
Diss. ETH No. 22787

The Web as an Interface

to the Physical World

Real-time Search and

Development Support

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Andreas Benedikt Ostermaier
Diplom-Informatiker, Technische Universität München

born on March 9, 1979
citizen of Germany

accepted on the recommendation of

Prof. Dr. Friedemann Mattern, examiner
Prof. Dr.-Ing. Wolfgang Kellerer, co-examiner

Prof. Dr. Kay Römer, co-examiner

2015

Abstract

Connecting our physical world to the Internet is the ambitious vision
of the Internet of Things. Embedding sensors and actuators into arbi-
trary “things” and connecting them to the Internet enables the location-
independent monitoring, controlling, and programming of the physical
world on an unprecedented scale, often in real time. Beyond connectiv-
ity, the ability of devices to interoperate with other devices and services
will be an important requirement in a future Internet of Things – the
sheer number and heterogeneity of Internet-connected things renders
manual integration infeasible.

Based on the existing architecture of the World Wide Web, the so-
called Web of Things addresses the challenge of interoperability for
Internet-connected things. By leveraging existing Web standards and
infrastructure, one can benefit from the many aspects that have already
been covered in the Web architecture as well as from the plethora of
existing Web services and Web-enabled applications. Exposing physical
entities, in particular their sensors and actuators, on the Web in order to
provide an interface for retrieving and changing the state of such entities
and their environment is a well-known concept. With the increasing
amount of Internet-connected devices and the advent of novel standards
and services, this concept has recently gained momentum but has also
shown the limitations of existing approaches.

This thesis addresses this development by providing the following
contributions to a future Web of Things:

• The development and evaluation of a prototypical real-time search
engine for the physical world that is based on the Web architecture.
In contrast to traditional Web search engines, a search engine for
the physical world has to support searching for structured and
rapidly changing, distributed state in real time. The proposed
solution is based on an open architecture and requires neither a
global view of the world’s state nor a limitation of the search space
while still providing accurate results in real time.

ii Abstract

• A prototypical framework for the Web of Things that simplifies
the connection of sensors and actuators to the Web as well as their
composition to novel services. It provides key primitives identified
during the development of several experimental applications. The
proposed solution does not advocate a central hub but strives to
enhance today’s inherently decentralized Web architecture.

• A concept of connecting everyday objects directly to the Web that
leverages the ubiquity of Wi-Fi access points and the interoper-
ability of the HTTP protocol, utilizing programmable low-power
Wi-Fi modules. Using a loosely coupled approach, the seamless
association of sensors, actuators, and everyday objects with each
other and with the Web is enabled. Experimental results show
that low-power Wi-Fi modules can achieve long battery lifetime
despite using the resource-intensive protocols and data formats of
the Web for communication.

In summary, this thesis demonstrates that leveraging the Web’s ar-
chitecture in order to address interoperability in a future Internet of
Things is a promising concept by covering several aspects of this devel-
opment.

Kurzfassung

Die ambitionierte Vision des Internets der Dinge ist die Verbindung der
physischen mit der virtuellen Welt. Durch die Einbettung von Sensoren
und Aktuatoren in beliebige „Dinge” und deren Verbindung mit dem
Internet wird es möglich, die physische Welt ortsunabhängig, in einem
beispiellosen Ausmass und oftmals in Echtzeit zu beobachten, zu steu-
ern und zu programmieren. Neben der reinen Konnektivität wird die
Interoperabilität von Geräten mit anderen Geräten und Diensten eine
wichtige Anforderung in einem zukünftigen Internet der Dinge werden,
da auf Grund der grossen Anzahl und Heterogenität solcher Geräte eine
manuelle Integration nicht praktikabel ist.

Das sogenannte Web der Dinge nutzt die existierende Architektur
des World Wide Webs, um Interoperabilität für Dinge im Internet zu
ermöglichen. Durch die Verwendung der existierenden Standards und
Infrastruktur des Webs kann sowohl von den zahlreichen der dort be-
reits gelösten Problemen profitiert werden, als auch die grosse Anzahl
der dort vorhanden Dienste und Anwendungen genutzt werden. Die
Repräsentation physischer Objekte im Web, inklusive deren Sensoren
und Aktuatoren, wird seit Längerem praktiziert. Dies ermöglicht das
Auslesen und Verändern der Zustände solcher Objekte und ihrer unmit-
telbaren Umgebungen über eine Web-Schnittstelle. Mit der steigenden
Anzahl von mit dem Internet verbundenen Geräten und dem Aufkom-
men neuer Standards und Dienste hat dieses Konzept in letzter Zeit
an Bedeutung gewonnen, aber auch die Grenzen existierender Ansätze
gezeigt.

Diese Arbeit nimmt sich dieser Entwicklung an, indem sie die folgen-
den Beiträge zu einem zukünftigen Web der Dinge leistet:

• Die Entwicklung und Evaluation einer prototypischen Echtzeit-
suchmaschine für die physische Welt, welche auf der Web-Archi-
tektur beruht. Anders als traditionelle Web-Suchmaschinen muss
eine Suchmaschine für die physische Welt die Suche nach struktu-
rierten und sich schnell ändernden, verteilten Zuständen in Echt-
zeit unterstützen. Die vorgeschlagene Lösung basiert auf einer of-

iv Kurzfassung

fenen Architektur und benötigt weder eine globale Sicht auf den
Zustand der Welt noch eine Begrenzung des Suchraums, um ak-
kurate Ergebnisse in Echtzeit zu liefern.

• Ein prototypisches Framework für das Web der Dinge, welches die
Bereitstellung von Sensoren und Aktuatoren im Web und deren
Zusammensetzung zu neuen Diensten vereinfacht. Es stellt dazu
Grundbausteine zur Verfügung, welche bei der Entwicklung meh-
rerer experimenteller Anwendungen identifiziert wurden. Dieser
Ansatz erfordert keinen zentralen Knotenpunkt, sondern ermög-
licht stattdessen die Erweiterung der heutigen inhärent dezentra-
lisierten Web-Architektur.

• Ein Konzept, um Alltagsgegenstände direkt mit dem Web zu ver-
binden. Dieses basiert auf programmierbaren und energiesparen-
den Wi-Fi-Modulen und macht sich die Allgegenwart von Wi-Fi-
Zugangspunkten und die Interoperabilität des HTTP-Protokolls
zunutze. Durch einen lose gekoppelten Ansatz wird die einfa-
che Verknüpfung von Sensoren, Aktuatoren und Alltagsgegenstän-
den untereinander und mit dem Web ermöglicht. Experimentelle
Ergebnisse zeigen, dass solche batteriebetriebenen Wi-Fi-Module
auch bei der Verwendung der ressourcenintensiven Protokolle und
Datenformate des Webs für die Kommunikation lange Laufzeiten
erreichen können.

Zusammengefasst zeigt diese Arbeit, dass die Verwendung der Web-
Architektur ein vielversprechendes Konzept ist, um Interoperabilität in
einem zukünftigen Internet der Dinge zu erreichen, indem sie wesentli-
che Aspekte dieses Ansatzes aufgreift und weiterentwickelt.

Acknowledgements

First of all, I would like to express my deep gratitude to my doctoral
adviser Friedemann Mattern for the opportunity to pursue my PhD
thesis at his group, for the excellent working conditions, for his long-
standing and strong support, and for his almost unlimited patience. In
the same way, I want to sincerely thank my co-examiner Kay Römer,
who provided invaluable feedback on so many parts of my work, and al-
ways found time for discussions, despite his many obligations. I would
also like to thank my co-examiner Wolfang Kellerer for his longstanding
support.

During my time at the group, I had the pleasure to work with great
and bright colleagues. Many of them also supported this work, by
contributing or by providing support. Of all, I owe Christian Flörke-
meier a debt of gratitude. Without his coaching, this thesis would
probably not exist. I would especially like to thank Christof Roduner,
Matthias Kovatsch, Wilhelm Kleiminger, Silvia Santini, Philipp Bol-
liger, Alexander Bernauer, and Hossein Shafagh for providing support
at important times of this work, and my longstanding roommate Robert
Adelmann for providing such a pleasant working atmosphere. Further-
more, I want to thank Marc Langheinrich, Matthias Ringwald, Iulia
Ion, Gábor Sörös, Christian Beckel, Markus Weiss, Ruedi Arnold, Jonas
Wolf, Dominique Guinard, Vlad Trifa, Simon Mayer and Elke Schaper
for our intense and thoughtful discussions.

I was also fortunate enough to work with many talented students,
who directly or indirectly supported the development of this thesis.
I would like to take the opportunity to thank all of them for their
efforts and for the insightful discussions. Maryam Elahi and Ronny
Meier provided important groundwork for the real-time search engine.
Fabian Schlup provided the initial implementation of the framework for
the Web of Things. Andreas Börnert, Adrian Helfenstein, Moritz Hart-
meier, Robert Weiser, David Degen, Beatrice Meier, Danilo Buloncelli,
Christoph Bäni, Vlatko Davidovski, Yuna Roh and Andreas Keller all
conducted their work in the broader context of this thesis.

vi Kurzfassung

I would also like to thank Denise Spicher, who was very supportive
in the final stages of this thesis.

Last but not least, I would like to express my deepest gratitude to
my family, who always supported me during this long-lasting effort.
To Melanie, who went out of her way to support my work, and to my
parents, who always provided support when needed.

Preface

During the work on this thesis, the concept of an “Internet of Things”
gained significant popularity, driven by the noticeable advancements in
technology.

Cars were brought to market that are wirelessly upgraded by software
to acquire new driving features, smartphones became the dominant
mobile computing platform and replaced an impressive set of single-
purpose devices, and everyday objects such as light bulbs and body
scales were introduced that can easily integrate with remote services to
provide added value. All of these “things” were designed to be contin-
uously connected to the Internet, which in turn continues to grow on
its outskirts.

Internet access at my home is now faster than what my local network
infrastructure can handle. Cell phone networks offer mobile Internet
at high bandwidth, which can be used for outdoor video calls using
ordinary smartphones – a couple of years ago, this was only possible
through the use of an extensive infrastructure. Wi-Fi access points are
now available at almost any building and are not only used to provide
Internet access but also to assist in the localization of mobile devices.

Looking at the big picture, this is a truly impressive development
that continues at significant pace. It seems that the time has come for
a large-scale adoption of the Internet of Things. Significant value can be
added when connecting formerly isolated systems and composing novel
services. However, it is much to be hoped that, analog to the World
Wide Web, a standardized, open, and decentralized Web of Things
emerges that enables interoperability for devices and full participation
for users.

Contents

Acronyms xiii

1 Introduction 1
1.1 The Convergence of the Physical and the Virtual World 4
1.2 Related Fields . 5

1.2.1 Ubiquitous Computing 6
1.2.2 Wireless Sensor Networks 7
1.2.3 Embedded Systems 7
1.2.4 Cyber-physical Systems 8
1.2.5 Machine to Machine (M2M) Communication . . 9
1.2.6 Industry 4.0 . 10
1.2.7 Internet of Things 10
1.2.8 Web of Things 12

1.3 Motivation and Approach 13
1.4 Contributions . 15

1.4.1 Searching the Physical World 15
1.4.2 A Framework for the Web of Things 16
1.4.3 Extending the Web Down to Constrained Wire-

less Devices . 16
1.5 Thesis Outline . 17

2 Searching the Physical World in Real Time 19
2.1 Background . 20

2.1.1 Searching the Web 20
2.1.2 Basic Architecture of Web Search Engines 21
2.1.3 Searching the Physical World 23
2.1.4 Real-Time Search Engine 25
2.1.5 Dynamics of the Search Space 25

2.2 Requirements . 26
2.3 Approach . 28

2.3.1 Sensor Ranking 29
2.3.2 Basic Principle 30

x Contents

2.3.3 System Model 32
2.3.4 Basic Operation 33
2.3.5 Prediction Models 34
2.3.6 Coping with Low-Quality Prediction Models . . . 36

2.4 Data Set used for Evaluations 38
2.4.1 The Bicing Service 38
2.4.2 Data Set . 40
2.4.3 Data Analysis 41

2.5 Evaluation with Matlab 42
2.5.1 Simulation Setup 42
2.5.2 Performance Metric 43
2.5.3 Simulation Results 44

2.6 A Prototypical Real-Time Search Engine for the Web of
Things . 49
2.6.1 Design . 50
2.6.2 Implementation 53
2.6.3 Evaluation . 58
2.6.4 Discussion . 61

2.7 Related Work . 62
2.7.1 Search Engines for the Physical World 62
2.7.2 Real-time Web Search Engines 69
2.7.3 Other . 74

2.8 Summary . 76

3 A Framework for the Web of Things 79
3.1 Background . 80

3.1.1 Sensors, Actuators, and the Web 80
3.1.2 Function-centric vs. Data-centric Access 82
3.1.3 Application Silos 82
3.1.4 Central Hubs . 83

3.2 Problem Statement . 84
3.2.1 Requirements 85
3.2.2 Focus . 87

3.3 Approach . 87
3.3.1 Design Principle 88
3.3.2 Typed Resources 89
3.3.3 Meta-URLs . 93
3.3.4 Versioning of Resources 94
3.3.5 Observation of Resources 94

Contents xi

3.3.6 Representations 97
3.3.7 Expressions . 98
3.3.8 Observing Expressions 102
3.3.9 Including Unmanaged Resources 102
3.3.10 Performing Computations 104

3.4 Implementation . 106
3.4.1 Functions . 106
3.4.2 Resource Factories 107

3.5 Evaluation . 107
3.5.1 Data Syndication and Processing Scenarios . . . 108
3.5.2 Simple Control and Automation Scenarios 116
3.5.3 Discussion . 123

3.6 Related Work . 123
3.7 Summary . 125

4 Extending the Web Down to Constrained Wireless
Devices 127
4.1 Background . 128

4.1.1 Embedded Web Server 128
4.1.2 Battery-powered Wireless Devices 128
4.1.3 Connecting Devices to the Web 129
4.1.4 Towards Unmediated Interoperability 134
4.1.5 Using Web Standards on Battery-powered Wire-

less Devices . 135
4.1.6 Using Ultra-low-power Wi-Fi for Battery-powered

Wireless Devices 136
4.2 Platform Utilized . 138
4.3 Approach . 141

4.3.1 Web Interface 141
4.3.2 Sensing . 142
4.3.3 Actuation . 143
4.3.4 Augmenting Things 143
4.3.5 A Simple Interaction Model 145
4.3.6 Monitoring and Run-time Configuration 147
4.3.7 Bootstrapping and Debugging 147

4.4 Implementation . 150
4.4.1 Software . 150
4.4.2 Hardware . 157

xii Contents

4.5 Evaluation . 158
4.5.1 Power Consumption of Callback Cycles 159
4.5.2 Performance in Semi-Controlled Environments . 162
4.5.3 Performance in the Field 166
4.5.4 UHF Communication Channel 168
4.5.5 Exemplary Applications 172

4.6 Related Work . 175
4.6.1 Application-Specific Gateways 176
4.6.2 Application-Agnostic Gateways 176
4.6.3 Direct Connection to the Web 177
4.6.4 Other Approaches based on IEEE 802.11 177
4.6.5 Comparison with CoAP over IEEE 802.15.4 . . . 178

4.7 Summary . 181

5 Conclusion 183
5.1 Contributions . 184
5.2 Limitations and Future Work 185

Bibliography 188

Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

AES Advanced Encryption Standard

API application programming interface

APM aggregated prediction model

BPWD battery-powered wireless device

BSSID basic service set identification

CoAP Constrained Application Protocol

CPS cyber-physical system

CPU central processing unit

CSS Cascading Style Sheets

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSL digital subscriber line

DTLS Datagram Transport Layer Security

EPC Electronic Product Code

EXI Efficient XML Interchange

GATT Generic Attribute Profile

GENA General Event Notification Architecture

GPS Global Positioning System

GUI graphical user interface

HTML Hypertext Markup Language

xiv Acronyms

HTTP Hypertext Transfer Protocol

HTTPU HTTP over UDP

IC integrated circuit

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IP Internet Protocol

ISM industrial, scientific and medical

JSON JavaScript Object Notation

LAN local area network

LED light-emitting diode

LLRP Low Level Reader Protocol

M2M Machine to Machine

MAC media access control

MEMS microelectromechanical systems

MPPM multi-period prediction model

MTU maximum transmission unit

NAT network address translation

NFC near field communication

NSF National Science Foundation

PIR passive infrared

PSK pre-shared key

RAM random-access memory

RDF Resource Description Framework

REST Representational State Transfer

RFID radio-frequency identification

Acronyms xv

ROM read-only memory

RPC remote procedure call

RSS Rich Site Summary

RSSI received signal strength indication

SIM subscriber identity module

SMS Short Message Service

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SPPM single-period prediction model

SQL Structured Query Language

SSID service set identifier

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UHF ultra high frequency

ULP ultra-low power

UPnP Universal Plug and Play

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

WEP Wired Equivalent Privacy

WLAN wireless local area network

WoT Web of Things

WPA Wi-Fi Protected Access

xvi Acronyms

WPAN wireless personal area network

WPS Wi-Fi Protected Setup

WSN wireless sensor network

WWW World Wide Web

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

1 Introduction

Since their appearance in the middle of the last century, digital com-
puters have gained an impressive distribution, leading to the so-called
“digital revolution”. In their early days, computers were big and ex-
pensive machines that could only be afforded by large organizations.
Their operation required several specialists, and their capabilities were
shared within an organization. At that time, computers were called
“mainframes” and could easily fill a room. With the ability to realize
complex integrated circuits in silicon, microprocessors that integrated
all the functions of a processor on a single chip became available at the
beginning of the 1970s. This resulted in a significant reduction of the
size of a computer, along with its acquisition and operating costs, and
therefore paved the way for computers to move to desktops. “Personal
computers” (PCs) no longer had to be shared with other users and be-
came affordable even for hobbyists. The dissemination of computers
also created the desire to connect them, share resources, and exchange
data. This eventually resulted in the creation of the Internet, which
enabled communication between computers on a global scale. Progress
continued at an astonishing pace, enabling increasingly powerful and
ever-smaller computers. Wireless communication technologies emerged
that allowed computers to become truly mobile, contributing to the im-
mense growth of the Internet. Portable computers became feasible, and
novel device classes, such as smartphones, appeared. Today, our life is
closely intertwined with tiny embedded computers, such as in credit
cards, household appliances, medical devices, vehicles, and industrial
machines. In contrast to the servers deployed in data centers, these
computers operate “close” to the physical world and can automatically
interact with their immediate physical surroundings through sensors
and actuators.

While such tiny computers currently often operate in isolation, there
is an increasing trend to connect even the smallest “things” to the In-
ternet, thus creating an Internet of Things. Given that most processors
sold today are not used for general purpose computing, but are embed-

2 Chapter 1. Introduction

t"

Number"
Size"

Figure 1.1: Miniaturization and proliferation of computers (based on [1])

ded in dedicated applications, this is expected to trigger yet another
fundamental paradigm shift in computing. In 1999, Gershenfeld com-
mented on this then-anticipated development: “in retrospect it looks
like the rapid growth of the World Wide Web may have been just the
trigger charge that is now setting off the real explosion, as things start
to use the Net.” [2]. Technologically, this development is driven by
advancements in IT hardware as well as the proliferation of Internet
access. Since the start of this century, significant progress has been
made in both areas, which paved the way for a large-scale adoption of
an Internet of Things.

Advancements in IT Hardware Arguably the most contributing factor
to this development is Moore’s Law, which suggests that the number
of transistors in integrated circuits (ICs) double every 18 months [3].
This explains the increasing storage capabilities of IC-based memory,
such as RAM and flash memory, and contributes to the significant per-
formance gains achieved by microprocessors. Increasing the number
of transistors on ICs eventually leads to a reduction in their struc-
ture size. This in turn improves energy efficiency, reduces production
costs, and may help to reduce the physical footprint. For sensors,
microelectromechanical systems (MEMS) enable a dramatic improve-
ment over conventional sensors with respect to size, robustness, energy
efficiency, and costs. This enables novel use cases, such as the inclu-
sion of MEMS-based gyroscope sensors in modern smartphones. Some
examples of miniaturized sensors are depicted in Fig. 1.2. Improved

3

Figure 1.2: Some examples of miniaturized sensors: (a) a low-power passive infrared
(PIR) sensor that can be used to detect the presence of people, (b) a
camera sensor, (c) a gyroscope sensor based on a microelectromechan-
ical system (MEMS), and (d) a GPS receiver module with integrated
antenna1

modulation techniques and increased receiver sensitivity significantly
improved wireless communication with respect to data transfer rates
and energy efficiency.

Proliferation of Internet Access A crucial driving force is today’s al-
most ubiquitous availability of broadband Internet access in industrial
nations. While high-bandwidth Internet access in private homes orig-
inally required a coax cable or glass fiber, xDSL enabled broadband
Internet for end users over unshielded copper cables, using the existing
telephony wiring. However, glass fibers are currently being deployed
to buildings that enable even higher transfer rates. Wireless Internet
access over Wi-Fi has become the standard for mobile devices, and
Wi-Fi Internet access points can now be found in almost any building.
The underlying standards of IEEE 802.11 are continuously improved
to enable even higher data transfer rates. Mobile Internet access based
on cell phone networks also found widespread adoption in the recent
decade. Improvements in modulation now allow for theoretical data

1Image sources: (a) Digi-Key (http://media.digikey.com/photos/
PanasonicElectWorksPhotos/AMN41122,AMN11112,AMN21112.jpg), (b) based on image by
LetsGoDigital (http://www.letsgodigital.org/images/artikelen/233/cameracube.jpg),
(c) Sensors Online (http://www.sensorsmag.com/files/sensor/nodes/2010/6533/Figure2.
jpg), (d) OriginGPS (http://www.origingps.com/wp-content/uploads/2014/01/hand.png)

http://www.letsgodigital.org/images/artikelen/233/cameracube.jpg
http://www.sensorsmag.com/files/sensor/nodes/2010/6533/Figure2.jpg
http://www.sensorsmag.com/files/sensor/nodes/2010/6533/Figure2.jpg
http://www.origingps.com/wp-content/uploads/2014/01/hand.png

4 Chapter 1. Introduction

Physical)World) Virtual)World)

“Gap”)

Figure 1.3: Today, the “gap” between the physical and the virtual world is often
bridged by manual intervention.

transfer rates, in 4G mobile networks, that are comparable to xDSL-
based landlines. The increasing availability and bandwidth of Internet
access was followed by a significant reduction in its “costs per bit”,
culminating in free Wi-Fi-based Internet access at public places.

1.1 The Convergence of the Physical and the
Virtual World

Driven by the recent developments in IT hardware and the proliferation
of Internet access, the long-running trend of “connecting” our physical
world to the virtual world has recently gained momentum. On the
one side, there is an increasing number of computers already embed-
ded into our everyday world, which however currently often operate in
isolation. On the other side, there is the virtual world, formed by an
ever increasing number of networked computers in large data centers.
Nevertheless, humans are often required to bridge the “gap” between
these two worlds, such as by entering data regarding some state of the
physical world (Fig. 1.3).

For example, standard electric meters require a manual readout on-
site, often by an appointed person, which is usually performed at inter-
vals of several months or even yearly. This data is currently used only
for billing purposes and provides little feedback to the customer. Due
to delayed and aggregated invoicing, the cause of higher or lower power
consumption may be hard to determine when the bill finally arrives.
Automating this process using so-called “smart meters” that can be read

1.2. Related Fields 5

Physical)World) Virtual)World)

Sensors)

Actuators)

“Gap”)

Figure 1.4: Bridging the “gap” between the physical and the virtual world using
sensors and actuators.

out remotely and automatically at high temporal resolution provides
transparency for the customer, reduces costs for the energy provider,
and also enables novel use cases, such as appliance classification [4].

It is apparent that, in such scenarios, humans are the limiting factor.
They often cannot compete with the speed, costs, and accuracy that
can be provided by an automatic mediation performed by sensors and
actuators (Fig. 1.4). Sensors measure certain parameters of their envi-
ronment and provide readings that can be automatically interpreted by
a computer. Actuators are used to effect a change in the physical world
and can also be controlled by a computer. The global networking of sen-
sors, actuators and computing resources enables location-independent
monitoring, controlling, and programming of the physical world at an
unprecedented scale, often in real time.

1.2 Related Fields

Several research fields and initiatives address the possibilities provided
by low-cost, tiny and networked computers that are integrated into our
everyday world in order to bridge the gap between the physical and the
virtual world. In the following sections, we provide a summary of such
fields and give examples.

6 Chapter 1. Introduction

1.2.1 Ubiquitous Computing

The field of Ubiquitous Computing (UbiComp) is the first and probably
most well-known area of research that addressed the convergence of the
physical and the virtual world. It was established by Marc Weiser at
Xerox Parc at the end of the 1980s. Ubiquitous Computing envisions
the seamless integration of tiny networked computers into our everyday
world, to the point where they become invisible [5]. The focus is on
assisting people with their daily activities by providing smart environ-
ments that are aware of the happenings within. In such scenarios, the
use of computers is often implicit, as they are embedded in everyday
objects. The term “Pervasive Computing” originated a few years later
from an industrial context and denotes the same approach, albeit more
focused on technology.

Early work in the field of ubiquitous and pervasive computing used
infrared communication for connecting devices, because it is a cheap
and low-power technology [6, 5, 7, 8]. The connection to the Web
was often an afterthought and used to generate a dynamic Web page
that displayed the state sensed by the devices. An early example is
the Active Badge system, which consisted of small wearable computers
that could communicate with a dedicated infrastructure using infrared
links. In a paper from 1994, the authors mention that the system
was used to display a person’s current location, which was gathered
using its Active Badge, on its personal communication profile on the
Web [7]. In [9], the authors mention the use of a Web interface to
provide an overview of the state of all of their augmented coffee cups,
called MediaCups. In the same paper, the authors outline how small
computing nodes that feature an RF interface can trigger the execution
of an existing Web service: These devices can be utilized to detect the
occupancy of a meeting room and then used to automatically set the
occupancy state of the room in the booking system, via a Web-based
meeting-room scheduling service.

UbiComp is a diverse field that its related to several research dis-
ciplines, such as human computer interaction, sensor networks, sys-
tems, and context detection and classification (e.g., places, activities,
emotions). Examples include infrastructure-mediated sensing to detect
human activity [10, 11] and the sensing of human emotions [12, 13].

1.2. Related Fields 7

1.2.2 Wireless Sensor Networks

Wireless sensor networks (WSNs) monitor certain phenomena of the
physical world in a geospatial area of interest. Applications include the
monitoring of wildlife, building structures, and climate change. Each
sensor node is equipped with sensing, computation, and communica-
tion capabilities. WSNs may be located far away from researchers in
an area that is difficult to access, such as a glacier. Since the existence
of local infrastructure cannot be assumed in these regions, the sensor
nodes communicate over radio links and create a local ad-hoc network,
a wireless sensor network. In order to be able to cover a geospatial area
that extends beyond the transmission range of a node, sensor readings
are forwarded on behalf of other nodes (multi-hop routing and forward-
ing). WSNs usually operate off the grid and use dedicated low-power
radio interfaces and application-specific protocols for communication.
Data is usually routed to a dedicated sink node, using communica-
tion protocols such as the Collection Tree Protocol (CTP) [14]. The
sink node features additional resources and connects the WSN to the
Internet.

An early example for the application of WSNs is the monitoring of
the Leach’s storm petrel, a seabird, on a small island in the Gulf of
Maine in 2002 [15]. For this, small sensor nodes that included seven
different sensors were placed next to the birds’ nesting environments.
The network was connected through a base station, via satellite, to
the Internet. The project also provided a Web page, which displayed
current sensor readings from selected sensors. The sensor node used in
this project was the Mica mote [16]; other well-known platforms include
the TelosB/Tmote Sky [17, 18] and the BTnode [19]. Since then, sensor
networks have been deployed for various applications, such as volcano
monitoring [20], structural health monitoring [21], or sniper detection
[22].

The proliferation of smartphones in recent years also spawned interest
from the WSN research community to use them as a sensing platform.
Several projects leveraged the built-in sensors of smartphones for sens-
ing, often in an opportunistic and urban context [23, 24, 25, 26].

1.2.3 Embedded Systems

Embedded systems denote computing applications that serve a special
purpose, usually in the control or monitoring domain of the physical

8 Chapter 1. Introduction

world. There, the system is embedded in a domain-specific applica-
tion and can access both sensors and actuators in order to perform its
task. Such applications often require real-time capabilities; i.e., the
system needs to guarantee that it can perform a given task within a
given timeframe. The usage of embedded systems reaches back to the
1960s, where on-board computers were used for guidance and naviga-
tion, first in the Minuteman intercontinental ballistic missiles [27] and
subsequently in NASA’s Gemini and Apollo space programs [28]. Since
then, embedded systems proliferated and became truly pervasive. Ex-
amples of their usage include household appliances, building automa-
tion, traffic lights, cars and airplanes, medical devices, and machines
for industrial production.

Many embedded systems are based on old but well-known processor
architectures, which are sufficient for the given task [29]. Embedded
systems typically communicate mostly locally, if at all. However, the
networking trend has also affected embedded systems in recent years.

1.2.4 Cyber-physical Systems

Cyber-physical systems (CPS) address the tight integration of physical
and computational resources to enable complex monitoring and control
applications for the physical world. For this, distributed and networked
embedded systems that provide both computation capabilities and in-
terfaces to the physical world are utilized, possibly on a large scale
[30, 31]. CPS focus on the engineering aspects of such large distributed
systems, such as real-time constraints, closed-loop control, dependabil-
ity, and correctness. The term “cyber-physical system” is attributed to
Helen Gill, who coined it in 2006 at the National Science Foundation
in the context of a research initiative [32]. However, much of the foun-
dations of CPS were laid down by Stankovic et al. in 2005, despite
lacking the exact term2 [33]. Examples of CPS include the monitoring
and control of a nation-wide power grid, the operation of a self-driving
car, and the optimization of production processes of future factories.
CPS are already deployed, for example, the handling of modern cars
is defined in software to a significant extent. Research topics in the
context of CPS include real-time constraints [34], robustness [35, 36],
modeling aspects [37], and security [38].

2The authors use the term “physical computing systems”.

1.2. Related Fields 9

Figure 1.5: Examples of M2M-related hardware: (a) standard SIM card and minia-
turized M2M SIM card (non-removable but can be remotely provi-
sioned), (b) a selection of M2M modules that simplifies the connection
of machines to a cellular network3.

1.2.5 Machine to Machine (M2M) Communication

The term “M2M” originated from mobile phone operators and stands
for “machine to machine” communication. In contrast to the providers’
original business model, M2M denotes applications in which humans
are out of the loop. A typical application scenario consists of large
numbers of machines in the field that feature a cell phone interface
(such as GSM, GPRS, UMTS, LTE) through which the machines can
communicate with a remote service. This can be used for remote mon-
itoring, mobile payment, and also automation scenarios, for example.
Initially based on SMS or dial-up connections [39], this cellular network-
based communication is now shifting to IP. In that way, there is also
a convergence of the terms M2M and Internet of Things [40, 41]. Just
like with mobile phones, a SIM card is required to authenticate the ma-
chine to the operator’s network. Today, the network coverage of mobile
operators typically remains unrivaled in the field.

An upcoming and potentially large use case for M2M is the Euro-
pean eCall initiative, which makes an automatic emergency call system
mandatory for all cars sold in the European Union as of April 2018
[42]. In case of an accident, the system will automatically transmit
crash-related data to the closest emergency center, thus requiring a cell
phone interface in every eCall-enabled car.

3Image sources: Gemalto (http://m2m.gemalto.com/tl_files/m2m_exp/content/header_
pic/cinterion_m2m_products_and_sevices_round.jpg)

http://m2m.gemalto.com/tl_files/m2m_exp/content/header_pic/cinterion_m2m_products_and_sevices_round.jpg
http://m2m.gemalto.com/tl_files/m2m_exp/content/header_pic/cinterion_m2m_products_and_sevices_round.jpg

10 Chapter 1. Introduction

1.2.6 Industry 4.0

The term “Industry 4.0” refers to advanced manufacturing processes
realized by a smart factory: production machines, workpieces, factory
workers, and cloud services work hand in hand to improve the produc-
tion of goods [43]. The notion refers to the upcoming fourth industrial
revolution (with previous revolutions being driven by mechanics, elec-
tricity, and embedded computers) that is expected to be triggered by
the application of cyber-physical systems/the Internet of Things (see
next section) to manufacturing processes. A crucial aspect is the auto-
matic identification of workpieces, which enables adaptive production
lines. The notion is of German origin (“Industrie 4.0”) and was coined
around 2011. It currently has mostly local prominence, while the un-
derlying concepts are of global interest [44].

Industry 4.0 strives to provide a competitive advantage over existing
manufacturing processes through increased transparency, higher flexi-
bility, and improved efficiency and manufacturing quality. This enables
production methods such as mass customization or the cost-effective
production of small batch sizes down to one-off items [43]. Industry 4.0
is part of a strategic initiative of the German government [45].

1.2.7 Internet of Things

Extending the Internet to the physical world, thereby pushing its bor-
ders up to the smallest everyday objects, is the ambitious vision of the
Internet of Things (IoT) [46].

One of the first notions of the term “Internet of Things” stems from
the context of augmenting consumer goods with RFID labels [47]. In
this approach, physical entities are assigned an identifier that can be
automatically read at well-known locations by a dedicated infrastruc-
ture that is connected to the Internet. In this scenario, all of the added
value is provided by the infrastructure – the thing itself only needs
to be identified, which can by achieved by attaching an RFID tag.
A popular use case for this approach is “track and trace”, where the
whereabouts of physical entities can be determined automatically. Vi-
sual codes, such as barcodes and 2D codes, can also be used to tag
and identify objects. Research includes middleware [48, 49] and the
use of mobile phones as mediators between things and services [50, 51].
The approach of tagging physical objects to form an Internet of Things
was pushed by the Auto-ID Center and is now actively pursued by its

1.2. Related Fields 11

successor organization, the Auto-ID Labs4.
Today, the term “Internet of Things” is used in a broader context.

It also denotes physical entities that are augmented with sensors and
actuators, as well as computation and communication capabilities and
that are connected to the Internet. This approach enables “smart”
things, because they can be aware of their environment and also alter
it to a certain degree. The connection to the Internet can be either
direct or through some gateway, enabling the usage of the devices’ ca-
pabilities without requiring physical proximity. Furthermore, the thing
itself may leverage data and services available on the Internet in order
to provide a certain functionality. This is a different approach in which
much of the added value can be provided by the thing itself. An early
and popular example is the vending machine that served cold beverages
at the department of computer science at Carnegie Mellon University,
which was first connected to the Internet in the 1970s [52]. Using a
simple text-based interface, users could not only check whether bev-
erages were available, but also if they were cold. The motivation for
this interface originated from the desire to avoid unnecessary trips to
the vending machine, which was located far from the computer scien-
tists’ offices. However, because the approach was based on a standard
Internet service5, the machine’s status was easily accessible from any
Internet-connected computer, which therefore gained some popularity.

Significant work to support the IP protocol stack on resource-
constrained systems was performed by Dunkels [54, 55, 56]. This en-
ables direct IP connectivity without the need for a gateway, making
even tiny computers equal participants of the Internet. The address
space of IPv4 [57], the current version of IP, features addresses with a
length of 32 bits, and their availability is currently running out [58].
IPv6 [59], the next version of the Internet protocol, is in the process
of wide-scale adoption. The most important improvement is the large
address space of IPv6 addresses, which consist of 128 bits, making it
possible to assign an IP address to every “thing” on the planet while still
having significant reserve6. Using IPv6 over low-power wireless links,
which are often slow and lossy, is addressed by 6LoWPAN [60, 61].
Today, the IPSO Alliance7 is actively promoting the use of IP for con-
necting smart objects [62].

4http://www.autoidlabs.org
5It used the then-popular Finger service [53].
6There are 340,282,366,920,938,463,463,374,607,431,768,211,456 unique IPv6 addresses.
7http://www.ipso-alliance.org/

http://www.autoidlabs.org
http://www.ipso-alliance.org/

12 Chapter 1. Introduction

Several application protocols currently compete for adoption in the
Internet of Things. Web services based on SOAP [63] or on the “pure”
REST paradigm of HTTP [64, 65] have a head start, since they may
leverage the existing ecosystem of the Web [66, 67, 68]. CoAP [69, 70,
71] is a resource-efficient implementation of the REST paradigm, pro-
viding additional features such as group communication and publish/-
subscribe. It is feasible for resource-constraint networks and devices
[72, 73, 74]. Messaging protocols such as MQTT [75], AQMD [76] and
XMPP [77] have also been considered for use in the Internet of Things
[67, 78, 79].

1.2.8 Web of Things

The Web of Things (WoT) uses the existing concepts, standards, and
infrastructure of the World Wide Web in order to provide an interface
between the physical and the virtual world. This approach can be used
in both directions: On the one hand, things can act as Web clients to
leverage the vast amounts of data, services, and applications available
on the Web in order to provide enhanced functionality. On the other
hand, the Web, with its large user base, can be extended to the phys-
ical world by utilizing existing Web-enabled applications and services
to interact with Web servers that provide access to physical entities.
Such Web servers can either run standalone and act as a gateway or be
embedded in the actual physical objects. Access to such objects is not
limited to Web pages through the use of a Web browser, but also in-
cludes programmatic interaction between things and applications based
on Web services. At its core, the Web of Things addresses interoper-
ability, which can be defined as the “Ability of a system or a product to
work with other systems or products without special effort on the part
of the customer.” according to the IEEE [80].

This approach reaches back to the early days of the Web, where the
state of the physical world was presented on Web pages of a Web server
that acted as a gateway [7]. Running Web servers on embedded and
resource-constrained devices was pursued a few years later [54, 81].
The idea of leveraging the Web architecture for the interaction with
the physical world was pursued in depth by the pioneering Cooltown
project at HP Labs [82, 83, 84] at the beginning of this century. The
usage of the term “Web of Things” emerged later, around 2007 [85].
In recent years, the concept of a Web of Things gained significant mo-

1.3. Motivation and Approach 13

mentum, partly fueled by the increasing number of Web services made
possible by the advent of cloud computing. Such services can be used
in concert with physical entities in order to create novel application
scenarios, so-called physical mash-ups [46, 85, 86]. Web front-ends can
be used to automatically realize dynamic user interfaces that adapt to
their physical surroundings and provide provide control and monitoring
functionality [67, 87]. Adding concepts from the Semantic Web [88] to
the Web of Things in order to support semantic descriptions and rea-
soning is another promising approach that leverages parts of the Web’s
ecosystem [89, 90].

1.3 Motivation and Approach

Since Tim Berners-Lee laid the foundations of the World Wide Web
in 1990 [91], it has become a remarkable success. While originally a
document-centric hypermedia information sharing system, its protocol
HTTP was quickly used for remote communication between machines
as soon as the Web became more widespread [82, 92]. Today, the
Web is the prevailing platform on the Internet to access and distribute
information, as well as to share resources. It has proven to scale to
large numbers of users and, at the same time, support novel application
scenarios.

One reason for the success of the Web can be attributed to its open,
decentralized architecture. Compared to earlier approaches, which were
under the control of a single authoritative domain and utilized propri-
etary protocols and software8, the Web is inherently distributed, both
technically and with respect to authority. This makes participation
simple and also fosters novel use cases.

Another reason for the Web’s success lays in its technical foundations
– at its core, it addresses some of the key problems that developers of
distributed applications face:

• Identification of resources: In order to access remote resources
such as files, the resources need to be identified. The concept
of uniform resource identifiers (URIs) provides a global address
space for identifiers of arbitrary types [93]. Since URIs are human-
readable, they can easily be shared through informal methods9.

8For example, CompuServe.
9For example, written down on a piece of paper.

14 Chapter 1. Introduction

• Access to resources: The HyperText Transfer Protocol (HTTP)
provides a unified mechanism to access remote resources. It offers
several features that ease the interaction with resources, such as
pre-defined methods for creating, updating, reading and deleting
resources, support for caching, access control, content negotiation,
etc. Despite featuring “HyperText” in its name, HTTP is actually
agnostic to the data that it transports.

• Representation and linkage of resources: The Hypertext Markup
Language (HTML) [94, 95] is the foundation for formatting data
that is presented to humans. Hyperlinks are HTTP URIs embed-
ded in HTML that enable users to access linked information by
following them using a Web browser. There are also standard-
ized data description formats for the exchange of data between
applications, such as XML [96] and JSON [97].

The Web was also used early in practice in order to provide access to
current readings of remote sensors, such as webcams and weather sta-
tions. With the increasing amount of Internet-connected devices and
the advent of novel standards and services, this approach has recently
gained momentum. Today, a growing number of physical entities are
accessible on the Web, usually providing an HTML-based interface for
humans as well as an application programming interface (API) to be
used by applications. Examples include body scales, light bulbs, plant
sensors, cars, naval buoys, and building automation systems. In ret-
rospect, one of the researchers of Cooltown motivates the approach as
follows [98]:

“First, since the Web provides a rich and extensible set of
resources in the virtual world, much can potentially be gained
by extending the Web’s architecture and the Web’s existing
resources to the physical world. [...] The second objective
was to achieve the Web’s high degree of interoperability for
interactions with devices. [...]”

However, there is a current trend wherein devices communicate with
central hubs, which act as a gateway to the Web. While the advan-
tage of using such hubs is that all connected devices benefit from the
features they offer (e.g., a GUI for creating application scenarios), the
drawback is that these are centralized platforms that run under a single
authoritative domain. This approach does not fully profit from the Web

1.4. Contributions 15

architecture and also conflicts with the spirit of an open, decentralized
platform. We argue that users should be empowered to participate in a
Web of Things, just as they are in the World Wide Web. In this thesis,
we support this undertaking by providing several contributions.

1.4 Contributions

This thesis provides three main contributions to a future Web of Things,
each addressing a different aspect. Common to all contributions is that
they leverage the existing Web architecture and avoid central hubs to
foster an open and decentralized platform.

1.4.1 Searching the Physical World

Similar to today’s Web, a key service for the Web of Things is ex-
pected to be a search engine that allows users to search for real-world
entities with certain properties. While the traditional Web is domi-
nated by static or slowly changing, unstructured content that is being
manually created by humans, a key feature of the Web of Things is
rapidly changing, structured content that is being automatically pro-
duced by sensors. Thus, a search engine for the Web of Things has to
support searching for structured and rapidly changing content, which
is a key challenge given that existing Web search engines are based on
the assumption that most Web content changes slowly, such that it is
sufficient to update an index at a frequency of days or weeks. This
is clearly insufficient for the Web of Things, where the state of many
real-world entities changes within minutes or even seconds.

The contribution is a prototypical real-time search engine for the
Web of Things that addresses the key challenge of scalable search for
rapidly changing content while leveraging existing Web infrastructure.
Essentially, our search engine supports the search for real-world enti-
ties with a user-specified current state. For example, it could be used
to search for rooms in a large building that are currently occupied,
for bicycle rental stations that have currently bikes available, for cur-
rently quiet places at the waterfront, or for current traffic jams in a
city. Contrary to other approaches, our solution is based on an open
architecture that requires neither a global view of the world’s state nor
a limitation of the search space, while still providing accurate results
in real time. We evaluate our approach using a real-world dataset that

16 Chapter 1. Introduction

features data gathered from a bicycle-sharing system over the course of
several months.

1.4.2 A Framework for the Web of Things

In the Web of Things, sensors and actuators play a central role, be-
cause they constitute the physical interface between the virtual and the
physical world: They enable us to capture and change aspects of the
physical world, possibly in real time. Unfortunately, the current Web
architecture does not address some of the key features that are often
required when interacting with sensors and actuators; in particular:

• The historization of past sensor readings as well as actuator val-
ues. The former is often required as a basis for queries, while the
latter may be required to provide a log of manipulations of the
surroundings.

• The support for notifications based on specified events. This obso-
letes the need for continuous polling of certain resources in order
to detect events and enables real-time reactions that are based
upon the occurrence of such events.

• The support for simple queries, which enables users to analyze
and export data like past sensor readings.

• The ability to compose and run simple application scenarios in a
decentralized way.

We address these issues by suggesting new primitives that can be used
to extend today’s Web architecture. We implemented these primitives
in a prototypical framework and evaluate them using several application
scenarios. The features of the framework could be distributed among
connected devices but also among different cloud computing services.
In contrast to existing solutions, our approach does not rely on a central
hub but recommends the extension of today’s inherently decentralized
Web architecture.

1.4.3 Extending the Web Down to Constrained Wireless
Devices

The usual approach of connecting resource-constrained wireless devices
to the Web is to use an application-level gateway that mediates be-

1.5. Thesis Outline 17

tween the devices and the requests from the Web. This enables de-
vices to save valuable energy by utilizing application-specific protocols
and optimized hardware, such as dedicated low-power radio interfaces.
However, this approach impedes the interoperability and mobility of
devices because the gateway is usually application-specific and uplinks
to the Internet based on the utilized low-power radio technology are
not broadly available.

In contrast, we leverage the ubiquity of Wi-Fi access points and the
interoperability of the HTTP protocol. This approach has become
possible due to the improvements of available hardware. So-called ultra
low-power IEEE 802.11 transceivers claim to achieve an operating time
of years on batteries, for event-based interaction, while working with
the existing Wi-Fi infrastructure.

We evaluate whether it is technologically feasible that the resource-
intensive protocols and data formats used for today’s Web (such as
TCP, HTTP, and JSON) are used to communicate with battery-
powered, wireless, resource-constrained devices. Using a loosely cou-
pled approach, we can enable seamless interaction of sensors, actuators,
and everyday objects with each other and with the Web. Our exper-
imental results show that low-power Wi-Fi modules can achieve long
battery lifetime despite using the verbose Web architecture. We ar-
gue that “connecting” the physical world directly to the Web, thereby
avoiding additional infrastructure such as gateways, reduces complex-
ity, enables mobility, simplifies interoperability, and therefore fosters a
wide and rapid deployment of a Web of Things.

1.5 Thesis Outline

The structure of this thesis is as follows: Our approach of searching the
physical world in real time and using an open, distributed approach that
leverages the existing Web infrastructure is presented in Chapter 2. In
Chapter 3, we introduce our prototypical framework for the Web of
Things. The third contribution of this thesis, a concept and evaluation
of connecting everyday objects to the Web using programmable low-
power Wi-Fi modules, is portrayed in Chapter 4. Finally, this thesis
concludes with Chapter 5, wherein we summarize our contributions,
discuss their limitations, and provide an outlook on possible future
work.

2 Searching the Physical World in

Real Time

Our world is being pervaded with an increasing amount of sensors that
can exhibit their readings on the Web, enabling us to monitor an ever-
growing fraction of the world’s phenomena, independent from physical
proximity and possibly in real time. Traffic congestion data gathered
from mobile phones, data from bicycle and car sharing providers, and
meteorologic data from weather stations are just a few examples of
sensor-acquired data that can be accessed on the Web. We assume
that these developments will eventually lead to a comprehensive real-
time view of the physical world, available through the Web. Making
this emerging part of the Web searchable will therefore enable users to
search the physical world, at a global scale.

Today, using a search engine is the dominant way to find information
on the Web. In a similar way, we assume that the search for physical
entities based on their current state (which is automatically gathered
by sensors) will be a popular use case for a future Web of Things. For
example, users might search for nearby restaurants that are currently
well-attended and quiet. However, the current architecture of Web
search engines does not scale to the expected number of sensors and
the dynamics of sensor data. We assume that the number of connected
sensors will be much higher than the number of people connected to
the Internet, and sensors may update their readings on a much higher
frequency than manually created content is updated.

In this chapter, we present a novel approach for searching in dy-
namic, distributed data in real time, and its application to the Web.
In contrast to existing approaches, our prototypical search engine for
the physical world is based on an open architecture which does neither
require a global view of the world’s state nor a limitation of the search
space, while still providing accurate results in real time. We evaluate
our approach using a real-world data set featuring data from a bicycle
sharing system over the course of several months, both conceptionally
in Matlab as well as using our prototypical implementation of a search

20 Chapter 2. Searching the Physical World in Real Time

Figure 2.1: Physical interfaces of an Apple iPhone 4S that can be used to sense the
environment (product image source: Apple).

engine for the Web of Things called Dyser.
Parts of this chapter have been published in [99, 100, 101, 102, 103].

2.1 Background

In the following sections, we provide some background on aspects of a
real-time search engine for the physical world.

2.1.1 Searching the Web

Today, search engines like Google1 and Bing2 can be considered a vital
part of the Web infrastructure, allowing the user to search for Web
sites, images, news, blog posts and other information on the Web. This
data is often unstructured, such as free text on Web pages. As the Web
is inherently decentralized, users depend on search engines in order to
quickly find relevant documents in the vast amount of publicly available
data.

Current Web search engines use a simple search interface that is
mostly based on keywords in order to find documents on the Web that
contain those keywords. Since the list of results is usually far too long
to be fully considered by a user, results are sorted according to their
expected relevance and presented in descending order to the user. The

1http://www.google.com
2http://www.bing.com

http://www.google.com
http://www.bing.com

2.1. Background 21

Figure 2.2: Search Engine Reference Model (source: [108]).

calculation of relevance is thus a crucial step of a Web search engine.
For example, Google claims to consider over 200 so-called “signals” in
order to determine the relevancy of a Web page [104]. Signals include
terms on Web pages, the age of content, and the PageRank [105]. Web
search engines usually deliver their results in real time (sometimes even
while the query is typed), which is impressive given the large dimen-
sions of the search space.

The global dependency of users on search engines in order to find
information on the Web was demonstrated unexpectedly on August
16th, 2013, when a short downtime of google.com caused a drop of
40% in Web traffic [106].

2.1.2 Basic Architecture of Web Search Engines

The following summary of the basic architecture of a Web Search En-
gine is based on [107, 108, 109]. Note that in practice, the architecture
is much more complex: Additional components are required, and they
need to be distributed and replicated.

The World Wide Web (the “Web”) originally consisted solely of Web
pages distributed among Web servers. Web pages are defined in HTML3

[94, 95] and interlinked using hyperlinks, which are unidirectional point-
ers specified on the source page that refer to a target page. The user
can navigate through the Web (known as surfing the Web) by following
these hyperlinks in a Web browser. Today, the Web is much more than
a collection of documents. For example, it includes applications, APIs,
gateways to other services, and connected devices.

3CSS and JavaScript were introduced a few years after HTML and complement the definition
of a Web page.

22 Chapter 2. Searching the Physical World in Real Time

A Crawler (also called spider, robot, or bot) is an application that
periodically or continuously “visits” Web pages, and downloads a copy
to a local database. As a starting point, a crawler is given a list of
well-connected Web sites to visit. Each time a crawler downloads a
Web page, it extracts its contained hyperlinks and adds them to the
list of pages to visit. Using this approach, a crawler is able to eventually
visit all Web pages that can be found when starting from the initial
set. Note that building a crawler is not a trivial task, as issues like
download rate limitation, scalability, and revisiting strategies have to
be addressed.

The Indexer processes the local copy of the Web that has been gen-
erated by the crawler and creates data structures that can be used
to efficiently resolve search queries. Without this step, the search en-
gine would need to linearly search all documents in order to process a
query, which does not scale with respect to both the number of search
requests and the size of the search space. Data structures generated
usually include an inverted index, which stores for each word extracted
from the set of documents a list of references to all documents that
include it. Each entry in these lists also holds additional information
such as the position of the word in the document, its frequency or the
overall impact factor. The latter is computed based on multiple sig-
nals, i.e. features that can be extracted from the document itself or
from other sources. An example of a signal is the well-known “Page
Rank” of a Web page [107]. The impact factor is used to sort the final
list of results according to their expected relevance to the user.

The Searcher is in charge of processing the search requests. For this,
it receives and parses search requests, resolves the requests using the
index, and finally returns the ranked list of results to the user. Ranking
is performed according to the expected relevance of results for the user.
Due to the size of the search space, ranking is an essential aspect of
a search engine, since the list of results is usually far too large to be
completely inspected by the user.

Search Language Today’s Web Search Engines queries are typically
based on unstructured keywords, and do not rely on sophisticated query
language such as SQL [110]. To search, the user specifies a list of words
separated by spaces for a search request, and the search engine then

2.1. Background 23

returns list of documents that contain all or some of these keywords,
sorted by relevance. For example, the search request for foo bar will
return all pages that both contain the word “for” and “bar”.

In order to refine the search, one can also use search operators, which
are (key, value) pairs denoted as key:value (there are also other oper-
ators, which we will discuss below). Using these search operators, the
search for structured data is supported, to some degree. For example,
Google supports intitle:foo and inurl:bar, which will return only
Web pages that contain the term “foo” in its title and “bar” in its URL,
respectively. One can also restrict the search to certain (sub-)domains
using the “site” operator. For example, site:example.org foo will
only return results from the domain example.org and its subdomains
(e.g., www.example.org).

Search engines usually also support additional operators that follow
a different syntax. For example, prepending a term with a minus sign
will invert its semantic: foo -bar will return only pages that contain
“foo” but not “bar”. foo OR bar will return pages that contain either
“foo” or “bar”, but not both in the same document. Using quotes around
(parts of) a search term requires the given words in the exact order,
e.g. "bar foo" will only return documents that contain the word “bar”
followed by “foo” but not vice versa.

2.1.3 Searching the Physical World

Given the vision of the Web as an interface to the physical world,
we expect that just like for today’s Web, search will be an important
service. However, we assume that searching the physical world will
significantly differ from searching for documents. For example, users
might want to search for nearby italian restaurants that are currently
quiet but also well-attended in order to spontaneously find a nice place
to eat.

More general, we expect that users are interested in searching for
entities of the physical world (e.g., places, objects, creatures) with a
specific current state rather than in sensors with a specific raw read-
ing. So instead of searching for loudness sensors with a current reading
below 30 dB, we expect that users will rather be interested in search-
ing for places which are quiet. The dynamic properties of entities are
automatically gathered by associated sensors or deduced from their
readings.

24 Chapter 2. Searching the Physical World in Real Time

In the example of the search for a restaurant, there are two required
sensors, one that measures the noise level and one that measures the
density of people. Such sensor readings could either be provided by
the restaurant owner or be acquired by leveraging the built-in sensors
of mobile phones carried by visitors of this restaurant. In the latter
case, that could be the microphone and the Bluetooth interface4, for
example. This example also illustrates that, similar as for Web search
engines, the expected users of a search engine for the physical world are
mostly average Internet users which use the service for their everyday
activities, and not domain experts. Additionally, we do not assume
that the outcome of a successful search necessarily implies a physical
interaction between the user and the found entity. Therefore, a geo-
graphic limitation of search queries cannot be required by the search
engine.

The major challenges of a search engine for the physical world can
be summarized as follows:

High Dynamics of Sensor Data. The central challenge in building
a search engine for the physical world is the dynamics of sensor
data. Sensor readings are expected to change at much higher fre-
quencies than Web pages, rendering the usual approach of index-
ing published data useless: This approach does not scale to large
amounts of real-time data, as the the index would be outdated as
soon as it is build, which would result in wrong results.

Large Amount and Diversity of Sensors. We expect that the
number of sensors in a future Web of Things will greatly sur-
pass the number of humans. Even today, there are more devices
connected to the Internet than people [112]. Given the open ar-
chitecture of the Internet, there will be a large heterogeneity of
connected sensors.

Distributed Publishing of Sensor Data. Given the global chal-
lenge of monitoring the physical world, sensors will be inher-
ently distributed: Technically, geographically and administra-
tively. Technically since they will use different underlying systems,
geographically since they will be distributed over many different
places, and administratively since they will be under the control
of different authoritative domains.

4A Bluetooth inquiry detects “visible” Bluetooth devices such as mobile phones, and could be
used to estimate the number of people nearby [111].

2.1. Background 25

No Accepted Standards. There are currently no accepted standards
for publishing sensor data on the Web. Contrary to the first Web
search engines which could rely on the existing Web, a search
engine for the Web of Things faces a chicken-and-egg problem.

2.1.4 Real-Time Search Engine

In this chapter, the term real time is used in the context of perceivable
delay, not in the context of real-time constraints on computing tasks.
It addresses two aspects of delay:

• Real-time computing (also denoted as something is performed in
real time): the result of the operation is returned with impercep-
tible or negligible delay.

• Real-time data: the presented data is up to date. For example,
data based on sensor readings is considered to be real-time when
it reflects the current state of the environment.

The term “real-time search engine” is used to refer to a search engine
which satisfies both of the following requirements:

a) it delivers search results that are based on real-time data

b) it computes search results in real time

Note that traditional search usually engines only fulfill b). There
are also examples of real-time search approaches which only fulfill a)
[113, 114]. When we soften the definition by slightly increasing the
tolerated delays we call this near real time.

2.1.5 Dynamics of the Search Space

The set of elements that can be searched is called the search space.
There are two dimensions of changes in the search space:

• Contentual changes are modifications of the contents of elements,
such as updates to indexed Web pages.

• Structural changes changes are modifications of the “visibility” of
elements. Creating, deleting, copying and moving an element to
a new location (changing its address) are all considered structural
changes.

26 Chapter 2. Searching the Physical World in Real Time

Both types of changes may be highly dynamic. However, for a search
engine for the physical world, we expect contentual changes (that are
based on sensor readings) to be more frequent than structural changes.

2.2 Requirements

We can now state our requirements for a real-time search engine for
thy physical world that is based on a future Web of Things:

Search Results based on Real-Time Data Obviously, a real-time
search engine for the physical world needs to return results which
are based on real-time data, i.e., the results reflect the current state
of the physical world (Sect. 2.1.4). Of course, results also need to
match the search term. While this is trivial for search engines that
rely on data which is mostly static, it may be challenging with real-
time data as the current state might not be known directly or it
may change during the processing of the search request.

Computation in (near) Real Time As defined in Sect. 2.1.4, a real-
time search engine also needs to compute its results in real time
or near real time. Note that there are approaches of “real-time”
search engines that deliver results based on real-time data but may
require a considerable amount of time to do so.

Support for Sensor Data As sensors constitute the interface be-
tween the physical and the virtual world, the search engine needs
to support sensor data. As we assume that a wide variety of
sensors will be available on the Web, the search engine needs to
support sensors of various types. Furthermore, it has to support
the high dynamics of sensor data.

Search for Entities rather than for Sensors We argue that when
users will search the physical world, they will expect the search en-
gine to return entities (i.e., people, places, things) whose dynamic
properties currently match the search query rather than sensors
which currently match the search query. The attributes of an
entity can be updated automatically by sensors attached to or as-
sociated with the entity. For example, we expect that users will
be interested in meeting rooms which are currently empty rather
than in occupancy sensors which currently read “none”.

2.2. Requirements 27

Usability We want to offer the search service to a broad audience,
rather than just domain experts. This implies that we cannot
expect sophisticated knowledge from the users, concerning query
languages or the structure of published sensor data, for example.

Scalability The search engine needs to able to scale to large numbers
of sensors, high update rates and also high query rates. Both
the number of supported sensors and the number of supported
search requests need to scale to numbers which can be compared
to the amount of Web pages today and the number of Web search
requests, respectively.

Open, decentralized System The approach should not require
users to commit themselves exclusively to our search engine.
Providers of sensor data should be able to publish those data in-
dividually, without the the need to stream the sensor readings to
a central sink (as it is done with Twitter, for example). Multi-
ple, competing real-time search engines should be able to utilize
published sensor data, much like it is for Web search engines and
published Web pages today. Note that this decentralized publish-
ing of data implies that our search engine has no global view of
the world.

To summarize, a search engine for the physical world needs to sup-
port the search for dynamic, distributed, structured data in real time:
Sensors automatically acquire data of the physical world at short inter-
vals, so the search engine needs to support the search for dynamic data.
For scalability reasons, one cannot assume that all these sensor read-
ings are streamed to the search engine in real time, hence these data
are distributed and the search engine has no global view of the current
state of the world. In contrast to data published in text documents,
data published by sensors will usually be structured, i.e., following
some schema. Finally, just like for current Web search engines, users
will expect their results in almost real time. However, enabling real-
time search on dynamic data is challenging: The traditional approach
of creating an index of the search space at regular intervals, which is
then used to resolve search requests, does not scale with respect to the
expected number of sensors and their update rate. Also, as argued be-
fore, the search engine has no global view, so it cannot answer a search
request by only performing local operations.

28 Chapter 2. Searching the Physical World in Real Time

2.3 Approach

In this section, we introduce our approach for searching in dynamic,
distributed, structured data in real time. While the approach can be
implemented using the Web architecture, its concepts are independent
from a specific implementation. For this reason, we first present our
approach on a conceptual basis. Its application to the Web, using a
prototypical search engine, is presented later in Sect. 2.6.

The key challenge that needs to be addressed in constructing a search
engine for the Web of Things is the anticipated huge size and extreme
dynamics of the search space. Extrapolating the current trend of instru-
menting objects, places, and even people with sensors several years into
the future, we can expect that the Web of Things may contain orders
of magnitude more sensors than currently existing Web pages. More-
over, the output of these sensors is highly dynamic. In contrast, the
large majority of today’s Web is static in the sense that Web pages are
changed at time intervals orders of magnitude longer than the update
rate of sensors. Thus, traditional indexing approaches are insufficient
as an index would be outdated as soon as it has been constructed.

There are two fundamental approaches to construct a search engine
for the Web of Things. With a push approach, sensor output is proac-
tively pushed to a search engine, such that the search engine can resolve
queries based on that data. With a pull approach, only upon a user
entering a query the search engine sends the query to the sensors to
pull the relevant data.

In the Web of Things we can expect substantially more sensors pro-
ducing readings than users typing queries, and sensors would produce
data at a much higher rate than users can type queries. Hence, the
pull approach can be expected to generate a substantially smaller com-
munication volume between sensors and search engine than the push
approach. More importantly, a push approach might not scale to the
expected dynamics and size of a global Web of Things. Finally, not
having to push sensor readings to a central sink simplifies tasks for
sensor publishers.

For this reasons, we are using a pull approach, which implies that
our search engine has no global view of the current state of the world.
To answer a query, the search engine needs to contact relevant sensors
(i.e., sensors that could possibly read the searched state) at the time
a query is posed, in order to determine whether they currently match

2.3. Approach 29

the query. Entities whose associated sensors do not read the searched
state are excluded from the result set, which is returned to the user as
soon as enough matches have been found. Note that indexing current
sensor readings is not an option, as the index would be outdated as soon
as it was built due to the anticipated frequency of changes in sensor
readings.

Even though this query resolution process can be optimized by con-
tacting multiple sensors in parallel, it is not scalable with respect to
network traffic – given that the number of possible results is signifi-
cantly larger than the number of actual results, many sensors would
be contacted unnecessarily by the search engine when processing a sin-
gle query. However, instead of contacting the sensors in an arbitrary
sequence, we can contact them in an order that reflects the probabil-
ity that they are currently matching the query. We call this approach
sensor ranking and argue that it enables scalability, provided we can
order the list of relevant sensors sufficiently well.

2.3.1 Sensor Ranking

The core concept of our approach is denoted as sensor ranking. It
works as follows: Each sensor publishes its current reading, along with
associated meta-data. Included with this data is a prediction model
which can be used to compute the probability that the sensor will sense
a given value at a given point in time. At regular intervals, the crawler
of our search engine is looking for published sensor data. Whenever
a sensor description is found, its data, including its prediction model,
is stored in a local index. This process is analog to the crawling and
indexing process of traditional Web search engines, except that the
indexed data follows a given format.

Let us now assume that a user is searching for loudness sensors which
currently sense the state quiet. In order to resolve this search request,
the search engine will evaluate the prediction models of all indexed
loudness sensors in order to determine the probability for each sensor
that it is currently reading the state quiet. This list is then sorted
according to the outcomes of the prediction models, starting with the
sensor that is most likely to read the searched state. Beginning with
the top-ranked sensor, the search engine contacts the sensors over the
Internet to determine their current readings. Sensors that currently
sense the searched state (i.e., quiet) are kept in the list, sensors that

30 Chapter 2. Searching the Physical World in Real Time

do not are removed. This process continues until a sufficient number of
results is found. The list of results is then returned to the user. Pro-
vided that the prediction models map reality sufficiently well, it should
be possible to significantly reduce the number of sensors contacted per
query.

The main assumption in this approach is that there are enough sen-
sors which offer a sufficient level of predictability. While this may not
be the case for arbitrary sensors, many phenomena in the physical world
feature periodic characteristics, especially those related to people. For
example, in a person’s life, daily, weekly and yearly cycles can usually
be identified. Research has shown promising results regarding the pre-
dictability of human behavior [115, 116]. For this reason, we focus on
sensors related to human behaviors.

2.3.2 Basic Principle

Based on the concept of sensor ranking, the search for entities by their
current state can be realized as follows: Each entity publishes a textual
description and at least one association with at a sensor. Each sensor
publishes its current reading, along with associated meta-data and a
prediction model. The state of an entity is defined as the combined
outcome of the readings of its associated sensors. Note that there is
a many-to-many relationship between sensors and entities. Entities
can use multiple sensors, and a single sensor may be used by multiple
entities.

At indexing time, our search engine indexes data published by sen-
sors and entities, including their relationships. This data, consisting
of both unstructured data such as free text and structured data such
as the prediction models is then stored in a local index. Note that all
indexed data is assumed to change at much longer intervals than sensor
readings, which are not indexed. For this reason, and given the fact
that indexing a large data set is an expensive operation, re-indexing
needs to be performed only at intervals that approximate the expected
change rate of such slowly-changing data.

At query time, our search engine receives a search request by the user,
which consists of at least a searched state and possibly some keywords.
The searched state in turn consists of tuples of (sensor type, required
state). For example, “room IFW occupancy:empty” might denote en-
tities that feature the keywords “room” and “IFW” and an occupancy

2.3. Approach 31

sensor that states that this entity is currently “empty”. In order to pro-
cess a search request for a given number of results, the search engine
performs the following steps:

1. All entities that do not match the given keywords or sensor types
are filtered out. The remaining entities are ranked according to
their expected relevance to the user. The process starts with the
first x entities.

2. For the entities currently considered, the probability that the en-
tity currently matches the searched state is computed. For each
entity, the prediction models of its associated sensors are evalu-
ated, using the requested states. The probability of an entity is
then computed as a function of these outcomes.

3. The considered entities are re-sequenced (in descending order of
probability).

4. Beginning with the top-ranked entity, the search engine contacts
the entity sensors to check whether their values actually match
the searched state. Only entities that fulfill the search request are
added to the result set.

5. If enough matching entities have been found, the list of results is
re-sorted according to the relevance criterion in 1) and returned
to the user. If not, the process continues from step 2) with the
next x entities.

While this approach is based on prediction models, only entities
matching the requested state(s) are returned to the user. The qual-
ity of prediction models will only influence the efficiency of the search
engine, and not introduce wrong results. This approach also leverages
the fact that users of search engines are typically not interested in all
results, since these are typically far too many to check manually.

Note that we are using two different ranking approaches: sensor rank-
ing, which affects the order in which sensors are contacted in order to
test whether they are actually reading the searched state; and relevance
ranking, which adjusts the order in which elements are displayed to the
user. We need to combine both these approaches – sensor ranking for
efficiency and relevance ranking to fulfill the expectations of the user.
However, this combination is admittedly a trade-off between efficiency
and relevance.

32 Chapter 2. Searching the Physical World in Real Time

V1# V2# V3#...# ...#Sensor#Output#

Time#

V4#

t1# t2# t3# t4# tC#

VC# ...# ?#

tQ#

8me#window## forecas8ng#horizon#

...# ...# ...#

model#construc8on# search#for#vQ#

t0# t1#

Figure 2.3: Time series of sensor readings, and time window and forecasting horizon
for prediction models (based on [100]).

In the following subsections we formally define our system model and
detail the basic operation of the search engine. The formal definitions
are based on [100, 101, 102].

2.3.3 System Model

In our system model, a sensor s is a function

s : T 7! V (2.1)

where T denotes real time and V the set of possible sensor values. V is
assumed to be a finite set of unordered discrete states that an entity can
be in (e.g., a room entity could include an occupancy sensor that can
yield one of two values “occupied” or “empty”). Note that the mapping
of raw sensor readings to discrete states may introduce subjectivity, as
it often requires interpretation of the sensor data. We let the operator
of the sensor implement this mapping, as he has comprehensive infor-
mation about its context. We do not assume that elements of V follow
some order, as we also want to support sensors that sense inherently
unordered phenomena, such as sensors that return the current activity
of a user.

Each sensor is associated with a type and optionally further struc-
tured meta information such as a location. For example, the following
function can be used to obtain the type 2 Y of a sensor:

type : S 7! Y (2.2)

A prediction model for a sensor s is a function

P

s,t

0
,t

1
: T ⇥ V 7! [0, 1] (2.3)

The parameter t

0 2 T refers to the time of the first considered sensor
reading, t1 2 T refers to the time when the model has been constructed,

2.3. Approach 33

meaning that all sensor values s(t

0 t

i

 t

1

) have been available
for the construction of the model. The idea behind constraining the
construction of the prediction model to the time window [t

0

, t

1

] is that
sensor values from the distant past are typically bad indicators for the
future output of the sensor. Also, using a time window instead of all
past data typically reduces the resource consumption (i.e., execution
time and memory footprint) of the model construction.

Given a point in time t > t

1 and a sensor value v 2 V , P
s,t

0
,t

1
(t, v) is

an estimate of the probability that s(t) = v holds. We call t � t

1 the
forecasting horizon.

An entity e 2 E is associated with one or more sensors,

sensors : E 7! P(S) (2.4)

whereas we assume that each sensor of an entity e has a distinct type.

2.3.4 Basic Operation

Given the above definitions, we can now outline the basic operation of
the search engine. At regular intervals, the search engine crawls the
Web of Things. For each visited entity e

i

, the search engine downloads
and indexes the structured meta information including the prediction
models of all sensors(e

i

) associated with that entity.
A basic search operation issued at time t would specify the current

state of sought entities at time t, where the current state of an entity is
represented as a set of sensor types y ⇢ P(Y) and a mapping function
val : Y 7! V that maps sensor types in y to the requested values.
That is, an entity matches the search if for each type y

i

2 y the entity
contains a sensor s of that type with s(t) = val(y

i

).
To perform a search operation, the search engine first fetches enti-

ties e

i

from the index which contain sensors of requested types. Next,
for each fetched entity e

i

a probability p

i

is computed that the en-
tity matches the search. As the search is conjunctive (e.g., the entity
must contain a matching sensor for each type and value specified in
the search), p

i

equals the product of the prediction probabilities of the
individual sensors (assuming independent sensors):

p

i

:=

Y

s2sensors(ei)^type(s)2y

P

s

(t, val(type(s))) (2.5)

Next, entities e

i

are sorted by decreasing values p

i

. Beginning with
the entities with the largest p

i

, the sensors of the entities are consulted

34 Chapter 2. Searching the Physical World in Real Time

to check whether indeed s(t) = val(type(s)) holds. Entities where
all requested sensor states match are returned as search results until
enough matching entities have been found.

Note the difference between sensor ranking and the relevance rank-
ing of traditional search engines. The former tries to optimize the
performance of the search engine, while the latter tries to optimize
user satisfaction. As detailed in Sect. 2.3.2, we combine both in Dyser:
sensor ranking for the internal search process, and relevance ranking
when displaying the results to the user.

2.3.5 Prediction Models

As defined in Sect. 2.3.3, a prediction model returns the probability
that the corresponding sensor will read a given state at a certain point
in time. For this thesis, we consider three different prediction models,
ranging from a very simplistic approach to a complex prediction model
that considers multiple periodic processes. Each prediction model only
depends on past readings of its corresponding sensor. This approach
makes the creation of prediction models independent from external
data, thus simplifying this process.

2.3.5.1 Aggregated Prediction Model

Probably the most simple prediction model computes the fraction of the
time during which the sensor output equals v within the time window
[t

0

, t

1

], that is:

P

s,t

0
,t

1
(t, v) =

1

t

1 � t

0

Z
t

1

t

0

�(s, t, v)dt (2.6)

where �(s, t, v) is an indicator function that returns 1 if the sensor s

reads v at time t, and 0 otherwise:

�(s, t, v) =

⇢
1 : s(t) = v

0 : else

(2.7)

For example, if the sensor output was v during the whole time window
[t

0

, t

1

], then the probability computed by the above prediction model
equals 1. Note that the output of the prediction model is independent
of the actual point in time t of the search. Hence, we call this model
the aggregated prediction model (APM).

2.3. Approach 35

2.3.5.2 Single-Period Prediction Model

A more elaborate model would take into account the time t of the
search. For this, we assume that the sensor output is dominated by a
periodic process of period length L. The sensor output is expected to
repeat after this single dominant period. For example, it is reasonable
to assume that the occupancy pattern of a room is likely to repeat every
week, that is, L equals one week. If we assume that the time window
size t

1 � t

0 is an integral multiple of L, i.e., NL = t

1 � t

0 for integral
N , and that the forecasting horizon t � t

1 is smaller than L, we can
perform a prediction as follows:

P

s,t

0
,t

1
(t, v) =

1

N

X

1iN

�(s, t� iL, v) (2.8)

Here, we consider all points in time t

0 contained in the time window
that have the same offset as t with respect to period length L, i.e.
t

0 ⌘ t mod L such that t

0 2 [t

0

, t

1

]. Under the assumptions stated
above, this is the case for t

0
= t � iL for all 1 i N . The output

of the prediction model equals the fraction of the instances of t

0 for
which s(t

0
) = v among all t0. As this model assumes a periodic process

with a single period, we call this model the single period prediction
model (SPPM). Note that a spectral analysis of the sensor data or
a periodicity indicator as given in [117] can be used to automatically
derive the dominant period length L for a given data set s([t

0

, t

1

]).
Alternatively, L could be derived from domain knowledge.

2.3.5.3 Multi-Period Prediction Model

In practice, sensor output is often influenced by many periodic processes
with varying period lengths. Consider a meeting room that may host a
group meeting every Monday and a conference call on a Tuesday every
other week. In this example, sensor output is related to two periodic
processes with period lengths of one week and two weeks. To support
such multi-period processes, we use the following approach. At first,
we automatically detect periodic patterns in the time window using a
variant of an existing algorithm [118]. As a result, we obtain a list of
periodic patterns of the form (l, o, w, p), where l is the period length of
the pattern, and o is an offset in the period such that the sensor output
s(kl+o) equals w for integer values k with probability p. For example,
the pattern (one week, 2, occupied, 0.5) means that every second day

36 Chapter 2. Searching the Physical World in Real Time

of the week (i.e., Tuesday) the probability of a room being occupied
is 0.5.

To make a prediction, we first filter all patterns that match the search
time t, that is, we retain a pattern (l, o, w, p) if and only if there exists
some integer k such that kl + o = t and w = v, where v is the sought
sensor value. Assuming N such patterns exist, we perform a prediction
as follows:

P

s,t

0
,t

1
(t, v) = max

1iN

p

i

(2.9)

where p

i

is the probability of periodic pattern i. In order to mitigate
the effects of sudden changes in periodic patterns in the data set, one
may specify a lower and upper bound (!

min

and !

max

respectively) for
the number of instances of periodic symbols considered. We call this
model the multi-period prediction model (MPPM).

2.3.6 Coping with Low-Quality Prediction Models

In order for sensor ranking to work efficiently, prediction models need
to map the characteristics of underlying sensors sufficiently well. Pre-
diction models that do not reflect the actual characteristics of a sensor
will result in unnecessary communication, degrading the performance
of our search engine. Recall that our approach will always return accu-
rate results, despite the quality of indexed prediction models. In order
to mitigate the effects that erroneous, outdated, or malicious prediction
models may have on the performance of our search engine, we enable
the assessment of the quality of indexed prediction models and also
their adjustment with respect to sensor ranking.

To assess the quality of a prediction model, we introduce a metric
that reflects the ranking error of a sensor in a list of potential results.
A query for sensors reading v

Q

at time t

Q

will cause the search engine
to produce a rank list of potential results, sorted by the outcomes of
the sensors’ prediction models:

S

Q

= s

1

, s

2

, s

3

, ..., s

m

(2.10)

The sensor s

1

with the highest probability of reading the value v

Q

at
time t

Q

is ranked first. For a perfect ranking, a request for k results
will only require k lookups of sensors’ current readings (s

1

...s

k

). Any
communication with an additional sensor is either caused by a non-
matching sensor ranked too high or a matching sensor ranked too low.
Ideally, the ranked list of results SQ is partitioned in matching sensors

2.3. Approach 37

(ranked high) and non-matching sensors (ranked low). The ranking is
imperfect when S

Q contains at least one non-matching sensor that is
ranked before a matching sensor. Since in practice, the search engine
will stop contacting sensors as soon as it has acquired the sought num-
ber of k results, we formalize the ranked list of sensors S

Q

k

that were
contacted for a query Q in order to provide k results.

S

Q

k

=

⇢
S

Q

: M

k

= 0

s

1

, s

2

, s

3

, ..., s

Mk : else

(2.11)

The rank M

k

of the kth matching sensor is defined as

M

k

=

8
<

:

argmin

1im

(�(s

i

, t

Q

, v

Q

) ⇤ i) : k = 1

argmin

Mk�1<im

(�(s

i

, t

Q

, v

Q

) ⇤ i) : else

(2.12)

To compute the ranking error for each sensor s
i

in S

Q

k

, we summarize
sensors that are ranked either too high or too low. For a matching
sensor s

i

, we we summarize the amount of non-matching sensors that
were ranked higher. For a non-matching sensor, we summarize the
amount of matching sensors that were ranked lower. The ranking error
is negative when the sensor was ranked too high and positive when the
sensor was ranked too low:

re(s

i

, v

Q

, t

Q

) = (2.13)
⇢

�|{s
j

2 S

Q

k

|j > i ^ s

j

(t

Q

) = v

Q

}| : s
i

(t

Q

) 6= v

Q

|{s
j

2 S

Q

k

|j < i ^ s

j

(t

Q

) 6= v

Q

}| : s
i

(t

Q

) = v

Q

In order to mitigate the effects of systematic misranking, we introduce
an adjustment process which is based on the ranking error, that is
used to adjust the outcomes of prediction models. This is a feedback
loop that considers the current ranking error of a sensor s

i

in order to
minimize its future ranking error. For this, we compute an adjustment
term AT , that is based on a sensor s

i

, sought reading v

Q

, and query
time t

Qj :

AT (s

i

, v

Q

, t

Qj) = AT (s

i

, v

Q

, t

Qj�1) +

re(s

i

, v

Q

, t

Qj)

|SQ

k

|
(2.14)

The number of sensors contacted in order to return k results |SQ

k

| is
used to normalize the ranking error. The adjustment term for a sensor

38 Chapter 2. Searching the Physical World in Real Time

s

i

computed at time t
Qj for value v

Q

is then used to adjust the outcome
of that sensor’s prediction model at time t

Qj+1:

ˆ

P

si(tQj+1, vQ) = P

si(tQj+1, vQ) +AT (s

i

, v

Q

, t

Qj) (2.15)

The adjusted probabilities of the prediction models ˆ

P are then used to
process a search query at time t

Qj+1, which will in turn produce new
adjustment terms for query time t

Qj+2. The quality of the adjustment
process is depending in the query rate: The more frequent it is invoked,
the more accurate its adjustments are expected to be. To prevent in-
accurate adjustments, the adjustment term needs to be reset when a
new prediction model was created, or when a sensor was not contacted
within a certain time frame. The adjustment process works indepen-
dently of the used prediction model. In fact, it could be used without
a prediction model at all.

2.4 Data Set used for Evaluations

In order to evaluate our approach, we require a data set that satisfies
our basic assumption, which is the existence of periodic patterns in
sensor data. Ideally, it should feature data related to the behavior of
people and could also provide an actual use case for our search engine.
Since we did not find a data set that satisfied our requirements at the
time this evaluation was conducted, we collected a real-world data set
using publicly available data. It was gathered over the course of several
months from Bicing, a bicycle-sharing system.

The evaluations presented subsequently in this chapter are based on
the Bicing data set. Both the service and the data set are discussed in
this section.

2.4.1 The Bicing Service

Bicing [119] is a bicycle-sharing service located in Barcelona, Spain. It
was started in March 2007 and in spring 2009 (the time of the collection
of our data set), it operated about 6’000 bicycles, which could be rent

5Image by Borinot bcr, source:
http://en.wikipedia.org/wiki/File:BicicletaBicing.JPG

6Image by Hank Chapot, source:
http://en.wikipedia.org/wiki/File:Barcelona_bike_program.JPG

7Image by Marc Belzunces, source:
http://commons.wikimedia.org/wiki/File:Furgo_bicing_bcn.JPG

http://en.wikipedia.org/wiki/File:BicicletaBicing.JPG
http://en.wikipedia.org/wiki/File:Barcelona_bike_program.JPG
http://commons.wikimedia.org/wiki/File:Furgo_bicing_bcn.JPG

2.4. Data Set used for Evaluations 39

Figure 2.4: Key components of Bicing (clockwise, starting from top left): A Bicing
bicyle5, a rental station with attached bicycles6, and a truck with a
trailer full of bicycles7 which is used by the operator to redistribute
bicycles between the stations.

at 400 stations distributed throughout the city. Users were required to
subscribe to Bicing, and the service was restricted to residents of Spain
in order to mitigate conflicts with existing bicycle rental services for
tourists. Bicyles could be rent at and returned to any of the existing
stations. The process was automated, requiring only the use of the
personal Bicing card.

Unlike commercial bicycle rental services, Bicing aims at extending
the public transport service in Barcelona. This is not only reflected by
the large number of bicycles and rental stations, but also by the pricing
scheme, which enforces short hire periods. At the beginning of 2009,
the following rules applied: the first 30 minutes were free of charge, each
additional 30 minutes cost 0.50e up to a maximum allowed rental time
of 2 hours. Extending the maximum rental time lead to a penalty fee
of 3e per additional hour and a warning. If the user did not return his
bicycle to a station within 24 hours, a surcharge of 150.00e was applied
on his credit card. After three warnings, the provider would exclude
the user from further service. The mandatory yearly subscription cost
30e. Additionally, bicycles provided by Bicing feature no locks and can
therefore be stored safely only at the Bicing stations. Fig. 2.4 depicts

40 Chapter 2. Searching the Physical World in Real Time

Figure 2.5: Homepage of Bicing at the time of the Study8.

key components of the system.

2.4.2 Data Set

Bicing provides an interactive map on its homepage, which displays all
bicycle stations (Fig. 2.5). For each station, both the current number
of bicycles and the current number of free return slots are available. We
utilized a simple script which fetched the HTML-code of the respective
page every 5 minutes. This process was started on December 6th, 2009.

In a second step, a single log file containing only the station data was
produced, based on the gathered files. Missing data was compensated
with special markers, ensuring that for each time slot data from all
stations is available. This single log file was then cropped to data from
January to May 2009. Stations which went in service during this period
were excluded from the data set, therefore only stations which were in
service during the total considered period of time are considered. This
lead to a total number of 385 stations. The “gap” in time caused by the
transition to central European summer time (CEST) on March 29th

8Screenshot taken on 14.7.2009.

2.4. Data Set used for Evaluations 41

was filled using the data of the preceding hour, in order to prevent
conflicts with time-based prediction models.

For our evaluation, a “sensor” is considered to be a rental station,
returning the number of currently available bicycles. For this, each
rental station is mapped to a virtual sensor that outputs one of six
discrete states. The utilized mapping scheme is depicted in Tab. 2.1.
The final log file used for the evaluations was created based on this
mapping scheme. To limit the amount of sensor data, three consecu-
tive time slots of 5 minutes each were mapped to a single time slot of
15 minutes for the resulting log file. For this, the average number of
available bicycles per time slot was considered.

available bicycles state
0 none

1..5 1to5
6..10 6to10
11..15 11to15
>15 many

(error) unknown

Table 2.1: Mapping of the number of available bicycles per station to discrete states.

2.4.3 Data Analysis

The processed data was then read into Matlab9 for analysis. Fig. 2.6
visualizes the average number of sensors reading a certain state during
the course of the week, considering the final data set. For example,
changes are high that one finds a station with plenty of available bicy-
cles in the early morning hours on a Tuesday, as indicated by the high
number of sensors which read the state “many” during those times.
Also note that one can clearly identify daily and weekly patterns for
the state “none”, for instance. What the Figure does not reveal directly
is that errors in the data set rarely occur, and if they do, they affect
all sensors at the same time.

The aggregated distribution of sensed states is displayed in Fig. 2.7.
For each possible state except “unknown”, the list of sensors is sorted
according to the fraction of total considered time that they output the
respective state, in descending order. For example, for the state “none”,
there exist a few sensors which will always output this state, while the
vast majority of sensors will output this state less than 50% of the time.

9http://www.mathworks.ch/products/matlab/index.html

http://www.mathworks.ch/products/matlab/index.html

42 Chapter 2. Searching the Physical World in Real Time

0

50

100

n
o

n
e

50

100

150

1
to

5

50

100

150

6
to

1
0

0

50

100

1
1

to
1

5

0

50

100

m
a

n
y

Mon Tue Wed Thu Fri Sat Sun
0

50

100

u
n

k
n

o
w

n

Weekday

N
u

m
b

e
r

o
f

s
e

n
s
o

rs
 f

o
r

a
 g

iv
e

n
 s

ta
te

Figure 2.6: Average number of sensors reading a given state vs. weekday.

2.5 Evaluation with Matlab

In this section, we discuss the the simulative evaluation of our approach
of searching in distributed real-time data from Sect. 2.3. All evaluations
in this section where conducted using Matlab and are only considering
the theoretical concepts, thus ignoring any aspects regarding the Web.

2.5.1 Simulation Setup

The simulations we conducted are all based on the preprocessed Bicing
data set described in Sect. 2.4.2 and considered queries in a time frame
from March 1st to May 31st 2009. The first two months (January and
February) of the data set were used to construct the initial prediction
models. The maximum forecasting horizon was set to one week, and
the size of the time window for the prediction models was set to 8
weeks. All prediction models were periodically re-created when their
maximum forecasting horizons were reached. Thus, prediction models
“aged” during the course of a simulated week. Search requests for all
possible sensor states were placed every 15 minutes throughout the
simulation period. The number of required results k was set to 20.
All simulations were conducted both with and without the adjustment
process.

2.5. Evaluation with Matlab 43

0 50 100 150 200 250 300 350 400
0

0.5
1

State "none"

0 50 100 150 200 250 300 350 400
0

0.5
1

State "1to5"

0 50 100 150 200 250 300 350 400
0

0.5
1

State "6to10"

0 50 100 150 200 250 300 350 400
0

0.5
1

State "11to15"

0 50 100 150 200 250 300 350 400
0

0.5
1

State "many"

0 50 100 150 200 250 300 350 400
0
2
4

x 10
−3 State "unknown"

Figure 2.7: State time as a fraction of total time vs. sensors for each state.

The period length for the single-period prediction model (SPPM)
was set to one week, as this turned out to be the dominant period
length. For the multi-period prediction model (MPPM), !

min

was set
to 4 and !

max

was set to 8. As a baseline, we included the results
from a “prediction model” that outputs random values, resulting in a
randomized sensor ranking that changes per time slot, state and sensor.

2.5.2 Performance Metric

In order to be able to assess the performance of our approach, we
measured the communication overhead in our simulations, which is the
number of contacted sensors M

k

(see Eq. 2.12) divided by the number
of requested results k for a given query. A communication overhead
of 1 is an optimal result, indicating that no non-matching sensors were
contacted. When the number of requested matches cannot be provided,
the communication overhead is undefined and will not be considered
when computing the average communication overhead. We formalized
the communication overhead as

o(t, v, k) =

⇢
undefined :

P
m

i=1

�(s

i

, t, v) < k

Mk

k

: else. (2.16)

where t represents the query time, v the sought state, m the total
number of relevant sensors, and k the number of requested results.

44 Chapter 2. Searching the Physical World in Real Time

2.5.3 Simulation Results

Figure 2.8: Average communication overhead without adjustment process.

Figure 2.9: Average communication overhead with adjustment process.

The average communication overhead determined in the simulation
runs is depicted in Figs. 2.8 and 2.9. Note that the state “unknown”
is omitted from the discussion, since it always results in an optimal
overhead of 1 for all considered prediction models. This is because
either all sensors sense the state “unknown” or none of them do.

For both graphs, we see that the average communication overhead for
the individual states varies, and that across all considered prediction
models. One factor that affects this variance is the average number of

2.5. Evaluation with Matlab 45

sensors which read the searched state. A larger fraction of matching
sensors usually results in fewer sensors to be contacted in order to
find the required number of results. As we can see from Fig. 2.6, on
average the state “1to5” is read by the sensors most frequently. It is also
the state with the smallest communication overhead. The correlation
between the average communication overhead and the average number
of matching sensors can be seen best when comparing the data from
Fig. 2.6 with the results of the random prediction model in Fig. 2.8.
However, the “predictability” of a certain state naturally influences the
communication overhead, when considering an actual prediction model.
For example, although the state “none” has a low average number of
matching sensors, its communication overhead is rather low, compared
to the other states, when not considering the adjustment process. This
can be attributed to its periodic nature, which can be identified in
Fig. 2.6.

2.5.3.1 Without Adjustment Process

When not taking the adjustment process into account, we see that for
each state, there is a considerable difference in the overhead caused by
the random prediction model and the other prediction models. This is
as expected and shows the improvement of sensor ranking over a naive
approach, which would contact sensors in arbitrary order until enough
results are found. Compared to the other prediction models, the ag-
gregated prediction model produces good results despite the fact that
it does not take the factor time into account. This can be explained by
two reasons: First, as can be seen from Fig. 2.7, there is a significant
number of sensors which read the searched state 40% - 50% of the time,
for example, considering the state “1to5”. In this case, this should re-
sult in an expected average communication overhead of 2 - 2.5, which
is confirmed by our simulations. The second reason are irregularities
in the simulation data: although one can identify periodic patterns in
the simulation data, these are often disturbed with outliers, i.e., the
patterns are imperfect. This might partly be attributed to the simu-
lation data, which is inherently ordered and was mapped to unordered
states. A small change in the underlying raw sensor data (e.g., the
number of free bicycles changes from 10 to 11) may provoke a change
of the deduced state. Prediction models which rely on periodicities in
the data are susceptible to these imperfections.

46 Chapter 2. Searching the Physical World in Real Time

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

1

1.5

2

2.5

Sensors

A
d
ju

s
tm

e
n
t
T

e
rm

Random

APM

Figure 2.10: Distribution of adjustment terms at the end of one simulated week,
for state “1to5”.

2.5.3.2 With Adjustment Process

When looking at the simulation that utilized the adjustment process,
we see that all results benefit from this approach (Fig. 2.9). While
the largest average communication overhead without considering the
adjustment process is about 7, it degrades to about 3 when utilizing the
adjustment process. This can be explained by the introduced feedback
loop, that decreases the prediction results of sensors ranked too high
and increases the prediction results of sensors ranked too low. We
additionally included a “prediction model” which produces an arbitrary
but constant ranking of the sensors, in order to be able to better assess
the effects of the adjustment process.

Comparing the different prediction models reveals that the average
prediction overhead of the constant and random prediction model is
only slightly worse than that of the other prediction modes. This
may appear counter-intuitive – prediction models which do not pre-
dict meaningful values but result in good rankings. Recall that the
adjustment process works best if executed frequently. Since we execute
it for every query in our simulation, we update it every 15 minutes
per state, and reset it upon the re-creation of the prediction models.
For the static prediction model, this results in a behavior that can be

2.5. Evaluation with Matlab 47

0 100 200 300 400 500 600 700

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slots [15 mins]

J
a
c
c
a
rd

 D
is

ta
n
c
e

Without Adjustment Process

With Adjustment Process

Figure 2.11: Stability of the 50 topmost ranked sensors over one simulated week,
using the random prediction model and considering the state “1to5”.

compared to caching – sensor predictions are adjusted to reflect the
recent state. If the states sensed by the sensors are not changing too
frequently, the adjustment process is able to model a ranking and there-
fore compensate the lack of an actual prediction model. However, this
does not explain why the random prediction model with adjustment
process performs even better than a static ordering of the sensors. The
analysis of the simulation results revealed that with the adjustment
process, there are sensors which are not considered at all, when using
a static ranking. However, when using a ranking that varies over time
(for example, like the random prediction model does) then all sensors
will be considered by the adjustment process, which increases the prob-
ability that sensors, which continuously read the searched state over a
longer period of time are found and adjusted “upwards”. Figure 2.10
shows the distribution of the adjustment terms of all sensors at the end
of a simulated week for the random and aggregated prediction model.
An adjustment term of 0 is a strong indication that this sensor was
never contacted. When looking at the distribution of the adjustment
terms for the random prediction model, we see that the majority of
the sensors was assigned a small negative value, while a minority was
assigned a relatively large, positive adjustment term. Since an adjust-
ment term > 1 can outperform any predicted probability, the actual

48 Chapter 2. Searching the Physical World in Real Time

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time Slots [15 mins]

J
a
c
c
a
rd

 D
is

ta
n
c
e

Without Adjustment Process

With Adjustment Process

Figure 2.12: Stability of the 50 topmost ranked sensors over one simulated week,
using the MPPM and considering the state “1to5”.

result of the prediction model is marginalized for such values. The ad-
justment process generally seems to increase the stability of the top n
sensors of a ranking, which should result in a lower ranking error, pro-
vided that the sensor states do not change too rapidly. To illustrate the
effect of the adjustment process on the stability of the sensor ranking,
we calculated the Jaccard Distances of adjacent pairs of the 50 topmost
ranked sensors over the course of one simulated week.

The Jaccard Distance J is used to give a similarity measure of two
sets A and B. It is defined as

J(A,B) = 1� |A \ B|
|A [B| (2.17)

and provides results from 0 (both sets are identical) to 1 (no common
elements at all).

The results for the random prediction model are shown in Fig. 2.11
and for the multi-period prediction model in Fig. 2.12. Both graphs
clearly indicate that the adjustment process has a significant impact
on the stability of the sensor rankings, i.e., it decreases the number of
changes within the 50 sensors which are ranked topmost. We also see
that the stability increases over time, confirming our assumption that
this process works best if executed frequently.

2.6. A Prototypical Real-Time Search Engine for the Web of Things 49

2.5.3.3 Discussion

Based on our simulation results, we identify two major findings: First,
the bigger effort introduced by more sophisticated prediction models
does not necessarily lead to better sensor rankings. Second, the adjust-
ment process does not only significantly improve the sensor ranking,
but also seriously alleviates the influence of the prediction models on
the sensor ranking. The best results are provided by a combination of
the single-period prediction model with the adjustment process. How-
ever, we want to point out that these findings are only applicable to
the considered simulation data and should not be generalized.

2.6 A Prototypical Real-Time Search Engine for
the Web of Things

We will now demonstrate how our approach of searching in dynamic,
distributed data in real time can be applied to the existing Web in-
frastructure. To this end, we developed a prototypical real-time search
engine for the physical world called Dyser that is based on a Web of
Things.

We need to design basic abstractions for the Web of Things to rep-
resent real-world entities and their states. On top of these, we need
to define the system architecture for the search engine. One key goal
herein is to retain the open and loosely coupled architecture of the cur-
rent Web such that everybody can introduce one’s own search engine for
things – rather than producing a closed system under exclusive control
of one party, thus hampering scalability and sharing.

In the Web of Things, entities of the physical world should therefore
be represented as Web resources, accessed using HTTP, and should pro-
vide (among others) an HTML representation. This allows a seamless
integration into the existing Web infrastructure, making it possible to
utilize existing applications and services with Web-enabled things [85].

In our model, there are two key elements: sensors and entities. Each
sensor and each entity receives a virtual counterpart, a Web resource,
identified by a URL and accessible using HTTP. For all of these Web
resources, there is always an HTML representation, which we call the
sensor page and the entity page respectively. In addition to unstruc-
tured text they also contain structured information, for example, the
type of sensor or its possible readings.

50 Chapter 2. Searching the Physical World in Real Time

D
ys

er
 Internet

Sensors

Resolver

Indexer

Index

Sensor
Gateway

room IFW
occupancy:empty

Sensor Page
http://.../sensors/IFW/D44

Occupancy Sensor

This is a PIR sensor
which senses room
occupancy for IFW D44.
•  Current state: occupied
•  Possible states:
 empty, occupied
•  ...

Entity Page
http://.../rooms/IFW/D44

Room IFW D44

This seminar room in the
IFW building is currently
occupied.

Sensor Page

Entity Page

Figure 2.13: Architecture of Dyser (based on [102]).

Our search engine for the Web of Things follows the basic approach of
existing Web search engines: it builds up an index of all relevant pages
and offers a simple search language to find indexed entities. Note that
our pull-based approach does not require sensor or entity publishers to
register with Dyser, as sensor and entity pages are found automatically
by Web crawlers, which follow hyperlinks.

2.6.1 Design

An overview of the system architecture is depicted in Fig. 2.13. There,
sensors are connected to sensor gateways which are in charge of creat-
ing prediction models and publishing sensor information on the Web.
Note that sensor gateways may also be implemented as processes run-
ning directly on the sensors, (e.g., on a smartphone) if resources permit.

As an example for a real-world entity, we consider a meeting room,
represented by an HTML page. This page does not only contain static
information like a textual description, but also dynamic information
about its real-world state. This information is gathered from an associ-
ated sensor which detects whether the room is currently occupied. This
sensor is also represented by an HTML page, which contains besides
unstructured text also structured meta data about the sensor, such as

2.6. A Prototypical Real-Time Search Engine for the Web of Things 51

its prediction model. In order to associate the occupancy sensor with
the meeting room, a simple hyperlink is used to refer to the Web page
of the sensor. The state perceived by the sensor is included within the
Web page of the entity, and can thus be viewed in a Web browser.

These embedded sensor data can be identified by the indexer, which
periodically crawls the Web in order to build an index of relevant pages.
Essential information about entities and sensors, including their predic-
tion models, are then stored in the index. When a user issues a search
request (in this case “room ifw occupancy:empty”), the resolver is
in charge of handling its execution. For this, it will first reduce the
result set to entities which match the static part of the search term
(“room ifw”) and feature the requested sensor type(s) (“occupancy”),
by querying the index. In a second step, the dynamic part of the search
request is handled by executing the prediction models of the specified
sensor types for the specified sensor states (“empty”) and the current
time. The probabilities determined by the prediction models of the
sensors are then combined to an overall probability for each entity. Be-
ginning with the entity which has the highest probability, the sensors
of each entity are then contacted by the resolver to gather their ac-
tual state, in descending order of their overall probabilities. As soon as
enough hits are found, this process is stopped and the resolver returns
its results to the user.

To sum up, prediction models are periodically created by a sensor
gateway, based on a set of recent sensor states, periodically indexed by
Dyser, at a rate of days to weeks, and evaluated by Dyser during the
resolution of a search request.

2.6.1.1 Presentation on the Web

As all Web resources, sensors and entities need to be identified by a
URL and accessed using HTTP. While there may be multiple suitable
data formats, we focus on HTML, as it can be directly viewed in Web
browsers, is indexed by existing search engines, can be hyperlinked with
other HTML documents, and is well-known to today’s Web users. We
denote an HTML page that represents a sensor as a sensor page, and
an HTML page that represents a real-world entity as an entity page.

In order to be able to display sensor-specific information to the user
and at the same time provide this data accordingly structured for the
indexer, we follow the concept of microformats [120]. By “abusing”
certain portions of HTML markup, microformats provide the possibility

52 Chapter 2. Searching the Physical World in Real Time

to semantically tag information included in HTML pages, while still
giving the authors complete freedom on how that data is displayed.
Note that there are similar concepts such as Microdata [121] and RDFa
[122], however, we stick with microformats for their simplicity.

2.6.1.2 Search Language

As we expect that the search for entities of the physical world, based on
their dynamic state, will be as common as the search for Web pages or
images is today, it is important that the usability of Dyser is compara-
ble to that of today’s popular search engines. In particular, the search
language used to construct search requests should be usable by the av-
erage search engine user without great learning efforts. We believe that
query languages like SQL [110] or SPARQL [123] do not fulfil this re-
quirement and are also oversized for our needs. Hence, we aim to gently
extend the keyword-based search language utilized by the majority of
today’s Web search engines. There, one can already include structured
data in a search request by using attributes, which are (name, value)
pairs denoted as “name:value”. In order to be able to search for sensor
data, we introduce additional attributes to the search language which
allow the specification of sensors and their current readings. For ex-
ample, “people:few loudness:quiet” constitutes a search term with
two dynamic attributes, people and loudness. The set of available at-
tributes is defined by the sensor types indexed by the search engine.

2.6.1.3 Sensor Gateways

A sensor gateway connects sensors to the World Wide Web and makes
their captured states and additional meta-information available on the
Web via HTTP. Sensor gateways are also in charge of creating and pub-
lishing the prediction models for the sensors they administrate. They
may furthermore offer additional functionality, like providing access to
archived sensor states. While sensor gateways may run on the sens-
ing devices itself, there may be technical or administrative limitations
which require the use of dedicated gateways.

In most cases, sensors do not output a high-level state directly, but
capture low-level data from which the high-level state of an entity has
to be inferred, which can be performed by the sensor gateway. For
example, the GSN middleware [124] may be used for that purpose as
it offers a homogeneous interface to a large variety of sensors and can

2.6. A Prototypical Real-Time Search Engine for the Web of Things 53

Figure 2.14: Exemplary screenshot of the search results page of Dyser10.

also perform complex data-stream processing.

2.6.2 Implementation

The implementation of our prototype of Dyser is based on Java and
PHP, using SOAP [63] Web services for communication between com-
ponents.

2.6.2.1 Sensor and Entity Pages

At the time of our evaluation, there was no microformat for sensor infor-
mation. We therefore designed a simple microformat for this purpose,
which is depicted in List. 2.1. Semantic tagging is achieved by utilizing
dedicated labels for Cascading Style Sheet (CSS) classes within HTML
element tags, e.g., class="sensor". Note that although the depicted
example solely uses <div> elements, sensor information can be specified
using any HTML element, given that it supports the class attribute.

In order to create a sensor page, one has to define the following
structure: an enclosing HTML element is required whose class at-

10Dyser logo courtesy of Matthias Kovatsch.

54 Chapter 2. Searching the Physical World in Real Time

1 <div class="sensor">
2 <div class="id">OccupancySensor7</div>
3 <div class="location">IFW D44</div>
4 <div class="type">Occupancy</div>
5 <div class="currentState">occupied</div>
6 <div class="possibleStates">
7 <div class="state">empty</div>
8 <div class="state">occupied</div>
9 </div>

10 <div class="predictionModelType">
11 SinglePeriodPredictionModel
12 </div>
13 <div class="predictionModel">
14 <!-- JSON serialization, omitted for
15 readability reasons -->
16 </div>
17 </div>

Listing 2.1: HTML source of prototypical sensor microformat.

1 <a href="http://example.org/sensors/OccupancySensor7"
2 rel="http://dyser.org/sensor">occupied

Listing 2.2: HTML source of an entity page including a sensor. The hyperlink text
occupied is not evaluated by the search engine.

tribute is set to "sensor". Inside this element, information regard-
ing the sensor is defined using further HTML elements, whose en-
closed text defines the value for the aspect specified by the CSS class
names: id is the (local) identifier for the sensor at its sensor gateway,
location provides information about the location of the sensor, type
identifies the type of the sensor, and currentState lists the state the
sensor currently detects. possibleStates includes a list of states,
which together specify the list of states this sensor can perceive. In
predictionModelType, the utilized type of the prediction model is
specified, while in predictionModel, a serialized version of the predic-
tion model is stored, using the JSON format.

To adapt the visual appearance of a sensor page, one can select the
appropriate HTML elements and also define the according CSS classes.
As CSS allow not only to change font style and color, but also to
hide complete elements or to prepend or append specified text, the
embedding of sensor information does not need to have an influence
on the depiction of the according sensor page. Fig. 2.15 shows the
excerpt of a sensor page, where the microformat of the sensor has been
formatted using CSS.

In order to create an entity page, one has to include at least one

2.6. A Prototypical Real-Time Search Engine for the Web of Things 55

Figure 2.15: Example of the visual appearance of List. 2.1, formatted using CSS.

hyperlink to a sensor page, which has to follow a particular syntax:
The attribute rel needs to be set to the specific URL

http://dyser.org/sensor

in order to denote that the corresponding hyperlink is a semantic link
between an entity and a sensor page. Crawlers parsing HTML pages
and following the embedded links utilize this information to detect en-
tity pages and their associated sensors. An example of such a hyperlink
is depicted in List. 2.2.

Note that in our current approach, sensor types and their states are
just text labels, which can be specified at will by sensor publishers.
This simplistic approach is intended to provide an open and flexible
approach for publishing sensor data. In order to be able to provide
well-defined and global semantics for sensor types, one could enhance
the concept by outsourcing the definition of a sensor type, including
its possible states and further specifications to a separate document.
A sensor page would then use a hyperlink to the specification of the
according sensor type.

2.6.2.2 Sensor Gateway

The sensor gateway was implemented in Java and features a SOAP
Web service which provides access to information regarding the ad-
ministrated sensors. To facilitate testing of our prototype, the sensor
gateway automatically generates both a sensor and an entity page for
each sensor it is in charge of and automatically publishes them using a
REST interface. The current state of a sensor is modeled as a separate
resource below the URL of the sensor: For example, the current state
of the sensor

http://example.org/sensors/occupancy42

could be accessed at

http://example.org/sensors/occupancy42/currentstate.

56 Chapter 2. Searching the Physical World in Real Time

Note that the suffix to the base URL of the sensor matches the name of
the respective subsection of the microformat on purpose. This greatly
reduces the overhead of resolving the current reading of a sensor, as
only the current state is transmitted instead of the complete sensor
page.

Our sensor gateway does not only support physical sensors, but also
allows the creation of virtual sensors, based on recorded log files or
methods generating synthetic sensor data, for example. If not done by
the sensor itself, the sensor gateway will infer a state based on recent
readings of a sensor. For each sensor, a history of its perceived states
is stored and utilized to create a prediction model.

2.6.2.3 Prediction Models

Besides the aggregated prediction model, the single-period prediction
model, and the multi-period prediction model introduced in Sect. 2.3.5,
we also implemented the random prediction model from Sect. 2.5, as
a baseline for evaluation. It is used to simulate the lookup of current
sensor readings in random order.

One important aspect is an efficient representation of the models with
respect to memory footprint, as the models need to be transmitted
between the sensor gateway and the search engine and stored in the
index. For the aggregated prediction model, we only need to transmit
one probability value for every possible output state of a sensor. For
the other models, we transmit the discretized output of the model for
every possible state for a certain forecasting horizon.

2.6.2.4 Search Engine

Like the sensor gateway, the search engine was implemented in Java
and features a simple SOAP Web service to pose search requests. This
Web service is wrapped by a PHP script, which provides an HTML front
end for entering search requests and displaying their results. Since we
cannot expect that users are aware of all possible sensor types or of
all possible states of a sensor, we provide an auto-suggest mechanism
which helps the user to complete the search term by suggesting possible
matches. Besides the front end, the search engine consists of three main
components:

2.6. A Prototypical Real-Time Search Engine for the Web of Things 57

Indexer We implemented two indexers in our prototype: The first one
is using a third-party Web search engine like Google in order to find all
entity pages. For this, all entity pages must contain a “magic” string of
characters. By searching for this magic string with Google, all entity
pages can be found. However, it may take several days or even weeks
until Google’s Web crawler visits a page and includes it in Google’s
index, which is impractical for experimental purposes. For this reason,
we include an alternative indexer which contacts sensor gateways di-
rectly, using the provided Web services, in order to obtain the URLs of
all sensor and entity pages. The pages found by either of those methods
are then downloaded, parsed and the contents are stored in the index.

Index In our prototype, the index is implemented as a relational
database, which is accessed using the JDBC interface, thus allowing
for a large variety of different database implementations. We are cur-
rently using the MYSQL database with the InnoDB engine as storage
backend. In order to speed up the evaluation of the prediction mod-
els at query time, we materialize the outputs of all indexed prediction
models in the database for a given forecasting horizon. That is, the
database does not contain the prediction models, but the discretized
output of the prediction models (i.e., probability values) for a certain
forecasting horizon. Finding the entity with the highest probability of
matching sensor outputs is thus realized as an efficient database lookup
operation.

Resolver The resolution of a search request is implemented as a chain
of filters over sets of entity pages as follows:

i) The given search term is parsed and separated into a static part
(i.e., static keywords referring to the entity page) and a dynamic
part (i.e., referring to the current output of sensors associated with
an entity page).

ii) A third-party search engine like Google is used to find entity pages
matching the static part of the search request. For this, a magic
character string contained in every entity page is appended to the
static part of the search request. As a side effect, we also obtain
a relevance ranking for each entity page from Google. As for the
indexer, we also implement an alternative approach which does not
rely on Google, but queries the index of Dyser directly.

58 Chapter 2. Searching the Physical World in Real Time

iii) Each entity page found in the previous step is checked whether
it includes sensors of all types requested in the dynamic part of
the search request. Entities which do not contain all requested
sensor types are removed from the result set. For the remaining
entities, the overall probability that they match the dynamic part
of the search is then determined by querying the index holding the
materialized prediction models.

iv) The entity pages produced by the previous step are then consid-
ered with decreasing probability of matching. For each entity, the
sensors associated with that entity page are contacted and their
current values retrieved. If the current state of a sensor does not
match the state requested in the search term, the entity is removed
from the list of results. To speed up processing, multiple sensors
are contacted in parallel, using a pool of threads. This process
stops when enough matching entities have been found.

v) Finally, all matching entities are sorted according to their relevance
ranking obtained during step ii) and presented to the user.

To avoid the overhead of generating large intermediate lists of entity
pages, the above steps are performed in a pipelined fashion. As soon as
a certain number of entity pages are produced by one of the above steps,
they are passed on to the next step. Only if not enough matching entity
pages are generated in the last step, the previous steps are triggered
recursively to generate more input.

2.6.3 Evaluation

We evaluated the performance of our prototypical search engine in
terms of the communication overhead and latency. The evaluation is
based on the data set introduced in Sect. 2.4, that is replayed by the
sensor gateway instead of using actual sensors. This data set represents
an exemplary case for our system as the data is heavily affected by the
behavioral patterns of people in everyday life.

2.6.3.1 Setup

The parameters of the simulation setup are identical to that of the
Matlab-based simulation in Sect. 2.5. We utilized the search engine
implementation with virtual sensors that replay the Bicing data set

2.6. A Prototypical Real-Time Search Engine for the Web of Things 59
Overhead�r2

0

1

2

3

4

5

6

7

8

none 1to5 6to10 11to15 many

Co
m
m
un

ic
at
io
n�
O
ve
rh
ea
d

Random

APM

SPPM

MPPM

Average�Request�Time�r2

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

none 1to5 6to10 11to15 many

La
te
nc
y�
[m

s] Random

APM

SPPM

MPPM

Figure 2.16: Communication overhead when searching for the different states.

described above. In order to perform the simulation, we used a PHP
script which accessed both the sensor gateway and the search engine
using the provided SOAP web services. All processes were running on
the same local machine, which features two dual-core Intel Xeon Core
2 CPUs running at 2,66 GHz. The maximum number of threads for
the resolver was set to 8.

Starting on March 1st 2009, all prediction models are created and
indexed by the search engine. Then, a query is posed for each possible
state and the outcomes are recorded for later analysis. After all states
have been queried at the given point of virtual time (i.e., simulation
time), the sensor gateway and search engine are instructed to advance
their virtual time by one time slot (i.e., 15 minutes) and search requests
for all possible states are posed again. If the maximum forecasting
horizon of one week is reached, all prediction models are recreated at
the sensor gateway and re-indexed by the search engine. This process
is continued for 3 months, until the end of the simulation is reached on
the beginning of June 1st 2009.

We consider two metrics. First, the communication overhead as de-
fined in Eq. 2.16, which is the number of contacted sensors M

k

divided
by the number of requested results k for a given query. Recall that a
communication overhead of 1 is an optimal result, indicating that no
non-matching sensors were contacted. Second, we consider the latency
from issuing a query until the requested number of matches has been
found and returned to the user.

60 Chapter 2. Searching the Physical World in Real Time

Overhead�r2

0

1

2

3

4

5

6

7

8

none 1to5 6to10 11to15 many

Co
m
m
un

ic
at
io
n�
O
ve
rh
ea
d

Random

APM

SPPM

MPPM

Average�Request�Time�r2

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

none 1to5 6to10 11to15 many

La
te
nc
y�
[m

s] Random

APM

SPPM

MPPM

Figure 2.17: Latency when searching for the different states.

2.6.3.2 Results

Figure Fig. 2.16 shows the average communication overhead
when searching for the different states. As expected, the results for
the communication overhead are identical to that of the evaluation in
Matlab, since we used the same simulation parameters.

Figure 2.17 depicts the average latency when searching for the dif-
ferent states, showing a similar trend as the communication overhead.
However, the differences between the different models and the improve-
ment over Random are smaller, as the latency does also include over-
head for database lookups which are shared by all prediction models
and which result in a constant latency baseline for all models. This
baseline makes up about half of the total latency (about 160 ms for
none and about 120 ms for all other states), showing potential for fur-
ther improvements in our prototype. The remainder of the latency is
predominantly caused by remote sensor readouts. Note that the latter
heavily depends on the parallelism of remote sensor readout opera-
tions. In our setup, where the sensor gateway and the search engine
are executing on a single computer, this parallelism is limited by the
number of CPU cores and hence the latency figures can be considered
a worst case that is unlikely to occur in a real deployment where sen-
sor gateways are distributed over many computers, resulting in higher
parallelism despite longer average latency for a single remote access
to a sensor due to higher round-trip times in the global Internet. A
notable artefact in the results are the relatively high latencies for the
single-period prediction model. Based on the communication overhead

2.6. A Prototypical Real-Time Search Engine for the Web of Things 61

figures, we would expect similar values for all three prediction mod-
els. Analysis indicates that this is an implementation-specific problem
caused by memory management issues in the Java virtual machine.

2.6.3.3 Leveraging an existing Web Search Engine

The concept of using an existing Web search engine to find and rank
entity pages which have been tagged with a magic string worked to
a certain extent: A summary page, which linked to all utilized entity
pages was created automatically. After including a hyperlink to this
page on some home pages of members of our group, we could see from
the log files of our WWW server that Google’s crawler periodically vis-
ited all listed entity pages. However, not all of the entity pages were
actually returned when searching for the magic string with Google.
As the entity pages have been generated automatically, they are struc-
turally identical, which might cause Google to remove entity pages from
its index. Other popular Web search engines revealed similar behav-
ior when using their Web front ends to search for the magic string of
the entity pages. Despite this fundamental restriction, using Google to
handle the static part of a Dyser search request worked as expected.
Google’s SOAP Search API11 was limited to return only the first 1.000
hits for a search request.

2.6.4 Discussion

In this section, we demonstrated how our approach of searching the
physical world can be applied to the Web. In summary, sensors and
entities are represented by simple Web pages, that can be crawled and
indexed by search engines, just like the traditional Web search works
today. The association of an entity with a sensor is achieved by includ-
ing a simple hyperlink. Structured data is defined using microformats,
a concept which enhances HTML pages with semantics. Including the
prediction models used by sensor ranking on the sensor pages enables
the indexing of such models by our search engine. Resolving the current
state of a sensor by the search engine is a simple request over HTTP.

As expected, the simulation results of Dyser show that a higher com-
munication overhead correlates with a larger computation time for
a search result. However, the effect on computation time is smaller

11This API was deprecated soon after our evaluations, and is now out of service. However,
there are alternatives available.

62 Chapter 2. Searching the Physical World in Real Time

than the communication overhead indicates, as multiple sensors may
be queried in parallel.

Note that the process of resolving current sensor readings could be
outsourced to the clients, which would relief the search engine from a
significant load and thus improve scalability. For this, the search en-
gine would only need to provide the ranked list of candidate results to
the client. The client could then contact the candidate results until
enough actual results are found, which could easily be implemented
using HTML and JavaScript in a Web browser. Another possible ad-
vantage of this approach is that network traffic for processing a search
request would mostly be generated by the clients. This could relive
the network infrastructure as traffic would be more distributed. Also,
so-called “denial of service attacks” would be aggravated, as a single
search request by a client would not lead to potentially high load on
the search engine.

Publishing prediction models publicly on the Web might affect pri-
vacy when used with certain sensor installations: these models reveal a
“big picture” of the sensed phenomenon at once, which would otherwise
have to be composed by an attacker himself, by periodically collecting
sensor readings over a longer period of time.

2.7 Related Work

Related work can be categorized in two fields: search engines specifi-
cally designed to search the physical world and real-time Web search
engines that arose in the recent years. Additionally, there are some
other related approaches that we discuss.

2.7.1 Search Engines for the Physical World

MAX is a search engine for the physical world, which allows users to
locate tagged objects [125, 126]. For this, everyday objects are expected
to be augmented with RFID tags containing a textual description of
the object in question. Users can search for objects using keywords and
are returned a ranked list of matching objects, including their locations.
Locations are specified relative to well-known or easily identifiable land-
marks and mimic the description that humans would provide in order
to explain the location of an item. An example of a location would be
“Peter’s bedroom ! wooden bookshelf ! 2nd shelf” [125].

2.7. Related Work 63

The architecture is composed of several layers: At the lowest layer
are the tagged objects. These can be detected by and communicate
with sub-stations. These stations are themselves attached to physi-
cal objects, mostly those which rarely change their positions (e.g., a
bookshelf). Sub-stations also store a description of the object they are
affixed to. At the next hierarchy level, there are base-stations, which
represent immovable entities such as a room. These stations also store
a description of their locality (e.g. “Ben’s office”). Base-stations are
in turn connected to a backbone network, which connects to the MAX
server.

When the user enters a query, it is send from the MAX server to
all or a subset of base stations, which in turn broadcast the query to
their substations and in turn to adjacent tags. The tags answer the sub-
stations if their description matches one or more keywords of the query.
The sub-stations return matching tags, including their RSSI values, to
the base-stations and in turn to the server, which returns the result to
the user. Interestingly, dynamic object properties are not specifically
addressed by the authors, although their system would in fact work
in the same way with dynamic descriptions, as the evaluation of the
query is performed at the tags. The authors also provide an extensive
evaluation of different query protocols, i.e., strategies for processing the
query and show how security and privacy concerns can be addressed.

The authors briefly mention that in order to achieve scalability, the
MAX server should distribute the query only to selected base stations
instead of flooding the query to all base stations. They specifically
mention the possibility to utilize a “Bloom filter for each base station
that is updated periodically, and can efficiently rule out all base stations
that have no possibility of having the item.” Such a filter would be
maintained by the MAX server [126]. Note that a Bloom filter does
not return false negatives, i.e., results would still be complete as long
as there is no mobility of the objects involved.

Microsearch [127] is search engine for embedded devices, which is tai-
lored to the limited resources of such devices. Similar to desktop search
engines like Mac OS X Spotlight12 or Google Desktop13, Microsearch
indexes local data and answers queries with a ranked list of results.
The use case presented in [127] is a small embedded device running

12http://support.apple.com/kb/HT2531
13http://desktop.google.com (discontinued)

http://support.apple.com/kb/HT2531
http://desktop.google.com

64 Chapter 2. Searching the Physical World in Real Time

Microsearch which is attached to a binder holding several documents.
The device itself does not gather information by itself using sensors,
instead it requires the user to initially upload content and metadata.
Such metadata consists of a list of tuples (term, value), where term is
a searchable term and value specifies its weight. Note that for text-
based content, this data may be extracted automatically. The user can
then search the contents of the binder by querying the attached node
with a list of keywords and the number of results k he is interested
in. Microsearch will then return a ranked list of the top k results, i.e.,
matching documents in the binder. The work specifically addresses the
requirements of an embedded search engine not only with respect to the
limited resources of embedded devices but also with respect to security
issues. The author suggest that Microsearch should be combined with
physical search engines like MAX or Snoogle (see below).

Snoogle [128] is a search engine for the physical world by the authors
of Microsearch. It allows users to search for and locate objects using
keywords. The architecture consists of three layers. On the lowest layer,
there are object sensors, which are sensor nodes attached to physical
objects. An object sensor stores metadata and information related to
the object it is attached to, e.g., a sensor attached to a CD might
store the information from its booklet. Metadata consists of a list of
keywords which have been assigned a weight. As in Microsearch, the
authors assume that object sensors will need to be manually initialized,
by having their data uploaded by a user.

On the next layer, index points (IPs) detect object sensors in their
proximity, retrieve their metadata and store it locally in an inverted
index. Likewise, IPs also update their data when object sensors change
their metadata or remove the metadata of a object sensor when it leaves
the proximity of the IP. Index points are considered to be immobile
and therefore associated with a specific location. The data acquired by
Index Points is then aggregated and forwarded over a mesh network
generated by the IPs to a Key Index Point (KeyIP), which resides on
the third layer. A KeyIP has an aggregated, global view of all object
sensors and its metadata.

Snoogle supports local and distributed queries, which are both based
on keywords. A local query restricts the search space to the objects
in the transmission range of a given IP, and is sent directly to this
IP. A distributed query is a global search that involves the KeyIP:

2.7. Related Work 65

The user’s client first directs his query to the KeyIP, which answers
which a ranked list of IPs that have objects in their vicinity that best
match the query. Based on this results, the client can then perform a
distributed search on the returned IPs to obtain the top k results. The
authors specifically address privacy and security, data compression and
optimization of data structures for flash memory.

Objects Calling Home (OCH) [129, 130] is a research project addressing
the locating of physical objects. Instead of relying on a dedicated in-
frastructure used solely for locating searched objects, OCH is based on
the existing infrastructure of cell phone networks and mobile phones.
This offers several benefits: cell phone networks are deployed globally,
mobile phones are common and usually carried along by their users (so
sensing is performed at places relevant for search), and mobile phones
could use built-in technology such as Bluetooth or Wi-Fi for detecting
tagged objects. Additionally, information from the cell phone network
or the phones itself can be used for localization.

The basic idea of OCH is to distribute a search query for locating
a well-known item among certain phones of the cell phone network.
Phones which receive the query then try to detect the given item for a
limited time. If the item is found, its estimated location is then returned
as an answer to the search request. In order to achieve scalability,
heuristics are applied to distribute the query only to such phones, where
there is a sufficient probability of a positive answer. Such heuristics
typically mimic the strategy a human would pursue in order to find an
item he has recently lost. Examples are searching at locations where
the object was last seen, which the user recently visited, or where the
user spends a large amount of time. In order to limit the costs of a
query, it is limited both in time and in the number of messages sent for
its dissemination.

SCPS is a “social-aware distributed cyber-physical human-centric
search engine” [131], which has a scope similar to OCH. The work
addresses the search for physical objects carried by people. The basic
idea is to leverage Bayesian networks in order to predict the locations
of people (and in turn, of searched objects). The authors argue that
human mobility usually exhibits patterns, which can be predicted to a
certain extend. However, external events such as the accidental meet-
ing of a friend on the street or a change of the weather conditions may

66 Chapter 2. Searching the Physical World in Real Time

break these routines. In order to cope with such non-routine situations,
the authors try to model these in their Bayesian network, claiming that
they also take into account the social relationship between persons in
order to further refine the results. The Bayesian network presented in
the paper is rather simple and predicts the location of a person as a
discrete state, based on a time slot, and an exceptional event variable.

The architecture of SCPS consists of fixed base stations, and mobile
nodes and sensors that both communicate with their nearest base sta-
tion. The association of objects (i.e., elements that can be searched for)
and mobile nodes (i.e., people) is done either manually or automatically
by the sensors. The base stations form a distributed hash table (DHT),
which is used to store the associations of objects to mobile nodes and
mobile nodes to location predictions.

When the user starts a search for an object, the hashed object name
is used to retrieve possible holder names, which are in turn used to
retrieve possible locations. Based on these predictions, it is tried to
contact the object holders and query if they actually carry the searched
object.

Distributed Image Search [132] is a search engine for current or past
images captured by camera sensor networks. For this, sensor nodes are
equipped with a camera and deployed in the field. The user can then
pose a query by specifying an image and the system returns sensors
that captured similar images. Results are ranked according to their
similarities with the query image and only the k most relevant matching
sensors/images are returned to the user.

Searching for images in a camera sensor network poses a significant
challenge with respect to the computation, communication and energy
capabilities of such devices, since sensor nodes are usually resource-
constrained devices. In order to save resources, the authors minimize
the use of raw images. Images are first represented by 128 byte SIFT14

vectors and then further abstracted by clustering these SIFT vectors
into 4 byte visterms. Image matching can then be performed efficiently
by comparing the visterms of two images. In general, much effort of
the paper is devoted to optimize data structures that are stored in flash
memory.

A simplified description of the systems is as follows: Sensor nodes
equipped with cameras take pictures and store them in their local flash

14Scale-Invariant Feature Transform

2.7. Related Work 67

memory. The nodes also create, among other data structures, an in-
verted index linking visterms to images. The sensor network, consisting
of the camera nodes, is connected to a proxy that accepts user queries.
Once the proxy receives a query, i.e., an image, it computes its vis-
terms and distributes these to all sensor nodes. Each sensor node then
processes the query, computing a ranked list of images whose visterms
match those of the query. The sensor nodes then report back to the
proxy, which will normalize the result lists, creating a globally ranked
list of results. This final result list is then returned to the user, which
may request thumbnails of full images of results. The system does not
only support ad-hoc queries for archived images but also continuous
queries for current images.

Uddin et al. address the search for distributed, dynamic data in the
context of network management applications [133, 134]. They focus on
searching dynamic properties of network devices, such as routers with
a high CPU utilizations. The concept involves the use of distributed
search nodes which collect data from network devices and provide a
standardized interface for query processing. Queries are distributed
to all search nodes, and results are aggregated among search nodes
using a spanning tree protocol. The results are ranked according to
their similarity to the query, their connectivity in an object graph, and
freshness of data. The evaluation is limited to only nine search nodes,
but the authors argue that their approach should scale to large numbers
of search nodes.

Sensor Ranking Several approaches have been conducted based on our
concept of sensor ranking. In [135], a new approach for prediction mod-
els to be used with our search engine is presented. There, prediction
models based on Bayesian network are created, considering the corre-
lations between pairs of sensors. This concept exploits the fact that
co-located sensors often show correlated output. Truong et al. utilize
sensor ranking with fuzzy sets for prediction models [136]. They con-
sider content-based sensor search based on queries which specify a range
window for sensor readings. This approach does not rely on the period-
icity of sensor readings. Pfister et al. introduce a holistic approach for
a search engine for a semantic Web of Things in [89]. It builds on some
of the concepts of our work, such as sensor ranking and the search for
entities with a given state. However, it extends further by leveraging

68 Chapter 2. Searching the Physical World in Real Time

concepts from the Semantic Web such as RDF and SPARQL, in order
to describe sensor semantics, define prediction models, and formulate
search queries. Additionally, the system supports the semi-automatic
creation of sensor descriptions, by detecting similar sensors (based on
work of [137]). Readings from sensors nodes are retrieved through a
HTTP gateway to CoAP over 6LoWPAN, or can be scraped live from
Web pages. The authors outline a testbed which utilizes sensors lo-
cated within an office building and at its parking lots. There, users can
either perform sophisticated queries using SPARQL or resort to simple
keyword-based search. Search results can be displayed on a map. More
details on the modeling of prediction models in RDF can be found in
[138].

Mayer et al. propose an infrastructure for the Web of Things that sup-
ports searching. It is based on a logical tree structure which reflects
the locality of involved smart things. Search queries can be limited to
a certain scope or number of results, and are resolved by propagating
them along the logical structure. Content-based sensor search is not
directly addressed, however, there is support for caching of (intermedi-
ary) results [139].

Gander, an approach for personalized search of ones immediate sur-
roundings is introduced in [140]. The key concept is the local prop-
agation of search queries by dedicated query routing protocols. This
limitation of the search space enables spatiotemporal queries to be ef-
ficiently resolved.

IoT-SVKSearch is a real-time search engine for the Internet of Things
[141]. It addresses the search for current as well as historic data, based
on spatial, temporal, value-based, and keyword-based search condi-
tions. Data from sensors is processed in a distributed index that can
be updated in real time. The results of their simulative evaluation
indicate short query processing times for content-based sensor search,
despite considering large numbers of sensors.

Benoit et al. use approaches from the semantic Web in order to en-
able the search for real-world objects matching certain static properties
[142]. An exemplary use case is the search for devices with a display
capability. Content-based sensor search is not addressed.

2.7. Related Work 69

2.7.2 Real-time Web Search Engines

During the time this thesis was developed, the concept of real-time
search on the Web gained significant momentum, also for established
search engines and social networks. This reason for this development
can be attributed to the growing importance of social networks such as
Facebook and Twitter. Users of these services can share their thoughts,
interesting links and other pieces of information in real time with friends
or even with the rest of the world. As opposed to the decentralized
nature of the WWW, such social networks are run by a single authority
which has a global real-time view on the activities of all of their users.
This removes the hardest problem for searching real-time data on the
Web, which is the inherent distribution of such data. Having a real-time
data stream comprised of all user postings, the remaining problems
are the indexing of the stream and the ranking of the results. The
largest social networks currently offer such data streams to selected
third parties [143, 144]. Of course, there are also other data sources on
the Web which are relevant to real-time search, such as news sites and
blogs.

Build around such real-time data, several new companies and prod-
ucts were created, addressing the need for up-to-date search results.
However, in the fast-paced development of today’s Web, several of these
initiatives faced significant change or went out of service. In contrast,
only few publications have been found in academic research. We sum-
marize relevant approaches in the area of real-time Web search below.

2.7.2.1 Commercial Approaches

Twitter is a so-called micro-blogging service provider and, besides
Facebook, probably the most well-known social network. Users can
not only tell the world what they are currently doing but also engage
in private or public conversations with other Twitter members. The
length of a Twitter message (denoted as “Tweet”) is limited to 140 char-
acters [145]. Twitter did not feature a search function initially. In 2008,
the company bought Summize, a search engine for Tweets and subse-
quently integrated it with Twitter’s infrastructure as Twitter Search15

[146]. Users can search in the vast number of Twitter messages using
keywords and get the latest results in real time. In March 2011, the
company claimed to index an average of about 190 million Tweets per

15http://search.twitter.com

http://search.twitter.com

70 Chapter 2. Searching the Physical World in Real Time

day and serving 1.6 billion queries per day16 [147]. Messages are pushed
to the Twitter service, where they are archived. Twitter also provides a
real-time feed of all public Twitter messages using the XMPP protocol,
called the firehose [143]. Selected partners can build applications on
top of this data stream. For example, Bing and several smaller search
engines offer real-time search based on Twitter’s firehose data.

Google, the most popular search engine on the Web according to the
traffic analysis company Alexa [148], conducted multiple approaches
to increase the “freshness” of its results. Google News, launched in
September 2002, initially provided “a continuously updated index of
news from 4,000 publications around the world.” [149]. In contrast to
Google’s Web search results, whose index was at that time updated in
months, Google News was updating its index continuously, thus return-
ing also articles published recently.

In December 2009, Google launched its real-time search feature [150],
which particularly addressed the social Web. In order to acquire real-
time data, Google partnered with content providers in order to gain
real-time access to public updates, using dedicated APIs. Google had
agreements with several social networks such as Twitter and Facebook,
for example [150, 151]. Real-time search results were not only pro-
vided by a dedicated real-time search engine17, but also included in the
search results of its “unified search”. However, Google terminated its
real-time search feature on July 3rd 2011, shortly after the agreement
with Twitter on the use of its “firehose” expired [152]. Although the
Twitter feed was just one of many feeds used for Google Realtime, it
was considered to be the most important [153]. In 2010, Google moved
to a new search index called “Caffeine” that features improved support
for real-time updates [154].

A few days before the termination of Google Realtime, the company
announced their own social network, called Google+18 [155], which can
be considered a rival to Facebook and Twitter. As of January 2012,
Google offers real-time search results from Google+ within its unified
search results.

16Note the ratio of Tweets per query.
17http://google.com/realtime (defunct)
18http://plus.google.com

http://google.com/realtime
http://plus.google.com

2.7. Related Work 71

Bing 19 is a search engine from Microsoft (formerly known as live
search and MSN search). The authors of [109] mention that the index
of the standard Web search engine was updated on a daily basis. Simi-
lar to Google, Bing also provides a search feature related to news, which
returns up-to date results from major news sources20. Bing also fea-
tured a real-time search called Bing Social21, which is based on Twitter’s
firehose and a dedicated API from Facebook [156]. It returns real-time
search results from both of these social networks.

Technorati was a real-time search engine for blogs. In 2009, the site
claimed that “Technorati.com indexes millions of blog posts in real time
and surfaces them in seconds.” [157]. However, the business focus
of Technorati has shifted since then and the site is now focussing on
advertising. Originally, users were able to provide a hint (signal) to the
search engine when they updated their blogs, using a dedicated API
call – a so-called RPC ping. However, the site noted that it was no
longer using these hints, claiming that “more than 90% of the pings we
received were spam and non-blogs” [158].

OneRiot 22 (formely me.dium23) was a real-time search engine that
originally indexed Web pages visited by users which had a dedicated
browser plug-in installed [159]. It was later extended to also include
pages shared by users of social community sites such as Digg and Twit-
ter [160, 161]. The focus was to return search results that are currently
considered relevant or popular by users of these communities [160, 161].
The service was shut down after OneRiot was acquired by Walmart in
September 2011 [162].

Others There exist several other real-time search engines for the Web,
some of the are listed below. Topsy24 is a real-time search engine by
Topsy Labs25 that indexes data from Twitter and Google+. Collecta26

was a real-time search engine that indexed data from various sources,
such as blogs, Twitter and Flickr. The search engine shut down in

19http://www.bing.com
20http://www.bing.com/?scope=news
21http://www.bing.com/social/ (defunct)
22http://www.oneriot.com
23http://me.dium.com
24http://topsy.com
25http://topsylabs.com
26http://collecta.com

http://www.bing.com
http://www.bing.com/?scope=news
http://www.bing.com/social/
http://www.oneriot.com
http://me.dium.com
http://topsy.com
http://topsylabs.com
http://collecta.com

72 Chapter 2. Searching the Physical World in Real Time

January 2011 [163]. Further real-time search engines include 48ers27,
Icerocket28, CrowdEye29 (defunct) and Scoopler30 (defunct).

2.7.2.2 Academic Approaches

The problem of delivering accurate results despite the dynamic of the
Web was identified early. The research mostly focussed on on crawling
strategies.

Cho and Garcia-Molina addressed this problem in [164]. They ran an
experiment in order to gain insights on the dynamics of the WWW, and
based on the data, the were able to model the changes of Web pages as
a Poisson process. They also estimate the optimal revisit frequency of a
page with respect to its change frequency, which is somewhat counter-
intuitive: The authors divide pages into those that are updated at a
low frequency and those that are updated at a high frequency. For the
first group, the freshness benefits if a crawler visits a page more often
as it changes more often. However, for pages that are updated at a
high frequency, it is beneficial to the overall freshness of the index to
visit them less often as they change more often. This can be explained
by the limitation of bandwidth of a crawler, which should not be exces-
sively spent on revisiting highly dynamic pages that may be outdated
as soon as they are included in the index. The authors also outline an
incremental crawler that aims to improve the freshness and quality of
its local collection.

Edwards et al. suggested a Web crawler which does not rely on prede-
termined models, instead it dynamically adapts to the observed change
rates of the Web pages [165].

Risvik and Michelsen studied the aspects of Web dynamics with respect
to search engines [108]. At that time, both authors worked at FAST and
provide interesting insights on the architecture of the company’s Web
search engine AlltheWeb31. To increase the freshness of the results,
they consider not only an optimization of the general crawling strategy

27http://www.48ers.com
28http://www.icerocket.com
29http://www.crowdeye.com
30http://www.scoopler.com
31http://www.alltheweb.com (now part of Yahoo!)

http://www.48ers.com
http://www.icerocket.com
http://www.crowdeye.com
http://www.scoopler.com
http://www.alltheweb.com

2.7. Related Work 73

but also utilizing different crawling strategies for different sites (e.g.,
for news sites). They also list different forms of cooperations with
content providers in order to increase the freshness of the index: (1)
Passive notification by having each site serve a central meta-file which
may help to optimize the crawling, (2) active notification of the search
engine whenever the site was updated, and (3) a combination of the
first two approaches using proxy server. Interestingly, both (1) and
(2) are common today. (1) has manifested in the SiteMaps de-facto
standard [166] or in the form of ATOM [167] or RSS [168] feeds. (2)
is the “pinging” of search engines using a Web service call in order to
notify them about updates, mostly in the context of blogs. Finally,
they also address the processing of updates at the search engine by
suggesting several indices with different update frequencies.

Ikeji and Fotouhi proposed an “adaptive real-time Web search engine”
in 1999 [113]. Instead of using an index, this search engine is crawling
the Web for each search request. To submit a query, the search term,
a list of Web pages that act as starting points for the crawler, and
a time limit have to be specified in a query language that is similar
to SQL. As soon as the search query is submitted by the user, the
search engine starts to crawl the Web, beginning at the start points.
Pages which need to be crawled are assigned a priority based on the
contents of their URL and the priority of their parent page. This is an
attempt to optimize the order in which extracted links are visited by
the crawler. Note that this solution does not meet our definition of a
real-time search engine (Sect. 2.1.4), as the computation of the results
may require a considerable amount of time.

Watters follows a similar approach in his master thesis [114], which
also restricts the search space to a small portion of the Web. As for
[113], the time required to answer a search query can not be considered
real time.

2.7.2.3 Discussion

An approach used in all of the outlined examples is the limitation of the
search space: Twitter has strict limits not only on the allowed size of
messages but also on the allowed publishing rate of messages. OneRiot
focuses on a small subset of the Web, which is currently popular among

74 Chapter 2. Searching the Physical World in Real Time

users of social networks. Technorati only considerd blogs, which are a
small subset of the Web. A second approach is to utilize user-specified
hints, which may affect the order and frequency in which sites are re-
indexed. This is performed by OneRiot and was utilized in a simpler
variant by Technorati. Finally, Twitter is using a centralized approach
– all data is stored at Twitter’s servers, thus the service has a real-time
view of all published messages.

While the concept of Twitter and its search engine could also be uti-
lized to publish sensor readings and to search for them in real time, we
question that this concept, which requires a central instance aware of all
current Twitter messages, will scale to dimensions of an expected Web
of Things. When compared to human-generated messages, the volume
of sensor-generated content is expected to become magnitudes higher,
both in the number of sensors and in the frequency of updates. For
the same reason, we doubt that the concepts utilized by OneRiot and
Technorati are appropriate to enable a real-time search in the upcoming
Web of Things.

2.7.3 Other

Global Sensor Networks (GSN) GSN [124, 169, 170] is a system for
the Internet-based interconnection of heterogeneous sensors and sensor
networks, supporting homogeneous data-stream query processing on
the resulting global set of sensor data streams.

The key abstraction in GSN is a virtual sensor that represents either
a physical sensor or a virtual entity that takes as input one or more
data streams from other virtual sensors and processes them to produce
a single output data stream. Virtual sensors can also be based on the
output streams of existing virtual sensors. Each virtual sensor in GSN
has a unique identifier and can be annotated with meta data (i.e., key-
value pairs) to describe the sensor. Such meta data may be used, for
example, to specify the location or the type of sensor.

Virtual sensors themselves are hosted in a so-called GSN container,
which is essentially a process executing on a computer connected to the
Internet. These GSN containers also form a peer-to-peer overlay. To
discover a virtual sensor, one can either specify the identifier of the vir-
tual sensor being sought, or provide meta data describing the sensor. In
the latter case, a keyword search is performed to find matching sensors.
The actual discovery is performed using a peer-to-peer approach. The

2.7. Related Work 75

meta data for the virtual sensors is stored in a peer-to-peer directory,
supporting scalable discovery in large networks [170].

A key limitation of the sensor discovery mechanism in GSN is that it
does not support the search for sensors based on their current readings.
While data stream processing could be used to find sensors with a
given current output value, this would require communication with all
discoverable sensors, which would certainly not scale up for use with
large numbers of sensors.

SenseWeb, a research project from Microsoft Research, is a platform
for collaborative sensing [171, 172, 173]. Users can stream their sensor
readings to sensor gateways, which register with the SenseWeb core
and provide a SOAP-based API for retrieving sensor information and
readings. SenseWeb maintains a central repository of sensor meta data.
However, sensor readings are not streamed from the sensor gateways
to a central sink. SenseWeb only supports the search for sensors by
static meta data such as the name of the sensor or its publisher, but
not by their current readings. In addition to keyword-based searches of
the meta data, geospatial queries are supported for discovering sensors
in a certain geographical region typically described by a polygon [173].
The SenseWeb API allows users to create applications based on real-
time sensor data. An example application that provides a geographical
representation of registered sensors on a map called SensorMap32 is
already provided.

Christophe et al. also address the problem of search in the Web of
Things [142]. They focus on semantic descriptions, suggesting several
ontologies for connected objects but also address the problem of match-
ing different ontologies. Effort is also spent in predicting the context
of a search request, i.e., whether a human or a program initiated the
search. While they claim that humans require “quick results”, they do
not elaborate on how this can be achieved at a global scale. Real-time
search for dynamic content such as sensor readings is not addressed.

Pachube 33 was a commercial service platform that is “built to manage
the world’s real-time data” [174]. Users could send their real-time data
to the platform and create triggers that fired when certain conditions

32http://www.sensormap.org/sensewebv3/sensormap/
33http://www.pachube.com

http://www.sensormap.org/sensewebv3/sensormap/
http://www.pachube.com

76 Chapter 2. Searching the Physical World in Real Time

were met (e.g., a threshold was passed). Pachube published the data
feeds in various formats and also provided different visualizations for
this data, such as a dial. Feeds could be searched by “text, tag, user-
name or location coordinates” [175], however, was not possible to search
for data streams based on current sensor readings. Pachube was later
re-branded as Cosm and Xively, along with a shift of business focus.

Traderbot 34 was a financial real-time search engine which enabled
users to find stocks that matched their criteria in real time. Trader-
bot claimed to be able to search “over millions of real-time trades on
10,000+ stocks” [176]. It went out of service in 2007. Archived versions
of the web pages are available35 which lists - among several other pos-
sibilities - the search for stocks based on price range, price momentum,
and volume range as possible queries. Users could also create complex
custom searches such as “Find all stocks between $20 and $600 where
the spread between the high tick and the low tick over the past 30 min-
utes is greater than 3% of the last price and in the last 5 minutes the
average volume has surged by more than 300%.” [176], for example.

2.8 Summary

In this chapter, we presented a novel approach for searching in dynamic,
distributed data in real time, and its application to the Web. In contrast
to existing approaches, our prototypical search engine for the physical
world is based on an open architecture which does neither require a
global view of the world’s state nor a limitation of the search space,
while still providing accurate results in real time. Similar to today’s
Web search engines, our solution is based on publishing data on the Web
and making it searchable. Users can then search for physical entities
with a certain current state, e.g., for restaurants that are currently well-
attended and quiet. Just like for today’s Web search, data publishers do
not need to register with a search engine in order to make their content
searchable, resulting in the same loosely coupled approach that enables
multiple search engines to leverage published data.

At its core, our approach is based on the assumption that sensor-
generated data, while highly dynamic, may follow certain patterns that
make it predictable, at least to a certain degree. For example, the

34http://www.traderbot.com (defunct)
35http://wayback.archive.org/web/*/http://www.traderbot.com

http://www.traderbot.com
http://wayback.archive.org/web/*/http://www.traderbot.com

2.8. Summary 77

occupancy rate of a restaurant may exhibit certain patterns during the
course of a day, a week, and a year. Building on this assumption, we
utilize prediction models that calculate probabilities for future sensor
data, based on a sensor’s past readings. These models are used by our
search engine in order to find physical entities that currently feature a
searched state, in real time.

We evaluated our concept using a real-world data set featuring data
from a bicycle sharing system over the course of several months both
conceptionally in Matlab as well as practically using a prototypical im-
plementation called Dyser. Our results indicate that even simple pre-
diction models can significantly reduce the overhead and time required
to find a sufficient number of results. Using Dyser, we also showed how
our concept can be applied to today’s Web.

Finally, our approach could possibly also be used to “search the fu-
ture”. Given that prediction models work sufficiently well, they could
not only be used to reduce the overhead for searching for entities by
their current state, but also to find entities which are most likely show-
ing a certain state at a future point in time.

3 A Framework for the Web of

Things

In the Web of Things, sensors and actuators play a central role, as they
constitute the physical interface between the virtual and the physical
world: They enable us to capture and change aspects of the physical
world, possibly in real time. Unfortunately, the current Web architec-
ture does not address some of the key features that are often required
when interacting with sensors and actuators, in particular:

• The historization of past sensor readings as well as actuator values.
The former is often required as a basis for queries, and the latter
may be required for debugging purposes.

• The support for notifications based on specified events. This ob-
soletes the need for continuous polling of certain resources in order
to detect events and enables reaction in real time upon the occur-
rence of such events.

• The support for simple queries, which enables users to analyze
and export data such as past sensor readings.

• The ability to compose and run simple application scenarios in a
decentralized way.

We address these issues by suggesting new primitives that can be used
to extend today’s Web architecture. We implement these primitives in
a prototypical framework and evaluate them using several application
scenarios. The features of the framework could be distributed among
connected devices but also among different cloud computing services.
This approach does not advocate a central hub but strives to extend
today’s inherently decentralized Web architecture.

Parts of this chapter have been published in [177, 178, 179].

80 Chapter 3. A Framework for the Web of Things

3.1 Background

In this section, we provide some background on aspects relevant to a
framework for the Web of Things.

3.1.1 Sensors, Actuators, and the Web

In the emerging Web of Things, special emphasis is put on sensors and
actuators, as they enable the automated interaction of the virtual and
the physical worlds.

Sensors may automatically capture the state of their environment,
possibly at high sampling rates and independently from user requests.
Sensor readings that are published on the Web may be interpreted by
people in order to gather information about past and current aspects of
a given environment. For example, maps of noise pollution data could
assist in the decision process of finding new accommodations, data from
CO

2

sensors can indicate whether a room should be ventilated, and
even trivial question such as “Did I lock the garage door?” could be
answered. This resembles the traditional use case of the Web being used
to share information, which is then “manually consumed” by humans.
Besides this informative aspect, sensors are used in order to automate
processes. For example, lights can be switched automatically when
presence is detected, an alarm can be set when smoke is detected, and
the intensity of a ventilation system can be controlled according to the
current concentration of CO

2

. For this, sensor readings or data deduced
from sensor readings need to be automatically processed.

Actuators enable the manipulation of aspects of their physical envi-
ronment with high precision and often little latency. Exposing actua-
tors on the Web enables users to remotely control certain parts of the
physical world. Naturally, access to actuators is usually restricted to
a small number of authorized persons, as their actions have physical
consequences. Examples of manual control are the remote control of
lights and shades in building automation, pre-cooling or pre-heating of
cars, and unlocking of doors. Of much greater potential is the auto-
matic control of actuators over the Web by services. For example, an
attendance simulator service could automatically switch on the lights
and control the blinds when the occupants of a flat are on vacation in
order to avoid burglary. Such a service could be offered by a third party
and work with multiple and heterogeneous home automation systems,
as long as they provide an interface on the Web.

3.1. Background 81

Combining sensors, actuators, and services available on the Web us-
ing software enables the programming of portions of the physical world,
and in fact, its automation. Application logic that was previously hard-
wired can now be implemented in software that may be executed on
an arbitrary Internet-connected computer. A simple example is the
use of a light switch to control a lamp. Traditionally, the power sup-
ply of the lamp is directly and mechanically controlled by the light
switch. In modern building automation systems, light switches are
sensors that deliver readings that are then processed by automation
software that triggers the according actuators, i.e., switching on the
configured light. Providing the application logic in software has the ad-
vantage that changes of the functionality (such as switching on an addi-
tional light) require less effort and are therefore quicker and cheaper to
realize. Such systems usually rely on dedicated protocols that all com-
ponents have to understand, such as KNX1, and are tightly coupled.
In contrast, in a Web of Things, these three components (light switch,
control application, and light) do not need to be tightly integrated.
In our example, light switches and lights could be based on different
communication standards, as long as they provide a Web interface to
their functionality. The automation software may be provided by a
cloud service or run on a local computer and utilize the exposed Web
interfaces of the light switch and the lamp to provide the configured
functionality. Additional functionality could be implemented not only
by extending the existing automation software but also by other ap-
plications. For example, switches could be reconfigured to control the
blinds, and lights could be used to signal an emergency by flashing. In
summary, this introduces a high degree of flexibility, which eventually
turns the physical world into a platform for different applications. Note
that there is some similarity to the concept of so-called mash-ups on
the Web, which provide an additional value by integrating data from
multiple sources available on the Web into a single view that is easily
comprehensible to the user.

Such applications may range from the equivalent of plugging in a
cable to connect two devices to complex automation scenarios, which
strive to make parts of our environment “smart”. We assume that in
most cases, these applications need to be tailored to specific needs.
While there surely is common functionality, different configurations are
required for different installations.

1http://www.knx.org

http://www.knx.org

82 Chapter 3. A Framework for the Web of Things

The examples in this section have been chosen deliberately to indi-
cate that the Web of Things is expected to have a profound impact
on our everyday life and is not merely a tool for experts of certain
scientific domains. Unfortunately, the existing Web architecture lacks
specific features that arise when working with sensors, actuators, and
automation scenarios.

3.1.2 Function-centric vs. Data-centric Access

In today’s Web, two fundamentally different paradigms of modeling the
access of a remote system are used.

In the function-centric approach, accessing remote resources is mod-
eled as a function call (remote procedure call, RPC). For example, to
retrieve the current reading of a sensor, one would call

y = getSensorReading(531).

This would execute a remote function called getSensorReading for the
sensor with identifier 531 and return the result in the local variable y.
In the Web, a popular implementation of this approach is provided by
SOAP [63], a protocol that runs on top of HTTP (i.e., it utilizes HTTP
as a transport layer).

In a data-centric approach, access to a remote resource is modeled as
accessing a remote variable. The four basic operations of data access
are create, read, update, and delete (abbreviated as CRUD), which
are implemented by HTTP’s standard methods POST, GET, PUT, and
DELETE. For example, to retrieve the current reading of a sensor, one
would call

y = GET /sensors/531/reading.

This would retrieve the contents of the remote variable /sensors/531
/reading and assign them to the local variable y. In the Web, this
approach is implemented by HTTP itself. The underlying principle of
HTTP is denoted Representational State Transfer (REST) [65].

3.1.3 Application Silos

There is a current trend to provide an API for physical entities on
the Web in order to monitor, manipulate, and even program them and
their physical environment through their built-in sensors and actua-
tors. Unfortunately, the lack of standards in this area has lead to a

3.1. Background 83

Applica'on*A*

API*A*

Applica'on*B*

API*B*

Applica'on*C*

API*C*

Figure 3.1: Vertical Application Silos.

large diversity of such interfaces, in functionality as well as syntax and
semantics. The APIs are usually provided as a Web service by the
manufacturers of such products. This leads to vertical application si-
los, where different APIs are exposed for each product or manufacturer.
This approach is depicted in Fig. 3.1.

While those APIs are all based on HTTP, which simplifies interoper-
ability, even simple automation operations such as if/then rules require
programming skills and, more importantly, an additional server for the
code to run. In the above example, assume the user wants to link a
light switch and a lamp, which are both managed by different systems.
In this case, he has to write a program that interfaces both the API of
the light switch and that of the lamp and deploy it on a server. This is a
significant effort for a very simple control scenario that is the analogue
of running a cable.

3.1.4 Central Hubs

Another approach of exposing things on the Web is to use dedicated
hubs that can be used by a large variety of different physical entities
and provide a consistent interface, for both users and third-party ap-
plications. These hubs may provide additional functionality such as
support for different data visualizations, data analytics, and the com-
position of application scenarios. Things may either connect directly to
the APIs of such hubs, or hubs may include physical entities through
the APIs provided by their application silos. Fig. 3.2 illustrates the

84 Chapter 3. A Framework for the Web of Things

!"#$%$

&'($%$

!"#$&$

&'($&$

)*+,-$+../01+23,45$)*+,-$+../01+23,45$

Figure 3.2: Central Hubs.

concept.
While this concept can significantly simplify the effort for the inter-

action with physical entities over the Web, it does not leverage the
Web per se for the creation of application scenarios. The features are
provided by the hub, which may be a proprietary application, and the
application logic does not need to be exposed on the outside. Interact-
ing with devices that are not under the control of the hub may result
in the same problems that arise with application silos. In this scenario,
the Web is not used as a platform for things but just hosts another
Web application.

3.2 Problem Statement

We argue that both application silos and centralized hubs do not fully
utilize the potential of the Web. Application silos usually lack certain
functionality required to compose application scenarios, while central
hubs may provide this functionality but hide the implementation details
of realized application scenarios within their system.

The “traditional” Web generates much of its value by using hyper-
links to refer to relevant content as well as to syndicate and render
such content in a single Web page. Content may stem from arbitrary
parties and be under control of different authoritative domains. Users
can inspect the source files of Web pages in order to learn about the
techniques used behind the scenes.

3.2. Problem Statement 85

!"#$%%&'()*+,-.,'/

!"#$%%&,)012,&-.,'/

Figure 3.3: The Web as a Platform.

Similarly to the traditional Web, we strive to provide basic func-
tionality required for a Web of Things without the need to realize such
scenarios in a single authoritative domain. Additionally, the implemen-
tation of realized application scenarios should be exposed in a similar
way as in the traditional Web, empowering the user by enabling him
to understand the working principles.

3.2.1 Requirements

Based on the background introduced, we deduce several requirements
for a framework for the Web of Things, which are listed below.

Support for Sensors and Actuators Naturally, a framework for the Web
of Things needs to provide dedicated support for sensors and actuators.
These should be “first-class citizens” of the framework, and it should
be simple to integrate new sensors and actuators with the framework.

Support for Historical Data The framework needs to support version-
ing of resources. This requirement stems in particular from the need
to support sensor readings, which can be represented as resources. For

86 Chapter 3. A Framework for the Web of Things

sensor readings, keeping track of past values is important for determin-
ing context, visualizing past readings, and correlating readings with
other data, for example.

Subscriptions and Push Notifications The current Web is still mostly
based on polling. However, when working with sensor readings, it is
impracticable to rely on polling, as it would generate a large communi-
cation overhead, does not scale to the expected size of a Web of Things,
and does not provide real-time updates. To monitor sensor readings for
changes, subscriptions to resources and a push-based notification mech-
anism are required.

Decentralized Architecture Instead of relying on a central hub that has
a global view of all connected sensors and actuators, we argue that a
framework for the Web of Things needs to be able to run under different
administrative domains while those instances are still able to interact
with each other.

Support for Queries (Filtering and Expressions) It should be possible to
run simple queries on current and past sensor readings. Example use
cases include retrieving the last 5 minutes of sensor data or checking
whether a sensor has read a certain value during a given time period.

Support for the Composition of Simple Application Scenarios Since we
expect that controlling actuators based on the current readings of a set
of sensors will be a common task in the Web of Things, a framework
should feature built-in support for the composition of simple application
scenarios, such as linking sensors and actuators.

Support for Existing Web-related Infrastructure Since there is already
a large infrastructure on and around the Web, such as Web services,
resources featuring sensor readings, and applications interacting with
Web resources, a framework for the WoT needs to be able to leverage
such existing infrastructure to a large extent.

Access Control As for the existing Web, the access to certain resources
needs to be restricted. This is particularly important for the Web of
Things, as (1) resources interact with the physical world and (2) a

3.3. Approach 87

central element of the Web of Things is to expose a large variety of
physical entities as resources on the Web. Unauthorized access to a
sensor could pose a privacy breach, while unauthorized access to an
actuator could enable an attacker to cause severe physical harm.

Traceability In addition to the ability to control access to resources, a
framework for the Web of Things is also required to monitor access to
resources. Even authorized clients may take undesired actions, and to
make them accountable, access to resources needs to be traceable.

3.2.2 Focus

The focus of this work is to provide support for basic application sce-
narios in a future Web of Things. In particular, we identified two classes
of application scenarios that we particularly want to address:

Data Syndication and Processing Scenarios Such application scenarios
address the inclusion of data from possibly multiple and heterogeneous
sources (such as sensors and services), which could be under different
authoritative domains, into third-party applications.

Simple Control and Automation Scenarios This category of application
scenarios covers applications that manipulate aspects of the physical
world. This manipulation may be triggered manually or automatically
by sensors.

While we strive to address most of the requirements listed above, our
solution does not address access control or tracability.

3.3 Approach

Instead of creating complex Web services for each specialized require-
ment, we argue that application scenarios should be composed of simple
building blocks. The flexible composition of such building blocks en-
ables the creation of a large variety of specific applications2. To this
end, we believe that exposing elements as Web resources is a beneficial
strategy for modularization, as it simplifies access and therefore fos-
ters the (re)use of such components. For this, we follow a data-centric

2A concept that has proven its benefits with Unix pipes, for example.

88 Chapter 3. A Framework for the Web of Things

approach and resort to the REST principle [65] of HTTP. URLs play
an important role in our concept – we see them as vectors through
information space [180] that contain semantic hints for the user.

3.3.1 Design Principle

In order to integrate physical entities with the Web, each physical en-
tity is modeled as a Web resource that serves as its virtual counterpart.
Just like any Web resource, it is identified by its URL and can be ac-
cessed over the HTTP protocol. Using URLs to identify physical en-
tities enables well-known operations such as bookmarking, sharing on
the Web, referencing the resource in documents, and providing “phys-
ical hyperlinks” by including them in printed QR codes. Such virtual
counterparts can have multiple representations but should always sup-
port HTML [94, 95] for the depiction in a Web browser. Physical
entities feature a set of properties that describe certain aspects of their
instance. For example, a property named productiondate could hold
the date of something’s production. Properties may also represent the
current state of an entity. A state may be internal to the entity, such
as the amount of time it was powered up, or external, such as the state
of its sensors and actuators. Retrieving the current reading of a sensor
is therefore in principle the same operation as retrieving data from an
arbitrary location on the Web. The control of an actuator is performed
by updating one ore more of its properties with desired values. This
follows, in principle, the same pattern as updating data on the Web.
All properties of the entity are modeled as separate sub-resources that
are mapped below the URL of their entity.

Note that exposing functionality as separate resources is a key princi-
ple of our approach. Having the possibility to directly address specific
variables can reduce the amount of transferred data and simplify pars-
ing. However, one is not required to access several properties of an
entity separately, as there is also a single representation that includes
all sub-resources.

On a protocol level, we utilize a data-centric approach that follows
the REST principle. We limit the use of HTTP methods to POST, GET,
PUT, and DELETE, which map to creating, reading, updating, and delet-
ing data (CRUD). Additionally, the HEAD operation is supported, which
returns a response consisting only of the HTTP headers a correspond-
ing GET response would return. A POST to a base resource creates a

3.3. Approach 89

new resource whose URL is returned in the Location: header of the
response. PUT updates an existing resource which is specified by the
supplied request URI and stores the enclosed data, or it can also be
used to create a new resource at a specified location. DELETE removes
a specified resource from the system. For each resource, we keep both
its creation date and its last modification date. In contrast to HTTP-
based protocols such as WebDAV [181], we do not introduce additional
HTTP methods, in order to keep the system simple and compatible to
a large number of clients.

3.3.2 Typed Resources

All of the resources provided by our framework are explicitly typed.
The resource type is analogous to data types in programming languages
and defines the functionality that is offered by our framework for a given
resource. Resource types are identified by URLs and included in the
headers of an HTTP request or response, specified by a header called
Resource-type3. The resource type is orthogonal to the well-known
content type, which specifies only the type of representation of the
resource.

3.3.2.1 Atomic Types

Atomic types are data types that do not contain other data types. We
consider the following atomic types:

Simple Type This is the basic atomic data type that is intended to hold
any value that can be understood by users when rendered as string. As
such, it resembles a primitive data type in programming languages.
Boolean values, numbers, and plain text are all examples that can be
stored in a resource of simple type.

Reference Type This type stores a URL. It resembles pointers known
from programming languages or aliases known from file systems by redi-
recting access to another resource. This is implemented by returning
the HTTP status code 307 (Temporarily Redirected) and the stored
value in the Location header when content is retrieved using a GET re-
quest. Browsers and HTTP libraries usually automatically follow this
redirection.

3Note that such a header was proposed several years ago, but the idea did not catch on [182].

90 Chapter 3. A Framework for the Web of Things

1 {
2 "temperature":
3 {
4 "current": 9.2,
5 "target": 6.0
6 }
7 "open": true
8 }

(a) http://fridge.example.net/

1 {
2 "temperature": "http://fridge.example.net/temperature",
3 "open": true
4 }

(b) http://fridge.example.net/?level=1

Figure 3.4: Retrieving the properties of an object at varying hierarchical depths.

Binary Data Type Similar to a BLOB4 in SQL [110], this data type is
intended for storing binary data. Since the format is unknown to the
framework, it cannot provide features that depend on the interpretation
of its content (e.g., different representations).

Note that for atomic types, we somewhat relax our previous definition
of POST and PUT – both can be used to update atomic values.

3.3.2.2 Objects

The object type is the basic element of representing physical (and also
virtual) entities. As outlined in Sect. 3.3.1, physical entities may con-
tain a number of properties. Each property is directly addressable, and
its URL is constructed by appending its name as a new segment to the
URL of its parent. Properties can be structured hierarchically, so the
parent may be either an object or another property.

Properties are associated with their parent elements by sharing parts
of their URL not only syntactically but also semantically: When the
representation of an object is retrieved using a GET request, all its
properties are included. As properties can be hierarchically structured,
this creates a tree structure that is then rendered in the requested
format. The number of hierarchical levels that should be returned in
the response can be specified using the URL parameter level. Elements
that exceed the hierarchical level or cannot be serialized in the given
format are included as reference. An example of this concept is shown

4Binary Large Object.

http://fridge.example.net/
http://fridge.example.net/?level=1

3.3. Approach 91

1 {
2 "temperature":
3 {
4 "current": 9.2,
5 "target": 6.0
6 }
7 "open": true
8 }

(a) http://fridge.example.net/

1 {
2 "current": 9.2,
3 "target": 6.0
4 }

(b) http://fridge.example.net/temperature

1 9.2

(c) http://fridge.example.net/temperature/current

Figure 3.5: Addressing an increasingly specific part of an object.

in Fig. 3.4. Of course, this concept also works at deeper levels of the
property tree.

In order to address an increasingly specific part of the object’s proper-
ties, one can navigate along the URL of the object, down to the specific
property. There is some analogy to the refinement of a search query,
which also results in increasingly specific results. See Fig. 3.5 for an
example. Note that this concept can be used not only to retrieve but
also to update properties of an object, using the PUT method.

This flexible concept of addressing parts of an object’s properties can
ease development and increase performance, as it obviates downloading
or uploading and parsing a potentially large list of properties when only
a single property is of interest.

Object resources are available in the HTML, JSON and Atom for-
mats.

3.3.2.3 Collections

Supporting collections of values (such as sensor readings) is an impor-
tant aspect of a framework for the Web of Things. For this, we support
a collection resource type. It represents a set of items and can contain
resources of any type. Resources are added to the collection by POSTing
them to the collection URL, which will return the newly created URL

http://fridge.example.net/
http://fridge.example.net/temperature
http://fridge.example.net/temperature/current

92 Chapter 3. A Framework for the Web of Things

of the item in the Location header of the HTTP response. Items of
a collection can be fetched, updated, and deleted using GET, PUT, and
DELETE with the item’s URL. GET and DELETE can also be used on the
collection URL.

When an item is added to the collection, it is assigned an identifier
that can be used to uniquely address the item within the context of
the collection. The resource of each item in a collection is modeled as
a sub-resource of the collection URL by adding a segment containing
the identifier of the item. For example, when adding the URL

http://mystuff.example.net/officekeys

to the collection

http://drawer.example.net/contents,

it could return

http://drawer.example.net/contents/23

as the URL for the item in the collection.
There is also an index-based access pattern for the items of a collec-

tion, based on the order of their creation, starting with the index 1. To
be able to differentiate between identifier-based and indexed-based ac-
cess, indices are prepended by the term “i:”. For example, the second
element added to

http://drawer.example.net/contents

can be addressed as

http://drawer.example.net/contents/i:2.

This enables the addressing of elements of a collection relative to the
first inserted element. In order to enable the addressing of elements
in a collection relative to the last inserted element, the keyword last
is supported as a valid index referring to the last element added to a
collection. For relative addressing, it is possible to subtract an integral
number (last� n). For example, the penultimate item that was added
to a drawer could be identified by

http://drawer.example.net/contents/i:last-1.

Collections also feature a dedicated property named count, which rep-
resents the number of included items. To stick with our example of a
drawer, the URL

3.3. Approach 93

http://drawer.example.net/contents/count

would represent the number of contained items.
A collection can be represented in the HTML, JSON, ATOM, CSV,

and TXT formats. Additionally, a representation in the iCalendar [183]
format is provided, where each event corresponds to an item in the
collection, starting at its creation time and lasting until the creation
time of the next item. This provides a convenient method to include
time-series-based data (such as sensor events) in calendar applications
(see Sect. 3.3.4).

Collections support numerical sensor readings by offering a graphical
representation of their values, ordered by their creation date. Addi-
tionally, the built-in functions min, max, avg, and sum can be used
on collections of numerical values to return the minimum, maximum,
and average value and the sum of all values. This is achieved by ap-
pending the function name as an additional segment to the URL of the
collection. For example, a collection of temperature readings identified
by

http://sensors.example.net/temperatures

can be used to return the minimum temperature reading by requesting

http://sensors.example.net/temperatures/min.

3.3.3 Meta-URLs

Resources are often intimately connected with each other. For example,
the history of a resource is intrinsically tied to the original resource.
To this end, we introduce the Meta-URL concept to access such meta-
resources of a given resource by appending a well-defined term to the
URL of the base resource, separated by the delimiter @, which acts as
an escape character.

For example, by appending the term @history to a given URL, we
will address the list of past versions of the resource denoted by the base
URL. In our use case,

http://myhome.example.net/lamp/power@history

will provide the history of

http://myhome.example.net/lamp/power,

94 Chapter 3. A Framework for the Web of Things

i.e., the usage history of the lamp.
This approach allows users to instantly deduce the Meta-URL from a

given base URL and put it to use (for example, in a Web browser). In
our framework, Meta-URLs are used for accessing version history and
manipulating subscribers of a resource, which is discussed in the next
sections.

3.3.4 Versioning of Resources

When working with sensor readings, it is often essential to be able to
access historic readings of a given sensor. For example, one might be
interested in the maximum reading of a given day or plot the readings
of the last hour. The historization of data is thus an important aspect.

For that reason, we provide a generic approach for the versioning
of resources: Each resource that is managed by our framework keeps
track of its past values in a separate resource, which is a collection in
type. This resource is identified by appending the term @history to
the URL of the base resource, creating a Meta-URL. Since the history
is a standard collection, it provides all the functionality introduced in
Sect. 3.3.2.3. Versioning in our frameworks is a generic approach that
is not limited to numeric values but can be used with arbitrary data.
For example, the historic data of a temperature sensor that is identified
by

http://sensors.example.net/temperature

can be accessed at

http://sensors.example.net/temperature@history.

Its first recorded temperature can be accessed at

http://sensors.example.net/temperature@history/i:1,

its last recorded temperature at

http://sensors.example.net/temperature@history/i:last.

3.3.5 Observation of Resources

A key mechanism to enable composition of components is to inform
a component about state changes (i.e., events) in another component.
This is realized as a simple publish/subscribe mechanism. Similar to

3.3. Approach 95

Switch'1'

/state& true&

/state@observers&

h.p://switch1.example.net&

"h.p://light1.example.net/power"&&
...&

Figure 3.6: Subscribing to changes of a resource is performed by adding an URL
to the collection of its observers.

Light&1&

/power' false'

h-p://light1.example.net'

Switch&1&

/state' false'

h-p://switch1.example.net'

"false"'

Light&1&

/power' true'

h-p://light1.example.net'

Switch&1&

/state' true'

h-p://switch1.example.net'

"true"'2.'

1.'

Figure 3.7: On changes of a resource’s value, all subscribed resources are updated
with its new value. This can be used to connect components (in this
example, a light switch and a light) and forms the basis for the compo-
sition of application scenarios.

the concept of webhooks [184], our eventing mechanism is based on
HTTP callbacks, where a URL registered with a specific event is noti-
fied as soon as this event occurs.

In our approach, an event is always the change of data identified by
a Web resource. Observable resources are resources that support sub-
scriptions to changes in their associated data. Observers are resources
that are subscribed to one or more observable resources. Note that
any resource that supports the POST operation may act as an observer
and that multiple observers may be subscribed to a single observable
resource. As soon as the data of an observable resource changes, all reg-
istered observers are notified by a POST request5 sent to their respective
URLs. For each observable resource, there is an associated resource of
type collection that represents the list of registered observers. The URL
of this collection is a Meta-URL, which can be deduced by appending
the term @observers to the URL of the observable resource. Using a
collection of type resource for the list of observers provides the same
functionality as specified in Sect. 3.3.2.3. In particular, a new subscrip-

5To increase interoperability, we currently resort to POST instead of using the more appropriate
PUT.

96 Chapter 3. A Framework for the Web of Things

tion can be performed by simply performing a POST request containing
the URL of the observer on the list of observers (see Fig. 3.6). Like-
wise, subscriptions can be removed by performing a DELETE request for
the corresponding entry. It is also possible to retrieve the list of all
observers using a GET request on the list.

For example, consider an observable resource which reports the state
of a door,

http://myhome.example.net/frontdoor/open.

As soon as the door is opened, the data associated with this resource
changes from “false” to “true”, and all registered observers are notified.
The list of observers for this sensor can be accessed at the Meta-URL

http://myhome.example.net/frontdoor/open@observers.

Notifications materialize as POST requests to the subscribers, contain-
ing the updated value of the resource that triggered the notification in
the payload. For the resource types simple and reference, the updated
value is passed directly in the payload. For the resource types binary,
object, and collection, a permanent URL identifying the value that
triggered the notification is passed in the payload. This is to reduce
the overall amount of transferred data, as the subscriber might not act
upon the updated value by itself, but instead hand it over to the next
component. The approach is comparable to passing variables in func-
tions of popular programming languages, where variables can be passed
to a function by value or by reference.

Let us assume that our above example of a door located at

http://myhome.example.net/frontdoor/

is actually of resource type object and that “open” is just one of its
properties. To subscribe to any changes in the door’s properties, one
would register an observer at

http://myhome.example.net/frontdoor@observers.

As soon as the state of the door changed, a new entry in the history of
the resource would materialize, such as

http://myhome.example.net/frontdoor@history/832.

Then, notifications would be sent to all observers that included this
exact URL, referencing the entry in the history of the resource that

3.3. Approach 97

triggered the notification. Since the reference would be permanent, it
could be used at any time to access this specific value of the resource.

Observers may subscribe to multiple resources. In order to be able
to distinguish where a received notification originates from, each noti-
fication includes the Referer header, set to the URL of the observed
resource. Note that by introducing intermediary hubs (as in [185], for
example), which relay a single notification to multiple observers, we
expect the concept of HTTP callbacks to scale to large numbers of
observers and notifications.

An important aspect of our approach is that notifications pass data
using standard POST requests. This enables all Web resources that
accept POST requests and can interpret the payload format to be sub-
scribed to changes of a Web resource that is managed by our frame-
work. More importantly, this feature enables the simple composition
of resources to create basic application scenarios. A minimal example
would be the use of a sensor for direct control of an actuator. For this,
the resource representing the desired value of an actuator would be sub-
scribed to the resource of the current value of a sensor. Whenever the
sensor reading changed, a notification would be sent to the registered
resource of the actuator. For example, the power state of a lamp (a
binary actuator) could be subscribed to the position of a light switch
(a binary sensor). Each flip of the switch would generate a notifica-
tion that would be sent to the resource of the power state of the lamp,
resulting in control of the lamp by the light switch. This approach of
composing resources is not limited to sensors and actuators, but can
be used to couple arbitrary resources. Our framework also provides
support for composing more sophisticated application scenarios, which
is discussed in the next sections.

3.3.6 Representations

Besides using HTTP’s content negotiation in order to return the correct
representation of a resource to the client, we support a manual override
that allows the client to specify the requested format explicitly as part
of the URL. This has proven to be useful when inspecting resources
in a Web browser. The request format is specified by appending its
common file name extension to the requested URL. For example, to
retrieve the JSON representation for the Web resource

http://drawer.example.net/contents,

98 Chapter 3. A Framework for the Web of Things

one would request

http://drawer.example.net/contents.json.

3.3.7 Expressions

When working with sensor data, it is often necessary to pre-process or
select certain readings of a sensor. For example, one might want to test
readings against certain thresholds or select sensor readings of a given
time frame. Our framework provides support for basic preprocessing
and selection tasks, which also work in conjunction with the versioning
and publish/subscribe mechanisms introduced before.

This functionality is realized by expressions, which can be added to
the URLs of resources managed by our framework. The expression is
then evaluated based on the value of the resource, and the result is re-
turned to the caller. Expressions are not limited to resources represent-
ing sensor readings but can generally be applied to resources managed
by our framework.

3.3.7.1 Temporal Expressions

All managed resources support expressions regarding the date of their
last update. For this, we use a simple syntax that enables us to test
whether a resource was updated before or after a given point in time,
or during a specified time period. The expression evaluates a resource
as either true if the condition holds, or false otherwise. Time can
be denoted as an absolute date or relative to the current time. To
state an expression based on a resource’s last update time, the keyword
updated is appended to the URL of the resource, followed by a temporal
expression. For example,

http://fridge.example.net/temperature updated
before 01-02-2012 8:00:00,

http://fridge.example.net/temperature updated
after 01-02-2012 8:00:00, and

http://fridge.example.net/temperature updated
during 01-02-2012 8:00:00 - 03-02-2012 12:00:00

check whether the current reading of the temperature sensor was taken
before the timestamp 1.2.2012 8:00, after the timestamp 1.2.2012 8:00,

3.3. Approach 99

or during the time period between 1.2.2012 8:00 and 3.2.2012 12:006.
The keyword during can be omitted to make the expression shorter.

Instead of providing an absolute timestamp, a timestamp relative
to the current time can also be specified by denoting the number of
seconds, minutes, hours, or days relative to the current time. This is
denoted by specifying a point in time as x seconds ago, x minutes ago,
x hours ago, or x days ago. For example,

http://fridge.example.net/temperature updated
before 30 secs ago,

http://fridge.example.net/temperature updated
after 5 days ago, and

http://fridge.example.net/temperature updated
during 6 hours ago - 30 mins ago

test whether the current reading of the temperature sensor is older
than 30 seconds, was updated less than 5 days (5 ⇤ 24 hours) ago, or
was recorded between 6 hours and 30 minutes ago. For convenience, a
timespan that extends back from the current time can also be denoted
using the keyword last and a time offset:

http://fridge.example.net/temperature
updated during last 30 secs

returns true if the temperature has been updated within the last 30
seconds. This can also be shortened to

http://fridge.example.net/temperature
updated last 30 secs

since the keyword during is optional. Finally, there are special keywords
for the current day and the day before the current day:

http://fridge.example.net/temperature updated today, or
http://fridge.example.net/temperature updated yesterday.

The first example will only return true if the temperature has been up-
dated on the current day and the second example will only return true
if the temperature was updated during the day preceding the current
day.

6Note that the specification of seconds is optional.

100 Chapter 3. A Framework for the Web of Things

3.3.7.2 Expressions on Simple Data Types

Resource values that can be denoted as strings additionally support the
direct comparison to a literal. This is achieved by appending “=” (test
for equality) or “!=” (test for inequality) to the URL of the simple value,
followed by a string or a number that should be compared to the value.
The result is a textual representation of true or false. For elements
that hold a numeric value, the additional comparators “<”, “<=”, “>”,
and “>=” can be used, and they work just as in popular programming
languages. For example, the resource

http://fridge.example.net/temperature > 10

will return true if

http://fridge.example.net/temperature

is currently above 10 �, or false otherwise (the “>” sign needs to be
escaped, which is done automatically by most browsers). This way,
simple threshold checks can easily be constructed and are evaluated in
the context of the managed resource.

3.3.7.3 Expressions on Collections

Besides the basic functionality of performing temporal expressions
based on the date of their last update, collections additionally support
expressions based on their included elements.

Expressions on Included Elements Evaluation of expressions based on
collections is supported by two directives: the universal quantifier 8
and the existential quantifier 9 originating from predicate logic. To
test whether a condition holds true for all elements of a collection, the
term forall is appended to its URL, followed by the condition that
is evaluated on all of its elements. Similarly, when the term exists
is appended to the URL of a collection, followed by a condition, it
will return true if at least one element of the collection evaluates the
specified condition to be true. For example, the resource

http://fridge.example.net/temperature@history exists > 10

will return true if the fridge’s temperature has risen above 10 � at
some time in the past, and the resource

3.3. Approach 101

http://fridge.example.net/temperature@history/
forall updated after 60 days ago

will return true if all recorded sensor readings are no older than 60
days.

Filtering Included Elements Collections in our system support filtering
of their elements, obviating the need for transferring possibly large data
sets when only a few included items are of interest. Filter expressions
are constructed by appending a new segment to the URL of the col-
lection that is prefixed with “f:” and followed by the condition that
entries of the collection need to fulfill in order to be included in the
result. The result is a virtual collection that is computed on the fly
and is again of the resource type collection. Filtering can be performed
based on the contents of the included elements or based on the time
when elements were added to the collection. Filters based on conditions
of the values of contained elements utilize comparisons. For example,

http://fridge.example.net/temperature@history/f:>10.txt

will return the events when the temperature exceeded 10 �, represented
as a chronologically ordered log file with timestamps for each event.
Filtering according to temporal constraints can be achieved by using a
temporal expression as a filter criterion. For example,

http://fridge.example.net/temperature@history
/f:updated during last 15 mins

would return all elements that have been added within the past 15
minutes, and

http://fridge.example.net/temperature@history
/f:updated after 01-02-2012 8:00

would return all elements that have been added after 1.2.2012 8:00.
Since the result of a filter is a virtual collection, additional filtering can
be performed:

http://fridge.example.net/temperature@history
/f:updated during last 7 days/f:>10

would return all temperature readings of the last 7 days that exceed 10
degrees.

102 Chapter 3. A Framework for the Web of Things

Alarm&

/ac$ve' true'

h,p://fridge.example.net'

h,p://'alarm.example.net'

Fridge&

/temperature' 12'

/temperature'>'10' true'

Figure 3.8: Example of the usage of an observed expression (yellow field) to create
a control flow.

3.3.8 Observing Expressions

Observers can also be registered with expressions. This provides a
convenient method to trigger events, and in turn serves as the basis for
simple automation scenarios. For example, let us assume we want to
trigger an alarm as soon as the temperature of the fridge exceeds 10 �.
Let us further assume that the alarm can be triggered by sending true
or false to

http://alarm.example.net/active.

All we need to do is to add the URL

http://alarm.example.net/active

to the collection of observers denoted by

http://fridge.example.net/temperature>10@observers.

As soon as the temperature threshold is exceeded, the expression is
evaluated as true, which is sent to

http://alarm.example.net/active,

starting the alarm. As soon as the temperature threshold is undercut,
the expression is evaluated as false, which is sent to

http://alarm.example.net/active,

stopping the alarm (Fig. 3.8).

3.3.9 Including Unmanaged Resources

In order to be able to use features of our framework for unmanaged
resources (i.e., resources outside of our framework), we introduce a
component called poller. A poller will periodically request the value of
a specified Web resource at a given interval. The polled value is then

3.3. Approach 103

Po
lle
r&

/s
ou

rc
e(

h*
p:
//
se
ns
or
s.
ex
am

pl
e.
ne

t/
br
ig
ht
ne

ss
(

/in
te
rv
al
(

5.
0(

/v
al
ue

(
33
(

/v
al
ue

(<
(2
0(

fa
lse

(
h*

p:
//
se
ns
or
s.
ex
am

pl
e.
ne

t/
br
ig
ht
ne

ss
(

Ga
ug
e&

/p
os
i>
on

(
33
(

Li
gh
t&

/p
ow

er
(

fa
lse

(

h*
p:
//
po

lle
rs
.e
xa
m
pl
e.
ne

t/
1(

h*
p:
//
lig
ht
.e
xa
m
pl
e.
ne

t/
po

w
er
(

h*
p:
//
w
ot
.e
xa
m
pl
e.
ne

t/
ga
ug
e(

U
nm

an
ag
ed

(re
so
ur
ce
(

Po
lle
r((
m
an
ag
ed

(re
so
ur
ce
)(

M
an
ag
ed

(o
r(u

nm
an
ag
ed

(
re
ss
ou

rc
es
(

re
qu

es
t(e

ve
ry
(

(5
(se

co
nd

s(
33
(

re
qu

es
t(o

n(
ch
an
ge
(o
f(v
al
ue

(

re
qu

es
t(o

n(
ch
an
ge
(o
f(

ex
pr
es
sio

n(
(

(v
al
ue

(<
(2
0)
(

Fi
gu

re
3.

9:
E

xa
m

pl
e

of
a

po
lle

r
th

at
is

us
ed

to
in

cl
ud

e
un

m
an

ag
ed

se
ns

or
re

ad
in

gs
w

ith
in

ou
r

fr
am

ew
or

k,
in

cl
ud

in
g

th
e

us
e

of
an

ex
pr

es
sio

n
(y

el
lo

w
fie

ld
).

104 Chapter 3. A Framework for the Web of Things

Evaluator)

/input/param* 9*

/func.on* h1p://services.example.net/math/sqrt?i={param}*

/value* 3*

h1p://evaluators.example.net/1*

h1p://*services.example.net/math/sqrt?i=9*

Figure 3.10: An evaluator encapsulates calls to an external Web service and pro-
vides input parameters and result as managed resources.

provided as a sub-resource of the poller, placing it under the manage-
ment of our framework. This enables all the features of our framework
to be used on the value, including versioning, subscriptions, and ex-
pressions. Technically, a poller is an object with three properties: The
URL of the resource to be polled is stored in the property source, the
timespan between polling requests is specified in the property interval,
and the latest polled value is available in the property value. An exam-
ple of the usage of a poller is depicted in Fig. 3.9, in which the support
for expressions and observers is also demonstrated.

3.3.10 Performing Computations

Until now, we have discussed only simple approaches for performing
computations on resources, such as checking against a threshold. How-
ever, for many application scenarios, it is necessary to perform more
advanced computations. For this, our framework provides a build-
ing block named an evaluator that enables the execution of arbitrary
computations. An evaluator does not perform computations by itself,
but calls a given external function with a set of call parameters and
provides the return value as a sub-resource. The evaluator thus encap-
sulates function calls and serves as the link between our framework and
external computations.

3.3. Approach 105

An evaluator is realized as an virtual object with a variable set of
properties: the property function specifies the URL of a Web service
that is used to provide computations. Web services that can be used in
conjunction with a poller need to be stateless, be invoked using the GET
method, and accept call parameters as part of the query string. URI
templates [186] are used to specify call parameters within the function
property. Using this notion, the values of call parameters are specified
by template variables that are enclosed in braces. For example, assume
there exists an external function

http://services.example.net/math/sqrt,

which computes the square root of an input parameter called i. To
compute the square root of 9, one would perform a GET request on

http://services.example.net/math/sqrt?i=9,

which would return 3. To use this function within an evaluator, one
would specify

http://services.example.net/math/sqrt?i={param}

as its function property. As soon as the function property is updated,
the evaluator will check its contents for template variables. For each
template variable found, it will create an input property of the same
name below its property input. Let us assume the evaluator is located
at

http://evaluators.example.net/1.

In our example, there is one template variable named param, so the
sub-resource

http://evaluators.example.net/1/input/param

is created and linked with the value of the call parameter i of the
specified Web service. Finally, each evaluator has a property called
value, which stores the result of the last execution of the encapsulated
function. Each time the value of an input property of an evaluator
changes, a URL is constructed by substituting all template variables in
the function property with the current values of the input properties
of the evaluator. This URL is then called, and the property value of
the evaluator is updated subsequently with the result of the function
call. Our example is depicted in Fig. 3.10.

106 Chapter 3. A Framework for the Web of Things

Since an evaluator is a resource managed by our framework, it fea-
tures the same basic functionality that is provided for all managed
resources of our framework. For example, it is possible to subscribe
resources to changes of the function result (the property value) or ac-
cess the history of a property. In particular, it is possible to specify
historic values of properties in URL templates. Assume we want to
compute the difference between the first and the last recorded values
of a numeric sensor reading. We would specify

http://services.example.net/math/delta
?p1={param@history/i:1}

&p2={param@history/i:last}

for the function property of the evaluator. This would generate a prop-
erty named param, whose historic values would be used as parameters
for the function calls.

3.4 Implementation

We implemented a prototypical framework of our approach in Java,
using the RESTlet framework7. Additionally, a simple Web server run-
ning on an Android phone was developed to expose some of the phone’s
sensors and actuators as Web resources.

3.4.1 Functions

For our evaluations, we implemented some basic functions for use by
evaluators:

• The boolean functions AND, OR, and XOR support two or more
input parameters, whose values are represented textually as true
or false. Likewise, the return value is textually represented. Pa-
rameters are labeled p1, p2, ... pn. For example, to compute the
boolean AND function for three input values set to true, false, and
true, one would perform a GET request to

http://services.net/AND?p1=true&p2=false&p3=true

which would return false.
7http://restlet.com/products/restlet-framework/

http://restlet.com/products/restlet-framework/

3.5. Evaluation 107

• An image comparison function that compares two images, each
specified as a URL and attached as URL parameters named a
and b. It returns a value between 0 (both images are identical)
and 1 (maximum difference between images). An example of an
invocation (character escaping omitted for reasons of readability):

http://services.net/imgcmp
?a=http://images.example.net/foo.png
&b=http://images.example.net/bar.png.

3.4.2 Resource Factories

Our framework also supports the creation of virtual objects such as
pollers and evaluators at run-time. For this, a special collection re-
source is used that contains only objects of the given type. Creating a
poller or evaluator is achieved by executing a POST request to the URL
of the corresponding collection that contains the parameters in the pay-
load8. This approach resembles the factory pattern in object-oriented
programming, in which objects are instantiated by a dedicated factory
object. For example, in order to create a new poller, one might POST
its desired configuration to

http://pollers.example.net/,

and the new poller might be created at

http://pollers.example.net/534,

which is returned to the user.

3.5 Evaluation

We evaluate our framework by implementing exemplary application
scenarios from the two categories introduced in Sect. 3.2.2: data syndi-
cation and processing tasks and simple control and automation tasks.
The number of HTTP requests typically executed at run-time is then
compared to a scenario in which the application logic would not be im-
plemented by our framework but run on a central hub. In such a setup,
sensors and actuators would still communicate with the central hub
using HTTP, but the entire application logic would be executed com-
pletely within a proprietary, monolithic system that has a “global view”

8Represented as JSON data or form-encoded data (application/x-www-form-urlencoded).

108 Chapter 3. A Framework for the Web of Things

of all connected sensors and actuators, thus eliminating the need for
performing additional HTTP requests. For this reason, it is assumed
that application scenarios can be executed more efficiently when imple-
mented on a central hub.

3.5.1 Data Syndication and Processing Scenarios

3.5.1.1 Scenario 1: Syndicate Deduced Sensor State to Personal Calendar

Scenario In this application scenario, data deduced from a sensor are
included in a user’s calendar application. We use a PIR sensor to
automatically detect movements in a meeting room, and we deduce
and publish occupancy state from these data in the iCalendar format.
Calendar applications can then include these data in their regular view.

Components

• A motion detection sensor, such as a PIR9 sensor. This is a binary
sensor that delivers a boolean output: true if it is currently de-
tecting motion, false if not. We use this sensor in order to derive
the state of occupancy for a room. For this example, we assume
that the sensor output is available at http://pir.example.net/
motion and managed by our framework.

• A managed resource used to store the deduced occupancy state.
It is available at http://variables.example.net/occupancy.

• A calendar application that can subscribe to calendars published
in the iCalendar format. This is a common feature where the
application periodically polls the URL of a published calendar and
includes it in its regular view. For example, Google Calendar and
the iCal application on Mac OS X each support this feature.

Setup In order to deduce occupancy from the reading of the motion
sensor, we require the sensor to have detected motion at least once in
the last 5 minutes. Since the sensor is managed by our framework, this
can be formulated as

http://pir.example.net/motion@history
/f:updated last 5 mins/exists=’true’.

9Passive infrared.

3.5. Evaluation 109

Managed'Variable'

/occupancy) true)

/occupancy@history.ical)
?pick=true:Room)is)occupied)

PIR'Sensor'

/mo:on) false)

/mo:on@history/)
f:updated)last)5)mins/
exists=’true’)

true)

h?p://pir.example.net/)

periodic)
requests)

h?p://variables.example.net/)

Calendar)Applica:on)

Figure 3.11: Setup of scenario 1 (computed resources are marked yellow).

In order to store the deduced state, the resource

http://variables.example.net/occupancy

is subscribed to this URL. To include include the occupancy state of
the room in a calendar application, the history of

http://variables.example.net/occupancy

has to be returned in the iCalendar format. This can be achieved by
appending @history.ical to the URL. For a more pleasant view, this
representation supports a simple mapping of input states to descriptive
states:

http://variables.example.net/occupancy@history.ical
?pick=true:Room is occupied

This picks only the state true and creates calendar entries denoted as
“Room is occupied”. The final URL can then be added to the calendar
application. The setup is depicted in Fig. 3.11.

Run-time In this scenario, the occupancy state of the motion sensor
is deduced in its context. HTTP requests are generated only when the
deduced state changes. Additionally, the calendar application polls at
regular intervals for updated data. A screenshot of a calendar applica-
tion that includes the sensor data is depicted in Fig. 3.12.

110 Chapter 3. A Framework for the Web of Things

Figure 3.12: Screenshot of a calendar application with included occupancy data.

Discussion Implementing this solution with a central hub would re-
quire deduction of the occupancy state within the hub and would in
turn require the motion sensor to send motion-related data to the hub.
Such data are of much higher dynamic than occupancy data, which in
our scenario change at most two times within five minutes. The num-
ber of requests sent by the calendar application looking for updates is
considered to be identical for both approaches. The number of sent re-
quests is thus expected to be significantly higher when using a central
hub.

3.5.1.2 Scenario 2: Include Aggregated Sensor Data on a Web Page

Scenario The objective of this application scenario is to include the
current reading of a temperature sensor on a custom Web page. Addi-
tionally, for the last seven days, its minimum, maximum and average
readings should be included, as well as a graph depicting all sensor
readings in this time frame.

3.5. Evaluation 111

Components

• A temperature sensor that outputs a numeric value. It is assumed
that the sensor is managed by our framework and provides its
current reading at http://sensors.example.net/temperature.

• A Web page. For this example, it is assumed that it is available
at http://homepage.example.net/temperature.html and not
controlled by our framework.

Setup Since the temperature sensor is managed by our framework, the
data of the past seven days can be acquired from its history using

http://sensors.example.net/temperature@history
/f:updated last 7 days.

These data can be aggregated using the built-in functions min, max,
and avg. For example:

http://sensors.example.net/temperature@history
/f:updated last 7 days/max

The remaining data points can be constructed accordingly. In order to
include these data on the Web page, a small JavaScript fragment re-
quests the resources and updates the corresponding parts of the page10.
To retrieve a graph of the sensor readings for the last seven days, we
include an image on the Web page, whose source is set to

http://sensors.example.net/temperature@history
/f:updated last 7 days.jpg?width=400&height=300.

The setup of this scenario is depicted in Fig. 3.13.

Run-time For each request of the Web page, five requests are per-
formed to retrieve the required sensor data. An exemplary screenshot
of the Web page rendered in a Web browser is depicted in Fig. 3.14.

10For this, both the browser and the Web server have to support cross-origin resource sharing
(CORS), and the server will have to permit access; otherwise the setup will fail due to the same-
origin security policy.

112 Chapter 3. A Framework for the Web of Things

Thermometer(

/temperature) 7.2)

/temperature@history/f:updated)last)7)days/min) 83.4)

/temperature@history/f:updated)last)7)days/max) 14.9)

/temperature@history/f:updated)last)7)days/avg) 9.2)

/temperature@history/f:updated)last)7)days.jpg?width=400&height=300)

)hFp://sensors.example.net)

hFp://homepage.example.net/temperature.html)

Web)Browser)

Figure 3.13: Setup of scenario 2 (computed resources are marked yellow).

Discussion The implementation of this scenario with a central hub
would require a different setup, in which each reading of the tempera-
ture sensor would be sent to the hub. This would create a significant
number of HTTP requests just for enabling the use of the sensor data
within the hub. The hub would then provide the required functional-
ity such as aggregating data or returning graphical depictions of sensor
data. We assume that the interface to the hub that is used for including
data on a custom Web page could be optimized. It would require one
request to gather all numeric data and a second request to retrieve the
graphical depiction of sensor readings.

3.5.1.3 Scenario 3: Turning a Webcam into a Motion Sensor

Scenario The creation of a motion detection system, which is based
on a standard webcam. The result of the system is a binary state,
returning true if motion was detected and false otherwise. In that
sense, the system provides the same functionality as the PIR sensor
introduced in Scenario 1.

Components

• A standard webcam, which publishes its current image at a known
URL. In this scenario, it is assumed that the webcam publishes
its current image at http://webcam.example.net/image.jpg.

• A poller, which creates an image sensor based on the images of
the webcam, adding observability and history for its readings. We

3.5. Evaluation 113

Figure 3.14: Screenshot of Web page with included sensor data.

assume it resides at http://pollers.example.net/001.

• The image comparison function introduced in Sect. 3.4.1, which
can be accessed at http://services.example.net/imgcmp.

• An evaluator, which calls the image comparison function with two
subsequent images of the webcam as soon as a new image is present
and publishes the result. It can be accessed at
http://evaluators.example.net/001.

Setup First, we have to configure the poller to periodically poll the
image of the webcam. For this, we set its source property to

http://webcam.example.net/image.jpg

and its interval to 0.5. The poller will then download the webcam
image every 0.5 seconds and publish the latest image at

http://pollers.example.net/001/value.

114 Chapter 3. A Framework for the Web of Things

!h#p://w
ebcam

.exam
ple.net/im

age.jpg!

Evaluator)

/input/im
age!

h#p://pollers.exam
ple.net/001/

value@
history/7364!!

/funcCon!
h#p://services.exam

ple.net/im
gcm

p!
?a={im

age}!
&
b={im

age@
history/i:lastI1}!

/value!
0.45!

/value!>!0.1!
true!

h#p://evaluators.exam
ple.net/001!

Poller)

/source!
h#p://w

ebcam
.exam

ple.net/
im

age.jpg!

/interval!
0.5!

/value!

/value@
history/7364!

/value@
history/32734!

h#p://pollers.exam
ple.net/001!

U
pon!invocaCon,!the!im

age!com
parison!service!requests!!

both!im
ages!specified!as!U

RLs!

h#p://services.exam
ple.net/im

gcm
p!

?a=h#p://pollers.exam
ple.net/001/value@

history/7364!!
&
b=h#p://pollers.exam

ple.net/001/value@
history/32734!

Figure
3.15:A

sim
ple

application
scenario

that
realizes

a
m

otion
detection

system
based

on
a

w
ebcam

(com
puted

resources
are

m
arked

yellow
).

3.5. Evaluation 115

Since this is a managed resource, features such as observability and ver-
sioning are provided for the value property. To configure the evaluator,
we need to set its function property to a URI template that calls the
image comparison service using the URLs of the two latest images of
the webcam. This is done by setting

http://evaluators.example.net/001/function

to

http://services.example.net/imgcmp?a={image}
&b={image@history/i:last-1}.

As outlined in Sect. 3.3.10, an evaluator supports versioning of its input
resources and the application of versioned resources in the function
template. The definition of the function template automatically creates
an input property for the evaluator called image, which we connect to
the output of the poller by registering an observer:

http://evaluators.example.net/001/input/image

is added to

http://pollers.example.net/001/value@observers.

As soon as the property image of the evaluator is updated, the com-
ponent expands the URI template of the function and performs a GET
operation on the resulting resource.

Recall that when observing complex resource types like images, no-
tifications do not include serialized data but rather a permanent URL
to the corresponding data. Therefore, as soon as the poller is publish-
ing a new image, the evaluator’s input property image is updated with
the URL of the latest image. When this happens, the evaluator will
then evaluate the template, by replacing the template variables with
the current values. In our example, this might lead to a call like

http://services.example.net/imgcmp
?a=http://pollers.example.net/001/value@history/7364
&b=http://pollers.example.net/001/value@history/32734,

for example (URL encoding omitted for readability). The image com-
parison service will then request both images from the poller and com-
pute their similarity. The evaluator’s value property is then updated
with the result of the function call, i.e., the similarity value. Note that

116 Chapter 3. A Framework for the Web of Things

this metric reflects an activity measure of the scene the webcam is cap-
turing. Since the value property is also versioned, one can access a
graph of the activity of the last 30 seconds by requesting

http://evaluators.example.net/001/value@history
/f:updated last 30 secs.png.

In order to deduce the motion from activity, a simple threshold map-
ping is applied. As such a threshold is application-specific, the activity
graph may help in determining the specific threshold. In our scenario,
we select a threshold of 0.1. In order to deduce motion, we append the
expression “>0.1” to the value resource of the evaluator. This way,

http://evaluators.example.net/001/value > 0.1

will return true if there is motion detected, and otherwise false. The
final setup is depicted in Fig. 3.15.

Run-time Every 0.5 seconds, the poller requests the current image of
the webcam. This in turn triggers a notification of the evaluator, a
call of the image comparison function, and two requests for archived
images. This summarizes to five requests.

Discussion The realization of this scenario using a central hub would
periodically poll the webcam for images and store all retrieved images
within the hub. This behavior is analogue to our poller. All further pro-
cessing would be performed entirely within the central hub, obviating
the need for additional requests. The result would then be accessible
via the API of the hub. Per retrieved image of the webcam, the central
hub approach therefore requires no additional requests, while our ap-
proach requires four additional requests. As two of these four requests
contain images of the webcam, the network traffic is significantly higher
for our approach, compared to a central hub approach.

3.5.2 Simple Control and Automation Scenarios

3.5.2.1 Scenario 4: Light Control

Scenario This scenario replicates a simple yet common example of a
light control, in which a group of lights can be controlled by multi-
ple light switches. Each switch toggles the current state of all lights
between on and off.

3.5. Evaluation 117

Components

• Two or more light switches that output their current switch state
as true or false. It is assumed that these are under the control of
our framework and provide their current state at
http://switch1.example.net/state and
http://switch2.example.net/state.

• The XOR function introduced in Sect. 3.4.1, which can be accessed
at http://services.example.net/XOR. Recall that the function
requires two or more parameters with textual representations of
boolean values.

• An evaluator which encapsulates the XOR function. It can be
accessed at http://evaluators.example.net/004.

• Three lights that can be switched on and off, named light1,
light2 and light3. In this scenario, this can be achieved by
sending true or false to http://light1.example.net/power, for
example.

Setup In order to be able to toggle a light using multiple switches, an
intermediary component is required that combines the outputs of the
switches. Each time a switch is toggled, the output of the component
needs to toggle. This can be achieved by using a boolean XOR oper-
ation over all switch states. An XOR operation produces a result of
true if the number of inputs that read true is odd. Each time a switch
is toggled, the number of inputs that read true is either increased or
decreased by one, thus toggling the result of the XOR operation. In
order to include the XOR function, it is wrapped by an evaluator. Each
light switch provides one input parameter of the evaluator. For this,
we need to specify the property function of the evaluator as
http://services.example.net/XOR?p1={switch1}&p2={switch2}.
Both switches are then connected to the evaluator by subscribing

http://evaluators.example.net/004/input/switch1

to
http://switch1.example.net/state

and switch2 accordingly. Finally, all lights that should be toggled by
the group of switches are subscribed to the output of the evaluator, the
property value. This setup is depicted in Fig. 3.16.

118 Chapter 3. A Framework for the Web of Things

Sw
itch'1'

/state&
true&

h*p://sw
itch1.exam

ple.net&

Sw
itch'2'

/state&
false&

h*p://sw
itch2.exam

ple.net&

Evaluator'

/input/sw
itch1&

true&

/input/sw
itch2&

false&

/func8on&
h*p://services.exam

ple.net/XO
R&

?p1={sw
itch1}&

p2={sw
itch2}&

/value&
true&

h*p://evaluators.exam
ple.net/004&

h*p://services.exam
ple.net/XO

R&

Light'1'

/pow
er&

true&

h*p://light1.exam
ple.net&

Light'2'

/pow
er&

true&

h*p://light2.exam
ple.net&

Light'3'

/pow
er&

true&

h*p://light3.exam
ple.net&

?p1=true&
p2=false&

true&

Figure
3.16:Tw

o
sw

itches
that

toggle
a

group
oflights.

3.5. Evaluation 119

Run-time Each press of a button causes a request to the evaluator, a
further request to the XOR function, and three requests to update all
lights. Thus, a total of five HTTP requests are performed at the press
of a button.

Discussion When compared with a central hub, a single HTTP request
could be saved per press of a button: The evaluator and the XOR
function would be replaced by the hub.

3.5.2.2 Scenario 5: Smart Meeting Room

Scenario In this application scenario, a meeting room is augmented
with sensors in order to automate certain tasks: The lights should
be switched automatically according to light conditions, provided the
room is currently in use. The air conditioning should only work when
all windows are closed. Finally, windows that were apparently forgotten
to be closed should trigger an alarm.

Components

• A motion sensor (e.g., a PIR sensor), which is a binary sensor that
reports true if there is currently motion detected, and false oth-
erwise. We assume it is managed by our framework and publishes
its current state at http://pir.example.net/motion.

• A brightness sensor. For reasons of simplicity, we assume it pro-
vides values in the range of [0..1] and publishes its current reading
at http://brightness.example.net/value.

• Three windows, each outfitted with a make contact sensor.
We assume that such a sensor reports true if the window is
closed, false otherwise. We assume these sensors are man-
aged by our framework and publish their current readings at
http://window1.example.net/closed through window3.

• Two lights that can be switched on and off, named light1 and
light2. In this scenario, this can be achieved by sending true or
false to http://light1.example.net/power, for example.

• An air conditioning system which can be turned on and off by send-
ing true or false to http://airconditioning.example.net/
enabled.

120 Chapter 3. A Framework for the Web of Things

• An alarm system that can be triggered by writing true or false to
the resource http://alarm.example.net/on.

• The AND function introduced in Sect. 3.4.1, which can be accessed
at http://services.example.net/AND.

• Three evaluators which encapsulate the AND function. The eval-
uators can be accessed at http://evaluators.example.net/
005, http://evaluators.example.net/006, and http://
evaluators.example.net/007.

Setup Each of the three functions can be implemented separately.
The automatic lights depend on the motion and brightness sensor.

For reasons of convenience, we model the control so that the light
switches on quickly and turns off slowly. The method for deducing
presence state from motion has already been introduced in Sect. 3.5.1.1
and can be reused here:

http://pir.example.net/motion@history/
f:updated last 5 mins/exists=’true’

To generate an event as soon as a brightness threshold is undercut but
not as soon as it is exceeded, we model it as

http://brightness.example.net/value@history/
f:updated last 5 mins/exists < 0.2

This expression results in true if the brightness was below 0.2 at least
once in the past 5 minutes. The deduced results of the motion and
brightness sensors then need to be combined into a single state that
reflects the desired state of the lighting. This can be achieved using
the evaluator http://evaluators.example.net/005 with an AND
function. Finally, all the lights need to be subscribed to the evaluator’s
value property.

The automatic activation and deactivation of the room’s air con-
ditioning is dependent on the contact sensors of the windows, which
detect whether they are open or closed. In order to control the air
conditioner, we combine the states of all windows using the evaluator
http://evaluators.example.net/006 with the AND function and
subscribe it to all window states. As a result, it will output false if at
least one window is open. Assuming that the air conditioning can be
enabled and disabled at

3.5. Evaluation 121

http://room.example.net/airconditioning/enabled,

we subscribe this resource to the output of the evaluator.
In order to detect windows that were left open and automatically

issue an alarm, the combined states of all windows and the presence
detector are utilized. Since we want to signal open windows only when
the room has been empty for 60 minutes, we have to consider the time
when the occupancy state of the room was last modified. This can be
expressed as

http://evaluators.example.net/005/
input/occupied updated before 60 mins ago,

which will return true if the occupancy state has been steady for more
than 60 minutes. The alarm function requires another evaluator with an
AND function. The alarm evaluator subscribes to the expression listed
above and to the inverted outcomes of the other evaluators. Finally,
the Alarm trigger http://alarm.example.net/on is subscribed to the
outcome of the alarm evaluator. The complete setup is depicted in
Fig. 3.17.

Run-time Each state change of a window may generate at most five ad-
ditional requests: two for evaluating the AND function and controlling
the air conditioner. The propagation to the alarm evaluator generates
two or three requests, depending on whether the alarm state changes
or not. A state change of the brightness sensor generates at most three
additional messages: One for evaluating the AND function and two for
controlling the lights. A state change of the motion sensor may trigger
up to nine additional messages (three for switching the lights, and one
or two propagations to the alarm evaluator that each can result in up
to three requests).

Discussion A realization of this scenario with a central hub would ren-
der all requests to the AND function and between evaluators obsolete,
as the desired functionality could be implemented without an addi-
tional need for communication. However, the overall number of re-
quests is expected to be significantly higher because occupancy needs
to be deduced from raw motion sensor readings inside the central hub.
Similarly, all brightness values would be sent to the central hub, and
not only changes related to a brightness threshold.

122 Chapter 3. A Framework for the Web of Things

PIR$Sensor$

/
m
o
$
o
n
&

fa
ls
e
&

/
m
o
$
o
n
@
h
is
to
r
y
/

f:u
p
d
a
te
d
&la
s
t&5

&m
in
s
/
&

e
x
is
ts
=
’tr
u
e
’&

tr
u
e
&

h
:
p
:/
/
p
ir
.e
x
a
m
p
le
.n
e
t/
&

Brightness$Sensor$

/
v
a
lu
e
&

0
.5
&

/
v
a
lu
e
@
h
is
to
r
y
/
&

f:u
p
d
a
te
d
&la
s
t&5

&m
in
s
/
&

e
x
is
ts
<
0
.2
&

fa
ls
e
&

h
:
p
:/
/
b
r
ig
h
tn
e
s
s
.e
x
a
m
p
le
.n
e
t&

W
indow

1

/
c
lo
s
e
d
&

tr
u
e
&

h
:
p
:/
/
w
in
d
o
w
1
.e
x
a
m
p
le
.n
e
t&

W
indow

2

/
c
lo
s
e
d
&

fa
ls
e
&

h
:
p
:/
/
w
in
d
o
w
2
.e
x
a
m
p
le
.n
e
t&

W
indow

3

/
c
lo
s
e
d
&

tr
u
e
&

h
:
p
:/
/
w
in
d
o
w
3
.e
x
a
m
p
le
.n
e
t&

Light1

/
p
o
w
e
r
&

fa
ls
e
&

h
:
p
:/
/
lig
h
t1
.e
x
a
m
p
le
.n
e
t&

Light2

/
p
o
w
e
r
&

fa
ls
e
&

h
:
p
:/
/
lig
h
t2
.e
x
a
m
p
le
.n
e
t&

Aircondi9oning$

/
e
n
a
b
le
d
&

fa
ls
e
&

&h
:
p
:/
/
a
ir
c
o
n
d
i$
o
n
in
g
.e
x
a
m
p
le
.n
e
t&

Evaluator:AllW
indow

s$Closed$

/
in
p
u
t/
w
1
c
lo
s
e
d
&

tr
u
e
&

/
in
p
u
t/
w
2
c
lo
s
e
d
&

fa
ls
e
&

/
in
p
u
t/
w
3
c
lo
s
e
d
&

tr
u
e
&

/
fu
n
c
$
o
n
&

h
:
p
:/
/
s
e
r
v
ic
e
s
.e
x
a
m
p
le
.n
e
t/
A
N
D
&

?
p
1
=
{w

1
c
lo
s
e
d
}&
p
2
=
{w

2
c
lo
s
e
d
}

&
p
3
=
{w

3
c
lo
s
e
d
}&

/
v
a
lu
e
&

fa
ls
e
&

/
v
a
lu
e
=
’fa

ls
e
’&

tr
u
e
&

h
:
p
:/
/
e
v
a
lu
a
to
r
s
.e
x
a
m
p
le
.n
e
t/
0
0
6
&

h
:
p
:/
/
e
v
a
lu
a
to
r
s
.e
x
a
m
p
le
.n
e
t/
0
0
5
&

h
:
p
:/
/
s
e
r
v
ic
e
s
.e
x
a
m
p
le
.n
e
t/
A
N
D
&

?
p
1
=
tr
u
e
&
p
2
=
fa
ls
e
&
p
3
=
tr
u
e
&

Alarm
$

/
o
n
&

fa
ls
e
&

&h
:
p
:/
/
a
la
r
m
.e
x
a
m
p
le
.n
e
t&

Evaluator:$LightControl$

/
in
p
u
t/
o
c
c
u
p
ie
d
&

tr
u
e
&

/
in
p
u
t/

o
c
c
u
p
ie
d
=
’fa

ls
e
’&

fa
ls
e
&

/
in
p
u
t/
o
c
c
u
p
ie
d
&

u
p
d
a
te
d
&b
e
fo
r
e
&

6
0
&m

in
s
&a
g
o
&

fa
ls
e
&

/
in
p
u
t/
d
a
r
k
&

fa
ls
e
&

/
fu
n
c
$
o
n
&

h
:
p
:/
/
s
e
r
v
ic
e
s
.e
x
a
m
p
le
.n
e
t/
A
N
D
&

?
p
1
=
{o
c
c
u
p
ie
d
}&
p
2
=
{d
a
r
k
}&

/
v
a
lu
e
&

fa
ls
e
&

h
:
p
:/
/
s
e
r
v
ic
e
s
.e
x
a
m
p
le
.n
e
t/
A
N
D
?
p
1
=
tr
u
e
&
p
2
=
fa
ls
e
&

Evaluator:$Alarm
$

/
in
p
u
t/
e
m
p
ty
&

fa
ls
e
&

/
in
p
u
t/
o
c
c
u
p
a
n
c
y
_
s
te
a
d
y
&

fa
ls
e
&

/
in
p
u
t/
w
in
d
o
w
o
p
e
n
&

tr
u
e
&

/
fu
n
c
$
o
n
&

h
:
p
:/
/
s
e
r
v
ic
e
s
.e
x
a
m
p
le
.n
e
t/
A
N
D
&

?
p
1
=
{w

in
d
o
w
o
p
e
n
}&
p
2
=
{e
m
p
ty
}&

&
p
3
=
{o
c
c
u
p
a
n
c
y
_
s
te
a
d
y
}&

/
v
a
lu
e
&

fa
ls
e
&

h
:
p
:/
/
e
v
a
lu
a
to
r
s
.e
x
a
m
p
le
.n
e
t/
0
0
7
&

h
:
p
:/
/
s
e
r
v
ic
e
s
.e
x
a
m
p
le
.n
e
t/
A
N
D
&

?
p
1
=
tr
u
e
&
p
2
=
fa
ls
e
&
p
3
=
fa
ls
e
&

Figure
3.17:Setup

ofthe
sm

art
m

eeting
room

scenario
(com

puted
resources

are
m

arked
yellow

).

3.6. Related Work 123

3.5.3 Discussion

The evaluation demonstrates that simple application scenarios can be
realized based upon the building blocks of our framework. Interest-
ingly, the demonstrated application scenarios show that our approach
may actually require fewer HTTP requests during the run-time of an
application scenario than a central hub, despite being designed as a de-
centralized system. This can be attributed to the proposed subscription
mechanism, which offers the possibility to subscribe to deduced events
instead of to just plain sensor data. A notable exception is scenario
3, in which not only is a higher number of requests performed during
run-time, but also the sum of the exchanged payload is significantly
increased. This can be attributed to the image comparison method
which is stateless and therefore requires both images as parameters per
comparison. In contrast, a central hub will keep past sensor states
internally and therefore only requires the latest state, i.e., webcam im-
age, to be transferred. A possible solution would be to use HTTP’s
caching features at functions that receive URLs as parameters, which
could significantly reduce the transferred payloads.

3.6 Related Work

Several of the concepts considered in this chapter have already been
addressed, which we outline below.

Composition Interconnecting devices and services through HTTP and
being able to compose novel services was of early interest [187, 188].
With an increasing number of services available on the Web, this ap-
proach gained momentum [85, 86]. Erenkrantz et al. suggest the
Computational REST (CREST) architectural style as an extension
to REST, which fosters the composition of distributed services [189].
sMAP [190] is a framework that specifically addresses the integration
of sensors and actuators in the context of Web applications. In [191],
a toolkit for mashups in the Web of Things is introduced.

In [192], a physical mashup editor is introduced that is based on
ClickScript11 and runs in a Web browser. Commercial Web-based ed-
itors for composing services for the Web of Things include IFTTT12,

11http://clickscript.ch
12http://ifttt.com

http://clickscript.ch
http://ifttt.com

124 Chapter 3. A Framework for the Web of Things

Pachube13 (defunct), and Yahoo Pipes14. The UPnP protocol suite15

simplifies the integration of devices but does not provide dedicated sup-
port for composition [193].

Eventing and Publish/Subscribe Today, subscriptions to updates from
the Web are usually realized by periodically polling a Web feed contain-
ing a list of relevant updates, which are provided in the Atom [167] or
RSS [168] syndication formats. Atom also offers publishing capabilities
through its publishing protocol [194].

The nature of HTTP’s request/response paradigm aggravates the use
of real-time notifications to be sent to Web clients. Traditionally, clients
usually resorted to polling by periodically requesting a monitored re-
source in order to check for updates. HTTP provides caching features
that allow this check to be performed at the server using the conditional
GET method [64].

Several approaches have been suggested for realizing real-time notifi-
cations in the context of the Web. Netscape included support for server
push technologies in its Browser Netscape Navigator 1.1 back in 1995
[195], but it did not catch on. Microsoft suggested GENA for event-
ing in the Internet in 1998 [196], but it prevailed only within UPnP
[193]. Several years later, approaches denoted as Comet (long polling
or streaming) [197], Server Sent Events [198], and the WebSocket Pro-
tocol [199] emerged, addressing the need for real-time data on the Web
2.0. HTTP callbacks, sometimes called WebHooks [184], have been
suggested for asynchronous data exchange between Web sites [200].

A Publish/Subscribe system for the Web is realized by Google’s Pub-
SubHubbub, based on Atom and HTTP callbacks [185]. For CoAP [69],
there is a suggested extension that enables the monitoring of resources
[71], which is quite similar to our approach. Several of the mentioned
approaches have already been adapted in the context of the Web of
Things [201, 202, 203].

Simple Queries SensorBase was an early Web-based platform for sensor
readings [204, 205]. Data could be queried using SQL statements in
a Web front end. Subsequent platforms for the “Sensor Web” also
provide programmatic methods of filtering sensor data [201]. Stream

13http://www.pachube.com (superseded by https://xively.com)
14http://pipes.yahoo.com/pipes
15http://www.upnp.org

http://www.pachube.com
https://xively.com
http://pipes.yahoo.com/pipes
http://www.upnp.org

3.7. Summary 125

feeds [206] are suggested as a Sensor Web abstraction and provide a
URL-based interface for filtering sensor readings. In [187], a URL-based
naming scheme for control of devices in home automation scenarios is
suggested. FIQL, a simple query language intended for filtering Web
feeds, is proposed in [207]. SPARQL has been proposed for searching
in the context of a semantic Web of Things [89].

The combination of queries and subscriptions is also briefly mentioned
in the current draft for observing resources with CoAP [71].

Versioning of Resources HTTP features only limited support for re-
source versioning16, which is mostly used to support caching [64]. Ver-
sioning of HTTP resources in the context of document management is
addressed by WebDAV [181, 208] and CMIS [209, 210]. Support for
temporal data based on a time series of sensor readings is an essential
feature in platforms for sensor data, where it is addressed to varying
extents [171, 205, 201]. As an application interface, Web feeds have
been suggested to represent sensor data streams [206].

3.7 Summary

In this chapter, we presented a prototypical framework for the Web
of Things, which strives to improve the current Web architecture with
unified concepts for interacting with the physical world. It is not based
on a central hub, but rather inherently distributed, consisting of several
building blocks that can be combined to realize specific application sce-
narios. The focus is put on two classes of application scenarios: data
syndication and processing scenarios, in which data are accumulated
and processed from possibly multiple sources, and simple control and
automation scenarios, in which aspects of the physical world are be-
ing manipulated. The framework specifically addresses some of the
key features that are often required when interacting with sensors and
actuators:

• The historization of data, such as past sensor readings as well as
actuator values.

• The support for notifications triggered by certain events.

• The support for simple queries.
16ETag and Last-Modified response headers.

126 Chapter 3. A Framework for the Web of Things

• The ability to compose and run distributed application scenarios.

The execution of applications scenarios is based on an event-driven,
distributed control flow that may span multiple components under dif-
ferent authoritative domains. We evaluated the concepts introduced
in several exemplary application scenarios and demonstrated that our
inherently distributed approach does not necessarily lead to a commu-
nication overhead when compared with solutions that are based on a
central hub.

4 Extending the Web Down to

Constrained Wireless Devices

In this thesis, we assume that the Web will serve as a universal inter-
face to the physical world. Until now, we have not addressed how the
sensors and actuators of real-world entities eventually surface on the
Web. The usual approach is to use dedicated low-power communica-
tion hardware and protocols over which resource-constrained devices
communicate with an application-specific gateway. The gateway then
provides an HTTP interface and handles all requests from and to the
Web. While this approach is optimized for energy consumption, it im-
pedes the interoperability of arbitrary entities, as such gateways often
have to be aware of application-specific protocol mappings.

In this chapter, we pursue a different approach – the direct communi-
cation with physical entities over the HTTP protocol, leveraging exist-
ing infrastructure and standards. We investigate whether it is techno-
logically feasible for the resource-intensive protocols and data formats
used for today’s Web (such as TCP, HTTP, and JSON) to be used to
communicate with battery-powered wireless devices that are subject to
resource constraints. We argue that “connecting” the physical world
directly to the Web, thereby avoiding additional infrastructure such
as gateways, reduces complexity, enables mobility, simplifies interoper-
ability and therefore fosters a wide and rapid deployment of a Web of
Things.

This approach has become possible due to the improvements of avail-
able hardware. So-called ultra-low-power IEEE 802.11 transceivers are
claimed to achieve an operating time of years on batteries, for event-
based interaction, while working with the existing Wi-Fi infrastructure.
In this chapter, we use programmable, ultra-low-power Wi-Fi modules
that are commercially available in order to evaluate the direct interop-
erability of physical entities with the Web.

Parts of this chapter have been published in [211].

128 Chapter 4. Extending the Web Down to Constrained Wireless Devices

4.1 Background

In this section, we introduce the basic components, communication pat-
terns, and standards that are relevant for connecting battery-powered
wireless devices, which are subject to resource constraints, to the Web.

4.1.1 Embedded Web Server

With the advent of the Web, it became popular to provide a built-
in HTTP server in networked devices in order to provide a platform-
independent and convenient way to configure and monitor such prod-
ucts. Users were no longer forced to install device-specific configuration
software on their PCs but could instead use a Web browser, a standard
tool available on almost any platform, to configure, monitor, and con-
trol such devices. The user interface consists of standard Web pages.
As a side effect, this enabled global access to such devices, at least in
theory. In practice, such devices were usually assigned a private IP ad-
dress and placed behind a NAT1. However, the provided interface could
also be used by applications; for example, by sending an HTML form
using a script instead of a Web browser [83]. Early examples include
wireless routers, webcams, and power outlets that could be switched
using a Web interface. In a parallel development, the need for standard-
ized inter-device communication for consumer products was addressed
by the UPnP Forum2, whose standards are based on Web standards
such as HTTP, SOAP, and XML. Today, many networked consumer
products feature both interfaces: HTML pages [94, 95] as a user inter-
face and UPnP [193] as an application interface. However, such devices
are usually mains powered and therefore feature sufficient resources for
handling HTTP requests.

4.1.2 Battery-powered Wireless Devices

The class of battery-powered wireless devices (BPWDs) is of particular
interest, as it forms the basis for the realization of the vision of ubiq-
uitous computing [5]: As such devices require no cabling, deployment
is cheap and simple, and devices can also be mobile. Given a small
form factor and sufficient battery life, such devices may be eventually

1In this context, a router that performs network address translation (NAT) from possibly
many private IP addresses to a single public IP address and vice versa.

2http://www.upnp.org/

http://www.upnp.org/

4.1. Background 129

embedded in everyday objects such as milk cartons, augmenting them
with sensing, computation, and communication capabilities in order to
make them “smart” [5, 212]. The crucial factor of such devices is their
energy efficiency : Since replacing batteries may be impossible (e.g.,
a device sealed in a milk carton), too costly (e.g., a sensor network
deployed on a glacier), or simply too cumbersome (e.g., a plurality of
devices at home), energy is a scarce resource and low power consump-
tion is therefore of absolute importance. Increasing the capacity of the
batteries (and in turn, their physical size) may also not be a viable
option, as physical space or weight may be limited due to application
constraints. Note that using rechargeable batteries may mitigate this
criterion, but their use is often not practical.

In consequence of this scarceness of energy, battery-powered wireless
devices are usually resource-constrained devices. Components such as
CPU, RAM, and the wireless transceiver are all optimized for energy
efficiency and therefore feature only limited resources. This is why ap-
plications and communication protocols on these platforms are usually
carefully optimized.

4.1.3 Connecting Devices to the Web

Connecting devices to the Internet and in turn to the Web allows not
only control of the devices itself but also monitoring and control of
certain phenomena of the physical world through their sensors and
actuators, often in real time. Additionally, such devices are able to
utilize the large and growing amount of data and services available on
the Web. The “connection to the Web” therefore covers two directions
of communication:

• Web Client ! Device: There is an HTTP-based interface of the
device available on the Internet, such as a Web page or a REST
API. The interface could be provided by an intermediary service
that was in turn connected to the device or by a Web server run-
ning on the device itself. This concept makes real-time interaction
with the device and, if applicable, its physical environment possi-
ble. In this scenario, the device provides its capabilities over the
Web, which can be used by third parties for various applications.

• Device ! Web Server: The device accesses or updates data or
utilizes services that are provided on the Web. Access could either

130 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Gateway'

Applica-on' Web'

Web'Client'

Web'Server'

HTTP'Dedicated'
Protocols'

HTTP'

TCP'

IP'

Dedicated'Protocols'

Figure 4.1: Application-specific gateways (icons provided by [213]).

be direct, by using a Web client on the device itself, or be provided
by an intermediary service. This concept enables devices not only
to leverage the resources available on the Web, but also to report
data to an (already existing) Web service, possibly in real time.
In this scenario, the device uses the Web as a platform in order to
provide its functionality.

Note that these are two separate aspects that can be implemented
independently. We say that a device is “connected to the Web” if it sat-
isfies at least one of these two concepts. Implementations of connecting
devices to the Web can be categorized into three different categories,
which we will discuss below.

4.1.3.1 Application-Specific Gateways

In this approach, which is is illustrated in Fig. 4.1, there is a dedicated
application-specific gateway that mediates between the device(s) and
the Web. The gateway can provide access to data as well as function-
ality of its associated devices from the Web. It can also add function-
ality, such as by providing a history of past sensor readings. While
application-specific gateways are usually utilized for this direction of
communication, they can also offer functionality that is provided by
services and data on the Web to their associated devices. Devices are

4.1. Background 131

not required to address any Web-specific issues; instead they are pro-
vided all required application functionality that depends on the Web
by the gateway.

This is a classic approach that has been utilized early on. For ex-
ample, early works in the field of ubiquitous computing used infrared
communication for connecting devices, as it is a cheap and low-power
technology [7, 8, 214]. Wireless sensor networks (WSNs) use dedi-
cated low-power radio interfaces and application-specific protocols to
form a local multi-hop network that is used to send collected data
to a dedicated sink node, which is in turn connected to the Internet.
An application-specific gateway may then provide access to the col-
lected data on the Web [15, 20]. Other examples include small sensor
devices connecting to a smartphone using Bluetooth LE, which then
uploads collected data to a Web service [215], and energy-harvesting
devices based on the EnOcean technology that are connected to the
Web through dedicated gateways [216].

The advantage of this approach is that the strict separation of the de-
vice and the Web enables optimizations on both sides. Devices can use
dedicated and application-specific communication protocols and radio
modules to create a more efficient implementation. Aspects of commu-
nication that require interaction with Web resources can be outsourced
to the gateway. The gateway software can be run on a high-performance
computer that is able to handle high loads from the Web while at the
same time preventing devices from overload or malicious access.

However, using this approach, devices and gateways are tightly cou-
pled: Changes of functionality on the devices usually also require
changes on the gateway. This introduces complexity and also com-
plicates further developments, as such gateways may be operated by a
different party than their connected devices are. Mobility of devices is
also impeded, as this requires the deployment of dedicated gateways.

In summary, this approach enables both sides to be optimized (e.g.,
the application side can be optimized for energy efficiency and the Web
side for performance) and is well suited for static application scenarios
that do not change functionality or require mobility. The gateway is
an inherent part of the application scenario and includes application-
specific code.

132 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Agnos&c(
Gateway(

Applica&on(Web(

Web(Client(

Web(Server(

HTTP(

Internet(

Border(
Router(

CoAP(

UDP(

6LoWPAN(

CoAP(

UDP(

IP(

HTTP(

TCP(

IP(

CoAP(

Figure 4.2: Application-agnostic gateways (icons provided by [213]).

4.1.3.2 Application-Agnostic Gateways

The approach using application-agnostic gateways in order to connect
devices to the Web is depicted in Fig. 4.2. In this approach, there is
also a gateway that mediates between the device and the Web. How-
ever, the gateway is application-agnostic, so it does not “know” about
the specifics of the application scenario and can therefore be generic,
i.e., it does not include any application-specific code. Requests from
the devices to the Web are automatically translated, as well as the
corresponding responses. In a similar way, the gateway provides an
automatic translation for requests originating from the Web to devices.
This approach requires protocols that are compatible to the HTTP
on the device side, as well as a standardized mapping scheme for the
gateway.

An example of this approach is CoAP [69], which is designed to run
on IEEE 802.15.4 low-power networks and follows the REST architec-
tural style [65], just like HTTP. It is a binary protocol that is more
bandwidth-efficient than the verbose and text-based HTTP. It is in-
tended to be compatible to the Web by using application-agnostic gate-
ways [217]. This concept is discussed in detail in Sect. 4.6.5.

Using application-agnostic gateways allows devices to use protocols
and radio interfaces that are optimized for low energy consumption

4.1. Background 133

while still providing an interface to the Web. Using generic and possi-
bly public gateways simplifies interoperability. Just like for application-
specific gateways, an application-agnostic gateway can run on a dedi-
cated computer that protects devices from overload or malicious access.
In contrast, changes in application functionality only need to be imple-
mented on the devices.

However, the use of existing Web resources can be impeded by the re-
quired payloads, which are usually formatted in XML or JSON and can
amount to significant sizes. A possible solution would require the gate-
way to automatically translate XML and JSON data to serializations
that are more space-efficient and simpler to parse [218, 219]. Mobility
of nodes is hampered, since dedicated access points (such as border
routers) are required to provide Internet access. Another drawback
is that the gateway is still a crucial part in the communication chain
between devices and the Web.

To summarize, this concept allows a simple connection of devices
to the Web while still offering the possibility to use dedicated low-
power radio interfaces on the devices. However, the use of existing
Web resources can be aggravated by the limitations of the low-power
radio interface utilized on the devices, such as its supported packet
size3.

4.1.3.3 Direct Connection to the Web

The approach of connecting devices directly to the Web terminates
HTTP connections only at communication endpoints. Devices run a
Web server and/or a Web client to directly provide their functionality to
the Web and/or access the Web’s resources. This approach is depicted
in Fig. 4.3.

Examples of this approach include networked devices such as routers,
which provide a Web interface for configuration and monitoring. Inter-
estingly, many routers can also use some services available on the Web,
such as DynDNS4.

Using unmediated communication between the device and servers
and clients on the Web enables a high degree of flexibility. Changes
in application functionality need only be implemented on the devices.

3Maximum transfer unit (MTU).
4This service provides a fixed DNS entry for devices that are assigned a dynamic IP address.

It provides an HTTP interface for specifying the device’s current IP address. Many routers can
be configured to automatically register their current IP address using this interface.

134 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Router'

Applica.on' Web'

Web'Client'

Web'Server'

HTTP'

TCP'

IP'

HTTP'

TCP'

IP'

HTTP'HTTP'

Figure 4.3: Direct connection to the Web (icons provided by [213]).

This approach also simplifies interoperability as the same communica-
tion protocol can be used for accessing local as well as remote devices
and services. It also simplifies configuration and monitoring, as this is
possible by simply using a Web browser.

However, making a device directly accessible on the Web also intro-
duces load and security issues: Such a device can be easily overwhelmed
by requests from the Web, and its Web server is constantly exposed to
possible attacks. This issue can be addressed by using a reverse proxy,
a standard component of the Web architecture that relays requests be-
tween the device and the Web. Note that when using IPv4, devices are
usually placed behind a NAT and are therefore not publicly accessible,
but they can communicate with the Web.

Connecting devices directly to the Web optimizes them for flexible
interoperability with other devices and services on the Web, at the cost
of reduced energy efficiency.

4.1.4 Towards Unmediated Interoperability

Historically, the use of application-specific gateways in order to connect
BPWDs to the Web was well founded, for several reasons:

4.1. Background 135

• Using dedicated communication links and application-specific com-
munication protocols to connect BPWDs enabled a high degree
of energy efficiency. Hardware and wireless protocols that could
handle the Web architecture in an energy-efficient way were not
available.

• The connection to the Web was usually limited to providing data
acquired by the devices on HTML pages.

• Devices did rarely depend on data or services available on the
Web. If so, they could be handled by a gateway.

• Application scenarios were usually static.

With the advent of an Internet of Things, the ability of devices to
interact with each other and also with existing services and applications
is becoming an important criterion. Deployed devices are no longer
limited to a single application scenario, and application scenarios are
no longer limited to devices under a single authoritative domain. For
this reason, interoperability is becoming increasingly important.

This implies a paradigm shift on the nodes, away from locally opti-
mized application-specific communication protocols and towards stan-
dardized and generic communication protocols that simplify interoper-
ability. This enables the abandonment of application-specific gateways,
which in turn reduces complexity, enables mobility and simplifies inter-
operability. Since the Internet is currently the largest communication
network and the Web can be considered the largest distributed plat-
form, it seems reasonable to leverage this infrastructure.

4.1.5 Using Web Standards on Battery-powered Wireless
Devices

The protocol stack used for today’s Web is HTTP [64] over TCP [220]
over IP5 [57, 59]. IP abstracts from the underlying link technology and
protocols and enables global addressability and connectivity, providing
a “best effort” end-to-end packet delivery6. While most devices are still
running IPv4 [57], with the exhaustion of its 32-bit address space, there
is pressure to switch to IPv6 [59], which provides an address space of
128 bits7. TCP handles packet retransmissions and provides a reliable,

5Note that there may be an additional security layer such as TLS/SSL [221].
6
Best effort is an euphemism for not providing any means of retransmitting lost packets.

7This allows for 340,282,366,920,938,463,463,374,607,431,768,211,456 different addresses.

136 Chapter 4. Extending the Web Down to Constrained Wireless Devices

bi-directional end-to-end data stream with congestion and flow con-
trol. HTTP handles issues of the application layer such as addressing
resources, caching data, and providing transparent compression. The
payload of the applications is usually serialized in the XML [96] or
JSON [97] formats. Additionally, DNS [222, 223] provides a global,
distributed, hierarchical naming service that is realized as a somewhat
independent service based on UDP [224]8.

Using the layered TCP/IP architecture in combination with the ver-
bose HTTP on resource-constrained devices such as BPWDs has not
been very popular in the past, for a variety of reasons, such as:

• The application scenario required only local communication.

• The high communication overhead of HTTP over TCP/IP was
problematic on the given (slow) communication links, such as in-
frared.

• The communication primitives required by the application sce-
nario were missing and could only be realized inefficiently (e.g.,
application-level broadcast).

• The application scenario could not benefit from features of HTTP
such as caching support or content negotiation.

• The degraded performance of TCP on lossy wireless links [225].

However, in the academic community, there was an early interest in
connecting also very small devices to the Internet and to the Web (e.g.,
[55]).

4.1.6 Using Ultra-low-power Wi-Fi for Battery-powered
Wireless Devices

Hardware improvements made ultra-low-power IEEE 802.11
modules possible (e.g., [226, 227]), which are claimed to feature a multi-
year battery life when used in certain application scenarios [226]. An
advantage of this approach is that we can leverage existing infrastruc-
tures : IEEE 802.11 access points are truly ubiquitous in urban areas,
and a growing number of access points feature public Internet access

8However, HTTP benefits from the use of domain names.

4.1. Background 137

Repeater' Access'
Point'

Web'Server'

Web'Client'

HTTP'

TCP'

IP'

HTTP'

TCP'

IP'

HTTP'

TCP'

IP'

HTTP'

TCP'

IP'

HTTP'

TCP'

IP'

HTTP'

TCP'

IP'

Figure 4.4: Direct interoperability of Wi-Fi nodes with the Web. Since IEEE
802.11 does not support multi-hop forwarding in infrastructure mode,
repeaters or additional access points have to be used to increase the
area of connectivity (icons provided by [213]).

(e.g., at airports, in parks, etc.). There are also approaches that al-
low individuals to share their access points9, which is currently ham-
pered due to legal regulations. There is also Wi-Fi roaming such as
eduroam10, which provides international Wi-Fi roaming for members
of participating universities. An interesting aspect of the pervasiveness
of Wi-Fi access points is that they can now be leveraged to perform
localization, both outdoor as well as indoor [228, 229, 230]. Using IP
allows us to automatically configure the device using DHCP, which in
turn enables mobile nodes.

However, instead of using application-specific protocols based on
UDP, as is suggested by the manufacturers, we are interested in lever-
aging the potential of a direct connection to the Web. For this, we run
an HTTP client and HTTP server directly on the module. Running
HTTP over TCP on the node potentially allows us to directly inter-

9e.g., http://corp.fon.com/
10http://www.eduroam.org/

http://corp.fon.com/
http://www.eduroam.org/

138 Chapter 4. Extending the Web Down to Constrained Wireless Devices

JSON,&XML&

HTTP&

TCP/IP&

IEEE&802.11&

Web&

Wi:Fi&

No&gateways&required:&
Leverage&exisJng&Web&infrastructure&

No&addiJonal&hardware&required:&
Leverage&exisJng&access&points&

Figure 4.5: Leveraging existing infrastructures.

Figure 4.6: The Roving RN-134 evaluation board (green circuit board), which is
built around an RN-131. The RN-134 was used for all of the exper-
iments in this chapter. The depicted coin is 1 Swiss franc, which is
comparable to that of a US quarter or 1 Euro coin in size.

act with the plethora of existing Web services, Web-enabled devices,
and HTTP clients such as Web browsers. This concept is illustrated in
Fig. 4.5.

4.2 Platform Utilized

Since IEEE 802.11 was not primarily designed for low-power operation,
so-called “ultra-low-power” (ULP) Wi-Fi modules introduce certain fea-
tures that enable long-lasting operation on batteries. The work in this
chapter is based on the RN-131 [226], a low-power programmable Wi-
Fi module available from Microchip11. Ultra-low-power operation is
achieved by supporting short uptimes (due to fast network access and
high bandwidth) and a sleep mode that requires little energy yet still
supports certain operations, such as real-time monitoring of specific
events.

The RN-131 was initially developed by G2 Microsystems under the
name G2M5477 [231], before the technology was acquired by Roving

11http://www.microchip.com

http://www.microchip.com

4.2. Platform Utilized 139

Figure 4.7: Block diagram of the G2C547, a low-power programmable IEEE 802.11
SoC, which is the core of the RN-131 module (Source: [233]).

Networks and in turn by Microchip. The module is a proprietary low-
power platform that combines several features (sensor support, RFID,
localization, WLAN) from different application domains. We provide a
brief overview of the platform in this section, which is based on publicly
available information12 [226, 231, 232, 233, 234, 235].

The heart of the RN-131 is the G2C547 [232, 233], an SoC that fea-
tures a 44 MHz 32-bit RISC processor, 128 kB of RAM, 2 kB of battery-
backed memory, and 512 KB of ROM13. It includes an IEEE 802.11b/g
transceiver, which handles connection rates of up to 54 Mbit/s and also
supports standard authentication methods such as WEP, WPA-PSK,
and WPA2-PSK. The SoC also includes a crypto accelerator, which sup-
ports security algorithms required for authentication over IEEE 802.11,
and a real-time clock. Interfacing with external components is possi-
ble over UART, SPI master/slave, and SDIO. There are also up to 15
GPIO pins and 8 analog sensor interfaces. The SoC also supports a
UHF (868/902-928 MHz) EPC Gen 2 RFID [236] interface, which can
be used to turn the G2C547 into a smart RFID tag. Additionally, real-
time location tracking according to ISO 24730-2 [237] is supported by
providing a location transmitter at 2.4 GHz and a 125 kHz magnetic

12More detailed information is provided in the support documents of the manufacturer, which
require the signing of a non-disclosure agreement.

13There is a discrepancy between the G2C547 product brief (512 KB ROM) and Roving RN-131
data sheet (2 MB ROM).

140 Chapter 4. Extending the Web Down to Constrained Wireless Devices

receiver.
The architecture of the G2C547 is depicted in Fig. 4.7. Note that

there are three power domains: The AO domain is always powered (as
long as there is power supply) and contains components that require
continuous operation such as the real-time clock or the sensor interface.
Based on events generated in this domain, like the expiration of a timer,
the other domains are powered up. The AO domain requires only very
little power to operate ([233] lists 5 µW). The 1.3 V domain contains
most of the functionality of the SoC, such as the CPU, RAM, ROM
and supporting sub-systems. Finally, the 3.3 V domain handles I/O
and contains the 2.4 GHz power amplifier. The 1.3 V and the 3.3 V
domains are only powered up when required, so when the chip is in
sleep mode (only AO domain active), the CPU and Wi-Fi interface are
not available.

The RN-131 module adds 8 Mbit of flash storage, a small ceramic
chip antenna, and a connector for an external antenna. It has a small
footprint (20x38x4 mm), exports most of the pins of the G2C547, and
requires only a few external components to run. According to the
data sheet, the RN-131 can be powered between 2.0 and 3.7 V and
drains 15� 212 mA of current when in active mode, depending on the
specific operation [226]. When in sleep mode, however, the module has
a nominal current consumption of only 4 µA, which is comparable to
the consumption in sleep mode of mote-like devices [238].

The RN-131 can be operated in two different ways: It can connect to
a host CPU and operate as a client, handling all the network-related
operations. In this scenario, the user’s application runs on the host
CPU and communicates with the RN-131 via a serial connection. The
other possibility is to run the user’s application directly on the RN-131.
In order to use this option, one has to develop the applications using
a proprietary software development kit provided by Roving Networks.
The RN-131 runs eCos14, an embedded real-time operating system that
supports multi-threading. It utilizes the lwIP TCP/IP stack [55] for
communication.

For our work, we used the RN-134 evaluation board [239], which in-
tegrates the RN-131 module and additional components, such as LEDs
and a TTL-to-RS232 level converter (Fig. 4.6).

14http://ecos.sourceware.org

http://ecos.sourceware.org

4.3. Approach 141

4.3 Approach

Our approach is based on the RN-131 Wi-Fi module, which was intro-
duced in the previous section. In order to interface with the outside
world, we run an HTTP server and an HTTP client directly on the
module, which can communicate over the Wi-Fi link. As energy con-
sumption is significant when the module is awake, it is crucial to keep
the node in sleep mode as long as possible when running on batteries.

4.3.1 Web Interface

We rely on the REST paradigm [65] to expose physical entities, includ-
ing their sensors and actuators, as resources on the Web. Compared to
SOAP [63], REST utilizes HTTP as an application protocol rather than
as a transport protocol. For this reason, it introduces less overhead and
can also directly benefit from HTTP’s features such as cache control
and content negotiation. Additionally, the resource-centered paradigm
of REST maps well to physical resources.

In our approach, every node can run a built-in Web server exposing
sensor, actuator, and configuration data as Web resources. These are
identified by self-descriptive URLs and can be accessed with HTTP
using standard operations such as GET and POST15. For example, in
order to read a current sensor value, an HTTP GET request is sent to the
resource of the sensor. The response includes a textual representation16

of the current sensor value. This concept works similarly for actuators
and configuration variables exposed as resources, except that we can
also update them by sending an HTTP POST request with the new
desired value to their URLs. There is also an HTML front end for
human interaction.

Besides the HTTP server, each node runs an HTTP client that is
used for communicating events. As soon as a preconfigured event oc-
curs, such as the change of a sensor value, the node sends an HTTP
POST request to a prespecified URL, containing relevant data (e.g., the
updated sensor reading) in the message body. Since this approach is
analogous to the callback mechanism used in some programming lan-
guages, this concept is sometimes called an HTTP callback or a web-
hook. The concept of such HTTP callbacks has long been known but

15To increase interoperability, we currently resort to POST instead of using the more appropriate
PUT.

16Note that this is not restricted to a certain representation.

142 Chapter 4. Extending the Web Down to Constrained Wireless Devices

recently gained popularity [184, 185, 200].
Using HTTP callbacks to communicate events has the advantage that

the node may sleep until an event occurs, wake up only to perform
the HTTP request, and go back to sleep again, thus saving precious
energy. An additional advantage of this approach is that events can be
communicated with little or no noticeable delay. Finally, the node may
receive valuable information in the HTTP response of the callback, as
we will see later.

4.3.2 Sensing

The discussion in this section addresses battery-powered nodes, as
nodes that feature an external power supply are not limited in their
energy consumption. In order to enable long-running operations when
the node is powered with batteries, it is crucial to limit the time it
spends awake.

We argue that users will most likely be interested in event-based sens-
ing scenarios. In such scenarios, users do not want to monitor raw
sensor values but are rather interested in detecting higher-level events,
which may then be used to trigger a specific action. Examples of events
include the opening of a door, the sudden occupancy of a room, or the
crossing of a temperature threshold. An important aspect of event-
based sensing is that detected events should be communicated in real
time, in order to be able to realize application scenarios that require im-
mediate action upon a given event. For example, a light switch, which
is essentially a binary sensor, may be associated with a lamp. Each
time the switch is used, it generates an event which is sent to the lamp.
In this home automation scenario, users will expect the conventional
behavior, which is the immediate control of the lamp with the switch.
In order to enable real-time or near-real-time applications, it is crucial
that the node transmits the notification of a detected event with min-
imal delay. As detailed in Sect. 4.2, the platform used in this chapter
supports the monitoring for certain sensor events while the module is
in sleep mode. Thus it is possible to wake up the node and send a no-
tification only when a prespecified event has been detected. As a side
effect, energy is only spent when required. Notifications are HTTP call-
backs which are sent to a prespecified URL using simple HTTP POST
requests. In the context of this chapter, we denote an HTTP callback
that serves the purpose of transmitting sensor data or a sensed event

4.3. Approach 143

as a sensor callback and its target URL as a sensor callback URL.
Note that the nodes could also record events or sensor readings over

a longer period of time and then upload them altogether. This batch
upload could in turn be performed at fixed intervals (e.g., once a day) or
at given events, such as the detection of an open17 access point. While
this approach would benefit from the potentially high transmission rates
of Wi-Fi, it is out of scope of this thesis.

4.3.3 Actuation

In order to be able to control actuators in real time, the node needs to
be awake and connected all the time. This way, the built-in Web server
may handle incoming requests that control actuators. Each actuator
is modeled as a resource and can be updated just as a standard Web
resource can. However, this approach requires an external power supply
and faces the problem that nodes are usually given a private IP address
within a Wi-Fi network, which hampers global accessibility.

When the real-time criteria can be somewhat relaxed, it is possible to
implement an alternative approach. There, the node is usually in sleep
mode but will wake up periodically in order to poll a prespecified Web
resource for updates. If there is a new value, the corresponding actuator
will be controlled using the given value. Note that this approach may
also be feasible for battery-powered operation as long as the actuator
does not consume much energy (e.g., an LCD screen) or is only powered
for a limited amount of time (e.g., a beeper). This approach has the
advantage that actuators can be globally accessed even if the node is
assigned a private IP address.

4.3.4 Augmenting Things

We consider two fundamentally different approaches for connecting
things to the Web: The first approach is to attach a preconfigured
node to the physical object and use the sensors and actuators that
come with the node to monitor and control the object. This idea of
attaching small computing devices post hoc to everyday objects was
extensively addressed in the Smart-Its project18 [212, 240]. The vi-
sion is that these devices, denoted Smart-Its, can be attached just like
stickers and “augment [existing objects] with sensing, computing and

17An access point that allows Internet access and does not require authentication.
18http://www.smart-its.org/

http://www.smart-its.org/

144 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Design)Space)

•  Sleeping)
•  Connected)to)
object)
)
Light)switch)

•  Sleeping)
•  Sensors)
included)
)

Desktop)drawer)

•  Awake)
•  Connected)to)
object)
)
Power)outlet)

•  Awake)
•  Actuators)
included)
)
Status)indicator)

Po
w
er
)su

pp
ly
)

Physical)connec@on)

Gr
id
)

Ba
Ce

rie
s)

electronic) aCached)

Figure 4.8: Considered design space.

communication capabilities” [212]. For example, a node featuring a
motion sensor could be attached to an office chair to automatically de-
tect whether it is currently occupied. This approach has the advantage
that these Smart-Its may be commodities that can be installed by un-
trained users in seconds. However, they cannot use the features of the
objects they are attached to.

The other approach is to manipulate the object itself by electrically
connecting the node, thereby offering immediate connectivity to the
sensors and actuators of the physical object. For instance, embedding
the node into a light switch, which is essentially a binary sensor, allows
the switch to connect to the Web. This approach enables a much tighter
integration of physical entities with the Web. However, embedding a
node in an existing device is usually an extensive process that requires
special skills and is therefore suitable neither for unskilled users nor for
large quantities. However, we consider it out of academic interest – it
allows us to test use cases for a future Web of Things.

Orthogonal to this characterization is the question of power supply:
Nodes running on batteries have limited energy and will therefore not
be able to stay continuously connected to the wireless network. In-
stead, they will need to persist in a sleep mode most of the time and
wake up only for certain events. However, if a grid-based power supply
is available, nodes will be able to stay permanently connected to the
network and thus also be able to control actuators in (near) real time.
For example, a node could be attached to a meeting room sign and
signal if the room is currently occupied, or it could be embedded in

4.3. Approach 145

a switchable power outlet to be able to switch the connected devices
via the Web. A summary of the considered design space is depicted in
Fig. 4.8.

4.3.5 A Simple Interaction Model for Direct Interoperation

In this section, we introduce a simple interaction model that supports
Web-enabled sensors and actuators to interact with cloud services as
well as which each other. The model follows a minimalistic approach
and implements some concepts of our framework introduced in Chap. 3.
We illustrate our model through a simple example consisting of two
Web-enabled things: A switchable power outlet, which is a simple ac-
tuator and a light switch, which is essentially a binary sensor. Both
objects feature a built-in Web server that implements our interaction
model.

The power outlet features two resources: the main resource repre-
senting the outlet,

http://poweroutlet/

located at the root, and a sub-resource representing its actuator, a
relay, located at

http://poweroutlet/power.

Accessing the root resource returns an HTML representation of the
outlet, including a graphical representation of its current switch state
(see Fig. 4.9). Accessing the resource of the built-in relay returns a tex-
tual representation of its current state: false if it is currently switched
off, true if it is currently switched on. In order to change the state
of the relay, one simply needs to POST the desired state as a textual
representation to

http://poweroutlet/power

using the corresponding content-type text/plain. This way, the power
outlet can be easily controlled using a script on an HTML page, from
the command line using a tool like curl, or from a program using an
HTTP client library.

The light switch features three resources: the root representing the
switch located at

http://lightswitch/,

146 Chapter 4. Extending the Web Down to Constrained Wireless Devices

a sub-resource representing the state (or sensor) of the switch at

http://lightswitch/position,

and a second sub-resource located at

http://lightswitch/callback.

Similar to the power outlet, accessing the root resource of the light
switch returns an HTML representation including a depiction of the
current state of the switch (Fig. 4.10). The state of the light switch
is also returned as a textual representation reading true or false. In
order to enable push-based operations, we can read and set the call-
back target URL using the same approach as for actuators. We can
also dynamically adjust the callback target of a sensor based on some
external state, such as other sensor readings, time, or location without
having to place any additional logic in the light switch.

An important aspect of our approach is that we can link sensors and
actuators directly: To control the power outlet with the light switch,
one simply needs to update the resource

http://lightswitch/callback,

the callback target of the light switch, to the value

“http://poweroutlet/power”,

which is the URL of the relay of the outlet. Note that this concept
of association is comparable to HTML hyperlinks, which are also uni-
directional and implemented at the source of the relation. Now each
time the light switch is pressed, its state changes and thus an HTTP
POST request is sent to the actuator of the power outlet, causing it to
reflect the current state of the light switch (Fig. 4.11). To realize more
complex scenarios, like a light switch that controls multiple actuators
simultaneously based on some external condition, one would utilize a
service like our framework introduced in Chap. 3, which would receive
the HTTP callback from the light switch and distribute it to one or
more targets based on some predefined conditions. Connecting sensors
and actuators via a gateway or Web service may of course be problem-
atic in certain scenarios: To stay with our home automation scenario,
users will probably neither tolerate noticeable delays when pressing a
light switch nor the outage of their light controls when a Web service
or their Internet connection breaks down.

4.3. Approach 147

4.3.6 Monitoring and Run-time Configuration

Deployed nodes should be monitored automatically for correct function
and for critical operational parameters, such as battery voltage, in order
to detect possible problems in time. It may also be beneficial to be able
to remotely change configuration parameters to address deployment-
specific issues or even update the application running on the node.

A possible approach would leverage the built-in Web server. However,
not every node will be running a Web server, since this requires a
constant connection to the Internet and is expensive in terms of energy
consumption. Additionally, nodes are usually behind a NAT, and are
therefore assigned a private IP address, which makes access from the
Internet to the node difficult. Nodes that are battery powered will
usually stay in sleep mode and can therefore not provide an HTTP
server that is reachable for a reasonable time span.

As a solution, we use the same mechanism used for sensor callbacks:
Nodes periodically send heartbeat messages to a configured URL (de-
noted heartbeat callback URL) in order to indicate that they are still
running. Analogous to a sensor callback, a heartbeat callback is an
HTTP POST request that includes relevant parameters such as the cur-
rent battery voltage. In the response to this HTTP request, the server
may include configuration updates. For example, the server may change
the rate of the heartbeats or specify a new sensor callback target. Since
the HTTP operation is then finished, the client needs to include the
results of the applied updates in the next heartbeat request message.
The heartbeat callback can be considered orthogonal to the current
application and may be received by a different party than the sensor
callback. This way, monitoring of the sensed data and monitoring of
the node can be handled by different authoritative domains.

4.3.7 Bootstrapping and Debugging

Since we assume that the node is attached to or embedded within a
wide range of entities, we cannot assume that there exists a rich set of
input and output capabilities. In fact, there might be no user interface
at all. However, the node requires several configuration parameters for
its initial setup. Additionally, it may also be necessary to change or
query configuration data while the node is operating but has no or only
limited network connectivity.

148 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Bootstrapping To be able to operate, the node requires an initial con-
figuration, which covers three domains: (1) the IEEE 802.11 configu-
ration, (2) the IP configuration, and (3) the configuration of the appli-
cation running on the node.

(1) The IEEE 802.11 domain usually requires the Service Set Identifier
(SSID) of the access point19 (the “name” of the access point) and a
passphrase, which is used to derive a key20. Using this information,
the node can search for the specified access point, authenticate
itself, and associate with it.

(2) The IP domain can by configured automatically using DHCP [241],
which is the de facto standard in today’s Wi-Fi networks. Note
that Wi-Fi networks usually assign IP addresses from a private
network range, as they are placed behind a NAT. Without config-
uration of the infrastructure, the IP address is usually dynamic,
which applies also to the DNS name, which may additionally be
assigned to the node. However, the node may register its acquired
IP address with a dynamic DNS service that provides a fixed DNS
address for the node. This DNS address could be printed on the
device, making it well known.

(3) If the node does not provide a Web server, i.e., it resorts to sleep
mode unless there is a specified event, then the application requires
at least a callback URL for its heartbeat messages, which can
be hard-coded. The response to a heartbeat message may then
be used to configure the required parameters of the application
running on the node.

The initial configuration could be performed by placing the node
in ad hoc mode, and then running a Web server. Users would then
need to connect to the node and could then configure the required
settings. Alternatively, the industry standard Wi-Fi Protected Setup
(WPS) [242, 243] allows the association of a device to an access point
by pressing a button on each of the devices to pair them (among other
methods). There are also other possible bootstrapping scenarios that
leverage the 802.11 communication channel, such as temporarily chang-
ing the settings of the existing access point to values that are printed
on the node. Of course, one could also use a cable-based interface for
bootstrapping.

19Note that the node could also opportunistically use open access points.
20e.g., for WPA and WPA2. Note that there are other authentication methods.

4.3. Approach 149

Run-time Monitoring and Debugging When the node is operating, con-
figuration data may be changed via the heartbeat responses or by ac-
cessing the Web server of the node, if applicable. Additionally, run-time
parameters may also be monitored over these interfaces in order to be
able to detect possible problems early. However, as soon as the node
has no or limited network connectivity, configuration obviously can-
not be changed remotely. Additionally, the local identification of the
problem cause is aggravated by the limited user interface of the node.
Finally, there might also be parameters whose query or update should
require physical presence, such as for security reasons.

4.3.7.1 Proposed Solution

A Secondary Communication Channel To alleviate the problem of lim-
ited or missing physical user interfaces and to be able to interact with
the node even if there is no or only limited network connectivity, we pro-
pose to use a secondary communication channel. This channel serves
as a backup channel that can be used for the bootstrapping, run-time
configuration and monitoring, and debugging of the node. It requires
neither the communication range nor the bandwidth of the primary
channel, as it serves only as a backup link. Furthermore, a connection
of the secondary communication channel to the Internet is not manda-
tory, as local communication may be sufficient for a given scenario (e.g.,
bootstrapping of a device). Using a wireless communication channel as
opposed to a physical interface has the advantage that bootstrapping
and debugging of the node may be automated (requiring no user inter-
action) or semi-automated (requiring only limited user interaction). In
fact, this concept has already been investigated in the area of wireless
sensor networks. For example, the BTnode [244], a wireless sensor node
from ETH Zurich, features two wireless interfaces: A low-power, low-
bitrate radio intended as the primary communication channel and an
additional Bluetooth interface, which may act as a secondary commu-
nication channel. Based on this hardware, several projects investigated
how a secondary wireless communication channel can be used for de-
ployment support [245] or for ad-hoc infrastructure access [246], for
example.

The EPC Interface as Communication Channel For our work, we leverage
the EPC Gen 2 RFID interface of the RN-131 as a secondary commu-

150 Chapter 4. Extending the Web Down to Constrained Wireless Devices

nication channel. The EPC Gen 2 standard operates in the UHF band
(860 MHz - 960 MHz) and provides for communication ranges of up to
several meters and sufficient communication bandwidth. EPC Gen 2 is
an accepted industry standard, that is used for supply-chain monitor-
ing, for example. Compared to other RFID technologies such as NFC,
readers are currently more expensive and less widespread. However,
there are also handheld readers and even prototypes of EPC-enabled
mobile phones [247]. EPC Gen 2 tags may have a user-memory area
that can be used to store custom data on the tag. Since the RN-131
may act as a smart EPC tag, it is possible to communicate with the
application running on the node using a shared memory communica-
tion protocol that operates on the user memory area of the tag. The
protocol needs to coordinate the read and write operations of the node
and the RFID reader on the shared user memory area. This way, a
secondary communication channel may be realized over the EPC inter-
face.

4.4 Implementation

In this section, we discuss some aspects of the implementation of our
approach.

4.4.1 Software

We implemented both a single-threaded HTTP server and an HTTP
client, which run on the RN-131. Due to resource constraints, we had
to carefully optimize the implementation to include only the features
required for our concept.

4.4.1.1 Callback Cycle

When powered with batteries, the node has to be kept in sleep mode
and wake up only on specific events, perform a sensor or heartbeat
callback, and return to sleep mode again. This callback cycle consists
of the following steps:

1.) CPU and RAM are powered up and the node boots our application.

2.) The node connects to a pre-configured access point21.
21Note that this step consists of searching, authentication, and association with an access

point.

4.4. Implementation 151

3.) An IP configuration is acquired via DHCP.

4.) The IP address of the callback target is looked up.

5.) A TCP/IP connection to the host of the callback target is created.

6.) The HTTP callback is performed.

7.) The TCP/IP connection is shut down.

8.) The node disconnects from the access point.

9.) The node returns to sleep mode.

This process can also be optimized in order to save network traffic
and reduce the time the node spends awake. In particular, we also
implemented an optimized callback cycle that caches the following data
in the non-volatile memory (NVM) of the node: The wireless channel of
the access point and its BSSID22, the IP configuration, the ARP table,
and the DNS table. These improvements can significantly reduce the
time required to connect to the callback target, as long as the BSSID
or wireless channel of the access point has not changed and the cached
data are still within the validity period.

4.4.1.2 Web Interface

As noted in Sect. 4.3.1, the HTTP sever on the node provides not only
an interface for other applications (an API) but also an interface for
users, based on HTML. Technically, the interfaces for the HTML front
end and the API are the same, i.e., the Web front end actually leverages
the resources of the API. This reduces complexity and reduces the effort
necessary for a developer to include the node in a script, as its API can
be learned by investigating the Web-frontend in a Web browser.

As an example, Fig. 4.10 depicts the front end of a Web-enabled light
switch, and Fig. 4.9 depicts the front end of a Web-enabled power out-
let. Note that the data on these two front ends are actually “live”, so
that a press of the light switch is visually reflected on its Web-frontend.
This is currently implemented by polling the respective resources peri-
odically using JavaScript23. In order to save energy, the HTTP server
supports caching and delivers the images with a long validity period.

22The MAC address of the access point.
23There are other approaches, which would however consume additional resources on the server.

152 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Figure 4.9: HTML front end of the Web-enabled power outlet.

Figure 4.10: HTML front end of the Web-enabled light switch.

hCp://poweroutlet/power)

POST)/power)HTTP/1.1)
Host:)poweroutlet)
Content#Length:)4)
Content#Type:)text/plain)
Connec@on:)close)
Referer:)hCp://lightswitch/posi@on)
User#Agent:)WiFiNode)0.4)
Date:)Sat,)01)Feb)2011)12:45:26)GMT)
Last#Modified:)Sat,)01)Feb)2011)12:45:26)GMT)
X#SensorEvent#Count:)12)
X#Last#Up@me:)88)
)
true)

hCp://lightswitch/)

Figure 4.11: Direct communication of a sensor and actuator using HTTP callbacks.

4.4. Implementation 153

4.4.1.3 Sensor and Heartbeat Callbacks

Due to its minimalistic concept, the implementation of a sensor callback
is straightforward. However, we specifically leverage some headers in
the HTTP request, which is discussed in the next section. An example
of a sensor callback is depicted in Fig. 4.11.

For a heartbeat callback, which potentially includes many differ-
ent parameters, we use the JavaScript Object Notation (JSON) data-
interchange format [97], as it is widely used, supported by many pro-
gramming languages, has less overhead than XML, and is also simple to
understand. An example of a heartbeat request is provided in List. 4.1,
and an example of a heartbeat response with configuration updates is
provided in List. 4.2.

4.4.1.4 Leveraging Features of HTTP

Leveraging HTTP for communication has the advantage that the proto-
col already provides solutions for some problems that arise at the appli-
cation level. Of course, these problems can be solved using application-
specific solutions. However, leveraging the features of HTTP increases
interoperability and reduces the complexity of the application. In the
following, we outline how some application-specific problems can be
solved using features provided by HTTP.

Initialization of the Real-Time Clock When the node is reset, the on-
board real-time clock (RTC) needs to be initialized. Since sub-second
accuracy is not required for our application scenarios, we do not utilize
the Network Time Protocol (NTP) [248] but instead leverage the Date:
header that an HTTP server must return in its response24. The server
hosting the heartbeat target is used as a time reference. As a heartbeat
message is the first message that is sent after a reset of the node, the
RTC can be initialized early using the heartbeat response.

Piggybacking Information For debugging purposes, we experimented
with including debugging information within custom HTTP headers in
the sensor callback request. Since HTTP headers are used for out-band
signaling, the interface for application does not need to change. For ex-
ample, for sensor callbacks, the custom headers X-SensorEvent-Count

24There are some exceptions, e.g., when the server is experiencing an error or has no clock
[64].

154 Chapter 4. Extending the Web Down to Constrained Wireless Devices

1 {
2 "message": "HEARTBEAT_EVENT",
3 "time_offset": 1336390223,
4 "id":
5 {
6 "MAC_address": "00:06:66:13:af:73",
7 "application": "WiFiNode 0.7a"
8 },
9 "sensors":

10 {
11 "sensor_state": false,
12 "battery_voltage": 3111
13 },
14 "counters":
15 {
16 "sensor": 0,
17 "heartbeat": 5,
18 "restart": 5,
19 "limiter": 0,
20 "watchdog_reset": 0
21 },
22 "last_times":
23 {
24 "search": 11,
25 "association": 27,
26 "DHCP": 1,
27 "DNS": 0,
28 "callback": 32,
29 "total": 91
30 },
31 "cumulative_times":
32 {
33 "up": 7703,
34 "doze": 3798,
35 "down": 42889,
36 "total": 50662
37 },
38 "AP":
39 {
40 "SSID": "wifi-tests",
41 "BSSID": "00:23:69:1a:73:6b",
42 "channel": 9,
43 "rate": 24,
44 "lastRSSI": -34
45 },
46 "IP":
47 {
48 "local": "10.22.19.138",
49 "netmask": "255.255.255.0",
50 "gateway": "10.22.19.1",
51 "dns": "10.22.19.1"
52 }
53 }

Listing 4.1: Exemplary contents of a heartbeat callback, which is sent by the node
to the heartbeat callback URL.

4.4. Implementation 155

1 {
2 "heartbeat_period": 3600,
3 "sensor_callback_url": "http://example.org/actuators/1"
4 }

Listing 4.2: Sample of a heartbeat response, returned by the server to the node. In
this example, the server instructs the node to set its heartbeat period
to one hour and specifies a new callback URL for sensor events.

and X-Last-Uptime include the number of sensor events and the length
of the last uptime.

Avoiding Software Update Loops When the application on the node is
upgraded using a heartbeat response message, there is the problem of an
update loop: The node will download the new application code, reboot,
and send a heartbeat message and might still receive the instruction
to download the new application code in the heartbeat response. Of
course, the server could include the update instruction only as long as
the node’s application version is older than the provided update or the
server could include the version of the offered upgrade in the heart-
beat response, so that the node is able to decide if it should proceed to
download it. However, this problem can also be solved by leveraging
the caching support of HTTP. In particular, a conditional GET request
is used for downloading the new firmware image with the If-Modi/
fied-Since header set to the creation date of the image file. This is
usually supported by default HTTP server configurations.

Determining the Origin of a Sensor Callback HTTP allows “the client
to specify, for the server’s benefit, the address (URI) of the resource
from which the Request-URI was obtained” [249]. This referring address
is transmitted in the Referer25 header of the HTTP request. For our
purpose of specifying the origin of a sensor callback, we set the contents
of the Referer header to the URL of the sensor that caused the event.

Timestamping Sensor Readings Since a sensor reading may be acquired
a considerable time before it is transmitted – due to network problems,
for example – it is crucial to include the timestamp of the sensor reading
in the sensor callback. For this, we leverage the Last-Modified header,
with which we indicate the timestamp of the sensor reading. Note that

25Note that the header name is actually misspelled.

156 Chapter 4. Extending the Web Down to Constrained Wireless Devices

the HTTP specification only considers the use of this header in the
HTTP response, while we also utilize it in the HTTP request. We
additionally include the current time of the node in the Date header to
allow the receiving server to detect potential time clock drifts.

Supporting Polling Actuators As outlined in Sect. 4.3.3, nodes control-
ling actuators may resort to sleep mode when the real-time require-
ment for actuation is relaxed. Using this approach, nodes will peri-
odically wake up and poll a given resource. However, the decision as
to whether the actuator should be triggered cannot be solely based on
changes of the body of the monitored resource. For example, consider
a bell that periodically monitors a resource representing occupancy in
a room (true or false). The bell should ring whenever the state of
the room changes. Ringing the bell only when the value has changed
may not be sufficient, as the resource may have changed from occupied
to empty to occupied between two polling requests. For this reason,
changes of the Last-Modified header of the response have to be con-
sidered. This is achieved by using a conditional GET request with the
If-Modified-Since header set to the Last-Modified date returned
by the last access to the resource. Depending on the returned sta-
tus code, the node decides whether it should drive the actuator. Note
that this is a general-purpose approach to detecting changes of Web re-
sources without the need to analyze their contents, and it should work
with any Web resource supporting conditional GETs.

4.4.1.5 The RFID-based Communication Channel

As outlined in Sect. 4.3.7, we create a secondary communication chan-
nel by leveraging the EPC user memory area of the node as a memory
that has shared access by the node and the RFID reader. Both enti-
ties are able to read and write data from and to this area. In order
to coordinate the communication, we implemented a simple memory-
based request/response communication protocol in which the node acts
as server and the RFID reader acts as client. Using this protocol, the
reader may read data sets from the node, update data sets on the
node and execute commands on the node. The node signals whether
it is busy and whether an operation was successful or could not be
performed. For example, one is able to query the node for its soft-
ware version and current IP address, set the SSID and passphrase of

4.4. Implementation 157

the access point configuration, or trigger the execution of a heartbeat
callback.

Additionally, the node also signals its general state, such as whether
it requires the configuration of an access point. This can be used for
automatic bootstrapping of nodes, for example. In this case, as soon as
a node that requires certain settings enters the communication range
of an RFID reader, it is automatically updated with the requested
parameters. To simplify identification, the last 6 bytes of a node’s
EPC address are automatically set to its MAC address, and all nodes
also share a common EPC prefix that enables the detection of their
type. The EPC standard supports multiple address schemes; we utilize
the General Identifier (GID-96) encoding scheme [250].

In order to communicate with the node over the RFID-based commu-
nication channel, a Java program was developed that interacted with
the RFID reader using the low-level reader protocol (LLRP) [251]. The
program utilizes the LLRP Toolkit Java library26, an open-source im-
plementation of LLRP.

4.4.2 Hardware

Our analyses are based on a RN-134 board that was physically altered
in order to reduce its power consumption to that of the RN-131: The
voltage divider and RS232 driver were removed from the board, all
LEDs were deactivated, and the board was configured for a supply
voltage range of 2.0 V - 3.3 V (VBATT option) [226].

We experimented with three different types of sensors, which were
chosen to enable the measurement of activity of an object or a room
the node is attached to. The first was a reed switch, which in com-
bination with a permanent magnet creates a contact-less switch, for
example to monitor whether a door is currently open or closed. The
second was a micro-mechanical “ball-in-tube” motion sensor, which de-
tects whether the attached object is currently moving. The third was
a passive infrared (PIR) sensor, which can detect the presence of peo-
ple in a room, for example. The first two sensors are passive elements
that do not consume power by themselves, and the PIR sensor is an
active element that consumes about 300 µA. While all of the sensors
are binary, neither the platform nor our concept impedes the use of
non-binary sensors. Exemplary deployments are depicted in Fig. 4.12.

26http://llrp.org

http://llrp.org

158 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Figure 4.12: Everyday objects augmented with attached ultra-low-power Wi-Fi
nodes. Left: PIR sensor attached to ceiling lights (note the exist-
ing PIR sensor in the background); top right: reed sensor attached to
door; bottom right: ball-in-tube motion sensor attached to the back
of an office chair.

We also embedded the RN-134 into several objects (see Fig. 4.13),
including a light switch, a power plug based on a modified Plogg27,
which can not only switch a connected consumer load but also sense
its current power consumption, and an LED candle, which can act as a
subtle notification device. Additionally, we modified a wireless doorbell
system, replacing the original communication hardware in the switch
and the doorbell with an RN-134.

4.5 Evaluation

We performed several experiments in order to evaluate the practical-
ity of our approach under various conditions. Because a crucial part
of our concept is the leveraging of existing infrastructures, which are
inherently beyond our control, several experiments were conducted in
uncontrolled environments. Even if all components of an experiment
were under our control, there is still the wireless communication chan-
nel. For the Wi-Fi interface, it is located in the unlicensed ISM band at
2.4 GHz. Besides an increasing amount of Wi-Fi networks, this spec-

27http://www.plogg.co.uk

http://www.plogg.co.uk

4.5. Evaluation 159

Figure 4.13: Examples of developed Web-enabled Things with embedded ultra-low-
power Wi-Fi nodes that were experimented with in the context of this
thesis: switch, buttons, power plug, doorbell, and LED candle.

Setup S1 S2
Location Office Space Office Space
Authentication None WPA2-PSK
Multiple BSSIDs Yes No
DHCP lease time 15 minutes 15 minutes

Table 4.1: Access point setups considered for the evaluation of the power consump-
tion of a callback cycle.

trum is also populated by devices using Bluetooth, IEEE 802.15.4, or
proprietary communication standards and also susceptible to noise gen-
erated by non-communication devices such as microwave ovens. Since
we did not use an anechoic chamber, our experiments are at best semi-
controlled, as the wireless channel is always beyond our control.

4.5.1 Power Consumption of Callback Cycles

Since the amount of energy consumed by the node when it is in sleep
mode is several magnitudes smaller than the amount of energy con-
sumed when it is awake (see Sect. 4.2), the power consumption of a
callback cycle is crucial for the lifetime on batteries. As our approach
is optimized not for energy consumption but for interoperability, we
are interested in its energy requirements.

160 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Figure 4.14: Setup for energy measurements. The device used to power the node
and measure its power consumption was an Agilent Technologies
N6705A power analyzer.

Setup Our analyses are based on a modified RN-134 board as outlined
in Sect. 4.4.2. The device used to power the node and measure its power
consumption was an Agilent Technologies N6705A DC power analyzer.

The node was programmed to periodically wake up and perform a
callback cycle, sending a heartbeat message (similar to List. 4.1) to a
PHP script hosted at the Web server of our department and waiting
for the response. This server was a productive system hosting the
Web pages of the members of the author’s department28. The software
on the node was configured to avoid any unnecessary actions such as
printing debug output to the serial console29. The connection rate was
set to 24 Mbit/s. We evaluated the callback cycle in the optimized and
non-optimized implementations (see Sect. 4.4.1.1).

Two different access point setups were considered. In the first setup,
we leveraged the Wi-Fi infrastructure of ETH Zurich at the offices of
the author’s institute, which is an enterprise-level system consisting
of multiple access points and dedicated DHCP and DNS servers. In
the second setup, we utilized a dedicated consumer-level router with
built-in DHCP and DNS servers at the same location. The setup is
summarized in Tab. 4.1.

28In fact, the script was located on the homepage of the author, so deployment required little
effort.

29Note that printing data to a serial terminal can require a significant amount of time.

4.5. Evaluation 161

Figure 4.15: Screenshot of the results of a power measurement run. The markers
m1 and m2 have been adjusted manually to match the start and the
end of the wakeup cycle.

Methodology For our experiments, the supply voltage was set to 2.4 V,
which is comparable to the voltage supplied by two rechargeable AA
or AAA batteries. For each setting, we performed 10 measurements of
optimal callback cycles – that is, we disregarded callback cycles that
resulted in failed callbacks or had an outlined uptime. The results can
therefore be considered as a lower bound. For each measurement, we let
the power analyzer trigger the recording and then manually set the start
and end point of the callback cycle using the interface of the N6705A.
The power analyzer then calculated the length of that interval and
the average power consumed during that period (Fig. 4.15). In order
to assess the effects of the network optimizations, we performed the
experiments both with and without the optimizations for the callback
cycle. Our test setup is depicted in Fig. 4.14, and an example of a
recorded energy trace is shown in Fig. 4.15.

Results and Discussion The results of our experiments are listed in
Tab. 4.2. We see that the average uptime at S1 with no optimizations
is significantly larger than for the other experiments. This is because at
S1, the DHCP and DNS servers were part of the infrastructure of our
university and were handling requests for larger parts of the network.
Most of the uptime was spent waiting for the DHCP lease. The opti-

162 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Setup Callback cycle Avg. uptime Avg. power Avg. energy Savings
S1 not optimized 1232.10 ms 0.126 W 155.24 mJ —
S1 optimized 69.38 ms 0.174 W 12.07 mJ 92.22 %
S2 not optimized 103.50 ms 0.194 W 20.08 mJ —
S2 optimized 89.16 ms 0.203 W 18.10 mJ 9.86 %

Table 4.2: Energy consumption per callback for an optimal callback cycle. Results
are averaged over ten measurements.

mized callback cycle avoided these requests (as long as the cached data
were within the validity period) and could therefore significantly reduce
the uptime and in turn energy consumption. At S1, the optimized call-
back cycle required only 7.78 % of the energy of the non-optimized
version, which is estimated to be a potential increase of the overall
runtime of the factor 12.930.

At S2, the DHCP and DNS servers were running on the wireless
router. As the response times for these services were already low, the
optimizations resulted in only minor improvements of the energy con-
sumption. The optimized version required 90.1 % of the energy of
the non-optimized wakeup cycle, which is estimated to be a potential
lifetime increase of a factor of 1.11.

The comparison of the results of S1 and S2 with optimizations shows
that the use of WPA2 adds an overhead both to the uptime and to the
required power. This is expected, as the handshake required for WPA2
requires significant resources. From our experiments, we see that the
use of WPA2 increases energy consumption to about 50%, compared to
an unsecured access point. We can therefore estimate that the runtime
of a node using WPA2 is only about 66 % of that of a node using no
authentication.

4.5.2 Performance of HTTP in Semi-Controlled
Environments

In order to provide a baseline for our approach of using HTTP for com-
munication over the IEEE 802.11 interface, we tested our implemen-
tations of the HTTP client and the HTTP server in a semi-controlled
environment (i.e., all parts of the experiment except the wireless chan-
nel were under our control). We are interested in the time required for
a callback cycle, as this directly correlates to the energy consumption
of the node. It also has an effect on the latency, which can be noticed

30Ignoring power consumption in sleep mode, self-discharge of batteries, etc.

4.5. Evaluation 163

by the user. The latency is also relevant when the node is providing an
HTTP server for interaction with its actuator(s). For this reason, we
evaluated both the execution time of a callback cycle and that of an
HTTP request being processed by the HTTP server on the node under
various conditions.

We used an isolated wireless router in order to avoid traffic on the
communication path that was not related to our experiments. The
LAN and WLAN segments were bridged, which is the usual setup for
wireless consumer-grade routers. We used the optimized version of the
callback cycle for all experiments in this section (see Sect. 4.4.1.1).

4.5.2.1 Performance of a Callback Cycle

Setup We evaluated the influence of two factors on the duration of a
callback cycle: The communication rate and the security mechanism
used to connect to the access point. For this, we tested all the com-
munication rates of 802.11g (6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s).
We also analyzed the influence of security mechanisms on the wireless
link by running the experiment both without any security features and
with WPA2-PSK enabled31.

For this, we connected a laptop running Mac OS X with an Apache
HTTP server32 to the LAN segment of the router. The node was config-
ured to perform a callback cycle every 10 seconds, sending a heartbeat
request to a PHP script running on the laptop. The script logged the
contents of the heartbeat message and returned configuration updates
when necessary. Communication rates were cycled using these config-
uration updates in order to alleviate external influences. In order to
achieve good signal quality, the node was placed approximately 1 m
away from the wireless router.

Results and Discussion The results are depicted in Fig. 4.16 (no se-
curity) and Fig. 4.17 (with WPA2-PSK) and show the average time
required for 1000 successful callback cycles per communication rate33.
The total time required is further broken down into the time required
for the connection to the access point (this includes association and, if
applicable, authentication), the time required for the callback, and the
time spent awake for other tasks.

31WPA and WEP were not tested, as both were superseded by WPA2.
32http://httpd.apache.org/
33With the exception of 36 Mbit/s WPA2-PSK, for which only 817 requests were considered.

http://httpd.apache.org/

164 Chapter 4. Extending the Web Down to Constrained Wireless Devices

18# 20# 19# 19#
26#

19# 19# 17#

28# 29# 30# 27#
27#

26# 26# 27#

20# 20# 20# 20#
20#

20# 25#
20#

0#

10#

20#

30#

40#

50#

60#

70#

80#

6#M
bit
/s#

9#M
bit
/s#

12
#M
bit
/s#

18
#M
bit
/s#

24
#M
bit
/s#

36
#M
bit
/s#

48
#M
bit
/s#

54
#M
bit
/s#

Av
er
ag
e'
(m

e'
[m

s]
'

Other#

Callback#

Connect#to#AP#

Figure 4.16: Average time required for a callback cycle with no authentication in a
semi-controlled environment.

Both figures show that there is no obvious correlation between up-
time and communication rate. This can by explained by the fact that
in this setup, the transmission time over the wireless channel was not
a limiting factor. The time required for the connection with the access
point34, the round-trip time (RTT), and the processing time required
for TCP, HTTP, and the PHP script were considerably higher than
the time required to transmit a frame on the wireless channel. Since
our payload was small, higher communication rates could not produce
an effect. However, enabling WPA2-PSK had a significant impact on
the overall uptime. This was caused by the additional handshake re-
quired for authentication, which manifested in an increased connection
time. Interestingly, the callback time was also higher – this might be
attributed to the computing overhead required for cryptographic oper-
ations. Note that for this experiment, DHCP and DNS were not taken
into account, as the validity period was longer than the duration of the
experiment. The total averages for all communication rates were 68 ms
(total uptime) and 28 ms (callback) for no encryption and 108 ms (total
uptime) and 36 ms (callback) for WPA2-PSK.

34Which is performed at 1 Mbit/s.

4.5. Evaluation 165

56# 49# 49# 50# 53# 52# 49# 52#

41#
38#

28#
39# 33# 29# 34# 37#

26#
20#

20#
20# 20# 20# 20#

20#

0#

20#

40#

60#

80#

100#

120#

140#

6#M
bit
/s#

9#M
bit
/s#

12
#M
bit
/s#

18
#M
bit
/s#

24
#M
bit
/s#

36
#M
bit
/s#

48
#M
bit
/s#

54
#M
bit
/s#

Av
er
ag
e'
(m

e'
[m

s]
'

Other#

Callback#

Connect#to#AP#

Figure 4.17: Average time required for a callback cycle with WPA2-PSK in a semi-
controlled environment.

4.5.2.2 Performance of the HTTP Server

Setup The experiments in this section evaluated the response times of
our Web server running on the node. The node was configured with a
communication speed of 24 Mbit/s. WPA2-PSK was used to secure the
wireless channel. We issued 1000 consecutive requests from a computer
connected to the LAN interface of the access point to retrieve a static
HTML page served by the node. For comparison purposes, we also
performed the same measurements using the laptop from Sect. 4.5.2.1
as a Web server. For this, it was connected to the wireless interface of
the access point and running an Apache HTTP server. Both the node
and the laptop were placed approximately 1 m away from the wireless
router.

Results The average time for processing the HTTP request, measured
at the client between the start of the TCP connection and its shutdown,
was 24 ms. This qualifies as (near) real-time control of actuators. The
Apache HTTP server running on Mac OS X on the laptop required
16 ms on average to serve the static page.

4.5.2.3 Performance of Node to Node Communication

We also tested the communication between two nodes associated with
the same access point. For this, one node ran the Web server, while the

166 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Scenario S1 S2 S3
Location Office Space Home 1 Home 2
Authentication None WPA WPA2
Multiple BSSIDs Yes No No
DHCP lease time 15 mins 24 hours 24 hours

Table 4.3: Settings considered for the field test.

other node performed a callback cycle every 10 seconds, which targeted
the first node. The client node was configured to sleep between the
requests. This setup resembles a home automation scenario in which
smart appliances use HTTP for communication. In such a scenario, the
delay between a sensed event and its associated action is of particular
interest. In our example of the light switch and the power outlet, the
user will most likely accept only a short lag between the press of the
button and the control of the associated device. In this experiment,
we measured the time of the complete callback cycle at the client. The
average time for 1000 callback cycles was 98 ms.

4.5.3 Performance of Callback Cycles in the Field

Setup In order to test the performance of our approach in the field, we
utilized the existing Wi-Fi infrastructure at three different locations,
listed in Tab. 4.3. S1 is the same as in Tab. 4.1 and leverages the Wi-
Fi infrastructure of ETH Zurich at the offices of the author’s institute,
which is an enterprise-level system consisting of multiple access points
and dedicated DHCP and DNS servers. The access points at S2 and
S3 are single, standard consumer-level routers with built-in DHCP and
DNS servers.

The nodes were configured to wake up every 10 seconds and send a
heartbeat callback to a PHP script hosted at the Web server of our
institute, using the optimized callback cycle. This is the same callback
target as in Sect. 4.5.1, i.e., hosted on a server that serves the Web
pages of the employees of our department. The size of a heartbeat
message (including HTTP headers) was approximately 900 bytes. The
preferred connection rate was set to 24 Mbit/s. In order to prevent
excessive draining of the batteries due to network problems, we limited
the maximum time the node could stay awake to 5 seconds. Because
each heartbeat message also included a sequence number, we could
detect failed callbacks at the server. A callback cycle may fail for
several reasons, including failure to associate with the access point,

4.5. Evaluation 167

Scenario S1 S2 S3
Total average uptime 128 ms 930 ms 182 ms
Callbacks initiated 297180 74444 241428
Callbacks received 295314 66300 240970
Callbacks received (%) 99.37 % 89.06 % 99.81 %

Table 4.4: Results of the field test.

network problems, and problems at the callback target.

Results and Discussion Table 4.4 provides aggregated data for each of
the three scenarios. One can see that the node at S2 performed signif-
icantly worse than the nodes at the other scenarios. This is due to the
access point used at that location; replacing it with the model used at
S3 resulted in performance comparable to S3. This is an important is-
sue, as we cannot assume the existence of access points of a given model
when leveraging existing Wi-Fi infrastructure. Note that success rates
could be increased by queuing failed callbacks for later transmission,
which is currently not implemented.

For a detailed analysis of the average awake times, which is depicted
in Fig. 4.18, we considered only data of successful callback cycles. For
each scenario, the average time was further split into time required for
the connection with the access point, for retrieving the IP configuration
via DHCP, for performing the callback cycle, and for other operations.
Because we cached DNS entries, the time for resolving the IP address
of the callback target was negligible (< 0.2 ms in each scenario) and
thus is not depicted. The node performed best at scenario S1, requiring
only 98 ms on average for a successful callback cycle. Interestingly, the
additional overhead caused by the short DHCP lease time is overcom-
pensated by the short transmission time to the HTTP target, which
is hosted at the same site. For S2 and S3, DHCP time has no impact
because a lease is valid for 24 hours. However, for these scenarios we
see that the callback requires considerably more time, which is caused
by the higher round-trip times to the target host. The time required to
connect to the access point at S2 was significantly longer than for the
other scenarios, because of the mentioned interoperability issues with
that access point. The shortest callback cycle times at S1, S2, and S3
were 52 ms, 79 ms, and 97 ms, respectively.

168 Chapter 4. Extending the Web Down to Constrained Wireless Devices

S1 S2 S3
0

50

100

150

200

250

300

350

400

450

Scenario

Ti
m

e
(m

s)

Other
Callback
DHCP
Association

Figure 4.18: Average time required for a callback cycle, considering successful call-
backs only.

4.5.4 UHF Communication Channel

Setup We evaluated our implementation of a UHF-based sec-
ondary communication channel for bootstrapping and debugging (see
Sect. 4.4.1.5) using an Impinj Speedway Reader [252] in combination
with a CSL CS777 Brickyard near-field antenna [253]35. Since the
RN-134 does not offer a connector for an UHF antenna, we had to
use an improvised configuration: We soldered the antenna wire to the
corresponding pad of the RN-134. We tested a professional antenna
designed for the 865-928 MHz spectrum (UHF) [254] as well as a bare
wire antenna. An exemplary setup is depicted in Fig. 4.19, showing the
two antenna types used for the nodes.

On the client side, we used our Java application that communicates
with the RFID reader through LLRP [251]. We initialized the RFID
reader using Impinj’s LLRP extensions, as the communication rates
with a generic initialization were unsatisfactory (in this case, only one
operation per second was possible per tag). The node itself was put in
sleep mode and configured to wake up on RFID write operations.

With this setup, we could successfully communicate with the node
over the RFID-based communication channel. We achieved compara-
ble performance within the specified read range of the reader antenna

35This setup was readily available at the author’s institute.

4.5. Evaluation 169

Figure 4.19: Exemplary setup for the test of the UHF-based communication chan-
nel. Since the RN-134 does not offer a connector for an RFID antenna,
we had to use an improvised antenna configuration. The RFID reader
antenna is located in the upper right corner of the image. Both nodes
shown in the setup were able to communicate over the RFID-based
communication channel from their given locations.

(40 cm), both with the UHF antenna and with the bare-wire antenna.
Using our memory-based communication protocol, we could read and
write configuration data and execute commands as expected.

In order to evaluate the EPC communication channel, we tested two
different use cases: The query of a node’s current IP address, and the
bootstrapping of a node. Technically, the first use case is implemented
by issuing a single command, which requires three read and one write
operations to the tag memory from the reader. For this, our Java
program issues at least 12 LLRP commands to the reader. Note that
the node was given an execution time of 200 ms, after which the reader
attempted to read out the IP address from the tag memory. The second
use case, the bootstrapping of a node over the RFID interface, consisted
of setting both the SSID and the passphrase of the access point and the
definitions of the heartbeat callback URL and sensor callback URL. The
overall payload to write to the node was 118 bytes. Bootstrapping is
a more complex process that consists of four commands each requiring
three read and three write operations. With our implementation, the
bootstrapping scenario consists of at least 237 LLRP commands that

170 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Scenario vs. Node Configuration Query of IP address Bootstrapping
1x RN-134 (UHF antenna) 471 ms 6649 ms
1x RN-134 (bare wire antenna) 480 ms 6620 ms
5x RN-134 (bare wire antenna) 728 ms 10322 ms
1x ALN-9662 RFID tag 455 ms 6288 ms
5x ALN-9662 RFID tag 656 ms 10268 ms

Table 4.5: Evaluation results for communication over the UHF channel. Two
application scenarios were considered. The results show the average
time required per scenario per node over 100 runs.

are sent to the reader. This large number of requests is mostly caused
by the fact that we could only perform write operations of two bytes
at a time when using the RN-134. For each of the four commands,
the node was given a delay of 200 ms in order to process the request.
Note that all the payload data written to the node were validated by
our application by reading it out again and comparing it to the desired
value. For both scenarios, write and read operations were repeated
when they were unsuccessful four times at most.

Both usage scenarios were tested with a single node as well as with
five nodes on the reader antenna. In each case, all the nodes were
equipped with the bare wire antenna. Additionally, we tested a sin-
gle node on the reader that was equipped with the professional UHF
antenna. As a baseline, we also tested with an ALN-9662 RFID tag
[255] that featured 512 bits of user memory area. Since the RFID tag
cannot provide the responses required by our communication protocol,
we ignored the missing answer codes for these tests. All measurement
results were averaged over 100 runs. In all of the tests performed, our
Java program first detected available nodes or tags and the performed
the selected usage scenario on each node that was discovered.

Results and Discussion The results of our evaluation are summarized
in Tab. 4.5. Overall, the measured execution times may seem higher
than expected, when considering the small size of payload transferred
(4 bytes and 118 bytes). The comparison between using an RN-134
and an RFID tag reveals that despite that fact that we were using
an improvised antenna setup, comparable performance was achieved.
This also indicates that much of the overhead can be attributed to our
implementation and the LLRP communication layer, which currently
executes a write operation for every 16 bits of data. Furthermore,
reading or writing data to the tag currently requires at least three LLRP

4.5. Evaluation 171

commands to be sent to the reader. Finally, for each command, such as
the definition of the sensor callback URL, the node is given a processing
time of 200 ms before our software queries for the result. For the
bootstrapping scenario, this means that at least 4 ⇤ 200 ms = 800 ms

are spent waiting. For these reasons, we are optimistic that the net
transfer rate (the goodput) can be optimized.

However, from a practical standpoint, we argue that the required ex-
ecution times are already sufficient. As outlined in Sect. 4.3.7.1, the
secondary communication channel only serves as a fallback channel for
special purposes or situations. Bootstrapping a node in about 10 sec-
onds seems acceptable, since this operation is usually performed rarely,
and other solutions are probably cumbersome, as they require manual
intervention. A single command, such as querying the IP address of
the node, requires less than one second, which should be sufficient for
most use cases. Transferring larger amounts of data from the reader to
the node, such as sending a firmware update, is currently impractical
with our implementation.

It is interesting to see that the times required for a scenario and a tag
type differ significantly, in relation to the number of elements placed
on the reader antenna. We attribute this to the amount of metal that
is placed on the reader and interferes with the RF field.

We also experimented with several other use cases for the UHF com-
munication channel. For example, our memory-based communication
protocol offers a status field that indicates whether the node is miss-
ing some of the crucial bootstrapping parameters. We implemented a
function in our Java program that automatically detects nodes that lack
such parameters and updates these accordingly. This enables automatic
bootstrapping: Once nodes are placed next to the reader antenna, they
are automatically configured. Note that this works continuously – as
soon as a unconfigured node is discovered, it is updated and can then
in turn connect to the Wi-Fi.

Besides the auto-configuration, we also found it practical to be able
to manually trigger the execution of a heartbeat36, from which it would
then get an updated configuration from the callback target. Similarly,
waking the node up and putting it back to sleep could be performed
over the UHF channel. If the node is awake, one can ping it and access

36Heartbeats are usually sent rarely (e.g., once per hour or once per day). The execution of
a heartbeat ahead of schedule can therefore significantly reduce the time required to reconfigure
the node.

172 Chapter 4. Extending the Web Down to Constrained Wireless Devices

its Web server, which is sometimes helpful. The identification of the
application running on a node, its current IP configuration and the
ability to perform a reset (a power cycle) over the UHF channel also
proved to be helpful.

Finally, we also briefly tested the UHF communication channel with
an Impinj xPortal RFID reader [256], which has integrated and more
powerful antennas. Using a node configured with the UHF antenna,
we were able to communicate with a single node over a distance of
several meters. This enables interesting use cases that could not be
implemented with NFC, which is limited to very short distances.

4.5.5 Exemplary Applications

Wireless Doorbell System As noted in Sect. 4.4.2, we modified a wire-
less doorbell system, replacing the original communication hardware
in the switch and the doorbell with an RN-134. Both nodes could
be bootstrapped using the UHF interface and were assigned a static
DNS address by registering with the NO-IP37 service. Besides the
mimicry of the original functionality (pressing the switch rings the door-
bell) using our simple interaction model, we also implemented different,
application-specific scenarios.

For the doorbell switch, we tested two similar scenarios, in which it
was used with existing Web services that were called upon a press of
the button. This is an example of the event-based sensing scheme.

In the first scenario, the doorbell switch was programmed to send
a push notification to a smartphone. For this, we leveraged Prowl38,
which enables generic notifications to be sent to iOS devices. It consists
of an iOS application and an HTTP service with a simple API. Calling
the Prowl API from the program running on the node was a simple
task. The delay between the press of the button and the display of
the push notification on the phone was usually in the range of a couple
of seconds. However, this delay can mainly be attributed to the time
required by Prowl’s service and the underlying push notification system
from Apple.

In a similar scenario, we used the doorbell switch to send an email to
a prespecified address as soon as the button was pressed. For this, we
used the Web services of MailGun39, which provides a convenient HTTP

37http://www.no-ip.org
38http://www.prowlapp.com
39http://www.mailgun.com

http://www.no-ip.org
http://www.prowlapp.com
http://www.mailgun.com

4.5. Evaluation 173

interface for sending emails. The delay between pressing the doorbell
button and receiving the corresponding email was usually slightly larger
than when using push notifications. This can be explained by the
fact that the email system consists of multiple servers from different
authorities, which handle the transmission of emails in a store-and-
forward manner.

For the doorbell, we tested an example of a polling actuator (see
Sect. 4.4.1.4). Since the doorbell is running on batteries, running a Web
server would result in a short lifetime. Instead, we configure it to wake
up periodically and poll a pre-specified HTTP resource for changes. To
do so, we leverage HTTP’s conditional GET feature, which is usually
used for caching and widely supported on the Web. The doorbell is a
good example of such a polling actuator, as both its actuators (a bell
and a flashing light) require power only when an event is to be signaled.
We configured the doorbell to periodically monitor the URL of the RSS
feed of an existing blog. As soon as a new article was posted on the
blog, its RSS feed was updated by the provider of the blog. When the
doorbell detected the change, it rang once to notify people in its vicinity
of the update. For this scenario, the notification delay was considered
less important than battery lifetime, so we configured the node to poll
the resource every 15 minutes.

In all of the scenarios implemented and tested in this section, using
the UHF interface for bootstrapping and configuration purposes proved
helpful, as both the doorbell and the switch had only very limited means
of user input (some switches and a button). Also, monitoring the nodes
using heartbeat messages proved to be an important tool to detect
problems such as low battery voltage or bad Wi-Fi reception early.
Leveraging the existing Web services of NO-IP, Prowl, and Mailgun
proved to be simple and served as another example of the benefits of
leveraging the existing Web infrastructure.

Mobile Nodes We also briefly tested the feasibility of mobile nodes
in a large Wi-Fi infrastructure consisting of multiple access points all
sharing the same SSID. For this, we utilized the campus-wide wireless
infrastructure of ETH Zurich, which provides open access to the in-
tranet40. The node was configured to perform a callback cycle every
10 seconds, sending a heartbeat to the same script as in previous eval-
uations, running on a Web server of our department. Several walks at

40For a full access to the Internet, the users need to authenticate.

174 Chapter 4. Extending the Web Down to Constrained Wireless Devices

different parts of the ETH campus were conducted, carrying the node
along. The setup worked as expected: As long as there was Wi-Fi
coverage, the callbacks were successfully executed. When a location
change of the node resulted in a loss of the previously contacted access
point, the first callback after such a location change required signifi-
cantly more time. This was as expected, since all of our optimizations of
the callback cycle could not take effect when the access point changed.
Since the existing Wi-Fi infrastructure can also be used for indoor lo-
calization [230], one could, for example, monitor the conditions and
whereabouts of expensive equipment41.

Monitoring and Configuration of Deployed Nodes Monitoring and recon-
figuring deployed nodes using the concept of heartbeat callbacks as
introduced in Sect. 4.3.6 proved to be a vital tool. Because the payload
was encoded in JSON (see List. 4.1), parsing the data could be achieved
easily using readily available JSON libraries. We utilized a simple PHP
script that served as a heartbeat callback target and persisted the re-
ceived heartbeat payloads.

In order create an overview of the status of all nodes, we used an-
other PHP script that extracted key metrics from the heartbeat data
of each node and dynamically generated an HTML page rendering such
data for all known nodes. Metrics included battery voltage, last RSSI
value, number of wake events, last uptime, and average uptime. This
overview was very helpful in detecting nodes early that faced some sort
of problem. Additionally, recorded heartbeat data could be analyzed
to detect trends or patterns.

Reconfiguration of nodes was usually performed manually by storing
settings to be updated on the server for each node. As configuration
updates were delivered in the response to a heartbeat request, it may
require in the worst case the time of a full heartbeat period in order
to take effect. During our tests, we usually set the heartbeat period
to one hour, which was a sufficient trade-off between battery lifetime,
temporal resolution of collected data, and responsiveness to configura-
tion updates. An example of a heartbeat response that includes con-
figuration updates is depicted in List. 4.2. Examples of configuration
updates that proved to be valuable include changing the sensor callback
URL, the heartbeat callback URL, the Wi-Fi configuration, the LED

41Of course, this could also be achieved using the RFID interface of the node. However, a
Wi-Fi infrastructure is usually already in place, while an UHF infrastructure is not.

4.6. Related Work 175

output42, and the firmware on the node.
To a small extent, we also tested changing the configuration of the

nodes automatically. For example, to evaluate the influence of the com-
munication rate on the duration of the callback cycle (see Sect. 4.5.2.1),
the script on the server automatically cycled the preferred communi-
cation rate of the client by including it in the corresponding heartbeat
responses. Note that there is considerable potential in automatic con-
figuration changes. For example, the node could be automatically con-
figured to save energy (e.g., by disabling its LEDs and increasing the
heartbeat period) as soon as it runs low on batteries. Also note that
this approach is not limited to data acquired from the node but can
also consider data available on the Web.

In contrast to all the other configuration changes, which take effect
immediately, upgrading the firmware is a three-stage process. First, the
node is notified that it should perform a firmware upgrade by returning
the command and a URL in the heartbeat response. Based on this
URL, the node constructs two URLs by appending different well-known
file names (on this platform, a firmware upgrade consists of two separate
files). The node then downloads both files using HTTP, activates the
new firmware, and reboots. Since a program on the node will usually
send a heartbeat message after a reboot, we are immediately notified if
the upgrade was successful. Using HTTP for firmware upgrades greatly
simplified this process – one simply needs to copy the two parts of the
new firmware into a directory that is served by a Web server, and
set a configuration update for the node. Since the RN-131 supports
the relatively high communication rates of 802.11g, downloading the
firmware was a fast operation, despite its size, which can easily reach
64 KB.

4.6 Related Work

We categorized approaches of connecting constrained devices to the
Web into three different concepts in Sect. 4.1.3, outlining both benefits
and drawbacks. For each of the concepts, we give an overview of related
work.

42LED output serves as a visual clue both for the performance of the node (e.g., time required
for a callback cycle) and for possible problems, such as failure to associate with an access point.
However, as the energy required by the LEDs has an impact on battery lifetime, they were usually
disabled during deployments.

176 Chapter 4. Extending the Web Down to Constrained Wireless Devices

4.6.1 Application-Specific Gateways

Providing a Web interface to wireless devices via an application-specific
gateway is a well-known approach for which we provided examples of
related work in Sect. 4.1.3.1.

4.6.2 Application-Agnostic Gateways

Application-agnostic gateways are proxy servers that provide an auto-
matic mapping between HTTP and the protocols used on the resource-
constrained domain. They do not require an application-specific config-
uration and may therefore offer their services to devices running various
applications.

Using such gateways for connecting resource-constrained devices to
the Web was proposed in 2009 under the name Compressed HTTP
Over PANs (Chopan) [257] in the context of IEEE 802.15.4 networks.
A similar approach named Embedded Binary HTTP (EBHTTP) [258]
was proposed in 2010. Both approaches pursue the idea of an efficient
binary transmission format for HTTP and proxies that would translate
between this novel format and the original HTTP. Originating from
these approaches is the Constrained Application Protocol (CoAP) [69].
CoAP is a binary application protocol for resource-constrained devices
that follows the REST principle [65]. Its functionality also includes
publish/subscribe. Since CoAP is currently the most popular approach
for connecting resource-constrained devices to the Web, we will com-
pare it in more detail to our approach in Sect. 4.6.5.

Note that an automatic mapping between CoAP and HTTP does not
address the issue of efficient payloads. Ideally, the gateway could auto-
matically translate between the verbose representations usually utilized
on the Web (XML, JSON) and a more efficient representation for the
resource-constrained domain. Efforts in this area include the Efficient
XML Interchange (EXI) format [218], which is a binary representa-
tion for XML, and the Concise Binary Object Representation (CBOR)
[219], which enables the representation of JSON data in a compact
binary serialization.

For Bluetooth, there are efforts to standardize a mapping for the
GATT profile to an HTTP REST API that can be implemented by
application-agnostic gateways [259].

4.6. Related Work 177

4.6.3 Direct Connection to the Web

The idea of connecting resource-constrained devices directly to the Web
by running an HTTP server and/or an HTTP client on such devices
captured academic interest early on. An early example is the imple-
mentation of a Web server in a Java-programmable SmartCard in 1999
[260].

Using this approach in order to sense and manipulate the physical
world is specifically addressed in an article from Borriello and Want
in 2000 [81]: “Distributed sensors and actuators connected through the
Web’s standard protocols and wireless communication media provide a
powerful toolkit for developing rich applications affecting all our lives,
[...]” Interestingly, the authors also specifically address the usefulness
of binary sensors and actuators: “[...] At the other end of the Web-
server spectrum is the so-called Boolean server, whose sole purpose
is to turn on a single bit (in order to, say, turn a light bulb on or
off or to sense the state of an electrical switch, perhaps as part of a
security system). At the physical-interface side of the embedded Web
server implementing bit-level control, or sensing, the system is very
simple. But on the network side, the Web server has to use the same
protocols as any more advanced server.” In 2001, Dunkels presented
an implementation of TCP/IP with a small footprint. In his thesis,
he briefly mentions that it was used to run a simple Web server on an
8-bit microprocessor [54].

In the context of IEEE 802.15.4, the authors of [261] use HTTP in
order to call REST-based as well as SOAP-based Web services running
on sensor nodes. Their results indicate that most calls can be processed
in less than one second, in single-hop scenarios.

4.6.4 Other Approaches based on IEEE 802.11

Tozlu et al. also use the Microchip/Roving platform for their work.
In several publications, they analyze the influence of security features
and different communication rates on battery lifetime and consider the
impact of interference and range on the performance [235, 262, 263,
264]. In contrast to our approach, they use UDP for communication
and the power save mode of IEEE 802.11. This mode allows the node
to stay associated with the access point when it is in sleep mode but
requires the node to periodically wake up and listen for data buffered
by the access point. Additionally, keep-alive messages are required in

178 Chapter 4. Extending the Web Down to Constrained Wireless Devices

Border&
Router&

CoAP&Server&CoAP&Client&

HTTP&Server&HTTP&Client&

CoAP4HTTP&
Gateway&

CoAP&

UDP&

IPv6&

HTTP&

TCP&

IP&

HTTP&

TCP&

IP&

CoAP&

UDP&

IPv6&

CoAP&

UDP&

6LoWPAN&

CoAP&

UDP&

6LoWPAN&

CoAP&

UDP&

IPv6&

Figure 4.20: Using CoAP to connect physical entities to the Web (icons provided
by [213]).

order to prevent de-association by the access point.

4.6.5 Comparison with CoAP over IEEE 802.15.4

An approach to foster interoperability that is currently actively pursued
in the research community is based on the IEEE 802.15.4 standard
[265], which specifies a low-power, low-bitrate, and reduced-complexity
communication protocol intended to enable low-cost transceivers. IEEE
802.15.4 transceivers have been used intensely in wireless sensor nodes.
Popular research platforms are the TelosB [17] and the Tmote Sky [18],
which feature the MSP430 [266], an ultra-low-power microcontroller, in
combination with the CC2420 [267] transceiver.

IEEE 802.15.4 allows for a maximum transmission rate of 250 kbit/s
and limits the maximum size of the payload of the physical layer to 127
bytes [265]. Running TCP/IP over the link leaves a payload of about
62 bytes in the best case (TCP/IPv4, no security) [268] down to only
21 bytes in the worst case (TCP/IPv6, with AES-CCM-128)43. This
payload could then be utilized by HTTP and the application. As HTTP
is a verbose protocol, transferring only small amounts of application

43According to [269], replacing the 8 byte UDP header with a 20 byte TCP header.

4.6. Related Work 179

data would most probably require fragmentation of packets.
For this reasons, the practicability of using HTTP over TCP/IP is

limited on networks based on IEEE 802.15.4, as the overhead jeop-
ardizes the energy-optimized design and leads to significant response
times [270, 261]. A popular approach is to optimize all network lay-
ers and to use dedicated gateways to be able to connect nodes to the
Internet and in turn to the Web.

As wireless transceivers consume a significant amount of energy not
only when sending but also when listening for incoming data, radio
duty cycling mechanisms are utilized, which limit the amount of time
the transceiver is powered. This of course requires coordination with
adjacent network nodes for them to still be able to reliably transmit
data. For this, optimized MAC protocols are utilized at the link layer
(e.g., [61, 271]).

The network layer is based on IPv6. An IPv6 packet has a header of
40 bytes, which is mostly attributed to the large address space44 and
requires a supported maximum transmission unit (MTU)45 of at least
1280 bytes [59]. In order to make IPv6 practical for low-power wireless
area networks, 6LoWPAN [269, 272] is utilized to transport IPv6 pack-
ets, which provides, among other features, header compression and au-
tomatic fragmentation and reassembly. This in turn requires dedicated
border routers (also called edge routers), which connect a 6LoWPAN
network with a standard IPv6 network [273].

At the application layer, CoAP, the Constrained Application Protocol
[69, 70, 71] running on top of UDP is used instead of HTTP over TCP.
CoAP is a binary protocol intended for communication with resource-
constrained devices that follows the REST architectural style. It has a
strong resemblance to HTTP but provides additional features such as
support for subscriptions to changes of resources. Interestingly, there is
also support for CoAP to use in a Web browser [274]. Considering the
payload, standard compression techniques such as gzip may not provide
satisfying results [73]. For XML documents, the use of the efficient
XML interchange (EXI) format [218] is currently being considered [73].
JSON documents could be automatically converted to the more efficient
CBOR serialization [219]. In order to be able to interact with HTTP, it
is suggested to use a stateless CoAP/HTTP-Gateway that is agnostic
to the application [217]. This scenario is depicted in Fig. 4.20.

44Source and destination addresses sum up to 32 bytes.
45Link MTU: Maximum packet size in octets, that can be conveyed over a link [59].

180 Chapter 4. Extending the Web Down to Constrained Wireless Devices

To summarize, this is a bottom-up approach that is optimized primar-
ily for energy efficiency. In order to operate with existing Web services,
it requires various optimizations at several layers of the protocol stack to
address the limitations mostly imposed by IEEE 802.15.4. In contrast,
the approach that we pursued in this chapter is primarily optimized for
interoperability with existing Web services. It is a top-down approach
that leverages the existing Wi-Fi and Web infrastructures. In order
to achieve low-power operation, we rely on special features of the uti-
lized hardware platform, restrict the direction of communication (when
running on batteries), and minimize the time the node spends awake.

There are several attempts that compare HTTP and CoAP over IEEE
802.15.4. A good introduction to the topic is given in [275]. [276] pro-
vides a simulative evaluation of the performance of HTTP and CoAP
based on IEEE 802.15.4. Colitti et al. compare CoAP and HTTP both
simulatively and experimentally [277, 278]. Pötsch et al. provide lim-
ited practical measurements [74]. In [72], extensive results based on a
practical evaluation of CoAP are provided. Finally, [61] provides an
extensive evaluation of the performance of UDP and TCP on 802.15.4.

In [235], Tozlu compares the use of UDP over low-power Wi-Fi with
UDP over 6LoWPAN. His work is based on the same Wi-Fi platform
as used in this thesis. He considers the time and energy required for a
node to wake up and send a single UDP datagram, with respect to data
rate and packet size. His results are depicted in Tab. 4.6 for packet sizes
of 8 bytes and in Tab. 4.7 for packet sizes of 1024 bytes. Interestingly,
ultra-low-power Wi-Fi requires less energy than 6LoWPAN, especially
when using a high communication rate. In contrast to our callback cy-
cle (Sect. 4.4.1.1), the nodes used the power-saving features of 802.11,
which allow them to stay associated to an access point despite resolving
to sleep mode. In the setup of Tozlu, the data rate has a significant
impact, on both the time and the energy, which is in contrast to our
approach (see Sect. 4.5.2.1). This can be explained by the fact that our
callback cycle involves the sending and receiving of multiple packets,
thus being affected more by the response times of communication par-
ties than by the communication rate, for small payloads. The increased
complexity also explains that our approach requires about 5.4x more
time and 14.1x more energy (see Tab. 4.2).

Finally, a comparison between CoAP over 802.15.4 and our approach
of using HTTP over ultra-low-power Wi-Fi is summarized in Tab. 4.8.

4.7. Summary 181

6LoWPAN ULP Wi-Fi @1Mbit/s ULP Wi-Fi @54Mbit/s
Time (ms) 6 12.48 11.3

Energy (mJ) 2.5 1.30 0.55

Table 4.6: Comparison of 6LoWPAN and ULP Wi-Fi for sending a single UDP
datagram of 8 bytes (source: [235]).

6LoWPAN ULP Wi-Fi @1Mbit/s ULP Wi-Fi @54Mbit/s
Time (ms) 23.61 25.82 16.58

Energy (mJ) 9.17 8.46 1.28

Table 4.7: Comparison of 6LoWPAN and ULP Wi-Fi for sending a single UDP
datagram of 1024 bytes (source: [235]).

4.7 Summary

In this chapter, we investigated how to connect things to the Web by
leveraging existing infrastructure and standards. Instead of relying on
dedicated low-power radio technology and specialized network-level or
application-level protocols, we relied on the ubiquity of IEEE 802.11
and the interoperability of the HTTP protocol. This obsoletes dedi-
cated access points and application-level gateways and in turn reduces
complexity, enables mobility, simplifies interoperability, and therefore
fosters a wide and rapid deployment of a Web of Things.

Our results show that this approach can be implemented in an energy-
efficient manner using ultra-low-power IEEE 802.11 transceivers.

182 Chapter 4. Extending the Web Down to Constrained Wireless Devices

— CoAP over 6LoWPAN
over IEEE 802.15.4

HTTP over ultra-low-
power IEEE 802.11b/g

Physical and link layer IEEE 802.15.4 IEEE 802.11b/g
Frequency band(s) 868 MHz, 902 MHz,

2.4 GHz
2.4 GHz

Brutto data rates Up to 250 kbit/s
(2.4 GHz band)

Up to 54 Mbit/s

Reliability ACKs & automatic re-
transmissions

ACKs & automatic re-
transmissions

MTU 127 bytes 2312 bytes
Encryption AES 128 bits

(other possible)
AES 256 bits
(other possible)

Network protocol 6LoWPAN IPv4 (IPv6 also possible)
Network topology Mesh, Star Star
Transport protocol UDP (with retransmits) TCP
End-to-end security DTLS, optional TLS, optional
Application protocol CoAP HTTP
Protocol format Binary Plain text
Subscriptions and
notifications

Supported Limited
(sensor callbacks)

Connection to the
Internet

Requires 6LoWPAN bor-
der router

Standard Wi-Fi router

Interoperability with
existing Web services

Requires proxy. Pay-
loads should be kept
small.

Direct. Supports large
payloads.

Infrastructure Not readily available Widely deployed
Reachability Reachable: Global IP

address, nodes are con-
stantly online

Not reachable: (1) IPv4
usually behind NAT, (2)
nodes wake up only for
certain events

Remote configuration
updates

Real-time Delayed
(requires polling)

Actuation Real-time Delayed
(requires polling)

Sensing Real-time Real-time
Running server on
batteries

Supported Limited

Table 4.8: CoAP/6LoWPAN vs. our approach; both battery powered.

5 Conclusion

During the course of this thesis project, the Web continued its im-
pressive development. For example, the combination of multiple data
sources into so-called mash-ups became popular, the REST paradigm
overtook RPC-style SOAP APIs, several new platforms for collecting
and sharing sensor data emerged, and standards were improved or ap-
pended1. Today, utilizing the Web architecture as an interface for the
physical world can be considered an accepted paradigm. An increasing
number of products are connected to the Internet and offer an interface
on the Web, usually both for users as well as for third-party applica-
tions. This makes it much simpler for application developers to create
novel application scenarios, based on the numerous APIs available on
the Web.

However, these APIs, while simple, still feature a high level of het-
erogeneity. This results in unnecessary manual effort and thus impedes
interoperability. Driven by the lack of accepted standards for a global
Web of Things, a current trend is to connect physical entities to cen-
tral hubs that provide a uniform API for all of their connected physical
entities, creating vertical silos. While this may increase interoperabil-
ity for entities within such silos, it does not for devices from different
silos, as these may offer their specific APIs. This development is also
concerning since such hubs are usually run under a single authoritative
domain, as opposed to the open and decentralized architecture of the
Web, which empowers users and makes it so successful. In this thesis,
it is argued that a Web for Things should be just as open and decen-
tralized as the World Wide Web has been from its inception. All of our
contributions demonstrate that this is technically feasible – addressing
different aspects of a future Web of Things.

1Such as HTML5 and its various JavaScript APIs, CSS3, and WebSockets.

184 Chapter 5. Conclusion

5.1 Contributions

This thesis provided three major contributions toward a future Web of
Things, each covering a different aspect of interoperability. All of our
contributions leverage the existing Web architecture and avoid central
hubs to make the Web of Things an open and decentralized platform.
The contributions can be summarized as follows:

• The development and evaluation of a prototypical real-time search
engine for the physical world, based on the Web architecture. In
contrast to traditional Web search engines, a search engine for the
physical world has to support searching for structured and rapidly
changing, distributed content in real time. Contrary to existing
approaches, our solution is based on an open architecture that
requires neither a global view of the world’s state nor a limitation
of the search space, while still providing accurate results in real
time.

• A prototypical framework for the Web of Things that simplifies
the connection of sensors and actuators to the Web as well as their
composition to novel services by providing key primitives identified
during the development of several experimental applications. In
contrast to existing solutions, our framework does not serve as a
central hub but strives to enhance today’s inherently decentralized
Web architecture.

• A concept and evaluation of connecting everyday objects to the
Web using programmable low-power Wi-Fi modules. Contrary to
existing approaches that rely on dedicated low-power radio tech-
nology and specialized protocols, we leverage the ubiquity of IEEE
802.11 access points and the interoperability of the HTTP proto-
col. Our experimental results show that low-power Wi-Fi modules
can achieve long battery lifetime despite using the verbose Web
protocols for communication.

While our contributions provide a step toward an open, decentralized
and interoperable Web of Things, there is still a lot of work remaining
in order to reach this goal.

5.2. Limitations and Future Work 185

5.2 Limitations and Future Work

Naturally, not all of the issues we faced during the course of this thesis
could be addressed.

For our search engine, additional evaluations on even larger data sets
would be beneficial, as well as a deployment with live sensors and actual
users.

For our framework, a large deployment featuring more complex ap-
plication scenarios could show whether our distributed, event-driven
approach scales with respect to the complexity of the application sce-
narios.

For the work on low-power Wi-Fi modules, a deployment of mobile
nodes that sense predefined events and opportunistically use Wi-Fi ac-
cess points to upload their recorded data to existing Web services, be
it in real-time or as a bulk upload, could provide valuable insights. As
a plus, the position of the nodes could be determined approximately
by using a Wi-Fi geolocation service.

Besides improvements to the existing work, there are also some new
directions for future work:

Adding Semantics to the Web of Things The Semantic Web [88] is a
promising approach that strives to add semantic annotations to the
Web in order to make data universally understandable for applica-
tions. Unfortunately, this simple and early concept has still not found
widespread adoption in today’s Web. Semantic (self-)descriptions of
capabilities and properties of physical objects may be the missing link
that is required for true interoperability. It could enable heterogeneous
devices to automatically operate with other devices and services in
novel ways. In this regard, the Web of Things may be the catalyzer for
the Semantic Web, creating a Semantic Web of Things [89, 87].

Extending the Web down to Wireless Energy-Harvesting Devices In this
thesis, we demonstrated that extending the Web down to resource-
constrained ultra-low-power Wi-Fi modules is beneficial for certain
application scenarios. However, despite providing sufficient battery
lifetime for event-based sensing, batteries need to be changed even-
tually. When considering a scenario in which a large number of such
nodes is deployed, this can require significant manual effort. Combin-
ing low-power Wi-Fi modules with an energy harvesting device such as

186 Chapter 5. Conclusion

a photovoltaic cell and a supercapacitor may provide enough energy for
maintenance-free operation while still offering the benefits of leveraging
existing infrastructures. Using energy harvesting with low-power Wi-
Fi modules is challenging, as these require significantly more energy
than current approaches of energy-harvesting wireless devices, which
use dedicated low-power radio links and protocols [279, 280, 281].

Considering other transport layers than TCP for HTTP In Chap. 4, we
demonstrated how Internet-connected devices benefit from a secondary
communication channel. The protocol we implemented for the commu-
nication between the UHF reader and the Wi-Fi module is based on
request/response cycles, just like HTTP. It is obvious that one could
also have used HTTP over this link, which would enable much of the
existing code of the node’s Web server to be re-used. Unfortunately,
HTTP was much too verbose for our implementation of a shared mem-
ory protocol. However, there are efforts that successfully run HTTP
over NFC [282]. Running HTTP on top of UDP (denoted as HTTPU)
is also potentially interesting for certain use cases, as it supports broad-
cast and multicast and features less overhead than TCP. HTTPU was
proposed early and is currently used within UPnP [193, 283]. In the
context of a global Web of Things, revisiting this approach could be
promising, such as for handling notifications.

Spontaneous and Opportunistic Use of Physical Resources In a future
Web of Things, applications could opportunistically make use of sensors
and actuators to perform a certain task. For example, in order to
determine the temperature in a room, all devices that are currently
located in that room and feature a temperature sensor could contribute.
In the field of sensor networks, opportunistic sensing is well known and
often used with mobile devices such as smartphones [284]. However, in
the Web of Things, the quantity and heterogeneity of devices will be
much larger than in such closed sensing applications, and there is also
the possibility of opportunistic actuating. One simple example would
be a universal light switch that could be implemented as a key tag and
that switches all the lights in the room where it is currently located
on or off. When combined with semantic approaches, one could also
realize higher abstractions such as “make my surroundings quiet”.

5.2. Limitations and Future Work 187

Standards for the Web of Things There are currently multiple efforts
to standardize parts of the Internet of Things [285, 286, 287, 288]. Re-
garding the Web architecture, the new HTTP/2 standard [289] missed
an opportunity to include support for building blocks for a Web of
Things, such as publish/subscribe, notifications, and discovery. Stan-
dardization efforts focused on protocol efficiency, not on functionality.
If the further development of HTTP does not address the requirements
of a future Web of Things, a fragmentation into several application-level
protocols such as CoAP [69, 70, 71] seems inevitable.

Bibliography

[1] Friedemann Mattern. Ubiquitous Computing. Lecture
slides, ETH Zurich, Zurich, Switzerland, 2015. Available
from: http://www.vs.inf.ethz.ch/edu/FS2015/UC/slides/
01-Intro-Vision.pdf.

[2] Neil A. Gershenfeld. When Things Start to Think. Henry Holt
and Company, 1999.

[3] Gordon Moore. Cramming More Components onto Integrated
Circuits. Electronics Magazine, 38(8):114–117, April 1965.

[4] Markus Weiss, Adrian Helfenstein, Friedemann Mattern, and
Thorsten Staake. Leveraging smart meter data to recognize home
appliances. In Proceedings of the 10th IEEE International Con-
ference on Pervasive Computing and Communications (PerCom
2012), pages 190–197, Lugano, Switzerland, March 2012.

[5] Mark Weiser. The Computer for the 21st Century. Scientific
American, 265(3):66–75, September 1991.

[6] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gib-
bons. The Active Badge Location System. ACM Transactions on
Information Systems (TOIS), 10(1):91–102, January 1992.

[7] Andy Harter and Andy Hopper. A Distributed Location System
for the Active Office. IEEE Network, 8(1):62–70, January/Febru-
ary 1994.

[8] Michael Beigl, Hans-W. Gellersen, and Albrecht Schmidt. Medi-
aCups: Experience with Design and Use of Computer-Augmented
Everyday Artefacts. Computer Networks, 35(4):401–409, March
2001.

[9] Michael Beigl, Tobias Zimmer, and Christian Decker. A Location
Model for Communicating and Processing of Context. Personal
and Ubiquitous Computing, 6(5-6):341–357, December 2002.

http://www.vs.inf.ethz.ch/edu/FS2015/UC/slides/01-Intro-Vision.pdf
http://www.vs.inf.ethz.ch/edu/FS2015/UC/slides/01-Intro-Vision.pdf

190 Bibliography

[10] Jon E. Froehlich, Eric Larson, Tim Campbell, Conor Hag-
gerty, James Fogarty, and Shwetak N. Patel. HydroSense:
Infrastructure-Mediated Single-Point Sensing of Whole-Home
Water Activity. In Proceedings of the 11th International Confer-
ence on Ubiquitous Computing (UbiComp 2009), pages 235–244,
Orlando, FL, USA, September 2009. ACM.

[11] Sidhant Gupta, Matthew S. Reynolds, and Shwetak N. Patel.
ElectriSense: Single-point Sensing Using EMI for Electrical Event
Detection and Classification in the Home. In Proceedings of
the 12th ACM International Conference on Ubiquitous Com-
puting (UbiComp 2010), pages 139–148, Copenhagen, Denmark,
September 2010. ACM.

[12] Javier Hernandez, Mohammed (Ehsan) Hoque, Will Drevo, and
Rosalind W. Picard. Mood Meter: Counting Smiles in the Wild.
In Proceedings of the 14th ACM International Conference on
Ubiquitous Computing (UbiComp 2012), pages 301–310, Pitts-
burgh, PA, USA, 2012. ACM.

[13] Xuan Bao, Songchun Fan, Alexander Varshavsky, Kevin Li, and
Romit Roy Choudhury. Your Reactions Suggest You Liked the
Movie: Automatic Content Rating via Reaction Sensing. In Pro-
ceedings of the 2013 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing (UbiComp 2013), pages 197–
206, Zurich, Switzerland, 2013. ACM.

[14] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, Sukun
Kim, Philip Levis, and Alec Woo. The Collection Tree Pro-
tocol (CTP). TinyOS Enhancement Proposal 123, February
2007. Available from: http://www.tinyos.net/tinyos-2.x/
doc/pdf/tep123.pdf.

[15] Alan Mainwaring, David Culler, Joseph Polastre, Robert
Szewczyk, and John Anderson. Wireless Sensor Networks for
Habitat Monitoring. In Proceedings of the 1st ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications
(WSNA ’02), pages 88–97, Atlanta, GA, USA, September 2002.
ACM.

[16] Jason Hill and David Culler. A wireless embedded sensor ar-

http://www.tinyos.net/tinyos-2.x/doc/pdf/tep123.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tep123.pdf

Bibliography 191

chitecture for system-level optimization. Technical report, UC
Berkeley, 2002.

[17] Crossbow. TelosB. Data sheet, January 2006. Available from:
http://www.willow.co.uk/TelosB_Datasheet.pdf.

[18] Moteiv Corporation. Tmote Sky. Data sheet, June 2006.
Available from: http://www.eecs.harvard.edu/~konrad/
projects/shimmer/references/tmote-sky-datasheet.pdf.

[19] BTnode rev3 – Product Brief, March 2006. Available from:
http://www.btnode.ethz.ch/pub/uploads/Documentation/
btnode_rev3.24_productbrief.pdf.

[20] Geoffrey Werner-Allen, Konrad Lorincz, Mario Ruiz, Omar Mar-
cillo, Jeff Johnson, Jonathan Lees, and Matt Welsh. Deploying
a Wireless Sensor Network on an Active Volcano. IEEE Internet
Computing, 10(2):18–25, March-April 2006.

[21] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gre-
gory Fenves, Steven Glaser, and Martin Turon. Health Monitoring
of Civil Infrastructures Using Wireless Sensor Networks. In Pro-
ceedings of the 6th International Conference on Information Pro-
cessing in Sensor Networks (IPSN 2007), pages 254–263. IEEE,
ACM, April 2007.

[22] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh,
Branislav Kusy, András Nádas, Gábor Pap, János Sallai, and
Ken Frampton. Sensor Network-based Countersniper System. In
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys ’04), pages 1–12, Baltimore,
MD, USA, November 2004. ACM.

[23] Emiliano Miluzzo, Nicholas D Lane, Kristóf Fodor, Ronald Peter-
son, Hong Lu, Mirco Musolesi, Shane B Eisenman, Xiao Zheng,
and Andrew T Campbell. Sensing Meets Mobile Social Networks:
The Design, Implementation and Evaluation of the CenceMe Ap-
plication. In Proceedings of the 6th ACM Conference on Em-
bedded Network Sensor Systems (SenSys ’08), pages 337–350,
Raleigh, NC, USA, November 2008. ACM.

[24] Eiman Kanjo, Steve Benford, Mark Paxton, Alan Chamber-
lain, Danae Stanton Fraser, Dawn Woodgate, David Crellin, and

http://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.btnode.ethz.ch/pub/uploads/Documentation/btnode_rev3.24_productbrief.pdf
http://www.btnode.ethz.ch/pub/uploads/Documentation/btnode_rev3.24_productbrief.pdf

192 Bibliography

Adrain Woolard. MobGeoSen: Facilitating Personal Geosen-
sor Data Collection and Visualization Using Mobile Phones.
Personal and Ubiquitous Computing, 12(8):599–607, November
2008. Available from: http://dx.doi.org/10.1007/s00779-
007-0180-1.

[25] Andong Zhan, Marcus Chang, Yin Chen, and Andreas Terzis.
Accurate Caloric Expenditure of Bicyclists Using Cellphones. In
Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems (SenSys ’12), pages 71–84, Toronto, Canada,
November 2012. ACM.

[26] Chengwen Luo and Mun Choon Chan. SocialWeaver: Collabo-
rative Inference of Human Conversation Networks Using Smart-
phones. In Proceedings of the 11th ACM Conference on Embed-
ded Networked Sensor Systems (SenSys ’13), pages 20:1–20:14,
Rome, Italy, November 2013. ACM.

[27] Martin H. Weik. A Fourth Survey of Domestic Electronic Dig-
ital Computing Systems. Technical Report 1115, Ballistic Re-
search Laboratories, Aberdeen Proving Ground, Maryland, Jan-
uary 1964. Available from: http://ed-thelen.org/comp-hist/
BRL64.html.

[28] James E. Tomayko. Computers in Spaceflight: The NASA Ex-
perience. NASA Contractor Report 182505, March 1988. Avail-
able from: http://history.nasa.gov/computers/Compspace.
html.

[29] IC Insights. MCU Market on Migration Path to 32-bit and
ARM-based Devices, April 2013. Available from: http://www.
icinsights.com/data/articles/documents/541.pdf.

[30] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John
Stankovic. Cyber-Physical Systems: The Next Computing Revo-
lution. In Proceedings of the 47th ACM/IEEE Design Automation
Conference (DAC), pages 731–736, Anaheim, CA, USA, June
2010. IEEE.

[31] CPS Steering Group. Cyber-Physical Systems - Exec-
utive Summary, March 2008. Available from: http:
//precise.seas.upenn.edu/events/iccps11/_doc/CPS-
Executive-Summary.pdf.

http://dx.doi.org/10.1007/s00779-007-0180-1
http://dx.doi.org/10.1007/s00779-007-0180-1
http://ed-thelen.org/comp-hist/BRL64.html
http://ed-thelen.org/comp-hist/BRL64.html
http://history.nasa.gov/computers/Compspace.html
http://history.nasa.gov/computers/Compspace.html
http://www.icinsights.com/data/articles/documents/541.pdf
http://www.icinsights.com/data/articles/documents/541.pdf
http://precise.seas.upenn.edu/events/iccps11/_doc/CPS-Executive-Summary.pdf
http://precise.seas.upenn.edu/events/iccps11/_doc/CPS-Executive-Summary.pdf
http://precise.seas.upenn.edu/events/iccps11/_doc/CPS-Executive-Summary.pdf

Bibliography 193

[32] Edward Ashford Lee and Sanjit A. Seshia. Introduction
to Embedded Systems - A Cyber-Physical Systems Approach.
LeeSeshia.org, 2011. Available from: http://leeseshia.org/
releases/LeeSeshia_DigitalV1_08.pdf.

[33] John A. Stankovic, Insup Lee, Aloysius Mok, and Raj Rajkumar.
Opportunities and Obligations for Physical Computing Systems.
Computer, 38(11):23–31, November 2005.

[34] John Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia,
and Jia Zou. Distributed Real-Time Software for Cyber-Physical
Systems. Proceedings of the IEEE, 100(1):45–59, January 2012.

[35] Miroslav Pajic and Rahul Mangharam. Embedded Virtual Ma-
chines for Robust Wireless Control and Actuation. In Proceedings
of the 16th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), pages 79–88, Stockholm, Sweden,
April 2010. IEEE.

[36] Jonathan Fink, Alejandro Ribeiro, and Vijay Kumar. Robust
Control for Mobility and Wireless Communication in Cyber-
Physical Systems With Application to Robot Teams. Proceedings
of the IEEE, 100(1):164–178, January 2012.

[37] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni-
Vincentelli. Modeling Cyber-Physical Systems. Proceedings of
the IEEE, 100(1):13–28, January 2012.

[38] Yilin Mo, Tiffany Hyun-Jin Kim, Kenneth Brancik, Dona Dick-
inson, Heejo Lee, Adrian Perrig, and Bruno Sinopoli. Cyber-
Physical Security of a Smart Grid Infrastructure. Proceedings of
the IEEE, 100(1):195–209, January 2012.

[39] Siemens AG, Munich, Germany. SIEMENS GSM Module M1
User Guide, 1996.

[40] Friedemann Mattern. Die technische Basis für M2M und das In-
ternet der Dinge. In Jörg Eberspächer and Uwe Kubach, editors,
M2M und das Internet der Dinge. Münchner Kreis, pages 46–69,
May 2013. Available from: http://www.vs.inf.ethz.ch/publ/
papers/mattern-m2m_iot-2013.pdf.

http://leeseshia.org/releases/LeeSeshia_DigitalV1_08.pdf
http://leeseshia.org/releases/LeeSeshia_DigitalV1_08.pdf
http://www.vs.inf.ethz.ch/publ/papers/mattern-m2m_iot-2013.pdf
http://www.vs.inf.ethz.ch/publ/papers/mattern-m2m_iot-2013.pdf

194 Bibliography

[41] Bundesministerium für Wirtschaft und Technologie. Machine-
to-Machine Kommunikation – eine Chance für die deutsche
Industrie. Berlin, Germany, November 2011. Avail-
able from: http://www.m2m-alliance.com/fileadmin/user_
upload/pdf/IT_Gipfel_AG2_M2M_2011.pdf.

[42] Type-approval requirements for the deployment of the eCall
in-vehicle system based on the 112 service. European Parliament
ordinary legislative procedure 2013/0165(COD), April 2015.
Available from: http://www.europarl.europa.eu/oeil/
popups/ficheprocedure.do?lang=en&reference=2013/
0165%28COD%29.

[43] acatech Industrie 4.0 Working Group. Recommendations
for implementing the strategic initiative INDUSTRIE 4.0:
Final report of the Industrie 4.0 Working Group, April
2013. Available from: http://www.acatech.de/fileadmin/
user_upload/Baumstruktur_nach_Website/Acatech/root/
de/Material_fuer_Sonderseiten/Industrie_4.0/Final_
report__Industrie_4.0_accessible.pdf.

[44] Harald Weiss. Industrie 4.0 – ein deutscher Be-
griff. VDI Nachrichten, January 2014. Available from:
http://www.imscenter.net/industry-4-0-activities/
industrie-4-0-jay-lee.pdf.

[45] Bundesministerium für Bildung und Forschung. Zukunfts-
bild „Industrie 4.0“. Bonn, Germany, November 2013.
Available from: http://www.bmbf.de/pubRD/Zukunftsbild_
Industrie_40.pdf.

[46] Friedemann Mattern and Christian Floerkemeier. From the In-
ternet of Computers to the Internet of Things. In Kai Sachs, Ilia
Petrov, and Pablo Guerrero, editors, From Active Data Manage-
ment to Event-Based Systems and More, volume 6462 of LNCS,
pages 242–259. Springer, 2010.

[47] Kevin Ashton. That ‘Internet of Things’ Thing. RFID Jour-
nal, June 2009. Available from: http://www.rfidjournal.com/
articles/view?4986.

[48] Christian Floerkemeier, Christof Roduner, and Matthias Lampe.
RFID Application Development with the Accada Middleware

http://www.m2m-alliance.com/fileadmin/user_upload/pdf/IT_Gipfel_AG2_M2M_2011.pdf
http://www.m2m-alliance.com/fileadmin/user_upload/pdf/IT_Gipfel_AG2_M2M_2011.pdf
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?lang=en&reference=2013/0165%28COD%29
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?lang=en&reference=2013/0165%28COD%29
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?lang=en&reference=2013/0165%28COD%29
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.imscenter.net/industry-4-0-activities/industrie-4-0-jay-lee.pdf
http://www.imscenter.net/industry-4-0-activities/industrie-4-0-jay-lee.pdf
http://www.bmbf.de/pubRD/Zukunftsbild_Industrie_40.pdf
http://www.bmbf.de/pubRD/Zukunftsbild_Industrie_40.pdf
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986

Bibliography 195

Platform. IEEE Systems Journal, Special Issue on RFID Tech-
nology, 1(2):82–94, December 2007.

[49] Dominique Guinard, Mathias Mueller, and Jacques Pasquier.
Giving RFID a REST: Building a Web-Enabled EPCIS. In
Proceedings of Internet of Things 2010 International Conference
(IoT 2010), Tokyo, Japan, November 2010.

[50] Eamonn O’Neill, Peter Thompson, Stavros Garzonis, and An-
drew Warr. Reach Out and Touch: Using NFC and 2D Bar-
codes for Service Discovery and Interaction with Mobile Devices.
In Proceedings of the 5th International Conference on Pervasive
Computing, volume 4480 of LNCS, pages 19–36. Springer, May
2007.

[51] Robert Adelmann. An efficient bar code recognition engine for en-
abling mobile services. PhD thesis, ETH Zurich, Zurich, Switzer-
land, 2011.

[52] CMU SCS Coke Machine. Web page. Available from: http:
//www.cs.cmu.edu/~coke/.

[53] Ken Harrenstien. NAME/FINGER Protocol. Internet Requests
for Comments: 742, December 1977. Available from: http://
tools.ietf.org/html/rfc742.

[54] Adam Dunkels. Design and Implementation of the lwIP TCP/IP
Stack. Master’s thesis, Swedish Institute of Computer Science,
February 2001.

[55] Adam Dunkels. Full TCP/IP for 8-bit Architectures. In Proceed-
ings of the First International Conference on Mobile Systems,
Applications, and Services (MobiSys ’03), pages 85–98. ACM,
2003.

[56] Adam Dunkels, Juan Alonso, Thiemo Voigt, Hartmut Ritter, and
Jochen Schiller. Connecting Wireless Sensornets with TCP/IP
Networks. In Proceedings of the Second International Conference
on Wired/Wireless Internet Communications (WWIC 2004), vol-
ume 2957 of LNCS, pages 143–152, Frankfurt, Germany, February
2004. Springer.

http://www.cs.cmu.edu/~coke/
http://www.cs.cmu.edu/~coke/
http://tools.ietf.org/html/rfc742
http://tools.ietf.org/html/rfc742

196 Bibliography

[57] Internet Protocol. Internet Requests for Comments: 791, Septem-
ber 1981. Available from: http://tools.ietf.org/html/
rfc791.

[58] RIPE Network Coordination Centre. Reaching the Last
/8. Web page, April 2015. Available from: https:
//www.ripe.net/publications/ipv6-info-centre/about-
ipv6/ipv4-exhaustion/reaching-the-last-8.

[59] Stephen E. Deering and Robert M. Hinden. Internet Protocol,
Version 6 (IPv6) Specification. Internet Requests for Comments:
2460, December 1998. Available from: http://tools.ietf.org/
html/rfc2460.

[60] Nandakishore Kushalnagar, Gabriel Montenegro, and Christian
Peter Pii Schumacher. IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs): Overview, Assumptions, Problem
Statement, and Goals. Internet Requests for Comments: 4919,
August 2007. Available from: http://tools.ietf.org/html/
rfc4919.

[61] Jonathan W. Hui and David E. Culler. IP is Dead, Long Live
IP for Wireless Sensor Networks. In Proceedings of the 6th ACM
Conference on Embedded Network Sensor Systems (SenSys ’08),
pages 15–28, Raleigh, NC, USA, November 2008. ACM.

[62] Adam Dunkels and JP Vasseur. IP for Smart Objects. White
paper, IPSO Alliance, July 2010. Available from: http://www.
ipso-alliance.org/wp-content/media/why_ip.pdf.

[63] Martin Gudgin (Ed.), Marc Hadley (Ed.), Noah Mendelsohn
(Ed.), Jean-Jacques Moreau (Ed.), Henrik Frystyk Nielsen (Ed.),
Anish Karmarkar (Ed.), and Yves Lafon (Ed.). SOAP Version
1.2 Part 1: Messaging Framework (Second Edition). W3C Rec-
ommendation, April 2007. Available from: http://www.w3.org/
TR/soap12-part1/.

[64] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk
Nielsen, Larry Masinter, Paul J. Leach, and Tim Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. Internet Requests for
Comments: 2616, June 1999. Available from: http://tools.
ietf.org/html/rfc2616.

http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc791
https://www.ripe.net/publications/ipv6-info-centre/about-ipv6/ipv4-exhaustion/reaching-the-last-8
https://www.ripe.net/publications/ipv6-info-centre/about-ipv6/ipv4-exhaustion/reaching-the-last-8
https://www.ripe.net/publications/ipv6-info-centre/about-ipv6/ipv4-exhaustion/reaching-the-last-8
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc4919
http://tools.ietf.org/html/rfc4919
http://www.ipso-alliance.org/wp-content/media/why_ip.pdf
http://www.ipso-alliance.org/wp-content/media/why_ip.pdf
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616

Bibliography 197

[65] Roy T. Fielding and Richard N. Taylor. Principled Design of
the Modern Web Architecture. ACM Transactions on Internet
Technology (TOIT), 2:115–150, May 2002.

[66] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik
Wilde. From the Internet of Things to the Web of Things: Re-
source Oriented Architecture and Best Practices. In Dieter Uck-
elmann, Mark Harrison, and Florian Michahelles, editors, Archi-
tecting the Internet of Things, pages 97–129. Springer, 2011.

[67] Vlad Trifa. Building Blocks for a Participatory Web of Things:
Devices, Infrastructures, and Programming Frameworks. PhD
thesis, ETH Zurich, Zurich, Switzerland, August 2011.

[68] Dominique Guinard. A Web of Things Application Architecture
– Integrating the Real-World into the Web. PhD thesis, ETH
Zurich, Zurich, Switzerland, August 2011.

[69] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Con-
strained Application Protocol (CoAP). Internet Requests for
Comments: 7252, June 2014. Available from: http://tools.
ietf.org/html/rfc7252.

[70] Ed. Akbar Rahman and Ed. Esko Dijk. Group Communication for
the Constrained Application Protocol (CoAP). Internet Requests
for Comments: 7390, October 2014. Available from: http://
tools.ietf.org/html/rfc7390.

[71] Klaus Hartke. Observing Resources in CoAP. Internet-Draft, De-
cember 2014. Available from: http://tools.ietf.org/html/
draft-ietf-core-observe-16.

[72] Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. A
Low-Power CoAP for Contiki. In Proceedings of the 8th IEEE
International Conference on Mobile Ad-hoc and Sensor Systems
(MASS 2011), pages 855–860, Valencia, Spain, October 2011.
IEEE.

[73] Angelo P. Castellani, Mattia Gheda, Nicola Bui, Michele Rossi,
and Michele Zorzi. Web Services for the Internet of Things
through CoAP and EXI. In Proceedings of the 2011 IEEE In-
ternational Conference on Communications Workshops (ICC),
pages 1–6, Kyoto, Japan, June 2011.

http://tools.ietf.org/html/rfc7252
http://tools.ietf.org/html/rfc7252
http://tools.ietf.org/html/rfc7390
http://tools.ietf.org/html/rfc7390
http://tools.ietf.org/html/draft-ietf-core-observe-16
http://tools.ietf.org/html/draft-ietf-core-observe-16

198 Bibliography

[74] Thomas Pötsch, Koojana Kuladinithi, Markus Becker, Peter
Trenkamp, and Carmelita Goerg. Performance Evaluation of
CoAP Using RPL and LPL in TinyOS. In Proceedings of 5th
International Conference on New Technologies, Mobility and Se-
curity (NTMS 2012), pages 1–5, Istanbul, Turkey, May 2012.

[75] International Business Machines Corporation (IBM) and
Eurotech. MQ Telemetry Transport V3.1 (Protocol
Specification), August 2010. Available from: http:
//public.dhe.ibm.com/software/dw/webservices/ws-
mqtt/MQTT_V3.1_Protocol_Specific.pdf.

[76] AMQP Specification v1.0, October 2011. Available from: http:
//www.amqp.org/sites/amqp.org/files/amqp.pdf.

[77] Peter Saint-Andre. Extensible Messaging and Presence Protocol
(XMPP): Core. Internet Requests for Comments: 6120, March
2011. Available from: http://tools.ietf.org/html/rfc6120.

[78] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark.
MQTT-S - A Publish/Subscribe Protocol For Wireless Sensor
Networks. In Proceedings of the 3rd International Conference
on Communication Systems Software and Middleware and Work-
shops (COMSWARE 2008), pages 791–798, Bangalore, India,
January 2008. IEEE.

[79] Sven Bendel, Thomas Springer, Daniel Schuster, Alexander
Schill, Ralf Ackermann, and Michael Ameling. A Service In-
frastructure for the Internet of Things based on XMPP. In Pro-
ceedings of the 11th IEEE International Conference on Pervasive
Computing and Communications (PerCom 2013), pages 385–388,
March 2013.

[80] IEEE Standards Glossary. Web page. Available from:
http://www.ieee.org/education_careers/education/
standards/standards_glossary.html.

[81] Gaetano Borriello and Roy Want. Embedded computation meets
the World Wide Web. Communications of the ACM, 43(5):59–66,
May 2000.

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://www.amqp.org/sites/amqp.org/files/amqp.pdf
http://www.amqp.org/sites/amqp.org/files/amqp.pdf
http://tools.ietf.org/html/rfc6120
http://www.ieee.org/education_careers/education/standards/standards_glossary.html
http://www.ieee.org/education_careers/education/standards/standards_glossary.html

Bibliography 199

[82] John Barton and Tim Kindberg. The Challenges and Opportu-
nities of Integrating the Physical World and Networked Systems.
Technical Report HPL-2001-18, Hewlett Packard, January 2001.

[83] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie
Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky Kr-
ishnan, Howard Morris, John Schettino, Bill Serra, and Mirjana
Spasojevic. People, Places, Things: Web Presence for the Real
World. Mobile Networks and Applications, 7(5):365–376, October
2002.

[84] Tim Kindberg and John Barton. A Web-based nomadic comput-
ing system. Computer Networks, 35(4):443–456, March 2001.

[85] Erik Wilde. Putting Things to REST. Technical Report 2007-015,
UC Berkeley School of Information, November 2007.

[86] Dominique Guinard and Vlad Trifa. Towards the Web of Things:
Web Mashups for Embedded Devices. In Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web
(MEM 2009), in Proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain, April 2009.

[87] Simon Mayer, Andreas Tschofen, Anind K. Dey, and Friedemann
Mattern. User Interfaces for Smart Things - A Generative Ap-
proach with Semantic Interaction Descriptions. ACM Transac-
tions on Computer-Human Interaction (TOCHI), 21(2, Article
12), February 2014.

[88] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic
Web: a new form of Web content that is meaningful to computers
will unleash a revolution of new possibilities. Scientific American,
284(5):34–43, May 2001.

[89] Dennis Pfisterer, Kay Römer, Daniel Bimschas, Oliver Kleine,
Richard Mietz, Cuong Truong, Henning Hasemann, Alexander
Kröller, Max Pagel, Manfred Hauswirth, Marcel Karnstedt, Myr-
iam Leggieri, Alexandre Passant, and Ray Richardson. SPIT-
FIRE: Toward a Semantic Web of Things. IEEE Communications
Magazine, 49(11):40–48, November 2011.

[90] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl
García-Castro, Oscar Corcho, Simon Cox, John Graybeal, Man-

200 Bibliography

fred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang,
Krzysztof Janowicz, W. David Kelsey, Danh Le Phuoc, Laurent
Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin
Page, Alexandre Passant, Amit Sheth, and Kerry Taylor. The
SSN ontology of the W3C semantic sensor network incubator
group. Web Semantics: Science, Services and Agents on the
World Wide Web, 17:25–32, December 2012.

[91] Tim Berners-Lee. Personal Homepage. Available from: http:
//www.w3.org/People/Berners-Lee/.

[92] Dave Wiener. XML-RPC Specification. Web page, June 1999.
Available from: http://xmlrpc.scripting.com/spec.html.

[93] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform
Resource Identifier (URI): Generic Syntax. Internet Requests for
Comments: 3986, January 2005. Available from: http://tools.
ietf.org/html/rfc3986.

[94] Dave Raggett (Ed.), Arnaud Le Hors (Ed.), and Ian Jacobs
(Ed.). HTML 4.01 Specification. W3C Recommendation, Decem-
ber 1999. Available from: http://www.w3.org/TR/1999/REC-
html401-19991224/.

[95] Ian Hickson (Ed.), Robin Berjon (Ed.), Steve Faulkner
(Ed.), Travis Leithead (Ed.), Erika Doyle Navara (Ed.), Ed-
ward O’Connor (Ed.), and Silvia Pfeiffer (Ed.). HTML5 – A
vocabulary and associated APIs for HTML and XHTML. W3C
Recommendation, October 2014. Available from: http://www.
w3.org/TR/2014/REC-html5-20141028/.

[96] Tim Bray (Ed.), Jean Paoli (Ed.), C. M. Sperberg-McQueen
(Ed.), Eve Maler (Ed.), François Yergeau (Ed.), and John Cowa
(Ed.). Extensible Markup Language (XML) 1.1 (Second Edi-
tion). W3C Recommendation, August 2006. Available from:
http://www.w3.org/TR/xml11/.

[97] Douglas Crockford. The application/json Media Type for
JavaScript Object Notation (JSON). Internet Requests for Com-
ments: 4627, July 2006. Available from: http://tools.ietf.
org/html/rfc4627.

http://www.w3.org/People/Berners-Lee/
http://www.w3.org/People/Berners-Lee/
http://xmlrpc.scripting.com/spec.html
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/2014/REC-html5-20141028/
http://www.w3.org/TR/2014/REC-html5-20141028/
http://www.w3.org/TR/xml11/
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627

Bibliography 201

[98] George Coulouris, Jean Dollimore, and Tim Kindberg. Dis-
tributed Systems: Concepts and Design. Addison Wesley, fourth
edition, 2005.

[99] Benedikt Ostermaier, B. Maryam Elahi, Kay Römer, Michael
Fahrmair, and Wolfgang Kellerer. Poster Abstract: Dyser – To-
wards a Real-Time Search Engine for the Web of Things. In
Proceedings of the 6th ACM Conference on Embedded Network
Sensor Systems (SenSys ’08), pages 429–430, Raleigh, NC, USA,
November 2008. ACM.

[100] B. Maryam Elahi, Kay Römer, Benedikt Ostermaier, Michael
Fahrmair, and Wolfgang Kellerer. Sensor Ranking: A Primitive
for Efficient Content-based Sensor Search. In Proceedings of the
8th International Conference on Information Processing in Sen-
sor Networks (IPSN 2009), pages 217–228, San Francisco, CA,
USA, April 2009. IEEE Computer Society.

[101] Benedikt Ostermaier, Kay Römer, Friedemann Mattern, Michael
Fahrmair, and Wolfgang Kellerer. A Real-Time Search Engine
for the Web of Things. In Proceedings of Internet of Things 2010
International Conference (IoT 2010), Tokyo, Japan, November
2010.

[102] Kay Römer, Benedikt Ostermaier, Friedemann Mattern, Michael
Fahrmair, and Wolfgang Kellerer. Real-Time Search for Real-
World Entities: A Survey. Proceedings of the IEEE, 98(11):1887–
1902, November 2010.

[103] Michael Fahrmair, Wolfgang Kellerer, Kay Römer, Benedikt Os-
termaier, and Friedemann Mattern. Method and apparatus for
searching a plurality of realtime sensors. Patent application
EP2131292, filed June 2008, published September 2009. Available
from: https://register.epo.org/espacenet/application?
lng=de&number=EP08157818&tab=main.

[104] Google. Inside Search: Algorithms. Web page, October
2013. Available from: http://www.google.com/insidesearch/
howsearchworks/algorithms.html.

[105] Sergey Brin and Lawrence Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and ISDN
Systems, 30(1–7):107–117, April 1998.

https://register.epo.org/espacenet/application?lng=de&number=EP08157818&tab=main
https://register.epo.org/espacenet/application?lng=de&number=EP08157818&tab=main
http://www.google.com/insidesearch/howsearchworks/algorithms.html
http://www.google.com/insidesearch/howsearchworks/algorithms.html

202 Bibliography

[106] Simon Tabor. Google’s 2013 downtime caused a 40% drop in
global traffic. GoSquared Engineering Blog, August 2013. Avail-
able from: https://engineering.gosquared.com/googles-
downtime-40-drop-in-traffic.

[107] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Web page, 1998. Full version
with appendix. Available from: http://infolab.stanford.
edu/~backrub/google.html.

[108] Knut Magne Risvik and Rolf Michelsen. Search engines and Web
dynamics. Computer Networks, 39(3):289–302, June 2002.

[109] Abhishek Das and Ankit Jain. Next Generation Search Engines:
Advanced Models for Information Retrieval, chapter Indexing the
World Wide Web: The Journey So Far, pages 1–28. IGI Global,
2012.

[110] ISO/IEC. Information technology – Database languages –
SQL. ISO/IEC 9075(1-4,9-11,13,14):2011, December 2011. Avail-
able from: http://www.iso.org/iso/home/store/catalogue_
ics/catalogue_detail_ics.htm?csnumber=53681.

[111] Nathan Eagle and Alex (Sandy) Pentland. Reality Mining: Sens-
ing Complex Social Systems. Personal and Ubiquitous Comput-
ing, 10(4):255–268, May 2006.

[112] Dave Evans. The Internet of Things - How the Next Evo-
lution of the Internet Is Changing Everything. White Paper,
Cisco, April 2011. Available from: http://www.cisco.com/web/
about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.

[113] Augustine Chidi Ikeji and Farshad Fotouhi. An adaptive real-
time Web search engine. In Proceedings of the 2nd International
Workshop on Web information and Data Management (WIDM
’99), pages 12–16, Kansas City, MO, USA, November 1999. ACM.

[114] Burr S. Watters. Development and Performance Evaluation of
a Real Time Web Search Engine. Master’s thesis, University of
North Florida, December 2004.

[115] Nathan Eagle and Alex Sandy Pentland. Eigenbehaviors: identi-
fying structure in routine. Behavioral Ecology and Sociobiology,
63(7):1057–1066, May 2009.

https://engineering.gosquared.com/googles-downtime-40-drop-in-traffic
https://engineering.gosquared.com/googles-downtime-40-drop-in-traffic
http://infolab.stanford.edu/~backrub/google.html
http://infolab.stanford.edu/~backrub/google.html
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=53681
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=53681
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

Bibliography 203

[116] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László
Barabási. Limits of Predictability in Human Mobility. Science,
327(5968):1018–1021, February 2010.

[117] Adi Raveh and Charles S. Tapiero. Periodicity, Constancy, Het-
erogeneity and the Categories of Qualitative Time Series. Ecology,
61(3):715–719, June 1980.

[118] Mohamed Elfeky, Walid Aref, and Ahmed Elmagarmid. Using
Convolution to Mine Obscure Periodic Patterns in One Pass.
In Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis,
Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and
Elena Ferrari, editors, Advances in Database Technology - EDBT
2004, volume 2992 of LNCS, pages 543–544. Springer, March
2004.

[119] Homepage of Bicing. Web page. Available from: http://www.
bicing.cat/.

[120] Homepage of microformats. Web Page. Available from: http:
//microformats.org.

[121] WHATWG. Microdata. WHATWG Draft Standard, October
2013. Available from: http://www.whatwg.org/specs/web-
apps/current-work/multipage/microdata.html.

[122] W3C. RDFa Core 1.1 - Third Edition. W3C Recommendation,
March 2015. Available from: http://www.w3.org/TR/2015/
REC-rdfa-core-20150317/.

[123] Eric Prud’hommeaux (Ed.) and Andy Seaborne (Ed.). SPARQL
Query Language for RDF. W3C Recommendation, January
2008. Available from: http://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115/.

[124] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Infrastructure
for data processing in large-scale interconnected sensor networks.
In Proceedings of the 2007 International Conference on Mobile
Data Management, pages 198–205, Mannheim, Germany, May
2007. IEEE.

[125] Kok-Kiong Yap, Vikram Srinivasan, and Mehul Motani. MAX:
Human-Centric Search of the Physical World. In Proceedings

http://www.bicing.cat/
http://www.bicing.cat/
http://microformats.org
http://microformats.org
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html
http://www.w3.org/TR/2015/REC-rdfa-core-20150317/
http://www.w3.org/TR/2015/REC-rdfa-core-20150317/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

204 Bibliography

of the 3rd Conference on Embedded Networked Sensor Systems
(SenSys ’05), pages 166–179, San Diego, CA, USA, November
2005. ACM.

[126] Kok-Kiong Yap, Vikram Srinivasan, and Mehul Motani. MAX:
Wide Area Human-Centric Search of the Physical World. ACM
Transactions on Sensor Networks (TOSN), 4(4):26:1–26:34, Au-
gust 2008.

[127] Chiu C. Tan, Bo Sheng, Haodong Wang, and Qun Li. Mi-
crosearch: A Search Engine for Embedded Devices Used in Per-
vasive Computing. ACM Transactions on Embedded Computing
Systems (TECS), 9(4):43:1–43:29, March 2010.

[128] Haodong Wang, Chiu C. Tan, and Qun Li. Snoogle: A Search En-
gine for Pervasive Environments. IEEE Transactions on Parallel
and Distributed Systems, 21(8):1188–1202, August 2010.

[129] Christian Frank, Philipp Bolliger, Christof Roduner, and Wolf-
gang Kellerer. Objects Calling Home: Locating Objects Using
Mobile Phones. In Proceedings of the 5th International Confer-
ence on Pervasive Computing (Pervasive 2007), volume 4480 of
LNCS. Springer, Toronto, Canada, May 2007.

[130] Christian Frank, Christof Roduner, Chie Noda, and Wolfgang
Kellerer. Query Scoping for the Sensor Internet. In Proceedings of
the IEEE International Conference on Pervasive Services (ICPS
2006), Lyon, France, June 2006.

[131] Jianwei Liu, Haiying Shen, Ze Li, Shoshana Loeb, and Stan-
ley Moyer. SCPS: A Social-Aware Distributed Cyber-Physical
Human-Centric Search Engine. In Proceedings of the 2011 IEEE
Global Telecommunications Conference (GLOBECOM 2011),
pages 1–5, Houston, TX, USA, December 2011.

[132] Tingxin Yan, Deepak Ganesan, and R. Manmatha. Distributed
Image Search in Camera Sensor Networks. In Proceedings of
the 6th ACM Conference on Embedded Network Sensor Systems
(SenSys ’08), pages 155–168, Raleigh, NC, USA, November 2008.
ACM.

[133] Misbah Uddin, Rolf Stadler, and Alexander Clemm. Management
by Network Search. In Proceedings of the 2012 IEEE Network

Bibliography 205

Operations and Management Symposium (NOMS 2012), pages
146–154, Maui, HI, USA, April 2012. IEEE.

[134] Misbah Uddin, Rolf Stadler, and Alexander Clemm. Scalable
Matching and Ranking for Network Search. In Proceedings of the
9th International Conference on Network and Service Manage-
ment (CNSM ’13), pages 251–259, Zurich, Switzerland, October
2013. IEEE.

[135] Richard Mietz and Kay Römer. Exploiting Correlations for Effi-
cient Content-based Sensor Search. In Proceedings of the IEEE
Sensors 2011 Conference, pages 187–190, Limerick, Ireland, Oc-
tober 2011. IEEE.

[136] Cuong Truong and Kay Römer. Content-Based Sensor Search
for the Web of Things. In Proceedings of the 2013 IEEE
Global Telecommunications Conference (GLOBECOM 2013),
pages 2654–2660, Atlanta, GA, USA, December 2013. IEEE.

[137] Cuong Truong, Kay Römer, and Kai Chen. Fuzzy-based sensor
search in the Web of Things. In Proceedings of the 3rd Interna-
tional Conference on the Internet of Things (IoT 2012), pages
127–134, Wuxi, China, October 2012.

[138] Richard Mietz, Sven Groppe, Kay Römer, and Dennis Pfisterer.
Semantic Models for Scalable Search in the Internet of Things.
Journal of Sensor and Actuator Networks, 2(2):172–195, March
2013.

[139] Simon Mayer, Dominique Guinard, and Vlad Trifa. Searching in
a Web-based Infrastructure for Smart Things. In Proceedings of
the 3rd International Conference on the Internet of Things (IoT
2012), pages 119–126, Wuxi, China, October 2012.

[140] Jonas Michel, Christine Julien, Jamie Payton, and Gruia-Catalin
Roman. Gander: Personalizing Search of the Here and Now.
In Alessandro Puiatti and Tao Gu, editors, Mobile and Ubiqui-
tous Systems: Computing, Networking, and Services, volume 104
of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pages 88–100.
Springer, 2012. Revised Selected Papers of the 8th International
ICST Conference, MobiQuitous 2011.

206 Bibliography

[141] Zhiming Ding, Zhikui Chen, and Qi Yang. IoT-SVKSearch: a
real-time multimodal search engine mechanism for the internet
of things. International Journal of Communication Systems,
27(6):871–897, June 2014.

[142] Benoit Christophe, Vincent Verdot, and Vincent Toubiana.
Searching the ’Web of Things’. In Proceedings of the Fifth IEEE
International Conference on Semantic Computing (ICSC 2011),
pages 308–315, Palo Alto, CA, USA, September 2011.

[143] Biz Stone. Twitter and XMPP: Drinking from The Fire Hose.
Twitter Blog, July 2008. Available from: http://blog.twitter.
com/2008/07/twitter-and-xmpp-drinking-from-fire.html.

[144] Danny Sullivan. Bing, Now With Extra Facebook:
See What Your Friends Like & People Search Results.
Search Engine Land, October 2010. Available from:
http://searchengineland.com/bing-now-with-extra-
facebook-see-what-your-friends-like-52848.

[145] Twitter. Posting a Tweet. Web page, September 2015. Available
from: https://support.twitter.com/articles/15367.

[146] Biz Stone. Finding A Perfect Match. Twitter Blog, July 2008.
Available from: http://blog.twitter.com/2008/07/finding-
perfect-match.html.

[147] Twitter Engineering. The Engineering Behind Twitter’s
New Search Experience. Twitter Blog, May 2011. Avail-
able from: https://blog.twitter.com/2011/engineering-
behind-twitter%E2%80%99s-new-search-experience.

[148] The top 500 sites on the web. Homepage of Alexa.com, February
2012. Available from: http://www.alexa.com/topsites.

[149] Stefanie Olsen. Google search gets newsier. CNET News, Septem-
ber 2002. Available from: http://news.cnet.com/2100-1023-
958927.html.

[150] Amit Singhal. Relevance meets the real-time web.
The official Google Blog, July 2009. Available from:
http://googleblog.blogspot.com/2009/12/relevance-
meets-real-time-web.html.

http://blog.twitter.com/2008/07/twitter-and-xmpp-drinking-from-fire.html
http://blog.twitter.com/2008/07/twitter-and-xmpp-drinking-from-fire.html
http://searchengineland.com/bing-now-with-extra-facebook-see-what-your-friends-like-52848
http://searchengineland.com/bing-now-with-extra-facebook-see-what-your-friends-like-52848
https://support.twitter.com/articles/15367
http://blog.twitter.com/2008/07/finding-perfect-match.html
http://blog.twitter.com/2008/07/finding-perfect-match.html
https://blog.twitter.com/2011/engineering-behind-twitter%E2%80%99s-new-search-experience
https://blog.twitter.com/2011/engineering-behind-twitter%E2%80%99s-new-search-experience
http://www.alexa.com/topsites
http://news.cnet.com/2100-1023-958927.html
http://news.cnet.com/2100-1023-958927.html
http://googleblog.blogspot.com/2009/12/relevance-meets-real-time-web.html
http://googleblog.blogspot.com/2009/12/relevance-meets-real-time-web.html

Bibliography 207

[151] Dylan Casey. Replay it: Google search across the Twit-
ter archive. The official Google blog, April 2010. Available
from: http://googleblog.blogspot.com/2010/04/replay-
it-google-search-across-twitter.html.

[152] Danny Sullivan. As Deal With Twitter Expires, Google Realtime
Search Goes Offline. Search Engine Land, July 2011. Avail-
able from: http://searchengineland.com/as-deal-with-
twitter-expires-google-realtime-search-goes-offline-
84175.

[153] Ben Parr. Google To Revive Realtime Search, Thanks
to Google+. Mashable.com, August 2011. Available
from: http://mashable.com/2011/08/04/google-realtime-
search-revive/.

[154] Carrie Grimes. Our new search index: Caffeine. The of-
ficial Google blog, June 2010. Available from: http:
//googleblog.blogspot.ch/2010/06/our-new-search-
index-caffeine.html.

[155] Vic Gundotra. Introducing the Google+ project: Real-life shar-
ing, rethought for the web. The official Google Blog, June 2011.
Available from: http://googleblog.blogspot.com/2011/06/
introducing-google-project-real-life.html.

[156] Betsy Aoki. Bing Feature Update: Bing News with
Real-Time Twitter feed and Enhanced Entertainment
Sharing. Bing Blogs, March 2011. Available from:
http://blogs.bing.com/search/2011/03/25/bing-
feature-update-bing-news-with-real-time-twitter-
feed-and-enhanced-entertainment-sharing/.

[157] Technorati. About Technorati. Web page, July
2010. Archived by web.archive.org. Available from:
http://web.archive.org/web/20100722150939/http:
//technorati.com/about-technorati/.

[158] Technorati. Welcome to the former ping page. Web
page, March 2011. Archived by web.archive.org. Avail-
able from: https://web.archive.org/web/20110322224938/
http://technorati.com/ping/.

http://googleblog.blogspot.com/2010/04/replay-it-google-search-across-twitter.html
http://googleblog.blogspot.com/2010/04/replay-it-google-search-across-twitter.html
http://searchengineland.com/as-deal-with-twitter-expires-google-realtime-search-goes-offline-84175
http://searchengineland.com/as-deal-with-twitter-expires-google-realtime-search-goes-offline-84175
http://searchengineland.com/as-deal-with-twitter-expires-google-realtime-search-goes-offline-84175
http://mashable.com/2011/08/04/google-realtime-search-revive/
http://mashable.com/2011/08/04/google-realtime-search-revive/
http://googleblog.blogspot.ch/2010/06/our-new-search-index-caffeine.html
http://googleblog.blogspot.ch/2010/06/our-new-search-index-caffeine.html
http://googleblog.blogspot.ch/2010/06/our-new-search-index-caffeine.html
http://googleblog.blogspot.com/2011/06/introducing-google-project-real-life.html
http://googleblog.blogspot.com/2011/06/introducing-google-project-real-life.html
http://blogs.bing.com/search/2011/03/25/bing-feature-update-bing-news-with-real-time-twitter-feed-and-enhanced-entertainment-sharing/
http://blogs.bing.com/search/2011/03/25/bing-feature-update-bing-news-with-real-time-twitter-feed-and-enhanced-entertainment-sharing/
http://blogs.bing.com/search/2011/03/25/bing-feature-update-bing-news-with-real-time-twitter-feed-and-enhanced-entertainment-sharing/
http://web.archive.org/web/20100722150939/http://technorati.com/about-technorati/
http://web.archive.org/web/20100722150939/http://technorati.com/about-technorati/
https://web.archive.org/web/20110322224938/http://technorati.com/ping/
https://web.archive.org/web/20110322224938/http://technorati.com/ping/

208 Bibliography

[159] Chris Sherman. Me.dium Launches “Real Time” So-
cial Search. Search Engine Land, July 2008. Avail-
able from: http://searchengineland.com/medium-launches-
real-time-social-search-14348.

[160] OneRiot. FAQ. Web page, June 2009. Archived by
web.archive.org. Available from: http://web.archive.org/
web/20090601170157/http://www.oneriot.com/company/
help.

[161] Tobias Peggs. The Inner Workings of a Realtime Search En-
gine: Thoughts on realtime search, by the team at OneRiot.
White Paper from OneRiot, Online (docstoc), November 2009.
Available from: http://www.docstoc.com/docs/16947406/
OneRiot-Inner-Workings-of-a-Realtime-Search-Engine.

[162] Anand Rajaraman. @WalmartLabs += OneRiot; //
Welcome aboard, Team OneRiot! The official @Wall-
martLabs Blog, September 2011. Available from:
http://walmartlabs.blogspot.com/2011/09/walmartlabs-
oneriot-welcome-aboard-team.html.

[163] Jolie O’Dell. Startup Collecta Shuts Down Its Product,
Starts Working on a New One. Mashable.com, January 2011.
Available from: http://mashable.com/2011/01/19/startup-
collecta-shuts-down-search-engine/.

[164] Junghoo Cho and Hector Garcia-Molina. The Evolution of the
Web and Implications for an Incremental Crawler. In Proceed-
ings of the 26th International Conference on Very Large Data
Bases (VLDB ’00), pages 200–209. Morgan Kaufmann Publish-
ers, September 2000.

[165] Jenny Edwards, Kevin McCurley, and John Tomlin. An Adap-
tive Model for Optimizing Performance of an Incremental Web
Crawler. In Proceedings of the 10th International World Wide
Web Conference (WWW ’01), pages 106–113, Hong Kong, PRC,
May 2001.

[166] sitemaps.org. Sitemaps XML format. Web page, February 2008.
Available from: http://www.sitemaps.org/protocol.html.

http://searchengineland.com/medium-launches-real-time-social-search-14348
http://searchengineland.com/medium-launches-real-time-social-search-14348
http://web.archive.org/web/20090601170157/http://www.oneriot.com/company/help
http://web.archive.org/web/20090601170157/http://www.oneriot.com/company/help
http://web.archive.org/web/20090601170157/http://www.oneriot.com/company/help
http://www.docstoc.com/docs/16947406/OneRiot-Inner-Workings-of-a-Realtime-Search-Engine
http://www.docstoc.com/docs/16947406/OneRiot-Inner-Workings-of-a-Realtime-Search-Engine
http://walmartlabs.blogspot.com/2011/09/walmartlabs-oneriot-welcome-aboard-team.html
http://walmartlabs.blogspot.com/2011/09/walmartlabs-oneriot-welcome-aboard-team.html
http://mashable.com/2011/01/19/startup-collecta-shuts-down-search-engine/
http://mashable.com/2011/01/19/startup-collecta-shuts-down-search-engine/
http://www.sitemaps.org/protocol.html

Bibliography 209

[167] M. Nottingham (Ed.) and R. Sayre (Ed.). The Atom Syndication
Format. Internet Requests for Comments: 4287, December 2005.
Available from: http://tools.ietf.org/html/rfc4287.

[168] RSS 2.0 Specification. Web page, March 2009. Available from:
http://www.rssboard.org/rss-2-0-11.

[169] Karl Aberer, Manfred Hauswirth, and Ali Salehi. The Global
Sensor Networks middleware for efficient and flexible deployment
and interconnection of sensor networks. Technical Report LSIR-
REPORT-2006-006, Ecole Polytechnique Fédérale de Lausanne
(EPFL), 2006. Available from: http://lsirpeople.epfl.ch/
salehi/papers/LSIR-REPORT-2006-006.pdf.

[170] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Middleware
Support for the “Internet of Things”. In Fachgespräch Sensor-
netze, Stuttgart, Germany, 2006.

[171] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. SenseWeb:
An Infrastructure for Shared Sensing. IEEE MultiMedia, 14(4):8–
13, October-December 2007.

[172] Microsoft Research. SenseWeb. Web page. Available from: http:
//research.microsoft.com/en-us/projects/senseweb/.

[173] Microsoft Research. SenseWeb Tutorial. Online, January
2009. Available from: http://research.microsoft.com/en-
us/projects/senseweb/SenseWebTutorial.pdf.

[174] Pachube. About us. Web page, June 2011. Archived by
web.archive.org. Available from: https://web.archive.org/
web/20110623144213/http://pachube.com/about_us.

[175] Pachube. Find Feeds. Web page, June 2011. Archived by
web.archive.org. Available from: https://web.archive.org/
web/20110625074320/http://pachube.com/feeds.

[176] Hompage of Traderbot.com. Web page, June 2007. Archived
by web.archive.org. Available from: http://web.archive.org/
web/20070601214544/http://www.traderbot.com/.

[177] Benedikt Ostermaier, Fabian Schlup, and Kay Römer. Web-
Plug: A Framework for the Web of Things. In Proceedings of the

http://tools.ietf.org/html/rfc4287
http://www.rssboard.org/rss-2-0-11
http://lsirpeople.epfl.ch/salehi/papers/LSIR-REPORT-2006-006.pdf
http://lsirpeople.epfl.ch/salehi/papers/LSIR-REPORT-2006-006.pdf
http://research.microsoft.com/en-us/projects/senseweb/
http://research.microsoft.com/en-us/projects/senseweb/
http://research.microsoft.com/en-us/projects/senseweb/SenseWebTutorial.pdf
http://research.microsoft.com/en-us/projects/senseweb/SenseWebTutorial.pdf
https://web.archive.org/web/20110623144213/http://pachube.com/about_us
https://web.archive.org/web/20110623144213/http://pachube.com/about_us
https://web.archive.org/web/20110625074320/http://pachube.com/feeds
https://web.archive.org/web/20110625074320/http://pachube.com/feeds
http://web.archive.org/web/20070601214544/http://www.traderbot.com/
http://web.archive.org/web/20070601214544/http://www.traderbot.com/

210 Bibliography

1st International Workshop on the Web of Things (WoT 2010),
Mannheim, Germany, March 2010.

[178] Benedikt Ostermaier, Fabian Schlup, and Matthias Kovatsch.
Leveraging the Web of Things for Rapid Prototyping of UbiComp
Applications. In Adjunct Proceedings of the 12th ACM Inter-
national Conference on Ubiquitous Computing (UbiComp 2010),
pages 375–376, Copenhagen, Denmark, September 2010. ACM.

[179] Fabian Schlup. Design and Implementation of a Framework for
the Web of Things. Master’s thesis, ETH Zurich, Zurich, Switzer-
land, September 2009.

[180] Brian Sletten. Resource-Oriented Architecture: The Rest of
REST. Web page, December 2009. Available from: http:
//www.infoq.com/articles/roa-rest-of-rest.

[181] Lisa Dusseault (Ed.). HTTP Extensions for Web Distributed Au-
thoring and Versioning (WebDAV). Internet Requests for Com-
ments: 4918, June 2007. Available from: http://tools.ietf.
org/html/rfc4918.

[182] Sandro Hawke. Re: siteData-36: strawman + httpRange-14 [
"Resource-Type:"]. Archived message of W3C mailing list www-
tag@w3.org, February 2003. Available from: http://lists.w3.
org/Archives/Public/www-tag/2003Feb/0299.

[183] Bernard Desruisseaux (Ed.). Internet Calendaring and Schedul-
ing Core Object Specification (iCalendar). Internet Requests
for Comments: 5545, September 2009. Available from: http:
//tools.ietf.org/html/rfc5545.

[184] Jeff Lindsay. Webhooks. Web page. Available from: http://
www.webhooks.org/.

[185] Brad Fitzpatrick, Brett Slatkin, Martin Atkins, and Julien
Genestoux. PubSubHubbub Core 0.4 – Working Draft, June
2013. Available from: http://pubsubhubbub.github.io/
PubSubHubbub/pubsubhubbub-core-0.4.html.

[186] Joe Gregorio, Roy T. Fielding, Marc Hadley, Mark Nottingham,
and David Orchard. URI Template. Internet Requests for Com-
ments: 6570, March 2012. Available from: http://tools.ietf.
org/html/rfc6570.

http://www.infoq.com/articles/roa-rest-of-rest
http://www.infoq.com/articles/roa-rest-of-rest
http://tools.ietf.org/html/rfc4918
http://tools.ietf.org/html/rfc4918
http://lists.w3.org/Archives/Public/www-tag/2003Feb/0299
http://lists.w3.org/Archives/Public/www-tag/2003Feb/0299
http://tools.ietf.org/html/rfc5545
http://tools.ietf.org/html/rfc5545
http://www.webhooks.org/
http://www.webhooks.org/
http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
http://tools.ietf.org/html/rfc6570
http://tools.ietf.org/html/rfc6570

Bibliography 211

[187] Daiki Ueno, Tatsuo Nakajima, Ichiro Satoh, and Kouta Soejima.
Web-Based Middleware for Home Entertainment. In Alain Jean-
Marie, editor, Advances in Computing Science — ASIAN 2002,
volume 2550 of LNCS, pages 206–219. Springer, November 2002.

[188] Witold Drytkiewicz, Ilja Radusch, Stefan Arbanowski, and Radu
Popescu-Zeletin. pREST: a REST-based Protocol for Pervasive
Systems. In Proceedings of the 1st IEEE International Conference
on Mobile Ad-hoc and Sensor Systems (MASS 2004), pages 340–
348, Fort Lauderdale, FL, USA, October 2004. IEEE.

[189] Justin R. Erenkrantz, Michael M. Gorlick, and Richard N. Taylor.
CREST: A new model for Decentralized, Internet-Scale Applica-
tions. Technical Report UCI-ISR-09-4, University of California,
Irvine, September 2009. Available from: http://isr.uci.edu/
tech_reports/UCI-ISR-09-4.pdf.

[190] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge
Ortiz, and David Culler. sMAP - a Simple Measurement and Ac-
tuation Profile for Physical Information. In Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys ’10), pages 197–210, Zurich, Switzerland, November 2010.
ACM.

[191] Michael Blackstock and Rodger Lea. IoT mashups with the
WoTKit. In 3rd International Conference on the Internet of
Things (IoT 2012), pages 159–166. IEEE, October 2012.

[192] Dominique Guinard, Vlad Trifa, and Erik Wilde. A Resource
Oriented Architecture for the Web of Things. In Proceedings of
Internet of Things 2010 International Conference (IoT 2010),
Tokyo, Japan, November 2010.

[193] UPnP Forum. UPnP Device Architecture 1.1, October
2008. Available from: http://www.upnp.org/specs/arch/
UPnP-arch-DeviceArchitecture-v1.1.pdf.

[194] Joe Gregorio (Ed.) and Bill de hOra (Ed.). The Atom Publishing
Protocol. Internet Requests for Comments: 5023, October 2007.
Available from: http://tools.ietf.org/html/rfc5023.

[195] Netscape. An Exploration of Dynamic Documents in Netscape
1.1. Web page, April 1999. Archived by web.archive.org. Avail-

http://isr.uci.edu/tech_reports/UCI-ISR-09-4.pdf
http://isr.uci.edu/tech_reports/UCI-ISR-09-4.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://tools.ietf.org/html/rfc5023

212 Bibliography

able from: https://web.archive.org/web/19990423194400/
http://www1.netscape.com/home/demo/1.1b1/pushpull.
html.

[196] Josh Cohen. GENA Framework. Presentation slides at WISEN
Workshop on Internet Scale Event Notification, Irvine, CA,
USA, July 1998. Available from: http://isr.uci.edu/events/
twist/wisen98/presentations/Cohen/Cohen.PPT.

[197] Comet (programming). Wikipedia.org, April 2015. Avail-
able from: http://en.wikipedia.org/w/index.php?title=
Comet_(programming)&oldid=659876056.

[198] Ian Hickson (Ed.). Server-Sent Events. W3C Recommendation,
February 2015. Available from: http://www.w3.org/TR/2015/
REC-eventsource-20150203/.

[199] Ian Fette and Alexey Melnikov. The WebSocket Protocol. In-
ternet Requests for Comments: 6455, December 2011. Available
from: http://tools.ietf.org/html/rfc6455.

[200] Technorati. Developers: Ping Configurations. Web page,
February 2005. Archived by web.archive.org. Avail-
able from: https://web.archive.org/web/20050221002717/
http://www.technorati.com/developers/pingconfig.html.

[201] Vipul Gupta, Poornaprajna Udupi, and Arshan Poursohi. Early
Lessons from Building Sensor.Network: an Open Data Exchange
for the Web of Things. In Proceedings of the 1st International
Workshop on the Web of Things (WoT 2010), Mannheim, Ger-
many, April 2010. IEEE.

[202] Vlad Trifa, Dominique Guinard, Vlatko Davidovski, Andreas
Kamilaris, and Ivan Delchev. Web Messaging for Open and Scal-
able Distributed Sensing Applications. In Proceedings of ICWE
2010 (International Conference on Web Engineering), Vienna,
Austria, July 2010. Springer.

[203] Andreas Kamilaris, Andreas Pitsillides, and Vlad Trifa. The
Smart Home meets the Web of Things. International Journal
of Ad Hoc and Ubiquitous Computing, 7(3):145–154, May 2011.

https://web.archive.org/web/19990423194400/http://www1.netscape.com/home/demo/1.1b1/pushpull.html
https://web.archive.org/web/19990423194400/http://www1.netscape.com/home/demo/1.1b1/pushpull.html
https://web.archive.org/web/19990423194400/http://www1.netscape.com/home/demo/1.1b1/pushpull.html
http://isr.uci.edu/events/twist/wisen98/presentations/Cohen/Cohen.PPT
http://isr.uci.edu/events/twist/wisen98/presentations/Cohen/Cohen.PPT
http://en.wikipedia.org/w/index.php?title=Comet_(programming)&oldid=659876056
http://en.wikipedia.org/w/index.php?title=Comet_(programming)&oldid=659876056
http://www.w3.org/TR/2015/REC-eventsource-20150203/
http://www.w3.org/TR/2015/REC-eventsource-20150203/
http://tools.ietf.org/html/rfc6455
https://web.archive.org/web/20050221002717/http://www.technorati.com/developers/pingconfig.html
https://web.archive.org/web/20050221002717/http://www.technorati.com/developers/pingconfig.html

Bibliography 213

[204] Kevin Chang, Nathan Yau, Mark Hansen, and Deborah Es-
trin. SensorBase.org - A Centralized Repository to Slog Sen-
sor Network Data. In Proceedings of DCOSS ’06 Workshop
Euro-American Workshop on Middleware for Sensor Networks
(EAWMS), San Francisco, CA, USA, June 2006.

[205] Gong Chen, Nathan Yau, Mark Hansen, and Deborah Estrin.
Sharing Sensor Network Data. Technical Report 71, CENS,
March 2007.

[206] Robert F. Dickerson, Konrad Jiakang Lu, Jian Lu, and Kamin
Whitehouse. Stream Feeds - An Abstraction for the World Wide
Sensor Web. In Proceedings of the First Internet of Things In-
ternational Conference (IoT 2008), volume 4952 of LNCS, pages
360–375, Zurich, Switzerland, 2008. Springer.

[207] Mark Nottingham. FIQL: The Feed Item Query Language.
Internet-Draft, December 2007. Available from: http://tools.
ietf.org/html/draft-nottingham-atompub-fiql-00.

[208] Geoffrey Clemm, Jim Amsden, Tim Ellison, Christopher Kaler,
and Jim Whitehead. Versioning Extensions to WebDAV. Inter-
net Requests for Comments: 3253, March 2002. Available from:
http://tools.ietf.org/html/rfc3253.

[209] Florian Müller (Ed.), Ryan McVeigh (Ed.), and Jens Hübel (Ed.).
Content Management Interoperability Services (CMIS) Version
1.1. OASIS Committee Specification, November 2012. Available
from: http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/
CMIS-v1.1-cs01.pdf.

[210] Al Brown, Geoffrey Clemm, and Julian F. Reschke (Ed.). Link
Relation Types for Simple Version Navigation between Web Re-
sources. Internet Requests for Comments: 5829, April 2010.
Available from: http://tools.ietf.org/html/rfc5829.

[211] Benedikt Ostermaier, Matthias Kovatsch, and Silvia Santini.
Connecting Things to the Web using Programmable Low-power
WiFi Modules. In Proceedings of the 2nd International Workshop
on the Web of Things (WoT 2011), San Franciso, CA, USA, June
2011.

http://tools.ietf.org/html/draft-nottingham-atompub-fiql-00
http://tools.ietf.org/html/draft-nottingham-atompub-fiql-00
http://tools.ietf.org/html/rfc3253
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/cs01/CMIS-v1.1-cs01.pdf
http://tools.ietf.org/html/rfc5829

214 Bibliography

[212] Michael Beigl, Tobias Zimmer, Albert Krohn, Christian Decker,
and Philip Robinson. Smart-Its - Communication and Sens-
ing Technology for UbiComp Environments. Technical Report
ISSN 1432-7864 2003/2, Universität Karlsruhe, Fakultät für In-
formatik, February 2003.

[213] Open Security Architecture. Icon Library. Web
page, September 2015. Available from: http://www.
opensecurityarchitecture.org/cms/library/icon-
library.

[214] The Active Badge System. Web page. Available from: http:
//www.cl.cam.ac.uk/research/dtg/attarchive/ab.html.

[215] Fitbit Flex Product Specifications. Web page, May 2015. Avail-
able from: https://www.fitbit.com/flex#specs.

[216] Markus Kreitmair. Raspberry Pi talks EnOcean. White Paper,
October 2013. Available from: https://www.enocean.com/
fileadmin/redaktion/pdf/white_paper/wp_Raspberry_
talks_EnOcean.pdf.

[217] Angelo P. Castellani, Salvatore Loreto, Akbar Rahman,
Thomas Fossati, and Esko Dijk. Guidelines for HTTP-
CoAP Mapping Implementations. Internet-Draft, March 2015.
Available from: https://tools.ietf.org/html/draft-ietf-
core-http-mapping-06.

[218] John Schneider and Takuki Kamiya. Efficient XML Interchange
(EXI) Format 1.0. W3C Recommendation, February 2014. Avail-
able from: http://www.w3.org/TR/2014/REC-exi-20140211/.

[219] Carsten Bormann and Paul Hoffman. Concise Binary Object
Representation (CBOR). Internet Requests for Comments: 7049,
October 2013. Available from: http://tools.ietf.org/html/
rfc7049.

[220] Transmission Control Protocol. Internet Requests for Comments:
793, September 1981. Available from: http://tools.ietf.org/
html/rfc793.

[221] Tim Dierks (Ed.) and Eric Rescorla (Ed.). The Transport Layer
Security (TLS) Protocol Version 1.2. Internet Requests for Com-

http://www.opensecurityarchitecture.org/cms/library/icon-library
http://www.opensecurityarchitecture.org/cms/library/icon-library
http://www.opensecurityarchitecture.org/cms/library/icon-library
http://www.cl.cam.ac.uk/research/dtg/attarchive/ab.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/ab.html
https://www.fitbit.com/flex#specs
https://www.enocean.com/fileadmin/redaktion/pdf/white_paper/wp_Raspberry_talks_EnOcean.pdf
https://www.enocean.com/fileadmin/redaktion/pdf/white_paper/wp_Raspberry_talks_EnOcean.pdf
https://www.enocean.com/fileadmin/redaktion/pdf/white_paper/wp_Raspberry_talks_EnOcean.pdf
https://tools.ietf.org/html/draft-ietf-core-http-mapping-06
https://tools.ietf.org/html/draft-ietf-core-http-mapping-06
http://www.w3.org/TR/2014/REC-exi-20140211/
http://tools.ietf.org/html/rfc7049
http://tools.ietf.org/html/rfc7049
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793

Bibliography 215

ments: 5246, August 2008. Available from: http://tools.ietf.
org/html/rfc5246.

[222] P.V. Mockapetris. Domain names - concepts and facilities. Inter-
net Requests for Comments: 1034 (Standard), November 1987.
Available from: http://tools.ietf.org/html/rfc1034.

[223] P.V. Mockapetris. Domain names - implementation and spec-
ification. Internet Requests for Comments: 1035 (Standard),
November 1987. Available from: http://tools.ietf.org/
html/rfc1035.

[224] J. Postel. User Datagram Protocol. Internet Requests for Com-
ments: 768 (Standard), August 1980. Available from: http:
//tools.ietf.org/html/rfc768.

[225] Ramon Caceres and Liviu Iftode. Improving the Performance
of Reliable Transport Protocols in Mobile Computing Environ-
ments. IEEE Journal on Selected Areas in Communications,
13(5):850–857, June 1995.

[226] Roving Networks. RN-131. Data sheet, February 2010.

[227] GainSpan. GS1011MxxS. Data sheet, April 2013. Available
from: https://s3.amazonaws.com/site_support/uploads/
document_upload/GS1011MxxS_Module_Datasheet_rev1_01.
pdf.

[228] Skyhook Wireless Location SDK Overview. Web page, March
2013. Archived by web.archive.org. Available from: http:
//web.archive.org/web/20130316012528/http://www.
skyhookwireless.com/location-technology/index.php.

[229] Google Maps Geolocation API. Web page. Available from:
https://developers.google.com/maps/documentation/
geolocation/intro.

[230] Philipp Bolliger. Redpin – Adaptive, Zero-Configuration Indoor
Localization through User Collaboration. In Proceedings of the
First ACM International Workshop on Mobile Entity Localization
and Tracking in GPS-less Environment Computing and Commu-
nication Systems, San Francisco, USA, September 2008.

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
https://s3.amazonaws.com/site_support/uploads/document_upload/GS1011MxxS_Module_Datasheet_rev1_01.pdf
https://s3.amazonaws.com/site_support/uploads/document_upload/GS1011MxxS_Module_Datasheet_rev1_01.pdf
https://s3.amazonaws.com/site_support/uploads/document_upload/GS1011MxxS_Module_Datasheet_rev1_01.pdf
http://web.archive.org/web/20130316012528/http://www.skyhookwireless.com/location-technology/index.php
http://web.archive.org/web/20130316012528/http://www.skyhookwireless.com/location-technology/index.php
http://web.archive.org/web/20130316012528/http://www.skyhookwireless.com/location-technology/index.php
https://developers.google.com/maps/documentation/geolocation/intro
https://developers.google.com/maps/documentation/geolocation/intro

216 Bibliography

[231] G2 Microsystems. Epsilon Module Family. Product Brief, July
2009.

[232] G2 Microsystems. G2C547 Wi-Fi SoC. Product Brief, April 2009.

[233] Hans van Leeuwen. Wi-Fi Enabled Sensors. In 10th Leibniz
Conference of Advanced Science (Sensorsysteme 2010), Licht-
enwalde, Germany, October 2010. Presentation slides. Avail-
able from: http://www.leibniz-institut.de/ss2010/van_
leuwen_sensors_lower_power_wifi.pdf.

[234] Silviu Folea and Marius Ghercioiu. Ultra-Low Power Wi-Fi Tag
for Wireless Sensing. In Proceedings of the 2008 IEEE Interna-
tional Conference on Automation, Quality and Testing, Robotics
(AQTR 2008), pages 247–252, Cluj-Napoca, Romania, May 2008.
IEEE.

[235] Serbulent Tozlu. Feasibility of Wi-Fi Enabled Sensors for Inter-
net of Things. In Proceedings of the 7th International Wireless
Communications and Mobile Computing Conference (IWCMC),
pages 291–296, Istanbul, Turkey, July 2011.

[236] GS1 and EPCglobal. EPC Radio-Frequency Identity Protocols
Class-1 Generation-2 UHF RFID Protocol for Communi-
cations at 860 MHz — 960 MHz Version 1.2.0. Specifi-
cation for RFID Air Interface, October 2008. Available
from: http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/
uhfc1g2_1_2_0-standard-20080511.pdf.

[237] ISO/IEC. Information technology – Real-time locating sys-
tems (RTLS) – Part 2: 2,4 GHz air interface proto-
col. ISO/IEC 24730-2:2006, December 2006. Available
from: http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=40508.

[238] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: En-
abling Ultra-Low Power Wireless Research. In Proceedings of
the 4th International Conference on Information Processing in
Sensor Networks: Special Track on Platform Tools and Design
Methods for Network Embedded Sensors (IPSN/SPOTS 2005),
pages 364–369, Los Angeles, CA, USA, April 2005.

[239] Roving Networks. RN-134. Data sheet, December 2009.

http://www.leibniz-institut.de/ss2010/van_leuwen_sensors_lower_power_wifi.pdf
http://www.leibniz-institut.de/ss2010/van_leuwen_sensors_lower_power_wifi.pdf
http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40508
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40508

Bibliography 217

[240] Michael Beigl and Hans Gellersen. Smart-Its: An Embedded
Platform for Smart Objects. In Proceedings of Smart Objects
Conference (sOc), pages 15–17, Grenoble, France, May 2003.

[241] Ralph Droms. Dynamic Host Configuration Protocol. Inter-
net Requests for Comments: 2131, March 1997. Available from:
http://tools.ietf.org/html/rfc2131.

[242] Wi-Fi CERTIFIED Wi-Fi Protected Setup™: Easing the
User Experience for Home and Small Office Wi-Fi®
Networks. White Paper, March 2014. Available from:
https://www.wi-fi.org/file/wi-fi-certified-wi-fi-
protected-setup-easing-the-user-experience-for-home-
and-small-office-wi.

[243] Roving Networks. WPS App note. Application Note, September
2011.

[244] BTnodes - A Distributed Environment for Prototyping Ad Hoc
Networks. Web page. Available from: http://btnode.ethz.ch/.

[245] Matthias Ringwald, Kay Römer, and Andrea Vitaletti. Passive
Inspection of Sensor Networks. In Proceedings of the 3rd IEEE In-
ternational Conference on Distributed Computing in Sensor Sys-
tems (DCOSS 2007), pages 205–222, Santa Fe, NM, USA, June
2007.

[246] Jan Beutel, Oliver Kasten, Friedemann Mattern, Kay Römer,
Frank Siegemund, and Lothar Thiele. Prototyping Wireless Sen-
sor Network Applications with BTnodes. In 1st European Work-
shop on Wireless Sensor Networks (EWSN), volume 2920 of
LNCS, pages 323–338, Berlin, Germany, January 2004. Springer.

[247] Jari T. Savolainen, Harri Hirvola, and Sassan Iraji. EPC UHF
RFID Reader: Mobile Phone Integration and Services. In Pro-
ceedings of the 6th IEEE Consumer Communications and Net-
working Conference (CCNC 2009), pages 1–5, January 2009.

[248] David L. Mills, Jim Martin (Ed.), Jack Burbank, and William
Kasch. Network Time Protocol Version 4: Protocol and Algo-
rithms Specification. Internet Requests for Comments: 5905,
June 2010. Available from: http://tools.ietf.org/html/
rfc5905.

http://tools.ietf.org/html/rfc2131
https://www.wi-fi.org/file/wi-fi-certified-wi-fi-protected-setup-easing-the-user-experience-for-home-and-small-office-wi
https://www.wi-fi.org/file/wi-fi-certified-wi-fi-protected-setup-easing-the-user-experience-for-home-and-small-office-wi
https://www.wi-fi.org/file/wi-fi-certified-wi-fi-protected-setup-easing-the-user-experience-for-home-and-small-office-wi
http://btnode.ethz.ch/
http://tools.ietf.org/html/rfc5905
http://tools.ietf.org/html/rfc5905

218 Bibliography

[249] John Franks, Phillip M. Hallam-Baker, Jeffery L. Hostetler,
Scott D. Lawrence, Paul J. Leach, Ari Luotonen, and Lawrence C.
Stewart. HTTP Authentication: Basic and Digest Access Au-
thentication. Internet Requests for Comments: 2617, June 1999.
Available from: http://tools.ietf.org/html/rfc2617.

[250] EPCglobal. EPCglobal Tag Data Standards Version
1.3. Ratified Specification, March 2008. Available from:
http://www.gs1.at/images/stories/Leistungen_und_
Standards/EPCglobal/Standards/TDS/GS1_EPC_tds_1_3-
standard-20060308.pdf.

[251] EPC Global. Low Level Reader Protocol (LLRP), Version
1.0.1. Ratified Standard with Approved Fixed Errata, Au-
gust 2007. Available from: http://www.gs1.org/gsmp/kc/
epcglobal/llrp/llrp_1_0_1-standard-20070813.pdf.

[252] Impinj. Speedway Reader Brochure. Data sheet, Novem-
ber 2008. Available from: http://www.cisper.nl/rfid/
downloads/Impinj_Speedway_Reader_Brochure_11_08.pdf.

[253] Impinj. CS-777 Brickyard™ Near-Field Antenna. Data sheet, May
2007. Available from: https://support.impinj.com/hc/en-
us/article_attachments/200774758/IPJ_Brickyard_CSL_
Datasheet_20081212.pdf.

[254] Meshed Systems GmbH. UHF Mini Antenne für Etiket-
tendrucker. Web page, September 2015. Available
from: http://www.meshedsystems.com/printable/rfid-
komponenten/uhf-rfid-antennen/uhf-mini-rfid-antenne-
fuer-etikettendrucker/index.htm.

[255] Alien Technology. ALN-9662 Short Inlay. Data sheet, June
2013. Available from: http://www.alientechnology.com/wp-
content/uploads/Alien-Technology-Higgs-3-ALN-9662-
Short.pdf.

[256] Impinj. Speedway® xPortal™. Data sheet, June 2011.
Available from: https://support.impinj.com/hc/en-
us/article_attachments/200774348/IPJ_Speedway_
xPortal_Brochure_20110514.pdf.

http://tools.ietf.org/html/rfc2617
http://www.gs1.at/images/stories/Leistungen_und_Standards/EPCglobal/Standards/TDS/GS1_EPC_tds_1_3-standard-20060308.pdf
http://www.gs1.at/images/stories/Leistungen_und_Standards/EPCglobal/Standards/TDS/GS1_EPC_tds_1_3-standard-20060308.pdf
http://www.gs1.at/images/stories/Leistungen_und_Standards/EPCglobal/Standards/TDS/GS1_EPC_tds_1_3-standard-20060308.pdf
http://www.gs1.org/gsmp/kc/epcglobal/llrp/llrp_1_0_1-standard-20070813.pdf
http://www.gs1.org/gsmp/kc/epcglobal/llrp/llrp_1_0_1-standard-20070813.pdf
http://www.cisper.nl/rfid/downloads/Impinj_Speedway_Reader_Brochure_11_08.pdf
http://www.cisper.nl/rfid/downloads/Impinj_Speedway_Reader_Brochure_11_08.pdf
https://support.impinj.com/hc/en-us/article_attachments/200774758/IPJ_Brickyard_CSL_Datasheet_20081212.pdf
https://support.impinj.com/hc/en-us/article_attachments/200774758/IPJ_Brickyard_CSL_Datasheet_20081212.pdf
https://support.impinj.com/hc/en-us/article_attachments/200774758/IPJ_Brickyard_CSL_Datasheet_20081212.pdf
http://www.meshedsystems.com/printable/rfid-komponenten/uhf-rfid-antennen/uhf-mini-rfid-antenne-fuer-etikettendrucker/index.htm
http://www.meshedsystems.com/printable/rfid-komponenten/uhf-rfid-antennen/uhf-mini-rfid-antenne-fuer-etikettendrucker/index.htm
http://www.meshedsystems.com/printable/rfid-komponenten/uhf-rfid-antennen/uhf-mini-rfid-antenne-fuer-etikettendrucker/index.htm
http://www.alientechnology.com/wp-content/uploads/Alien-Technology-Higgs-3-ALN-9662-Short.pdf
http://www.alientechnology.com/wp-content/uploads/Alien-Technology-Higgs-3-ALN-9662-Short.pdf
http://www.alientechnology.com/wp-content/uploads/Alien-Technology-Higgs-3-ALN-9662-Short.pdf
https://support.impinj.com/hc/en-us/article_attachments/200774348/IPJ_Speedway_xPortal_Brochure_20110514.pdf
https://support.impinj.com/hc/en-us/article_attachments/200774348/IPJ_Speedway_xPortal_Brochure_20110514.pdf
https://support.impinj.com/hc/en-us/article_attachments/200774348/IPJ_Speedway_xPortal_Brochure_20110514.pdf

Bibliography 219

[257] Brian Frank. Chopan - Compressed HTTP Over PANs. Internet-
Draft, September 2009. Available from: http://tools.ietf.
org/html/draft-frank-6lowapp-chopan-00.

[258] Gilman Tolle. Embedded Binary HTTP (EBHTTP). Internet-
Draft, March 2010. Available from: https://tools.ietf.org/
html/draft-tolle-core-ebhttp-00.

[259] Bluetooth Special Interest Group. GATT REST API. White
Paper, April 2014. Available from: https://www.bluetooth.
org/docman/handlers/downloaddoc.ashx?doc_id=285910.

[260] Jim Rees and Peter Honeymanx. Webcard: a Java Card web
server. Technical Report 99-3, Center for Information Technology
Integration, University of Michigan, September 1999. Available
from: https://www.citi.umich.edu/techreports/reports/
citi-tr-99-3.pdf.

[261] Dogan Yazar and Adam Dunkels. Efficient Aplication Integration
in IP-Based Sensor Networks. In Proceedings of the First ACM
Workshop on Embedded Sensing Systems for Energy-Efficiency
in Buildings (BuildSys ’09), pages 43–48, Berkeley, CA, USA,
November 2009. ACM.

[262] Serbulent Tozlu. Experimental study of security impact on bat-
tery lifetime for low-power Wi-Fi systems. Presentation slides at
Wireless Congress 2010, Munich, Germany, November 2010.

[263] Serbulent Tozlu and Murat Senel. Battery Lifetime Performance
of Wi-Fi Enabled Sensors. In Proceedings of the 2012 IEEE
Consumer Communications and Networking Conference (CCNC
2012), pages 429–433, Las Vegas, NV, USA, January 2012.

[264] Serbulent Tozlu, Murat Senel, Wei Mao, and Abtin Keshavarzian.
Wi-Fi Enabled Sensors for Internet of Things: A Practical Ap-
proach. IEEE Communications Magazine, 50(6):134 –143, June
2012.

[265] Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANs). IEEE Std 802.15.4-2006, September 2006.

http://tools.ietf.org/html/draft-frank-6lowapp-chopan-00
http://tools.ietf.org/html/draft-frank-6lowapp-chopan-00
https://tools.ietf.org/html/draft-tolle-core-ebhttp-00
https://tools.ietf.org/html/draft-tolle-core-ebhttp-00
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=285910
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=285910
https://www.citi.umich.edu/techreports/reports/citi-tr-99-3.pdf
https://www.citi.umich.edu/techreports/reports/citi-tr-99-3.pdf

220 Bibliography

[266] Texas Instruments. MSP Low-Power Microcontrollers. Product
Brochure, May 2015. Available from: http://www.ti.com/lit/
sg/slab034w/slab034w.pdf.

[267] Texas Instruments. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-
ready RF Transceiver. Data sheet, March 2013. Available from:
http://www.ti.com/lit/ds/symlink/cc2420.pdf.

[268] Alexander Klapproth and Thomas Bürkli. TCP/IP
über IEEE 802.15.4. ZigBee Entwicklerforum, Design
& Elektronik, Munich, Germany, April 2006. Available
from: http://www.ihomelab.ch/fileadmin/Dateien/PDF/
FHLuzern_TCPIPoverIEEE8022015204.pdf.

[269] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan W.
Hui, and David E. Culler. Transmission of IPv6 Packets over
IEEE 802.15.4 Networks. Internet Requests for Comments: 4944,
September 2007. Available from: http://tools.ietf.org/
html/rfc4944.

[270] Christin Groba and Siobhan Clarke. Web services on embedded
systems - A performance study. In Proceedings of the 1st Interna-
tional Workshop on the Web of Things (WoT 2010), Mannheim,
Germany, March 2010.

[271] Adam Dunkels. The ContikiMAC Radio Duty Cycling Pro-
tocol. Technical Report T2011:05, Swedish Institute of Com-
puter Science (SICS), December 2011. Available from: http:
//soda.swedish-ict.se/5128/1/contikimac-report.pdf.

[272] Jonathan W. Hui (Ed.) and Pascal Thubert. Compression Format
for IPv6 Datagrams over IEEE 802.15.4-Based Networks. Internet
Requests for Comments: 6282, September 2011. Available from:
http://tools.ietf.org/html/rfc6282.

[273] Carsten Bormann. Getting Started with IPv6 in Low-Power Wire-
less “Personal Area” Networks (6LoWPAN), March 2011. Avail-
able from: http://6lowpan.net/wp-content/uploads/2011/
03/6lowpan-tutorial-ietf80-7-sanitized.pdf.

[274] Matthias Kovatsch. CoAP for the Web of Things: From Tiny
Resource-constrained Devices to the Web Browser. In Proceedings

http://www.ti.com/lit/sg/slab034w/slab034w.pdf
http://www.ti.com/lit/sg/slab034w/slab034w.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ihomelab.ch/fileadmin/Dateien/PDF/FHLuzern_TCPIPoverIEEE8022015204.pdf
http://www.ihomelab.ch/fileadmin/Dateien/PDF/FHLuzern_TCPIPoverIEEE8022015204.pdf
http://tools.ietf.org/html/rfc4944
http://tools.ietf.org/html/rfc4944
http://soda.swedish-ict.se/5128/1/contikimac-report.pdf
http://soda.swedish-ict.se/5128/1/contikimac-report.pdf
http://tools.ietf.org/html/rfc6282
http://6lowpan.net/wp-content/uploads/2011/03/6lowpan-tutorial-ietf80-7-sanitized.pdf
http://6lowpan.net/wp-content/uploads/2011/03/6lowpan-tutorial-ietf80-7-sanitized.pdf

Bibliography 221

of the 4th International Workshop on the Web of Things (WoT
2013), Zurich, Switzerland, September 2013.

[275] Zach Shelby. Embedded Web Services. IEEE Wireless Commu-
nications, 17(6):52–57, December 2010.

[276] Simon Duquennoy, Niklas Wirström, Nicolas Tsiftes, and Adam
Dunkels. Leveraging IP for Sensor Network Deployment. In Pro-
ceedings of the Workshop on Extending the Internet to Low power
and Lossy Networks (IP+SN 2011), Chicago, IL, USA, April
2011.

[277] Walter Colitti, Kris Steenhaut, and Niccolo De Caro. Integrating
Wireless Sensor Networks with the Web. In Proceedings of the
Workshop on Extending the Internet to Low power and Lossy
Networks (IP+SN 2011), Chicago, IL, USA, April 2011.

[278] Walter Colitti, Kris Steenhaut, Niccolò De Caro, Bogdan Buta,
and Virgil Dobrota. Evaluation of Constrained Application Pro-
tocol for Wireless Sensor Networks. In Proceedings of the 18th
IEEE Workshop on Local & Metropolitan Area Networks (LAN-
MAN), pages 1–6, Chapel Hill, NC, USA, October 2011.

[279] ISO/IEC. Information technology – Home Electronic Systems
(HES) – Part 3-10: Wireless Short-Packet (WSP) protocol op-
timized for energy harvesting – Architecture and lower layer
protocols. ISO/IEC 14543-3-10:2012, March 2012. Available
from: http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=59865.

[280] EnOcean Alliance – Technical Task Group Interoperability. EnO-
cean Equipment Profiles (EPP) Version 2.6.3, June 2015. Avail-
able from: http://www.enocean-alliance.org/eep/.

[281] ZigBee Alliance. New ZigBee PRO Feature: Green
Power. White Paper, December 2012. Available from:
https://docs.zigbee.org/zigbee-docs/dcn/12/docs-12-
0646-01-0mwg-new-zigbee-pro-feature-green-power.pdf.

[282] Juan Jose Echevarria, Jonathan Ruiz-de Garibay, Jon Legarda,
Maite Álvarez, Ana Ayerbe, and Juan Ignacio Vazquez. WebTag:
Web Browsing into Sensor Tags over NFC. Sensors, 12(7):8675–
8690, June 2012.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=59865
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=59865
http://www.enocean-alliance.org/eep/
https://docs.zigbee.org/zigbee-docs/dcn/12/docs-12-0646-01-0mwg-new-zigbee-pro-feature-green-power.pdf
https://docs.zigbee.org/zigbee-docs/dcn/12/docs-12-0646-01-0mwg-new-zigbee-pro-feature-green-power.pdf

222 Bibliography

[283] Yaron Y. Goland. Multicast and Unicast UDP HTTP Messages.
Internet Draft, October 2000. Available from: http://tools.
ietf.org/html/draft-goland-http-udp-01.

[284] Tathagata Das, Prashanth Mohan, Venkata N. Padmanabhan,
Ramachandran Ramjee, and Asankhaya Sharma. PRISM: Plat-
form for Remote Sensing Using Smartphones. In Proceedings of
the 8th International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’10, pages 63–76, San Francisco,
CA, USA, 2010. ACM.

[285] Zach Shelby and Cedric Chauvenet. The IPSO Applica-
tion Framework. IPSO Alliance, August 2012. Available
from: http://www.ipso-alliance.org/wp-content/media/
draft-ipso-app-framework-04.pdf.

[286] Open Mobile Alliance. Lightweight Machine to Machine Tech-
nical Specification – Candidate Version 1.0, December 2013.
Available from: http://technical.openmobilealliance.
org/Technical/technical-information/release-
program/current-releases/oma-lightweightm2m-v1-0.

[287] ITU. Internet of Things Global Standards Initiative. Web
page. Available from: http://www.itu.int/en/ITU-T/gsi/
iot/Pages/default.aspx.

[288] IEEE-SA. Internet of Things. Web page, August 2014. Available
from: http://standards.ieee.org/innovate/iot/.

[289] Mike Belshe, Roberto Peon, and Martin Thomson (Ed.). Hy-
pertext Transfer Protocol Version 2 (HTTP/2). Internet Re-
quests for Comments: 7540, May 2015. Available from: http:
//tools.ietf.org/html/rfc7540.

[290] Philipp Bolliger and Benedikt Ostermaier. Koubachi: A Mobile
Phone Widget to enable Affective Communication with Indoor
Plants. In Adjunct Proceedings of MobileHCI, Mobile Interac-
tion with the Real World Workshop (MIRW 2007), Singapore,
September 2007.

[291] Silvia Santini, Benedikt Ostermaier, and Andrea Vitaletti. First
Experiences Using Wireless Sensor Networks for Noise Pollu-
tion Monitoring. In Proceedings of the 3rd ACM Workshop on

http://tools.ietf.org/html/draft-goland-http-udp-01
http://tools.ietf.org/html/draft-goland-http-udp-01
http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf
http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://standards.ieee.org/innovate/iot/
http://tools.ietf.org/html/rfc7540
http://tools.ietf.org/html/rfc7540

Bibliography 223

Real-World Wireless Sensor Networks (REALWSN’08), Glasgow,
United Kingdom, April 2008.

[292] Benedikt Ostermaier and Philipp Bolliger. Creating Location-
based Services by utilising a Web of Places. In 2nd International
Workshop on SensorWebs, Databases and Mining in Networked
Sensing Systems (SWDMNSS) at SAINT 2008, Turku, Finland,
June 2008.

[293] Silvia Santini, Benedikt Ostermaier, and Robert Adelmann. On
the Use of Sensor Nodes and Mobile Phones for the Assessment
of Noise Pollution Levels in Urban Environments. In Proceed-
ings of the Sixth International Conference on Networked Sensing
Systems (INSS 2009), Pittsburgh, PA, USA, June 2009.

[294] Matthias Kovatsch, Simon Mayer, and Benedikt Ostermaier.
Moving Application Logic from the Firmware to the Cloud: To-
wards the Thin Server Architecture for the Internet of Things.
In Proceedings of the 6th International Conference on Innova-
tive Mobile and Internet Services in Ubiquitous Computing (IMIS
2012), Palermo, Italy, July 2012.

	Acronyms
	Introduction
	The Convergence of the Physical and the Virtual World
	Related Fields
	Ubiquitous Computing
	Wireless Sensor Networks
	Embedded Systems
	Cyber-physical Systems
	Machine to Machine (M2M) Communication
	Industry 4.0
	Internet of Things
	Web of Things

	Motivation and Approach
	Contributions
	Searching the Physical World
	A Framework for the Web of Things
	Extending the Web Down to Constrained Wireless Devices

	Thesis Outline

	Searching the Physical World in Real Time
	Background
	Searching the Web
	Basic Architecture of Web Search Engines
	Searching the Physical World
	Real-Time Search Engine
	Dynamics of the Search Space

	Requirements
	Approach
	Sensor Ranking
	Basic Principle
	System Model
	Basic Operation
	Prediction Models
	Coping with Low-Quality Prediction Models

	Data Set used for Evaluations
	The Bicing Service
	Data Set
	Data Analysis

	Evaluation with Matlab
	Simulation Setup
	Performance Metric
	Simulation Results

	A Prototypical Real-Time Search Engine for the Web of Things
	Design
	Implementation
	Evaluation
	Discussion

	Related Work
	Search Engines for the Physical World
	Real-time Web Search Engines
	Other

	Summary

	A Framework for the Web of Things
	Background
	Sensors, Actuators, and the Web
	Function-centric vs. Data-centric Access
	Application Silos
	Central Hubs

	Problem Statement
	Requirements
	Focus

	Approach
	Design Principle
	Typed Resources
	Meta-URLs
	Versioning of Resources
	Observation of Resources
	Representations
	Expressions
	Observing Expressions
	Including Unmanaged Resources
	Performing Computations

	Implementation
	Functions
	Resource Factories

	Evaluation
	Data Syndication and Processing Scenarios
	Simple Control and Automation Scenarios
	Discussion

	Related Work
	Summary

	Extending the Web Down to Constrained Wireless Devices
	Background
	Embedded Web Server
	Battery-powered Wireless Devices
	Connecting Devices to the Web
	Towards Unmediated Interoperability
	Using Web Standards on Battery-powered Wireless Devices
	Using Ultra-low-power Wi-Fi for Battery-powered Wireless Devices

	Platform Utilized
	Approach
	Web Interface
	Sensing
	Actuation
	Augmenting Things
	A Simple Interaction Model
	Monitoring and Run-time Configuration
	Bootstrapping and Debugging

	Implementation
	Software
	Hardware

	Evaluation
	Power Consumption of Callback Cycles
	Performance in Semi-Controlled Environments
	Performance in the Field
	UHF Communication Channel
	Exemplary Applications

	Related Work
	Application-Specific Gateways
	Application-Agnostic Gateways
	Direct Connection to the Web
	Other Approaches based on IEEE 802.11
	Comparison with CoAP over IEEE 802.15.4

	Summary

	Conclusion
	Contributions
	Limitations and Future Work

	Bibliography

