
1

BurstMAC — An Efficient MAC Protocol for
Correlated Traffic Bursts

Matthias Ringwald, Kay Römer, Institute for Pervasive Computing, ETH Zurich, Switzerland

Abstract— Many sensor network applications feature corre-
lated traffic bursts: after a period of idle time with almost no
network traffic, many nodes have to transmit large amounts of
data simultaneously. One example is volcano monitoring [17],
where rare eruptions trigger many nodes simultaneously to
transmit seismic data traces.

For such applications, a MAC protocol should exhibit a low
overhead both in idle mode and during correlated traffic bursts.
Existing MAC protocols only meet one of these requirements, but
not both at the same time. Contention-based protocols such as
SCP-MAP have very low overhead in idle situations, but exhibit
high overhead during correlated traffic bursts due to contention.
Scheduled protocols such as LMAC avoid contention overhead
during correlated bursts, but exhibit a significant overhead in
idle mode due to control traffic [10].

We propose BurstMAC, a new MAC protocol specifically de-
signed for applications with correlated traffic bursts. BurstMAC’s
idle overhead is almost as low as that of SCP-MAC and at the
same time provides better throughput and lower energy overhead
than LMAC during correlated traffic bursts.

I. INTRODUCTION

Many early applications of sensor networks were time-
triggered, where sensor nodes sample their sensors at regular
intervals and report these readings to a sink. In event-triggered
applications, in contrast, sensor nodes do not transmit any
data unless a relevant real-world event occurs. In a volcano
monitoring application [17], for example, sensor nodes detect
volcanic eruptions by sampling their sensors. Only when a
node detects an eruption, it sends a lengthy time series of
sensor values to the sink, generating a traffic burst in the
network. Because an eruption typically triggers many nodes
simultaneously, the occurrence of traffic bursts produced by
different nodes are highly correlated in time. Here, it is
important that all data is collected in a reliable and timely
manner with low energy overhead. However, it is equally
important that the energy overhead during idle periods between
eruptions is also very low.

Existing MAC protocols are not well-suited for such event-
triggered applications with correlated traffic bursts as they
are efficient either in idle mode or during correlated traffic
bursts, but not both. Contention-based protocols such as SCP-
MAC are very efficient in idle mode because they minimize
the control overhead required for node coordination. However,
during correlated traffic bursts when many nodes compete for
the radio channel, their efficiency is rather low due to the
control traffic required for contention. In contrast, scheduled
protocols such as LMAC eliminate contention overhead during

The work presented in this paper was partially supported by the Swiss
National Science Foundation under grant number 5005-67322 (NCCR-MICS).

correlated traffic bursts, but exhibit a high overhead in idle
mode due to the control traffic required for node coordination.

The contribution of this paper is BurstMAC, a MAC proto-
col specifically designed for event-triggered applications with
correlated traffic bursts. BurstMAC’s idle overhead is almost as
low as that of contention-based protocols such as SCP-MAC
and at the same time provides better throughput and lower
energy overhead than extsing scheduled protocols such as
LMAC during correlated traffic bursts. The key to achieve this
goal lies in a novel combination and tight integration of differ-
ent medium access techniques. In particular, BurstMAC uses
TDMA techniques and multiple radio channels to efficiently
handle correlated traffic bursts. However, to eliminate most of
the control overhead typically induced by these techniques, we
apply physical layer approaches such as efficient transmission
of single bits without preambles or concurrent, non-destructive
transmissions by multiple senders, resulting in a low overhead
in idle mode.

While BurstMAC also supports broadcasts, it is optimized
for unicast transmission. This is grounded in the belief that
nodes may rarely want to disseminate large amounts of data
to many other nodes. That is, BurstMAC is optimally suited for
applications where large amounts of data have to be extracted
from the sensor network (e.g., using convergecast with a single
or multiple sinks) or where large amounts of data have to be
transferred between pairs of nodes.

The remainder of this paper is structured as follows. We
first put BurstMAC into the context of related work in Sect.
II, before we give an overview of BurstMAC and its key
techniques in Sect. III. The protocol is described in detail in
Sect. IV. An implementation of BurstMAC on BTnodes is
discussed in Sect. V, while performance results are reported
in Sect. VI before drawing conclusions.

II. RELATED WORK

Among the large number of MAC protocols for sensor net-
works [10], two categories are of particular relevance for our
work. Firstly, MAC protocols that achieve a very low energy
overhead in the idle case, and, secondly, MAC protocols that
have a low overhead during correlated traffic bursts.

State-of-the-art MAC protocols with respect to low idle
overhead are WiseMAC [4], SCP-MAC [20], and Dozer [3].
All of these achieve idle radio duty cycles well below 1%.
While WiseMAC and SCP-MAC are general purpose MAC
protocols designed for low data rates, Dozer is an integrated
data collection stack for ultra-low data rates, consisting of
MAC layer, topology control, and routing. However, being

2

designed for low data rates, these protocols suffer from sig-
nificant overhead due to contention during correlated bursts.
While Dozer uses local one-hop schedules to avoid collisions,
transmissions of nodes in different scheduling domains still
collide. WiseMAC improves on the low-power listening tech-
nique [10] where unsynchronized nodes periodically wake-
up from sleep to detect a radio transmission. To assert that
the receivers wakes up in time, a long preamble has to be
prefixed to the packet. WiseMAC reduces this extra preamble
by keeping track of neighbors’ sleeping schedules. Multiple
parallel transmissions (e.g., during correlated bursts) are not
scheduled and lead to collisions. SCP-MAC is also based
on low-power listening but synchronizes the sleep schedules
of all nodes to send a packet just after all neighbors wake
up. It also provides a streaming mode that allows packets
to be forwarded through the network in a staggered fashion.
The synchronized medium access, however, leads to a higher
chance of collisions, which have to be resolved by back-off
mechanisms.

On the other end of the design space, collision-free proto-
cols have been designed for higher data rates by employing
scheduling techniques. The most well-known and widely used
protocol in this category is LMAC [15]. In LMAC, each node
is assigned to a slot in a TMDA schedule and can transmit
during this slot. All nodes must listen during the slots of all its
neighbors to be able to receive data, which implies a significant
energy overhead in all but very sparse networks, resulting in
a radio duty cycle � 1% even in idle mode.

Very recently, first MAC protocols for WSN have been pub-
lished that make use of multiple radio channels. While these
protocols aim to increase the effective network bandwidth,
they perform worse than existing single-channel protocols with
respect to energy efficiency. In particular, two such multi-
channel protocols have been proposed and implemented for
the ChipCon CC2420 radio transceiver. The protocol by H. Le
et. al. [11] scatters nodes over different channels to increase
the channel bandwidth. However, energy-efficiency has not
been addressed and the additional periodic channel update
packets that are used to maintain connectivity increase energy
consumption significantly for the idle case. Y-MAC [7] uses
channel hopping to cluster all nodes that send to the same
receiver, such that neighboring clusters use different channels.
However, contention is still used for each transmitted packet
similar to SCP-MAC. In particular, all nodes that try to send
to the same receiver (which is the common case in tree-based
collection protocols) suffer from the same contention overhead
as SCP-MAC.

Recently, several protocols for data collection and dissem-
ination on top of other MAC protocols have been proposed.
Most notably, Flush [6] is a protocol for reliable delivery of
bulk traffic. However, Flush makes the fundamental simplifi-
cation that there is no inter-flow interference, i.e., only one
node ”flushes” at a time in the whole network. This requires a
global scheduling of the nodes, which is not practical in many
situations, for example, if a dynamically changing subset of
nodes has data to report. Typhoon [12] is a code dissemination
protocol that extends Deluge by introducing multiple radio
channels to increase spatial diversity. While Typhoon focuses

on broadcast dissemination, BurstMAC is tailored for unicast
transmissions.

BurstMAC is loosely based on our previous work on
BitMAC [14]. While building on similar basic techniques
and sharing some goals, BurstMAC is very different on a
technical level. In particular, it supports dynamic topology
changes (BitMAC only works for fixed topologies), supports
different communication patterns (BitMAC only supports con-
vergecast), and has significantly relaxed requirements on the
accuracy of time synchronization.

Physical layer techniques, in particular cooperative trans-
missions have also been considered by other authors, e.g.,
[8], [9]. There, multiple senders transmit concurrently a jam
signal, such that a receiver can detect that at least one sender
transmitted a jam signal. To reduce the effect of destructive
interference, the senders in [8] use slightly different frequen-
cies such that the different signals can cancel out each other
only during short periods of time. If the receiver listens long
enough it will detect the jam signals with high probability. We
use a variant of this technique described later in the paper.

III. PROTOCOL OVERVIEW

In this section, we present the key ideas behind BurstMAC
and outline the basic protocol structure. A detailed discussion
of the various BurstMAC components can be found in Sect.
IV. BurstMAC combines a number of techniques to provide
high throughput and efficiency under load and low idle
overhead. Most notably, scheduling and the use of multiple
radio channels enable high throughput, while cooperative
transmissions and techniques to eliminate preambles guarantee
low idle overhead. Also, the different techniques are integrated
in an innovative manner. For example, scheduling of time
slots and assignment of channels is combined to reduce the
overhead further.

One important underlying assumption on the radio is that a
sufficient number of radio channels is supported. In particular,
that number should be larger than the maximum number
of two-hop neighbors of a node in the network. In our
implementation on the ChipCon CC1000 radio, we use 32
data and two additional control channels as detailed below.

General Approach. To avoid collisions, BurstMAC operates
in synchronous rounds. Each round consists of N frames with
N=32 in our implementation. Every frame contains a small
CONTROL section and a large DATA section as depicted in
Fig. 1. To maximize throughput and to allow for collision-
free communication during the DATA section, BurstMAC uses
N interference-free data channels and one control channel.
The CONTROL section is used for time synchronization, to
broadcast other information to all network neighbors, and to
assign color ids to nodes. As a result of the latter, each node
is assigned a color id c ∈ 1..N that is unique within two hops.
The color id c is used for two purposes. Firstly, a collision-
free TDMA schedule of the control channel is implemented,
such that a node with color id c sends a control message in the
CONTROL section of frame c. Secondly, node c coordinates
multiple senders on radio channel c during the DATA section,
which allows it to receive data without collisions. The set of

3

Global TDMA!

Local TDMA!

Channel #c!

Channel #1 !

Channel #2!

Channel #31!

Channel #32!

…!FDMA!

Packet #1 ! Packet #2 ! Packet #32 !…!

FRAME 1 ! FRAME 2 ! FRAME 31 ! FRAME 32 !…!

CONTROL! DATA!

Fig. 1. BurstMAC protocol overview: Synchronous rounds consist of 32
frames (global TDMA). Each frame contains a CONTROL and a DATA
section. Multiple radio channels are used for interference-free communication
of collocated node clusters (FDMA). Communication within a node cluster is
coordinated by local scheduling (local TDMA).

nodes which act as coordinators during a frame is determined
by a coordination-free transmission scheduling, as described
in the next paragraph. By using multiple channels, contrary to
basic TDMA, nodes are able to send packets during multiple
frames, which increases the total network bandwidth.

To achieve a low duty cycle in idle situations, the frame
length is chosen rather large, 1s in our implementation. There-
fore, a node is required to turn its radio on for the duration
of the (short) control message in every frame. During the data
section, coordinator nodes need to check for neighor transmis-
sions. Due to the coordination-free transmission scheduling
described below, a node is a coordinator in every other frame
on average. This results in an idle duty cycle below 1%.

Coordination-free Transmission Scheduling. As a node
cannot send and receive at the same time due to the half-duplex
nature of typical low-power radios, some form of coordination
is required among the nodes to achieve agreement on when to
send and when to receive. To realize this coordination without
introducing additional control messages, BurstMAC uses the
following approach. During each frame, a node is either in
transmit or receive mode, that is, it can either only transmit
or only receive data during the whole frame. The choice of
mode is controlled by a pseudo-random number sequence that
is seeded with the unique 16-bit node id. Knowing the node ids
of its neighbors, a node can not only compute its own current
mode, but also the current modes of its neighbors. If node A
wants to send to neighbor B, then A has to wait for a frame
when it is in send mode and B is in receive mode. A uses B’s
channel for the actual transmission. This approach is loosely
related to pseudo-hopping sequences used, e.g., in Bluetooth,
or the uniform distribution of wake-up times in JAVeLEN [5],
and avoids extra traffic for coordination among nodes.

Cooperative and Single-Bit Transmissions. While sched-
uled protocols are efficient during correlated bursts, they
introduce coordination overhead that adds to a rather high
idle overhead. We use two physical layer techniques to
largely eliminate this overhead. The first technique allows
for efficient checking if any neighbor needs to transmit a
message. Neighbors that want to send a message transmit a
short jamming signal [9] simultaneously. A receiver can use

the Received Signal Strength Indicator (RSSI) to detect that
at least one node is sending. This cooperative transmission
technique requires only minimal radio-on time to detect an
idle situation, see Sect. IV-B for details. A further source
of overhead is the need to precede each packet with a long
preamble to synchronize sender and receiver at the bit level.
In many cases, these preambles are longer than the actual
payload data. This is especially problematic for control traffic
in a MAC protocol, which often consists of only few bits
of information. To reduce this overhead, we employ single-
bit transmission in BurstMAC, where a coordinating node
broadcasts a short synchronization packet to provide a bit-
accurate time reference for a set of receiver nodes. These nodes
can then send single bits of information without any preambles
to the coordinator.

Packet Bursts. To increase throughput and reduce commu-
nication overhead, a sender can request the transmission of
multiple packets in a row, eliminating lengthy preambles for
all but the first packet. In contrast to the standard approach
of sending packets back-to-back, BurstMAC reliably transmits
the packet lengths of each individual packet and provides
each packet with a checksum to detect bit errors. By this,
the checksum of each packet can be checked separately and
a single bit error does not cause the whole packet train to be
dropped. The receiver acknowledges the packet burst reception
with a bit vector that contains a set bit for each packet that
has been received correctly.

Cross-layer Optimizations. Typical routing protocols such
as MintRoute [19] need to perform neighbor discovery and
link quality estimation, which requires each node to broadcast
beacon packets at regular intervals. However, due to the
existence of the control packets in BurstMAC, we can inte-
grate neighbor discovery and link estimation into BurstMAC
without significant overhead.

IV. PROTOCOL DETAILS

In this section, we provide a detailed description of the
BurstMAC protocol. Key functional components are channel
assignment, cross-layer support for routing (i.e., neighbor
discovery and link estimation), actual data transmissions, as
well as time synchronization (i.e., establishing a common time
among the nodes in the network) and network startup (i.e., how
nodes join a BurstMAC network).

The key protocol element to enable the above functions is
the CONTROL section, where a node broadcasts a control
message to all its neighbors on a common control channel in
frame c of each round, where c is the color id that has been
assigned to the node. As shown in Fig. 2, the control message
consists of a fixed part which is always present with basic
information for time synchronization, and coloring, as well
as a dynamic section which contains one or more optional
headers. A flags field indicates which of the optional
headers are present in a message. We will reference the various
field of the control message throughout this section.

4

struct CONTROL {
u_short node_id; // MAC address of sender
u_long occupied; // vector of occupied control slots
u_char current_frame; // frame number
u_char round; // round counter, incremented by sink
u_char hops; // hop distance to gateway
u_short timestamp; // SOP time relative to frame start
u_char flags; // type of dynamic data
u_char dynamic_length; // total length of dynamic data
u_char dynamic_data[0];
u_short crc;

};

Coloring

Timesync

Dynamic
Data

Fig. 2. Contents of the control message.

A. 2-Hop Coloring

Each node has to be assigned a color id c that is unique
within two hops. As discussed in Sect. III, c is used for two
purposes: as a channel id for payload data transmissions and
to schedule broadcasting of control messages on the control
channel.

For coloring, all nodes keep track of the frames used by
their neighbors for sending control messages similar to LMAC
[15]. As a node with color id c transmits a control message
in frame c, each node is aware of the colors assigned to its
neighbors and periodically broadcasts a bit vector of these
occupied color ids in its control message (field occupied).
A newly joining and yet uncolored node with id i receives
the list of used color ids in the control messages of all of its
neighbors. The union of these sets equals the set of color ids
used in its 2-hop neighborhood. The new node then randomly
picks a color id c from the remaining free colors and transmits
its control packet in frame c in the next round. A special flag in
the control message requests other nodes to echo the node id
contained in the control packet of frame c. If another node with
node id j simultaneously picks the same color c, both node
ids i and j will be reported for frame c by different neighbors.
In this case, both newly colored nodes pick another free color
at random.

Topology changes in the network may lead to a situation
where two nodes with the same color id are two hops or less
apart. This situation must be detected and at least one of the
nodes must pick a new color id. For detecting such a situation,
each node monitors the node id (field node id) contained in
the control messages. If a node observes that the node id of
the control message in frame c is different from the node id of
the control message in frame c during the previous round, the
observing node reports in its next control message that nodes
with color c should pick a new color according to the above
procedure. Here we exploit the capture effect [18] – where a
node will receive the stronger of two concurrent transmissions
on the same channel rather than seeing a collision – paired
with the spatial diversity of the nodes.

B. Transmission Scheduling

As discussed in Sect. III, each node is either in receive
or in send mode during each frame, using a pseudo-random
generator to control the choice of mode. Using these pseudo-
random sequences, a node can compute whether it can send
to a certain node during a certain frame. However, more than
one sender may want to transmit to a single receiver during the

same frame on the same channel. Hence, these senders have
to be coordinated in some way to avoid collisions. A key goal
of BurstMAC is to minimize this coordination overhead in the
idle case, where no sender wants to transmit.

Our solution is illustrated in Fig. 3, which shows the DATA
section in more detail, time increases from left to right. One
node is in receive mode, and two nodes in send mode (with
colors c = 1 and c = 3) want to transmit a packet to
the receiver. In segment A, both senders employ cooperative
transmission and concurrently transmit a short jamming signal
(i.e., unmodulated carrier signal) during 500 us to indicate a
send request. If the receiver does not detect a jamming signal
(i.e., if RSSI always smaller than a certain threshold during
these 500 us), it can go back to sleep, optimizing the overhead
in the idle case.

However, the simultaneous transmission of jam signals of
multiple senders may result in destructive interference at the
receiver, such that the receiver won’t detect the presence of
multiple jam signals. This problem can be addressed if senders
transmit on slightly different frequencies, such that a beat with
a certain period time will result at the receiver. If the receiver
listens for at least that period time, it will encounter non-
destructive interference at some point in time and detects the
jam signal. Fortunately, there is a natural frequency diversity
due to variations of crystal frequencies among nodes. For
a 868 Mhz carrier signal, for example, a crystal frequency
difference of 10 ppm between two transmitters results in a
beat with a period length of 115 us, and a high probability
for the receiver to detect the transmission if it listens for at
least this amount of time. In our implementation, we used
500 us, which further increases the chance that a receiver
will encounter non-destructive interference. In tests, we could
not observe a significant drop in the number of detected
jam signals when using multiple transmitters instead of a
single one. If this natural diversity should not be enough to
prevent errors from destructive interference on other hardware,
additional frequency diversity could be created explicitly as
detailed in [8].

If a receiver detects a jam signal (i.e., if there is at least
one sender), then the receiver exerts the single-bit transmission
technique by transmitting a minimal sync packet consisting of
a preamble and a start-of-packet symbol in segment B in Fig.
3. The sync packet allows a sender to accurately synchronize
with other senders and the receiver. Each sender then transmits
a single jamming “bit” in the bit slot which corresponds to its
color id c in segment C in Fig. 3. Based on the list of senders,
the receiver then computes and broadcasts the transmission
schedule in segment D. This schedule is essentially a copy of
the bit vector received in section C, where bit i is set iff a
sender with channel i has submitted a send request. However,
if the receiver has insufficient buffer space to store all packets,
it will randomly erase a bit until the number of remaining
bits equals available buffer space. This way, we achieve a
simple form of flow control to avoid packet loss due to buffer
overruns.

A sender with channel i checks if bit i in the received
schedule bit vector is set. If this is the case, the sender
transmits a data packet in slot Ej , where j is the number

5

BurstMAC – A MAC Protocol with
Low Idle Overhead and High Throughput

Matthias Ringwald, Kay Römer
Institute for Pervasive Computing, ETH Zurich

Protocol Overview

BurstMAC Status

Yet Another MAC Protocol? Why BurstMAC? What’s Wrong With SCP, LMAC, ... ?

Problem

• Many sensor network applications feature bursty traffic
patterns: after long periods of idle time, large amounts of
data have to be transmitted reliably.

• Example: Volcano monitoring - precious high-volume data is
generated by rare volcanic eruptions.

• Existing MAC protocols do no sufficiently support such
applications with bursty traffic patterns.

• CSMA protocols such as WiseMAC or SCP-MAC have very low
overhead in idle situations, but have high overhead and low
throughput under high loads due to collisions.

• TDMA protocols such as LMAC can handle high loads
without collisions, but have a low throughput and
significant overhead in idle mode.

Approach

• We designed a new sensor network protocol which
provides low idle overhead, avoids collisions, and supports
energy-efficient and fast transmission of high-volume
data.

Implementation

• Prototypical implementation for the
BTnode Rev. 3 nodes and ChipCon CC1000
radio module working.

• Massive network-wide bursts are handled
correctly.

• Average synchronization error per hop
about 25 uS.

Preliminary Evaluation

• Energy consumption in idle situation depends on the number of neighbors. For
a well-connected network with seven neighbors, nodes run at 0.8% duty cycle.

• Burst test case in lab testbed: 30 nodes have to deliver 10 KB of data
(320 packets) to the sink (= 9280 packets total):

• Time: 14 BurstMAC rounds = 448 seconds.

• Energy consumption: 46 ms radio time per packet compared to optimum of
29 ms (* 1.58).

MICS

Efficient Transmission Scheduling

• Cooperative Transmission to detect presence of
senders (segment A)

• Single-bit transmission to identify senders (segment C)

• Local broadcast of schedule (segment D)

• Packets can be sent as packet bursts with a single
preamble.

Collision-Free Communication

• Communication happens in synchronous
rounds of 32 frames.

• CONTROL section of frame i is reserved for
node with color i.

• 2-Hop-Coloring asserts that no two nodes
within radio range transmit during the same
CONTROL section.

• Communication in the DATA section is
coordinated by a single Receiver on
frequency i.

Coordination-Free Transmission Scheduling

• In every frame, a node is either in transmit or receive
mode based on a pseudo-random number sequence
seeded with the node id.

• Neighboring nodes can compute this decision only by
knowing the node id and only send when the recipient
is ready to receive.

Cross-Layer Optimization

• Link estimation and path construction
integrated in CONTROL section

Network Startup

• Synchronized nodes send a short jamming signal
(BLIP) at the beginning of the CONTROL section.

• New nodes have to listen only for a single frame
at 100 % duty cycle to synchronize to the network.

Receiver

Sender (c = 1) x

sync

x

schedule ack

x xSender (c = 3)

...

data 1

ack

data 2

A B D E1 E2C

21 3

FRAME 1 FRAME 2 FRAME 31 FRAME 32
...

CONTROL DATA

50 ms 950 ms

DATA Section

Frame

Round

Idle Energy: Duty
cycle with respect to
number of neighbors

Fig. 3. Data SECTION with two senders transmitting a packet to the receiver.
Cooperative transmission is used in segment A and single bit transmission in
segments B and C to identify the senders.

of “1” bits in the schedule bit vector with an index smaller
than i. The slots are of fixed length such that each sender
can compute start and end of its slot from the schedule bit
vector. To deal with packet loss caused by bit errors, each
data packet is immediately acknowledged by the receiver.
The sender retransmits the packet if it does not receive the
acknowledgment in time. To eliminate duplicates caused by
lost acknowledgments, each data packet contains a small
header with a one byte sequence number, which also allows
FIFO delivery of packets at the receiver.

The header of the data message also contains several flags.
One of them, the more flag, can be set by the sender to
indicate that it needs another slot to send a further packet.
If available, the receiver will reply an unused slot k in the
acknowledgment, such that the sender can send the next packet
in slot Ek.

C. Packet Bursts

To reduce the probability of packet loss due to bit errors,
packet sizes are rather small in BurstMAC as well as in
all other MAC protocols for sensor networks. However, this
results in substantial overhead due long preambles and due to
the fact that both sender and receiver need to switch the radio
back and forth between transmit and receive mode.

To reduce this overhead, BurstMAC offers a so-called burst
mode, where a sender can use almost the whole DATA
section of a frame to send a sequence of packets back-to-
back preceded by only a single preamble and acknowledged
with a single message. Each individual packet in the sequence
has its own CRC, such that a bit error destroys only a single
packet and not the whole burst1. A sender requests a burst
transmission by sending a message with the burst and more
flags set. In case of burst requests by multiple senders, the
receiver grants burst access to a randomly selected sender
to ensure faireness. Next, the sender transmits a message
containing the lengths of all packets in the burst to allow
the receiver to detect packet boundaries and check CRCs.
Next, the sender sends the data packets back-to-back without
individual premables.

D. Time Synchronization

As BurstMAC makes use of synchronous rounds, we need
some form of global time synchronization to make sure that

1Note, that modern radio transceivers can receive arbitrarily sized packets
without loosing the bit synchronization, even in the presence of bit errors.
Therefore, the main caveat with sending packets back-to-back is the risk of a
bit error in the length field of a header, as the start of all later packets would
be missed and, hence, would have to be discarded.

rounds and frames begin at the nodes at approximately the
same time. Note that the required synchronization accuracy
is rather low as the time-critical events in BurstMAC are the
transmission of control messages and the single-bit transmis-
sion at the beginning of the DATA section. We set the duration
of the single-bit to 500 us as described in Sect. IV-B. A
maximal synchronization error of half that duration between
two neighboring nodes ensures an overlap of at least 250 us
among neighbors for detection of the jam signal.

For time synchronization, we assume that a dedicated node
provides a time reference for the whole network (e.g., the
data sink). In contrast to typical tree-based synchronization
protocols where each node synchronizes to a single parent
node, BurstMAC uses a more robust and accurate approach
where each node synchronizes to the average time of all its
parents (i.e., all nodes that are closer to the time reference
than itself).

An important issue that needs to be dealt with is the dynamic
nature of wireless links, that is, the set of parents of a node
changes over time. In fact, a parent of a node may turn into a
child (i.e., a node that is farther away from the reference as the
node) due to a broken link. Here, we must avoid synchronizing
to the former parent, which has become a child. To deal with
this issue, the control message contains both a hops counter
that holds the distance of the sending node from the reference,
and a round number. The latter is incremented only by the
reference node before broadcasting a control message, all other
nodes broadcast a copy of this value without incrementing.
If a node receives a control message from a parent (i.e., a
node which has a smaller hop counter than the node), whose
round counter is the same as in the previous message from
this parent, then the parent may have turned into a child and
is not used during time synchronization of the node.

Time synchronization is realized by accurately timestamp-
ing the transmission and reception of the first bit of the control
message in the radio interrupt handler. With this, we obtain a
per-hop synchronization accuracy of few microseconds.

A node performs these measurements for two consecutive
control messages from each parent and computes the duration
of a round for each of the parents, which may differ from
parent to parent due to different clock rates and drift. The
node then computes the average round duration of its parents
and adjusts its local round duration, increasing/decreasing the
number of clock ticks of a frame if the average round duration
of the parents is larger/smaller than its own round length. As
the duration of a clock tick of a typical 32 kHz real-time
clock is too large for this correction (resulting in a minimal
increment per round of 30.5 us × 32 frames), we use a variant
of Bresenham’s algorithm [1] to adjust the average frame
length in smaller increments using only integer arithmetic.
This approach proved to be very robust to outliers.

E. Network Startup

Network startup is concerned with the problem of how
nodes join a BurstMAC network. In fact, the main problem is
getting in sync with the time reference. For example, during
deployment nodes are switched on in random order, so each

6

Initialization II

• problem: On LPL receive of WAKE-UP, no time
sync given.

• Idea: Make WAKE-UP compatible to BLIP.
WAKE-UP contains time sync info, too.

• LPL period < WAKE-UP length < Frame period

• Before sending WAKE-UP receive correct time
packet

Blip

Wake

Fig. 4. (Top) Periodic start-of-frame signal: Blip, (Bottom) Wake-up signal
with integrated start-of-frame information. The duration of Blip and wake-up
in our prototypical implementation are 0.1 ms and 999.8 ms respectively.

node needs to wait until it gets connected to a time reference.
As this waiting process may last quite long, we need to make
sure that nodes do not spend much energy in this waiting state.

Our approach uses a dedicated wake-up channel where
nodes transmit wake-up signals. Communication on this chan-
nel uses cooperative transmissions, i.e., concurrent transmis-
sions by multiple nodes overlay in a non-destructive manner.
On this channel, every node transmits a very short jamming
signal (100 us), called Blip, at the begin of every CONTROL
section as depicted in Fig. 4. By this, a new node joining
the network has to scan the wake-up channel at 100% duty
cycle only for a single frame instead of a whole round. On
detection of the Blip, the node obtains rough time information
(i.e., when CONTROL section starts), which is sufficient to
receive at least one control message in the next 32 frames.
Based on this first control message, a node sets its local clock
to the time of the sender. After that, only the frame lengths
are adjusted to stay synchronized as described in the previous
section.

If a node starts up and the network is not active yet, it
will not receive a Blip during one frame and start low-power
listening with a period T slightly smaller than the duration of
a frame. That is, the node wakes up every T time units, scans
the wake-up channel for ongoing transmissions, and goes back
to sleep.

When the time reference starts up, it sends a pulsed jamming
signal, called Wake, during the first frame to wake up nodes
from low-power listening. Each jamming pulse starts exactly
at the begin of the CONTROL section, providing woken-up
nodes with a rough time information similar to the Blips.
The idle-listing period T equals the duration of a wake-up
pulse, which is slightly shorter than the frame length. Note
that Blips and Wakes have been designed such that the parallel
transmission of Blips and Wakes results in Wakes.

Nodes that have been woken up this way will transmit
Wakes themselves to wake up nodes further away from the
time reference, such that eventually the whole network will be
activated and synchronized. By this, the long Wake pulse has
to be emitted at most once, which allows for energy-efficient
deployment of the network.

V. IMPLEMENTATION

We implemented BurstMAC on BTnode Rev. 3 nodes [2]
using its ChipCon CC1000 radio module. The CC1000 on
the BTnode is configured for the 868 MHz ISM-band, where
the actual baseband frequency within this band is configurable
by software. We used 34 channels of which one is reserved
for control broadcasts and one is used for the wake-up
mechanism. The other 32 are used for data communication.
The analog RSSI output of the CC1000 is used for clear-
channel assessment, cooperative and single-bit transmission.

We further make use of the CC1000’s ability for precise MAC
layer timestamping in the order of 10 us [13].

For the implementation, we used a bit rate of 19200 bps
and a frame length of 1 s, which is split into 50 ms for the
CONTROL section and 950 ms for the DATA section. By
this, the DATA section provides 24 data slots for single bit
transmission or up to 51 packets in burst mode. Each packet
contains a type field and up to 32 bytes of payload. In this
configuration, a node can send or receive a single packet and
up to 51 burst packets of each 33 bytes in a single frame. Such
a transfer of 1716 bytes results in a maximal usable bandwidth
of 71.5% of the total bandwidth of 2400 bytes/s.

In fact, BurstMAC was also used to perform firmware
updates during the experiments and to collect measurement
results from the network, thus demonstrating BurstMAC’s
reliability.

VI. EVALUATION

We study the performance of the BurstMAC implementation
on BTnodes. In particular, we investigate the accuracy of
time synchronization, the idle overhead, as well as overhead
and time to completion of correlated bursts. We compare
BurstMAC against two established protocols that represent the
two ends of the design space that are relevant for our work.
Firstly, we choose SCP-MAC as a state-of-the-art contention-
based protocol with very low idle overhead. Also, SCP-MAC
does contain an adaptive channel polling mode which allows
it to adapt to bursty traffic. Secondly, we chose LMAC as a
scheduling-based and, hence, collision-free protocol that has
been shown to outperform many other MAC protocols under
high data rates [10].

A. SCP-MAC and LMAC

In order to be able to compare the three protocols on
a common hardware platform, we have implemented SCP-
MAC and LMAC on the BTnode. In fact, we can switch
between all protocols at runtime, performing firmware updates
and collecting measurement results with BurstMAC, while
the actual experiments make use of SCP-MAC or LMAC
(or BurstMAC). The implementations are based on published
papers and source code, with some additions and parameter
choices to enable a fair comparison.

For LMAC, we used a frame length of 150 ms. By this,
it is possible to send up to 300 bytes or up to 7 packets
of maximal size in one frame similar to [15]. As LMAC
provides only a single ACK per frame, increasing the frame
length would result in a higher chance that all packets sent
in a frame have to be dropped if a single bit error occurs.
In LMAC, one or multiple payload packets are sent directly
after the control packet. As described in a technical report
[16], multiple packets are sent back-to-back with a single CRC
at the end. The receiving node(s) acknowledge the reception
of data packets in the control message of its own slot. If no
acknowledgment is received, the packets will be retransmitted.
If an acknowledgment gets lost, the destination will receive
the packets a second time. Our only modification to LMAC

7

is the use of sequence numbers as in BurstMAC to suppress
duplicate packets.

We implemented SCP-MAC as described in [20], using the
published source code for clarification. We used 8 contention
slots before the wake-up tone and 16 for the second contention
window as described in the paper. The duration of a single
contention slot is 427 us, which is the minimal time for a
node to assert a free channel, switch to transmit, and allow
other contenders to detect this transmission at the start of
the next contention slot. We also implemented overhearing
avoidance by checking the destination address in a packet
before it is completely received. Our implementation differs
from the original paper in two aspects: time synchronization
and acknowledgements. For the time synchronization, we
embedded SCP-MAC into the DATA section of BurstMAC,
using the CONTROL section of BurstMAC for time synchro-
nization. By this, the channel polling period in SCP-MAC
is identical to the BurstMAC frame length of one second.
As BurstMAC’s CONTROL section serves more purposes
than just time synchronization and because SCP-MAC could
tolerate less frequent time sync updates, we exclude the radio
time used for the CONTROL section from SCP-MAC’s energy
measurements. By this, SCP-MAC gains a slight advantage
over both LMAC and BurstMAC, but this advantage is relevant
only in an idle scenario. To allow for efficient and reliable link-
layer packet transmission, we modified SCP-MAC to let nodes
acknowledge the reception of a correct packet. We believe
that this is favorable compared to other mechanisms, as for
unicast packets, only the sender and receiver are active at
this time allowing for a contention-free transmission of the
acknowledgment.

B. Time Synchronization

We study the accuracy of time synchronization as a function
of the network diameter to investigate the maximum network
diameter that BurstMAC can support. For this, we arrange
10 nodes in a chain topology with the time reference at
the end, forcing each node to use only its direct parent
as a reference for synchronization. However, all nodes are
within communication range of the time reference, such that
each node can directly measure its synchronization error with
respect to the time reference. We ran this setup for one hour,
where each node measures its synchronization error once per
round. After collecting the measurements from the network,
we computed averages and standard deviations for all nodes
in the chain as depicted in Fig. 5 (left). The results show that
the average synchronization error increases by about 25 us per
hop. Note, however, that the accuracy of our clock is only 30.5
us. As the required synchronization accuracy is in the order
of few milliseconds (we only need to synchronize to rounds,
not at the byte or bit level), we can easily support networks
with a diameter in the order of several tens of hops.

C. Idle Case

We investigate the idle overhead of the protocols in terms of
the radio duty cycle. For both BurstMAC and LMAC, the radio
duty cycle is a function of the number of neighbors of a node

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
Sy

nc
hr

on
iz

at
io

n
Er

ro
r [

us
]

Distance to Time Reference [hops]

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

D
ut

y
C

yc
le

 [%
]

Number of Neighbors

LMAC
BurstMAC
SCP-MAC

Fig. 5. Accuracy of BurstMAC time synchronization on a chain topology
(top). Radio duty cycle in idle mode as a function of neighborhood size
(bottom).

as a node has to receive the control message from each of its
neighbors. Therefore, we study the radio duty cycle of a node
with a varying number of neighbors. For each neighborhood
size, we ran the network for 5 minutes, measuring the time the
radio was on and compute the average duty cycle as depicted in
Fig. 5 (right). A neighborhood size of zero represents a special
case. In this situation, BurstMAC behaves as described in Sect.
IV-E and switches to low-power listening. As the behavior
or LMAC is not specified in the technical report [16], we
have to omit this data point. For more than one neighbor, we
find that the duty cycle increases by about 0.02% per added
neighbor for BurstMAC and by about 0.5% for LMAC. The
high duty cycle for LMAC is a consequence of its short frame
rate which is required to deliver bursty traffic. The duty cycle
for SCP-MAC, without time synchronization or neighborhood
discovery packets, stays constantly at 0.22%, which is the cost
of one clear channel assessment per second. When comparing
idle overhead to other MAC protocols, we need to take into
account that the above numbers for BurstMAC already contain
the overhead for maintaining the routing topology and allow
for the collision-free sending of short broadcast messages
without extra overhead.

D. Constant Traffic

In most sensor network applications, data collected in the
network is extracted by a small number of sink nodes using
convergecast. Therefore, each sink and its direct neighbors
form a star topology in which all neighbors of the sink compete
for the right to send to the sink. Similarly, the inner nodes in
a data gathering tree form such a star topology. Hence, the

8

0 5 10 15 20 25 30 35
0

5

10

15

20

Packets Received per Second at Sink

A
ve

ra
ge

 D
ut

y
C

yc
le

 [%
]

BurstMAC Standard
BurstMAC NoBurst
SCP MAC
LMAC

Fig. 6. Star topology with one sink and seven neighbor nodes: average duty
cycle. Note that each protocol can only support constant traffic up to a certain
packet rate.

performance of a star network, where N senders try to send
to one receiver simultaneously, represents the performance
bottleneck of tree collection protocols during correlated traffic
bursts. Therefore, we first evaluate the performance of the
protocols on such a star topology with N = 7 senders (a
typical number to ensure connected networks) under different
data rates.

In addition to the full version of BurstMAC, we also
study BurstMAC’s performance when the packet burst feature
is disabled, termed BurstMAC NoBurst, to provide a better
comparison to the other protocols. Each node creates packets
with a constant data rate. Every 32 (resp. 38.4 for LMAC)
seconds, the number of packets received without bit-errors
and the total radio-on time are logged, and the packet rate
is increased. We plot the average duty cycle per node in Fig.
6. Note that each protocol can handle a certain maximal packet
rate depending on its design. To determine the maximal usable
packet rate and the corresponding efficiency, we let the nodes
send packets as fast as possible. Fig. 7 lists the results.

Although LMAC’s idle duty cycle is higher than for other
protocols, its collision and contention-free design allows to
deliver packets more efficiently than SCP-MAC for packet
rates higher than 6 packets/second. At its maximal packet rate
of about 10 packets per second, its energy efficiency is even
slightly better than BurstMAC without the packet burst mode.
This results from the fact that LMAC only sends a single
acknowledgement bit for up to 7 packets, whereas SCP-MAC
and BurstMAC NoBurst both send complete acknowledgement
packets. Overall, BurstMAC with its efficient burst mode has
the lowest energy consumption and also delivers packets faster
than the other protocols.

Below we study the performance of the protocols during
correlated traffic bursts in a more realistic multi-hop network.
As LMAC outperforms SCP-MAC already in the simple star
topology for high data rates, we limit further comparisons
to LMAC. Also, increased contention and potential hidden
terminal problems in multi-hop networks makes things even
worse for SCP-MAC.

E. Correlated Burst Case

To investigate protocol performance during correlated bursts
in a more realistic scenario, we setup a multi-hop network of

BurstMAC BurstMAC (NoBurst) SCP-MAC LMAC

Packet Rate per Second 35.3 18.4 17.6 9.5
Radio Time per Packet [ms] 43.07 71.1 94.9 79.8

Fig. 7. Packet rate and radio time per packet for star topology with seven
sender nodes.

30 nodes in our lab. The diameter of the resulting network
is four hops and each node has at most ten neighbors. We
simulate a traffic burst in the volcano monitoring application
[17], where an eruption triggers all nodes simultaneously to
transmit a burst of 10 KB (i.e., 320 BurstMAC packets). We
measure the following metrics: firstly, the time it takes until all
data has been successfully delivered to the sink, and secondly,
the total radio energy spent in the network for delivering the
correlated burst.

During preliminary tests, we realized that LMAC does not
provide a flow control mechanism. In a burst traffic scenario
with a high packet load, this would result in significant packet
loss due to buffer overruns. Hence, we added a minimal flow
control mechanism to LMAC by having a node announce
whether or not it is ready to receive data in the control packet.
A node is ready to receive when less than the maximum
number of packets per LMAC frame is in the outgoing mes-
sage queue. This simple stop-and-go flow control mechanism
effectively avoids dropped packets due to buffer overruns.
To evaluate the effect of our flow-control implementation for
LMAC, we performed the experiment with BurstMAC, plain
LMAC, and LMAC with flow control.

To compare the energy overhead of correlated bursts, we
measure the radio-on time of each node from the start of the
experiment until the node has finished sending all data and
goes back to idle mode. By this, LMAC’s comparatively high
idle duty cycle does not affect the burst energy measurement.
The results of the time measurement are shown in Fig. 8 (left).

For LMAC without flow control, we measured a packet
retransmission rate of about 120% which means that each
packet had to be sent more than twice. With our flow-control
implementation, the packet retransmission rate drops to about
6%. Although BurstMAC also provides efficient flow control,
we measured a packet retransmissions rate of about 12%.
We attribute these packet losses to the fact that a lost burst
acknowledgment (due to bit errors) currently requires to resend
the whole burst although a significant number of packets might
have been received correctly.

BurstMAC delivers the 9280 packets in 448 seconds which
is about 5 times faster than both LMAC variants. The effec-
tiveness of BurstMAC’s multiple radio channels is limited as
all traffic has to flow to the sink through a single channel.
Hence, convergecast with a single sink can be considered
as the worst case for BurstMAC with respect to LMAC. In
scenarios with multiple (also collocated) sinks or point-to-
point multi-hop traffic flows, BurstMAC’s gain over LMAC
will be even higher. In the convergecast scenario, the main
benefit of BurstMAC’s multi-channel approach is the reduction
of collisions and energy consumption, as we show next.

To estimate the protocol overhead introduced by the MAC
protocols, we measured for all protocols the total radio-on time
based on the collected metrics. In addition, we calculated the

9

 0

 500

 1000

 1500

 2000

 2500

BurstMAC LMAC/FC LMAC

C
om

pl
et

io
n

Ti
m

e
[s

]

 0

 50

 100

 150

 200

BurstMAC LMAC/FC LMAC

R
ad

io
 ti

m
e

[m
s]

Minimal Radio Time

Fig. 8. Burst experiment: time to burst completion (left), average and minimal
radio time per packet (right). LMAC/FC stands for LMAC with flow control.

minimal radio-on time based on a packet length of 35 bytes (1
byte type, 32 bytes payload and 2 byte CRC) to be 14.5 ms at
19200 kbps. As the transmission of a packet involves both the
sender and the receiver, we define the minimal radio on-time as
29 ms. Fig. 8 (right) depicts the average radio time per packet
per protocol (bars) together with the minimal radio-on time
(horizontal line). BurstMAC required 43.24 ms which is at the
same level as during the constant traffic experiment and shows
that BurstMAC can achieve its energy efficiency also in multi-
hop data gathering applications without extra configuration.
Note that the complete overhead is only about 50% higher
than the minimum and that this already includes the control
messages and the overhead caused by sending preambles and
acknowledgments. LMAC with flow control requires more
than three times the minimal radio-on time. LMAC without
flow control requires even more energy but not as much as we
expected due to dropped packets caused by overruns, hence,
the flow control did not significantly improve the delivery time,
but it does reduce LMAC’s energy consumption and should
be added if LMAC is used in the future.

VII. DENSE NETWORKS

The number of available radio channels currently limits
the maximal density of sensor networks. For random network
topologies, the 32+2 channels used in BurstMAC allow for an
average degree of about 8 nodes, which is enough to provide
a well-connected network. To support more dense networks or
to reduce the number of required radio channels, nodes can
act as cluster heads for nodes that could not be assigned a free
channel. Even without an assigned channel, such a leaf node
can still receive broadcast messages, like all other nodes, e.g.,
to receive configuration data or a sensor query. As it does not
control a channel, however, it cannot receive unicast messages
from other nodes. But, it can still send unicast messages to
other nodes on their respective channel. For this to work, the
number of single request bits in the DATA section might be
increased by e + 1 and each leaf node has to be assigned
one of these e extra IDs by its new cluster head. While the
first additional bit is used to signal the cluster head that a
leaf node requests to be accepted, the other e bits are used
to enumerate additional leaf nodes. If the first bit is set, the
cluster head schedules a data slot in which all unassigned leaf
nodes contend to send a packet with their node ID. If the
cluster head correctly receives the node ID of a leaf node, it
will announce in the next control message that node with ID X
can use the additional request bit Y. In the case of collisions,
the leaf nodes follow an exponential back-off strategy until
all leaf nodes are associated with a cluster-head. With this

scheme, the number of nodes in a given area can be increased
by a factor of e + 1.

VIII. CONCLUSIONS

Applications with correlated traffic bursts require MAC
protocols that have a low idle overhead and can efficiently
handle simultaneous transmissions of bulk data by many or
all nodes. Existing MAC protocols feature either low idle
overhead or can efficiently handle correlated traffic bursts, but
not both at the same time. Therefore, we proposed BurstMAC,
which combines these two features in a single MAC protocol.
This is achieved by combining scheduling and the use of
multiple radio channels for efficient handling of traffic bursts
with physical layer techniques to minimize the idle overhead.
We could show that BurstMAC has a similar idle overhead
as state-of-the-art low-power data collection MAC protocols
under comparable conditions and that BurstMAC significantly
outperforms existing scheduled protocols with respect to effi-
cient handling of correlated traffic bursts.

REFERENCES

[1] J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal 4, 1, 4(1), 1965.

[2] BTnodes. A distributed environment for prototyping ad hoc networks.
www.btnode.ethz.ch.

[3] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: ultra-low power
data gathering in sensor networks. In IPSN, 2007.

[4] A. El-Hoiydi, J. D. Decotignie, C. Enz, and E. L. Roux. WiseMAC,
an Ultra Low Power MAC Protocol for the WiseNET Wireless Sensor
Network. In SenSys, 2003.

[5] J. Redi et. al. Javelen – an ultra-low energy ad hoc wireless network.
Ad Hoc Networks, 6(1), 1 2006.

[6] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S. Shenker,
and I. Stoica. Flush: a reliable bulk transport protocol for multihop
wireless networks. In SenSys, 2007.

[7] Y. Kim, H. Shin, and H. Cha. Y-MAC: An energy-efficient multi-channel
MAC protocol for dense wireless sensor networks. In IPSN, 2008.

[8] A. Krohn, M. Beigl, C. Decker, and T. Riedel. Syncob: Collaborative
time synchronization in wireless sensor networks. In Proceedings of
the 4th International Conference on Networked Sensing Systems (INSS),
pages 283–290, Braunschweig, Germany, June 2007.

[9] A. Krohn, M. Beigl, and S. Wendhack. SDJS: Efficient Statistics in
Wireless Networks. In ICNP, 2004.

[10] K. Langendoen. Medium access control in wireless sensor networks. In
H. Wu and Y.Pan, editors, Medium access control in wireless networks,
volume II: practive and standards. Nova Science Publishers, 2007.

[11] H. K. Le, D. Henriksson, and T. Abdelzaher. A practical multi-channel
media access control protocol for wireless sensor networks. In IPSN,
2008.

[12] C.-J. M. Liang, R. Musaloiu-Elefteri, and A. Terzis. Typhoon: A reliable
data dissemination protocol for wireless sensor networks. In EWSN,
2008.

[13] M. Maróti, B. Kusy, G. Simon, and Ákos Lédeczi. The flooding time
synchronization protocol. In SenSys, 2004.

[14] M. Ringwald and K. Römer. BitMAC: A deterministic, collision-free,
and robust MAC protocol for sensor networks. In EWSN, 2005.

[15] L. van Hoesel and P. J. M. Havinga. A lightweight medium access
protocol (LMAC) for wireless sensor networks: Reducing preamble
transmissions and transceiver state switches. In INSS, 2004.

[16] L. van Hoesel and P. J. M. Havinga. Design aspects of an energy-
efficient, lightweight medium access control protocol for WSN. Techni-
cal Report TR-CTIT-06-47, University of Twente, Enschede, July 2006.

[17] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and yield in a volcano monitoring sensor network. In OSDI, 2006.

[18] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. Exploiting
the capture effect for collision detection and recovery. In EmNets, 2005.

[19] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. In SenSys, 2003.

[20] W. Ye, F. Silva, and J. S. Heidemann. Ultra-low duty cycle MAC with
scheduled channel polling. In SenSys, 2006.

