representative the average values reported in �gure 4.4. Similar consid-
erations apply for the results obtained in experiments run with di�erent
parameters, which are discussed below.

1 2 3 4 5 6 7 8 9 10
 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

Average number of sensing neighbors

P
er

ce
nt

ag
e

of
 a

ct
iv

e
no

de
s

L
x
=100, R

tx
=10, Δ

s
 = 2.5,5,7.5,10, N

tot
= 50,60,70,80,90,100

Percentage of active nodes after the withdrawal phase

density (C)
density (S)
random
idw
idw−random

Figure 4.6.: Number of active nodes after the withdrawal phase as the average num-
ber of sensing neighbors increases. Results are in percentage with re-
spect to the the total number of available nodesNtot. Experimental set-
ting (1-dimensional case): Lx = 100m, Rtx = 10m, Deltas = 2.5, 5, 7.5,
and 10m, Ntot = 50, 60, 70, 80, 90, and 100.

Figure 4.4 shows that, for a speci�c set of parameters, the idw and
idw-random strategies allow to reduce the communication overhead of
the CCP protocol. To gain a more comprehensive view of the perfor-
mance of the 5 di�erent strategies under examination, we must consider
a larger spectrum of variability of the crucial parameters, namely ∆s

and Ntot. We thus run a series of experiments letting the number of
nodes Ntot vary from 50 to 100 and, concurrently, the value of ∆s step
from 25% to 100% of the communication range (thus, beingRtx = 10m,
from 2.5m up to 10m). For each experiment, we compute the percent-
age of active nodes before and after the withdrawal phase, as well as

4.6. Experimental Results 105

the total communication overhead as speci�ed in equation 4.11. Since
the communication overhead of the di�erent strategies depends upon
the local sensing density of the nodes, we display these comprehensive
results as the ratio ∆sNtot/Lx increases.
Figure 4.6 shows that the number of nodes required to be active

after the withdrawal phase, is practically identical for all the consid-
ered strategies and irrespective of the local sensing density. This shows
that, in terms of number of nodes that eventually remain active, the
considered strategies are interchangeable. Therefore, a higher num-
ber of active nodes before the withdrawal phase constitutes a net cost
in terms of communication overhead, since it does not allow for any
performance gain afterwards.

1 2 3 4 5 6 7 8 9 10
 60%

 70%

 80%

 90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

200%

Average number of sensing neighbors

C
om

m
un

ic
at

io
n

ov
er

he
ad

L
x
=100, R

tx
=10, Δ

s
 = 2.5,5,7.5,10, N

tot
= 50,60,70,80,90,100

Total communication overhead
(in percentage with respect to the overhead of the random strategy)

density (C)
density (S)
random
idw
idw−random

Figure 4.7.: Communication overhead of the CCP using di�erent strategies to set
the activation timers of the nodes, as the average number of sensing
neighbors increases. Results are in percentage with respect to the
overhead of the random strategy. Experimental setting (1-dimensional
case): Lx = 100m, Rtx = 10m, Deltas = 2.5, 5, 7.5, and 10m, Ntot =
50, 60, 70, 80, 90, and 100.

To show the amount of this cost, �gure 4.7 displays the total number
of messages sent and received by the CCP protocol as the (average)

106 Chapter 4. Spatial Sensor Selection

local sensing density of the network increases. Since we are evaluating
the achievable improvements with respect to the random strategy pro-
posed in [205], we normalize the results of each experiment to the cost
of this strategy. Thus, �gure 4.7 shows the achievable gains, or losses,
in terms of communication overhead that incur in using a di�erent
strategy rather than the random.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

average number of sensing neighbors

co
nd

iti
on

 n
um

be
r

L
x
=100, R

tx
=10, Δ

s
 = 2.5,5,7.5,10, N

tot
= 50,60,70,80,90,100

Condition number of the matrix T (M=5)

density (C)
density (S)
random
idw
idw−random

Figure 4.8.: Value of the condition number of the matrix T as the average number of
sensing nodes increases (M=5). Experimental setting (1-dimensional
case): Lx = 100m, Rtx = 10m, Deltas = 2.5, 5, 7.5, and 10m, Ntot =
50, 60, 70, 80, 90, and 100.

As we can see, the density (C) strategy performs worse than all the
others for every combination of parameters. This is due to the fact that
considering neighbors beyond the sensing range of the nodes introduces
a sort of �noise� in the ranking. Indeed, the further away the neighbors
are, the less they can and should in�uence the decision of a node to
become active. This consideration is also supported by the fact that the
density (S) strategy performs, at least at low densities, better. As the
local density increases, however, the performance of both the density
(C) and density (S) worsen signi�cantly. We should also notice that
the density (C) and density (S) strategy perform di�erently also as ∆s

4.6. Experimental Results 107

reaches the value 10 = Rtx since the radius of the sensing neighborhood
is Rs = ∆s/2.

In general, we claim that heuristics based on the local density do
not o�er satisfactory results due to the reasons discussed in details
in section 4.5. However, when the average local density is very low,
the density (S) strategy can correctly capture nodes in nearly isolated
neighborhood as those that must activate �rst. Already as the average
number of neighbors reaches the value of 2, however, the performance
of the density (S) method starts deteriorating. As the local density
reaches the value of 4, the random strategy can already outperform the
density (S) method. On the contrary, the idw method demonstrates
superior performance with respect to the random strategy up to a crit-
ical value (∼ 6) of the average number of sensing neighbors. Before
reaching this critical threshold, idw can save up to more than 20% of
communication overhead with respect to the random strategy and at
least 5% or more with respect to the density (S) method. This supe-
rior ability with respect to the density (S) method is due to the fact
that the idw considers also the actual geometry of the sensing neigh-
borhood instead of no information at all (as for the random strategy)
or its cardinality only (as density (S) does). However, as the number of
sensing neighbors increases, also the performance of idw deteriorates.
We attribute this loss in performance to the fact that, as the number
of nodes entering in the computation of the rank of a node increases,
the absolute values of the rank and the separations among them be-
comes smaller, and, thus the possibility of assigning a node a misleading
ranking increases. In other words, the presence of more nodes creates
more �noise� that can hamper a proper discrimination of the rank of
the nodes. We believe this drawback could be alleviated by performing
inverse distance weighting using a quadratically or exponentially decay-
ing function of the distance. In this way, the weighting would better
accentuate the di�erences between nearby and further away nodes and
thus possibly allow for a more �ne-grained ranking. Alternatively, ran-
domization can provide for the necessary re-balancing of the rankings.
Indeed, �gure 4.7 shows that the idw-random strategy can outperform
the random method by ∼ 10% or more for every level of the local
density.

The above presented results show that our heuristics to set the activa-
tion timers Tjoin are e�ective in reducing the communication overhead
of the CCP protocol. Further, we would like to prove that the sam-

108 Chapter 4. Spatial Sensor Selection

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
100%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

Lx=100m, Ly=100m, Rtx=25m, Δ
s
=18.75m, N

tot
=200

(a)
Percentage of active nodes before the withdrawal phase

density (C)
density (S)
random
idw
idw−random

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
100%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

(b)
Percentage of active nodes after the withdrawal phase

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
100%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

(c)
Percentage of the RoI being covered by the active nodes

(with respect to the maximal achievable coverage)

Figure 4.9.: Number of active nodes before (a) and after (b) the withdrawal phase,
and percentage of the RoI covered by the active nodes (c). Results
in (a) and (b) are in percentage with respect to the total available
number of nodes Ntot. Results in (c) are in percentage with respect to
the coverage achievable by the activation of all the Ntot available nodes.
Experimental setting (2-dimensional case): Lx = 100m, Ly = 100m,
Rtx = 25m, Deltas = 18.75m, Ntot = 200.

4.6. Experimental Results 109

pling patterns induced by the set of active nodes on the sensor �eld to
sample, can enable appropriate reconstruction using the ACT method.
To this end, we consider again the set of experiments described above
and compute, for appropriate values ofM , the condition number of the
reconstruction matrix T . Figure 4.8 shows the average value of the con-
dition number of T as the average density increases, for M = 5. As we
can see, all the considered strategies can provide for similar values of the
condition number and, thus, for a robust execution of the ACT. This
result is not surprising since the value of the condition number k(T)
depends on the total number of samples and the maximal distances
between adjacent samples. Since, as shown by �gure 4.6, all strategies
eventually provide for the same number of active nodes, as well as for
complete coverage of the RoI, it is perfectly reasonable that they also
return sampling geometries that achieve similar values of the condition
number of T . However, using the idw and idw-random strategies allow
to reach these results with signi�cantly less overhead with respect to
the density (C), density (S), or random methods.
Finally, we would like to point out that, although it may look less

interesting than the 2-dimensional case, the 1-dimensional case is still
of practical relevance. For instance, sensors deployed along a road
or railway can be (at least locally) seen as nodes over a 1-dimensional
space. Similarly, cars driving on a highway can be represented as mobile
nodes deployed on a line, as well as people walking on a street.

4.6.3. 2-Dimensional Case

The results obtained in the 2-dimensional case are qualitative very sim-
ilar to those previously discussed for the 1-dimensional case. To mea-
sure the performance of the di�erent heuristics, we considered again a
variable number of nodes Ntot, from 200 to 300 deployed over a square
region of sides Lx = Ly = 100m. The transmission range Rtx has been
�xed to 25m and the value of ∆s increased from 75% to 100% of Rtx.
For instance, �gure 4.9 shows the percentage of active nodes before

and after the withdrawal phase and the corresponding level of coverage
for the case ∆s = 0.75Rtx and Ntot = 200. As we can see, the idw
strategy is, in most cases, the method that allows to minimize the
number of active nodes, although for some con�gurations it is slightly
worse than the density (S) strategy. For the sake of completeness,
�gure 4.10 also shows the standard deviation of the two randomized

110 Chapter 4. Spatial Sensor Selection

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 1%
 2%
 3%
 4%
 5%
 6%
 7%
 8%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

Lx=100m, Ly=100m, Rtx=25m,
s
=18.75m, N

tot
=200

strategy: random
Standard deviation of the percentage of active nodes before and after the withdrawal phase

before withdraw
after withdraw

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%
 1%
 2%
 3%
 4%
 5%
 6%
 7%
 8%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

strategy: idw−random
Standard deviation of the percentage of active nodes before and after the withdrawal phase

before withdraw
after withdraw

Figure 4.10.: Standard deviation of the number of active nodes before and after
the withdrawal phase, for the random and idw-random strategies.
Results are in percentage with respect to the total available number
of nodesNtot. Experimental setting (2-dimensional case): Lx = 100m,
Ly = 100m, Rtx = 25m, Deltas = 18.75m, Ntot = 200.

strategy corresponding to the results displayed in �gure 4.9.

As already seen for the 1-dimensional case, the performance of a spe-
ci�c strategy depends on the local average density of the nodes. Figure
4.11 gives a more general picture of the performance of the di�erent
strategies as the local density increases. Similarly as what we observed
for the 1-dimensional case, the idw and density (S) metrics perform well
for low densities. As the average number of nodes in a sensing neigh-
borhood increases, however, randomized strategies outperform deter-
ministic methods. Also, we can observe that the idw-random strategy
requires about 10% less communication overhead with respect to the
plain random assignment method.

Figure 4.12 also reports, as a function of the average number of sens-
ing neighbors, the number of nodes that eventually remain active after
the withdrawal phase. On this regard, as in the 1-dimensional case, the
considered strategies have practically identical performance.

4.7. Adaptive Random Sensor Selection (ARS) 111

5 6 7 8 9 10 11 12 13 14 15
 60%

 70%

 80%

 90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

200%

Average number of sensing neighbors

C
om

m
un

ic
at

io
n

ov
er

he
ad

L
x
=100, L

y
=100, R

tx
=25, Δ

s
 = 18.75,21.875,25, N

tot
= 200,250,300

Total communication overhead
(in percentage with respect to the overhead of the random strategy)

density (C)
density (S)
random
idw
idw−random

Figure 4.11.: Communication overhead of the CCP using di�erent strategies to
set the activation timers of the nodes, as the average number of
sensing neighbors increases. Results are in percentage with re-
spect to the overhead of the random strategy. Experimental set-
ting (2-dimensional case): Lx = 100m, Ly = 100m, Rtx = 25m,
Deltas = 18.75, 21.875, and 25m, Ntot = 200, 250, and 300.

4.7. Adaptive Random Sensor Selection (ARS)

In the previous section, we have shown that our ranking heuristics are
e�ective in reducing the communication overhead of the CCP protocol.
Also, we have observed that techniques based on randomization may
often perform comparably, or better, than deterministic, and possibly
more complex, strategies. In this section, we further investigate the
possibility of using our sensor heuristics to improve the performance
of sensor selection strategies based on random node activations. To
this end, we �rst brie�y recall the concept of random sensor selection
and summarize related theoretical results in sections 4.7.1 and 4.7.2,
respectively. We then introduce a new adaptive random strategy (ARS)
for sensor selection that leverages our ranking heuristics in section 4.7.3
and provide its evaluation in section 4.7.4.

112 Chapter 4. Spatial Sensor Selection

5 6 7 8 9 10 11 12 13 14 15
 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

Average number of sensing neighbors

P
er

ce
nt

ag
e

of
 a

ct
iv

e
no

de
s

L
x
=100, L

y
=100, R

tx
=25, Δ

s
 = 18.75,21.875,25, N

tot
= 200,250,300

Percentage of active nodes after the withdrawal phase

density (C)
density (S)
random
idw
idw−random

Figure 4.12.: Number of active nodes after the withdrawal phase as the average
number of sensing neighbors increases. Results are in percentage with
respect to the the total number of available nodes Ntot. Experimental
setting (2-dimensional case): Lx = 100m, Ly = 100m, Rtx = 25m,
Deltas = 18.75, 21.875, and 25m, Ntot = 200, 250, and 300.

4.7.1. Random Sensor Selection

The probably simplest ways to perform spatial sensor selection in WSNs
is to make the nodes randomly decide upon their activation. In partic-
ular, each node can be assigned a probability of activation p, which can
be computed locally or disseminated by a central server. Each time data
collection is required, sensor nodes can autonomously decide whether to
participate in the sensing task or not by generating a random number
ρ between 0 and 1. If ρ < p, the node collects and reports data, and
it remains idle otherwise. This simple random sensor selection (RSS)
protocol clearly requires very little control overhead. Indeed, once the
value p has been �xed and disseminated to all the nodes, the protocol
must intervene only to update possibly newly added nodes or to op-
portunely adapt the value of p. Its e�cacy is indirectly demonstrated
by the results reported in [120], which show that the RSS can perform

4.7. Adaptive Random Sensor Selection (ARS) 113

comparably, or even better, than other more sophisticated (and costly)
sensor selection protocols.

Clearly, the applicability of the RSS and the determination of a
proper value of p depend on the requirements and constraints of the
application. In �eld reconstruction scenarios, the RSS can guarantee
an average number k of nodes to be active in each sampling round by
simply setting p = k/Ntot. As discussed previously in this chapter,
however, for the purpose of �eld reconstruction the k selected sensors
must also o�er a high degree of coverage of the RoI. Therefore, the ap-
plicability of the RSS in this context is limited, unless a link between k
and the expected level of sensing coverage (ESC) can be established.

Indeed, if the nodes are deployed at random over the RoI accord-
ing to a known distribution, e.g. uniform or Poisson, it is possible to
link the number of active nodes with the ESC their activation allows
to achieve [40, 66, 79, 110, 111, 200]. For instance, when the nodes are
deployed uniformly at random over the RoI an explicit analytical re-
lation between k and ESC exists [40, 66], as we also detail in section
4.7.2 below. Thus, once the desired number of active nodes k is known,
the RSS can come into play as a simple but e�ective sensor selection
strategy.

Performing sensor selection using the RSS has several advantages.
First, it requires an extremely limited control overhead, since it does
not need coordination among neighboring nodes. Further, the random
nature of the RSS implicitly provides for load balancing. Finally, the
RSS is also robust against node failures or replacements, provided the
number of nodes Ntot is su�ciently high. On the other hand, guar-
anteeing high levels of coverage using the RSS typically requires the
activation of a number of nodes k that is much higher with respect
to the �gures achieved by specialized coverage preserving algorithms.
In section 4.7.3, we address this ine�ciency of the RSS in detail and
suggest a method to mitigate it by letting sensor nodes autonomously
determine the most appropriate value of their probability of activation
p. To this end, we resort to the sensor ranking heuristics presented
in section 4.5. Our experimental results, presented in section 4.7.4,
show that this optimization allows to limit the number of active nodes
k while still guaranteeing high levels of coverage. Before going into
further details, however, we brie�y summarize some useful theoretical
results in the next section 4.7.2.

114 Chapter 4. Spatial Sensor Selection

4.7.2. Coverage by Randomly Deployed Sensor Nodes

Under the assumption that Ntot sensor nodes are deployed over the RoI
according to a known random process, it is possible to determine, at
least asymptotically, with which probability they can o�er complete
coverage of the RoI [40, 66, 79, 110, 111, 200]. Clearly, this probability
depends on the relation among the number of nodes, the form and
extension of their sensing areas as well as on the form and extension of
the RoI.
In 1947 Garwood analyzed this issue but with reference to a bombing

problem [66]. In this context, he derives analytical expressions for
the expected value and variance of the portion of area that remains
uncovered after Ntot objects have �fallen� at random on a square or
rectangular RoI. Both the cases in which the area covered by each of the
Ntot objects is a circle or a rectangle are considered. Using Garwood's
results, it is possible to derive an analytical expression for the ESC
o�ered by k nodes selected at random among the Ntot available units.
In particular, if the nodes have sensing rangeRs and can cover a circular
area centered at the node and having radius Rs, and the RoI is a square
of side L, Choi and Das shown that the ESC can be expressed as [40]:

ESC = 1− (
L2 + 4LRs

L2 + 4LRs + πR2
s

)k (4.12)

Accordingly, the minimal number of nodes k that can guarantee the
level of coverage ESC to be achieved (on average), is [40]:

k = d ln(1− ESC)

ln(L2+4LRs
L2+4LRs+πR2

s
)
e. (4.13)

Garwood's results, and thus also Choi and Das', hold under the as-
sumption that the nodes are deployed over an area A that contains,
but does not coincide with, the RoI. In particular, for the equations
reported above, the RoI is a square of side L, while A is a �square
with rounded corners� with boundary at constant distance Rs outside
the RoI [66], as schematically depicted in �gure 4.13. This hypothesis
signi�cantly simpli�es the analytical treatment of the problem, since it
allows to prescind from the boundary e�ects. Indeed, at the boundary
of a region the density of the nodes changes and this cannot be ignored
when deriving equations like 4.12 and 4.13, as shown in [110,111,200].
In the following, we make use of equation 4.13 and thus assume the

4.7. Adaptive Random Sensor Selection (ARS) 115

deployment region to have the the form depicted in �gure 4.13.

Figure 4.13.: Reference geometry for the derivation of equations 4.12 and 4.13.

4.7.3. Determination of the Probability of Activation

As mentioned above, guaranteeing a given ESC using the RSS requires
the activation of an often unnecessarily high number of nodes k. For
instance, for the experimental setting reported in �gure 4.9, complete
coverage of the RoI is achieved for all the 25 random con�gurations with
fewer than 140 nodes (70% of the 200 nodes deployed in total). Instead,
equation 4.13 indicates that, for the same setting, guaranteeing the
coverage of 99% of the RoI using the RSS would require the unrealistic
activation of k = 245 nodes.
Clearly, in most practical settings, the actual required value of k is

typically much lower. In this context, the de�nition of practical heuris-
tics to set the value of k, and thus p, are required. At the beginning
of section 4.5.3, we noticed that the value of Ψi, as de�ned in equation
4.6, actually represents the probability that the node ni must become
active to guarantee coverage of its sensing neighborhood. Thus, the
value of Ψi represents a suitable choice for the value of the probability
of activation pi of node ni. Since with this choice the value of pi is

116 Chapter 4. Spatial Sensor Selection

adapted to the local topology, we refer to this strategy as the adaptive
random sensor selection (ARS) scheme.

Our experimental results, presented in the following section 4.7.4,
show that the ARS is e�ective in guaranteeing high level of coverage
using a number of nodes k far smaller than what equation 4.13 would
suggest. Furthermore, it o�ers a means to set the values of the prob-
ability of activation in a distributed manner, provided the nodes are
aware of the required spatial resolution ∆s and know the number and
position of their neighbors. As for the latter requirement, we should
recall that this information is usually available at the routing layer,
and we thus assume that the ARS can access it without generating
additional overhead.

 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 96%

96.5%

 97%

97.5%

 98%

98.5%

 99%

99.5%

 100%

Average number of sensing neighbors

%
 o

f c
ov

er
ag

e

L
x
=100, L

y
=100, R

tx
=25, Δ

s
=2R

s
=18.75,21.875,25, N

tot
= 150,175,200,225,250,275,300

Percentage of coverage
(with respect to the maximal achievable coverage)

N
tot

 =150

N
tot

 =175

N
tot

 =200

N
tot

 =225

N
tot

 =250

N
tot

 =275

N
tot

 =300

Figure 4.14.: Expected sensing coverage achievable using the ARS strategy, as the
number of sensing neighbors increases. Results are in percentage with
respect to the coverage achievable by the activation of all the Ntot

available nodes. Experimental setting (2-dimensional case): Lx =
100m, Ly = 100m, Rtx = 25m, Deltas = 18.75, 21.875,, and 25m,
Ntot = 150, 175, 200, 225, 250, 275, and 300.

4.7. Adaptive Random Sensor Selection (ARS) 117

4.7.4. Experimental Results

Figure 4.14 shows the ability of the ARS to provide for a high degree
of coverage of the RoI, depicted as a function of the average number of
sensing neighbors. Each data point in �gure 4.14 is the average, over
25 random network con�gurations, of the level of coverage achieved
by the ARS. For each con�guration, the average level of coverage has
been computed over 25 trials. As for the network parameters, we re-
fer to the same setting de�ned in section 4.6.3 (Lx = Ly = 100m,
Rtx = 25m). The average number of sensing neighbors is computed as
πR2

sNtot/(LxLy). The total number of available nodes Ntot varies from
150 to 300, while the spatial resolution ∆s = 2Rs varies from 75% to
100% of the value of Rtx.

 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0%

0.2%

0.4%

0.6%

0.8%

 1%

1.2%

1.4%

Average number of sensing neighbors

%
 o

f c
ov

er
ag

e

L
x
=100, L

y
=100, R

tx
=25, Δ

s
=2R

s
=18.75,21.875,25, N

tot
= 150,175,200,225,250,275,300

Standard deviation of the percentage of coverage

N

tot
 =150

N
tot

 =175

N
tot

 =200

N
tot

 =225

N
tot

 =250

N
tot

 =275

N
tot

 =300

Figure 4.15.: Standard deviation of the expected sensing coverage achievable us-
ing the ARS strategy, as the number of sensing neighbors increases.
Results are in percentage with respect to the coverage achievable
by the activation of all the Ntot available nodes. Experimental set-
ting (2-dimensional case): Lx = 100m, Ly = 100m, Rtx = 25m,
Deltas = 18.75, 21.875,, and 25m, Ntot = 150, 175, 200, 225, 250, 275,
and 300.

118 Chapter 4. Spatial Sensor Selection

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%

 20%

 40%

 60%

 80%

100%

network configuration number

%
 o

f c
ov

er
ag

e

Lx=100, Ly=100, Rtx=25, N
tot

=200

(a)
Percentage of the RoI covered by the active nodes
(with respect to the maximal achievable coverage)

Δ
s
=2R

s
=18.75

Δ
s
=2R

s
=21.875

Δ
s
=2R

s
=25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%

0.2%

0.4%

0.6%

0.8%

 1%

network configuration number

%
 o

f c
ov

er
ag

e

(b)
Standard deviation of the percentage of the RoI covered by the active nodes

Figure 4.16.: Expected sensing coverage achievable using the ARS strategy (a), and
corresponding standard deviation (b). Results are in percentage with
respect to the coverage achievable by the activation of all the Ntot

available nodes. Experimental setting (2-dimensional case): Lx =
100m, Ly = 100m, Rtx = 25m, Deltas = 18.75, 21.875, and 25m,
Ntot = 200.

Figure 4.14 validates our claim that the ARS can provide for a high
degree of coverage of the RoI. To show that these results are robust, we
also report the corresponding values of the standard deviation in �gure
4.15. As we can see, the standard deviation rarely exceeds 1%, and, as
expected, its value shrinks as the average number of sensing neighbors
increases.
Figure 4.16 shows the average level of coverage for all the 25 con-

�gurations, when Ntot = 200, along with the corresponding standard
deviation (computed over 25 runs). As we can see, only in two cases
(networks 23 and 24), the level of coverage achieved by the ARS is
clearly below average. Figure 4.17 also show the corresponding average
number of active nodes and its standard deviation. For all the three
values of Rs considered here, the number of active nodes is between
60% and 80% of the total number of available nodes. Using equation
4.13, achieving the level of coverage of �gure 4.16 would have required
the activation of more than Ntot nodes.
Clearly, the superior performance of the ARS with respect to the

RSS depends on the fact that the former is able to adapt to the local

4.8. Integration of Sensor Selection and Routing 119

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 0%

 20%

 40%

 60%

 80%

100%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

Lx=100, Ly=100, Rtx=25, N
tot

=200

(a)
Percentage of active nodes

Δ
s
=2R

s
=18.75

Δ
s
=2R

s
=21.875

Δ
s
=2R

s
=25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0%

1%

2%

3%

4%

5%

network configuration number

%
 o

f a
ct

iv
e

no
de

s

(b)
Standard deviation of the percentage of active nodes

Figure 4.17.: Average number of active nodes using the ARS strategy (a), and cor-
responding standard deviation (b). Results are in percentage with
respect to the total number of available nodes Ntot. Experimental
setting (2-dimensional case): Lx = 100m, Ly = 100m, Rtx = 25m,
Deltas = 18.75, 21.875, and 25m, Ntot = 200.

topology of the network. The ARS can thus select the proper value
of the probability of activation p for each con�guration, while the RSS
uses a theoretically sound, but generic estimation. Although we also
experimented with the use of other sensor ranking heuristics to set the
values of p, we have found the method de�ned in section 4.5.2 to be
the most reliable in terms of achievable coverage.

4.8. Integration of Sensor Selection and Routing

In order to report collected sensor readings to one or more sink nodes
the sensor selection techniques discussed in this chapter rely on an
underlying routing protocol to be available. The interplay between
the sensor selection and routing layer is, however, very limited. In
particular, we only assumed the routing table to be visible at the sensor
selection layer, so that information about the presence and position of
neighboring nodes can be retrieved.7

7 Distributed routing protocols for WSNs typically require the nodes to periodically exchange
routing beacons to build the routing tables. Depending on the speci�c protocol, the information
included in these messages and the rate at which they are sent may vary [104, chapter 11]. In

120 Chapter 4. Spatial Sensor Selection

In principle, decoupling the sensor selection and routing logic is de-
sirable, since it allows for modularity and portability. On the other
hand, it may also result in an ine�cient distribution of the energy con-
sumption within the network. Indeed, if no coordination exists between
the two layers, nodes that are frequently selected for sensing may also
be required to regularly operate as data routers. This can make such
nodes deplete their batteries sooner than other, less busy peers. Prop-
erly balancing the participation in sensing and routing of single nodes
may allow to increase their lifetime, and, thus, that of the whole net-
work. Achieving this balance requires applying appropriate cross-layer
optimization techniques [104, chapter 13]. In particular, previous work
has shown the e�ectiveness of a combined approach to sensor selection
and routing in increasing network lifetime [147,150,151,168]. Drawing
upon this work, we are interested in investigating the possibility to use
the sensor ranking heuristics presented in section 4.5 to better balance
the participation of a node in routing activities. In particular, we per-
formed a preliminary, quantitative evaluation using the Collection Tree
Protocol (CTP) as a reference routing mechanism.8

CTP is a generic routing protocol recently developed within the
TinyOS community that can reliably report data to one or more sink
nodes [58, 68]. CTP constructs one or more forwarding trees having
each a sink as their root. To this end, each node must select one of its
neighbors as a parent in the tree according to the so-called Expected
Transmissions (ETX) metric. The ETX is a complex link quality in-
dicator that takes into account several factors, like the fraction of lost
messages over the total sent, or the decoding error at the physical layer.
The ETX of a node ni basically estimates the number of transmissions
required to deliver a data packet to (one of) the sink(s), if it is routed
through the node ni itself. Among the set of its neighbors, a sensor
node selects as its parent the one with the lowest ETX. Clearly, if a
node has high ETX and sensor rank, it will be frequently selected both
as sensor and data router, and will thus rapidly deplete its batteries. To
cope with this problem, nodes with high sensor rank should be possibly
preserved from acting as data routers. In particular, these nodes could
�downgrade� their ETX so as to reduce their probability to be chosen
as data routers by other nodes. In principle, this modi�ed ETX, which

this context, we assume that the position of the nodes is included in these beacons and, thus,
in the routing table.

8 For the interested reader, we describe this protocol in detail in appendix B.

4.8. Integration of Sensor Selection and Routing 121

Table 4.1.: Tested functions for including the sensor rank SR in the computation
of the ETX metric.

Experiment ETX
1 standard ETX
2 ETXmod = ETX · (1 + SR

4
)

3 ETXmod = ETX · (1 + SR)
4 ETXmod = ETX + αSR, α = 2

we call ETXmod, can be computed as an arbitrary function of the real
ETX and the sensor rank SR, thus as ETXmod = f(ETX, SR). To
understand the feasibility of this approach and test suitable weight-
ing functions, we implemented CTP on the Castalia WSN simulator,
which we introduced in section 2.2.3, and performed a preliminary ex-
perimental study. The implementation of CTP in Castalia as well as
the considerations reported in this section are the outcome of a joint
e�ort with Ugo Colesanti, of the �Sapienza� University of Rome.
In particular, we run a series of experiments using the following set-

ting. We consider a network with Ntot nodes deployed uniformly at ran-
dom over a square area of side lengths L, and all having the same trans-
mission and sensor range Rtx and Rs, respectively. We let the nodes
wake up at regular time intervals and decide upon their participation in
sensing using the ARS strategy introduced in section 4.7. Concurrently,
the nodes participate in the construction of the CTP routing tree using
either the ETX metric or its modi�ed version ETXmod. We consider
three di�erent empirical functions to compute the ETXmod, as summa-
rized in table 4.1. We then generate 50 di�erent network con�gurations
and run 50 trials (i.e., sampling rounds) for each network and each dif-
ferent �type� of the ETX. For each trial, we measure the number
of data packets and routing beacons transmitted and received by each
node. By examining the load in terms of sent and received packets with
and without using the modi�ed version of the ETX, we can measure
the e�ectiveness of the ETXmod in providing for better load balancing.
In particular, we compute the di�erence between the total transmitted
and received packets with and without the ETXmod, in percentage with
respect to the performance obtained without ETXmod. We refer to this
performance measure as the di�erential total transmitted and received
packets.
Figure 4.18 shows, for a speci�c network con�guration, the average

122 Chapter 4. Spatial Sensor Selection

di�erential total transmitted and received packets as a function of the
sensor rank and for all the three considered expressions of ETXmod,
when the parameters Ntot, L, Rtx, and Rs take the values 100, 250m,
50m, and 25m, respectively. As we can see, the use of ETXmod in
spite of the plain ETX makes nodes with lower sensor rank to route
a signi�cantly higher number of packets with respect to the case in
which the ETX is used. On the other hand, the vast majority of nodes
with a high sensor rank can reduce their communication load, although
there are some exceptions. For this speci�c network con�guration, the
in�uence of the function used to compute the ETXmod is limited, but,
on average the formula ETXmod = ETX + αSR provided the better
performance on most con�gurations. In general, however, we observed
a high variability in performance depending on the speci�c network
con�guration. For instance, the average total number of transmitted
data packets and beacons may increase or decrease as a consequence
of the introduction of the ETXmod. Furthermore, although in most
con�gurations the majority of the high rank nodes could reduce their
communication load, in some cases we also observed some of these nodes
signi�cantly increasing their messaging overhead.
In the light of these considerations, we cannot provide a decisive

characterization of the performance of the proposed interaction between
CTP and our ARS strategy. However, we believe the investigation of
this interaction constitutes a promising direction for further research.

4.9. Summary

In this chapter, we presented our approach to the spatial sensor selec-
tion problem in the speci�c context of �eld reconstruction applications.
In particular, we �rst discussed the feasibility of the ACT reconstruc-
tion algorithm to be used in the context of WSNs. We then showed
that, using this algorithm, the problem of selecting sampling geome-
tries that can allow for good reconstruction performance can be reduced
to a coverage problem. We thus focused on a speci�c, state-of-the-art
coverage preserving algorithm, known as CCP, and proposed to lever-
age it to provide for adequate short-lived sampling geometries. In this
context, we introduced a set of heuristics that allowed to improve the
performance of CTP by reducing the communication overhead required
to select a short-lived coverage preserving sampling geometry. Further,
we showed how the considered heuristics can also be leveraged to im-

4.9. Summary 123

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−200%
−100%

 0%
 100%
 200%
 300%
 400%
 500%
 600%
 700%

sensor rank

pe
rc

en
ta

ge
 o

f p
ac

ke
ts

Differential total transmitted and received data packets (average over 50 trials)
N

tot
=100, L=250m, R

tx
=50m, R

s
=25m, sink on upper left corner

Network 46, ETX
mod

 = ETX(1+SR/4)

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−200%
−100%

 0%
 100%
 200%
 300%
 400%
 500%
 600%
 700%

sensor rank

pe
rc

en
ta

ge
 o

f p
ac

ke
ts

Network 46, ETX
mod

 = ETX(1+SR)

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−200%
−100%

 0%
 100%
 200%
 300%
 400%
 500%
 600%
 700%

sensor rank

pe
rc

en
ta

ge
 o

f p
ac

ke
ts

Network 46, ETX
mod

 = ETX + alpha*SR (alpha = 2.5)

Figure 4.18.: Di�erential total transmitted an received packets for network 46, av-
eraged over 50 trials, as a function of the sensor rank and for all the
three considered expressions of ETXmod. Experimental setting (2-
dimensional case): Lx = Ly = L = 250m, Rtx = 50m, Rs = 25m, and
Ntot = 100.

124 Spatial Sensor Selection

prove the performance of a random sensor selection strategy. Finally,
we provided some qualitative and quantitative remarks on the interplay
between spatial sensor selection and routing.

5. Environmental Noise
Monitoring � An Application
Scenario

In the previous chapters, we have addressed the sensor selection prob-
lem in typical, generic application scenarios for wireless sensor networks
(WSNs), like environmental monitoring and sensor �eld reconstruction.
In this chapter, we investigate a concrete application scenario in order
to assess its suitability for our sensor selection strategies, namely the
monitoring of noise pollution levels in urban environments.
Noise pollution is �one of the main environmental problems in Eu-

rope� [53, page 1a]. In order to develop, enforce, and validate policies
aiming at the abatement of noise pollution across European member
states, the possibility to accurately assess its actual levels is considered
instrumental [53, 187]. In this context, WSNs can be used to perform
noise measurements with an accuracy that current assessment proce-
dures cannot achieve. For this application scenario, we initially as-
sumed both our prediction-based sensor selection strategy (cf. chapter
3) as well as our ARS strategy (cf. chapter 4) to be readily applicable.
However, a closer analysis (see section 5.3) showed that due to the par-
ticular requirements of the domain, the applicability of our algorithms
is somewhat limited.
In fact, a closer examination of the problem area revealed that one of

the major challenges towards the implementation of a noise monitoring
application using WSNs actually consists in the selection of a suitable
sensing platform. Several issues (e.g., the lack of adequate hardware
calibration procedures and the �delity of the audio sensing) hinder the
use of commonly available sensor nodes as reliable noise pollution sen-
sors [165]. Equally unsuitable seems to be the use of mobile phones as
ubiquitous mobile noise meters, e.g., as suggested in [38,177]. To over-
come these limitations, it is instead possible to leverage commercially
available noise level meters. Once properly interfaced to a generic WSN
platform such as the Tmote Sky, these devices can operate as external

126 Chapter 5. Environmental Noise Monitoring � An Application Scenario

sensors and provide for reliable noise level measurements.
In the following section 5.1, we report the de�nition of environmental

noise and discuss the recent e�orts promoted by the European Com-
mission to foster a comprehensive assessment of its levels in urban en-
vironments. In this context, we describe the potential impact of WSNs
as a �exible tool to perform �ne-grained measurements of noise levels.
We then provide an overview on related work in section 5.2, followed by
an analysis of the application requirements in section 5.3. In the same
section we also discuss the applicability of the sensor selection strate-
gies presented in chapters 3 and 4 to this speci�c application scenario.
We then report our experiences in using both sensor nodes and mobile
phones as noise pollution sensors in sections 5.4 and 5.5, respectively.
Finally, section 5.6 summarizes and concludes the chapter.
The results reported in this chapter are the outcome of a collaboration

between the author and Andrea Vitaletti, of the �Sapienza� University
of Rome, Italy, as well as a joint work with Benedikt Ostermaier and
Robert Adelmann of the ETH Zurich, Switzerland. Most of the contri-
butions described below have been published in [57,164,165,167].

5.1. Motivation and Background

Noise is de�ned as sound that is � loud, unpleasant or unexpected � [53].
Typical noise sources are road and railways tra�c, airplanes, industrial
equipment, and human activities such as discussions or music playing.
The compound e�ect of these noise sources is referred to as environ-
mental noise or noise pollution and is measured using so-called noise
indicators. These indicators are in turn determined as average loud-
ness levels over speci�c periods of time, like a day, night, week, or even
years.
In 1996, the European Community estimated that about 80 millions

of its citizens (20% of the total at that time) were exposed to unac-
ceptable levels of environmental noise, and that another 170 million suf-
fered serious annoyance from high noise pollution during daytime [53].
Among the many negative consequences of noise pollution on human
health, the World Health Organization (WHO) lists hearing impair-
ment, disturbance of rest and sleep, and increased blood pressure and
heart rate [18]. The high number of citizens exposed to environmen-
tal noise, and the related health risks (and thus costs), prompted the
European Commission to declare the abatement of noise pollution as

5.1. Motivation and Background 127

one of the main goals of its environmental protection policy. Directive
2002/49/EC of the European Parliament (in the following simply called
�the Directive�) has since made the avoidance, prevention, and reduc-
tion of environmental noise a prime issue in European environmental
protection policy. In particular, the Directive requires member states
to determine the exposure of its citizens to environmental noise, and
to ensure that information on noise pollution and its e�ects is made
available to the public [187].
According to the Directive, member states are required to provide

an accurate mapping of environmental noise exposure for all agglom-
erations with more than 250 000 inhabitants, as well as along major
roads, railways, and airports [187, Art.7]. Adequate local action plans
for the abatement of noise can then be elaborated based upon such
noise-mapping results [187, Art.1].
While current noise maps are mostly based on sparse data and ad-hoc

noise propagation models, the Commission has stressed that �every ef-
fort should be made to obtain accurate real data on noise sources,� [54,
page 6]. The demand for accurate data about noise exposure levels
is likely to increase signi�cantly, as this statement makes its way into
mandatory regulation. In this context, the use of WSNs could help
in satisfying this rising demand for �ne-grained noise data. In partic-
ular, WSNs could provide noise measurements with an accuracy and
cost-e�ciency that current noise assessment procedures cannot a�ord.
Indeed, today's noise measurements are mainly carried out manually
by designated o�cers that collect data in a location of interest for suc-
cessive analysis and storage, using a sound level meter.1 This collection
method using expensive equipment does not scale well as the demand
for higher granularity of noise measurements in both time and space
increases. Instead, a network of wireless sensor nodes deployed over the
area of interest could continuously collect noise pollution data over days
or weeks, and autonomously report it to a central server through the on-
board radio of the nodes. Human intervention would then be required
only to install and subsequently remove the sensing devices. Moreover,
since sensor nodes are typically equipped with several di�erent sensors,
they can label the collected noise data with additional information like,
e.g., the temperature and humidity values registered as the noise mea-

1 The author is indebted to Hans Huber and Fridolin Keller of the department for environmental
noise protection of the city of Zurich, Switzerland, who described the current practice in a
personal in-depth interview in March 2007 [88].

128 Chapter 5. Environmental Noise Monitoring � An Application Scenario

surements were collected. This information should indeed be provided
for any properly collected set of noise exposure data [88].

WSNs could also provide for the validation of noise levels obtained
using computational models. Noise data is typically stored in a land
register and used, together with additional information about existing
noise sources, to feed computational models that provide extrapolated
noise exposure levels for those areas for which real data is unavail-
able. Even if this assessment procedure is still compliant with Euro-
pean regulations, computational models often fail to provide accurate
estimations of the real noise pollution levels [88]. While the free propa-
gation properties of noise generated from typical noise sources are well
understood, shadowing and re�ection e�ects hinder accurate estima-
tion of noise levels in complex urban settings. For instance, estimated
noise levels on internal buildings façades (e.g., facing a courtyard) are
typically unreliable, and this inaccuracy may become critical if noise
exposure data is used to drive decisions about construction planning
or to elaborate local noise abatement policies [88]. The accuracy of
estimated noise levels could thus be veri�ed and improved by installing
a WSN at potentially sensitive spots (like, e.g., schools or hospitals) or
at those locations for which computational models are likely to provide
inaccurate estimations. Indeed, the European Commission points out
that real noise measurements can be used to �validate noise maps at
selected sites�, �boost public con�dence in these maps�, and �show the
real e�ects of action plans once they are implemented � [54, page 10].
To perform such measurements, noise assessment points must possibly
be closely spaced, and data should be collected simultaneously at all
assessment points. While this distributed sensing setup is cumbersome
and costly to realize with the current measurement procedures, it is a
�natural� setup for WSNs.

Last but not least, the use of WSNs may also bring signi�cant im-
provements in the assessment of noise pollution due to vehicular tra�c
on urban roads. The current procedure requires estimating, for several
di�erent vehicle classes, the average number of units passing-by at day-
time, evening and night and the average noise level during each vehicle
pass-by [24, 93]. This estimation is either performed through compu-
tation, with the drawbacks and problems outlined above, or it is per-
formed manually, i.e., by a designated o�cer standing nearby the road
and annotating the type and number of vehicles passing-by [88]. WSNs
have already proven their ability to detect and classify vehicles [7] and

5.1. Motivation and Background 129

could therefore be used in this context to automate the vehicle counting
procedure and, at the same time, record the corresponding noise levels.

Summarizing the considerations reported above, the use of WSNs in
the context of noise monitoring could bring signi�cant advantages in at
least three speci�c application scenarios. First, to collect �ne-grained
data to be included in noise maps. Second, to validate the values of
noise pollution levels determined using computational models. Third,
to count the number of transiting vehicles in road tra�c monitoring.
To the best of our knowledge, we have been the �rst within the WSN re-
search community to address these speci�c application scenarios within
the broader context of environmental noise monitoring [167]. WSNs
could be highly suitable to provide for noise mapping data at selected
locations, like building façades, internal courtyards, or public parks.
While the costs and e�orts required to deploy a dense WSN to measure
noise levels over an entire neighborhood or city still appear prohibitive,
small targeted deployments or multi-purpose installations (i.e., to also
measure other environmental e�ects) might soon make early inroads.
Also, the recent rise of urban-scale sensing infrastructures [38,138] could
provide another avenue for rendering comprehensive urban noise map-
pings feasible in the foreseeable future.

In our initial investigations, however, we focus on scenarios in which
a WSN is deployed over a geographically limited region, like a building
façade. In this setting, the WSN can collect noise level data with the
modalities discussed in section 5.3 and report its measurements to a
base station for permanent storage and later analysis. The collected
noise data can then be used to feed computational models and pro-
duce comprehensive noise maps, or to validate previously computed
synthetic data. We summarize the main requirements of this reference
application scenario, and provide practical guidelines for its implemen-
tation on WSNs platforms, in sections 5.3 and 5.4. In section 5.3, we
will also discuss the applicability of the sensor selection strategies de-
scribed in chapters 3 and 4 to the speci�c environmental monitoring
scenario under consideration.

Before going into further details, however, we discuss related work
in the following section 5.2. Besides considering related e�orts in the
context of �classical� WSNs, we also report on several recent approaches
that aimed at capturing noise levels using mobile phones. Due to the
rising interest in these platforms, we also evaluated their performance
as noise pollution sensors, as we detail in section 5.5.

130 Chapter 5. Environmental Noise Monitoring � An Application Scenario

5.2. Related Work

Several authors within the WSNs research community have mentioned
noise monitoring as a potential application scenario for WSNs [52,208].
However, they did not provide a closer description of the speci�c re-
quirements of the application nor investigated practical issues concern-
ing its practical implementation. More recently, the BikeNet project
[51] showed how average noise levels can be used to in�uence daily
decisions like the choice of the cycling route to work. The prototype
developed for the BikeNet project uses the Tmote invent platform to
derive estimations of the actual noise levels in the immediate neigh-
borhood of a cyclist. However, as we reported in [165] and discuss in
section 5.4.2, using the Tmote invent platform to measure noise levels
may cause the measurements to be signi�cantly inaccurate.
There exists also a considerable body of literature dealing with appli-

cations for WSNs that exploit acoustic measurements, e.g., for target or
event detection and classi�cation (e.g., shooters, birds or volcanic erup-
tions), acoustic-based localization, or communication [47, 73, 191, 201].
For these applications, however, speci�c features of the acoustic signal,
like its frequency spectrum (e.g., for birds classi�cation) or the rela-
tive loudness or time shifting between two signals (for detection and
localization) are of interest, and not the absolute loudness, like for the
assessment of noise levels.
Recent e�orts also investigated the possibility of using the micro-

phones of commonly available mobile phones as ubiquitous acoustic
sensors [38, 102, 130, 133]. For instance, the MobGeoSen system [102]
used built-in microphones and other sensors attached to mobile phones
to collect pollutant levels in an urban environment. Examples of noise
levels, expressed in dB, are presented, but the accuracy of this data
as well as its coherence with measurements taken from nearby phones
is not discussed. As we show in section 5.5, however, measurements
collected with mobile phones may be highly inaccurate.
Within Microsoft's Nericell project [133], audio recordings from the

built-in microphone of a smartphone constitutes the input of a �honk
detection� algorithm, which in turn feeds an estimator of the current
tra�c conditions. The authors investigate the in�uence of background
noise and the sensitivity of the microphones on the performance of the
honk-detector, but their approach does not support the assessment of
the absolute of the actual noise levels. Similarly, the CenceMe system

5.3. Application Requirements and Applicability of Sensor Selection 131

[130] uses simple Python scripts to capture audio signals on Nokia N80
and N95 mobile phones, but the data is processed on the mobile phone
to determine whether it contains voice or just background noise, and
not to assess noise levels.
Other authors investigate the challenges and possibilities related to

the use of mobile phones as �complex� sensors. For instance, Misra
et al. [131], present several examples of how the microphone of mobile
phones can be used for music applications. Furthermore, they underline
that, being the development of mobile operating systems still ongoing,
writing applications for mobile platforms that rely on such systems
may be cumbersome and time consuming. On the other hand, the
recent spread of �exible platforms like Apple's iPhone2, or Google's
Gphone/Android3 fostered the appearance of a high number of readily
available sensing applications. For instance, as of January 2009 at
least 10 applications for capturing noise levels using the iPhone were
available on the App Store4, Apple's portal for the publication and
selling of customized applications for the iPhone. This shows a growing
public interest in the issue of noise pollution, but the actual accuracy of
the measurements collected using the mentioned applications remains
questionable, as we show in section 5.5.
Finally, we would like to mention that the European Commission

also funded a number of projects to foster the enforcement and im-
provement of regulations concerning the monitoring of noise pollution
levels [35, 36]. Many of these e�orts aim at the de�nition or improve-
ment of common noise assessment procedures and data management
infrastructures across European member states. As for the actual tech-
nology used to perform noise measurements, the Commission mainly
relies on established international standards [91�93].

5.3. Application Requirements and Applicability

of Sensor Selection

As discussed at the end of section 5.1, we consider a scenario in which a
WSN is deployed in a limited geographical area like the façade or inter-
nal courtyard of a building. In this setting, the network can compute

2 www.apple.com/iphone
3 www.android.com
4 www.apple.com/iphone/apps-for-iphone. See, e.g., the Widenoise project: www.widetag.

com/widenoise.

www.apple.com/iphone
www.android.com
www.apple.com/iphone/apps-for-iphone
www.widetag.com/widenoise
www.widetag.com/widenoise

132 Chapter 5. Environmental Noise Monitoring � An Application Scenario

appropriate noise indicators and report them to a central server, where
they are processed and stored for later utilization. In the following,
we �rst brie�y describe how to compute these indicators according to
the international standards and guidelines indicated by the European
Commission [54, 93, 187]. We then summarize the requirements that
a system for environmental noise monitoring based on WSNs should
be able to comply with. By distilling these requirements, we also con-
tribute several practical hints and references for developers interested in
implementing a WSN application for environmental noise monitoring.
On the basis of these considerations, we also discuss the applicability
of the sensor selection strategies proposed in chapters 3 and 4 to this
particular application scenario.

5.3.1. Computation of Noise Indicators

Noise pollution levels can be speci�ed using di�erent indicators, de-
pending on the particular purpose of the noise measurement. For the
preparation of noise maps, the European Commission indicated the
equivalent continuous sound pressure level LAeq,T as the indicator of
choice [187, Annex I]. The LAeq,T , which we also refer to as equivalent
noise level, is de�ned as [93, page 3]:

LAeq,T = 10 log10(
1

T

∫ T

0

pA(t)2

p2
0

dt), (5.1)

where pA(t) is the A-weighted instantaneous sound pressure produced
by an acoustic wave, and p0 is a standard reference value correspond-
ing to the minimal (human-) audible acoustic signal (i.e., 20µPa). A-
weighting is a frequency �ltering technique that simulates the frequency
response of the human ear [92, page 2-3], [24]. A-weighted noise indi-
cators are accordingly indicated in A-weighted decibels or dB(A). The
period T over which the LAeq,T indicator is computed may vary de-
pending on the speci�c noise source or area of interest, and may be
�part of a day, the full day, or a full week � [92, page 4], or any other
value properly de�ned by the competent authority. Noise levels me-
ters able to measure the LAeq,T indicator over a settable interval T are
known as integrating-averaging sound level meters [91, page 9]. Most
commercially available integrating-averaging sound level meters o�er
the possibility to store the so-called short LAeq,T samples. These val-
ues represent the samples of LAeq,T taken at short time intervals, in the

5.3. Application Requirements and Applicability of Sensor Selection 133

order of few seconds or less.5 Their collection allows to visualize the
noise level over time and build a database upon which the values of
LAeq,T over arbitrary intervals T can be computed. We would also like
to note that the LAeq,T indicator actually represents the level of a con-
stant noise source over the time interval T that has the same acoustic
energy as the actual varying sound over the same interval.

The equivalent noise level LAeq,T de�ned above drives the computa-
tion of those speci�c noise indicators that are used for the preparation
of noise maps. In particular, European member states must provide
noise pollution data (at least) in terms of the LAeq,T averaged over the
night only and over the whole day [187, Annex I]. The directive de-
�nes the duration of the day (d), evening (e) and night (n) periods,
to be 12, 4, and 8 hours, respectively, and the default start of the
day to be at 7:00am (local time at the measurement location). The
indicators for the preparation of noise maps are thus accordingly in-
dicated as Lnight and Lden. Their values �should re�ect the average
calculated over the continuous period of twelve months of a relevant
calendar year � [54, page 12]. This average can be computed using ad-
equate forecasting techniques, possibly extrapolating from short-term
real measurements [54, page 12].

A WSN set up for environmental noise monitoring could provide for
these short-term measurements over several days or weeks, and thus
enable a more reliable computation of the yearly averages.

5.3.2. Application Requirements

In our target application scenario, a WSN is set up to measure the
equivalent noise level de�ned by equation 5.1 at several locations over
an area of interest. In the following, we list the requirements involved
in implementing this application. To this end, we resort to the re-
quirements taxonomy de�ned in [160], and provide our considerations
according to the thereby de�ned categories. We distilled the here dis-
cussed application requirements from the pertinent European directive,
studies, and international standards [91�93, 187]. Table 5.1 provides a
brief overview of the results of our analysis.

5 Many sound level meters with data logging capability o�er the possibility to store short LAeq,T
values at a rate variable between 1/16 and 16 seconds. See for instance the CR:703B and
CR:704B devices by Cirrus Research [41].

134 Chapter 5. Environmental Noise Monitoring � An Application Scenario

Dimension Class
Deployment Manual, one-time
Network size Tens of nodes
Coverage Dense
Mobility Immobile
Cost, Size, Resources, and Energy Bricks
Heterogeneity Homogeneous
Communication modality Radio
Infrastructure Single base station
Network topology Possibly multi-hop
Connectivity Intermitted/connected
Network lifetime Weeks
Other QoS requirements Calibration

Table 5.1.: Application requirements of our reference environmental noise monitor-
ing scenario. The requirements categories and classes have been de�ned
according to the taxonomy proposed in [160].

Deployment, Network Size and Coverage. Sensor nodes are manually
placed at speci�c locations over the area of interest. In particular, the
positions of the measuring devices, or assessment points, must follow
rules de�ned in [187, Annex I], [93, pages 7-8], and [54]. Near to build-
ings, for instance, the assessment points must be 4.0± 0.2m above the
ground and at the most exposed façade. If necessary, other heights may
be used but they shall never be less than 1.5m above the ground, and
results should be corrected in accordance with an equivalent height of
4m [187, Annex I]. Further, in [54, page 44], it is suggested that �a spac-
ing of 3 meters between calculation points around the façade is likely
to be appropriate�. Covering a façade of 20x15m would thus require
the deployment of about 30 nodes. In general, we believe a few tens
of nodes to be an appropriate estimate of the network size required to
provide accurate noise mapping data and model validation setups.

Cost, Size, Resources, and Energy. The network must be able to mea-
sure the required values of LAeq,T , as discussed in section 5.3.1. To this
end, sensor nodes must be equipped with an adequate noise sensing
unit, like the integrating-averaging sound level meters mentioned above.
According to international standards [91, 93], two certi�ed classes of
noise level meters, class-1 and class-2, may be used for the purpose
of noise mapping. Being less accurate, devices belonging to the lat-

5.3. Application Requirements and Applicability of Sensor Selection 135

ter category are usually also much cheaper,6 and should thus be used
whenever possible. The form factor of typical noise level meters can
be several times that of the Tmote Sky sensor node. Smaller devices
are available, but often less accurate and/or harder to interface with
commonly available sensor nodes.
Due to the need of letting the microphone and acoustic signal pro-

cessing circuitry active for prolonged periods of time, the noise mea-
surement unit may drain the batteries of a sensor node in a few days.7

Therefore, the node should be able to easily switch the noise sensor
on and o�, so as to keep it active only when strictly necessary. For
instance, if the network is set up to estimate the value of LAeq,T over
the evening period, the sensing unit must be active for only 4 hours a
day and could be switched o� during daytime and night.

Heterogeneity and Mobility. The sensing devices used to measure noise
levels should be identical from both a hardware and software point of
view. This can ensure a coherent comparison of measurements taken
by di�erent sensors. Furthermore, sensor nodes should not change their
location after the initial deployment.

Communication Modality. To ease automated data collection, the sens-
ing devices should be able to communicate wireless with a data col-
lector. In the considered deployment scenarios optical and acoustic
communication are prone to failures, due to, e.g., interferences with
daylight or noise in the environment. Therefore, the preferred commu-
nication modality is radio.
We would like to point out at this stage that for the purpose of

noise mapping and model validation the collected noise levels must
not reach the data sink in real-time, and can therefore also be logged
on the node for later reporting. In other words, there is no strict
requirement on data latency. For instance, if the network is required
to collect short LAeq,T levels (at, e.g., 1 Hz rate), consecutive readings
can be reported in a single packet, so as to save communication and,

6 Depending on their accuracy and set of functionalities, noise level meters may cost between
hundreds and several thousands of dollars. For instance, one unit of the Extech 407740 class-2
noise level meter we make use of in our experiments costs, as of August 2009, about $250.

7 Unfortunately, we do not have generic �gures regarding the power consumption of a noise level
meter, since it also depends on the speci�c device and operation modalities. The noise level
meter we used in our experiments, the Extech 407740 class-2 noise level meter, runs out of
power in about 4 days, if operated continuously out of its 9V battery.

136 Chapter 5. Environmental Noise Monitoring � An Application Scenario

thus, energy. However, safely storing data on a sensor node is still
nearly as expensive as data communication.8 Therefore, it may still
be convenient to report data immediately upon collection instead of
storing it locally, especially if a direct link to the data sink exists.
In this context, prediction-based data collection techniques, as those
discussed in chapter 3, may come into play to reduce the number of
transmissions, as we detail in 5.3.3 below.

Infrastructure and Network Topology. For the considered deployment
scenarios, the presence of a powerful base station able to collect and
report data to a remote database is assumed. Depending on the ex-
tension of the network, multi-hop communication may be required. In
most cases, however, we expect a direct communication link between
the nodes and the base station to be available.

Connectivity. Since latency is not a critical parameter for the applica-
tion, intermittent connectivity is tolerated. However, since the network
is static and dense, its is also likely to be connected.

Lifetime. The lifetime of the network is determined by the time needed
to compute estimations of noise indicators with a desired accuracy. Ac-
cording to European directives, estimation of noise levels are considered
su�ciently accurate if �dividing them into crisp (discrete) 5 dB(A) wide
sets is an appropriate process� [54, page 53]. For a single sensor node,
we can reasonably assume its measurements to be su�ciently accurate
if the corresponding standard deviation is ≤ 2.5 dBA. However, the
speci�c conditions for considering the measurements completed must
be de�ned in a case-by-case manner.9 With the current technology,
however, the factor that mostly in�uences the lifetime of the network
is the extension of the time interval over which the sensor must contin-
uously collect data.

Other QoS Requirements. When collecting absolute noise levels, accu-
rate calibration of the measuring devices is essential. Most commer-

8 For instance, on the Tmote Sky sensor node, writing data on the �ash memory drains 20 mA of
current, thus more than radio transmission, which drains 17.4 mA (see also table 2.1). However,
power e�cient alternatives exist [128] and could be instrumental in improving the data storing
e�ciency of sensor nodes.

9 For the speci�c case of road tra�c noise, useful practical considerations regarding the variability
of noise levels are reported in [4].

5.3. Application Requirements and Applicability of Sensor Selection 137

cially available noise level meters can be purchased together with an
adequate, certi�ed calibrator. Using this instrument, noise level sensing
devices can be opportunely calibrated prior to deployment. However, if
the measurement session takes place over a long period of time, calibra-
tion must be performed at least once a day [93, page 3]. The need for
frequent re-calibrations actually represents the highest burden towards
the practical deployment of a WSN for noise monitoring. Indeed, per-
forming acoustic calibration (done using a standard acoustic signal and
accordingly regulating the responses of the devices), would require to
directly access the sensor nodes after deployment. On the other hand,
electrical calibration (done using electrical, instead of acoustic, refer-
ence signals), would require putting additional hardware and logic on
the nodes, thus signi�cantly increasing their cost, power consumption,
and form factor.

5.3.3. Applicability of Sensor Selection

On the basis of the above reported analysis of the application require-
ments, we can now discuss the applicability of our previously presented
sensor selection strategies. In particular, we consider two speci�c sce-
narios in which prediction-based monitoring techniques (cf. chapter 3)
or our ARS spatial selection strategy (cf. chapter 4) could be applied.
Let us assume that a network is set up to measure the values of the

LAeq,T over relatively short periods of time, e.g., every 5 minutes [93,
page 9]. Depending on the time of the day at which the measurements
take place and the corresponding location, successive samples of the
LAeq,T may be fairly stable (e.g., at night in a quiet neighborhood),
or vary signi�cantly (e.g., at daytime in a public park). If data is to
be reported immediately upon collection, prediction-based techniques
like those discussed in chapter 3 may come into play. In particular,
if the di�erence between the current reading and the previously re-
ported sample is within a tolerated accuracy, then the communication
of the current sample could be suppressed, so as to save communica-
tion. Immediate reporting may be appropriate if safely storing data
on the nodes is expensive (in terms of energy consumption), or if the
collected data is also used to feed applications that estimate other en-
vironmental parameters, e.g., the current tra�c level or the �busyness�
of a place [38,177]. However, the power consumption due to the contin-
uous operation of the noise level meter is likely to dominate the power

138 Chapter 5. Environmental Noise Monitoring � An Application Scenario

budget of the node. Thus, the savings achievable by suppressing unnec-
essary communication may have only limited impact in increasing the
lifetime of the node. Alternatively, in order to limit the overall power
consumption, the network could schedule for sensing only a subset of
the nodes and activate other units only if the deviation among read-
ings at di�erent sensors exceeds some accuracy threshold (e.g., 5dBA,
as discussed is section 5.3.2).
In the scenario described above, the nodes are regularly spaced and

thus spatial sensor selection techniques like the ARS cannot be applied.
However, in scenarios in which mobile phones are opportunistically
used to collect sensor data in urban areas [38, 177], the ARS, or a
modi�ed version thereof, may be applicable. For instance, the average
loudness of a busy street or a park could be estimated by sending
a corresponding query to mobile phones located within the area of
interest. If the density of devices is high, like it may be the case in a
busy street, letting all the available phones answer the query may cause
a high amount of tra�c to be generated. Using the ARS it is possible
to reduce the number of responses while still providing the application
with a su�cient number of noise readings. If the mobile phones are
aware of the average number of devices present within their �sensing
area�, they can decide upon their participation in the sensing through
the ARS strategy, possibly using a ranking based on the local density
only (see sections 4.5.1 and 4.7). 10

5.4. Capturing Noise Levels Using Wireless Sensor

Nodes

Performing accurate noise level measurements requires the availability
of adequate hardware sensing platforms. To understand the feasibility
of wireless sensor nodes to be used as noise pollution sensing devices,
we thus tested and evaluated three di�erent hardware platforms. At a
preliminary stage, we considered using the Tmote Sky platform from
Moteiv [136] equipped with the SBT80 multi-modality sensor board
available from EasySen11. As reported in [167] and section 5.4.1 below,
however, we rapidly abandoned this platform due to its high inaccu-
racy. We then evaluated the performance of the Tmote invent sensor

10A mobile phone can autonomously estimate the local density of devices in its neighborhood
leveraging, for instance, its bluetooth radio [60].

11www.easysen.com

www.easysen.com

5.4. Capturing Noise Levels Using Wireless Sensor Nodes 139

node, also from Moteiv [165]. Although this platform allowed us to
gather more reliable measurements of noise levels, it still shows seri-
ous limitations, like the lack of adequate calibration procedures for the
on-board microphone (cf. section 5.4.2). We thus further evaluated
the possibility of using commercially available noise level meters, ade-
quately interfaced with the Tmote Sky sensor node, to perform noise
level measurements in WSNs. Based on our experimental results, we
believe this third option to be the most suitable, although also the
most expensive, to implement the application scenario under consid-
eration (cf. 5.4.3). In the following, we provide detailed results of the
experimental evaluation of the three mentioned platforms.

5.4.1. The SBT80 Sensor Board

The SBT80 sensor board features, among other sensors, the EM6050P-
423 omni-directional condenser microphone, which we used to capture
audio signals from the environment. The output voltage of the mi-
crophone is quantized using the 12 bits analog to digital converter
(ADC) of the Tmote Sky. The voltage levels recorded by the micro-
phone may be reconstructed from the ADC samples using the formula:
E = EADC

4096 ·Vref , where Vref is set to 2.5V for the Easysen sensor board
and EADC are the ADC samples. Figure 5.1 reports the (A-weighted)
voltage response of the microphone to a synthetically generated 250Hz
sine wave stimulus, whose amplitude has been progressively increased
to bring the microphone to saturation. The raw signal samples, read
from the ADC at a a 2kHz rate, have been sent from the node to the
a personal computer through the serial port. We processed the data
in Matlab to compute the A-weighted instantaneous acoustic pressure
pA(t), which is proportional to the voltage levels depicted in �gure 5.1.
The �rst consideration we can derive by observing the sample data

in �gure 5.1 is the high level of background noise. The EM6050P-
423 has indeed a self-noise level of 54 dB(A),12 which makes sounds
corresponding to noise levels below 54 dB(A) to be indistinguishable
from electrical background noise.13 The EM6050P-423 turned out to
have further suboptimal characteristics. For instance, its frequency re-

12The self-noise (or equivalent noise) level may be computed by subtracting the nominal signal to
noise ratio (SNR) from the reference sound pressure level (SPL) of 94dB. For the EM6050P-423
the SNR is 40 dB.

1354 dB(A) is the noise level that can be measured during a conversation taking place at about
1 m distance from the microphone.

140 Chapter 5. Environmental Noise Monitoring � An Application Scenario

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Measured Output Voltage

time [s]

V
ol

ts
 [V

]

Figure 5.1.: Response of the microphone of the SBT80 sensor board to a 250Hz
sine wave stimulus of increasing amplitude.

sponse starts deviating from linearity already at 5kHz and signi�cantly
distorts harmonic components above 10 kHz. The lack of proper signal
conditioning (e.g., frequency �ltering) on the SBT80 board makes this
distortion enter (and thus tamper with) the computation of the noise
levels. Due to these limitations, the SBT80 sensor board does not rep-
resent a suitable sensing device for the assessment of noise pollution
levels.

5.4.2. The Tmote invent

The Tmote invent prototyping platform, available from Moteiv [136],
provides an extended sensor suite including a high-quality, omnidirec-
tional electret microphone. To capture noise levels using this plat-
form, we implemented a dedicated TinyOS application that collects
raw acoustic samples, computes the corresponding equivalent noise lev-
els (using a remotely settable time period T), and reports the computed
values to a central sink at regular time intervals. Our application runs
on top of Boomerang [137], Moteiv's proprietary distribution of the

5.4. Capturing Noise Levels Using Wireless Sensor Nodes 141

TinyOS operating system, and computes linear noise levels, thus with-
out applying the A-weighting �ltering.
To investigate the performance of the Tmote invent prototyping plat-

form as a noise pollution sensor we run several measurement sessions
in both indoor and outdoor settings. In our experiments, up to eight
Tmote invent nodes concurrently collected raw acoustic samples (at a
rate of 8 kHz) and computed the corresponding equivalent noise level
with a temporal granularity T of one second. The nodes could com-
municate directly with the data sink and reported noise level readings
every T seconds. The sink node, physically attached to a computing
device (a laptop), immediately forwarded incoming messages to Tiny-
LAB, our Matlab-based tool for interaction with WSNs (see section
6.1 for more details). A TinyLAB application then collected messages
from the sink node, timestamped, processed and visualized the mea-
sured noise levels in real-time, and �nally stored the data in Matlab
format. Figure 5.2 shows an example of a measurement session along
an urban street. In the following, we comment about the results of
our experiments. In particular, we discuss the possibility of using the
Tmote invent to detect and count vehicles on an urban road, as well
as the crucial issue of microphones calibration. Further, we report on
a design defect of the Tmote invent platform, which we happened to
come across during our experiments.

Vehicles identi�cation and counting. To gain �rst insights into the per-
formances of the Tmote invent platform, we deployed the sensor nodes
along an urban road (at about 3 meters distance) and recorded node
responses. Figure 5.3 shows a segment of the collected data with the
typical rises of the equivalent noise level values caused by vehicle tran-
sits. The rises are respectively labeled with the actual type of vehicle
passing by, which we manually annotated during the experiment. This
data shows, for instance, that the high noise rise produced by a bus
transit extends over a longer period of time if compared to that pro-
duced by a car.14 This characteristic, along with additional information
like magnetometric data, could be exploited to design a detector able to
count total vehicles transits and possibly di�erentiate between di�erent

14Figure 5.3 also shows noise levels produced by trams to be below those corresponding to buses
or cars. This counterintuitive discrepancy is due to the fact that the tram tracks ran along a
di�erent street, which was about two hundreds meters away from the measurement point. The
cars and buses recorded were passing on the directly adjacent road, as close as three meters
away from the nodes.

142 Chapter 5. Environmental Noise Monitoring � An Application Scenario

Figure 5.2.: Measurement session with the Tmote invent.

vehicles categories [7]. However, since we are mainly interested in the
computation of noise levels, we did not further investigate this issue.

Calibration. To observe the behavior of di�erent nodes in response to
the same acoustic stimuli, we deployed 4 Tmote invent nodes in a silent
indoor environment at close distances from each other. We then used
the Audacity15 tool to produce a chain of 5 seconds wide white noise
pulses of increasing amplitudes. Figure 5.4 shows the responses of the
4 nodes to these acoustic events, clearly pointing out a misalignment
in the measured equivalent noise levels. We believe this discrepancy
to be mainly due to mismatches in the sensitivity of the microphones
of the di�erent nodes. Indeed, the sensitivity of a microphone may
deviate from the nominal value due to �aws in the manufacturing pro-
cess, experienced mechanical shocks, or temperature gradients [24]. At
least the last two issues are likely to have a�ected the sensitivity of
the microphone of the used sensor nodes. To cope with this problem,
microphones should be regularly re-calibrated, so as to realign their

15audacity.sourceforge.net

audacity.sourceforge.net

5.4. Capturing Noise Levels Using Wireless Sensor Nodes 143

00:02 00:02 00:03 00:03 00:04 00:04
10

20

30

40

50

60

70

80

90

Bus Car Tram Tram Car

time (HH:MM)

dB

Equivalent noise level produced by different types of vehicles

node 1
node 2
node 3
node 4

Figure 5.3.: Acoustic responses of four di�erent nodes in correspondence of vehicles
transits.

responses with respect to a reference level. However, developing an
adequate calibration procedures for the Tmote invent would involve
modi�cations of the platform at the hardware level. To avoid such
cumbersome and prone-to-failure intervention, we decided to resort to
commercially available noise level meters and properly interface them
with the sensor node, as described in the next section 5.4.3. Notwith-
standing, we believe our quantitative study of the performance of the
Tmote invent to represent a useful contribution for other researchers
interested in measuring noise levels using WSNs. Furthermore, as de-
tailed below, our experiments allowed us to detect and document a case
of design defect of the Tmote invent platform.

Platform defect. While analyzing noise data collected using the Tmote
invent, we observed an unexpected behavior of the reference voltage of
the nodes. In particular, we noticed that under a constant acoustic
stimulus the average output voltage of the microphone assumes di�er-

144 Chapter 5. Environmental Noise Monitoring � An Application Scenario

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

time (seconds)

dB
Equivalent noise level measured by different nodes

node 1
node 2
node 3
node 4

Figure 5.4.: Acoustic responses of four di�erent nodes to a chain of white noise
pulses of increasing amplitude.

ent values depending on the node being plugged into a power outlet
or draining current from its own batteries. Since we observed a per-
fectly analogous behavior for all the eight Tmote invent platforms we
used in our experiments, we report results related to a single, repre-
sentative, sensor node. Figure 5.5 helps illustrate the above mentioned
malfunctioning by reporting in subplot (a) the development of the total
number of samples collected during a single sampling interval, in sub-
plot (b) the average output voltage of the microphone and in subplot
(c) the computed equivalent noise level. We annotated di�erent sectors
of the plot with letters from a to h, to identify di�erent phases of our
experiment. As observation begins, the node is attached to a power
outlet through an appropriate USB adapter16, and the average output
voltage of the microphone is 0.8 volts (sector a). Once the node is

16Since the Tmote invent features a USB (series A) plug, it can be attached to a power line using
an appropriate adapter. To ensure that the problem described here was not due to the adapter
itself, we performed several experiment using di�erent units of the same adapter, as well as
using di�erent adapter models.

5.4. Capturing Noise Levels Using Wireless Sensor Nodes 145

detached from the adapter, this voltage level increases up to 1.1 volts,
as shown in sector b of �gure 5.5(b) and regularly returns to 0.8 volts
if the node is plugged in again (sector c). Surprisingly, the e�ect of
plugging/unplugging the node is also visible on the number of samples
collected during the interval T , as shown in subplot 5.5(a). Indeed, as
long as the node is plugged into the power outlet it collects about 8200
samples, while this �gure increases up to 8600 samples once the node
runs on batteries.17 This oscillation does not (appear to) signi�cantly
in�uence the computed equivalent noise levels, but clearly indicates a
malfunctioning in the circuitry regulating the power supply. Further-
more, we could observe a far more annoying malfunctioning if, instead
of unplugging the node from the USB adapter, both the node and the
adapter are detached from the power outlet. In this case, the average
output level of the microphone decreases to a very small value, which
hinders proper computation of noise levels, as shown in subplots 5.5(b)
and 5.5(c) (sector d). Instead, the number of samples keeps oscillating
as observed above (see subplot 5.5(a)). Plugging in the node does not
help in repairing the malfunctioning microphone (sector e) and only a
node reboot restores the initial node behavior (sector f). Sectors g and
h of �gure 5.5 �nally show the reproducibility of the above described
behavior in the case the sensor node is plugged in the USB adapter
(sector g) or not (sector h). Although this behavior is not expected
to in�uence nodes' operation in the �eld, where they usually cannot
be plugged in and out from a power outlet, it de�nitively represents a
problem to be aware of when performing lab-scale experiments.
We would also like to point out that the use of the TinyLAB tool

allowed us to identify and easily analyze this unexpected behavior of
the reference voltage of the nodes. Before deploying the network in an
outdoor environment, we indeed tested the hardware and software in
our lab to both understand signal dynamics and investigate the issue of
calibration. The comfortable and powerful visualization and processing
features o�ered by the Matlab computing environment, made available
by the TinyLAB tool, enabled a fast and comfortable real-time analysis
of the data reported by the sensor nodes. Analyzing the behavior of
the Tmote invent platform using a typical approach in which data is
collected, stored and analyzed at a later stage, would have most likely
delayed our prototyping process considerably.

17Since the interval T extends for one binary second (1024 binary milliseconds), a sampling rate
of 8 kHz results in 8192 samples/second.

146 Chapter 5. Environmental Noise Monitoring � An Application Scenario

0 50 100 150 200 250 300 350 400 450
7800

8000

8200

8400

8600

8800

(a)
Number of samples collected in a binary second (sampling rate: 8192 Hz)

nu
m

be
r

of
 s

am
pl

es

time (seconds)

a b c d e f g h

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

(b)
Microphone’s average output voltage

V
ol

ts

time (seconds)

a b c d e f g h

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

(c)
Equivalent noise level L

eq

dB

time (seconds)

a b c d e f g h

Figure 5.5.: Tmote invent's behavior with di�erent power supplies.

5.4. Capturing Noise Levels Using Wireless Sensor Nodes 147

5.4.3. Tmote Sky and Noise Level Meter

The above reported observations regarding the lack of calibration of
the Tmote invent platform show that using cheap, generic sensor node
platforms to capture noise levels may result in the collection of unre-
liable, and thus unusable, data. Furthermore, properly sampling the
acoustic pressure levels measured by the microphone requires the sensor
nodes to continuously sustain high sampling rates (8 kHz in our exper-
iments). The data acquisition process can therefore drain a signi�cant
amount of processing power and hamper the concurrent execution of
other tasks, like radio communication.
To cope with the above mentioned issues while still exploiting the po-

tential of WSN systems, we investigated the possibility of interfacing
the Tmote Sky platform with o�-the-shelf sound level meters. There
exists a large number of such devices, with di�erent characteristics with
respect to form factor, costs, and accuracy. We thus surveyed available
products looking for a device able to guarantee good accuracy but lim-
ited cost and form factor. To this end, we mainly focused on noise level
meters able to comply with the class-2 international standard,18 which
are adequate for the general �eld use we are targeting, and are sig-
ni�cantly cheaper than class-1 devices. Further, we looked for devices
providing adequate output channels so as to enable a direct connec-
tion to the Tmote Sky and avoid the need of developing customized
hardware interfaces.
We found the Extech 407740 class-2 sound level meter to be a good

candidate for our purposes.19 This device makes the measured noise
levels available on an analog output channel. The signal on this channel
can be easily gathered using a standard 3.5 mm TRS-connector (audio
jack), connected to pins 9 and 10 of the 10-pin expansion connector of
the Tmote Sky.20 With this connection, gathering noise level data from
the Extech 407740 simply requires polling the proper ADC channel of
the Tmote Sky at the desired sampling rate. Note that the Extech
407740 is not an integrating-averaging but an exponential time-weighted
sound level meter. As discussed in section 5.3.1, devices belonging
to the �rst category measure the equivalent noise level LAeq,T over a

18The requirements noise level meters must ful�ll to be certi�ed as class-1 or class-2 devices are
included in the IEC 61672-1 standard [91].

19www.extech.com/instrument/products/400_450/407740.html
20Pin 10 is the analog ground, while pin 9 corresponds to one of the four ADC (Analog-to-Digital
Converter) channels available on the 10-pin expansion connector of the Tmote Sky.

www.extech.com/instrument/products/400_450/407740.html

148 Chapter 5. Environmental Noise Monitoring � An Application Scenario

period T , which represent the integral over T of the square of the
instantaneous acoustic pressure p(t), properly scaled and A-weighted.
Instead, an exponential time-weighted sound level meter measures the
instantaneous values of the A-weighted and time-weighted sound level,
LAτ(t), de�ned as [91, page 13]:

LAτ(t) = 10 log10

1

τ

∫ t

−∞

p2
A(ξ)

p2
0

e−
(t−ξ)
τ dξ. (5.2)

Thus, the output of the device is an exponentially weighted aver-
age of the squared instantaneous acoustic pressure. The value of the
time-weighting constant τ can be either 125ms (F-weighting) or 1s
(S-weighting), depending on the measurement situation [91]. In most
settings, however, the value of τ should be set to 1s [55]. By sampling
the LAτ(t) at regular intervals of extension ≤ τ and then properly in-
tegrating these values over the interval T , it is possible to compute an
approximation of the LAeq,T . In order to enable a meaningful compari-
son of data collected by di�erent devices, certi�ed calibrators like, e.g.,
the Extech 407744, should be used.
In the next section 5.5, we demonstrate the use of the Tmote Sky +

Extech 407740 platform. In particular, we apply it as a reference noise
level meter for evaluating the performance of mobile phones as noise
pollution sensors.
While the Extech 407740 provides high �delity in it measurements,

it has an unfavorable form factor. Although it is a hand-held device,
its dimensions (25.5x7x2.8 cm) are considerably bigger than those of
the Tmote Sky (6.5x3.2x1.3cm). Looking for alternative solutions, we
found that the main board of the Dostmann SL328 sound level meter21

only measures 4.2x2.5x0.5cm, and could thus be easily mounted on
top of the Tmote Sky. However, the SL328 does not provide standard
output channels to capture the measured noise levels. Therefore, its
use requires the development of a customized hardware interface to the
Tmote Sky. Although we have investigated the design of such interface,
we do not have a working prototype at our disposal.

5.5. Capturing Noise Levels Using Mobile Phones

The use of mobile phones as generic, ubiquitous sensing platforms gath-
ered increasing interest in the last years [38,60,102,130,133,177]. How-

21www.dostmann-electronic.de/PHP/docs/233.pdf

www.dostmann-electronic.de/PHP/docs/233.pdf

5.5. Capturing Noise Levels Using Mobile Phones 149

ever, using mobile devices for the assessment of environmental noise
levels poses several technical challenges.
For instance, information about the context of the user should be

collected and possibly used to trigger or inhibit data collection [197].
It would indeed be of little value to perform a measurement while, e.g.,
the phone is in a pocket or in a bag.
Further, access to the resources of the mobile phone should occur

in the background, possibly without requiring the user to perform any
action to participate in the sensing task [112]. In particular, access to
hardware and software resources should not hamper the concurrent use
of the phone for �traditional� applications, like short text messaging
messaging applications. Additionally, adequate primitives to allow the
user to set her privacy settings should be available. Indeed, since mea-
suring noise levels requires performing audio measurements, users may
mistrust the application and fear for their conversations to be recorded
in the background. Besides supporting users' privacy from the technical
side (e.g., by computing noise levels on the phone and thus transmit-
ting only averaged data to the back-end server), providing adequate
incentives for participation in the sensing task may help reducing or
redirecting users concerns.
Last but not least, the actual accuracy of the collected noise measure-

ments should be known. Although it is to be expected that o�-the-shelf
mobile phones will not be able to reach the accuracy of dedicated sound
level meters, it is important to ascertain if the obtainable accuracy is
su�cient to allow the envisioned applications to work reliably. In many
cases, for instance for the identi�cation of quiet bike trails [38], it could
be su�cient to infer discrete states from the raw measurements (e.g.,
quiet, moderately loud, or very loud). However, the speci�c hardware
and software characteristics of mobile phones may prevent this possi-
bility. For instance, audio input channels of mobile phones typically
feature noise canceling, low-pass �lters, and/or dynamic input level
adjustment. The presence of these processing stages may hamper the
possibility of measuring the actual absolute loudness of an acoustic sig-
nal. Furthermore, since microphones of mobile phones are obviously
not intended for noise measurements, calibration issues arise, as in the
case of wireless sensor nodes.
To investigate the feasibility of mobile phones to be used as noise

pollution sensors, we performed a series of experiments for which we
describe the setup and the corresponding results below.

150 Chapter 5. Environmental Noise Monitoring � An Application Scenario

5.5.1. Experimental Setup

Our experiments aim at investigating two main issues, namely, the com-
parableness of the acoustic measurements of nearby located phones and
the accuracy of such measurements against those taken by a reference
sound level meter. To this end, we used three Nokia N95 8GB mobile
phones22 as test devices. In the following, we refer to these devices as
Phone1, Phone2 and Phone3. The Nokia N95 8GB well represents a
state-of-the-art mobile phone, featuring signi�cant processing power,
good permanent storage capability, and several built-in sensors, like an
accelerometer and a GPS-receiver. We emphasize here that the avail-
ability of a GPS-module is an essential feature for devices support-
ing mobile sensing applications, since it allows to associate a sensor
value with the corresponding location at which the measurement took
place. Furthermore, recent work demonstrated that accurate indoor-
localization is possible by opportunely processing signals received by
standard Bluetooth and WLAN modules [25], both being available on
the Nokia N95 8GB devices.
We used three devices of the same type so as to to avoid discrepancies

in the responses of the mobile phones being due to di�erences in the
built-in hardware. Although we experimented on devices of a speci�c
manufacturer (Nokia) and type (N95), our conclusions qualitatively
apply also to most commercially available mobile phone platforms, since
these usually exhibit comparable characteristics with respect to their
audio circuitry and software.
In our experiments, we stimulated the mobile devices with a series

of three di�erent acoustic signals (the tones, the chirp, and the traf-
�c test signal) and recorded the responses of the phones for o�-line
analysis. We provide a description of these test signals along with the
discussion of our experimental results below. To record the responses
of the mobile phones, we implemented two simple applications, one
in Python (PyS60) and the other in Java (J2ME), which capture au-
dio signals and store them in a wave �le. Both the Python and the
Java API expose simple methods for recording audio data, but while
Python only allows to capture signals at a rate of 8kHz, the Java API
enables sampling rates of up to 41kHz. Lower level primitives granting
direct access to the unprocessed raw audio data are in both cases still
unavailable. This implies that before we can record them, the audio

22www.forum.nokia.com/devices/N95_8GB

www.forum.nokia.com/devices/N95_8GB

5.5. Capturing Noise Levels Using Mobile Phones 151

signals likely undergo the processing steps typical for voice communica-
tion applications, like band-pass �ltering, noise canceling, or input level
adjustment. This �polishing� of the signal, if not bypassed or properly
accounted for, constitutes a serious burden to the use of mobile phones
for the assessment of environmental noise levels, as we also discuss in
section 5.5.2 below. The third programming option for the Nokia mo-
bile devices under consideration is C++ Symbian. The corresponding
API o�ers methods for setting low-level audio parameters like the mi-
crophone gain, as well as for de�ning custom codecs or selecting the
speci�c audio source (built-in microphone, line-in, phone call or radio).
To the best of our knowledge, however, C++ Symbian does not expose
methods for immediate access to the raw audio data, as also pointed
out in [130].
In all our experiments, the Extech 407740 class 2 professional sound

level meter (hereinafter also called the phonometer), connected as de-
scribed in section 5.4.3, has been co-located with the three mobile de-
vices and collected ground-truth noise level measurements. We set the
phonometer to gather data using F-weighting in time and A-weighting
in frequency. F-weighting basically runs a moving average on the
squared acoustic pressure using a time constant of 125 ms, as discussed
in section 5.4.3. We correspondingly applied F- and A-weighting �lters
also to the responses of the mobile phones and indicated the result-
ing A-weighted noise levels in dB(A) (A-weighted decibels). We then
averaged the collected readings over an interval T to compute (an ap-
proximation of) the equivalent noise level LAeq,T .
To reproduce the test signals we used a common laptop supporting up

to 192kHz audio in-/output that we connected to high quality external
speakers. In the following, we will refer to this system as the �audio
source�.

5.5.2. Experimental Results

Response to the tones test signal. Our �rst experiment aimed at study-
ing the response of the mobile phones to synthetic test signals produced
by an audio source in a controlled environment. We aligned the three
mobile devices and the phonometer on a surface in a silent room23, all
at approximately the same distance from the audio source, as shown

23When the audio source is o�, the average noise level in this room, measured with our reference
phonometer, is slightly above 30dB(A).

152 Chapter 5. Environmental Noise Monitoring � An Application Scenario

Figure 5.6.: Experimental setup: (a) the audio source; (b) the three mobile phones;
(c) the phonometer.

in �gure 5.6. In this setting, we reproduced three times a one minute
long test signal and recorded responses of the phonometer and the three
mobile phones. The test signal starts with a �ve seconds long white
noise snippet, followed by �ve seconds of silence (i.e., the audio source
is on but outputs a zero-amplitude signal). After this �rst phase, the
test signal repeats �ve times a �ve seconds long 1 kHz sinusoidal tone,
whose amplitude is regularly increased at each repetition (varying from
20% to 100% of the total available output dynamic). The tones are in-
terleaved with �ve seconds long silence cuts. We use a pure tone as
the test signal since standard calibrators calibrate sound level meters

5.5. Capturing Noise Levels Using Mobile Phones 153

0 10 20 30 40 50 60
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

time [s]

ra
w

 .w
av

 fi
le

 d
at

a

Response of Phone2 to the first run of the test signal

Figure 5.7.: Response of Phone2 to the �rst run of the tones test signal.

at one single frequency, namely 1 kHz. Since the signal is a repetition
of sine tones, we will refer to it as the tones test signal. Figure 5.7
displays an example of the recorded instantaneous acoustic pressure
levels corresponding to a single run of the tones test signal. As we
can see, the mobile phone properly mirrors the increasing amplitude of
the �ve sinusoidal tones. Instead, the response of the mobile phone to
the white noise signal, framed in a black rectangle in �gure 5.7, clearly
shows the e�ect of a noise canceling �lter. After recording the white
noise signal for about one-third of the �ve seconds snippet, the �lter
classi�es the signal as background noise and suppresses it, causing a
reduction in the amplitude of the recorded signal, and, consequently, a
diminution of the �perceived� loudness associated with the signal. Noise
canceling is a standard signal processing technique used in several au-
dio applications and it is therefore not a surprise to see its e�ect in this
measurement. However, these results clearly demonstrate that built-in
noise canceling algorithms can hamper the ability of mobile phones to
measure environmental noise levels, since they may partially suppress
the very signal one is actually trying to capture. As mentioned above,
the availability of adequate programming primitives granting access to

154 Chapter 5. Environmental Noise Monitoring � An Application Scenario

noise 1st tone 2nd tone 3rd tone 4th tone 5th tone
0

20

40

60

80

100

Response to the first run of the tones test signal
(average levels over 5 seconds)

dB
A

noise 1st tone 2nd tone 3rd tone 4th tone 5th tone
0

20

40

60

80

100

Response to the second run of the tones test signal
(average levels over 5 seconds)

dB
A

noise 1st tone 2nd tone 3rd tone 4th tone 5th tone
0

20

40

60

80

100

Response to the third run of the tones test signal
(average levels over 5 seconds)

dB
A

Phone1
Phone2
Phone3
Phonometer

Phone1
Phone2
Phone3
Phonometer

Phone1
Phone2
Phone3
Phonometer

Figure 5.8.: Response to the three runs of the tones test signal, for the three devices
under test Phone1, Phone2 and Phone3 and the reference phonometer.

5.5. Capturing Noise Levels Using Mobile Phones 155

noise 1st tone 2nd tone 3rd tone 4th tone 5th tone
0

5

10

15

20

25

30

35

dB
A

Response to the first run of the tones test signal
Difference phonometer−phones (average levels over 5 seconds and 3 runs)

Phone1
Phone2
Phone3

Figure 5.9.: Response to the �rst run of the tones test signal. Comparison of the
di�erence of the levels measured by the phonometer and the corre-
sponding levels captured by Phone1, Phone2 and Phone3. The di�er-
ence are averaged over the three runs of the test signal.

the raw audio data would allow to bypass this problem, but this is still
not possible with the currently available APIs.

The noise levels corresponding to the recorded acoustic pressure lev-
els, properly A- and F-weighted and averaged over �ve seconds, are
reported in �gure 5.8, along with the noise levels measured by the
phonometer. Figure 5.9 reports the di�erences between the measure-
ments of the phonometer and those of the three phones for the �rst
run of the tones test signal. Both �gures 5.7 and 5.9 make evident
that, when the test signal is white noise, there is a high discrepancy
(> 20dB(A)) between the noise level measured by the phonometer and
those measured by the phones. This discrepancy is consistently lower,
although still high (∼ 10dB), for all �ve subsequent measurements and
for all the three test devices. A constant divergence from the reference
measurement would represent a correction factor that could be used
for calibrating the mobile phones against the reference itself. However,
our experiments showed that this value may change by several (> 5)
dB(A)s when the measurement is repeated in the same setting but at
a di�erent time.

156 Chapter 5. Environmental Noise Monitoring � An Application Scenario

noise 1kHz 4kHz 8kHz 16kHz 20kHz

10

20

30

40

50

60

70

80

90

Response to the first run of the chirp test signal
(average levels over 5 seconds)

dB
A

Phone1 − pys60
Phone1 − j2me
Phonometer

Figure 5.10.: Equivalent noise levels measured by the phonometer and by Phone1

(using both the PyS60 and J2ME applications). The levels are aver-
aged over the 5 seconds duration of each tone of the chirp test signal.

Response to the chirp test signal. To investigate the ability of the mo-
bile phones to capture signals at di�erent frequencies, we performed a
second experiment using a test signal consisting of �ve sine waves of
equal amplitude whose frequencies increments from 1 to 4, 8, 16 and
20kHz. Since a signal whose frequency content increases linearly with
time is typically called a chirp, we refer to this sequence of sine tones
as the chirp test signal. Using the same experimental setting as before,
we played the sixty seconds long test signal three times in a row and
recorded the responses for o�ine analysis. Figure 5.10 shows the aver-
age noise levels measured during the �rst run of the chirp test signal,
using both the PyS60 and the J2ME applications and along with the
corresponding values recorded by the phonometer. These levels result
from averaging the F- and A-weighted squared instantaneous acoustic
pressure over the �ve seconds long snippets of the chirp test signal.
As we can see, the audio signal captured by the PyS60 application is
clearly low-passed, since already the response to the 4kHz tone is so
feeble that it approaches the value measured when no test signal is
present. This results doesn't come as a surprise, since for voice trans-
mission applications a low-pass �ltering at a frequency around 4 kHz
is a standard �gure. However, since the human hear can actually hear
frequencies far above 4 kHz [24], bypassing this low-pass �lter is manda-

5.5. Capturing Noise Levels Using Mobile Phones 157

1 2 3 4 5 6

10

20

30

40

50

60

70

80
dB

A
Response to the first run of the traffic jam test signal

(average levels over 5 seconds)

Phone1 − pys60
Phone1 − j2me
Phonometer

(a)

1 2 3 4 5 6
0

5

10

15

20

25

30

35

dB
A

Response to the first run of the traffic jam test signal
Difference phonometer−phone1 (average levels over 5 seconds)

Phone1 − pys60
Phone1 − j2me

(b)

Figure 5.11.: Equivalent noise levels measured by the phonometer and by Phone1

using both the PyS60 and J2ME applications (a), and relative dif-
ferences (b). The levels are averaged over 5 seconds snippets of the
tra�c test signal.

158 Chapter 5. Environmental Noise Monitoring � An Application Scenario

tory if the mobile device is intended to be used as noise level meter.
The J2ME programming primitives clearly allow to access richer audio
input data, since our J2ME application manages to capture, although
with low accuracy, also the tone at 20 kHz, as shown again in �gure
5.10. This superior recording quality, however, comes at the cost of
higher processing and storage loads.

10 15 20 25 30 35 40
10

20

30

40

50

60

70

80

dB
A

Response to the first run of the traffic jam test signal

Phone1 − pys60
Phone1 − j2me
Phonometer

Figure 5.12.: Response of the phonometer and Phone1 to the �rst run of the tra�c

test signal.

Response to the tra�c test signal. To evaluate the response of the mo-
bile devices in more realistic conditions, we performed a third experi-
ment using a thirty seconds long recording of busy street tra�c. The
signal features several di�erent honks, a few screeching breaks, and
plenty of engine noises, resulting in complex frequency and amplitude
spectra. The experimental setting is the same as in the �rst two experi-
ments and the test signal is again played three times in a row. Since the
responses to the three subsequent runs of the test signal are very similar
to each other, we discuss only the results ascertained in the �rst run.
Since the PyS60 and the J2ME applications cannot run concurrently
on the mobile phone, we performed the test twice, recording once with
the PyS60 and once with the J2ME application. As expected, since
the test signal and the experimental setting did not change at all, the

5.6. Summary 159

phonometer pro�les collected during the two subsequent experiments
overlap almost perfectly. For this reason, in commenting �gures 5.12
and 5.11 we can indistinguishably refer to the phonometer pro�le. A
visual inspection of �gure 5.12 shows the relatively high �delity of the
J2ME-pro�le when compared to the actual ground-truth measurements
collected by the phonometer. The PyS60-pro�le, on the other hand,
diverges consistently from the phonometer pro�le, as also the average
noise levels reported in �gure 5.11(a) show. The di�erence between
the average levels recorded by the phonometer and those captured by
Phone1 are also reported in �gure 5.11(b). This graph illustrates the
higher accuracy reachable using the J2ME application, but also shows
that the di�erence between the noise levels measured by the phones
and those measured by the phonometer vary signi�cantly across di�er-
ent time sectors of the signal.
The experimental results presented in this section allow us to make

some general qualitative assertions about the feasibility of using mobile
phones as noise pollution sensors. First, devices of the same type return
coherent audio responses so that a direct comparison of their readings
is, at least qualitatively, possible. However, the measured noise lev-
els may diverge from those captured by a co-located sound level meter
and the magnitude of this divergence may vary signi�cantly depending
on the actual audio signals. Moreover, the accuracy of the measured
noise levels is in�uenced by the processing steps the signal undergoes
before being recorded. Further, the speci�c language used to program
the devices may in�uence the accuracy of the measured noise levels,
since di�erent APIs may expose audio data at di�erent �rawness� lev-
els. Therefore, it is di�cult to provide a generic characterization of
the actual accuracy with which mobile phones can capture noise level
measurements. This makes these devices bad candidates to provide for
noise mapping data, which must be reliable. However, mobile phones
may still be useful to support applications with less stringent accu-
racy requirements, provided their limitations are adequately taken into
account.

5.6. Summary

In this chapter, we introduced and analyzed an example application sce-
nario for WSNs: the monitoring of environmental noise in urban areas.
We motivated our choice on this speci�c scenario by showing its poten-

160 Environmental Noise Monitoring

tial relevance for the enforcement of European environmental protection
policies. Further, we provided an in-depth analysis of the application
requirements and discussed the applicability of both temporal and spa-
tial sensor selection. Since we identi�ed the choice of suitable sensing
platforms to be one of the main challenges towards the implementa-
tion of this application, we evaluated several candidate platforms. In
particular, we �rst focused on wireless sensor nodes and provided exper-
imental results showing the issues that hamper the use of generic WSN
prototyping platforms in this application context. We then suggested
using commercially available noise level meters, opportunely interfaced
to the Tmote Sky sensor node, as viable sensing platforms. Further, we
investigated the reliability of noise level measurements collected using
mobile phones. In this context, we showed that, at the current state-
of-the-art, these platforms cannot provide noise data with the accuracy
required for the purpose of noise mapping.

6. Tools and Libraries

Before presenting our conclusions and discussing possible directions for
further research in the next chapter 7, we provide here a description
of the tools and libraries we developed in the context of this work. In
particular, we �rst focus on the TinyLAB tool [162], which we used
extensively to support the design and testing of the temporal sensor
selection algorithms reported in chapter 3. The TinyLAB tool was also
instrumental in facilitating the evaluation of wireless sensor network
(WSN) platforms for noise monitoring, as discussed in chapter 5. Sec-
ond, we describe our TinyOS implementation of the ES-AMS, which
has been introduced in sections 3.4, 3.5, and 3.6. All the software arti-
facts developed in the context of this thesis are publicly available from
the author's website1.

6.1. TinyLAB

The �rst steps towards a wireless sensor network deployment often
include a preliminary stage in which sensor data is collected, visual-
ized and carefully analyzed. In this stage, developers often undergo
a time-consuming procedure logging data �rst and analyzing it later
with standard or ad-hoc tools. The possibility to visualize and process
the sensor data and interact with the network (e.g., to change the cur-
rent sampling rate) in real-time can ease and speed-up the preliminary
data analysis, as well as support debugging and network inspection at
a later stage. To this end, several tools have already been designed
and developed within the WSN research community [30, 72, 78, 202].
However, many of these tools are not publicly available. Furthermore,
such tools are usually tailored to speci�c applications or needs and thus
provide, by design or for lack of implementation, limited functionali-
ties. On the other hand, existing general purpose scienti�c computing
platforms could be leveraged to support data visualization and pro-
cessing in the context of WSN. For instance, the Matlab computing

1 As of October 2009 hosted at http://people.inf.ethz.ch/santinis/.

http://people.inf.ethz.ch/santinis/

162 Chapter 6. Tools and Libraries

environment, introduced in section 2.2.3, is widely used across di�erent
scienti�c communities and, being a generic data managing platform,
appears suitable to be used also in WSNs settings. Indeed, the TinyOS
software suite includes a collection of Matlab scripts that allow to ac-
cess and use the TinyOS Java toolchain. These scripts provide basic
primitives to interact with a sensor network from within Matlab. How-
ever, this solution requires binding Matlab to the TinyOS tools and
thus limits �exibility and portability.
To overcome these limitations, we developed TinyLAB, a software

framework completely implemented in Matlab that allows to receive
and send messages from and to a TinyOS-based sensor network. Avoid-
ing any cumbersome installation procedure, TinyLAB enables using the
full Matlab computing power to manage incoming messages, process,
store and visualize data as it comes from the network. Furthermore,
TinyLAB allows to send control messages to speci�c nodes, groups, or
the whole network. The TinyLAB software is publicly available along
with application examples and a users guide. In the following, we show
the main functionalities of TinyLAB on the basis of a simple test ap-
plication.

6.1.1. Writing TinyLAB Applications

To handle incoming and outgoing packets, TinyLAB relies on two ba-
sic abstractions, which we named PacketSource and PacketSink. A
PacketSource basically wraps a communication channel, like a serial or
TCP/IP port, and provides PacketSinks with properly parsed packets.
A PacketSink declares interest in all or speci�c messages coming from
a PacketSource and de�nes the payload parsing modalities as well as
further operations to execute on the incoming data.
For instance, �gure 6.1 shows the code of the testTinyLAB applica-

tion, which receives packets from the serial port COM5, as speci�ed
by the sourceDescriptor at line 11. The PacketSource is instantiated
at line 14, and will start receiving and forwarding packets after the
correspondent startReceiving function has been called (line 27). The
received packets are forwarded to the PacketSink instantiated at line
17, which is bound to the previously de�ned PacketSource at line 20.
However, a PacketSource forwards packets only according to the spe-
ci�c interests declared by its PacketSinks. For instance, �gure 6.1 (line
17) shows that 4 options have been speci�ed to generate the PacketSink

6.1. TinyLAB 163

1 %TESTTINYLAB runs the testTinyLAB app l i c a t i o n
2 %%
3 % testTinyLAB
4 % author : s i l v i a s a n t i n i (s an t i n i s@ i n f . ethz . ch)
5 % created : y e s t e r y ea r
6 % l a s t modi f i ed :
7 %%
8

9 % SET UP ENVIRONMENT %%%
10

11 s ou r c eDes c r i p to r = ' serial@COM5 : tmote ' ; %' s f@ l o c a l h o s t : 9 0 0 1 ' ;
12

13 %crea t e a new packet source
14 [psource , psourceIndex] = PacketSource (' new ' , s ou r c eDes c r i p to r) ;
15

16 %crea t e a new packet s ink
17 ps ink = PacketSink ([7 6 , 7 7] , ' th i s ' , ' complete ' , ' testTinyLABReceive ') ;
18

19 %bind the s ink to the source
20 PacketSource (' bind ' , psource , ps ink) ;
21

22 %%
23

24 % START LISTENING TO INCOMING PACKETS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25

26 %Incoming packets w i l l be proce s s ed in the func t i on testTinyLABReceive
27 s t a r tRec e i v i ng (psource) ;
28

29 %%
30

31 % SEND MESSAGES %%
32

33 msg = newMessage (' testTinyLABReceiveMsg ') ;
34 msg . sourceID = hex2dec ('FEFA') ;
35 msg . code = 2 ; %code = 1 −> togg l e blue l ed
36 %code = 2 −> togg l e red l ed
37 %code = 3 −> togg l e both blue and red l e d s
38

39 send (psource , 'TOS_BCAST_ADDR' ,msg) ;
40

41 %%

Figure 6.1.: The testTinyLAB application.

of the testTinyLAB application. The �rst declares that the PacketSink
is only interested in receiving messages whose AMtype2 is either 76 or
77. The second and third options allow to specify whether the appli-
cation is interested in receiving the raw packets or their appropriately
parsed version. Finally, the last option allows to specify that received
packets must be forwarded to the testTinyLABReceive function, which
will then process them according to the application requirements. Fi-
nally, lines 33-39 show the use of TinyLAB's send primitive, which
allow to inject packets into the network.

2 The AM type is an identi�er that speci�es the active message type of the payload of TinyOS
packets [89].

164 Chapter 6. Tools and Libraries

In order to receive and parse packets, TinyLAB must know at least
their raw structure. In particular, the AMtype and the payload length
must always be speci�ed. If no additional information is given, how-
ever, TinyLAB will only be able to handle the received messages as a
sequence of bytes. Nonetheless, if the number and type of �elds in-
cluded in the payload are speci�ed, TinyLAB can parse the received
bytes according to this structure. To this end, the message format must
be speci�ed in a dedicated �le and included in the same folder of the
application code. This, in turn, basically requires to import and adapt
the message de�nition �les of the TinyOS packets the application is
interested in. For instance, �gure 6.2 shows an excerpt of the TinyOS
�le testTinyLABMsg.h that de�nes the �elds of the data payload of the
messages received by TinyLAB's testTinyLAB application. TinyLAB's
counterpart of the testTinyLABMsg is shown in �gure 6.3.

1 s t r u c t testTinyLABMsg {
2 uint16_t sourceMoteID ;
3 uint16_t epochCounter ;
4 uint16_t currentData ;
5 } ;
6

7 s t r u c t testTinyLABreceiveMsg {
8 uint16_t sourceMoteID ;
9 uint8_t code ;

10 } ;
11

12 enum {
13 AM_TESTTINYLABMSG = 76 ,
14 AM_TESTTINYLABRECEIVEMSG = 77
15 } ;

Figure 6.2.: De�nition of the payload of the TinyOS messages received by Tiny-
LAB's testTinyLAB application.

Further details on how to implement TinyLAB applications are in-
cluded in the documentation that is delivered along with the code, as
mentioned above.

6.2. A TinyOS Library for Adaptive Model

Selection

In chapter 3 we introduced our AMS algorithm and provided its exper-
imental evaluation for two di�erent sets of models, namely autoregres-
sive and exponential smoothing models. In particular, we implemented
both the AR-AMS and ES-AMS in Matlab and evaluated their per-

6.2. A TinyOS Library for Adaptive Model Selection 165

1 s t r u c t testTinyLABMsg {
2 uint16_t sourceMoteID ;
3 uint16_t epochCounter ;
4 uint16_t currentData ;
5 } ;
6

7 s t r u c t testTinyLABreceiveMsg {
8 uint16_t sourceMoteID ;
9 uint8_t code ;

10 } ;
11

12 enum {
13 AM_TESTTINYLABMSG = 76 ,
14 AM_TESTTINYLABRECEIVEMSG = 77
15 } ;

Figure 6.3.: TinyLAB's de�nition of the payload structure of a testTinyLABMsg

packet.

formance on 20 data sets retrieved from real WSN deployments. Our
evaluation showed the ability of the AMS to provide for a good model
choice for implementing the DPS strategy. Furthermore, we pointed
out that the very limited computational and memory overhead required
to run and update ES models makes the ES-AMS suitable to be exe-
cuted on resource constrained sensor nodes. To corroborate this claim,
we implemented the ES-AMS in TinyOS and tested its performance
on a lab-scale deployment, as we discussed in section 3.6. In the fol-
lowing, we provide a more detailed description of our implementation.
We point out at this stage that we �rst wrote an implementation of
the ES-AMS, named esAMS, for TinyOS 1.x. We then ported it to
TinyOS 2.x in the context of a student project [108]. However, since
the experimental evaluation reported in section 3.6 has been performed
using the �rst version of the esAMS, we focus here of this TinyOS 1.x
implementation.
The esAMS is a TinyOS application that periodically collects sensor

readings and reports them to the sink using a DPS strategy. The
model used to run the DPS is chosen among a set of double exponential
smoothing models (DES), as discussed in section 3.5.1. To this end,
we include in the set of candidates several DES models corresponding
to di�erent values of the smoothing constants α and β. In particular,
we let α and β vary, with step 0.1, within the intervals [0.1, 1] and
[0, 1], respectively. Thus, the number of models in the set of candidates
is NAMS = Nα · Nβ = 10 · 11 = 110, where Nα and Nβ represent
the considered number of di�erent values of the parameters α and β,
respectively.

166 Chapter 6. Tools and Libraries

As mentioned in section 2.2.2, a TinyOS application is composed
of a set of components that are wired together through standardized
interfaces. The esAMS embeds several standard components o�ering
functionalities to sample one or more sensors at regular time intervals
as well as sending and receiving messages. In particular, we leverage the
TinyOS interfaces Timer, ADC, SendMsg, and ReceiveMsg. The Timer
interface provides basic primitives to generate one-shot and periodic
timers, which are used to control the duration of the initialization phase
and of the sampling interval. The ADC interface allows to retrieve
readings from an opportunely wired sensor. Finally, the sendMsg and
receiveMsg interfaces can be leveraged to transmit and receive messages
to and from the sink, respectively. The code of the esAMS application
is encapsulated in the three nesC �les named esAMSC.nc, esAMSM.nc,
and esAMSMsg.nc. They provide for the wiring con�guration, the
actual application code, and the message formats, respectively.

1 i n c l ud e s esAMSMsg ;
2

3 c on f i gu r a t i on esAMSC { }
4 implementation
5 {
6 components Main , esAMSM
7 , TimerC
8 , LedsC
9 , HumidityC as Sensor

10 , GenericComm as Comm
11 , DelugeC
12 ;
13

14 Main . StdControl −> DelugeC ;
15 Main . StdControl −> esAMSM;
16 Main . StdControl −> TimerC ;
17

18 esAMSM. I n i t i a l i z eT ime r −> TimerC . Timer [unique ("Timer ")] ;
19 esAMSM. SamplingTimer −> TimerC . Timer [unique ("Timer ")] ;
20 esAMSM. Leds −> LedsC ;
21 esAMSM. SensorContro l −> Sensor ;
22 esAMSM.ADC −> Sensor . Temperature ;
23 esAMSM. CommControl −> Comm;
24 esAMSM. ReceiveMsg −> Comm. ReceiveMsg [AM_esAMSRECEIVEMSG] ;
25 esAMSM.DataMsg −> Comm. SendMsg [AM_esAMSMSG] ;
26 }

Figure 6.2 shows the esAMSC.nc con�guration �le, which wires the
interfaces used by the esAMS application to their actual TinyOS im-
plementations. In particular, we see that the esAMS uses two di�erent
instances of the Timer interface, named InitializeTimer and Sampling-
Timer (lines 18 and 19 in �gure 6.2). These timers are used to set the
length of the initialization phase and the length of the sampling interval,

6.2. A TinyOS Library for Adaptive Model Selection 167

respectively. Further, line 22 in �gure 6.2 shows that the ADC inter-
face is wired to the Temperature interface exposed by the HumidityC
component. This connection allows to access the external temperature
sensor of the Tmote Sky platform (see also section 2.2.1). Using any
other available sensor only requires to appropriately adapt this part
of the con�guration �le and does not require any change in the code
implementing the actual application logic.

The esAMS application supports two kinds of messages, the esAMSMsg
and esAMSreceiveMSg, whose de�nition is included in the �le esAMSMsg.nc.
Model updates are sent within a esAMSMsg packet, which must in prin-
ciple only include the values of the parameters L and b for the current
model. Indeed, equation 3.18 shows that using DES models the sink
only needs to know L and b in order to predict future sensor readings.
Besides the current model the esAMSMsg packet may also include ad-
ditional information like, e.g., the current sample, or the values of the
smoothing constant α and β corresponding to the current model. An
esAMSreceiveMsg packet includes a single �eld representing the code
of a speci�c operation the user wants the node to execute. For instance,
in our implementation the reception of a esAMSreceiveMsg packet with
operation code 1 makes the node revert into the initialization phase.
esAMSreceiveMsg messages can be sent to one, several, or all the nodes
in a network. To this end, we used the TinyLAB tool described in the
previous section.

Figure 6.2 shows the structure of the esAMSM.nc �le, which includes
the actual application logic. The code from line 11 to 20 declares the
interfaces used by esAMSM.nc, which are linked to actual implemen-
tations through the con�guration speci�ed in esAMSC.nc. After this
declaration, the actual implementation of the component starts with
the de�nition of the used variables and data structures, as commented
at line 24. Then, the commands init() and start() of the StdControl
interface are called. The command init() initializes the communication,
sensor, and timer components, and allows to set variables and status
�ags to their default values. Then, control goes to the start() command,
which activates the communication and sensor components and starts
the InitializeTimer. When this timer �res, the event handler Initialize-
Timer.�red() (line 38) is executed. The main role of this handler is to
trigger the �rst data collection by calling the command ADC.getData(),
which, in turn, interrogates the sensor actually wired to the ADC in-
terface (the external temperature sensor, in our case). As soon as the

168 Chapter 6. Tools and Libraries

ADC holds a stable sample, it generates the event ADC.dataReady (line
42), which makes the current sensor reading available to the program.
The ADC.dataReady event handler �rst stores the current sample in a
global variable and then checks, by looking at the value of an appro-
priate globally visible INITIALIZE �ag, if the AMS must undergo an
initialization phase. In this case, it posts the initializeAMS() task (line
46), otherwise it posts the AMS() task (line 48). We also use a dedi-
cated �ag to signal whether all the operations related to a single run of
the AMS are completed or not. This �ag, which we named AMSdone,
is set to false in the ADC.dataReady handler, before any AMS-related
task is called. The initializeAMS() task simply initializes the param-
eters of all models in the set of candidates. For DES models, this
corresponds to setting the value of L1 equal to the current sample and
b1 = 0, irrespective of the values of α and β (see also equation 3.19).
The virtual models are initializes in the same way and the relative up-
date rate is set to 1 for all models. Further, the INITIALIZE �ag is
set to false, so that the next occurrence of the ADC.dataReady event
will cause the AMS() task to be called. Finally, the initializeAMS()
task posts the sendUpdate() task, which selects the current model h∗

and sends it to the sink. Further, the SamplingTimer is started. This
periodic timer will �re at regular time intervals until it is stopped by
a call to the command SamplingTimer.stop(). This happens if either
the AMS must be re-initialized or if an unrecoverable problem occurs
(like, e.g., if the AMS() task does not manage to run to completion
before the next sample is ready for processing). Thus, each time the
SamplingTimer �res, a new data is collected from the ADC and pro-
cessed in the ADC.dataReady handler. As we described above, unless
initialization is required, this handler only stores the current data and
posts the task AMS(). This, in turn, increases the samples counter and
computes the estimation of the current sample using the model h∗ that
had been previously communicated to the sink. It then posts the task
updateModels() which takes care of updating the parameters of all mod-
els in the current set along with their virtual counterparts, as explained
in section 3.4.3. The task updateModels() also computes the relative
update rate for all models at each sampling round. After posting the
task updateModels(), the AMS() task checks if the current prediction
error exceeds the tolerated threshold. If not, it just sets the AMSdone
�ag to true and completes its execution. Otherwise, if �rst posts task

169

selectModel() and, immediately after, the sendUpdate() task.3 The task
selectModel() (line 52 in �gure 6.2), individuates, among the set of can-
didates, the model with the lowest relative update rate and selects it as
the new current model. The task sendUpdate() then sets the �elds of
the esAMSMsg structure described above with the appropriate values.
Since this operations signals the end of the current run of the AMS, the
AMSDone �ag is accordingly set to true. Then sendUpdate() calls the
send command of the interface DataMsg that hands over the current
packet to the underlying communication layer. If this operation suc-
ceeds, and thus the packet is successfully scheduled for transmission,
the DataMsg.sendDone event returns successfully ((line 56 in �gure
6.2)). Line 60 in �gure 6.2 also shows the presence of an event handler
for processing received packets. Within this handler, we implemented
the logic necessary to make some of the variables of the applications
remotely controllable. For instance, we can dynamically change the
value of the error threshold or require the AMS to re-initialize. Fur-
thermore, we also included in our implementation the possibility to run
in a special debug mode, in which an esAMSMsg message is sent at each
sampling round, irrespectively of the current prediction error. This is
achieved using a DEBUG_FLAG that, when set to true, triggers the
sending of an update but does not in�uence the further operation of
the AMS. Using a speci�c control message, we can also makes motes
dynamically switch from debug to normal operation mode (and vice
versa) at any point in time.

3 We should recall here that TinyOS1.x tasks are run to completion before the next task is
executed. This ensures the sendUpdate() task to be executed only after the selectModel() runs
to completion.

170 Tools and Libraries

1 i n c l ud e s esAMSMsg ;
2 #inc lude <s t d l i b . h>
3

4 /∗∗
5 ∗ Module esAMSM
6 ∗
7 ∗ Implements the DPS us ing the ES−AMS s t r a t egy f o r model s e l e c t i o n
8 ∗/
9 module esAMSM {

10 prov ides i n t e r f a c e StdControl ;
11 uses {
12 i n t e r f a c e Timer as SamplingTimer ;
13 i n t e r f a c e Timer as I n i t i a l i z eT ime r ;
14 i n t e r f a c e Leds ;
15 i n t e r f a c e Sp l i tCont ro l as SensorContro l ;
16 i n t e r f a c e ADC;
17 i n t e r f a c e StdControl as CommControl ;
18 i n t e r f a c e SendMsg as DataMsg ;
19 i n t e r f a c e ReceiveMsg ;
20 }
21 }
22 implementation {
23

24 /∗∗ de c l a r e here data s t r u c t u r e s and ta sk s ∗/
25

26 command re su l t_t StdControl . i n i t () { re turn SUCCESS; }
27

28 event r e su l t_t SensorContro l . in i tDone () { re turn SUCCESS; }
29

30 command re su l t_t StdControl . s t a r t () { re turn SUCCESS; }
31

32 event r e su l t_t SensorContro l . startDone () { re turn SUCCESS; }
33

34 command re su l t_t StdControl . stop () { re turn SUCCESS; }
35

36 event r e su l t_t SensorContro l . stopDone () { re turn SUCCESS; }
37

38 event r e su l t_t I n i t i a l i z eT ime r . f i r e d () { re turn SUCCESS; }
39

40 event r e su l t_t SamplingTimer . f i r e d () { re turn SUCCESS; }
41

42 async event r e su l t_t ADC. dataReady (uint16_t data) {
43 re turn SUCCESS;
44 }
45

46 task void in i t i a l i z eAMS () { }
47

48 task void AMS() { }
49

50 task void updateModels () { }
51

52 task void se l ec tMode l () { }
53

54 task void sendUpdate () { }
55

56 event r e su l t_t DataMsg . sendDone (TOS_MsgPtr sent , r e su l t_t suc c e s s) {
57 re turn SUCCESS;
58 }
59

60 event TOS_MsgPtr ReceiveMsg . r e c e i v e (TOS_MsgPtr m) { return m; }
61 }

7. Conclusions and Outlook

In this �nal chapter, we summarize our contributions, outline the main
limitations of our approaches, and sketch interesting directions for fu-
ture work.

7.1. Contributions

In the context of this thesis, we investigated the sensor selection prob-
lem in distributed, wireless sensing systems. In particular, we focused
on typical environmental monitoring scenarios requiring long-term, pe-
riodic sensor data collection. Drawing and improving upon existing
work, we designed practical temporal and spatial sensor selection strate-
gies, which allow to reduce the overall energy consumption of the net-
work while guaranteeing the quality of the collected data. To this end,
we avoided or limited the use of a priori information about the signals of
interest. Furthermore, we designed our sensor selection strategies to be
suitable to run on resource-poor wireless sensor network (WSN) plat-
forms. To assess the performance of our algorithms, we conducted both
simulation studies and experiments on a small-scale WSN deployment.
In the context of temporal sensor selection, we investigated the use

of the dual prediction scheme (DPS) as a simple but powerful means
to provide for communication savings while guaranteeing the collected
data to lie within a pre-speci�ed error threshold. We initially proposed
an implementation of the DPS based on the least-mean-square adaptive
�lter, which was able to achieve more than 90% of communication sav-
ings, with respect to the default monitoring scheme, on selected data
sets. We then discussed the main drawback of this approach, common
to other implementations of the DPS, consisting in the fact that all or
part of the parameters of the used prediction model are set a priori.
This may result in a lack of �exibility of the model and can, thus, ham-
per the achievable communication savings. To cope with this problem,
we thus designed the AMS, a generic framework for online parameter
estimation and model selection. We provided two di�erent implemen-

172 Chapter 7. Conclusions and Outlook

tations of the AMS, one based on autoregressive models (AR), named
AR-AMS, and one leveraging exponential smoothing models (ES), ac-
cordingly referred to as the ES-AMS. We evaluated both implemen-
tations on several data sets retrieved from real WSN deployments and
demonstrated the ability of the AMS to provide for high communication
savings without requiring any a priori information about the signals of
interest. Further, we showed that the ES-AMS achieves comparable
performance, in terms of communication savings, with respect to the
AR-AMS, but incurs in lower computational and memory overhead.
This makes the ES-AMS particularly suited for an implementation on
WSN platforms. We thus also provided the ES-AMS as a TinyOS ap-
plication and tested its behavior on a small-scale WSN deployment.
As for spatial sensor selection, we focused on sensor �eld reconstruc-

tion applications and worked under the assumption that the ACT algo-
rithm is used at the central server to process the collected readings. In
this context, we showed that the problem of selecting proper sampling
geometries may be reduced to a coverage problem. We thus focused
on existing coverage preserving protocols and seeked after improving
their performance in terms of communication overhead. In particular,
we introduced distance-based sensor ranking heuristics that allowed to
signi�cantly reduce the communication overhead of the CCP coverage
con�guration protocol. Further, we leveraged the same heuristics to
design an adaptive random sensor selection strategy (ARS) that can
provide for high levels of coverage of the region of interest while acti-
vating a signi�cantly lower number of nodes with respect to a simple
random selection strategy. We then brie�y addressed the issue of cross-
layer optimization and provided a preliminary study to investigate the
possible interplay of our ARS strategy with the CTP data collection
protocol.
Finally, we discussed the applicability of our sensor selection strategy

to a speci�c application scenario, and provided a description of the tools
and libraries implemented in the context of this work.

7.2. Limitations and Future Work

The sensor selection approaches presented in the previous chapters and
summarized above, present some limitations as well as potential for
further improvements, as discussed below.

7.2. Limitations and Future Work 173

7.2.1. Adaptive Model Selection

The AMS algorithm allows to select a suitable model to implement the
DPS data collection strategy. To this end, a set of candidate models
is maintained on sensor nodes and their performance are continuously
evaluated over time. In section 3.4.2 we further introduce the racing
method, which allows to prune bad performing models from the set
of candidates. Eventually, the racing mechanism may let only a sin-
gle model in the set of candidates, but this would clearly hamper any
further adaptation to the actual data dynamics. Therefore, we sug-
gested to abort the racing procedure once the cardinality of the set of
remaining models reaches a desired size. Although we did not further
investigate this issue, adequately re�ning the racing procedure may al-
low to reduce the computational overhead and memory footprint of the
AMS while still preserving its adaptive nature.

One of the main limitations of the AMS consists in its potentially
slow response to changes in the data dynamics, when used over longer
periods of time. For instance, assume a model h1 performs signi�cantly
better than all other models in the set of candidates during the �rst
phase of data collection. After a given period of time, the performance
of model h1 may start deteriorating, while other models, e.g., h2, could
provide for higher communication savings. However, due to the �ad-
vantage� in terms of relative update rate accumulated by model h1 in
the �rst period, it may take a long time for model h2 to �nally become
the current model. This is a clear ine�ciency of the AMS, which could
however be corrected in at least two ways. First, one could introduce
a threshold for the maximum allowed gap between the performance of
the current model and those of other candidate models. This would
ensure a maximum �delay� in the identi�cation of a new best current
model. Second, it could be possible to observe the di�erential per-
formance of the current model with respect to its candidate peers. If
the performance of the current model shows a negative trend for more
than a given number of time steps, an adequate �realignment� proce-
dure could be triggered. For instance, one could simply re-initialize the
AMS and thus allow potentially new best performing models to come
into play. The introduction of such procedures, however, could make
the AMS become unstable, and should thus carefully designed.

A general limitation of the DPS data collection procedure consists
in the fact that it requires a reliable communication link between the

174 Chapter 7. Conclusions and Outlook

node and sink to be available. Thus, in case of messages losses, the sink
considers as reliable possibly wrong estimations of the current sensor
readings. Since such losses may and do occur in WSNs, removing this
assumption would allow for a more �exible applicability of the DPS.
To this end, we brie�y mention an idea that may provide a useful
hint for further research. In particular, assume an estimation of the
average packet loss ratio ploss of the link between source and sink to be
available. Then, an equivalent error threshold eeqmax = f(ploss, emax) ≤
emax could be de�ned as a function of ploss and emax, and used as the
error threshold in place of emax. If the eeqmax is properly de�ned, its use
may allow to guarantee the sensor readings estimation error to lie, on
average, within the threshold emax even in presence of message losses.
We believe that properly using the prediction intervals [122] of the
chosen model may enable the computation of a proper value of eeqmax.

7.2.2. Sensor Ranking

The experimental results reported in chapter 4 showed that our distance-
based sensor ranking heuristics allow to improve the performance of the
CCP coverage protocol. However, we performed our evaluation assum-
ing the sensor nodes to be distributed uniformly at random over the
region of interest. Although this is a frequent assumption in the WSN
literature, we believe that considering other kind of network topolo-
gies may allow to provide for a more comprehensive evaluation of our
approach.
Further, while studying the spatial sensor selection problem we as-

sumed the value of the necessary spatial resolution ∆s required to com-
ply with the application requirements to be known a priori. In partic-
ular, we showed that using the ACT the value of ∆s is linked to the
value of the spatial bandwidth of the sensor �eld of interested. Since
this value may change over time and vary over di�erent sectors of the
network, so should ideally do the value of ∆s. Indeed, allowing for
a local adaptation of the spatial resolution may allow to improve the
quality of the �nal sensor �eld reconstruction. In particular, it would
allow to distribute the sampling density according to the actual signal
dynamics. Since the ACT features an automatic procedure to estimate
the order M of the reconstructing polynomial (which, in turn, is re-
lated to the signal bandwidth and, thus, ∆s), we believe such local
adaptation procedure to be directly applicable in the sensor �eld re-

7.3. Concluding Remarks 175

construction contexts we considered. For instance, the current local
values of ∆s could be estimated at regular time intervals by the central
server, which would then distributed them to network.
Finally, we believe that the investigation of the cross-layer issues

brie�y discussed in section 4.8, constitutes a promising and interesting
possibility for further research.

7.3. Concluding Remarks

The contributions reported in this thesis show that performing sensor
selection in WSNs may allow for high communication savings even if
no or little a priori knowledge on the signals of interest is available.
To this end, the selection algorithms must be endowed with adequate
automatic procedures providing for a timely adaptation to changing
signal and network dynamics.
Thanks to their generic applicability and suitability to be imple-

mented on resource-poor sensor nodes, we believe that our algorithms
constitute practical solutions towards enabling long-term, e�cient en-
vironmental monitoring using wireless sensor networks.

Appendices

A. The ACT Algorithm

In our approach to the �eld reconstruction problem in wireless sensor
networks (WSNs), we refer to the ACT (Adaptive weights Conjugate
Gradient Toepliz) algorithm as a reference technique for performing
reconstruction from scattered samples [56,75,169,180,181]. Therefore,
we provide here a summary of the main characteristics of the algorithm
and discuss relevant related issues.

The problem of reconstruction from irregular samples can be de-
�ned as the problem of estimating a band-limited, or essentially band-
limited, signal f from a set of irregularly spaced samples f(sj). The
index j runs through some index set Sr of cardinality |S| equal to r.
The locations at which the samples are gathered may correspond to
coordinates in a 1- or 2-dimensional space. In these cases, we indicate
the sj also as xj, (xj, yj), respectively.

The problem of recovering a signal f from its samples fj, j = 1, . . . , r
is an intrinsically ill-posed problem, since the space of functions whose
samples at the locations sj corresponds to the values fj has always in-
�nite dimension. However, a-priori assumptions on the signal, like its
band-limitedness, and the adoption of adequate numerical algorithms
still allow for error-bounded reconstructions. The ACT-algorithm, for
instance, allows to e�ciently recover a signal from its irregular samples,
even in presence of large gaps and clusters in the sampling set, as it may
often be the case in WSNs scenarios. Other reconstruction procedures
may work properly only for sampling sets resulting from a perturba-
tion of a regular grid, require a maximal distance among samples to
be guaranteed or be far less robust and e�cient than the ACT [181].
In this context, we should also mention that the ACT can be applied
to scenarios with irregular sampling geometries as well as those where
the sampling set consists in a uniform grid with missing samples. Fur-
thermore, an ad-hoc regularization technique allows to estimate the
bandwidth of the signal to reconstruct on the �y, as reconstruction is
performed [169]. The existence of such a procedure is particularly valu-
able, since it allows to correct possibly wrong bandwidth estimations

180 Appendix A. The ACT Algorithm

as well as to adapt to changing signal dynamics over time and space.
As we detail below, the computational e�ciency as well as the re-

construction performance of the ACT is mainly determined by the
characteristics of the sampling geometry. For instance, the number
of collected samples r must be higher than a given threshold and the
distance between a sample and its nearest neighbor must also oblige
with a maximal allowed value. In a WSN scenario, it turns out that
ful�lling these conditions requires the region of interest to be 1-covered
by the nodes actively sampling the sensor �eld f . In this context, the
sensing range Rs of the sensor nodes corresponds to the desired spatial
resolution δ. In the following, we address this issue in more quantita-
tive terms and motivate our choice of the ACT as a reference algorithm.
For the sake of simplicity, we �rst introduce the basic equations of the
ACT for both the 1- and 2-dimensional case in the following sections
A.1 and A.2, respectively.

A.1. 1-Dimensional Case

In the 1-dimensional case, we assume the r locations at which the signal
f has been sampled to be r points within the segment [0, 1]. Without
loss of generality, we further assume that 0 ≤ x1 ≤ x2 ≤ . . . ≤ xr < 1.
The extension to the case in which the points are deployed over an
arbitrary segment requires an appropriate normalization, as shown in
[181].
The ACT algorithm basically solves the optimization problem of �nd-

ing the trigonometric polynomial p∗ of period 1 and order M that best
approximates the function f . The value of M depends on the band-
width of the signal and, for a discrete sequence of length N is always
smaller thanN/2. A trigonometric polynomial p is a �nite linear combi-
nation of the sine and cosine functions. Using Euler's formula to express
the trigonometric functions, the space of all trigonometric polynomials
of degree M and period 1 is de�ned as:

PM = {p|p(x) =
M∑

k=−M

ake
2πikx}, (A.1)

where the ak, k = −M, . . . ,M are the (complex) coe�cients of the
polynomial. As detailed in [75], there are several reasons while the
choice of trigonometric polynomials is appropriate and convenient to

A.1. 1-Dimensional Case 181

approximate a non-uniformly sampled band-limited function. Above
all, however, there is the fact that it allows the reconstruction problem
to gain structure and, thus, e�ciency and stability [56,75].
The problem of reconstructing the signal f from its samples thus

turns into that of solving the least square problem:

r∑
j=1

wj|p(xj)− f(xj)|2 = minimum in PM , (A.2)

where the weights wj, j = 1, . . . , r allow to compensate for local
variations of the density of the samples. To this scope, a possible
choice for the wjs (also recommended in [56]) is:

wj =
xj+1 − xj−1

2
, j = 1, . . . , r. (A.3)

To compute w1 and wr one sets x0 = xr − 1 and xr+1 = x1 + 1 [75].
The use of the weights wj can signi�cantly improve the stability and
speed of converge of the algorithm and is therefore always recom-
mended, in particular in presence of highly nonuniform sampling sets.
To �nd the optimal polynomial p∗M that solves the problem A.2 the

ACT de�nes the (2M + 1)x(2M + 1) matrix T and the vector b of
length 2M + 1 with entries:

Tlk =
r∑
j=1

wje
−2πi(l−k)xj , |l|, |k| ≤M (A.4)

bk =
r∑
j=1

wj f̃(xj)e
−2πikxj , |k| ≤M, (A.5)

Then, the set of 2M+1 coe�cients a∗M that generates the polynomial
p∗M , is the solution to the linear system:

a∗M = T−1b, (A.6)

The inversion of the matrix T can be accomplished through both
direct or iterative methods, although the latter are usually preferred,
especially in the presence of noise in the data. Since the matrix T has a
Toeplitz structure, its inversion can be performed e�ciently with either
techniques. To speed up execution, the ACT inverts T via the conjugate
gradient [70] iterative method. The name ACT actually summarizes the
main features that give this reconstruction algorithm its e�ciency and

182 Appendix A. The ACT Algorithm

robustness. First, the use of the adaptive (A) weights wj that appear
in equations A.2, A.4, and A.5. Second, the use of the conjugate (C)
gradient method to solve the linear system A.6. Third, the Toeplitz
(T) structure of the matrix T .
We should note that the matrix T depends, through the weights wj

and positions sj, on the sampling geometry only. This means that
we can control the properties of T by selecting appropriate sampling
sets of nodes. Thus, tailored sensor selection strategies can be used to
determine adequate sets of sampling nodes. As we will better detail
below, both the existence and quality of a reconstructing polynomial
p∗M depend on the properties of T and, more speci�cally, on the value
of its condition number1.

A.2. 2-Dimensional Case

In the 2-dimensional case, the vector space of all trigonometric poly-
nomials of order M (in both the x- and y-direction) is de�ned as:

PM = {p|p(x, y) =
M∑

m=−M

M∑
n=−M

amne
2πi(mx+ny)}. (A.7)

Accordingly, the least square problem A.2 assumes the form:

r∑
j=1

wj|p(xj, yj)− f(xj, yj)|2 = minimum in PM (A.8)

where (xj, yj), j = 1, . . . , r are the x- and y- coordinates of the r
sampling points in the unit square [0, 1]x[0, 1] at which the samples fj
of the signal f are available. The natural choice for the weight wj of
sample sj is the area of the Voronoi cell of sj [75]. However, in most
cases it is not necessary to estimate the exact value of the area and a
gross estimate based on the local density would su�ce, as shown in [75].
The matrix T and vector b can be computed extending the de�nitions

A.4, and A.5. To take into account the increased dimensionality of the
problem, the matrix T becomes a (2M + 1)2x(2M + 1)2 square matrix
while the vector b has (2M + 1)2 entries. Thus, in the 2-dimensional
case, we have:

1 The condition number of a matrix A is de�ned as the ratio between the norm of the matrix
and the norm of its inverse, i.e., c(A) = ‖A‖

‖A−1‖ . For the computation of the condition number,

usually the L2 norm is used.

A.3. Invertibility and Condition Number of the Matrix T 183

Tkl,mn =
r∑
j=1

wje
−2πi((k−m)xj+(l−n)yj), |k|, |l|, |m|, |n| ≤M (A.9)

bkl =
r∑
j=1

wjf(xj, yj)e
−2πi(kxj+lyj), |k| ≤M, (A.10)

The matrix T can also be rearranged in (2M + 1)x(2M + 1) blocks
Bkm each of size (2M + 1)x(2M + 1), thus Tkl,mn = (Bkm)ln. Each of
the Bkm blocks is a Toeplitz matrix, and, thus, T is a block Toeplitz
matrix [75].
Provided the matrix T is invertible, the solution to the least square

problem A.8 can still be computed by the linear system 4.2. In the
2-dimensional case, however, the vector a∗M has (2M + 1)2 entries.

A.3. Invertibility and Condition Number of the

Matrix T

As mentioned above, the properties of the matrix T are crucial to de-
termine the existence and quality of a reconstructing polynomial p∗. In
particular, for a (unique) solution to the linear system 4.2 to exist, the
matrix T must be invertible.
In the 1-dimensional case, the fundamental theorem of algebra guar-

antees that, if at least rmin = 2M + 1 samples are collected, a (unique)
solution p∗M to the problem A.2 exists and can be computed solving the
system A.6. In other words, the condition r ≥ 2M + 1 guarantees the
matrix T to be invertible. The actual quality of the reconstruction (i.e.,
the actual reconstruction error), however, depends not only the number
of collected samples, but also on their actual spatial distribution over
the RoI. In particular, the presence of large gaps between sampling
points may signi�cantly hamper the possibility to recover the signal f
with good accuracy. In this context, the condition number k(T) of the
matrix T allows to measure the �quality� of a given sampling geometry
for the purpose of signal reconstruction.
The condition number k(A) of a matrix A is de�ned as the ratio be-

tween the (Euclidean) norm of A and that of its inverse, thus k(A) =
‖A‖/‖A−1‖. Thus, the condition number of T is k(T) = ‖T‖2/‖T−1‖2.
For the linear system A.6 the value of k(T) gives a measure of the �sen-
sitivity� of the solution a with respect to changes in both the sampling

184 Appendix A. The ACT Algorithm

geometry and the actual sampled values fj. In particular, a low value
of k(T) indicates that small changes in the sampling geometry will pro-
duce only small changes in the reconstruction. This property is clearly
desirable since it allows to compute a stable solution. A small condition
number also makes the computed solution more robust to noise in the
data. Indeed, if the sampling geometry is stable and the sampled values
change only due to, for instance, measurement noise, the correspondent
change in the solution is proportional to the value of k(T) [86]. Thus,
the smaller the condition number the less noise in the data can hamper
the computation of a good reconstruction.
The consideration reported above show that the knowledge of the con-

dition number of T allows to make some statements about the quality of
a reconstruction. However, a closed analytical form of k(T) is unknown
and the estimation of condition numbers is usually a hard mathemat-
ical problem [75]. However, it is still possible to compute a worst-case
estimate of the condition number of T by making the sampling geom-
etry ful�ll some additional constraints. In the 1-dimensional case, this
consist in making the maximal distance between a sample and its clos-
est neighbor to stay below the threshold δ < 1/2M , which corresponds
to the Nyquist limit in the regular sampling case [146, 171]. Thus, in
the 1-dimensional case, a worst-case estimate of k(T) is known if the
following conditions c1a and c1b are ful�lled.

(c1a) The number of collected samples r is higher than rmin = 2M + 1.

(c1b) The maximal distance between adjacent samples does not exceed
the limit δ < 1

2M .

We should notice that for the explicit estimate k(T) ≤ (1+2Mδ2)
1−2Mδ2) ,

provided in [75], to hold, the use of the weights de�ned in A.3) is
indispensable. Furthermore, it represents a worst-case estimate and
allows to make theoretical statements about the stability of the ACT.
In practical settings, however, good condition numbers can be achieved
even if c1b is not ful�lled over the whole segment [0, 1].
In the 2-dimensional case, the geometry of the problem is more

complex. A necessary condition for the matrix T to be invertible is
r ≥ (2M + 1)2. Indeed, to determine the (2M + 1)2 coe�cients that
generate the reconstructing polynomial p∗M we need at least (2M + 1)2

constraints to be speci�ed. However, for a theoretical guarantee on
the invertibility of T additional hypothesis are needed. To state them

A.4. Estimation of M 185

here, we �rst report the de�nition of a δ − dense set from [75]. Let
D(δ, sj) be the disc of radius δ centered at sj = (xj, yj). The set
Sr = {(xj, yj), j = 1, . . . , r} is said to be δ − dense in the unit square
[0, 1]x[0, 1], if

⋃r
j=1D(δ, sj) ⊇ [0, 1]x[0, 1]. It is easy to verify that a

δ − dense set of sensor nodes provides 1-coverage of the RoI (i.e., the
unit square) if the nodes are assigned a �virtual� sensing range δ. Fur-
thermore, the distance between a sample sj and its nearest neighbor is
at most 2δ.
With this de�nition, we can extend conditions c1a and c1b to the

2-dimensional case as follows:

(c2a) The number of collected samples r is higher than rmin = (2M+1)2.

(c2b) The sampling set Sr = {(xj, yj), j = 1, . . . , r} is δ − dense with
δ < ln2/(4πM).

If conditions c2a and 2cb are ful�lled, the matrix T de�ned as in
A.9 (with weights wj chosen as the area of the Voronoi cells of sj)
is invertible. Furthermore, the worst-case estimation of its condition
number k(T) is 4/(2− e4πMδ).
Besides their theoretical importance, conditions c1b and c2b give a

practical recipe on how to select sensor nodes in a WSN so that their
samples can be used to reliably reconstruct the sensor �eld f . As
mentioned above, we can easily recognize that this requires the selected
nodes to provide 1-coverage of the RoI (i.e., the segment [0, 1] or the
unit square) assuming an �equivalent� sensing range Rs = δ. Thus,
coverage preserving algorithms can be used in this context as optimal
sensor selection strategies.

A.4. Estimation of M

The estimates of the �equivalent� sensing range δ given by conditions
c2a and c2b requires the value of M and, thus, of the bandwidth of
the signal f to be known a-priori. A good choice of the value of M is
indeed crucial to obtain a reliable solution to the reconstruction prob-
lem. Indeed, its overestimation makes the solution very sensitive to
noise while its underestimation may bring to a smooth, but inaccurate
reconstruction. To limit errors due to a imprecise estimation of M
(and to free the user from the need to specify its value), the so-called

186 Appendix A. The ACT Algorithm

multi-level version of the ACT algorithm, dubbed ACT-ML, can be
used [75,169,181].
The main rationale of the ACT-ML, is to make the reconstruction

process start with an initial hypothesis on the bandwidthM , e.g. M =
1, and then increment its value stepwise until a given stopping criterion
is satis�ed. The magnitude of the stepwise increment of the bandwidth
at each iteration may be 1, but also a higher value, depending on the
speci�c case. In this way, M acts as a regularization parameter that
allows to balance the stability and accuracy of the solution of the system
A.6 [181]. In a set of experiments Scherzer et al. [169] also demonstrates
that the ACT-ML can achieve better reconstructions using a value M
far smaller that the theoretical correct value. Since the value of M
determines the dimension of T , keeping it low also allows for savings
in terms of computation and memory.
Therefore, given a set of samples Sr the ACT-ML can be used to

perform reconstruction even if the value of M is not available. In the
context of a WSN data collection scenario, however, the sampling ge-
ometry can and must be de�ned, and the knowledge of M is required
in order to set the appropriate value of δ. In the lack of a-priori infor-
mation it is still possible to de�ne a value of δ representing a desirable
spatial resolution and then re�ne this value is successive steps. To this
scope, cross-validation techniques could be used to evaluate the qual-
ity of the reconstruction and accordingly increase or decrease the value
of δ. As for the value of M , the ACT-ML will provide for its proper
estimation according to the available number and distribution of the
samples.

A.5. Remarks

We detailed above the importance of the value of the condition number
for characterizing the performance of the ACT algorithm. We would
like to note here that, in both the 1- and 2-dimensional case, the value of
k(T) is minimal and equal to 1 when the sampling geometry resembles a
uniform grid. Therefore, givenM and r, the more regular the sampling
geometry is, the better the value of k(T).
At the same time, the ACT performs remarkably well also in the

presence of very irregular sampling geometries (mainly thanks to the
use of the adaptive weights). This ability of the ACT is particularly
useful in WSN scenarios, in which the actual spatial distribution of the

A.5. Remarks 187

nodes may be unpredictable. As a comparison, the seminal approach
by Du�n and Scha�er [49] is applicable only if the sampling set is a
perturbation of the regular (over)sampling [74]. In general, for random
irregular sampling the ACT proved to be able to outperform related
approaches both in terms of computational e�ciency and quality of the
reconstruction [75, 181]. Furthermore, the existence of the multi-level
version of the algorithm, the ACT-ML, opens the possibility to design
adaptive sampling schemes able to control the number of required sam-
ples depending on the estimated value of M . Last but not least, the
theoretical framework behind the ACT allows to achieve the explicit
bounds expressed by conditions c2a and c2b. Thus, the choice of the
ACT as a reference reconstruction algorithm is well motivated by its
practical and theoretical relevance, as well as by its wide applicability.

B. The Collection Tree Protocol
(CTP)

As documented by the TinyOS TEP 119 [59], data collection is one of
the fundamental primitives of a wireless sensor network (WSN). A col-
lection protocol provides for the construction of one or more forwarding
trees having each a sink as their root. Data packets are forwarded by
the nodes to their parents up to at least one of the sinks. To construct
the routing tree, a collection protocol maintains a function of one or
more parameters upon which each node can select its parent. This
function can account for the (estimated) distance in hops to the sink,
the link quality, the current load of the node, its position, or resid-
ual energy. Nodes in the network can collect information about their
neighboring nodes by receiving (and sending) so called routing beacons,
which contains the information needed to evaluate the above mentioned
function.
The above cited TinyOS TEP 119 speci�es the requirements a collec-

tion protocol must comply with in order to work properly. For instance,
it must have a mechanism to detect (and repair) routing loops. Addi-
tionally, it should be able to detect and suppress duplicates (generated
as a consequence of lost acknowledgments) and to properly estimate the
one-hop link quality. Di�erent collection protocols may address these
(and other) challenges using di�erent techniques and approaches. In
particular, TinyOS TEP 123 [58] describes the Collection Tree Proto-
col (CTP), a particular collection primitive that became quickly popu-
lar within the WSNs research community. Nonetheless, there exists an
implemented version of CTP developed for the TinyOS2.x distribution
and supporting several platforms (MicaZ, Telosb/TmoteSky, TinyN-
ode).
In the following, we describe the main components of CTP and in-

troduce some of the implementation issues that we had to face in order
to implement CTP on the Castalia simulator.
CTP uses beacon messages (routing frames) for tree construction and

maintenance, and data messages (data frames) to report application

190 Appendix B. The Collection Tree Protocol (CTP)

data to the sink. The standard implementation of CTP reported in [58]
and evaluated in [68] consists of three main logical software compo-
nents: the Link Estimator (LE), the Routing Engine (RE), and the
Forwarding Engine (FE).
The Link Estimator computes a metric to evaluate the quality of a

communication link. Using this component, each node can thus assess
the �goodness� of the links to its neighbors and select among them
its routing parent. In CTP, the quality of a link is estimated upon
statistics collected over both beacon and data frames, which converge
in the so-called Expected Transmissions (ETX) metric. The ETX is an
additive metric computed from several di�erent values, like the fraction
of lost beacons over the total sent or the decoding error at the physical
layer. A throughout description of how to compute the ETX is beyond
the scope of this paper and the interested reader is referred to [68].
The root of a routing tree always has an ETX equal to 0 while an
internal node or leaf computes the ETX of its neighbors recursively as
the sum of the ETX of the neighbor itself plus the ETX of the link
to it. Given a set of links/neighbors each one with the correspondent
computed ETX, CTP chooses the neighbor/link with the lowest ETX
as its parent/route to the sink.

Figure B.1.: Ctp packets composition.

The Routing Engine takes care of sending, receiving and processing
the routing beacons. Using the information extracted from the routing
frames, the RE can maintain an updated routing table, which indi-
cates the list of discovered neighbors, their ETX and parents. Among
these neighbors, the RE can then select the parent for the current node
according to the computed ETX and include this information in the
routing beacons. A routing frame has a total of 5 bytes, as illustrated

191

in B.1a. The �rst two bits are the Pull (P) and Congestion (C) �ags.
The former is used to trigger the sending of beacon frames from neigh-
bors for topology update, while the latter allows a node to signal that it
is congested. In this case, its neighbors will look for alternatives routes
for sending their packets so as to release the node from congestion. The
next 6 bits are reserved for future use (e.g., additional �ags). The next
two bytes contain the parent �eld, which clearly indicates the identi�er
of the node the neighboring node sending the beacon has chosen as
its parent. Next, the routing frames uses 2 bytes to report the ETX
metric, which has been described above. In CTP, beacons are sent fol-
lowing the Trickle algorithm [119], i.e., the rate at which beacons are
sent is progressively reduced to save communication but can be reset if
speci�c events (such as route discovery requests) occur.
Finally, the Forwarding Engine manages data frames from the ap-

plication layer and forwards incoming data packets from other nodes.
The packet composition of a data frame is shown in �gure B.1b. The
�rst byte is the same as in the above described routing frame while the
second byte reports the Time Has Lived metric (THL) metric. The
THL is a counter that is incremented by one at each packet forwarding
and thus indicates the number of hops a packet has e�ectively traveled
before reaching the node handling it. The data frame further reserves
two bytes for the ETX metric, and two bytes for the identi�er of the
node that originally sent the packet. The SeqNo �eld (1 byte) then
speci�es the sequence number of the current packet, as marked by the
originating node. The Collect_id is an identi�er that allows for spec-
ifying di�erent instances of a collection service. Finally, the data �eld
contains the actual payload and its length may vary according to the
application requirements and considering the maximal allowed packet
length. Indicating wit NBpayload the length (in bytes) of this latter �eld,
the total length of the data frame is of 8 + NBpayload bytes. Using the
tuple formed by the THL, Origin, SeqNo, and Collect_id �elds, the FE
can detect duplicate packets. Additionally, the THL is used to allow a
packet not to be discarded if a loop occurs: it will continue to be for-
warded over the loop (by refreshing its THL), until a new route to the
sink is found. Thus, through the action of the FE CTP also manages to
suppress duplicate packets and detect routing loops. It is important to
note the above described components do not work independently but
closely interact through a set of well-de�ned interfaces.

Bibliography

[1] Kemal Akkaya and Mohamed Younis. A Survey on Routing Pro-
tocols for Wireless Sensor Networks. Ad Hoc Networks, 3(3):325�
349, May 2005.

[2] Ian F. Akyildiz, Weiiian Su, Yogesh Sankarasubramaniam, and
Erdal Cayirci. Wireless Sensor Networks: A survey. Computer
Networks, 38(4):393�422, March 2002.

[3] Jamal N. Al-Karaki and Ahmed E. Kamal. Routing Techniques
in Wireless Sensor Networks: A Survey. IEEE Wireless Commu-
nications, 11(6):6�28, December 2004.

[4] Javier Alberola, Ian H. Flindell, and Andrew J. Bullmore. Vari-
ability in Road Tra�c Noise Levels. Elsevier Applied Acoustic,
66:1180�1195, April 2005.

[5] Samuel T. Alexander. Adaptive Signal Processing: Theory and
Applications. Springer-Verlag New York Inc., New York, NY,
USA, 1986.

[6] Rafael Alonso, Daniel Barbara, Hector Garcia-Molina, and So-
raya Abad. Quasi-Copies: E�cient Data Sharing for Information
Retrieval Systems. In Proceedings of the International Conference
on Extending Database Technology (EDBT 1988), pages 443�468,
Venice, Italy, March 1988.

[7] Anish K. Arora, Prabal K. Dutta, Sandip S. Bapat, Vinod Ku-
lathuman, Hongwei Zhang, Vinayak S. Naik, Vineet Mittal, Hui
Cao, Murat Demirbas, Mohammed G. Gouda, Young R. Choi,
Ted R. Herman, Sandeep S. Kulkarni, Umamaheswaran Aru-
mugam, Mikhail Nesterenko, Adnan Vora, and Mark Miyashita.
A Line in the Sand: A Wireless Sensor Network for Target Detec-
tion, Classi�cation, and Tracking. Computer Networks (Military
Communications Systems and Technologies), 46(5):605�634, De-
cember 2004.

194 Bibliography

[8] Christopher G. Atkeson. Memory-Based Approaches to Approx-
imating Continuous Functions. In Proceedings of a Workshop on
Nonlinear Modeling and Forecasting, pages 503�521, Santa Fe,
NM, USA, September 1990. Published by the Santa Fe Institute
Studies in The Sciences of Complexity in 1992.

[9] Franz Aurenhammer. Voronoi diagrams � A Survey of a Fun-
damental Geometric Data Structure. ACM Computing Surveys,
23(3):345�405, September 1991.

[10] Aline Baggio. Wireless Sensor Networks in Precision Agriculture.
In Proceedings of the 1st Workshop on Real-World Wireless Sen-
sor Networks (REALWSN 2005), Stockholm, Sweden, June 2005.

[11] Heribert Baldus, Karin Klabunde, and G. M�'usch. Reliable Set-
Up of Medical Body-Sensor Networks. In Proceedings of the 1st
European Workshop on Wireless Sensor Networks (EWSN 2004),
pages 353�363, Berlin, Germany, January 2004.

[12] Guillermo Barrenetxea, Fran�ois Ingelrest, Gunnar Schaefer, and
Martin Vetterli. The Hitchhiker's Guide to Successful Wire-
less Sensor Network Deployments. In Proceedings of the 6th
ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys 2008), pages 43�56, Raleigh, NC, USA, November 2008.

[13] Can Basaran, Sebnem Baydere, Giancarlo Bongiovanni, Adam
Dunkels, M. Onur Ergin, Laura Marie Feeney, Isa Hacioglu, Vlado
Handziski, Andreas Köpke, Maria Lijding, Gaia Maselli, Nirvana
Meratnia, Chiara Petrioli, Silvia Santini, Lodewijk van Hoesel,
Thiemo Voigt, and Andrea Zanella. Embedded WiSeNts Platform
Survey: Critical Evaluation of Platforms Commonly Used in Em-
beddedWisents Research. Available from the EmbeddedWiSeNts
Project Website (www.embedded-wisents.org), June 2006.

[14] Boulat A. Bash, John W Byers, and Je�rey Considine. Approx-
imately Uniform Random Sampling in Sensor Networks. In Pro-
ceedings of the 1st Workshop on Data Management for Sensor
Networks (DMSN 2004), Toronto, Canada, August 2004.

[15] Boulat A. Bash and Peter J. Desnoyers. Exact Distributed
Voronoi Cell Computation in Sensor Networks. In Proceedings of
the 6th International Conference on Information Processing in

Bibliography 195

Sensor Networks (IPSN 2007), pages 236�243, Cambridge, MA,
USA, April 2007.

[16] Maxim A. Batalin, Mohammad H. Rahimi, Yan Yu, Duo Liu,
Aman Kansal, Gaurav S. Sukhatme, William J. Kaiser, Mark
Hansen, Gregory J. Pottie, Mani Srivastava, and Deborah Estrin.
Call and Response: Experiments in Sampling the Environment.
In Proceedings of the 2nd ACM Conference on Embedded Net-
worked Sensor Systems (SenSys 2004), pages 25�38, Baltimore,
MD, USA, November 2004.

[17] Lorenzo Bergamini, Carlo Crociani, and Andrea Vitaletti. Simu-
lation vs Real Testbeds: A Validation of WSN Simulators. Tech-
nical Report 3, Sapienza Università di Roma, Dipartimento di
Informatica e Sistemistica Antonio Ruberti, Rome, Italy, March
2009.

[18] Birgitta Berglund, Thomas Lindvall, and Dietrich H. Schwela.
Guidelines for Community Noise. World Health organisation
(WHO), 1999. Available online: www.who.int/docstore/peh/

noise/guidelines2.html.

[19] Intel Research Lab Berkeley. Intel Lab Data. http://db.csail.
mit.edu/labdata/labdata.html, 2004.

[20] Jan Beutel, Kay Römer, Matthias Woehrle, and Matthias Ring-
wald. Deployment Techniques for Wireless Sensor Networks. In
Sensor Networks: Where Theory Meets Practice, chapter 6, pages
219�248. Springer, Heidelberg, November 2009.

[21] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Je� Rose, An-
mol Sheth, Brian Shucker, Charles Gruenwald, Adam Torgerson,
and Richard Han. MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms. Mobile
Networks and Applications, 10(4):563�579, August 2005.

[22] Edoardo Biagioni and Kent Bridges. The Application of Re-
mote Sensor Technology to Assist the Recovery of Rare and En-
dangered Species. International Journal of High Performance
Computing Applications, Special Issue on Distributed Sensor Net-
works, 16:315�324, August 2002.

www.who.int/docstore/peh/noise/guidelines2.html
www.who.int/docstore/peh/noise/guidelines2.html
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html

196 Bibliography

[23] Fang Bian, David Kempe, and Ramesh Govindan. Utility-based
Sensor Selection. In Proceedings of the 5th International Confer-
ence on Information Processing in Sensor Networks (IPSN 2006),
Nashville, TN, USA, April 2006.

[24] David A. Bies and Colin H. Hansen. Engineering Noise Con-
trol: Theory and Practice. Spon Press (Taylor &Francis Group),
London and New York, 3rd edition, 2003.

[25] Philipp Bolliger. Redpin - Adaptive, Zero-Con�guration Indoor
Localization through User Collaboration. In Proceedings of the
1st ACM International Workshop on Mobile Entity Localization
and Tracking in GPS-less Environment Computing and Commu-
nication Systems, San Francisco, CA, USA, September 2008.

[26] Athanassios Boulis. Castalia: Revealing Pitfalls in Designing Dis-
tributed Algorithms in WSN. In Proceedings of the 5th Interna-
tional Conference on Embedded Networked Sensor Systems (Sen-
Sys 2007), pages 407�408, Sydney, Australia, November 2007.

[27] Athanassios Boulis, Ansgar Fehnker, Matthias Fruth, and
Annabelle McIver. CaVi � Simulation and Model Checking for-
Wireless Sensor Networks. In Proceedings of the 5th International
Conference on Quantitative Evaluation of Systems (QEST 2008),
pages 37�38, Saint Malo, France, September 2008.

[28] G.E.P. Box and G.M. Jenkins. Time Series Analysis: Forecasting
and Control. Holden-Day Series in Time Series Analysis. Holden-
Day, San Francisco, CA, USA, 1976.

[29] Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-
less Low-cost Outdoor Localization for Very Small Devices. IEEE
Personal Communications, 7(5):28�34, October 2000.

[30] Phil Buonadonna, David Gay, Joseph M. Hellerstein, Wei Hong,
and Samuel Madden. TASK: Sensor Network in a Box. In Pro-
ceedings of the 2nd IEEE European Workshop on Wireless Sen-
sor Networks and Applications (EWSN 2005), Istanbul, Turkey,
February 2005.

[31] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In
Proceedings of the 6th International Conference on Information

Bibliography 197

Processing in Sensor Networks (IPSN 2007), Cambridge, MA,
USA, April 2007.

[32] Hans J. Butterweck. A Wave Theory of Long Adaptive Filters.
IEEE Transactions on Circuits and Systems I: Fundamental The-
ory and Applications, 48(6):739�747, June 2001.

[33] John Byers and Gabriel Nasser. Utility-based Decision-making
in Wireless Sensor Networks. Technical Report CS-TR-2000-014,
Computer Science Department, Boston University, October 2000.

[34] John Byers and Gabriel Nasser. Utility-based Decision-making in
Wireless Sensor Networks. In Proceedings of the 1st ACM Inter-
national Symposium on Mobile Ad Hoc Networking & Computing
(MobiHoc 2000), pages 143�144, 2000.

[35] CALM Network. Blue Book 2006 � Research on Environmental
Noise, April 2006. www.calm-network.com/bluebook/content/
intro.htm.

[36] CALM Network. Research for a Quieter Europe in 2020 � Up-
dated Strategy Paper of the CALM Network, September 2007.
www.calm-network.com/index_stratpap.htm.

[37] Alberto Camilli, Carlos E. Cugnasca, Antonio M. Saraiva, An-
dré R. Hirakawa, and Pedro L. P. Corrêa. From Wireless Sensors
to Field Mapping: Anatomy of an Application for Precision Agri-
culture. Computers and Electronics in Agriculture, 58(1):25�36,
August 2007.

[38] Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane,
Emiliano Miluzzo, and Ronald A. Peterson. People-Centric Urban
Sensing. In Proceedings of the 2nd Annual International Wireless
Internet Conference (WICON 2006), Boston, MA, USA, August
2006.

[39] Qing Cao, Tarek Abdelzaher, Tian He, and John Stankovic. To-
wards Optimal Sleep Scheduling in Sensor Networks for Rare-
Event Detection. In Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks (IPSN
2005), Los Angeles, CA, USA, April 2005.

www.calm-network.com/bluebook/content/intro.htm
www.calm-network.com/bluebook/content/intro.htm
www.calm-network.com/index_stratpap.htm

198 Bibliography

[40] Wook Choi and Sajal K. Das. Coverage-Adaptive Random Sen-
sor Scheduling for Application-Aware Data Gathering in Wire-
less Sensor Networks. Elsevier Computer Communications,
29(17):3467�3482, November 2006.

[41] Cirrus Research Plc. www.cirrusresearch.co.uk.

[42] Robert L. Cook. Stochastic Sampling in Computer Graphics.
ACM Transactions on Graphics (TOG), 5(1):51�72, January
1986.

[43] Crossbow Technology Inc. www.xbow.com.

[44] Abhimanyu Das and David Kempe. Sensor Selection for Min-
imizing Worst-case Prediction Error. In Proceedings of the 7th
International Conference on Information Processing in Sensor
Networks (IPSN 2008), pages 97�108, St. Louis, MO, USA, April
2008.

[45] Jan D. De Gooijer and Rob J. Hyndman. 25 Years of Time Se-
ries Forecasting. Elsevier International Journal of Forecasting,
22(3):443�473, 2006.

[46] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M.
Hellerstein, and Wei Hong. Model-Driven Data Acquisition in
Sensor Networks. In Proceedings of the 30th Very Large Data
Base Conference (VLDB 2004), Toronto, Canada, August 2004.

[47] Jiagen (Jason) Ding, Sing-Yiu Cheung, Chin-Woo Tan, and
Pravin Varaiya. Signal Processing of Sensor Node Data for Ve-
hicle Detection. In Proceedings of the 7th IEEE International
Conference on Intelligent Transportation Systems, Washington
D.C., USA, October 2004.

[48] Min Dong, Lang Tong, and Brian M. Sadler. Impact of Data
Retrieval Pattern on Homogeneous Signal Field Reconstruction
in Dense Networks. IEEE Transactions on Signal Processing,
54(11):4352�4364, November 2006.

[49] R.J. Du�n and A.C. Schae�er. A Class of Nonharmonic Fourier
Series. Transactions of the American Mathematical Society,
72(72):341�366, March 1952.

www.cirrusresearch.co.uk
www.xbow.com

Bibliography 199

[50] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - A
Lightweight and Flexible Operating System for Tiny Networked
Sensors. In Proceedings of the Annual IEEE Conference on Local
Computer Networks (LCN 2004), pages 455�462, Los Alamitos,
CA, USA, November 2004.

[51] Shane B. Eisenman, Emiliano Miluzzo, Nicholas D. Lane,
Ronald A. Peterson, Gahng-Seop Ahn, and Andrew T. Camp-
bell. The BikeNet Mobile Sensing System for Cyclist Experience
Mapping. In Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems (SenSys 2007), pages 87�
101, Sydney, Australia, November 2007.

[52] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish
Kumar. Next Century Challenges: Scalable Coordination in Sen-
sor Networks. In Proceedings of the 5th annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking (Mo-
biCom 1999), pages 263�270, Seattle, WA, USA, August 1999.

[53] European Commission. Green Paper on Future Noise Pol-
icy. http://ec.europa.eu/environment/noise/greenpap.

htm, November 1996.

[54] European Commission Working Group Assessment of Exposure
to Noise (WG-AEN). Good Practice Guide for Strategic Noise
Mapping and the Production of Associated Data on Noise Ex-
posure. Position Paper (Final Draft). http://ec.europa.eu/

environment/noise/pdf/wg_aen.pdf, January 2006.

[55] Extech Instruments Corporation. Digital Sound Level Meter
Model 407740 - User's Guide. www.extech.com/instruments/

resources/manuals/407740_UM.pdf. Version 1.6 08/05.

[56] Hans G. Feichtinger, Karlheinz Gröchenig, and Thomas
Strohmer. E�cient Numerical Methods in Non-Uniform Sam-
pling Theory. Numerische Mathematik, 69(4):423�440, February
1995.

[57] Luca Filipponi, Silvia Santini, and Andrea Vitaletti. Data Col-
lection in Wireless Sensor Networks for Noise Pollution Monitor-
ing. In Proceedings of the 4th IEEE/ACM International Con-
ference on Distributed Computing in Sensor Systems (DCOSS
2008), Santorini Island, Greece, June, 2009.

http://ec.europa.eu/environment/noise/greenpap.htm
http://ec.europa.eu/environment/noise/greenpap.htm
http://ec.europa.eu/environment/noise/pdf/wg_aen.pdf
http://ec.europa.eu/environment/noise/pdf/wg_aen.pdf
www.extech.com/instruments/resources/manuals/407740_UM.pdf
www.extech.com/instruments/resources/manuals/407740_UM.pdf

200 Bibliography

[58] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, Sukun
Kim, Philip Levis, and Alec Woo. TinyOS Enhancement Pro-
posal (TEP) 123: The Collection Tree Protocol (CTP). www.

tinyos.net/tinyos-2.x/doc/pdf/tep123.pdf.

[59] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, and Philip
Levis. TinyOS Enhancement Proposal (TEP) 119: Collection.
www.tinyos.net/tinyos-2.x/doc/pdf/tep119.pdf.

[60] Christian Frank, Philipp Bolliger, Friedemann Mattern, and
Wolfgang Kellerer. The Sensor Internet at Work: Locating Ev-
eryday Items Using Mobile Phones. Pervasive and Mobile Com-
puting, 4(3):421�447, June 2008.

[61] Christian Frank and Kay Römer. Algorithms for Generic Role
Assignment in Wireless Sensor Networks. In Proceedings of the
3rd ACM Conference on Embedded Networked Sensor Systems
(SenSys 2005), San Diego, CA, USA, November 2005.

[62] Deepak Ganesan, Ben Greenstein, Denis Perelyubskiy, Deborah
Estrin, and John Heidemann. An Evaluation of Multi-Resolution
Storage for Sensor Networks. In Proceedings of the 1st Interna-
tional Conference on Embedded Networked Sensor Systems (Sen-
Sys 2003), pages 89�102, Los Angeles, CA, USA, November 2003.

[63] Deepak Ganesan, Sylvia Ratnasamy, Hanbiao Wang, and Debo-
rah Estrin. Coping with Irregular Spatio-Temporal Sampling in
Sensor Networks. ACM SIGCOMM Computer Communication
Review, 34(1):125�130, January 2004. This article has also been
published in the Proceedings of the 2nd Workshop on Hot Top-
ics in Networks (HotNets-II), Cambridge, MA, USA, November
2003.

[64] Everette S. Gardner. Exponential Smoothing: The State of the
Art. Journal of Forecasting, 4:1�38, 1985.

[65] Everette S. Gardner. Exponential Smoothing: The State of the
Art � Part II. International Journal of Forecasting, 22(4):637�
666, October�December 2006.

[66] F. Garwood. The Variance of the Overlap of Geometrical Figures
with Reference to a Bombing Problem. Biometrika, 34(1/2):1�17,
January 1947.

www.tinyos.net/tinyos-2.x/doc/pdf/tep123.pdf
www.tinyos.net/tinyos-2.x/doc/pdf/tep123.pdf
www.tinyos.net/tinyos-2.x/doc/pdf/tep119.pdf

Bibliography 201

[67] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric
Brewer, and David Culler. The nesC Language: A Holistic Ap-
proach to Networked Embedded Systems. SIGPLAN Notice,
38(5):1�11, May 2003. This Article has also been published in
the Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2003), San
Diego, CA, USA, June 2003.

[68] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, and Philip
Levis. CTP: Robust and E�cient Collection through Control and
Data Plane Integration. Technical report, The Stanford Infor-
mation Networks Group (SING), August 2008. http://sing.

stanford.edu/pubs/sing-08-02.pdf.

[69] Samir Goel and Tomasz Imielinski. Prediction-Based Monitor-
ing in Sensor Networks: Taking Lessons from MPEG. ACM
SIGCOMM Computer Communication Review Special Issue on
Wireless Extensions to the Internet, 31(5):82�98, October 2001.

[70] Gene H. Golub and Charles F. Van Loan. Matrix Computations.
Johns Hopkins Studies in Mathematical Sciences. Johns Hopkins
University Press, London / Baltimore, 3rd edition, 1996.

[71] GoodFood European Integrated Project. Sensor Network in a
Vineyard � Food Safety and Quality Monitoring with Microsys-
tems. www3.unifi.it/midra/goodfood/.

[72] Ben Greenstein, Eddie Kohler, and Deborah Estrin. A Sensor
Network Application Construction Kit (SNACK). In Proceed-
ings of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys 2004), Baltimore, MD, USA, November
2004.

[73] Ben Greenstein, Christopher Mar, Alex Pesterev, Shahin
Farshchi, Eddie Kohler, Jack Judy, and Deborah Estrin. Captur-
ing High-Frequency Phenomena Using a Bandwidth-Limited Sen-
sor Networks. In Proceedings of the 4th ACM International Con-
ference on Embedded Networked Sensor Systems (SenSys 2006),
Boulder, CO, USA, November 2006.

[74] Karlheinz Gröchenig. Reconstruction Algorithms in Irregular
Sampling. Mathematics of Computation, 59(199):181�194, July
1992.

http://sing.stanford.edu/pubs/sing-08-02.pdf
http://sing.stanford.edu/pubs/sing-08-02.pdf
www3.unifi.it/midra/goodfood/

202 Bibliography

[75] Karlheinz Gröchenig and Thomas Strohmer. Nonuniform Sam-
pling: Theory and Practice, chapter Numerical and Theoreti-
cal Aspects of Non-Uniform Sampling of Band-Limited Images.
Information Technology: Transmission, Processing and Storage.
Springer, Berlin / Heidelberg, 2001.

[76] Carlos Guestrin, Peter Bodik, Romain Thibaux, Mark Paskin,
and Samuel Madden. Distributed Regression: An E�cient Frame-
work for Modeling Sensor Network Data. In Proceedings of the
3rd International Symposium on Information Processing in Sen-
sor Networks (IPSN 2004), pages 1�10, Berkeley, CA, USA, April
2004.

[77] Piyush Gupta and P.R. Kumar. The Capacity of Wireless Net-
works. IEEE Transactions on Information Theory, 46(2):388�
404, March 2000.

[78] Richard Guy, Ben Greenstein, John Hicks, Rahul Kapur, Nithya
Ramanathan, Tom Schoellhammer, Thanos Stathopoulos, Karen
Weeks, Kevin Chang, Lew Girod, and Deborah Estrin. Experi-
ences with the Extensible Sensing System ESS. Technical Report
01-310-825-3127, UCLA Center for Embedded Network Sensing,
January 2006.

[79] Peter Hall. Introduction to the Theory of Coverage Processes.
Wiley Series in Probability and Mathematical Statistics. John
Wiley & Sons, New York Chichester Brisbane Toronto Singapore,
October 1988.

[80] James D. Hamilton. Time Series Analysis. Princeton University
Press, Princeton, NJ, USA, 1994.

[81] Jarvis Haupt, Waheed U. Bajwa, Michael Rabbat, and Robert
Nowak. Compressed Sensing for Networked Data � A Di�erent
Approach to Decentralized Compression. IEEE Signal Processing
Magazine, 25(2):92�101, March 2008.

[82] Simon Haykin. Adaptive Filter Theory. Prentice Hall Information
And System Sciences Series. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 4th edition, 2004.

[83] Simon Haykin and Bernard Widrow, editors. Least-Mean-Square
Adaptive Filters. Wiley Series on Adaptive and Learning Systems

Bibliography 203

for Signal Processing, Communication and Control. John Willey
& Sons, Inc., New York, 2003.

[84] Wendi R. Heinzelman, Anantha Chandrakasan, and Hari Balakr-
ishnan. An Application-Speci�c Protocol Architecture for Wire-
less Microsensor Networks. IEEE Transactions on Wireless com-
munications, 1(4):660�670, October 2002.

[85] Wendi R. Heinzelman, Joanna Kulik, and Hari Balakrishnan.
Adaptive Protocols for Information Dissemination in Wireless
Sensor Networks. In Proceedings of the 5th annual ACM/IEEE
International Conference on Mobile Computing and Networking
(MobiCom 1999), pages 174�185, Seattle, WA, United States.
August, 1999.

[86] Nicholas J. Higham. Accuracy and Stability of Numerical Algo-
rithms. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, USA, 2nd edition, 2002.

[87] Wassily Hoe�ding. Probability Inequalities for Sums of Bounded
Random Variables. Journal of the American Statistical Associa-
tion, 58(301):13�30, March 1963.

[88] Hans Huber and Fridolin Keller. Personal communication, March
2007.

[89] Jonathan Hui, Philip Levis, and David Moss. TinyOS Enhance-
ment Proposal (TEP) 125: TinyOS 802.15.4 Frames. www.

tinyos.net/tinyos-2.x/doc/html/tep125.

[90] Rob J. Hyndman, Anne B. Koehler, Ralph D. Snyder, and Simone
Grose. A State Space Framework for Automatic Forecasting Us-
ing Exponential Smoothing Methods. International Journal of
Forecasting, 18(3):439�454, September 2002.

[91] International Electrotechnical Commission. Electroacoustics �
Sound Level Meters � Part 1: Speci�cations, May 2002.

[92] International Organization for Standardization (ISO). Acoustics
� Description, Measurement and Assessment of Environmental
Noise � Part 1: Basic Quantities and Assessment Procedures,
August 2003.

www.tinyos.net/tinyos-2.x/doc/html/tep125
www.tinyos.net/tinyos-2.x/doc/html/tep125

204 Bibliography

[93] International Organization for Standardization (ISO). Acoustics
� Description, Measurement and Assessment of Environmental
Noise � Part 2: Determination of Environmental Noise Levels,
March 2007.

[94] Prakash Ishwar, Rohit Puri, S. Sandeep Pradhan, and Kannan
Ramchandran. Distributed Sampling for Dense Sensor Networks:
A �Bit-Conservation Principle�. In Proceedings of the 2nd In-
ternational Workshop on Information Processing in Sensor Net-
works (IPSN 2003), pages 17�31, Palo Alto, CA, USA, April
2003.

[95] Prakash Ishwar, Rohit Puri, S. Sandeep Pradhan, and Kannan
Ramchandran. On Rate-Constrained Distributed Estimation in
Unreliable Sensor Networks. IEEE Journal on Selected Areas in
Communications, 23(4):765�775, April 2005.

[96] Ranjit Iyer and Leonard Kleinrock. QoS Control for Sensor Net-
works. In Proceedings of the IEEE International Conference on
Communications (ICC 2003), Anchorage, AK, USA, May 2003.

[97] Ankur Jain, Edward Y. Chang, and Yuan-Fang Wang. Adaptive
Stream Resource Management Using Kalman Filters. In Pro-
ceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pages 11�22, Paris, France, June 2004.

[98] Siddharth Joshi and Stephen Boyd. Sensor Selection via Con-
vex Optimization. IEEE Transactions on Signal Processing,
57(2):451�462, February 2009.

[99] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi,
Peh Peh, Li-Shiuan, and Daniel Rubenstein. Energy-E�cient
Computing for Wildlife Tracking: Design Tradeo�s and Early Ex-
periences with ZebraNet. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2002), pages 96�107, San Jose,
CA, USA, October 2002.

[100] Joseph M. Kahn, Randy H. Katz, and Kristofer S. J. Pister. Next
Century Challenges: Mobile Networking for �Smart Dust�. In
Proceedings of the 5th annual ACM/IEEE International Confer-
ence on Mobile Computing and Networking (MobiCom 1999),
pages 271�278, Seattle, WA, USA, August 1999.

Bibliography 205

[101] Rudolf E. Kalman. A New Approach to Linear Filtering and Pre-
diction Problems. Transactions of the ASME, Journal of Basic
Engineering, Series D, 82:35�45, 1960.

[102] Eiman Kanjo, Steve Benford, Mark Paxton, Alan Chamber-
lain, Danae Stanton Fraser, Dawn Woodgate, David Crellin, and
Adrain Woolard. MobGeoSen: Facilitating Personal GeoSensor
Data Collection and Visualization using Mobile Phones. Personal
Ubiquitous Computing Journal, 12(8):599�607, November 2008.

[103] Cornelia Kappler and Georg Riegel. A Real-World, Simple Wire-
less Sensor Network for Monitoring Electrical Energy Consump-
tion. In Proceedings of the 1st European Workshop on Wireless
Sensor Networks (EWSN 2004), pages 339�352, Berlin, Germany,
January 2004.

[104] Holger Karl and Andreas Willig. Protocols and Architectures for
Wireless Sensor Networks. John Wiley & Sons Ltd, The Atrium,
Southern Gate, Chichester, West Sussex PO19 8SQ, England,
2005.

[105] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, Englewood Cli�s, NJ, USA, 2nd edition,
March 1988.

[106] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gre-
gory Fenves, Steven Glaser, and Martin Turon. Health Moni-
toring of Civil Infrastructures Using Wireless Sensor Networks.
In Proceedings of the 6th International Conference on Informa-
tion Processing in Sensor Networks (IPSN 2007), pages 254�263,
Cambridge, MA, USA, April 2007.

[107] David Kotz, Calvin Newport, and Chip Elliott. The Mistaken Ax-
ioms of Wireless-Network Research. Technical Report TR 2003-
467, Dartmouth College Computer Science, July 2003.

[108] Philipp Küderli. Adaptive Model Selection Library for TinyOS.
Master's thesis, ETH Zurich, May 2008.

[109] Fabian Kuhn, Thomas Locher, and Roger Wattenhofer. Dis-
tributed Selection: a Missing Piece of Data Aggregation. Com-
munications of the ACM, 51(9):93�99, September 2008.

206 Bibliography

[110] Santosh Kumar, Ten H. Laiand, and József Balogh. On k-
Coverage in a Mostly Sleeping Sensor Network. In Proceedings of
the 10th Annual International Conference on Mobile Computing
and Networking (MobiCom 2004), pages 144�158, Philadelphia,
PA, USA, September 2004.

[111] Santosh Kumar, Ten H. Laiand, and József Balogh. On k-
Coverage in a Mostly Sleeping Sensor Network. Wireless Net-
works, 14(3):277�294, June 2008.

[112] Nicholas D. Lane, Shane B. Eisenman, Mirco Musolesi, Emil-
iano Miluzzo, and Andrew T. Campbell. Urban Sensing Systems:
Opportunistic or Participatory? In Proceedings of the 9th work-
shop on Mobile Computing Systems and Applications (HotMobile
2008), pages 11�16, Napa Valley, CA, USA, February 2008.

[113] Koen Langendoen and Niels Reijers. Distributed Localization in
Wireless Sensor Networks: A Quantitative Comparison. Com-
puter Networks, 43(4):499�518, November 2003.

[114] Iosif Lazaridis and Sharad Mehrotra. Capturing Sensor-
Generated Time Series with Quality Guarantee. In Proceedings
of the 19th International Conference on Data Engineering (ICDE
2003), pages 429�440, Bangalore, India, March 2003.

[115] Yann-Aël Le Borgne and Gianluca Bontempi. Round Robin Cycle
for Predictions in Wireless Sensor Networks. In 2nd International
Conference on Intelligent Sensors, Sensor Networks and Infor-
mation Processing (ISSNIP 2005), pages 253�258, Melbourne,
Australia, December 2005.

[116] Yann-Aël Le Borgne, Silvia Santini, and Gianluca Bontempi.
Adaptive Model Selection for Time Series Prediction in Wireless
Sensor Networks. International Journal for Signal Processing,
Special Issue on Information Processing and Data Management
in Wireless Sensor Networks, 87(12):3010�3020, December 2007.

[117] Didier Le Gall. MPEG: A Video Compression Standard for Multi-
media Applications. Communications of the ACM, Special Issue
on Digital Multimedia Systems, 34(4):46�58, April 1991.

[118] Philip Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk,
Kamin Whitehouse, Alec Woo, David Gay, Jason Hill, Matt

Bibliography 207

Welsh, Eric Brewer, and David Culler. TinyOS: An Operating
System for Sensor Networks. In Ambient Intelligence, chapter 2,
pages 115�148. Springer, Berlin Heidelberg, December 2005.

[119] Philip Levis, Neil Patel, David Culler, and Scott Shenker. A Self-
Regulating Algorithm for Code Maintenance and Propagation in
Wireless Sensor Networks. In Proceedings of the 1st USENIX
Conference on Networked Systems Design and Implementation
(NSDI 2004), pages 15�28, San Francisco, CA, USA, March 2004.

[120] Song Lin, Benjamin Arai, Dimitrios Gunopulos, and Gautam Das.
Region Sampling: Continuous Adaptive Sampling on Sensor Net-
works. In Proceedings of the 24th IEEE International Conference
of Data Engineering (ICDE 2008), pages 794�803, Cancun, Mex-
ico, April 2008.

[121] Alan Mainwaring, David Culler, Joseph Polastre, Robert
Szewczyk, and John Anderson. Wireless Sensor Networks for
Habitat Monitoring. In Proceedings of the 1st ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications
(WSNA 2002), pages 88�97, Atlanta, GA, USA, September 2002.

[122] Spyros Makridakis, Steven C. Wheelwright, and Rob J. Hynd-
man. Forecasting: Methods and Applications. John Wiley &
Sons, Inc., 3rd edition, 1998.

[123] Daniel Marco, Enrique J. Duarte-Melo, Mingyan Liu, and
David L. Neuho�. On the Many-to-One Transport Capacity of
a Dense Wireless Sensor Network and the Compressibility of Its
Data. In Proceedings of the 2nd International Workshop on Infor-
mation Processing in Sensor Networks (IPSN 2003), pages 1�16,
Palo Alto, CA, USA, April 2003.

[124] Oden Maron and Andrew W. Moore. The Racing Algorithm:
Model Selection for Lazy Learners. Arti�cial Intelligence Review,
11(1-5):193�225, February 1997.

[125] Fernando Martincic and Loren Schwiebert. Introduction to Wire-
less Sensor Networking. In Handbook of Sensor Networks: Algo-
rithms and Architectures, chapter 1, pages 1�40. John Willey &
Sons, Inc., Hoboken, NJ, USA, 2005.

208 Bibliography

[126] Farokh Marvasti, editor. Nonuniform Sampling: Theory and
Practice. Information Technology: Transmission, Processing and
Storage. Springer, Berlin / Heidelberg, 2001.

[127] Pina Marziliano and Martin Vetterli. Reconstruction of Irregu-
larly Sampled Discrete-Time Bandlimited Signals with Unknown
Sampling Locations. IEEE Transactions on Signal Processing,
48(12):3462�3471, December 2000.

[128] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and Prashant
Shenoy. Ultra-Low Power Data Storage for Sensor Networks.
In Proceedings of the 5th International Conference on Informa-
tion Processing in Sensor Networks (IPSN 2006), pages 374�381,
Nashville, TN, USA, April 2006.

[129] William M. Merrill, Fredric Newberg, Kathy Sohrabi, William J.
Kaiser, and Gregory J.Rr Pottie. Collaborative Networking Re-
quirements for Unattended Ground Sensor Systems. In Proceed-
ings of the IEEE Aerospace Conference, volume 5, pages 2153�
2165, Big Sky, MT, USA, March 2003.

[130] Emiliano Miluzzo, Nicholas D. Lane, Kristóf Fodor, Ronald Peter-
son, Hong Lu, Mirco Musolesi, Shane B. Eisenman, Xiao Zheng,
and Andrew T. Campbell. Sensing Meets Mobile Social Networks:
the Design, Implementation and Evaluation of the CenceMe Ap-
plication. In Proceedings of the 6th ACM Conference on Em-
bedded Networked Sensor Systems (SenSys 2008), pages 337�350,
Raleigh, NC, USA, November 2008.

[131] Ananya Misra, Georg Essl, and Michael Rohs. Microphone as
Sensor in Mobile Phone Performance. In Proceedings of the 8th
International Conference on New Interfaces for Musical Expres-
sion (NIME 2008), Genova, Italy, June 2008.

[132] Don P. Mitchell. Generating Antialiased Images at Low Sampling
Densities. In Proceedings of the 14th Annual Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH 1987),
pages 65�72, Anaheim, CA, USA, July 1987.

[133] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachan-
dran Ramjee. Nericell: Rich Monitoring of Road and Tra�c
Conditions Using Mobile Smartphones. In Proceedings of the 6th

Bibliography 209

ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys 2008), pages 323�336, Raleigh, NC, USA, November 2008.

[134] Douglas C. Montgomery, Lynwood A. Johnson, and John S. Gar-
diner. Forecasting and Time Series Analysis. McGraw-Hill, New
York, NY, USA, 2nd edition, 1990.

[135] George Moschytz and Markus Hofbauer. Adaptive Filters.
Springer Verlag, Berlin, 2000.

[136] Moteiv Corporation. Accelerating Sensor Networking. www.

moteiv.com (www.sentilla.com).

[137] Moteiv Corporation. Moteiv Hardware Product Transition -
Tmote Sky and Tmote invent documentation. www.sentilla.

com/moteiv-transition.html.

[138] Rohan Murty, Geo�rey Mainland, Ian Rose, Atanu Roy Chowd-
hury, Abhimanyu Gosain, Josh Bers, and Matt Welsh. CitySense:
A Vision for an Urban-scale Wireless Networking Testbed. In Pro-
ceedings of the IEEE International Conference on Technologies
for Homeland Security, Waltham, MA, USA, May 2008.

[139] National Oceanic Atmospheric Administartion's National Data
Buoy Center. Center of Excellence in Marine Technology. Histor-
ical Data Repository: www.ndbc.noaa.gov/historical_data.

shtml.

[140] Alessandro Nordio, Carla-Fabian Chiasserini, and Emanuele
Viterbo. Bandlimited Field Reconstruction for Wireless Sensor
Networks. ArXiv e-prints, July 2007. http://adsabs.harvard.
edu/abs/2007arXiv0707.1954N.

[141] Alessandro Nordio, Carla-Fabiana Chiasserini, and Emanuele
Viterbo. Quality of Field Reconstruction in Sensor Networks. In
Proceedings of the 26th IEEE International Conference on Com-
puter Communications (INFOCOM 2007), pages 2406�2410, An-
chorage , AK , USA, May 2007.

[142] Alessandro Nordio, Carla-Fabiana Chiasserini, and Emanuele
Viterbo. Performance of Linear Reconstruction Techniques With
Noise and Uncertain Sensor Locations. IEEE Transactions on
Signal Processing, 56(8):3535�3547, August 2008.

www.moteiv.com
www.moteiv.com
www.sentilla.com
www.sentilla.com/moteiv-transition.html
www.sentilla.com/moteiv-transition.html
www.ndbc.noaa.gov/historical_data.shtml
www.ndbc.noaa.gov/historical_data.shtml
http://adsabs.harvard.edu/abs/2007arXiv0707.1954N
http://adsabs.harvard.edu/abs/2007arXiv0707.1954N

210 Bibliography

[143] Alessandro Nordio, Carla-Fabiana Chiasserini, and Emanuele
Viterbo. Signal Reconstruction in Multidimensional Sensor
Fields. In International Zurich Seminar on Communications
(IZS 2008), Zurich, Switzerland, March 2008.

[144] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive Filters
for Continuous Queries over Distributed Data Streams. In Pro-
ceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pages 563�574, San Diego, CA, USA, June
2003.

[145] Chris Olston and Jennifer Widom. Best-E�ort Cache Synchro-
nization with Source Cooperation. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of
Data, pages 73�84, Madison, WI, USA, June 2002.

[146] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Sig-
nal Processing. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1989.

[147] Luigi Palopoli, Roberto Passerone, Amy L. Murphy, Gian Pietro
Picco, and Alessandro Giusti. Solving the Wake-up Scattering
Problem Optimally. In Proceedings of the 6th European Confer-
ence on Wireless Sensor Networks (EWSN 2009), pages 166�182,
Cork, Ireland, February 2009.

[148] Sung Park, Andreas Savvides, and Mani B. Srivastava. Sensor-
Sim: a Simulation Framework for Sensor Networks. In Proceed-
ings of the 3rd ACM International Workshop on Modeling, Anal-
ysis and Simulation of Wireless and Mobile Systems (MSWiM
2000), pages 104�111, Boston, MA, USA, August 2000.

[149] Neal Patwari, Joshua N. Ash, Spyros Kyperountas, Alfred O. III
Hero, Randolph L. Moses, and Neiyer S. Correal. Locating the
Nodes: Cooperative Localization in Wireless Sensor Networks.
IEEE Signal Processing Magazine, 22(4):54�69, July 2005.

[150] Mark Perillo and Wendi R. Heinzelman. DAPR: A Protocol for
Wireless Sensor Networks Utilizing an Application-based Rout-
ing Cost. In Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC 2004), pages 1528�1533, At-
lanta, GA, USA, March 2004.

Bibliography 211

[151] Mark Perillo and Wendi R. Heinzelman. An Integrated Approach
to Sensor Role Selection. IEEE Transactions on Mobile Comput-
ing, 8(5):709�720, May 2009.

[152] Mark Perillo, Zeljko Ignjatovic, and Wendi R. Heinzelman. An
Energy Conservation Method for Wireless Sensor Networks Em-
ploying a Blue Noise Spatial Sampling Technique. In Proceedings
of the 3rd International Symposium on Information Processing
in Sensor Networks (IPSN 2004), pages 116�123, Berkeley, CA,
USA, April 2004.

[153] Hai N. Pham, Dimosthenis Pediaditakis, and Athanassios Boulis.
From Simulation to Real Deployments in WSN and Back. In
Proceedings of the IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM 2007),
pages 1�6, Helsinki, Finland, June 2007.

[154] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: En-
abling Ultra-Low Power Wireless Research. In Proceedings of the
4th International Conference on Information Processing in Sen-
sor Networks: Special track on Platform Tools and Design Meth-
ods for Network Embedded Sensors (IPSN/SPOTS 2005), pages
364�369, Los Angeles, CA, USA, April 2005.

[155] S. Sandeep Pradhan, Julius Kusuma, and Kannan Ramchandran.
Distributed Compression in a Dense Microsensor Network. IEEE
Signal Processing Magazine, 19(2):51�60, March 2002.

[156] S. Sandeep Pradhan and Kannan Ramchandran. Distributed
Source Coding Using Syndromes (DISCUS): Design and Con-
struction. In Proceedings of the 1999 Data Compression Con-
ference (DCC 1999), pages 158�167, Snowbird, UT, USA, March
1999.

[157] Mohammad Rahimi, Richard Pon, William J. Kaiser, Gaurav S.
Sukhatme, Deborah Estrin, and Mani Srivastava. Adaptive Sam-
pling for Environmental Robotics. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA
2004), volume 4, pages 3537�3544, New Orleans, LA, USA, April
2004.

212 Bibliography

[158] Michael Rauth and Thomas Strohmer. Smooth Approxima-
tion of Potential Fields from Noisy Scattered Data. Geophysics,
63(1):85�94, January-February 1998.

[159] Kay Römer, Philipp Blum, and Lennart Meier. Time Synchro-
nization and Calibration in Wireless Sensor Networks. In Hand-
book of Sensor Networks: Algorithms and Architectures, Wiley
Series on Parallel and Distributed Computing, chapter 7, pages
199�237. John Wiley & Sons, Inc., 2005.

[160] Kay Römer and Friedemann Mattern. The Design Space of Wire-
less Sensor Networks. IEEE Wireless Communications, 11(6):54�
61, December 2004.

[161] Paolo Santi. Topology Control in Wireless Ad Hoc and Sensor
Networks. ACM Computing Surveys, 37(2):164�194, June 2005.

[162] Silvia Santini. TinyLAB: A Matlab-Based Framework for Inter-
action with Wireless Sensor Networks. In 1st European TinyOS
Technology Exchange (ETTX 2009), Cork, Ireland, February
2009.

[163] Silvia Santini and Ugo Colesanti. Adaptive Random Sensor Se-
lection for Field Reconstruction in Wireless Sensor Networks. In
Proceedings of the 6th International Workshop on Data Manage-
ment for Sensor Networks (DMSN 2009), Lyon, France, August
2009.

[164] Silvia Santini, Benedikt Ostermaier, and Robert Adelmann. On
the Use of Sensor Nodes and Mobile Phones for the Assessment
of Noise Pollution Levels in Urban Environments. In Proceed-
ings of the Sixth International Conference on Networked Sensing
Systems (INSS 2009), Pittsburgh, PA, USA, June 2009.

[165] Silvia Santini, Benedikt Ostermaier, and Andrea Vitaletti. First
Experiences Using Wireless Sensor Networks for Noise Pollution
Monitoring. In Proceedings of the Third ACM Workshop on Real-
World Wireless Sensor Networks (REALWSN 2008), pages 61�
65, Glasgow, United Kingdom, April 2008.

[166] Silvia Santini and Kay Römer. An Adaptive Strategy for Quality-
Based Data Reduction in Wireless Sensor Networks. In Proceed-

Bibliography 213

ings of the 3rd International Conference on Networked Sensing
Systems (INSS 2006), Chicago, IL, USA, June 2006.

[167] Silvia Santini and Andrea Vitaletti. Wireless Sensor Networks for
Environmental Noise Monitoring. 6. GI/ITG KuVS Fachgespräch
�Drahtlose Sensornetze�, Aachen, Germany, July 2007.

[168] Anna Scaglione and Sergio D. Servetto. On the Interdependence
of Routing and Data Compression in Multi-Hop Sensor Networks.
Wireless Networks, 11(1-2):149�160, January 2005.

[169] Otmar Scherzer and Thomas Strohmer. A Multi-Level Algorithm
for the Solution of Moment Problems. Numerical Functional
Analysis and Optimization, 19(3&4):353�375, 1998.

[170] Sergio D. Servetto. Sensing Lena � Massively Distributed Com-
pression of Sensor Images. In Proceedings of the 2003 Interna-
tional Conference on Image Processing (ICIP 2003), pages 613�
616, Barcelona, Spain, September 2003. Special Session on Dis-
tributed Source Coding (Invited Paper).

[171] Claude E. Shannon. Communication in the Presence of Noise.
Proceedings of the Institute of Radio Engineers, 37(1):10�21, Jan-
uary 1949.

[172] Donald Shepard. A Two-Dimensional Interpolation Function for
Irregularly-Spaced Data. In Proceedings of the 23rd ACM Na-
tional Conference/Annual Meeting, pages 517�524, August 1968.

[173] Shock�sh SA. TinyNode 184 Embedded Wireless Network Node
� Fact Sheet, November 2008. www.tinynode.com/uploads/

media/SH-TN184-103_rev1.1.pdf.

[174] Brian Shucker, Je� Rose, Anmol Sheth, James Carlson, Shah
Bhatti, Hui Dai, Jing Deng, and Richard Han. Embedded Op-
erating Systems for Wireless Microsensor Nodes. In Handbook of
Sensor Networks: Algorithms and Architectures, Wiley Series on
Parallel and Distributed Computing, chapter 6. John Willey &
Sons, Inc., 2005.

[175] Adam Silberstein, Rebecca Braynard, and Jun Yang. Constraint
Chaining: On EnergyE�cient Continuous Monitoring in Sen-
sor Networks. In Proceedings of the 22nd ACM SIGMOD In-

www.tinynode.com/uploads/media/SH-TN184-103_rev1.1.pdf
www.tinynode.com/uploads/media/SH-TN184-103_rev1.1.pdf

214 Bibliography

ternational Conference on Management of Data, pages 157�168,
Chicago, IL, USA, June 2006.

[176] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh,
Branislav Kusy, András Nádas, Gábor Pap, János Sallai, and
Ken Frampton. Sensor Network-Based Countersniper System.
In Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys 2004), pages 1�12, Baltimore,
MD, USA, November 2004.

[177] Mani Srivastava, Mark Hansen, Je� Burke, Andrew Parker,
Sasank Reddy, Ganeriwal Saurabh, Mark Allman, Vern Paxson,
and Deborah Estrin. Wireless Urban Sensing Systems. Tech-
nical Report 65, Center for Embedded Networked Sensing Sys-
tems (CENS), University of California Los Angeles (UCLA), April
2006.

[178] Anders Stenman, Fredrik Gustafsson, and Lennart Ljung. Just
in Time Models for Dynamical Systems. In Proceedings of the
35th IEEE Conference on Decision and Control, pages 1115�
1120, Kobe, Japan, 1996.

[179] Ivan Stojmenovic, editor. Handbook of Sensor Networks: Al-
gorithms and Architectures. Wiley Series on Parallel and Dis-
tributed Computing. John Willey & Sons, Inc., Hoboken, NJ,
USA, 2005.

[180] Thomas Strohmer. Computationally Attractive Reconstruction of
Band-Limited Images from Irregular Samples. IEEE Transactions
on Image Processing, 6(4):540�548, April 1997.

[181] Thomas Strohmer. Numerical Analysis of the Non-Uniform Sam-
pling Problem. Journal of Computational and Applied Mathemat-
ics, Special Issue on Numerical Analysis (Vol. II: Interpolation
and Extrapolation), 122(1-2):297�316, October 2000.

[182] Thomas Strohmer, Thomas Binder, and Michael Süssner. How to
Recover Smooth Object Boundaries in Noisy Medical Images. In
Proceedings of the International Conference on Image Processing
(ICIP 1996), pages 331�334, Lausanne, Switzerland, September
1996.

Bibliography 215

[183] Jun-Zhao Sun and Jaakko Sauvola. Cross-Layer Optimization
Framework for Wireless Sensor Networks. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2006), pages 2029�2034, Beijing, China, October
2006.

[184] Norman R. Swanson and Halbert White. A Model Selection Ap-
proach to Real-Time Macroeconomic Forecasting Using Linear
Models and Arti�cial Neural Networks. The Review of Economics
and Statistics, 79(4):540�550, November 1997.

[185] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John An-
derson, and David Culler. An Analysis of a Large Scale Habitat
Monitoring Application. In Proceedings of the 2nd ACM Con-
ference on Embedded Networked Sensor Systems (SenSys 2004),
pages 214�226, Baltimore, MD, USA, November 2004.

[186] Igor Talzi, Andreas Hasler, Stephan Gruber, and Christian
Tschudin. PermaSense: Investigating Permafrost with a WSN
in the Swiss Alps. In Proceedings of the 4th ACM Workshop on
Embedded Networked Sensors (EmNets 2007), pages 8�12, Cork,
Ireland, June 2007.

[187] The European Parlament and the Council. Directive 2002/49/EC
of the European Parliament and of the Council of 25 June 2002
relating to the Assessment and Management of Environmental
Noise. O�cial Journal of the European Communities, July 2002.

[188] Di Tian and Nicolas D. Georganas. A Coverage-Preserving Node
Scheduling Scheme for Large Wireless Sensor Networks. In Pro-
ceedings of the 1st ACM International Workshop on Wireless
Sensor Networks and Applications, pages 32�41, Atlanta, GA,
USA, September 2002.

[189] TinyOS. An Open-Source Operating System for Wireless Em-
bedded Sensor Networks. www.tinyos.net.

[190] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler,
Neil Turner, Kevin Tu, Stephen Burgess, Todd Dawson, Phil
Buonadonna, David Gay, and Wei Hong. A Macroscope in the
Redwoods. In Proceedings of the 3rd International Conference
On Embedded Networked Sensor Systems (SenSys 2005), pages
51�63, San Diego, CA, USA, November 2005.

www.tinyos.net

216 Bibliography

[191] Vlad Trifa, Alexander N. G. Kirschel, Charles E. Taylor, and
Edgar E. Vallejo. Automated Species Recognition of Antbirds in
a Mexican Rainforest using Hidden Markov Models. Journal of
the Acoustical Society of America, 123(4):2424�2431, April 2008.

[192] Simon Tschirner, Liang Xuedong, and Wang Yi. Model-Based
Validation of QoS Properties of Biomedical Sensor Networks. In
Proceedings of the 8th ACM International Conference On Em-
bedded Software, pages 69�78, Atlanta, GA, USA, October 2008.

[193] M. L. Tsetlin. Finite Automata and Modeling the Simplest Forms
of Behavior. PhD thesis, St. Petersburg Department of V.A.
Steklov Mathematical Institute, Russian Academy of Sciences,
1964.

[194] Daniela Tulone and Samuel Madden. PAQ: Time Series Forecast-
ing for Approximate Query Answering in Sensor Networks. In
Third European Workshop on Wireless Sensor Networks (EWSN
2006), pages 21�37, Zurich, Switzerland, February 2006.

[195] Michael Unser. Sampling - 50 Years After Shannon. Proceedings
of the IEEE, 88(4):569�587, April 2000.

[196] Tijs Van Dam and Koen Langendoen. An Adaptive Energy-
E�cient MAC Protocol for Wireless Sensor Networks. In Proceed-
ings of the 1st International Conference on Embedded Networked
Sensing Systems (SenSys 2003), pages 171�180, Los Angeles, CA,
USA, November 2003.

[197] Kristof Van Laerhoven, Albrecht Schmidt, and Hans-Werner
Gellersen. Multi-Sensor Context Aware Clothing. In Proceed-
ings of the 6th International Symposium on Wearable Computers
(ISWC 2002), pages 49�56, Linz, Austria, September 2002.

[198] Mehmet C. Vuran, Özgür B. Akan, and Ian F. Akyildiz. Spatio-
Temporal Correlation: Theory and Applications for Wireless Sen-
sor Networks. Computer Networks, 45(3):245�259, June 2004.

[199] Masaaki Wada, Katsumori Hatanaka, and Masashi Toda. De-
veloping a Water Temperature Observation Network based on a
Ubiquitous Buoy System to Support Aquacultures. Journal of
Communications, 3(5):2�11, October 2008.

Bibliography 217

[200] Peng-Jun Wan and Chih-Wei Yi. Coverage by Randomly De-
ployed Wireless Sensor Networks. IEEE/ACM Transactions on
Networking (TON), Special Issue on Networking and Information
Theory, 14:2658�2669, June 2006.

[201] Geo�rey Werner-Allen, Je� Johnson, Mario Ruiz, Jonathan Lees,
and Matt Welsh. Monitoring Volcanic Eruptions with a Wireless
Sensor Network. In Proceedings of the 2nd European Workshop
on Wireless Sensor Networks (EWSN 2005), pages 108�120, In-
stanbul, Turkey, January 2005.

[202] Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp,
Sukun Kim, Jaein Jeong, Jonathan Hui, Prabal Dutta, and David
Culler. Marionette: Using RPC for Interactive Development and
Debugging of Wireless Embedded Networks. In Processing of the
5th International Conference on Information Processing in Sen-
sor Networks (IPSN/SPOTS 2006), pages 416�423, Nashville,
TN, USA, April 2006.

[203] Rebecca Willett, AlineMartin Martin, and Robert Nowak. Back-
casting: Adaptive Sampling for Sensor Networks. In Proceedings
of the Third International Symposium on Information Processing
in Sensor Networks (IPSN 2004), pages 124�133, Houston, TX,
USA, April 2004.

[204] Rebecca M. Willett and Robert D. Nowak. Platelets: a Mul-
tiscale Approach for Recovering Edges and Surfaces in Photon-
Limited Medical Images. IEEE Transactions on Medical Imaging,
22(3):332�350, March 2003.

[205] Gouliang Xing, Xiaorui Wang, Yuanfang Zhang, Chenyang Lu,
Robert Pless, and Christopher Gill. Integrated Coverage and Con-
nectivity Con�guration for Energy Conservation in Sensor Net-
works. ACM Transactions on Sensor Networks (TOSN), 1(1):36�
72, August 2005.

[206] Zixiang Xiong, Angelos D. Liveris, and Samuel Cheng. Dis-
tributed Source Coding for Sensor Networks. IEEE Signal Pro-
cessing Magazine, 21(5):80�94, September 2004.

[207] Yingqi Xu, Julian Winter, and Wang-Chien Lee. Dual Prediction-
Based Reporting for Object Tracking Sensor Networks. In Pro-

218 Bibliography

ceedings of the 1st International Conference on Mobile and Ubiq-
uitous Systems: Networking and Services (MobiQuitous 2004),
pages 154�163, Boston, MA, USA, August 2004.

[208] Yong Yao and Johannes Gehrke. The Cougar Approach to In-
Network Query Processing in Sensor Networks. SIGMOD Record,
31(3):9�18, September 2002.

[209] Fan Ye, Gary Zhong, Jesse Cheng, Songwu Lu, and Lixia Zhang.
PEAS: A Robust Energy Conserving Protocol for Long-Lived
Sensor Networks. In Proceedings of the 23rd International Con-
ference on Distributed Computing Systems (ICDCS 2003), pages
28�37, Providence, RI, USA, May 2003.

[210] Honghai Zhang and Jennifer C. Hou. On deriving the upper
bound of α-lifetime for large sensor networks. In Proceedings of
the 5th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MobiHoc 2004), pages 121�132, Tokyo,
Japan, May 2004.

[211] Feng Zhao and Leonidas Guibas. Wireless Sensor Networks: An
Information Processing Approach. Morgan Kaufmann, San Fran-
cisco, CA, USA, 2004.

[212] Feng Zhao, Jaewon Shin, and James Reich. Information-Driven
Dynamic Sensor Collaboration for Tracking Applications. IEEE
Signal Processing Magazine, 19(2):61�72, March 2002.

[213] Qing Zhao and Lang Tong. Energy-E�cient Information Re-
trieval for Correlated Source Reconstruction in Sensor Networks.
IEEE Transactions on Wireless Communications, 6(1):157�165,
January 2007.

Bibliography 219

Curriculum Vitae

Silvia Santini

Personal Data
Date of Birth November 15, 1978

Birthplace Rome, Italy
Citizenship Italian

Education
2004-2009 PhD Student at the Department of Computer Science of

the ETH Zurich, Switzerland
May 29, 2004 Master of Science (Laurea) in Telecommunications Engi-

neering (graduation mark: 110/110 cum laude)
2001-2004 Studies of Telecommunications Engineering at the

Sapienza University of Rome, Italy
2000-2001 Exchange Student at the Department of Electrical Engi-

neering of the ETH Zurich, Switzerland
1997-2000 Studies of Telecommunications Engineering at the

Sapienza University of Rome, Italy
July 1997 High School Diploma (Maturità Scienti�ca) with Advanced

Studies in Mathematics, Computer Science and Physics
(graduation mark: 60/60)

1992-1997 Liceo Scienti�co Statale Tullio Levi Civita, High School in
Rome, Italy

1989-1992 Scuola Media Statale Gioacchino Rossini, Secondary
School in Rome, Italy

1984-1989 Scuola Elementare Statale Vittorino Chizzolini, Elemen-
tary School in Rome, Italy

Employment
2004-2009 Teaching and Research Assistant at the Department of

Computer Science of the ETH Zurich, Switzerland
2003 Junior Researcher in the Imaging Systems group at Philips

Research Center, Aachen, Germany
2002-2004 Undergraduate Assistant at the Department of Engineering

of Sapienza University of Rome, Italy
2001 Undergraduate Assistant at the Department of Mechanical

and Process Engineering of the ETH Zurich, Switzerland

	Abstract
	Kurzfassung
	Riassunto
	Introduction
	The Sensor Selection Problem
	Temporal Sensor Selection
	Spatial Sensor Selection
	Summary of Contributions
	Outline

	Background
	Wireless Sensor Networks
	Hardware and Software Platforms
	The Tmote Sky Sensor Node
	The TinyOS Embedded Operating System
	The Matlab and Castalia Simulators

	Definitions, Notation, and Assumptions
	Network and Communication Model
	Region of Interest (RoI)
	Sampling Rates and Sensing Model
	Synchronization and Localization
	Routing

	Temporal Sensor Selection
	The Dual Prediction Scheme (DPS)
	Prediction Models and Parameter Estimation

	Related Work
	An Implementation of the DPS Based on the LMS Adaptive Filter
	Adaptive Filters and the LMS Algorithm
	Implementation of the DPS Using the LMS
	Experimental Results

	Adaptive Model Selection (AMS)
	Performance Estimates
	Racing Mechanism
	AMS Algorithm

	Experimental Evaluation of the AMS
	Experimental Setup
	Performance of the AR-AMS
	Performance of the ES-AMS

	Evaluation of the AMS on a Real WSN Deployment
	Summary

	Spatial Sensor Selection
	Field Reconstruction in WSNs
	Related Work
	Field Reconstruction
	Coverage Preserving Algorithms
	Random Sampling
	Utility-Based Sensor Selection
	Model-Based Sensor Selection
	Computation of Aggregates

	Irregular Sampling in WSNs and the ACT Reconstruction Algorithm
	The Coverage Configuration Protocol and its Use in Field Reconstruction Applications
	Adaptive Sensor Ranking
	Sensor Ranking Based on Local Densities
	Sensor Ranking Using Inverse Distance Weighting
	Inverse Distance Weighting and Random Sampling

	Experimental Results
	Experimental Setup
	1-Dimensional Case
	2-Dimensional Case

	Adaptive Random Sensor Selection (ARS)
	Random Sensor Selection
	Coverage by Randomly Deployed Sensor Nodes
	Determination of the Probability of Activation
	Experimental Results

	Integration of Sensor Selection and Routing
	Summary

	Environmental Noise Monitoring – An Application Scenario
	Motivation and Background
	Related Work
	Application Requirements and Applicability of Sensor Selection
	Computation of Noise Indicators
	Application Requirements
	Applicability of Sensor Selection

	Capturing Noise Levels Using Wireless Sensor Nodes
	The SBT80 Sensor Board
	The Tmote invent
	Tmote Sky and Noise Level Meter

	Capturing Noise Levels Using Mobile Phones
	Experimental Setup
	Experimental Results

	Summary

	Tools and Libraries
	TinyLAB
	Writing TinyLAB Applications

	A TinyOS Library for Adaptive Model Selection

	Conclusions and Outlook
	Contributions
	Limitations and Future Work
	Adaptive Model Selection
	Sensor Ranking

	Concluding Remarks

	Appendices
	The ACT Algorithm
	1-Dimensional Case
	2-Dimensional Case
	Invertibility and Condition Number of the Matrix T
	Estimation of M
	Remarks

	The Collection Tree Protocol (CTP)
	Bibliography
	Curriculum Vitae Silvia Santini

