Efficient Object Identification
with Passive RFID Tags

Harald Vogt

Department of Computer Science
Swiss Federal Institute of Technology (ETH)
8092 Ziirich, Switzerland
vogt @nf.ethz.ch

Abstract. Radio frequency identification systems with passive tags are power-
ful tools for object identification. However, if multiple tags are to be identified
simultaneously, messages from the tags can collide and cancel each other out.
Therefore, multiple read cycles have to be performed in order to achieve a high
recognition rate. For a typical stochastic anti-collision scheme, we show how to
determine the optimal number of read cycles to perform under a given assurance
level determining the acceptable rate of missed tags. This yields an efficient pro-
cedure for object identification. We also present results on the performance of an
implementation.

1 Introduction

Identification is a central concept in user-oriented and ubiquitous computing. Human
users are usually identified (and authenticated) by passwords or biometric data. Most
applications require some kind of identification in order to deliver personalized infor-
mation or restrict access to sensitive data and procedures. Object identification, on the
other hand, is most useful for applications such as asset tracking (e.g. libraries, ani-
mals), automated inventory and stock-keeping, toll collecting, and similar tasks where
physical objects are involved and the gap between the physical and the “virtual” world
must be bridged. In a world of ubiquitous computing, unobtrusive object identification
enables the seamless connection between real-world artifacts and their virtual represen-
tations.

Reliable identification of multiple objects is especially challenging if many objects
are present at the same time. Several technologies are available, but they all have lim-
itations. Bar codes are the most pervasive technology used today, but reading them
requires a line of sight between the reader device and the tag, and often doesn’t work
without human intervention. Other visual recognition techniques that identify shape,
color, or size, may not be able to identify single instances, but only object classes.

Radio frequency identification (RFID) promises to be an unobtrusive, practical,
cheap, yet flexible technology for identification of individual instances. There is a wide
variety of products and technologies available; the book [1] provides a good overview.

Research efforts are under way to develop radio frequency tags that are either small
enough to be embedded even into paper in an unobtrusive way, or cheap enough to

be attached to large quantities of inexpensive goods. The u-chip by Hitachi [14] is an
example of a tiny RFID chip that can be worked into thin materials; sample applications
would be paper-based document management and additional security features for bank
notes. Another research project, at MIT’s Auto-ID Center, aims at developing a very
cheap RFID chip, primarily for enhancing supply chain management processes.

In most applications today, typically a single RFID tag is recognized at a time.
In electronic article surveillance, for example, it is sufficient to recognize only one
unpaid item in order to take appropriate measures. In many other applications, objects
are presented sequentially to the reader device, e.g. on a conveyor belt, thus making it
unnecessary to recognize more than one item at a time. This allows for very fast object
identification.

The ability to recognize many tags simultaneously is crucial for more advanced
applications, however. As examples, consider laundry services, warehouses, or the su-
permarket checkout. We have implemented two applications that use multiple tag iden-
tification. The first one is a monitor for card games where cards put on a table are
identified in order to keep track of the game’s course [10]. The second application is the
“RFID Chef”?, a kitchen assistant that recognizes food items, e.g. in a shopping bag,
and makes suggestions about possible dishes involving these items [6]. It is designed
to also take the abilities of the cook into consideration when the cook identifies himself
with his own RFID tag. Many RFID tags are presented simultaneously to the reader
device in both applications and it is crucial to reliably identify all of them.

We have used a commercially available RFID system, “I-Code” by Philips Semi-
conductors®. This system provides the feature of scanning multiple tags simultaneously
employing a stochastic anti-collision scheme. (There are other products that advertise
multiple tag identification, e.g. TIRIS by Texas Instruments®.) The communications
protocol between the reader and the tags uses a scheme similar to slotted Aloha where
slots are provided for the tags to send their messages. Due to physical constraints, tags
are unaware of each other and thus, collisions may occur when multiple tags use the
same slot for sending. Since tags choose their slots randomly, collisions may be re-
solved in subsequent read iterations, and after a number of iterations, identification data
from all tags can be retrieved.

In this paper we show how to identify a set of tags in such a system if their number
is not known in advance. Multiple read cycles are performed until all tags are identified
with a given level of assurance. The number of present tags is estimated in each step
and the reading parameters are adjusted accordingly. This yields an efficient and reliable
procedure for object identification.

The next section summarizes and discusses features of the 1-Code system. Section
3 reviews the mathematical tools used for the analysis of the system and the design
of the identification procedure. Section 4 presents the results of the analysis, which are
exploited in Section 5 that describes an adaptive technique for multiple tag identification

! http://www.autoidcenter.org/

2 http://www.inf.ethz.ch/vs/res/proj/rfidchef/

% http://www.semiconductors.philips.com/markets/identification/products/icode/
* http://www.ti.com/tiris/

and presents experimental results. The remaining sections deal with related work and
present a summary.

2 The I-Code RFID System

A working configuration of an I-Code system consists of the following parts. A so-
called “reader” unit is attached to the serial interface of a host (usually a PC), and
an antenna is attached to the reader unit by a coaxial cable. The reader unit controls
the power that is transmitted by the antenna and encodes the data exchanged between
the host and the tags. The programming interface of the reader consists of a set of
commands that are described below.

Communication and power transmission between the reader and the tags takes place
by inductive coupling between the coil of the reader and the coils of the tags. The
channel from the reader to the tags is suitable only for broadcasting and normally all
tags within reading range will answer requests from the reader. There are, however,
means to address specific tags by “muting” all others. On the other hand, messages sent
by tags will only reach the reader device; tags are not aware of each other and cannot
exchange messages directly.

The sizes of the coils (of both the reader and the tags) determine the range in which
communication can take place. Mid-range antennas with a diameter of approx. 50 cm,
as used in our experimental settings, can recognize tags within approx. 50 cm range.
The tags we were using were about 5 x 8 cm?, so-called “smart labels” attached to an
adhesive foil. The tags consist of a chip attached to a printed coil antenna.

The full technical documentation of the system is available from the Philips Semi-
conductors Web site. Some aspects are reviewed here since they are important for the
rest of the paper.

2.1 Tag Memory

An I-Code tag provides 64 bytes memory that are addressable in blocks of 4 bytes. All
blocks can be read from, but writing to some blocks is inhibited, indicated by a set of
write protection bits. This prevents changes to the serial number and similar data. The
write protection bits themselves cannot be deactivated after activation.

Of the 64 bytes, 46 are available for application data. The rest is reserved for a 8 byte
serial number and the following functionality: write protection; one bit for indicating
electronic article surveillance; one bit indicating the “quiet” state of the tag. If the latter
bit is set, the tag will not engage in communication with the reader unless a “reset quiet
bit” procedure is executed.

2.2 Programming Interface

The programmatic interface of the system is provided by the reader device. It comprises
commands for setting configuration parameters of the reader device itself, e.g. the speed
of the serial connection, and commands for handling communication with tags that are
in range. Communication commands include the following:

— Anti-collision/select (ACS). This command causes all tags that are in range to send
their serial numbers. Afterwards, these tags become “selected” and keep quiet in
following ACS cycles as long as they are in range. After a tag moves out of the
field it becomes “unselected”. When it comes back again, it re-sends its serial num-
ber. This command can be used to detect tags that are in range, since a list of serial
numbers is returned. It is also a prerequisite for writing to tags, since the write com-
mand affects only selected tags. However, we are not going to use this command
since one ACS cycle takes significantly longer than a Read unselected command.

— Write. This command is used to write data to a number of tags. One data block (4
bytes) can be written to at a time, but multiple tags may be affected. The tags are
selected by the time slot (discussed in the next subsection) they have used while the
ACScommand. This requires that tags don’t move in and out of range while writing
is in progress.

— Read. This command causes only “selected” tags to send their data. It is performed
after an ACS command.

— Read unselected. This is similar to read but all tags are triggered regardless of their
selection status. By specifying the blocks 0 and 1 to be read, this command can be
used to read the serial numbers as well. This is our preferred reading command.

2.3 Framed Slotted Aloha Medium Access

[@D) [@D]
C)@C) @ @ QC)
C)C)QC) C)DC) - O
AR /N /N

5 EEl EHEE N

Fig. 1. Tags are randomly allocated to slots within a frame (above). This results in some slots
remaining empty, and others containing one or more tags (below). The latter case results in a
collision, and no data can be retrieved from these tags

The I-Code system employs a variant of slotted Aloha for access to the shared com-
munication medium, known as framed Aloha [11]. After the reader has sent its request
to the tags, it waits a certain amount of time for their answers. This time frame is divided
into a number of slots that can be occupied by tags and used for sending their answers.
When multiple tags use the same slot, a collision occurs and data gets lost (Fig. 1). The

reader can vary the frame size, e.g. for maximizing throughput; the actual size of a slot
is chosen according to the amount of data requested.
A tag reading cycle consists of two steps:

1. Readeré 21, rnd, N
2. T =, (~N,rnd) Reader: datar | for all tags 7'

In the first step, the reader device broadcasts a request for data. | denotes what data
is requested by specifying an interval of the available 64 bytes of tag memory; rnd €
[0, 31] is arandom value whose use is explained below; N € {1,4, 8, 16, 32,64, 128, 256 }
is the frame size and denotes the number of available slots for responses.

In the second step, tags that are in the proximity of the antenna respond (— 5 denotes
a tag sending in slot s, 0 < s < N). A tag T uses a tag-specific function s to com-
pute its response slot number, using the frame size and the random value as parameters;
the random value is supposed to avoid the same collisions occurring repeatedly. How-
ever, we found that this function is to some degree indeterministic. Generally, collision
patterns will differ even if the same parameters are provided.

For the purpose of analysis, we are not interested in the actual data returned by the
tags. We therefore view the result of a read cycle as a triple of numbers {co, c1, ¢,) that
quantify the empty slots, slots filled with one tag, and slots with collisions, respectively.

We will not take into consideration the capture effect by which a tag’s data may be
able to be recognized by the antenna despite of a collision. The capture effect is quite
common if tags are placed close to each other. This means practically that data, which
would normally be lost due to the occurring collision, can be read, and thus the system
performance rises. However, it seems that whenever such a “weak” collision between
the same two tags occurs, one of them always “wins” and the data from the other one
is lost. Therefore, the influence of the capture effect is only minimal and seems not to
have great impact on the performance.

3 Mathematical Preliminaries

This section reviews some mathematical tools we will use in subsequent sections. The
number of slots in a time frame available for tag messages is called “frame size” and
will be denoted by N. The number of tags is usually denoted by n.

3.1 Occupancy Problems

The allocation of tags to slots within a time frame belongs to a class of problems that are
known as occupancy problems, which are well-studied in the literature [4, 5] and widely
applied [8, 9]. These problems deal with the random allocation of balls to a number of
bins where one is, e.g., interested in the number of filled bins. In the following, we will
speak of “tags” and “slots” instead of “balls” and “bins”.

Given N slots and n tags, the number r of tags in one slot is binomially distributed
with parameters n and +:

(G R

The number r of tags in a particular slot is called the occupancy number of the slot. The
distribution (1) applies to all NV slots, thus the expected value of the number of slots
with occupancy number r is given by a Y>™ (see also [4, p. 114]):

a¥" = NB, 1 (r) = N(Z) (%) (1 - %)n_ :)

Let us denote by p, the random variable that equals the number of slots being
filled with exactly r tags, r = 0,1,2,...,n. The distribution of u, depends on the
probabilities

N mp—1 (n—kr
m :T r G(N_mhn_rmr)
P(ur =m,) =) TTiZo)N”) ©))

where

G(M,m) = M+ g{(_”kﬁ{ (™77 <M—j)}<M—k>m“%} @

The rationale behind these formulas is the following. Imagine a matrix v ;; with n rows
(one for each tag) and IV columns (one for each slot). Each allocation of tags to slots
corresponds to such a matrix where v;; = 1 if tag 4 falls into slot j, and v;; = 0
otherwise; there are N™ such matrices.

The matrices we are interested in represent allocations where there are exactly m .
slots with r tags in each of them. These are the matrices for which the following con-
dition holds. For m, columns, v; = r holds, and for the remaining N — m, columns,
vj # r. There are (TQ’T) ways of arranging these m . columns. Each of the m,. columns
defines a group of indistinguishable rows. The first group can be arranged in (’:) ways,
the second group must be drawn from the remaining columns, etc.

The remaining columns and rows can be arranged in (N —m ,.)™~"™ ways, but we
have to be careful not to count the arrangements that include allocations of exactly r tags
into a slot, i.e. containing columns for which v; = r. Function G computes the number
of arrangements we are looking for. It determines the correct value by the principle
of inclusion-exclusion. The faculty accounts for the arrangements of the columns for
which v; = r. From this, the formulas (3) and (4) follow.

3.2 Tag Reading as a Markov Process

Suppose one starts identifying a fixed set of tags, having recognized none yet. In each
read cycle, one is able to read data from a number of tags (the ones that don’t cancel
each other out due to collisions). The probability distribution of this number is given
by P, defined above. In each step, a certain fraction of the recognized tags is new, i.e.
they haven’t been recognized in previous cycles. The number of new tags depends on
the number of tags already known.

This process of reading tags can be modeled as a (homogeneous) Markov pro-
cess {X;}, where X, denotes the number of known (i.e., already identified) tags in

step ¢. The number of tags known in the next step solely depends on the number of
known tags in the current step. The discrete, finite state space of the Markov process is
{0,1,...,n}. The transition probabilities are given by

0 | ifj <i
Yo Plu =) Zg ifj=i (5)
> Pl =) (?::)((n—r)_;h) ifj >

|~~~

—~

qij =

r=j—1 "

The first case is simple: we cannot go to a state where less tags are known than be-
fore, therefore the probability for such transitions is zero. The second case accounts for
the possibility of recognizing only such tags that are already known, i.e. the recognized
tags in that step are all drawn from the set of already known tags.

In the third case, we recognize exactly j — ¢ tags we do not already know (and
possibly some we already do know). That means, we draw j — 4 tags from the yet
unknown n — i tags (and possibly some from the 4 already known tags).

We will use the matrix Q = (g;;) to compute a lower bound of the number of read-
ing steps necessary to identify all tags with a given probability. The initial distribution
q(0) reflects the fact that in the beginning we are sure that no tags are known, and is
given by

¢(0) = (P(Xo =0),P(Xo=1),...,P(Xo =n)) =(1,0,...,0). (6)

3.3 Parameter Estimation

In order to pick the appropriate frame size N for the (a priori unknown) number of
tags n in the field, we have to estimate n. Based on the the results of read cycles ¢ =
{co,c1,¢x) (denoting the number of empty, filled, and collision slots), and the current
value of N, we will define functions that compute estimations of n:

E:N,c—n..)

The expected error € of an estimation function £ tells us something about the quality of
the estimate. We use the following error function, which sums up the weighted errors
over all possible outcomes of the read cycle:

e=Y |E(N,c)=n|P(p=c). 8)

4 ldentification Performance

For applications like a supermarket checkout or the RFID Chef scenario described in the
introduction, where the number of tags is not known in advance, it is not clear how many
read cycles have to be performed until the tags are identified with sufficient accuracy.
If too many cycles are performed, the delay will be high, inducing cost and worsening
the user’s experience. On the other hand, some tags might be missed if too few cycles

Table 1. Execution time for read unselected. Figures shown are for a 57600 baud connection over
RS-232

Nslots [1 [4 [8 | 16] 32 | 64 [128] 256
tw (ms) [56 | 71 | 90 | 128] 207 364] 6761304

o |4.96]2.19]2.26]3.80[4.794.82]5.05] 4.36
tn/tn—1] — |1.3|13]14]16]18]19] 19

are performed. Therefore, an “optimal” value for the number of cycles should be used,
minimizing the required time while maintaining high accuracy. This value, however,
varies with the frame size IV and the actual number of tags n.

If the frame size is small but the number of tags is large, many collisions will occur
and the fraction of identified tags will degrade. Therefore, one might choose to use large
frames, but then, response time is always high, even if there are only few tags in range.
The choice of large frames also poses a problem in highly dynamic applications where
tags leave the range of the reader quickly after entering it: tags that enter the field after
the initial request has been sent by the reader will not send an answer.

In this section, we show how to compute the parameters (frame size, number of read
cycles) for optimal tag identification w.r.t. to the time required to identify all tags under
a given assurance level. The assurance level is given as a probability of identifying all
present tags.

4.1 Full Tag Set Identification

Due to the stochastic nature of the reading process, we cannot expect to identify all
tags with complete certainty, but we can reach for higher assurance if we are willing to
perform more read cycles and wait for their completion. We define the assurance level
as the probability « of identifying all tags in the field. The desired level of assurance
depends on the requirements of our application. We will give figures mainly for o =
0.99, which allows for one or more tags missing in less than 1 % of all runs. Note that,
the number of tags missed, if any, will be typically very small, thus leading to a high
overall recognition rate.

In order to compute the time required to achieve a given assurance level, we need
to take into consideration the time requirements for single read cycles. Table 1 shows
the cycle time ¢t for all possible settings of IV in the considered RFID system. The
values were obtained by performing read cycles for one minute and computing the
average consumed time. The variation of ¢ is rather low, as the low standard deviation
o shows. Note that ¢, is nearly linear in N as we would expect. Note also that ¢
depends on the connection speed between the reader device and the host.

For a fixed frame size IV, the time T, required to achieve an assurance level « is
given by

To =80-tn 3 (9)

where sq is the minimum number of read cycles required to identify all n tags in the
field with probability «. sg is therefore the minimum value of s for which the following

10000 T T T T T T T
95 ——
99 -
8000 oo
’xxxxaei
xx;eexxxx”
__ 6000)e(m .
g o0
~ /)é)é)(
@ ok
£ ool
4000 Yook R
ool
Pt
')eex){
Xxx*x
2000 | o 1
20
XX
XX
><><><
0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

number of tags

Fig. 2. Time requirement T, (for optimal) for o = 0.95 and o = 0.99

condition holds:
QR°q(0)[n] > o (10)

Note that the resulting vector of the product @ ®q(0) contains the probabilities of iden-
tifying k tags after s read cycles, £ = 0,1,...,n. We choose its nth component and
compare it to a.

We can now compute the optimal frame size N for a given number of tags n under
a desired assurance level. We have performed this computation for & = 0.95 and a =
0.99. Figure 2 shows the resulting time requirements for optimal choices of NV for up to
80 tags. What can be seen is that, the time required increases linearly with the number
of tags, and it takes approximately 3 seconds to identify a full set of 30 tags with high
probability—if the optimal frame size is known, e.g. if n can be estimated correctly.

4.2 Dynamic Slot Allocation

Figure 3 shows optimal frame sizes and the respective numbers of cycles to perform in
order to achieve o = 0.99 for up to 160 tags. From this graph we can obtain the optimal
value for NV for a given number of tags n. (The number of cycles multiplied by ¢ x from
Table 1 yields the graph in Figure 2.) However, in practice it is reasonable to assume
that n is not known and has to be estimated based on observed read results. For a read
result ¢ = {co, c1, ¢,) (and the current setting of V), we give two estimation functions
that yield approximations for n.

The first estimation function is obtained through the observation that a collision
involves at least two different tags. Therefore a lower bound on the value of n can
be obtained by the simple estimation function &, which is defined according to the
template (7) as

Ew(N,co,c1,¢x) = €1 + 2¢ - (11)

256

frame size for acc .99 ——
cycles (right scale) ---»---

cycles

optimal frame size

L L L L
0
80 100 120 140 160
number of tags

Fig. 3. Optimal frame sizes and numbers of read cycles to perform

A different estimation function is obtained as follows. Chebyshev’s inequality tells
us that the outcome of a random experiment involving a random variable X is most
likely somewhere near the expected value of X. Thus, an alternative estimation function
uses the distance between the read result ¢ and the expected value vector to determine
the value of n for which the distance becomes minimal. We denote this estimation
function by &,4; it is defined as

N,n
a%]’ CO
. n
Evi(N,co,c1,¢x) =min||a]"" | — | a1 (12)
n N,n
; C
a>2 R

In order to be able to assess an estimation function, we would like to know the ex-
pected error of the estimate. This error can be computed by applying the error function
given in equation (8). Note that for &£, the error always states an underestimation of
the real value of n, which is not the case for £,4.

Approximations of the error of £;; and £,4, obtained by exhaustive search of the
space of possible read results, are shown in Figure 4. What can be drawn from the
graph is the fact that &;; is more accurate for low values of n, while £,4 is more steady
for a wider range of n.

What is critical about &, is the fact that the error starts to exceed the error of £,4
and becomes quite large just in the range of the transition of N = 32to N = 64
as the optimal frame size. Since &;; always yields an underestimation, this makes the
transition more likely to be missed for values n &~ 30. Thus, for such n, the accuracy
will likely decline.

12

T T T i

e-dist (N=32) —— X
lower bound (N=16) ---»---
lower bound (N=32) ----%----
10 F lower bound (N=64) & /X

weighted error
(2]
T

#
A
£5 ok}
><>2< 3ok ae
K e
o L L L L L

0 10 20 30 40 50 60 70 80
number of tags

Fig. 4. Error of parameter estimation. The weighted error is the variance of the tag number esti-
mate. &, (“lower-bound”) is quite accurate for small n but grows fast with larger n, while &£,4
(“e-dist™) is more steady

5 Adaptive Tag Reading

5.1 Choosing an Optimal Frame Size

Due to the inaccuracy of the estimation functions and the jitter as shown in Figure 3,
we are—to some degree—free to choose the actual frame size for a given estimate.
For example, if n € [17,27], both 32 and 64 are appropriate choices for IV, since both
settings yield similar times. The intervals [low,high] for which a certain choice of N
is applicable are summarized in Table 2. The table lookup can be implemented in a
way that is shown in Fig. 5. This implementation avoids jitter in the result by making
conservative transitions between interval borders.

Table 2. Optimality intervals for frame sizes

N slots[1[4[8[16[32[64]128]256
Jow |- L[t0[L7[51[112
high |-|=|=] 9 27[56]129] o

5.2 Continuous and Static Tag Reading

We can differentiate between two basic scenarios for tag identification. One scenario is
static, i.e. a set of tags enter the field and stay there until all tags are identified (with high

i nt adapt FranmeSi ze(N, n_est) {
while (n_est < low(I(N))) { N=N2; }
while (n_est > high(I(N))) { N=2*N, }

Fig.5. Choosing a frame size

probability). An example is the checkout counter where a shopping bag is put and stays
there until the terminal has identified all items. The other scenario is rather dynamic,
with tags entering and leaving the field continuously.

In the dynamic case, tag reading proceeds without terminating, and the currently
identified tag set is reported continuously. Estimating the number of tags and adapting
the frame size is nevertheless necessary in order to maximize the identification rate.
However, we will concentrate on the static case where the process of tag reading must
come to a halt eventually.

5.3 A Procedure for Static Tag Set Identification

In the static case, the tag reading process is started when the first read result (cq, ¢1, ¢x)
with ¢; + ¢, > 0 is obtained, i.e. at least one tag has entered the field. The process
continues until all tags are identified with assurance level a. Once a good estimate for
the number of tags is known, and therefore the optimal frame size N is given (by Table
2), the number of read cycles to perform in order to achieve a can be computed using
equation (10).

When the process is started, a value for N has to be chosen, but this starting value
will not be optimal in most cases. This also yields a first estimate of n that will be
inaccurate and we can only hope that adapting IV to the estimate will bring us closer to
the true value of n in subsequent read cycles.

Therefore, the first few read cycles will contribute only little information about the
tag set. They will only bring us closer to the optimal frame size. Once we have reached
the optimal IV, we can perform the prescribed number of cycles to achieve the desired
level of accuracy. Of course, this introduces a penalty due to the first read cycles con-
suming time without contributing much.

This idea is captured in the algorithm sketched in Figure 6. The algorithm assumes
that the tag set in the field is static. This allows to adapt the frame size N and the
estimated number of tags n_est such that these values are monotonically increasing.
This not only guarantees termination of the procedure, but also makes the process robust
against too low estimates that might occur due to erroneous read cycles.

The starting value for IV is set to 16, which is the lowest reasonable value according
to Table 2. Note that tags only send their data if they were present in the field at the
beginning of a read cycle. Since it is unlikely that the tags enter the field right at the
start of a new cycle, the time for the first cycle will be wasted. By choosing a low
starting value for IV, we minimize this initial idle time. Another reason for this choice
is that we are adapting IV only by increasing it. Thus, in order to take full advantage of
all possible values for N, we have to start with the lowest value.

identifyStatic() {
N = 16; n_est = 0; stepN = 0;

do {
st epN++;
¢ = perfornReadCycl e(N);
t = estimateTags(N, c);
i

f (t > n_est) {

n_est =t;

NO = adapt FraneSi ze(N, n_est);

if (NO>N {
stepN = 0; // restart with new frane size
N = NO;

}

} while (stepN < maxStep(N, n_est));

Fig. 6. Procedure to adaptively read a static set of tags

The variable st epN holds the counter for the cycles performed with the (currently
estimated) optimal setting for frame size N. When this counter reaches its maximum
value, the procedure terminates. The counter is reset to zero whenever a new estimate
of N is made. Since a new estimate is only accepted if it excels the old one, N will
eventually reach its maximum and the counter st epN will not be reset anymore. The
variable n_est is more volatile than N, but bounded by the actual number n of tags in
the field (assuming we employ the estimation function &;; that always yields a lower
bound of n). Thus, termination is guaranteed.

5.4 Experimental Results

We have implemented the tag reading scheme presented here and executed the proce-
durei denti fyStati c for tag sets of up to 60 tags. The tags were arranged around
the antenna of the reader device in a way that we hoped would optimize field coverage.
During the test, the tags were not moved. For each tag set, we carried out 100 runs of
the identification procedure (without changing the arrangement in between).

The aspired accuracy level of 0.99 (meaning that, out of 100 runs only one run
should miss any tags) could not be reached in all tests—the worst level being with
a set of 34 tags, where only 92 of the 100 runs yielded the full tag set (see Fig. 7).
Not surprisingly, accuracy suffers with increasing tag numbers, due to the fact that it
becomes increasingly difficult to arrange a larger number of tags around the antenna
while maintaining good coverage. As was mentioned above, we expect the accuracy to
drop at around 30 tags due to the increasing error of our estimation function. This would
explain the drop that can be actually observed in Figure 7. Another source of inaccuracy
are objects located around the testbed (walls, chairs, etc.), which could have a negative
influence on the tests. However, the procedure consumed only little time more than

ide'ntifyStatic' —

0.98
0.96

accuracy

0.94
092

0.9 ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80

number of tags

Fig. 7. Accuracy of tag identification in practice. The graph shows the percentage of runs that
yielded the full tag set. Not shown is the overall recognition rate (percentage of identified tags
over 100 runs), which never dropped below 0.99

would be required if the number of tags were known in advance (see Fig. 8). There are
peaks in the zones where the error of the estimate becomes large, which causes good
estimates often to be made only after some time has already been spent on a suboptimal
frame size. Then, the frame size is adapted, and all cycles are re-performed.

Another figure describing the accuracy of our procedure is the fraction of tags rec-
ognized over a large number of runs. In our tests, this figure (not shown graphically)
never dropped below 0.99. This means practically that although we might miss some
tags in a small number of runs, these misses add up to only a small percentage in the
long perspective.

One has to bear in mind that these figures are very sensitive to environmental condi-
tions and the relative positions of the tags to the antenna. We performed our tests in an
office environment where we could carefully arrange the tags and were able to some-
what optimize the conditions under which the tests took place. We expect the accuracy
that can be reached under real-world conditions to be much lower.

6 Related Work

Apart from mundane applications like inventory and cattle tracking, or improving prod-
uct management, tagging is often used for attaching information to real objects and for
building a bridge between them and their virtual counterparts [2, 15]. Such approaches
are based on the assumption that it is often more appropriate to integrate the world of
information into our physical environment instead of moving human beings into virtual
worlds. This can help to facilitate access to information by means of familiar objects
acting as interfaces.

Aloha is a classical communication protocol that is described and analysed in many
introductory textbooks. Framed Aloha was introduced in [11, 12]. The underlying model
in that work differs from ours in the assumption that nodes are able to detect if a message
could be sent successfully and will only re-send it if this was not the case. A procedure
for frame size adaptation is given that depends on the outcome of a read cycle and tries
to maximize throughput. Frame sizes are, however, not constrained to powers of two.
The performance of framed Aloha systems is extensively studied in [16]. The analysis

10000 T T T T T T T

oo

8000 -

RRx0K
FOOHK

6000 -

time (ms)

4000

2000 -

identifyStatic —+—
optlimal (.99)1 e

0 1 1 1 1
0 10 20 30 40 50 60 70 80

number of tags

Fig. 8. Actual run time for tag identification. Within the transition areas from one frame size to the
next (just below 30 and 60 tags), run time significantly increases. This is due to good estimates
arriving late, causing the full number of read cycles to be performed again with a new frame size

takes also into consideration the capture effect, by which a message is received despite
of a collision.

Similar to framed Aloha is slotted Aloha with subchannels (S/V-Aloha), which is
introduced by and studied with regard to “stability” in [13]. (The system is defined to
be stable if the number of blocked users does not exceed a certain point beyond which
throughput decreases.) This work uses a combinatorical system model similar to ours.

Some systems employ deterministic anti-collision schemes, e.g. tree-based proto-
cols [3,7]. Trees are constructed “on the fly” as collisions occur. Each branch corre-
sponds to a partition of the tag set, leafs represent singled-out tags that are identified
without a collision. The approaches differ in how the branch of a tag is determined. In
[7], 1D prefixes determine the partitioning, while in [3], random coin flipping is used.
The latter work also considers trees with arity > 2. Both papers investigate how much
effort is required for full, reliable tag identification. In contrast to stochastic schemes
such as examined in our work, deterministic ones allow for a recognition rate of 100%,
but note that this rate is only achievable under optimal conditions; if tags are allowed to
enter or leave while the protocol is in progress, accuracy may suffer.

7 Conclusions

We have demonstrated how to efficiently identify a set of RFID tags if the number of
tags is not known in advance. We have shown how to determine the parameters for tag
reading in order to achieve optimal running time under a given assurance level. The
practical implementation we did does not achieve that level, which could be attributed
to environmental influences on the experiments. There is also room for improvement of

the frame size adaptation in order to eliminate runtime peaks. It remains challenging,
however, to find a procedure that would take environmental effects into account in order
to adapt to them. We hope that the work done so far helps implementing pervasive
computing environments that employ RFID systems.

References

1.

10.

11.

12.

13.

14.

15.

16.

Klaus Finkenzeller. RFID-Handbuch. Hanser Fachbuch, 1999. Also available in English
as RFID Handbook: Radio-Frequency Identification Fundamentals and Applications, John
Wiley & Sons, 2000.

L. E. Holmquist, J. Redstrom, and P. Ljungstrand. Token-Based Access to Digital Informa-
tion. In Hans-W. Gellersen, editor, Handheld and Ubiquitous Computing, volume 1707 of
LNCS, pages 234-245. Springer-Verlag, 1999.

Don R. Hush and Cliff Wood. Analysis of Tree Algorithms for RFID Arbitration. In IEEE
International Symposium on Information Theory, pages 107-. IEEE, 1998.

Normal Lloyd Johnson and Samuel Kotz. Urn Models and Their Applications. Wiley, 1977.
Valentin F. Kolchin, Boris A. Svast’yanov, and Valdimir P. Christyakov. Random Allocations.
V. H. Winston & Sons, 1978.

Marc Langheinrich, Friedemann Mattern, Kay R6mer, and Harald Vogt. First Steps Towards
an Event-Based Infrastructure for Smart Things. Ubiquitous Computing Workshop (PACT
2000), October 2000.

Ching Law, Kayi Lee, and Kai-Yeung Siu. Efficient Memoryless Protocol for Tag Identifica-
tion. In Proceedings of the 4th International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications, pages 75-84. ACM, August 2000.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

Fred S. Roberts. Applied Combinatorics. Prentice-Hall, 1984.

Kay Rémer. Smart Playing Cards — A Ubiquitous Computing Game. Workshop on Designing
Ubiquitous Computing Games, Ubicomp, 2001.

Frits C. Schoute. Control of ALOHA Signalling in a Mobile Radio Trunking System. In
International Conference on Radio Spectrum Conservation Techniques, pages 38-42. IEE,
1980.

Frits C. Schoute. Dynamic Frame Length ALOHA.. IEEE Transactions on Communications,
COM-31(4):565-568, April 1983.

Wojciech Szpankowski. Packet Switching in Multiple Radio Channels: Analysis and Sta-
bility of a Random Access System. Computer Networks: The International Journal of Dis-
tributed Informatique, 7(1):17-26, February 1983.

K. Takaragi, M. Usami, R. Imura, R. Itsuki, and T. Satoh. An Ultra Small Individual Recog-
nition Security Chip. IEEE Micro, 21(6):43-49, 2001.

Roy Want, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harrison. Bridging Physical and
Virtual Worlds with Electronic Tags. In Proceeding of the CHI 99 Conference on Human
Factors in Computing Systems: the CHI is the Limit, pages 370-377. ACM Press, 1999.
Jeffrey E. Wieselthier, Anthony Ephremides, and Larry A. Michaels. An Exact Analysis and
Performance Evaluation of Framed ALOHA with Capture. IEEE Transactions on Commu-
nications, COM-37, 2:125-137, 1989.

