Practical Time Synchronization
for Bluetooth Scatternets

Matthias Ringwald, Kay Romer
Institute for Pervasive Computing, ETH Zurich, Zurich, Switzerland
Email: {mringwal,roemer} @inf.ethz.ch

Abstract— By means of so-called Scatternets, Blue-
tooth provides the ability to construct robust wireless
multi-hop networks. In this paper we propose a prac-
tical protocol for time synchronization of such Blue-
tooth multi-hop networks. Our protocol makes use of
the internal clock maintained by Bluetooth, requires
minimal communication overhead, and provides an
accuracy of few milliseconds across multiple hops.
The protocol has been implemented and evaluated
on BTnodes, an embedded computing platform which
uses Bluetooth for ad hoc networking.

I. INTRODUCTION

Bluetooth [6] is a widely used standard to form
wireless personal area networks among devices
and computers. Originally designed as a cable
replacement, Bluetooth employs techniques such
as frequency hopping to provide robust and high-
bandwidth communication even in noisy environ-
ments. While in most applications only single-hop
networks are formed, Bluetooth also provides a so-
called Scatternet mechanism to form larger multi-
hop networks.

Time synchronization is a fundamental service in
almost any computer network, including Bluetooth
networks. Surprisingly, Bluetooth does not provide
time synchronization as a service to applications
even though time synchronization is needed inter-
nally, as medium access is based on time-division
multiple access (TDMA). However, the Bluetooth
API provides a few functions that allow limited
access to the internal clock that is maintained to
control medium access. In this paper, we propose
and evaluate a practical algorithm for synchronizing
multi-hop Bluetooth Scatternets which makes use
of these functions. The algorithm provides a syn-

chronization accuracy of few milliseconds across
multiple hops with minimal communication over-
head.

Our work was motivated by an ongoing effort
where a Bluetooth Scatternet is used as part of
a tool to analyze wireless sensor networks (WSN)
[11]. WSN are embedded into the environment to
perceive aspects of the real world using sensors
attached to the network nodes. The function of such
a sensor network is very sensitive to the environ-
ment, frequent node and communication failures
often render a WSN inoperational. We use a second
network — a Bluetooth Scatternet, which provides
more reliable and high-bandwidth communication —
to inspect a WSN to find the cause of failures. For
this, Bluetooth nodes are equipped with a second,
low-power radio to overhear message exchanges in
the WSN. Copies of overheard messages are deliv-
ered to a user via Bluetooth multi-hop communi-
cation. To correlate messages gathered by different
Bluetooth nodes, time synchronization is required
in the Bluetooth Scatternet such that overheard mes-
sages can be time-stamped by the receiving node
according to a common time scale. The accuracy
of synchronization must be sufficient to reliably
order overheard messages according to reception
time. In the WSN we consider, the duration of a
message transmission is in the order of few tens of
milliseconds. Therefore we need a synchronization
accuracy of few milliseconds.

In Sect. II we provide background information
on Bluetooth and introduce our approach to time
synchronization. In Sects. III, IV, and V, the core
of our protocol is described. We discuss implemen-
tation aspects in Sect. VI and evaluate our proposal

Four states: §) S)
© - IDLE

@ - MASTER

© - SLAVE

@ - MASTER/SLAVE o S)
Fig. 1. Illustration of Bluetooth Scatternets.

in Sect. VII.

II. PROTOCOL OVERVIEW

Bluetooth operates in the unlicensed 2.4 GHz ISM
band and uses frequency hopping to achieve reli-
able communication even in noisy environments.
A group of devices which are synchronized to
a common clock and frequency hopping pattern
is called a Piconet. The device which provides
the reference time for synchronization is called
master, all other devices are referred to as slaves.
Piconets have a star topology with the master at
the center, that is, direct communication is only
possible between a master and a slave, but not
between slaves. A Scatternet consists of several
inter-connected Piconets in which some nodes are
part of more than one Piconet at the same time as
illustrated in Fig. 1, where large circles indicate a
Piconet.

Bluetooth is implemented as a radio modem with
a well-defined command interface, the so-called
”Host Controller Interface* (HCI), that is connected
to the main processor via a serial interface (e.g.,
USB or RS232). The Bluetooth radio modem is
itself a complex embedded computing device that
contains, among others, a separate processor that
runs the Bluetooth protocol stack and a real-time
clock to control medium access. Access to the in-
ternal state of the modem (e.g., the real time clock)
is only possible via commands that are sent to the
modem via the serial connection. In fact, Blue-
tooth provides two commands related to the real
time clock: HCI_Read Bluetooth_Clock to
read out the current value of the real-time clock, and
a second command HCI_Read_Clock_Offset to
read some (but not all) bits of the current offset of
the clock to the clock of a connected node (see

node 1

' sysclk: 123 h

+24 l 24

node 2

node 3

+38 38

|

Fig. 2. Illustration of the synchronization protocol.

Sect. III).

Even though Bluetooth provides the above two
commands as a foundation for time synchroniza-
tion, the implementation of Bluetooth as a radio
modem has far-reaching implications on the design
of a synchronization protocol. Firstly, each network
node has two clocks: the system clock and the
Bluetooth clock. Typically, the operating system
and applications use the (unsynchronized) system
clock, whereas we intend to use the Bluetooth
clock for synchronization among different nodes.
That is, we need to synchronize the system clock
with the Bluetooth clock in some way. Secondly,
reading the Bluetooth clock (offset) is a costly
and lengthy operation as it involves exchange of
protocol messages between the main processor and
the Bluetooth modem over a serial connection (in
contrast, reading the system clock is cheap and
fast). This implies that the Bluetooth clock (offset)
should be read rarely. Moreover, execution time of a
Bluetooth command is highly variable, as the reply
to a command may be delayed by arriving data
messages. That is, accurate synchronization of the
system clock with the Bluetooth clock is non-trivial.

Fig. 2 illustrates the design of our protocol which
was inspired by the above observations. Three
nodes are shown which are connected in a chain
topology using Bluetooth Scatternets. Each node is
indicated by a circle that contains the current value
of the system clock and of the Bluetooth clock. All
clocks are unsynchronized — they advance freely
at their respective rates without being disciplined.
However, each node maintains offsets between its
system clock and the Bluetooth clock (and vice
versa) and its Bluetooth clock and the Bluetooth
clocks of connected nodes. These offsets are illus-

trated in Fig. 2 by tagged arrows that point from
clock A to another clock B. By adding the arrow
tag (i.e., the clock offset) to the value of clock A,
one can obtain the corresponding value on clock B.
We use the above Bluetooth commands to obtain
the offsets between Bluetooth clocks of connected
nodes (see Sect. V) and to obtain the offset between
the system clock and the Bluetooth clock (see
Sect. IV). As the offsets change infrequently (the
clock drift of the various clocks is small compared
to the required synchronization accuracy), these
commands are invoked infrequently to update the
offset values.

The thick arrow in Fig. 2 illustrates the exchange of
a time-stamped message between node 1 and node
3 vianode 2. When generating a new message, node
1 reads its system clock (i.e., 123) and includes this
value as a time stamp in the message. Next, the time
stamp is converted to the Bluetooth clock of node
1 by adding the respective clock offset -24. Then,
the time stamp is converted to the Bluetooth clock
of node 2 by adding the respective clock offset -42
and the modified message is sent to node 2. There,
clock offset -7 is added to the time stamp to convert
to Bluetooth clock of node 3. The message is then
sent to node 3, where the clock offset +38 is added
to transform to the system clock of node 3. The
resulting time stamp 88 equals the value of node
3’s system clock at the time when the message was
generated in node 1. With this approach, all time
stamps a node receives from different nodes will
be synchronized in the sense that they refer to the
time scale defined by its local system clock.

The above approach is sufficient for many appli-
cations (including ours in Sect. I) and has two
important advantages. Firstly, our approach does
not require a designated node that acts as a time
reference for other nodes and thus our protocol can
easily deal with node failures and topology changes.
Secondly, the difficulties of disciplining clocks are
completely avoided.

ITI. BLUETOOTH CLOCK

The Bluetooth clock is a 28-bit counter with 0.3125
ms resolution and a mandatory maximal drift of

+ 20 ppm. This results in an overrun every 228 x
0.3125 ms ~ 1 day.

Each Bluetooth device has a unique 6-byte base-
band address (BD_ADDR) similar to the medium
access control address of Ethernet devices. The
hopping sequence is a pseudo-random sequence
of communication frequencies calculated from the
BD_ADDR of the piconet master device. Because
of the frequency hopping, a special procedure called
inquiry is required to discover other devices (i.e.,
their address and hopping sequence). During an
inquiry, a device uses a special inquiry hopping se-
quence and doubles its hopping rate to rendezvous
with other devices. As a result of an inquiry, the
BD_ADDR and the difference between the local
Bluetooth clock and the clock of the remote devices
are acquired. Based on this information, a node can
calculate the hopping sequence of discovered nodes
and is thus able to connect to these devices.

The clock offset to discovered devices is defined
as bits 2-16 of the difference between the clock of
the discovered device and the local clock. Similarly,
the clock offset between two connected devices is
specified as bits 2-16 of the difference between the
clock of the slave node (CLKslave) and the clock
of the master node (CLKmaster). With the reduced
range (only bits 2-16) of these clock offsets, a
maximum time interval of 217 x 0.3125 ms = 40.96
s with a resolution of 1.25 ms can be specified.

IV. OFFSET BETWEEN SYSTEM AND
BLUETOOTH CLOCK

Measuring the offset between the system clock
and a Bluetooth clock is non-trivial as reading
the Bluetooth clock requires sending a command
message to the Bluetooth modem over the serial
interface between the main processor and the Blue-
tooth modem and receiving a reply message (a so-
called event) over the serial interface that contains
the requested clock value.

read clock request
MCU-to-Bluetooth
channel

Bluetooth Processing

Bluetooth-to-MCU
channel read clock response

EzzZ2)

=== command packet
c————== event packet
ez data packet Lot

queuing delay

a) t, t, b)

Fig. 3. Reading Bluetooth clock over Host Controller Inter-
face. a) no parallel data traffic, b) incoming data packet.

This protocol is illustrated in Fig. 3 (a). First, the
command is sent over the channel connecting the
main processor (MCU) with the Bluetooth modem
(“MCU-to-Bluetooth channel”). After the Bluetooth
modem has received the last bit of this message
over the serial line, the command will be processed.
At some (unknown) point in time, the actual readout
of the clock will be performed, before the reply
message is generated and sent to the main processor
via the “Bluetooth-to-MCU channel”.

We could use a typical round-trip-time measure-
ment to compute the clock offset between the
system clock and the Bluetooth clock. Here, we
would use the system clock to measure the point in
time t; when the last bit of the command has been
sent and the point in time ¢ when the first bit of the
reply has been received. The clock offset could then
be approximated by the returned Bluetooth clock
value t3 minus (t; + t2)/2.

Unfortunately, the reply from the Bluetooth mod-
ule may be significantly delayed if the Bluetooth
module has received a data message via radio and
is sending this message to the main processor as il-
lustrated in Fig. 3 (b), such that the communication
channel (“Bluetooth-to-MCU channel”) is blocked.
The resulting highly variable delay t3 —t5 results in
significant errors when using the above approach.

Likewise, processing of the command in the Blue-
tooth modem may be delayed if the modem is busy
receiving data. However, we performed experiments
that confirmed that the offset t3 — ¢; is much more
stable than ¢3 —to even under heavy communication
load. Therefore, we use t3—t7 as the offset between
the system clock and the Bluetooth clock in our
protocol. Still, there are occasional outliers that are

substantially larger than the average clock offset.
To remove these outliers, we apply a simple median
filter. Instead of using ¢35 —¢; as the clock offset, the
median filter remembers the last n measured offsets
and returns the median value among them. The
evaluation in Sect. VII will show the effectiveness
of this approach for small time windows.

Note that the above approach results in a systematic
error which equals the time interval between trans-
mission of the last bit of the command message
and the actual readout of the Bluetooth clock.
Assuming that the error is mainly a function of
the Bluetooth implementation, it will cancel out in
the end-to-end synchronization protocol illustrated
in Fig. 2 if both sender and receiver use identical
Bluetooth hardware. The reason for this is that we
transform each time stamp twice between system
clock and Bluetooth clock: once at the sending
node and once at the receiving node. Since these
transformations are in reverse direction (i.e., system
clock to Bluetooth clock on the sending node and
Bluetooth clock to system clock on the receiving
node), the error will cancel out.

V. OFFSET BETWEEN BLUETOOTH CLOCKS

To obtain the offset A between the
Bluetooth clocks of two connected nodes, the
HCI_Read Clock_ Offset command can be
used. However, the clock offset returned by this
command only contains bits 2-16 of the clock
difference. We therefore need to reconstruct
the complete clock difference. For this, a local
Bluetooth time stamp is sent over an established
connection as shown in Fig. 4. The method for
reconstructing the missing bits of A described
below assumes that the transmission latency of
the message is less than the clock offset range of
40.96 s, which is a reasonable assumption.

In the following, we will refer to the difference
between two Bluetooth clocks as clock difference A
and refer to the lower part of this clock difference
A returned by Bluetooth commands as clock offset.
Also, we assume that all variables hold integer
multiples of a Bluetooth clock tick of 0.3125 ms.

Fig. 4.
Node B.

Sending a Bluetooth Time Stamp from Node A to

We can therefore express the assumption that d is
below 40.96 s as follows (see Sect. III):

0<d<2'7 (1)

In the following we will use the notation V; . to
refer to the integer value of V' where bits with index
b-c in the binary representation are preserved and
all others are set to zero. The least significant bit
has index 0. For example, 15; 5 = 6.

From the HCI_Read_Clock_Offset command,
we obtain bits 2-16 of the clock difference A:

As 16 = (CLK slave — CLKmaster)s_ 16

Let us assume that node A in Fig. 4 is in the slave
role and sends the current value ¢; of its clock
CLKslave to node B which records the time ¢35 of
its local clock CLKmaster at reception.

Node B can calculate an approximate clock differ-

ence A’ as:

A=t —t3)

As ts represents the time when the message was
sent plus the (unknown) transmission delay d, (2)
can be reformulated as follows:

A,:tl—(t2+d):(tl—tQ)—d:A—d 3)

As we know A’ and Asg 16, we can use (3) to
calculate A17 97 as follows. Since 0 < d < 217 by
assumption, (3) implies that either A}, 5, = Aq7.97
or A/17727 = A17727—217. All7727 = A17727 can only
hold iff A 14 < Ag 6, otherwise it would follow
that A’ > A in contradiction to (3). In summary,
we can compute the missing bits of A using the
following equation:

A if A} s < Aggs,
A1727:{ el 216 = 220)

1797 + 217 otherwise.

If node A would have been in master mode, the
following analogous equation has to be used:

if AIQJG = AIG,Q,

otherwise.

A/
Aq797 = { s)

17
1727 — 2
VI. IMPLEMENTATION

We implemented our time synchronization protocol
on BTnode Rev. 3 nodes [4]. They basically consist
of an ATMEL ATmegal28 8-bit microcontroller,
256 KB SRAM and a Zeevo ZV-4002 Bluetooth
module. The operating system running on these
devices is BTnut which is an extension of Ethernut
Nut/OS [9]. BTnut provides parts of the standard
Bluetooth stack (HCI, L2CAP, and RFCOMM)
together with our own implementation of Scatternet
formation and routing using L2CAP connection-
less data packets. [2] provides details on the Scat-
ternet formation and routing protocols.

Unfortunately, the implementation of the
commands HCI_Read_Clock_Offset and
HCI_Read Clock on the Zeevo Bluetooth
module suffers from several bugs, which we had
to work around when implementing our protocol.
While the HCI_Read_Clock_Offset command
was always present in the Bluetooth specification,
the HCI Read Clock command was introduced
by Bluetooth specification 1.2 in 2003. The Zeevo
Bluetooth module on the BTnode was sold as a

pre-1.2 version. Although it supports the required
commands for our time sync approach, some
commands do not follow the specification or are
not properly implemented. We provide details on
the bugs and our work-arounds below.

A. HCI_Read_Clock

This command is supposed to return the value
of the local Bluetooth clock or the value of the
Bluetooth clock of a connected Piconet master
(depending on the command parameters). However,
our Zeevo modules always return the value of
the local Bluetooth clock, the clock of the master
could not be read. Further, the returned Bluetooth
clock value was expressed as a multiply of 1.25
ms instead of the specified 0.3125 ms. Finally, we
noticed occasional significant outliers when ana-
lyzing the computed offsets between system clock
and Bluetooth clock (see Sect. IV). The reason
for this is a bug in the the implementation of
the read clock command, which returns the same
Bluetooth clock reading twice in 1% of all cases.
As the command execution takes about 10 ms in our
configuration, two HCI_Read_-Clock commands
cannot have been issued and answered within the
clock resolution of 1.25 ms. As it turned out, the
second value was a duplicate of the first, and we
resorted to reading the Bluetooth clock twice and
using the second value only if it was different from
the first.

B. HCI_Read_Clock_Offset

This command is supposed to return the current
clock offset to a connected device. However, once
a connection between two BTnodes has been estab-
lished, the offset returned by this command never
changes even though the two clocks drift apart.
Only after closing and re-opening a connection
the returned clock offset changed. That is, the
command always returns the clock offset at the time
when the connection was established.

As periodic disconnects are no option in many
applications, another way to read the clock off-

set was needed. After some experimentation, we
noticed that a connected device is also reported
by an Bluetooth inquiry. This comes as a surprise
as inquiries are generally used to find new de-
vices and not to collect information about already
connected neighbours. As inquiries also return the
current clock offset, periodic inquiries can be used
to update the clock offsets to connected neigh-
bours. However, the clock offset returned by an
inquiry is slightly different from the value returned
by HCI_Read_Clock_Offset. The latter always
returns CLKslave - CLKmaster no matter if the
Bluetooth device is a master or a slave. The inquiry
returns the same value only if the invoking Blue-
tooth device is a master. If invoked by a slave, the
returned value is 2!7—(CLKslave - CLKmaster).

VII. EVALUATION

To evaluate our approach, we first study the accu-
racy of synchronization between system and Blue-
tooth clock in the presence of parallel data transmis-
sions. Then we measure the synchronization error
within an 8 node multi-hop Scatternet. We also
show some preliminary results of this approach
running on a linux laptop with a built-in Bluetooth
module.

A. Reading the Bluetooth Clock under Load

We evaluate the accuracy of the approach to mea-
sure the offset between the system clock and the
Bluetooth clock (see Sect. IV). We consider a
Bluetooth Piconet of two node A and B. The speed
of the serial connection between the main processor
and the Bluetooth modem was set to 115200 baud.
After B has connected to A, A will start reading its
Bluetooth clock 1000 times at regular intervals. A
will then signal B to start sending data messages. A
will discard these messages, but continues to read
out the Bluetooth clock. After 1000 readouts, A
signals B to stop sending data. A continues to read
out its Bluetooth clock for another 1000 times.

At each readout, A records the time of the system
clock after the last bit of the command has been sent

N
1

NO DATA DATA NO DATA

o o
T

Accuracy reading Bluetooth clock in [ms]

= N W A O N ® ©
L e e B e

[0] 0.5 1 1.5 2 25 3 3.5 4 45 5

System time in [s]

Fig. 5. Accuracy of Bluetooth clock read out with and without
data traffic.

to Bluetooth and the returned value of the Bluetooth
clock. That is, A records a data point (system
clock, Bluetooth clock) for each readout. We then
fit a line to these 3000 data points using linear
regression. This line approximates the ground-truth
offset between the two clocks. We consider the
distance of a data point from the regression line
as a measure of the accuracy of that data point.

Fig. 5 shows the accuracy for the first 100 readings
of each block (no data, data, no data). The max-
imum error on accuracy was 15 ms. To analyze
the impact of data transmission, we we plotted the
empirical cumulative distribution function (ECDF)
for ”data* and “no data® separately as shown in
Fig. 6. The distribution for “no data* shows smaller
errors than for the “data“ section, but this results
mainly from having less outliers compared to “’the
"data‘“ section.

To further reduce the reading error, we employed a
median filter as described in Sect. IV, which outputs
the median of the last n samples. Fig. 7 shows the
average and the maximal error for different values
of n over all samples. For all 3000 samples with
and without parallel data traffic, the maximal error
for n=5 is below 2 ms.

0 oo e e e

Cumulative probability

0.3F
0.2 /i 5 : - f : :

OApft o NO' DATA
: : : : - - =DATA

0 0.5 1 15 2 25 3
Error reading Bluetooth time in [ms]

Fig. 6. ECDF of accuracy with and without data traffic.

16
L1 T
14¢ -
13p
& 12F
Eq}
o
£ 10f
s of
E
= 8f
©
£ 71
2
s 6f
s 5f
[
= 4t
3F
2F
1-
P N N B é & é & é
1 2 3 4 5 6 7 8 9 10
Sliding window size n
Fig. 7. Mean and maximal clock reading error for median

filter with window size n.

B. Scatternet Synchronization Error

As the Bluetooth clocks run unsynchronized and
the clock offset is only available with a 1.25
ms resolution, we expect the error between two
connected nodes to be less than this value. We
set up 8 BTnodes in a chain topology in which
each node but the end nodes act as a master/slave
bridge, effectively forming a Scatternet of 7 inter-
connected Piconets. All nodes are connected to an
8-channel logic analyzer with 1 us time resolution.
After the Scatternet has been established, the first
node in the chain periodically sends a time-stamped
message along the chain of nodes, applying the
synchronization algorithm described in Sect. II to

synchronize the time stamp. When receiving the
message, a node will set a timer to expire at system
time t+C', where ¢ is the (synchronized) time stamp
contained in the message and C' is a constant offset.
When the timer expires, the node toggles the I/O pin
which is connected to the logic-analyzer. Ideally, all
nodes should toggle their pins at exactly the same
point in time. However, synchronization errors will
cause nodes to toggle their pins at slightly different
points in time. Using the logic analyzer, we measure
the time between the first node in the chain toggling
its pin and every other node in chain toggling its
pin. This amount of time is the synchronization
erTor.

In the experiment, the BTnodes update their clock
offsets every 5 minutes using a Bluetooth discovery.
The experiment runs for 2 hours, resulting in 712
accuracy measurements for all 8 nodes. Figure 8
shows the average and maximal synchronization
error for each node. The mean error for the last
node in the chain is 5.47 ms £2.25 ms and the
maximum error is 11.35 ms.

Mean and maximal error in [ms]

o = N W N U OO N O ©
T T T T T T T T T

1 2 3 4 5 6 7
Number of hops

Fig. 8. Time synchronisation error for a 7-hop Scatternet.

C. Other Platforms

The BTnodes used in the evaluation are only a
single example for devices which support our time
synchronization protocol. Often, a more powerful
device such as a laptop is used to store col-
lected data and to provide a time reference for
a whole Scatternet. For our protocol to work, a

device needs to support the HCI_Read Clock
and HCI_Read_Clock_Offset commands which
are available, e.g., in the BlueZ [3] Linux Blue-
tooth Stack. We tested an Apple PowerBook
12”7 with an embedded Cambridge Silicon Ra-
dio (CSR) chipset connected over USB, running
the Ubuntu 6.10 Linux distribution with the de-
fault 2.6.17 kernel. Both commands are avail-
able on the CSR Bluetooth module. However, the
HCI_Read.-Clock_Offset only works correctly,
if the device is in a slave role. In master role, the
clock offset was not updated similar to the bug with
the Zeevo module (see. Sect. VI-B). We repeated
the read Bluetooth clock test and calculated the
accuracy as in Sect. VII-A. In this configuration
without median filter, the maximal error on accu-
racy was 4 ms. The mean error was 0.15 ms with
a standard deviation of + 0.24 ms.

VIII. RELATED WORK

There exists a large body of work on time syn-
chronization in wireless networks and in particular
wireless sensor networks [12]. However, all of these
approaches send explicit synchronization messages,
whereas our approach uses the synchronization
primitives provided by Bluetooth to build a global
synchronization protocol, thus minimizing addi-
tional communication overhead. Protocols based on
the exchange of explicit synchronization messages
would suffer from highly variable messages laten-
cies of typical Bluetooth implementations. In [10],
for example, round trip times in a simple two-node
network varied between 30 and 230 ms with an 76
ms average. In [8], round-trip times between 20 and
120 ms have been observed a similar setup.

Specific protocols for time synchronization with
Bluetooth are rare. [5] describes an experiment in
which a Piconet master sends broadcast messages
to synchronize slaves among each other. As the
broadcast message arrives almost concurrently at all
slaves, the reception event can be used to accurately
synchronize the clocks of slaves. They report very
good results for the accuracy among slaves in the
order of 10 us. However, this approach can only
synchronize slaves among each other, but not the

master with the slaves as only the master can send
broadcast messages. Hence, a Bluetooth Scatternet
cannot be synchronized with this approach. A simi-
lar technique is used in [1] to synchronize the slaves
of a Piconet. However, in addition they modify
the firmware of the Bluetooth module to precisely
measure the point in time when the master sent the
broadcast message. Using this information, they can
also synchronize the master with the slaves. Over-
all, they obtain a precision of few micro seconds
in a single Piconet. While their approach could be
extended to Scatternets, they do not consider this
option. However, modifying the Bluetooth firmware
is often impossible and/or impractical.

802.11 also uses an internal clock to control
medium access and specifies a Timing Synchro-
nization Function (TSF) to synchronize the clocks
of different nodes. In both infrastructure and ad hoc
modes, 802.11 only supports single-hop networks.
Therefore, TSF is a rather simple protocol. In in-
frastructure mode, the base station regularly broad-
casts time-stamped beacon messages and receivers
adjust their clocks to the received time stamp. In
ad hoc mode, every node broadcasts such beacon
messages and receivers adjust their clocks to the
sender with the latest time stamp. Huang et. al.
[7] propose a simple extension to this procedure
to improve the scalability of TSF.

IX. CONCLUSION

We presented a practical time synchronization pro-
tocol for multi-hop Bluetooth networks, so-called
Scatternets. The protocol builds upon two Bluetooth
commands to read the current value of the internal
Bluetooth clock and the offsets of this clock to
the Bluetooth clocks of network neighbors. The
implementation of this protocol on the BTnode
platform required a number of workarounds due
to bugs in the Bluetooth firmware. We evaluated
the protocol on a 7-hop network of BTnodes and
found a synchronization accuracy of 12 ms. The
proposed protocol requires only minimal additional
communication overhead, avoids the complexity
of clock disciplining, and is robust to network
topology changes because it is fully distributed.

X. ACKNOWLEDGEMENTS

We would like to thank Qin Yin for implementing
a first version of our Protocol and pointing out the
Zeevo bug with reading the clock offsets described
in Sec. VI-B.

The work presented in this paper was partially sup-
ported by the by the Swiss National Science Foun-
dation under grant number 5005-67322 (NCCR-
MICS).

REFERENCES

[1] Lucia Lo Bello and Orazio Mirabella. Clock synchroniza-
tion issues in bluetooth-based industrial measurements.
In Workshop on Factory Communication Systems, June
2006.

[2] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable
topology control for deployment-sensor networks. In
Fourth Internation Conference on Information Processing
in Sensor Networks (IPSN ’05), April 2005.

[3] BlueZ. Official linux bluetooth stack. www.bluez.org.

[4] BTnodes. A distributed environment for prototyping ad
hoc networks. www.btnode.ethz.ch.

[5] Robert Casas, Héctor J. Garcia, Alvaro Marco, and
Jorge L. Falco. Synchronization in wireless sensor net-
works using bluetooth. In 3rd International Workshop on
Intelligent Solutions in Embedded Systems, May 2005.

[6] Bluetooth Special Interest Group. Specification of
the bluetooth system, core package version 1.2.
www.bluetooth.org, 12 2003.

[7]1 L. Huang and T.-H. Lai. On the scalability of ieee 802.11
ad hoc networks. In ACM Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 2002), June 2002.

[8] Felix Michel and Philippe Wiiger. Angewandte Uhren-
synchronisation auf BTnodes. Term Project, D-ITET,
ETH Zurich, 2005.

[9] Nut/OS. Embedded ethernet. www.ethernut.de.

[10] Olof Rensfelt, Richard Gold, and Lars-Ake Larzon. Lu-
nar over bluetooth. In 4th Scandinavian Workshop on
Wireless Ad-hoc Networks (ADHOC ’04), 2004.
Matthias Ringwald, Kay Romer, and Andrea Vitaletti.
Passive inspection of wireless sensor networks. In Third
International Conference on Distributed Computing in
Sensor Systems (DCOSS 2007), 2007.

Kay Romer, Philipp Blum, and Lennart Meier. Time
synchronization and calibration in wireless sensor net-
works. In Ivan Stojmenovic, editor, Handbook of Sensor
Networks: Algorithms and Architectures. John Wiley &
Sons, September 2005.

(11]

[12]

	Introduction
	Protocol Overview
	Bluetooth Clock
	Offset between System and Bluetooth Clock
	Offset between Bluetooth Clocks
	Implementation
	HCI_Read_Clock
	HCI_Read_Clock_Offset

	Evaluation
	Reading the Bluetooth Clock under Load
	Scatternet Synchronization Error
	Other Platforms

	Related Work
	Conclusion
	Acknowledgements
	References

