
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 1

SEDA: Secure Over-The-Air Code
Dissemination Protocol for the Internet of Things

Jun Young Kim, Wen Hu, Senior Member, IEEE, Hossein Shafagh, Sanjay Jha, Senior Member, IEEE

Abstract—The capability to securely (re)program embedded devices over-the-air is a fundamental functionality for the emerging
Internet of Things (IoT). Current approaches work efficiently by exploiting the homogeneity within sensing devices, where all nodes
require the update and participate in the process. Due to the heterogeneity of IoT deployments, where the type of devices and program
images vary, existing solutions suffer from severe performance degradation. We address this shortcoming with our system SEDA,
which leverages a secure multicast approach. SEDA outperforms existing systems since the program image is securely delivered and
processed on targeted nodes only, hence reducing the overhead for not involved nodes. In order to enable the multicast approach, we
introduce an asymmetric broadcast encryption primitive, which we have optimized towards constrained nodes to reduce the
communication/computation overhead as compared to existing approaches. With an extensive experimental study on a public testbed
in several practical settings, we show SEDA’s efficient performance compared to state-of-the-art approaches. Finally, our theoretical
security analysis shows SEDA’s security against identified adversary models.

Index Terms—Dissemination, Over-the-air update, Internet of Things, Multicast, Security, Group key distribution.

F

1 INTRODUCTION

THE Internet of Things (IoT) encompasses a wide range
of devices enabling the interconnection of the physical

world to the digital world. Typical application scenarios
include health monitoring systems (e.g., wearables), au-
tomated homes, and enterprise (e.g., hospitals). However,
many devices are launched in the market without consider-
ing security during the design phase and hence can be easily
compromised [36]. This makes IoT devices an attractive
target for attackers. For instance, IoT devices constitute 38%
of the victims of a cryptocurrency mining worm [5]. Hence,
this endangers the vision of IoT to fall down into the Internet
of Stupid Things [1]. This problem will exacerbate when
the number of such poorly designed, faulty, or malicious
devices start to wreck havoc in the future. This motivates the
need for secure over-the-air (re)programming capabilities as
a basic functionality for IoT devices.

The Thread1 group [9] depicts a technological effort,
which has the goal to securely connect/manage a large
number (+250) of various IoT devices in home networks.
Similar to our work, this group aims to design energy-
efficient security solutions, where battery-powered devices
can run for years. Low-power and secure over-the-air up-
date, referred to as code dissemination, is a key feature
in achieving the security goals. In order to design energy
efficient applications, the group uses Public Key Cryptogra-
phy (PKC) as authentication and symmetric key encryption
such as AES for the content encryption. The group also

• Jun Young Kim, Wen Hu, and Sanjay Jha are with the Department
of Computer Science and Engineering, UNSW Australia, and data61,
CSIRO Sydney Australia,
E-mail: jun.kim@unsw.edu.au

• Hossein Shafagh is with the Department of Computer Science at ETH
Zurich, Switzerland.

Manuscript received February 1, 2016; revised December 12, 2016.
1. The Thread group is organized by major IT companies such as

ARM, Qualcomm, and Samsung. It focuses on connectivity in the IoT.

adopts low-power-multi-hop networks such as IPv6 Low-
power Wireless Personal Area Networks (6LoWPAN) to
minimize the energy consumption from wireless communi-
cations. Communication and computation are two premium
resources to be considered in an energy-efficient design, as
radio activities and security operations consume the major-
ity of energy on constrained devices. Unfortunately, existing
over-the-air (re)programming solutions suffer from severe
performance degradation especially due to the heterogeneity
of devices. We elaborate this in the next subsection.

1.1 Heterogeneity of IoT Deployments

Code dissemination has been already studied in the context
of Wireless Sensor Networks (WSN) [23], [25]. However, the
heterogeneity of devices (e.g., variety of platforms) presents
a new challenge when considering IoT deployments. A
secure code dissemination protocol should be communi-
cation/energy efficient, since these devices are inherently
resource constrained, remotely deployed, and may require
multi-hop packet forwarding capability without any perma-
nent power source.

Existing WSNs over-the-air (re)programming proto-
cols, such as Deluge [23], are based on the epidemic
communication [28] which assumes homogenous sensor
nodes in the network with all nodes participating in the
(re)programming process. Epidemic code dissemination ap-
proaches perform efficiently in homogeneous networks by
exploiting spatial multiplexing, i.e., parallel transmissions in
different parts of the network. Given the multitude of IoT
applications, the epidemic approach would require non-
target nodes to participate in the propagation resulting in
unnecessary computation intensive cryptographic opera-
tions and additional packet forwarding overhead. This has
a negative impact on the sparse resources of such networks,
specifically with regards to energy.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 2

1.2 Group Key Distribution

In this paper, we adopt a multicast communication ap-
proach [2], where only code-image-update-involved target
nodes (targets hereafter) actively take part in the process.
Many studies [33], [37] already showed that the multicast
approach outperforms the epidemic propagation. Therefore,
we can enhance the propagation efficiency while provid-
ing a secure dissemination function with the multicast ap-
proach. The rationale for our design is that we significantly
reduce the communication and computation overhead com-
pared to epidemic approaches by avoiding unnecessary
communication and computation-intensive cryptographic
operations at both target and non-target nodes.

In order to enable a secure multicast, a fresh and secure
group key distribution to arbitrary targets is a precondition.
Existing group key distribution schemes, however, assume
known/fixed group or neighbor pairing for efficient key
distribution [16], [31]. These schemes fall back to the naive
approach of using multiple secure unicasts to emulate a
secure multicast group key distribution when supporting
dynamic groups [2]. Based on our study on group key
distribution schemes, we propose to use a public key cryp-
tography broadcast encryption scheme, which efficiently
distributes the shared group key to a dynamic number of
target nodes.

This paper is motivated by the development of reference
models and benchmarks to ease the burden of reproducible
experiments on complex systems. With this in mind, we
make the following contributions:

1) We develop SEDA2, a SEcure over-the-air code Dissem-
ination Architecture for the IoT, which adopts multicast
communication to improve the protocol efficiency in
heterogeneous IoT applications. SEDA demonstrates
superior performance over existing methods.

2) Our design focuses on the selection, implementation,
and optimization of a public key cryptographic broad-
cast encryption scheme (BGWt) for efficient group key
distribution. Our optimizations overcome performance
and memory restrictions on constrained IoT nodes.

3) We identify emerging security threats, then provide
counter-measures to the program image update pro-
cess. Our security analysis demonstrates that our se-
curity properties are not compromised by identified
adversary models.

4) We experimentally validate SEDA through a prototype
IoT platform and demonstrate the efficiency of SEDA
in practical settings. We publicly release our implemen-
tation as an open-source code3.

The paper is organized as follows. Sec. 2 presents related
research on secure code dissemination systems and key
distribution. Sec. 3 presents our design criteria and Sec.
4 sets the security goals with adversary models. Sec. 5
introduces the SEDA protocol. We provide implementation,
evaluation, and security analysis of the SEDA protocol in
Sec. 6, 7, and 8, respectively. Sec. 9 concludes the paper.

2. SEDA means strong in Korean.
3. SEDA is available in https://github.com/jun-kim/SEDA

2 RELATED WORK AND BACKGROUND

In this section, we discuss existing over-the-air update sys-
tems and their shortcomings in heterogeneous IoT applica-
tions. We then discuss a number of group key distribution
techniques relevant to our work.

In commercial IoT deployments, over-the-air update
can be performed via lightweight secure End-to-End (E2E)
protocols [24], [39], where the server propagates a new
image to targets one by one. Although these E2E protocols
are lightweight (for instance consisting of ZigBee [4] as
the wireless link communication technology, Datagram TLS
(DTLS) [6] as the secure transport layer protocol, and Con-
strained Application Protocol (CoAP) [40] as the application
layer protocol), E2E propagation exhibits unscalable linear
overhead with the increase of the number of nodes and
communication hops.

Deluge [23] is a well-known code dissemination protocol
for WSNs. Many efforts have been made to secure Deluge
such as Seluge [25]. These extensions add authenticity, in-
tegrity, and known attack protections to the dissemination
process by leveraging various techniques such as digital sig-
nature, Merkle hash tree, one-way hash functions [35], and
pairwise encryption [31]. They inherently follow Deluge’s
epidemic architecture [28], where a node with the newer
version program image becomes a sender and a node with
an older version becomes the receiver. Although recent dis-
semination efforts (e.g., Pando [19], Splash [15]) introduced
enhanced dissemination techniques such as constructive
interference, scheduling, and pipelining, these techniques
are out of scope of this paper since they are not considering
security and heterogeneous environments.

As discussed earlier, the use of epidemic communication
in heterogeneous IoT environments is inefficient, mainly
due to the unnecessary packet delivery and security op-
erations held on both non-target and target nodes. As an
alternative for the IoT context, we explore multicast commu-
nication primitives, known to be more efficient and better
suited for heterogeneous nodes [33].

Group Domain of Interpretation (GDOI) [2] relies on the
multicast communication. In GDOI, a trusted key distribu-
tion server sends advertisements to all legitimate receivers
and senders to securely distribute a fresh shared group
key. The senders then multicast the content encrypted by
the shared group key to the corresponding set of receivers.
To increase the key distribution efficiency, GDOI adopts
lightweight secure E2E protocols such as DTLS. Similar
to the E2E propagation, E2E key distribution approaches
exhibit linear overhead with the increased number of targets
and hops when accessing the trusted key distribution server.
Our evaluation in Sec. 7 will illustrate this inefficient linear
overhead compared to SEDA’s stable performance.

In the context of WSNs, many approaches have been
proposed to establish a shared group key. However, the
majority of these approaches require fixed grouping [16]
or neighboring authentication such as pairwise encryp-
tion [31]. In a heterogeneous IoT deployment, the number
of target nodes (e.g., the number of smart light bulbs in a
building) can change dynamically. Devices may not form
a fully connected network by themselves, requiring other
smart objects to bridge the communication. Furthermore,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 3

some constrained non-target nodes may have to help for-
ward packets, which requires unnecessary, computationally
expensive cryptographic operations. Thus, existing secure
group key distribution systems in WSN are not ideal for
heterogeneous applications.

Fiat and Naor [21] first introduced Broadcast Encryption
(BE) to broadcast a shared secret key to a group of targets
on the same channel. Only targets in a dynamically defined
group can decrypt the shared key using their private keys.
In BE, each node is required to store O(k log k log n) keys
and the sender must broadcast O(k2 log2 k log n) messages
to establish the shared key, where k is the maximum
number of non-target nodes that cannot collude to learn
the secret and n is the number of total nodes. BE works
well when k is small; otherwise, BE produces significant
communication/storage overhead. Although a number of
approaches have been proposed to reduce communication
and/or storage overhead, they are still very often either
linearly or exponentially k-dependent, as it is challenging to
set a k value that balances security and overhead in practice.

A number of Public key cryptographic-based Broadcast
Encryption schemes (PBE), such as [13], [14], [41] were
proposed to accommodate the possible large number of
nodes and to provide full collusion resistance. PBEs offer
various distinctions for the over-the-air (re)programming
protocol design regarding heterogeneous IoT applications
for several reasons:

• Dynamic grouping: PBEs have the capability to tar-
get any combination/number of target nodes.

• Shorter/fixed-size ciphertext (keying material):
Among various tradeoffs of PBEs, SEDA chooses a
scheme with short ciphertext size and lower decryp-
tion overhead to increase communication/energy ef-
ficiency on the constrained node side.

• Full collusion resistance: Traditional BEs are k-
resilient, which means k + 1 compromised nodes
can collude to generate the key while PBEs are fully
collusion resistant.

3 DESIGN GOALS

In this section, we discuss the design of SEDA. One of
our major design goals is minimizing the consumption of
the two premium resources, namely communication and
computation while providing a secure code dissemination
function.

3.1 Shared Group Key Distribution and Decryption

We first discuss an efficient and secure group key distri-
bution, which we utilize to enable the multicast approach.
The design space of PBEs for shared group key distribu-
tion includes public key size, private key size, ciphertext
size, encryption complexity, and decryption complexity.
Based on our extensive survey on group key distribution
schemes [26], [27], we present the comparison of our short-
listed PBEs in Table 1. All of these schemes employ a hybrid
encryption paradigm [10], where the server broadcasts the
encrypted shared group key, which is later used to encrypt
the broadcast information.

Encrypt groupkey K using t public

keys to generate O(t) ciphertext

K

PK1

PK2

PKn

Server side Node side

CT1

 .

 .

 .

CTt

Only targets can extract groupkey

 K using their private key di

 .

 .

 .

PKn-1

d1:CT1

d2

dn:CTt

 .

 .

 .

dn-1

Broadcast O(t) ciphertext

}
K

K

K

Not target

Not target

Not target

Private key di on each node

Fig. 1. Trivial broadcast encryption scheme in an n-nodes network
targeting t nodes (t is a dynamic multicast group).

To elaborate the PBE concept, let us consider the Triv-
ial [41] method. Trivial produces ciphertext size of O(t) in a
network that has n nodes and t dynamic targets. In Trivial,
each node possesses a private key and the key distribution
server sequentially encrypts the shared group key using
t public keys to generate a concatenation of t ciphertext.
After broadcasting the linear ciphertext, each target node
decrypts its share with its own private key and obtains the
shared group key (see Fig. 1). Trivial is simple and effective,
however, the ciphertext size is proportional to the number
of target nodes. Similarly, the ciphertext size is inversely
proportional to the number of targets for trapdoor-based
schemes, such as Delerablée1 [14]. These linear ciphertext
distinctions are not suitable for IoT applications, especially
for a multicast approach due to the increased communica-
tion overhead.

Based on our study, we found BGWt [13] proposed by
Boneh et al. to be the most suitable scheme. BGWt results in
additional storage but improves overall communication effi-
ciency. In addition, it offers reduced decryption complexity
on the IoT device side with increased encryption complexity
on the server side.

We provide our rationale for selecting BGWt as our
group key distribution scheme below:

1) The shortest ciphertext size: Shorter or fixed size
ciphertext is a desirable feature, as it is directly pro-
portional to the communication overhead for the group
key distribution.BGWt achieves the shortest ciphertext
size of O(1), but trades off linear storage to store all
other nodes’ public keys. The public key can be stored
in inexpensive ROM or flash disks. Thus, SEDA sac-
rifices linear storage for communication efficiency. We
evaluate the communication/storage tradeoff in Sec. 7.

2) Lower decryption complexity: On a dissemination pro-
tocol, encryption is performed at the level of a resource-
rich trusted server while decryption is performed at the
level of constrained nodes. Since longer public keys are
pre-computed/installed and used on nodes, decryption
on the node side requires significantly less complexity.
Thus, BGWt has higher encryption complexity of O(n)
while lower decryption complexity of O(1), which en-
hances energy consumption/latency on the constrained
nodes.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 4

Public key Private key Ciphertext Encryption complexity Decryption complexity
Trivial [41] O(n) O(1) O(t) O(t) O(1)
Delerablée1 [14] O(n) O(1) O(r) O(r2) O(r)
Delerablée2 [14] O(n) O(n) O(1) O(r2) O(r2)
BGW [13] O(

√
n) O(1) O(

√
n) O(

√
n) O(

√
n)

BGWt [13] (SEDA) O(n) O(1) O(1) O(n) O(1)

TABLE 1
Comparison of our shortlist PBEs [14] in an n-node network targeting arbitrary t nodes, r non-target nodes.

3) Fixed size private key: IoT nodes are vulnerable to
physical node capture attack, where adversaries com-
promise nodes to extract pre-installed keys. Short size
private keys are desirable since they can be stored in
the tamper-resistant storage (if applicable) to effectively
mitigate physical attacks. BGWt’s O(1) private key
size is another benefit for the more secure application
design.

In the following, we discuss other PBE candidates and
show why they are not suitable for our protocol design
(see Table 1). Trivial and Delerablée1 have O(1) private
key and lower decryption complexity, but their linear ci-
phertext is not suitable for communication efficiency. Del-
erablée2 has O(1) ciphertext but its private key size is
linear and decryption is exponential. Boneh et al.’s first
BGW system offers well-balanced ciphertext/public key
size, but communication is more precious resource than
storage on constrained nodes. Considering this, BGWt is
the best match for our protocol design in terms of ciphertext
size, decryption complexity and private key size. Although
we chose BGWt as the scheme of our system, we show
the communication efficiency of Trivial and Delerablée1 in
Sec. 7.1, which can be suitable for alternative application
scenarios with fixed number of target nodes. For example, if
we wish to design an IoT application to target almost every
node without pre-key-installation, Delerablée1 would be a
suitable choice. However, if the number of targets is always
small, Trivial can be an option.

3.2 Implementation and Optimization
Asymmetric cryptography is still an expensive security
primitive for constrained IoT nodes. Bringing BGWt type
heavy crypto to the IoT domain may not be feasible due
to lack of computation power and memory. We implement
and optimize our proposed BGWt scheme on a constrained
node to show its application in the IoT domain. We evaluate
our protocol implementation on a public testbed to quantify
the performance of SEDA in practical settings.

4 PREREQUISITES

Now we briefly discuss important prerequisites about
communication scenarios and security, before diving into
SEDA’s design in the next section.

4.1 Network and Protocol Scenarios
SEDA is designed to (re)program deployed nodes via a
secure over-the-air protocol. It maintains a multicast session
for one type/group of nodes with the group membership

being dynamically set during the network lifetime. SEDA
assumes a network model that consists of heterogeneous
wireless nodes, using IP protocols, i.e., IPv4/IPv6, on 6LoW-
PAN. We assume the trusted server/cloud (server hereafter)
is resource-rich in terms of computation, communication
bandwidth and power. Nodes have different computation
and power resources and run a variety of Operating Systems
(OS) that support multicast communication services4. Nodes
can perform a limited number of asymmetric key cryp-
tography operations such as Elliptic Curve Cryptography
(ECC) and RSA (Rivest Shamir Adleman) either with or
without hardware cryptographic support. We use ECC as
the asymmetric cryptographic primitives for SEDA. This
design decision is mainly driven by the efficiency of ECC
for embedded devices, as ECC supports the same level of
security with shorter keys than RSA. However, SEDA can
also operate with other asymmetric cryptographic primi-
tives such as RSA. We further assume that nodes have pre-
installed PBE public and private key pairs and the public
key of a trusted server.

Nodes join the multicast communication tree in which
the trusted server is a member and register their profiles
with the trusted server using protocols such as Universal
Plug and Play (UPnP)5. The trusted server has then all
relevant profile information such as node type, multicast
group membership, and public key of all legitimate nodes
in the network.

4.2 Adversary Model

We assume an adversary model that follows the Dolev-
Yao security model [17] with additional physical attack
capabilities. Adversaries can intercept, modify and transmit
messages over wireless channels and they can perform
effective computations in polynomial time. We assume that
adversaries can be either outsiders or insiders since they
may have the ability to physically compromise one or few
deployed nodes. The goal of an adversary is to compromise
a large number of nodes6 in the network by attacking the
dissemination protocol.

4. Either standard IP multicasting (http://tools.ietf.org/html/
rfc1112) or light-weight low-power multicast services such as
those available in popular embedded device Operating Sys-
tems like Contiki (https://github.com/adamdunkels/contiki-fork/
tree/master/examples/ipv6/multicast), and TinyOS [37].

5. ISO/IEC standard on UPnP device architecture makes networking
simple and easy. http://www.iso.org/iso/news.htm?refid=Ref1185

6. physically compromising a larger number of nodes would increase
risks for an adversary to be caught.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 5

PKt

K

To map the point K,

required to solve PKt =CT1

Curve Zp

Curve G Curve G1

Calculating is a discrete logarithm problem.

Only target nodes can efficiently map the

point K using private key di,i=1,...,t,CT2,PKt.

PKt is derived from , di is derived from in Zp.

d2 dt

d1

Only targets can solve

 = decrypt(di,PKt,CT1,CT2)

Fig. 2. A simple description of BGWt. Only targets have advantage in
calculating δ to map the point K using their own private key di.

4.3 Security Goals

Compromising the server can be a single point of failure
resulting in the failure of the entire system [38]. Thus, even
under fully distributed scenarios, we assume the server is
a powerful node, hosted securely and cannot be compro-
mised. SEDA has the following security goals:

• The adversary cannot extract the group key.
• A colluding group of adversaries outside the group

of target nodes cannot access the shared group key.
Further, compromised nodes in the target group can
be immediately revoked as soon as they are identi-
fied (identifying compromised nodes is beyond the
scope of this paper).

• Nodes can identify any fake code dissemination ses-
sion.

• Targets can mitigate Denial of Service (DoS) at-
tacks [35] by identifying forged dissemination adver-
tisements.

• Extracting the disseminated code image is computa-
tionally expensive for adversaries.

4.4 Cryptographic Primitives and Key Management

In this section, we briefly introduce the cryptographic prim-
itives of BGW [13] and discuss a variant BGWt used
in our system. In brief, BGW is a bilinear maps and
groups based PBE system for dynamic targets with well-
balanced sizes of O(

√
n) ciphertext/public key (see Ta-

ble 1). Bilinear maps systems are widely used for Identity
Based Encryption (IBE) [12] and Attribute Based Encryption
(ABE) [11]. The notion of bilinear maps and groups system
is that given two multiplicative cyclic groups G and G1

of prime order p, there exists an efficiently computable
bilinear map e : G × G → G1, which is symmetric, as
e(ua, vb) = e(u, v)ab = e(ub, va), e(u, u) 6= 1 for all u, v ∈ G
and a, b ∈ Zp. We can simply refer to e as an admissible
pairing that can map from two points in G to a point in G1.

BGW provides a tradeoff between the ciphertext size
and public key size. With a longer public key size, we
can achieve a constant/short ciphertext size, which results
in an improved communication efficiency. However, the

downside of BGW is that it requires nodes to additionally
store all multicast group nodes’ public keys in the process
of decrypting the fixed size ciphertext. Put simply, this
would allow to achieve a fixed size ciphertext at the expense
of linear storage overhead. This extreme tradeoff case is
referred as BGWt and is used in SEDA for an improved
group key distribution efficiency.

Since we propose to use BGWt as our group key primi-
tive, we briefly describe its security and three key functions:
Setup, Encryption (performed at the server), and Decryption
(performed at resource-constrained nodes).

The key generation function Setup(n) picks a random
generator g ∈ G of a cyclic group G and α, γ ∈ Zp. Then
computes gi = gα

i ∈ G for i = 1, ..., 2n and v = gγ ∈ G.
The generated public keys for all n nodes (PK) and private
key (di) for each node i = 1, ..., n are derived as per [13]:

PK ⇐ (g, g1, ...g2n, v) ∈ G(2n+1) (1)

di ⇐ gγi , for i = 1, ..., n ∈ G (2)

The Encryption(t, PKt) generates the group key (K) and
ciphertext (CT1, CT2) for arbitrary targets t using a random
generator δ ∈ Zp, all targets’ public keys (PKt), and the
bilinear map function e(,). Note that K is an elliptic point
in G1.

K ⇐ e(gn+1, g)δ ∈ G1 (3)

CT1 ⇐ gδ, CT2 ⇐ (v·
∏
j∈t

(g(n+1−j)))
δ (4)

The security of BGWt is based on the Bilinear Diffie-
Hellman Exponent assumption (BDHE), which is known
as a discrete logarithmic problem. By capturing CT1, CT2
and having access to targets’ public keys PKt as input,
adversaries try to map point K in G1 by calculating δ
from PKδ

t = CT1. There is no known algorithm with
non-negligible probability to compute δ in polynomial time.
BGWt is semantically Chosen Ciphertext Attack (CCA) se-
cure with this property of bilinear maps system (see Fig. 2).

On the other hand, target nodes with their own private
key have advantage in solving the BDHE problem via
Decryption(di, CT1,2, PKt) and the group key K :

K ⇐ e(gi, CT2) / e(di·
∏

j∈t,b6=j
(g(n+1−j+b)), CT1) (5)

Since PKt (
∏

j∈t,b6=j
(g(n+1−j+b)) is required in (5), nodes

are required to store all other nodes’ public keys. This
distinction results in linear storage overhead, which we will
address in the following section.

5 SEDA
In this section, we first address two drawbacks of theBGWt

scheme in the IoT domain then present our efforts towards
more efficient design. We introduce the basic architecture of
SEDA, followed by a detailed description of the protocol.

5.1 Addressing two critical drawbacks of BGWt

Although BGWt scheme is the most suitable one for the IoT
domain, there are two critical drawbacks to be used in the
IoT domain:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 6

1) Public key pre-installation and management: In many
IoT applications, an incremental node addition is desir-
able. However, the nature of pre-public-key-installation
restricts this functionality and it is challenging to man-
age linear public keys after deployment. This makes
the management architecture more complicated and
restricted.

2) Higher key decryption complexity on constrained
nodes: We noticed that computing PKt

(
∏

j∈t,b6=j
(g(n+1−j+b))) in (5) dominates the decryption

time, especially when there is a large number of
nodes. This makes the decryption complexity more
complicated and requires more memory as well.

To address these two troublesome problems, we elim-
inate the public key pre-installation restriction by adding
one ciphertext CT3:

CT3 ⇐
∏

j∈t,b6=j
g(n+1−j+b) (6)

This solution can also solve the higher key decryption
complexity problem, as the value is pre-computed inCT3 by
the resource-rich server. Then the key K can be decrypted
more efficiently without pre-installed public keys:

K ⇐ e(gi, CT2) / e(di·CT3, CT1) (7)

We will elaborate this optimization in Sec. 7.2.

5.2 Efficient Key Revocation
Key revocation is necessary when a key is lost or a node is
compromised. The majority of BE schemes require linear or
logarithmic overhead for the key revocation [34]. However,
SEDA’s revocation is simple and only requires updating
two ciphertext CT2, CT3 regardless of the number of re-
voked keys. Since CT1, CT2, CT3 are generated as CT1 ⇐
gδ, CT2 ⇐ (v·

∏
j∈t

(g(n+1−j)))
δ, CT3 ⇐

∏
j∈t,b6=j

(g(n+1−j+b)

in (4,6), we can simply revoke any user u:

CT ′2 ⇐ CT2 / g
δ
(n+1−u), for u ∈ 1, ..., n

CT ′3 ⇐ CT3 / g(n+1−u), for u ∈ 1, ..., n
(8)

Alternatively, a re-keying process can be initiated by server,
which results in a key distribution session after removing
the user u from the target list. This re-keying process only
requires updating three ciphertext CT1, CT2 and CT3.

5.3 Elliptic Curve Point Compression
We applied the elliptic curve point compression tech-
nique [32] to reduce the communication and storage over-
head. The notion of elliptic curve point compression is that
an elliptic point (x, y) can be represented by only x value
with a single bit indicating which direction of y to calcu-
late the point. Although it requires a point decompression
process, we can reduce the element size by almost half.
The main gain from this technique is that we only need
to multicast almost half ciphertexts to the network at lower
decompression cost (e.g., average 10 ms is required for a
point decompression using 160 bits generated curves). We
will elaborate the storage gain and point decompression cost
from the elliptic point compression technique in Sec. 7.3.

5.4 Feedback Suppression and Chaining
In our initial experiments, we noticed that our multicast
propagation approach suffers severely from feedback re-
lated issues resulting in severely increased overhead and de-
lay in the dissemination process. For instance, propagating
10 kB of image to 33 devices required over 55 seconds (now
29 seconds on average). We noticed that propagating 90 %
of image only requires 20 seconds, but filling the rest 10 %
requires more time due to feedback related issues. We briefly
describe the feedback suppression and chaining technique
to minimize two feedback-related issues.

1) Feedback implosion. Multicast propagation is prone to
the feedback implosion problem when many receivers
send feedback to the sender such as ACK or Negative
ACK. This problem is not only energy inefficient, but
also causing channel interference problems especially
in dense networks.

2) Long tail problem. Achieving 100% reliability on all
nodes will cause backoff delay and the long tail prob-
lem, where 100% reliability requires orders of mag-
nitude longer time than the time for achieving 80%
reliability.

As Pando [19] showed methods in solving these two issues
in dissemination protocols, we apply the feedback suppres-
sion and chaining technique. Nodes hold their feedback
until the time threshold for the arrival of the last propa-
gation packet. Then send feedback for missing or HMAC
verification failed packets for retransmission to the parent
of the multicast tree. All parents nodes chain their children’s
feedback to generate a chain of feedback. This technique
is especially effective in dense networks. However, the
epidemic propagation cannot support the feedback sup-
pression and chaining technique since it requires sequential
packet transfer.

Key size Description
di 1×m BGWt Private key

GDS 1×m Server’s ECDSA public key

TABLE 2
Pre-installed keys in each node. m: BGWt one element key size (e.g.,

22 bytes or 176 bits).

Notation Meaning

A ‖ B Concatenation of A and B
|M | The length of M (bytes)

Dk(M) Symmetric decryption using the key k
Ek(M) Symmetric encryption using the key k
BDk(M) BGWt decryption to extract the group key K
H(M) HMAC generation using K
Sig(M) Server/cloud’s ECDSA signature
V er(M) Signature or HMAC verification

TABLE 3
Notation summary.

5.5 Initial Setup
In initial setup, a server (S) sets two important parameters
then generates BGWt public/private key pairs:

1) The maximum size of the network n: SEDA generates
n pairs of BGWt keys to be pre-installed.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 7

2) The key size r: We set the level of security by setting the
key size of the elliptic curve used in the BGWt system.
The key size results in the element size (m), which
represents an elliptic point on the BGWt scheme. All
keys and ciphertext are represented using this element.
For instance, for r=160 bit curve, one BGWt element
size is 42 bytes, which we reduce to 22 bytes using
elliptic curve point compression [32].

After pre-installing and deploying all nodes, each node in
the network maintains two keys:

1) The server’s Elliptic Curve Digital Signature Algorithm
(ECDSA) public key GDS for signature-based authen-
ticity guarantee of the advertisements: Stored in ROM
or flash disk;

2) Each node’s own BGWt private key (di, i = 1, ..., n,
where n is the number of total nodes): Stored in a
tamper-resistant storage if available;

Table 2 shows the details of the pre-installed keys in each
node. Deployed nodes register themselves to S and join the
multicast group according to our network scenario.

5.6 An Overview of the SEDA Protocol
At a high level, SEDA consists of 3 phases, namely the initial
setup, the advertisement phase, and the actual code image
propagation (see Fig. 3). The code image dissemination to
dynamic targets t follows the following 4 steps:

Server station Leaf target nodes

4. New version advertisement

5. Ready for the dissemination

Advertisement phase

Code image propagation phase
6. Multicast propagation

Repeat 6 until all packets are transferred

7. Dissemination session finished

2. Registered, setup oneway hash/multicast

1. Register to the network

Initial setup

3. Join the multicast group

Intermediate (target) nodes

OR

: Multicast transfer

Fig. 3. The protocol flow of SEDA.

1) The server S advertises a new image dissemination via
multicast to an arbitrary number of target nodes (t)
(e.g., all the smart light bulbs in the building). This ad-
vertisement contains important information such as the
shared session group key encrypted as CT1, CT2, CT3,
and a cryptographic signature to provide the authentic-
ity and integrity to the advertisement packet.

2) Intermediate nodes just relay multicast/unicast pack-
ets, and do not perform any cryptographic computa-
tions. Only nodes in t can decrypt the group key K
from ciphertexts, then reply with a ready message to
the server S.

3) The server multicasts the program image to the net-
work.

4) Nodes in t can verify the integrity of the image with
the Hash-based Message Authentication Code (HMAC)

using the group key K . Finally, if encrypted, the image
can be decrypted with K and the update procedure
initiated.

In the following, we describe the details of the two phases.
The notations used in this work are summarized in Table 3.

One-way hash
OH(16<=)

BGWt Ciphertext
CT1(22) CT2(22) CT3(22)

Server signature
Sig(21)

K: Decrypted CT1, CT2 and CT3

Version info
ha(4)

AES group key
K(16, 32)

Nonce
non(4)

Node ID (4)Packet header hi (4) Nonce non (4)

(b) Dissemination ready message packet structure

HMAC (16<=)

(a) Advertisement packet structure

Fig. 4. Advertisement packet structure (bytes).

Algorithm 1: Advertisement phase for the server sta-
tion

Data: Plain code image, public key of target nodes
Result: Advertisement header ad

1 K ⇐ Generate_key(PK,random value)
2 CI ⇐ EK(Plain code image) (optional)
3 ha ‖ non⇐ Generate_Header(t,CI)
4 CT1,2,3 ⇐Generate_ciphertext(K,PKt, t)
5 OH ⇐ OnewayHash(ha ‖ non ‖ CT1,2,3 ‖ Sig)
6 ad⇐ ha ‖ non ‖ CT1,2,3, ‖ Sig ‖ OH
7 while Waiting for dissemination ready from ∀t do
8 Multicast(ad)
9 if Received ready message from ∀t then

10 go to code image propagation phase
11 else
12 go to Multicast(ad) after a certain period

5.7 Advertisement Phase

The code propagation process is triggered when there is a
new program image available for a group of target nodes t.
The server S generates an advertisement packet (ad) (see
Fig. 4 for the packet format). The ad packet includes a new
image version header ha, a one-way hash (OH), CT1,2,3,
and the signature of S Sig. The advertisement phase at the
server consists of the following steps (see Alg. 1):

1) S picks up a group key K that will be used to en-
crypt the plain code image to generate the-group-key-
encrypted code image CI (this is optional according to
the characteristic of the application). It then generates
ha and non (line 1-3 in Alg. 1).

2) Ciphertexts are generated using K and a set of target
t’s public keys (PKt). S signs the packet to generate
Sig and generates one-way hash OH . It then generates
ad as a concatenation of all fields (line 4-6 in Alg. 1).

3) Lastly, S multicasts ad using a periodic timer until all
nodes in t acknowledge readiness for the dissemination
session (line 7-12 in Alg. 1).

On the receiver side, each node determines whether it is a
target by parsing ha. All target nodes t decrypt K and send
a ready message to S. However, non-target/intermediate

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 8

Algorithm 2: Advertisement phase for all nodes
Data: Advertisement packet ad
Result: Group key K , transfer ready message to S

1 if NotTarget(ha) then
2 return NOT TARGET

3 if FAILED(Ver(OH) ‖ Ver(Sig)) then
4 return INVALID ADVERTISEMENT

5 K ⇐ BDPKt‖di(CT1 ‖ CT2 ‖ CT3) for all i,i=1,...,t
6 Send_Ready_Message(S, (i))

nodes just forward the packet without processing any se-
curity operations. This is the computational gain of SEDA
compared to epidemic protocols, where all nodes should
perform computationally expensive security operations. The
receiver side advertisement phase, as described in Alg. 2,
consists of the following steps:

1) Parse the version header ha to check the relevance of
the code update. Non-targets just forward the packet
(line 1-2 in Alg. 2).

2) Target nodes verify OH to prevent DoS attacks on
the advertisement packet and verify Sig for signature-
based authentication (line 3-4 in Alg. 2).

3) Perform BGWt decryption K ⇐ BDPKt‖di(CT1 ‖
CT2 ‖ CT3) to generate the group key K (line 5 in
Alg. 2).

4) This phase ends when all nodes in t transfer the ready
message to S (line 6 in Alg. 2). We assume that reliabil-
ity is provided by underlying multicasting protocol.

Algorithm 3: Code image propagation phase for the
server

Data: (Groupkey-encrypted) code image CI
Result: Multicast all packets Pi

1 hi ⇐ Generate_Multicast_Header(CI)
2 P0 ⇐ hi ‖ 0 ‖ |CI| ‖ H(CI) ‖ HMAC
3 |Pkt| ⇐MTU − |hi| − |seq| − |HMAC|
4 for i = 1 to |CI| / |Pkt| do
5 Pkti ⇐ CI[(|Pkt| ∗ i)]
6 hi ⇐Generate_Packet_Header(Pkti)
7 Pi ⇐ hi ‖ i ‖ Pkti ‖ HMAC

8 for i = 0 to |CI| / |Pkt| do
9 Multicast(Pi)

HMAC (16)Image size (2) Meta hash (16)Packet header (4) Sequence number (2)

(a) Propagation information packet P0 structure

(b) Code image propagation packet structure

(c) Retransmission request packet structure

HMAC (16)Code image (flexible)Packet header (4) Sequence number (2)

HMAC (16)Node ID (4)Packet header (4) Request number (2)

Fig. 5. Multicast propagation packet structure.

5.8 Code Image Propagation Phase

In this phase, S multicasts the (group-key-encrypted) code
image to the multicast group. Upon receiving the ready

message from all targets, S commences the multicast prop-
agation following Alg. 3:

1) The first multicast packet P0 includes the description of
the new image CI such as total size and the meta hash
H(CI) with sequence number (seq) (line 1-2 in Alg. 3).
The structure of the propagation packet is described in
Fig. 5.

2) CI ⇐ EK (plain code image) is divided into fixed size
packets Pkti, i = 1, ..., |CI| / |Pkt|, where the size of
|Pkti| is flexible according to the MTU of the network
(line 3-5 in Alg. 3).

3) Multicast packet Pi is generated using packet header
hi, seq, for each packet Pkti with HMAC (line 6-7 in
Alg. 3).

4) All multicast packets Pi, i = 0, ..., |CI| / |Pkt| are
propagated via the multicast channel.

Algorithm 4: Code image propagation phase for tar-
gets

Data: All propagation packet
∑m
i=1 Pi

Result: New code image NI
1 m⇐ |CI| / |Pkt|
2 for i = 0 to m do
3 if NoPacket(Pkti) ‖ FAILED(Ver(H(Pi))) then
4 return Retrans_Request(i, t)
5 else
6 CI[i]⇐ Pkti

7 if DK(EK(H(CI))) 6= H(
∑m
i=1 Pkti) then

8 return NO HASH MATCH

9 for i = 1 to m do
10 NI[i]⇐ DK(Pkti)

11 Dissemination_Finished_Message(t,HMAC)

On the receiver side, targets buffer all HMAC-verified
propagation packets while queuing retransmission requests
for missing or HMAC check failed packets. Upon receiving
all multicast packets, targets extract the new code image NI
following Alg. 4:

1) If there is a missing or/and HMAC mismatch packet,
targets request retransmission to the multicast group
until all legitimate packets are received (line 1-6 in
Alg. 4).

2) Targets perform meta hash verification after extracting
all encrypted code image CI from Pkti, which is ful-
filled if the meta hash matches with the hash of the
received image, DK(EK(H(CI))) = H(

∑m
i=1 Pkti)

(line 7-8 in Alg. 4).
3) If the image is encrypted, targets can perform the sym-

metric decryption DK(
∑m
i=1 Pkti) to extract the code

image (line 9-10 in Alg. 4).
The entire dissemination session is finalized when all targets
transmit the dissemination complete message to the server.

6 IMPLEMENTATION AND EXPERIMENTAL SETUP

Our prototype implementation of SEDA consists of server
side and node-side components. We implemented our
server-side BGWt key generation module using the type-A

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 9

(a) Flocklab testbed with in/outdoor nodes. (b) Cooja simulator for a 50 node network. (c) Cooja simulator for a 100 node network.

Fig. 6. Experimental setup. (a) the Flocklab testbed (b) Cooja simulator (n=50) (c) Cooja simulator (n=100)

pairing in the Pairing Based Cryptography (PBC) library [3],
[32]. We have implemented the node-side component of
SEDA in the Contiki 2.7 distribution [20] for the Open-
mote [7] platform. Implementing BGWt type heavy cryp-
tography on constrained nodes is restricted due to lack of
performance and memory. As lower memory footprint is
desirable in constrained devices, we optimized our node-
side pairing-based-arithmetic operations by applying ellip-
tic curve optimization techniques [30], [42] with BGWt

specific optimization techniques. We will elaborate our op-
timization in Sec. 7.2.

Openmote represents our constrained IoT device model.
We show our superior security by securing Openmote
type constrained IoT devices. Openmote is equipped with
Cortex-M3 processor with up to 32 Mhz clock, 512 kB ROM,
32 kB RAM, cryptographic accelerator, and tamper resistant
key storage. Although current constrained IoT devices such
as TelosB and medical implant devices are not equipped
with cryptographic accelerator and tamper-resistant key
storage, we believe smart-home IoT applications would
require similar capabilities to protect from emerging attacks
such as physical compromise attacks.

We employ Stateless Multicast RPL Forwarding
(SMRF) [37] multicast protocol in combination with Null-
RDC duty cycle. SMRF protocol is more suitable and effi-
cient for the dissemination protocol design with the follow-
ing multi-fold benefits:

1) Multicast packets only travel downwards of the tree,
which is more suitable for dissemination protocols.

2) Stateless protocols require no additional per-packet in-
formation.

3) The multicast tree is determined dynamically before the
dissemination session.

4) SMRF protocol requires no extra maintenance packets
since it works on top of the existing Routing Protocol
for Low-Power and Lossy Networks (RPL) messages.

Module ROM RAM (static)
PBC, GMP library 53.8 kB 3.9 kB
SEDA Dissemination architecture 26.8 kB 4.8 kB
SMRF multicast and routing 2.3 kB 1.3 kB

Total code size 83.0 kB 10.2 kB

TABLE 4
Memory footprint of SEDA on Openmote.

SEDA supports AES 128/256 bits key symmetric cryp-
tography and HMAC using SHA 128/256 bits hash func-

tions. Table 4 shows the memory footprint of our node-side
implementation. We evaluated our system on Flocklab [29],
a public testbed, equipped with 33 indoor/outdoor hetero-
geneous nodes such as Tmote Sky, ACM2, Opal, CC430,
TinyNode, Wismote, and Openmote. Flocklab provides In-
ternet connectivity for the sensors, which allows us to em-
ulate real world IoT settings with accurate measurements
such as power profiling, GPIO actuation, adjustable supply
voltage, and serial I/O functions on a web interface. We
evaluated the 33 node case in Flocklab, and simulated 50,
100 node cases using Cooja, the Contiki simulator [20] (see
Fig. 6. Unit Disk Graph Medium, transfer range: 30 m,
interference range: 60 m, NullRDC, IEEE 802.15.4.).

7 EVALUATION

7.1 Communication Overhead

In order to show the key distribution efficiency, we first com-
pare SEDA to two other group key distribution approaches
based on: DTLS and Pre-Shared-Key (PSK). Then, we show
the superior performance of SEDA compared to a state-
of-the-art epidemic approach. Lastly, we show the group
key establishment efficiency of BGWt over other PBEs we
presented. To evaluate the communication overhead, we
measured the transmitted payload overhead. We included
both multicast and unicast payloads, but excluded routing
management packets. We use r = 160 bit generated elliptic
curves or equivalent key size for the evaluation.

We start with comparing SEDA to the GDOI scheme,
which leverages DTLS as a secure E2E protocol for authenti-
cation and group key distribution. Fig. 7 shows the payload
overhead to complete the advertisement phase regarding
the number of target nodes. DTLS protocol is designed to
offer lightweight E2E security by means of PKC, but the
overhead is larger given an increasing number of targets
and communication hops. Even though the communication
overhead of E2E protocols can be decreased via various
approaches, such as header compression, the nature of E2E
protocols still makes them unscalable. We also included a
PSK approach for comparison, where there is a fixed group-
ing and the group key is already deployed on each node.
PSK causes lower communication overhead than SEDA, but
lacks efficient key revocation. Consequently, with the dis-
closure of the pre-shared-key, e.g., by node compromise, the
entire network is jeopardized. As we observe in Fig. 7, the
E2E approach is only scalable when the number of targets
is small, while SEDA causes stable distribution overhead

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30

P
ay

lo
ad

 o
ve

rh
ea

d
(k

B
)

Number of targets (n=33)

DTLS
SEDA

PSK

(a) SEDA yields better communication effi-
ciency than DTLS over 2 targets.

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

P
ay

lo
ad

 o
ve

rh
ea

d
(k

B
)

Number of targets (n=50)

DTLS
SEDA

PSK

(b) SEDA yields better communication effi-
ciency than DTLS over 3 targets.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

P
ay

lo
ad

 o
ve

rh
ea

d
(k

B
)

Number of targets (n=100)

DTLS
SEDA

PSK

(c) SEDA yields better communication effi-
ciency than DTLS over 8 targets.

Fig. 7. Payload overhead of advertisement phase compared to the DTLS and PSK approach in three network scenarios. DTLS is causing linear
communication overhead to the number of targets, while SEDA has a lower slope even if the number of targets increases.

 0
 10
 20
 30
 40
 50
 60
 70
 80

33 50 100

P
ay

lo
ad

 o
ve

rh
ea

d
(k

B
)

Number of total nodes

SEDA
Seluge

(a) Key establishment overhead comparison.

 200

 400

 600

 800

 1000

 1200

10 20 30 40

 20

 40

 60

 80

 100

 120
P

ay
lo

ad
 o

ve
rh

ea
d

(k
B

)

P
ro

pa
ga

tio
n

de
la

y
(s

)

Code size (kB)

Max

Avg
Min

Max

Avg

Min

SEDA (PRR 90%)

Seluge (PRR 90%)

SEDA (PRR 45%)

Seluge (PRR 45%)

(b) Propagation overhead (bar, left axis) and
delay (line, right axis) comparison.

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

E
ne

rg
y

co
ns

um
pt

io
n

(m
A

)

Transaction time (s)

Group key decryptionSignature

Radio

Pairwise encryption

CPU
Radio

Idle

 +
CPU

SEDA
Seluge

(c) Average energy overhead comparison for key
distribution.

Fig. 8. Comparison between SEDA and Seluge.

regardless of the number of targets. Note that SEDA shows
less communication overhead than DTLS when the number
of targets is over 6-8% of total, i.e., over 2, 3 and 8 target
nodes for a 33, 50, 100 node network, respectively.

SEDA Seluge
Propagation Multicast Epidemic
Targeting Arbitrary target All nodes
Security operations Targets only All nodes
Authenticity ECDSA ECDSA
Integrity HMAC Merkle tree
Key distribution PBE Pairwise
Pre-key-installation 1 private key Logarithmic
Collusion resistance Full Weak
Key revocation 2 messages linear

TABLE 5
The general comparison between SEDA and Seluge.

Now we discuss the efficiency gain of SEDA over Sel-
uge [25], a state-of-the-art epidemic approach (Default Sel-
uge setup: 48 packets per page, 102 bytes MTU, 8 leaves
for the Merkle hash tree). Table 5 shows the general com-
parison between SEDA and Seluge. Seluge’s cluster key
(Pairwise) exhibits logarithmic pre-key-installation, but it
suffers from weak collusion resistance while SEDA requires
only 1 private key installation with full collusion resistance.
Seluge enhances the dissemination efficiency and security
by exploiting the sequential packet delivery distinction of
the epidemic approach. The Merkle hash tree is an effi-
cient integrity guarantee method as long as the delivery

is sequential. However, this sequential delivery restriction
becomes an additional burden in the propagation since it
causes an increasing number of Selective Negative ACK
(SNACK) packets. SEDA leverages per-packet HMAC using
the group key, in which the sequential delivery is not
necessary.

Directly comparing SEDA to Seluge is not trivial since
they have different assumptions. To make this comparison,
we assume SEDA is targeting all nodes in the network,
which is the worst case performance for SEDA. Fig. 8(a)
depicts SEDA’s superior key distribution performance in
medium-sized networks. The efficiency gain gap between
SEDA and Seluge is proportional to the size of the network
since Seluge’s key establishment overhead depends on the
number of neighboring nodes. The bar graph with left axis
in Fig. 8(b) depicts the propagation efficiency comparison in
the Flocklab. When SEDA is targeting all nodes, SEDA and
Seluge share similar propagation strategies, but different re-
transmission methods for lost packets. To show the impact
of different re-transmissions, we emulated physical layer
packet loss by dropping packets randomly to obtain 90%
(good link quality) and 45% (poor to moderate link quality)
Packet Reception Ratio (PRR). For the code propagation
overhead, SEDA performs slightly better with good link
quality and Seluge is more efficient when the link quality
is bad. Again, this performance is Seluge’s best case and
SEDA’s worst case since SEDA can choose a specific target
group while Seluge cannot. The line graph with right axis
depicts the maximum, average, and minimum propagation
delay according to the size of the code image. As aforemen-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 11

tioned, Seluge’s sequential delivery restriction causes more
SNACK packets, which results in increased propagation
delay, while SEDA does not require sequential transfer. Note
that SEDA’s communication/delay efficiency are further
increased, when we target a subset of nodes instead of
all nodes, which is the typical heterogeneous IoT scenario
SEDA is designed for.

We also compared the energy consumption for the key
establishment (see Fig. 8(c)). Seluge shows a higher level
of energy consumption pattern due to constant packet
exchange between neighboring nodes. SEDA consumes in
average 117.6 mJ while Seluge consumes 164.85 mJ for the
key distribution phase. We will elaborate this consumption
in Sec. 7.4.

To conclude our discussion about communication over-
head, we now discuss the evaluation of employing other
PBE candidates instead of BGWt. As mentioned in Sec. 3.1,
E2E is infeasible in multi hop communication and the
communication overhead of both Trivial and Delerablée1
schemes is linear due to the dynamic number of target
nodes. To elaborate, the ciphertext size of Trivial is propor-
tional to the number of targets t, Delerablée1 is proportional
to the number of non-target nodes r, and none of both can be
deterministic in the number of targets. Nevertheless, BGWt

offers constant ciphertext size. Fig. 9(a) shows the commu-
nication overhead evaluation of the advertisement phase in
case we employ other schemes on the SEDA protocol design.
Both Trivial and Delerablée1 are only efficient when we have
a small number of targets or non-targets, while SEDA is
stable regardless of the number of targets.

7.2 Computation Overhead

Two important design goals of SEDA were to avoid un-
necessary security operations as the epidemic approach,
and to decrease expensive computations on the resource-
constrained IoT devices. As we described in Sec. 4.4, BGWt

is a tradeoff case that enables this by transferring the large
share of computation to the two functions; Setup and En-
cryption, which are performed on the server side. Deployed
nodes leverage server-generated pre-computed ciphertext
and perform decryption in O(1). Our BGWt improvements
in Sec. 5 further enhanced the decryption efficiency since the
decryption time is not dominated by the number of nodes
anymore with the pre-computation technique. However,
generating elliptic curves and performing the bilinear pair-
ing to map the point K is still a computationally intensive
operation on constrained nodes. Inspired by TinyECC [30]
and TinyPairing [42], which demonstrated the optimization
of elliptic curve based operations on constrained nodes,
we optimized our node-side BGWt implementation along
with the GMP library for efficient pairing-based-arithmetic
operations. As a result, the one-time-per-session group key
decryption becomes efficient on the constrained node side
(see Fig. 9(b) and Table 6). For instance, the average group
key decryption time for r=160 bits is optimized to 1,864 ms
from 2,982 ms.

Hu et al. [22] showed that asymmetric cryptography
can be used and enhanced in WSNs with the assistance
of a cryptographic accelerator, which costs significantly less
energy on common sensor nodes. Utilizing a cryptographic

accelerator for the bilinear pairing can further enhance
the performance of SEDA. Regarding other security op-
erations, our evaluation platform Openmote can enhance
cryptographic operations with the on-board cryptographic
accelerator that supports HMAC, ECDSA, and AES. How-
ever, we also included the computation overhead of the
software implementation to show the impact of the cryp-
tographic accelerator. Table 7 shows the processing time of
all cryptographic operations with their energy consumption
on Openmote. Software implementation consumes more
energy since it requires longer operation time than the
cryptographic accelerator.

7.3 Storage Overhead Gain
In this section, we show how much storage overhead re-
duction is achieved with our BGWt drawbacks addressing
described in Sec. 5.1. In the original BGWt scheme, the
ciphertext is fixed to 2 elements, the private key is 1 element
while the public key includes (2n+1) elements. The element
size increases, as we choose longer r bits generated elliptic
curves. For example, if we choose a r = 160 bit generated
elliptic curve, 1 element size is 42 bytes (see Table 6).
We reduce this element size to 22 bytes with the elliptic
curve point reduction and compression [32] to increase the
communication efficiency.

Fig. 10 shows the removed storage overhead with our
modification with and without elliptic curve point compres-
sion. For example, when we use r=160 bits generated curves,
the storage requirement is about 5 kB with compression,
10 kB without compression in a 100 node network. Fur-
thermore, each node is required to store only one element
private key di in a tamper-resistant storage if applicable, to
mitigate physical attacks.

7.4 Energy Consumption
We measured the energy consumption for performing se-
curity operations during the advertisement phase such as
one-way hash/ECDSA verification, group key decryption,
and AES decryption. We used a power analyzer to mea-
sure the current draw on a 10 Ω shunt resistance. The
energy consumption is calculated as: current (mA) × trans-
action time (sec) × input voltage (2.1 V). Note that only
1 dissemination ready message transmission is performed
and radio is mostly listening during the advertisement
phase. Table 7 shows the energy consumption of each
security operation and the total advertisement phase. The
advertisement phase consumes a total of 117.6 mJ .

7.5 Latency
We measured the average advertisement phase completion
time according to the number of hops in the Flocklab testbed
(see Fig. 9(c)). Given the multicast and lossy network, the
round trip time varies as the number of hops grows. This
latency includes the whole advertisement phase such as
multicasting advertisement packet, signature verification,
group key decryption, and transferring the ACK message
to the server. Note that the average advertisement packet
processing time on the node side is 2,281 ms, which is only
performed once per session. SEDA’s superior latency over

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 12

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

P
ay

lo
ad

 o
ve

rh
ea

d
(k

B
)

Number of targets

Trivial
SEDA

Delerablee1

(a) Payload overhead of advertisement phase
in Flocklab, in case of adopting other candidate
PBEs.

 0

 1

 2

 3

 4

 5

 6

 7

 32 64 96 128 160 192 224 256

D
ec

ry
pt

io
n

tim
e

(s
)

r bits generated elliptic curve

Min decryption
Average decryption

Max decryption

(b) Group key decryption time(ms) on Open-
mote regarding the r bits generated elliptic
curve.

 3

 4

 5

 6

 7

 1 2 3 4

A
dv

er
tis

em
en

t t
im

e
(s

)

The number of hops

Minimum latency
Average latency

Maximum latency

(c) Advertisement phase completion time in
Flocklab (n=33).

Fig. 9. Evaluation of the SEDA protocol. (a) Comparison with other PBEs (b) group key decryption overhead (c) latency.

Elliptic curve Element size Compressed Element Decompression Initial Decryption Optimized Decryption
128 bits 34 bytes 18 bytes 8 ms 1,931 ms 1,345 ms
160 bits (≡RSA1024) 42 bytes 22 bytes 10 ms 2,982 ms 1,864 ms
192 bits 50 bytes 26 bytes 16 ms 4,260 ms 2,947 ms
224 bits (≡RSA2048) 58 bytes 30 bytes 21 ms 5,801 ms 3,862 ms
256 bits (≡RSA3072) 66 bytes 34 bytes 23 ms 8,231 ms 5,789 ms

TABLE 6
Key element size and processing time. For r = 160 bit setting (the level of security is equivalent to RSA 1024 bits) with point compression, SEDA

needs 22 bytes private key, 66 bytes ciphertext.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

P
ub

lic
 k

ey
 s

iz
e

(k
B

)

The number of total nodes

BGW (r=160)
BGWt(r=160,compressed)
BGWt(r=192,compressed)
BGWt(r=256,compressed)
BGWt(r=160)
BGWt(r=192)
BGWt(r=256)

Fig. 10. The storage overhead gain from storing the public key according
to the r generated elliptic curve

DTLS and Seluge is achieved via the small advertisement
packet size and minimized ACK messages. However, Sel-
uge’s Merkle hash tree requires linear packet size and DTLS
suffers from E2E communication in multi hop environment.

8 THEORETICAL SECURITY ANALYSIS

8.1 Authenticity and Signature based Attack Mitigation
on the Advertisement
The new dissemination advertisement packet ad includes
the following fields: new version advertisement, server’s
ECDSA signature, ciphertext, and one-way hash. Although
there are many efficient ECDSA verification implementa-
tions, it is still a resource consuming task. Since SEDA
leverages the ECDSA signature as an immediate authen-
tication, adversaries can launch signature-based attacks to
cripple nodes by spending energy on signature verification.

Module Type Current Time, Energy
Hash verification HW 24.3 mA 25 µs, 1.2 µJ
(73 bytes payload) SW 20.3 mA 721 µs, 30 µJ
ECDSA verification HW 25.9 mA 148 ms, 8.0 mJ
(160 bits) SW 20.7 mA 393 ms, 17.1 mJ
Elliptic curve point SW 20.5 mA 10 ms, 430 µJ
decompression
Group key decryption SW 21.5 mA 1,864 ms, 84.1 mJ
AES-128 decryption SW 20.4 mA 214 µs, 9.1 µJ
(80 bytes payload)
AES-256 decryption HW 23.2 mA 31 µs, 1.5 µJ
(80 bytes payload) SW 20.8 mA 456 µs, 19.9 µJ
HMAC verification HW 24.3 mA 27 µs, 1.3 µJ
(84 bytes payload) SW 20.8 mA 780 µs, 34.0 µJ
Radio active 24.7 mA 421 ms, 21.8 mJ

Total SW 21.7 mA 2,582 ms, 117.6 mJ

TABLE 7
Average security operation processing time and energy consumption
on Openmote with hardware crypto accelerator (HW) or in software

implementation (SW).

Therefore, SEDA utilizes a lightweight one-way hash for
initial verification. Upon receiving the ad, target nodes
first verify the one-way hash (which is cheap to compute
compared to a signature verification) then verify the signa-
ture to authenticate the advertisement message. The same
approach applies to the most expensive operation, namely
group key decryption, as it is performed after the signature
verification is completed. Thus, SEDA achieves authenticity
and signature-based attack mitigation via one-way hash and
signature verification.

8.2 The Security of Group Key Distribution
Secure distribution of the group key plays an important
role for a secure system. Thus, the security of the group
key is a crucial part of our protocol design. As we already
showed, adversaries may capture ad to extract ciphertext
CT1, CT2, CT3 and have access to the public keys. However,
adversaries cannot extract any information to solve the
BDHE problem in polynomial time to generate the group
key. In addition, SEDA generates a fresh group key every

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 13

session and this one-timeness gives us even a higher level
of security.

8.3 Integrity and DoS Attack Mitigation

Adversaries can inject forged packets to install malicious
code or to sabotage nodes. In epidemic code dissemination
systems, mechanisms such as the per-packet meta hash
(Merkle hash tree) and one-way hash chain have been
employed to verify the integrity and to mitigate DoS at-
tacks [25]. We leverage HMAC in combination with the
group key to prevent code injection attacks and to guaran-
tee the integrity. HMAC is lightweight but robust against
known attacks such as brute force and collision attacks
as long as the key is not disclosed. SEDA also leverages
the meta hash for the entire (encrypted) code image for
additional integrity of the new code image. After receiving
a propagation packet, target nodes perform HMAC verifica-
tion for integrity which mitigates DoS attacks because it is
hard for adversaries to inject forged or modified packets by
tampering HMAC.

8.4 Confidentiality and Reverse Engineering Protection

In many IoT applications, adversaries can easily mount
snooping attacks on the code image. This reverse engineer-
ing is an effective way to reveal any security holes in the
source code. To achieve confidentiality and prevent reverse
engineering, SEDA optionally allows encryption of code
image using the symmetric group key K . Symmetric cryp-
tography, such as AES, causes relatively small computation
overhead for critical applications to preserve confidentiality
of code (see Table 7). The use of a fresh group key per session
allows a higher level of confidentiality against snooping
attacks.

8.5 Full Collusion Resistance and Physical Attack Miti-
gation

By means of physical attacks, an attacker can extract the
installed keys and launch an inside attack. In traditional BE,
adversaries can use the extracted keys to collude and gen-
erate the group key. Acquiring higher collusion resiliency
is infeasible in traditional BE schemes. Boneh et al. [13]
proved that the bilinear maps systems based PBEs are fully
collusion resistant as BDHE assumption is intractable. They
proved that for all g, h ∈ G1, δ ∈ Zp, and K ∈ GT , there
is no efficient algorithm for deciding whether e(g, h)δ = K .
Thus, even the disclosure of all other key materials, BGWt

is fully collusion resistant as long as the private keys in
the target group are not disclosed. If applicable, storing the
private key in a tamper-resistant storage provides additional
security against the node capture attack. Moreover, pre-
installation of private keys in a tamper-resistant storage also
provides security against identity-based Sybil attacks [18].
Thus, SEDA can achieve physical attack mitigation and full
collusion resistance.

More importantly, we have tested SEDA using a for-
mal security analysis tool, AVISPA [8] with its On-the-Fly-
Model-Checker tool. The tool did not find any security
threats.

9 CONCLUSION

In this paper, we introduced the design, implementation,
and evaluation of SEDA, an efficient and secure over-the-
air (re)programming protocol for heterogeneous IoT appli-
cations. We addressed the challenges of using current secure
code dissemination protocols in heterogeneous IoT appli-
cations. To solve this problem, SEDA adopts the multicast
communication approach to avoid unnecessary propagation
and security operations on non-target nodes in the update
process. In order to enable the secure multicast approach,
we explored many well-known asymmetric broadcast en-
cryption schemes then we choose the BGWt scheme for
improved communication and computation efficiency. We
first analyzed two critical drawbacks of the original BGW
scheme then presented a solution towards IoT applications.
We performed extensive experiments in Flocklab, a public
testbed, and with the Cooja simulator to show the superior
efficiency of the SEDA protocol with defensive measures
against adversary models.

REFERENCES

[1] http://blog.apnic.net/2015/04/30/the-internet-of-stupid-things.
[2] http://datatracker.ietf.org/doc/rfc6407/.
[3] https://github.com/oliverguenther/PBC BKEM.
[4] http://www.zigbee.org, 2006.
[5] http://www.symantec.com/connect/blogs/

iot-worm-used-mine-cryptocurrency, 2015.
[6] https://tools.ietf.org/html/rfc6347, 2015.
[7] http://www.openmote.com/, 2015.
[8] Avispa. http://www.avispa-project.org/, 2015.
[9] The thread group. http://threadgroup.org/, 2015.
[10] M. Abe, R. Gennaro, K. Kurosawa, and V. Shoup. Tag-kem/dem:

A new framework for hybrid encryption and a new analysis of
kurosawa-desmedt kem. In EUROCRYPT 2005.

[11] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy
attribute-based encryption. In Security and Privacy, pages 321–334.
IEEE, 2007.

[12] D. Boneh and M. Franklin. Identity-based encryption from the
weil pairing. SIAM Journal on Computing, 32(3):586–615, 2003.

[13] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In Advances in
Cryptology–CRYPTO 2005, pages 258–275, 2005.

[14] C. Delerablée, P. Paillier, and D. Pointcheval. Fully collusion secure
dynamic broadcast encryption with constant-size ciphertexts or
decryption keys. In Pairing, pages 39–59. 2007.

[15] M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: Fast data
dissemination with constructive interference in wireless sensor
networks. In NSDI, pages 269–282, 2013.

[16] I. Doh, J. Lim, and K. Chae. Code updates based on minimal
backbone and group key management for secure sensor networks.
Mathematical and Computer Modelling, 57(11):2801–2813, 2013.

[17] D. Dolev and A. C. Yao. On the security of public key protocols.
Information Theory, 29(2):198–208, 1983.

[18] J. R. Douceur. The sybil attack. In Peer-to-peer Systems. Springer,
2002.

[19] W. Du, J. C. Liando, H. Zhang, and M. Li. When pipelines meet
fountain: Fast data dissemination in wireless sensor networks.
In Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 365–378. ACM, 2015.

[20] A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a lightweight and
flexible operating system for tiny networked sensors. In LCN.
IEEE, 2004.

[21] A. Fiat and M. Naor. Broadcast encryption. In Advances in
Cryptology-CRYPTO, 1994.

[22] W. Hu, H. Tan, P. Corke, W. C. Shih, and S. Jha. Toward trusted
wireless sensor networks. TOSN, 7(1):5, 2010.

[23] J. W. Hui and D. Culler. The dynamic behavior of a data dissemi-
nation protocol for network programming at scale. In Proceedings
of the 2nd Sensys. ACM, 2004.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XS, NO. X, X 2016 (PREPRINT) 14

[24] R. Hummen, H. Shafagh, S. Raza, T. Voig, and K. Wehrle.
Delegation-based authentication and authorization for the ip-
based internet of things. In 2014 Eleventh Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON),
pages 284–292. Ieee, 2014.

[25] S. Hyun, P. Ning, A. Liu, and W. Du. Seluge: Secure and dos-
resistant code dissemination in wireless sensor networks. In
ACM/IEEE IPSN, 2008.

[26] J. Y. Kim. Secure and efficient management architecture for the
internet of things. In SenSys, pages 499–500, 2015.

[27] J. Y. Kim, S. Jha, W. Hu, H. Shafagh, and M. A. Kaafar. Poster:
Toward efficient and secure code dissemination protocol for the
internet of things. In Sensys, pages 425–426. ACM, 2015.

[28] P. A. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self regu-
lating algorithm for code propagation and maintenance in wireless sensor
networks. Computer Science Division, University of California,
2003.

[29] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and
J. Beutel. Flocklab: A testbed for distributed, synchronized tracing
and profiling of wireless embedded systems. In IPSN. IEEE, 2013.

[30] A. Liu and P. Ning. Tinyecc: A configurable library for elliptic
curve cryptography in wireless sensor networks. In IPSN 2008.
IEEE, 2008.

[31] D. Liu, P. Ning, and R. Li. Establishing pairwise keys in distributed
sensor networks. ACM TISSEC, 2005.

[32] B. Lynn. The pairing-based cryptography library. Internet: crypto.
stanford. edu/pbc/[Mar. 27, 2013].

[33] A. Marchiori and Q. Han. Pim-wsn: Efficient multicast for ipv6
wireless sensor networks. In WoWMoM. IEEE, 2011.

[34] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing
schemes for stateless receivers. In Advances in Cryptology-CRYPTO
2001, 2001.

[35] P. Ning, A. Liu, and W. Du. Mitigating dos attacks against
broadcast authentication in wireless sensor networks. ACM TOSN,
4(1):1, 2008.

[36] S. Notra, M. Siddiqi, H. Habibi Gharakheili, V. Sivaraman, and
R. Boreli. An experimental study of security and privacy risks
with emerging household appliances. In CNS. IEEE, 2014.

[37] G. Oikonomou and I. Phillips. Stateless multicast forwarding with
rpl in 6lowpan sensor networks. In PERCOM Workshops. IEEE,
2012.

[38] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing, pages 329–350. Springer, 2001.

[39] H. Shafagh, A. Hithnawi, A. Dröscher, S. Duquennoy, and W. Hu.
Talos: Encrypted query processing for the internet of things. In
Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 197–210. ACM, 2015.

[40] Z. Shelby, K. Hartke, and C. Bormann. The constrained application
protocol (coap). 2014.

[41] D. R. Stinson. Cryptography: theory and practice. CRC press, 2005.
[42] X. Xiong, D. S. Wong, and X. Deng. Tinypairing: a fast and

lightweight pairing-based cryptographic library for wireless sen-
sor networks. In WCNC. IEEE, 2010.

Jun Young Kim Jun Young Kim is a Ph.D. can-
didate and research assistant at the University
of New South Wales (UNSW Australia), and
Data61 CSIRO Sydney Australia. His main re-
search interest includes securing wireless sen-
sor networks and the Internet of Things, as he
worked over 12 years in the embedded software
industry before joining the Ph.D. program.

Wen Hu Dr. Wen Hu is a senior lecturer at
School of Computer Science and Engineering,
the University of New South Wales (UNSW).
Much of his research career has focused on the
novel applications, low-power communications,
security and compressive sensing in sensor net-
work systems and Internet of Things (IoT). Hu
published regularly in the top rated sensor net-
work and mobile computing venues such as
ACM/IEEE IPSN, ACM SenSys, ACM transac-
tions on Sensor Networks (TOSN), Proceedings

of the IEEE, and Ad-hoc Networks.
Hu was a principal research scientist and research project leader at

CSIRO Digital Productivity Flagship, and received his Ph.D from the
UNSW. He is a recipient of prestigious CSIRO Office of Chief Executive
(OCE) Julius Career Award (2012 - 2015) and multiple CSIRO OCE
postdoctoral grants.

Hu is a senior member of ACM and IEEE, and is an associate
editor of ACM TOSN, as well as serves on the organising and program
committees of networking conferences including ACM/IEEE IPSN, ACM
SenSys, ACM MobiSys, IEEE ICDCS, IEEE LCN, IEEE ICC, IEEE
WCNC, IEEE DCOSS, IEEE GlobeCom, IEEE PIMRC, and IEEE VTC.

Hossein Shafagh is a Ph.D. candidate and re-
search assistant at the Department of Com-
puter Science of ETH Zurich, Switzerland. His
research interests include designing and improv-
ing security protocols for wireless sensor net-
works and enabling secure Internet of Things.

Sanjay Jha Sanjay K. Jha is a Professor, head
of the Networked Systems and Security Group
(NetSyS) and director of CySPri Laboratory at
the School of Computer Science and Engineer-
ing at the University of New South Wales. Prof.
Jha holds a Ph.D. degree from the University of
Technology, Sydney, Australia. Sanjay has pub-
lished over 180 articles in high quality journals
and conferences. He is the principal author of
the book Engineering Internet QoS and a co-
editor of the book Wireless Sensor Networks: A

Systems Perspective. He has been very active in attracting research
grants from ARC, industry and other funding agencies.

