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ABSTRACT
�e emergence of a plethora of wearables and sensing technologies
has enabled non-intrusive digitization of our daily physical activ-
ities. Emerging applications utilize such data to make inferences
about our physiological and health states, provide health diagnosis,
and contribute to wellbeing improvements. �e common approach
for such applications is to collect data, either using mobile appli-
cations or special hardware, e.g., wearables, and store them on a
third party storage provider. �is results in many unconnected data
silos of self-quanti�cation data. Researchers and industry, advo-
cate for a common personal storage space, to conquer the myriad
of small chunks of data, deemed to be lost/forgo�en in the long
term. �e bene�ts of such co-located personal data are tremendous,
speci�cally with regards to personalized medicine, treatment, and
health care. However, the centralized storage of data exacerbates
the privacy and security concerns that the IoT ecosystem is facing
today. In this position paper, we advocate the necessity of privacy
and security guarantees for the paradigm of co-located storage of
personal health data. We envision two core security functionali-
ties: true end-to-end encryption, such that only encrypted data is
stored in the cloud and secure sharing of encrypted data, without
disclosing data owner’s secret keys. We discuss the challenges in
adopting such an end-to-end encryption paradigm while preserving
the cloud’s basic processing functionalities over encrypted data and
how to cryptographically enforce access control.
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Figure 1: Sharing and processing of encrypted data

1 INTRODUCTION
�e convergence of low-power embedded devices, wearables, and
wireless networks has facilitated the emergence of novel appli-
cations and services that are changing the way we perceive and
interact with the physical world. One promising application, yet
with untapped potentials is self-quanti�cation. �ere is a myriad
of applications today collecting various types of data related to our
activities and physical and mental health. Fitness and activity track-
ing applications, such as Fitbit, allow their user base to monitor
their health and activity progress. In the long term, such longitudi-
nal data can be utilized for a more accurate diagnosis and treatment
of medical conditions. More specialized applications utilize various
sensor readings to predict life-critical seizures [3], provide fertility-
related information [1], or quantify personal well-being [3, 10].

�e common technical ecosystem of such health-related IoT ap-
plications consists typically of a user-facing mobile app, potentially
extended with specialized hardware, such as wearables, to collect
special purpose sensor readings. �e collected data is then stored
on third-party storage services. �e application logic, in the form of
a back-end server, is as well mostly accommodated on third-party
web service providers. �e back-end server processes incoming
queries from the front-end applications and sends back the results.
Responsible apps and services promise high security and privacy
standards, and vow not to sell user’s data for revenue (or share only
de-identi�ed/anonymized data). However, currently employed se-
curity and privacy mechanisms do not provide the necessary degree
of privacy. At best, transport layer security (TLS) is used which
protects data in transit, but not in rest.

Research and industry alike advocate for a centralized storage
of health-related data, though with di�erent inducements. Mobile
OS level solutions such as Google Fit or Apple’s HealthKit provide
a higher level API for application developers for data storage and a
user-authorized cross-app data access. Open mHealth [17] is part
of the research e�orts to facilitate standardized central storage of
personal health data from heterogeneous applications and services.
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Open mHealth de�nes data storage schemas which facilitate data
standardization. �e co-location of such personal data allows for a
persistent data storage and the realization of innovative research
and services. Big data-driven models can be used to make personal
predictions, for instance, related to a healthier lifestyle, medical
related alerts, to name a few examples.

�e OS level approaches enforce security and privacy by only
storing data locally. Despite giving users control over their data,
this approach lacks the support of data sharing with external enti-
ties. Open mHealth foresees common security measures, such as
transport layer security and sharing based on the OAuth protocol.
OAuth [26] is currently the de-facto standard for shared access to
online resources. However, it is based on access policies de�ned by
web services and does not provide any cryptographic guarantees.

In this position paper, we advocate augmenting the applica-
tion ecosystem with cryptographic mechanisms that can guarantee
user’s control over raw data, as streamed directly from sensors, yet
allow sharing and processing. We propose to augment the central-
ized data storage schemes with transparent end-to-end encryption
and sharing features, as illustrated in Figure 1. Application de-
velopers continue using the restful API, however, these calls are
intercepted by our proposed framework, residing on users personal
devices. Outgoing data is encrypted with user’s keys and incoming
data is decrypted before being exposed to the application layer.
Hence, data remains strongly encrypted in transit and at rest. �e
cloud component of the ecosystem is augmented such that it facili-
tates sharing of encrypted data and basic processing of encrypted
data. �e encrypted sharing embodies a cryptographic access con-
trol with an e�cient access revocation. �e user can share her
encrypted data with applications and services, for instance for an-
alytical services or with individuals, such as a physician, friend,
or partner. In the following sections, we discuss the design space
for such a framework, the associated risks and challenges, and the
opportunities arising from augmenting health data with encrypted
sharing and data processing capabilities.

2 BACKGROUND AND MOTIVATION
�e advances in the low-power built-in mobile sensors, such as
gyroscope, accelerometer, and compass have made non-intrusive
and energy e�cient activity recognition and tracking possible. Ba-
sic automated activity tracking is currently supported by native
mobile operating systems, such as Apple’s HealthKit. For advanced
activity and health tracking, wearables and external devices can be
employed. For instance, Fitbit as the representative of �tness track-
ing wearables can be equipped with up to 8 built-in sensors. Most
of these sensors are commonly available on today’s smartphones,
except the optical heart rate monitor. More specialized wearables
can be equipped with skin temperature sensors, ultraviolet sensors,
capacitive sensors, and galvanic skin response. �ese sensors can
provide more insightful data about the user, such as emotional state,
fertility-related conditions, and physiological signals.

With the continuous miniaturization of low-power sensors [21],
we will soon be surrounded by smartphones and wearables col-
lecting detailed vital signs of our body, capable of providing more
insights about our health than what we would be capable of per-
ceiving. �e societal and personal gains of digitizing these facades

of our lives are immense. However, this resembles a double-edged
sword, in that the privacy and security risks, if not addressed prop-
erly and timely, could diminish the gains. Before continuing with
measures on how to provide security and privacy at design, we
review an important and sensitive class of tracking applications in
more details.

2.1 Applications
�e potentials of applying encrypted data sharing and process-
ing for increased level of privacy without compromising e�ciency
are immense, particularly as the variety and volume of data col-
lected about individuals increase exponentially. We now discuss the
�eld of fertility tracking apps and discuss Ava’s wristband fertility
tracker.

Many women nowadays rely on mobile applications (e.g.,
Clue [2]) to track their menstrual cycle, as well as the accompanying
symptoms like mood �uctuations or headaches. �ese applications
assist women in many ways, such as tracking the infertile phase
by integrating calendar-based contraceptive methods, detecting re-
lated health issues, and most importantly predicting the time of the
next period or the fertile window (i.e., ovulation), based on previous
data. Such applications are essential and support women in making
informed decisions. Moreover, such a detailed medical history can
enable a more accurate diagnosis and treatment. However, logging
such delicate and intimate information raises serious privacy issues.
With wearables such data can even be collected non-intrusively.
For instance, body temperature is a means to infer information
about the menstruation cycle and is used in specialized wearables
(e.g., Ava [1], Femometer [4]).

Ava’s bracelets are worn at night during sleep and collect data
about resting pulse rate, skin temperature, heart rate variability,
sleep, breathing rate, perfusion, and bio-impedance. Heart rate
variability is the variation in the time interval of consecutive heart
rates. It is a strong indicator of physiological stress, where higher
variations indicate a lower physiological stress level. Perfusion
is the process of blood �ow through the capillaries to tissues of
the body. Besides providing information about body fat, perfusion
reveals information about hydration and sweating pa�erns. �e
collected data by the various built-in sensors is stored in the cloud
once the bracelet is in the vicinity of an already paired personal
smartphone with an activated BLE. Ava leverages the collected
data to track the menstrual cycle, predict the fertile window (i.e.,
most suitable time to conceive), and provides information about the
quality of sleep and stress level. Ava foresees sharing of data with
individuals, such as the partner, or medical experts for consultancy.

At the clinical level, wristbands can be equipped with even more
sophisticated sensors. For instance, Empatica [3, 18], a novel wrist-
band for nervous system monitoring and alerting in case of life-
critical seizures integrates PPG and EDA sensors. �e photoplethys-
mography (PPG) sensor measures blood volume pulse. �is is then
used to derive heart rate, heart rate variability, and other cardiovas-
cular features. �e electrodermal activity (EDA) sensor is utilized
to measure sympathetic nervous system arousal, which can derive
features related to stress, engagement, and excitement.
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2.2 Challenges and Risks
�e advancements in the cloud domain contribute to a faster pace
of developing IoT applications. Speci�cally, ready-to-use cloud
services, such as pre-image dockers, VM web servers, query and
response image recognition services, have reduced the entry barrier
for application developers and increased the quality of services and
convenience for users. At times, where we store our data mainly
on cloud service providers infrastructures, we face the emerging
security and privacy risks of collecting such health data. Financial
incentives fuel internal (e.g., admins) and external adversaries to-
wards unauthorized trade with personal data. �is is not only a
threat towards individuals, whose data get compromised, but to
the success of this new emerging ecosystem of health and activity-
based services, and to users trust in them. Privacy and human rights
advocates’ major concerns with regards to self-quanti�cation data
are due to the higher risk of: pro�ling (exclusion or discrimination
against certain types of people), embarrassment and extortion, and
corporate misuse [9]. Current studies show the extent of trade with
health data [43] and that the majority of smartphone health appli-
cations systematically trade user’s data, with or without user con-
sent [16]. �is is not considering applications with unintentional
data leakage [9]. More conscientious apps apply anonymization of
data, which is mainly replacing personally identi�able information,
such as social security numbers, names, and detailed addresses
with random identi�ers. In addition to being capable of �nding the
original identity with access to the random identi�er’s mapping,
ubiquitous data-mining technologies can easily learn a previously
anonymous individual’s identity [43]. Hence, it is necessary to
adopt cryptographic measures that give users control over their
data with strong guarantees. Data owners should have full control
of their data and decide with whom, what and at which granularity
to share their data.

3 DESIGN SPACE AND EXPLORATION
In this section, we brie�y explore main cryptographic components
that can facilitate the realization of encrypted sharing with process-
ing capabilities.
Fully Homomorphic Encryption (FHE): With FHE one can
compute any arbitrary mathematic computations on encrypted
data which can be reduced to a composition of addition and multi-
plication gates. �e concept of fully homomorphic encryption was
already introduced in the 70s. However, the �rst implementable
schemes only appeared in the last decade [19]. Since then many
research e�orts have contributed to improving the sluggish perfor-
mance of FHE. Despite considerable performance improvements
in the recent years, the performance of FHE schemes is considered
presently too slow for practical systems.
Partially Homomorphic Encryption (PHE): A more perfor-
mant, however, less powerful approach for end-to-end encryption
can be realized based on partially homomorphic encryption [30].
PHE only allows one type of computation on encrypted data, for
instance, either additions or multiplications. �ough this approach
lacks the functionally of FHE, it is several orders of magnitude
faster than FHE. Moreover, additions play an important role in the
query processing domain. Combined with the computational parti-
tioning where computation is divided between the cloud and the

client, PHE can become a powerful scheme. Property-preserving
encryption (PPE) schemes are computationally o�en as e�cient
as symmetric-key based encryption schemes. PPE allows the com-
putation of comparison-related operations [32], such as ordering,
min/max, and equality check over encrypted data. Since PPE
schemes inherently leak information [28], these schemes are less
secure and should be utilized carefully. �e combination of PPE and
PHE schemes has resulted into e�cient encrypted query processing
systems [33, 38].
Encrypted Data Sharing: Sharing of encrypted data can be
achieved simply by sharing the secret key. �is approach is ef-
�cient. However, it puts the shared secret at the risk of disclosure.
An alternative approach for encrypted sharing, is public-key-based
re-encryption (RE). With RE a user Alice can issue the cloud a
cryptographic token that allows her data to be re-encrypted from
under her key to encrypted under Bob’s key. �e cloud does not
learn any keys nor the content of the encrypted data. Bob can then
decrypt the shared data with his private key. It is important that
the re-encryption scheme exhibit the following properties: (i) key-
private: non of the involved parties learn the other parties private
key. �us, the re-encryption token is computed based on the public
key of the other party. (ii) uni-directional and single-use: not per-
mi�ing multiple re-encryptions to avoid uncontrolled ciphertext
transformations towards an unauthorized user. With any sharing
scheme, access revocation plays a vital role, as users may wish to
discontinue sharing data.

4 PITFALLS AND RISKS
While building an encrypted data processing and sharing system,
it is vital to be aware of the remaining weaknesses and how they
impact the overall security of the system. Otherwise, we pay the
price for the involved overheads, such as higher bandwidth, CPU,
and memory, without signi�cantly gaining in security. It is as well
important to bear in mind that each security measure aims to create
a cost-increasing barrier for the adversary. Despite the increased
barriers, extraordinary or niche adversaries might still be capable
of overcoming them. Hence, the security model should clearly state
which type of adversaries it is addressing and which types not. In
the following, we discuss typical pitfalls of practical encrypted data
processing systems.
Leakage. Property-preserving encryption schemes are accompa-
nied with data leakage. For instance order-preserving encryption,
per de�nition reveals the ordering information among the cipher-
texts. While for certain data types, the traded leakage for perfor-
mance is acceptable for others it might pose the risk of complete
disclosure. �is is especially the case for low-entropy values. For
instance, assume the heart-rate which has a range between 20 to
300 beats per minute. Encrypting heart-rate with order-preserving
encryption would allow ordering of the ciphertexts and hence en-
crypted min/max queries. However, a histogram of encrypted heart-
rate values provides the same information as of the histogram over
the plaintext values. �e histogram reveals certain activities using
sophisticated models.
Metadata. Communication-related metadata refers to with whom
and when communication took place. Researchers have shown how
the communication metadata can be utilized to learn a signi�cant
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Figure 2: Design Overview. Encryption and decryption take
place only on user’s personal devices.

amount of information [24]. �is is even possible with a secure
end-to-end communication, such as TLS. Metadata plays as well
a major role in surveillance. For instance, evaluation of distinct
packet size pa�erns and timings can be su�cient to identify visited
web pages, watched videos, and used applications [20]. Regarding
data storage, metadata refers to the storage type, database schema,
and any information related to storage facilities. Storage metadata
is used to launch a targeted a�ack or as well to support inference
a�acks on encrypted data processing systems with a considerable
amount of leakage. For instance, Naveed et al. [28] show that with
metadata information about hospital databases, they can disclose a
large amount of property-preserved encrypted data.
Access Pattern. �e frequency and pa�ern of how the database is
accessed and which tables or rows are read from might intuitively
appear not relevant. �is might even appear to be more the case for
lower system level access pa�erns, for instance regarding memory
addresses. However, similar to the communication metadata, the
access pa�ern information can be used to learn sensitive informa-
tion [22]. For instance, in private keyword search over encrypted
data, auxiliary information about the frequency of most searched
words could compromise the encrypted search results.

5 DESIGN
In this section, we introduce an architectural design to accommo-
date for an e�cient encrypted data sharing with limited processing
power. Our goal is to keep user’s data encrypted at all times outside
user’s personal devices. �e computational resources available at
the edge of the Internet and on our personal devices support de-
manding computations at fast rates. �is strengthens the paradigm
of computational locality, where sensitive computations can be
performed on user’s personal devices. �is, however, necessitates
private scope search and sharing capabilities on encrypted data to
gain access to a speci�c segment of the remote data. In our design,
we leverage novel cryptographic schemes to realize the desired
capabilities.

We distinguish between three main players, as depicted in Fig-
ure 2: �e client device is the personal mobile system that is
equipped with several built-in sensors and capable of collecting
valuable data. �e client device typically hosts the application
front-ends. It can as well serve as a gateway for less powerful
devices, such as wearables. �e cloud hosts the application logic
and provides data storage features. �e identity provider (IDP)
plays an important role in any multi-user scenario. It veri�es the
identity-to-key mappings. �e role of IDP can be outsourced to
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Figure 3: Sharing using re-encryption of the ciphertext with-
out access to encryption key nor plaintext data.

recent online-network-based approaches, such as Keybase [5]. �ey
provide a provable mapping of an online identity to its public key,
by utilizing prevalent social media channels and in general online
accounts. To this end, a prospective user who claims an identity is
asked to provide a proof of identity by publishing a unique individ-
ual token over the claimed identity channel (e.g., Twi�er, Facebook,
Instagram, Github, Coinbase, etc.). Hence, one can search for the
public key of another user based on their known online identity.
Encrypted Data Sharing. We leverage an elliptic curve pairing-
based re-encryption system (referred to as AFGH [7]) to realize the
encrypted sharing, as depicted in Figure 3. A bilinear paring-based
cryptosystem [12] de�nes two groups G1 and G2 of prime order
q with the following property for a,b ∈ Zq, д ∈ G1, and h ∈ G2:
e (дa ,hb ) = e (д,h)ab . �e user Alice computes her public key as
pka = дa and her private key as ska = a. Alice can issue Bob the
re-encryption token based on his public key pkb as the Tokena→b
= pk1/a

b = дb/a ∈ G.
Our revocation procedure discontinues sharing of data with an in-

dividual by renewing all encryption keys. �is has the consequence
that previously issued re-encryption tokens become obsolete. How-
ever, old data can still be re-encrypted with obsolete tokens. �is is
acceptable since already shared data is considered to be in the wild
(e.g., already cached). However, to prevent additional leakage of old
data, we introduce an in-situ re-keying mechanism. �is enables
the cloud to change the encryption key of encrypted data without
the need of decryption. Hence, all data is encrypted at all times
with the latest keys, preventing any undesired access by revoked
sharing parties.
Limited Encrypted Processing and Scope Search. Our utilized
re-encryption scheme is partially homomorphic with respect to
additions and multiplications with constants. We leverage this
feature to perform limited computations on encrypted data (e.g.,
average, mean, etc.). More complex computations are executed
locally, which requires the capability of searching the desired en-
crypted data segments and download them. To realize the scope
search over structural data, it is important to be able to search
over encrypted indices or time stamps. We construct an encrypted
range query scheme with limited leakage based on a recent order-
revealing encryption scheme [25]. �e ciphertexts in this scheme
are divided into two segments, referred to as le� and right parts.
A le� part compared to any right part reveals ordering informa-
tion. Hence, only the right parts are stored ordered in the cloud.
Right parts are semantically secure and can not be compared
with each other. Hence, o�ine a�acks based on ordering infor-
mation are not feasible anymore. While making a search query,
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the le� parts of the boundaries are provided to the cloud. �e cloud
uses the le� parts to retrieve the data within the de�ned boundaries.
Challenges. E�cient computations on user’s personal devices
are vital to render our approach practical. Our sharing scheme is
realized by means of a pairing-based cryptosystem, known to be
computationally expensive. Our initial results show that expensive
operations are mostly computed on the cloud (re-encryption) or
can be amortized over time (token generation). Despite featuring
an e�cient encryption, which is important with regards to higher
number of encryptions compared to decryptions (since more data
points are generated), the decryption requires further optimizations
to be competitive with symmetric-key based counterparts.
Guarantees. Our primary goals are to defy passive a�acks tar-
geted at data on the cloud as well as to prevent access of unau-
thorized users while enabling an e�cient sharing of encrypted
data. Our design ful�lls these goals such that data on the cloud
remains strongly encrypted (i.e., semantic security) at all times.
�e cloud never gains access to any decryption keys. To protect
the data from unauthorized access, we cryptographically restrict
data access to users with decryption keys associated with issued
re-encryption tokens. With the re-encryption token, the cloud can
only re-encrypt the stored data towards the authorized service. To
prevent a malicious cloud from creating fake users, we rely on an
IDP to verify the identity of the users. Moreover, we prevent a mali-
cious cloud from unauthorized re-encryptions towards a malicious
user. �is is achieved with the one-hop re-encryption property of
the underlying re-encryption scheme.

6 RELATEDWORK
In the following, we discuss important directions of research related
to this position paper.
Encrypted Search. Recent advancements of fully homo-
morphic encryption [19] have resulted into implementable
schemes [15],which are however presently too slow for real world
applications. Searchable encryption schemes support only a lim-
ited set of operations, but can be e�ciently used in specialized
domains. Song et al. [42] introduced the �rst encrypted search
scheme for text �les, where the metadata is encrypted deterministi-
cally and hence searchable. �eir idea is based on deterministically
encrypting the meta information of �les, and hence being able
to search over them. Follow-up schemes address other problems
such as encrypted data de-duplication [23], deep packet inspec-
tion [39], and private network function virtualization [6]. More
capable search schemes [13, 31, 33, 36, 38, 40], targeted for struc-
tured databases employ additional techniques such as partially
homomorphic and order-preserving encryptions. Monomi [44] im-
proves the performance and extends supported queries of CryptDB.
In CryptDB, the application server has access to keys and carries
out en-/decryptions. Hence, it can leak information if compromised.
Talos [37, 38] tailors CryptDB for IoT devices and eliminates the
risk of compromise due to application server. Mylar [34] intro-
duces encrypted search over text �les encrypted under multiple
keys. Mylar leverages a pairing-based cryptosystem, such that
given corresponding re-encryption tokens, the server re-encrypts
the provided search token of a user for all group documents she is

a member of (each group document is encrypted with a di�erent
key). Shi et al. [41] propose private aggregation of time series
data, which blends secret sharing with homomorphic encryption.
Seabed [31] introduces an additively symmetric homomorphic en-
cryption scheme to perform large-scale aggregations e�ciently.
Access pa�erns to encrypted data still leak sensitive information
about the plaintext data. Oblivious RAM approaches [35] prevent
leakage of sensitive information through access pa�erns.
MPC. In traditional secure Multi-Party Computation (MPC) [46]
private functions are computed among a set of users without the
need of a trusted party. Hereby individual values from participating
users are kept con�dential, while the outcome can be public. �is
requires high interactions between users which would strain the
limited resources of mobile platforms. With the rise of cloud com-
puting, server-aided or outsourced MPC approaches have emerged.
However, these schemes are either only of theoretical interest [27]
or require at least two non-colluding servers, where for instance
one server has only access to encrypted data and the other server
has access to the keys only [29].
Trusted Computing. An orthogonal approach to encrypted com-
puting assumes a trusted computing module on an untrusted cloud
environment [8]. �e data remains encrypted at rest and is only
decrypted in the trusted module for computations. �is approach
is appealing to data center operators, due to control over hardware.
However, it implies that users consider the trusted computing mod-
ule trustworthy.
Re-Encryption. �e idea of Re-Encryption (RE) has been ini-
tially proposed for email and cloud-sharing applications. �e initial
schemes [11] have the bi-directional property and are not resistant
against collusion. More importantly, the parties need to exchange
their private keys. �e later schemes [7] address these weaknesses
and are uni-directional and non-interactive. �e symmetric-key RE
based on Boneh et al.’s key homomorphic PRF scheme [14] lacks
our required homomorphic property on ciphertexts and master
secret security. Sieve [45] utilizes this scheme to provide crypto-
graphically enforced access control for cloud data. Hence, Sieve’s
security model assumes no collusion between the cloud and users.

7 CONCLUSION
In this position paper, we advocate giving users control over their
cloud data. We discuss the necessity of such a control that can
only be achieved with true end-to-end encryption, and the need of
cryptographically enforced data sharing features. We �rst explore
the design space for composing such a system and the accompa-
nying risks. We then lay down the design of our scheme to ful�ll
the encrypted sharing goal. We are currently in the process of
�nalizing our design and developing a reference implementation.
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