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Abstract— Collisions are a source of inefficiency in
contention-based MAC protocols that should be reduced to
a minimum. We show that concurrent multiple access to
a communication channel will, however, not necessarily
lead to a collision with undesirable effects. Rather, we
demonstrate that it is possible for a receiver to hear the
bitwise “or” of the transmissions of multiple synchronized
senders within communication range. This unconventional
communication model allows the efficient implementation
of a number of basic operations that serve as a foundation
for BitMAC: a deterministic, collision-free, and robust
MAC protocol that is tailored to dense sensor networks,
where nodes report sensory data over multiple hops to a
sink.

I. I NTRODUCTION

Many widely used Medium Access Control (MAC)
protocols for sensor networks are based on contention,
where concurrent access to the communication channel
by multiple sensor nodes leads to so-called collisions.
Collisions are a source of many undesirable properties
of these MAC protocols. For example, collisions lead to
a reduced effective channel bandwidth and to increased
energy consumption. Often, probabilistic methods are
used to resolve collisions, which typically leads to in-
creased, unpredictable delays. In particular, collisions
introduce an indeterminism, which makes this type of
MAC protocol ill-suited for systems with real-time con-
straints. Hence, collisions are commonly considered a
“bad thing”, and MAC protocols strive to avoid them
wherever possible.

In sensor networks, communication activity is typi-
cally triggered by an event in the physical world. In
dense networks, such an event triggers communication
activity at many collocated nodes almost concurrently,
such that a high probability of collisions must be ex-
pected. This has been verified by quantitative studies in
[6], [26].

In this paper, we adopt another, more positive view on
collisions. In particular, we show that a set of synchro-
nized nodes can concurrently transmit data, such that

a receiver within communication range of these nodes
receives the bitwise “or” of these transmissions. Using
existing sensor node hardware, we show that such a
communication model can indeed be implemented with
commonly used low-power radios.

Based on this communication model, we can provide
efficient parallel implementations of a number of basic
operations that form the foundation for BitMAC, which
has the following key features:

- No collisions: Although nodes access the channel
concurrently, this does not lead to the bad effects
of collisions mentioned above.

- Determinism: There are deterministic bounds on the
execution time of all protocol elements.

- Robustness: A large class of temporary and per-
manent node failures can be tolerated in dense
networks.

- Efficiency: The protocol overhead of BitMAC is
low and the channel bandwidth can be utilized
efficiently.

- Self-containedness: BitMAC does not assume any
out-of-band mechanisms. Time synchronization is
an integral part of the protocol.

- Dense, many-to-one networks: BitMAC is partic-
ularly tailored to dense sensor networks, where
sensor nodes report sensor readings to a sink node
over multiple hops.

The remainder of this paper is structured as follows. We
discuss assumptions about physical layer communication
and about applications in Section II. An overview of
BitMAC will be given in Section III, before presenting
the protocol in detail in Sections IV to VI. We evaluate
BitMAC in Section VII, discuss remaining issues in Sec-
tion VIII and related work in Section IX, and conclude
the paper in Section X.

II. BASIC ASSUMPTIONS

In this section, we present our communication model
and characterize the class of applications, for which
BitMAC has been designed.
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A. Communication Model

Our work is based on the assumption, that a node re-
ceives the “or” of the transmissions of all senders within
communication range. In particular, if bit transmissions
are synchronized (e.g., slotted access to the medium)
among a set of senders, a receiver will see the bitwise
“or” of these transmissions.

This behavior can actually be found in practice for
radios that use On-Off-Keying (OOK), where ”1”/“0”
bits are transmitted by turning the radio transmitter
on/off. Note that transmitting a zero is then equal to
sending nothing.

The two currently most used radios for sensor net-
works, the RFM TR 1000 series (e.g., MICA and RENE
motes [27], Scatterweb ESB [32], TecO Particles [33],
and the EYES project prototype [30]), and the Chipcon
CC1000 series (e.g., MICA2 motes, MANTIS Nymph
[31], BTnode3 [28]) support this mode of operation. Al-
though the Chipcon uses Frequency-Shift-Keying (FSK)
by default, a Chipcon application note [29] describes
how to emulate OOK. The newer Chipcon CC1020 and
CC1021 directly support OOK modulation. We have ver-
ified the above communication model using the Chipcon
CC1000 on BTnode3 as discussed in Sections VII-A and
VII-B.

BitMAC will use this communication model (and
hence OOK) only for a limited number of control op-
erations. For the remainder (e.g., payload data transmis-
sion), other, perhaps more efficient modulation schemes
can be used if supported by the radio. In this case it might
be necessary to adjust the transmit power such that the
communication ranges are similar for both modulation
schemes.

Furthermore, our work is based on the assumption that
the radio supports a sufficient number of communication
channels, such that nodes within communication range
can switch to different channels to avoid interference.
The Chipcon CC1000, for example, can support up to
130 channels in the 915 MHz ISM band, or 35 channels
in the 868 MHz ISM band (assuming a channel width of
200 kHz). The number of available channels determines
the maximum network density that can be supported by
BitMAC (see Section VII-C).

We will also exploit the fact that typical radios cannot
sendand receive at the same time. Rather, they support a
send mode and a receive mode. Switching between these
modes requires a certain amount of time. That is, if two
nodes within communication range either both send or
both receive, they do not interfere with each other.

B. Application Characteristics

BitMAC is designed for data-collection sensor net-
works, where many densely deployed sensor nodes re-
port sensory data to a sink across multiple hops. In order
to avoid the bottleneck of the sink, data from multiple
sensor nodes may be aggregated by nodes in the network.
Data communication is mostly uplink from the sensor
nodes to the sink, although the sink may issue control
messages to the sensor nodes. One prominent example
of this application class are directed diffusion [9] and
TinyDB [16]. Many concrete applications (e.g., [2], [11],
[19], [20]) show this behavior as well.

Furthermore, it is assumed that the network topology
is mostly static. That is, after initial deployment, node
mobility and addition are rare events. However, BitMAC
is designed to support a large class of permanent or
temporary node failures efficiently and without intro-
ducing contention or indeterminism. Hence, BitMAC
can support applications with real-time and robustness
requirements. Applications such as [2], [11], [20] fall
into this class.

III. PROTOCOLOVERVIEW

BitMAC is based on a spanning tree of the sensor
network with the sink at the root. In this tree, every
internal node and its direct children form a star network.
That is, the tree consists of a number of interconnected
stars. Within each star, time-division multiplexing is
used to avoid interference between the children sending
to the parent. Time slots are allocated on demand to
nodes that actually need to send. Using a distributed
graph-coloring algorithm, neighboring stars are assigned
different channels as to avoid interference between them.
Both the setup phase and actual data transmission are
deterministic and free of collisions.

In the following sections we will describe the com-
plete protocol with increasing level of complexity. We
will begin with basic techniques for communication
among a set of child nodes and a parent node in a
star network. We will then discuss the part of the MAC
protocol used to control a single star. Finally, we will
describe how these stars can be assembled to yield the
complete multi-hop MAC protocol.

IV. BASIC TECHNIQUES

In this section, we describe basic techniques for com-
munication of a set of children with a parent in a star
network as depicted in Figure 1 (a). While the following
discussion is tailored to MAC protocols, the techniques
might also be applicable in other contexts.
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Fig. 1. (a) Star network with a single parent. (b) Multiple stars with
shared children.

A. Single-Bit Transmissions and Preamble Elimination

Every transmission of payload data typically has to
be preceded by a preamble (often a “101010...” bit
sequence) and a start-of-packet (SOP) delimiter with a
total size of about 100 bit. Preamble and SOP are needed
to synchronize the receiver to the sender and to adjust
the bit-decision threshold.

Control traffic of a MAC protocol often consists of
data packets with few or even single bits. For example,
children have to signal a send request and the parent
has to send acknowledgments to children. Preceding
every such transmission with a preamble represents an
significant overhead of MAC protocols.

1

Parent

Child 1

Child 2

Child 3

Preamble SOP R

1

1

Parent

Child 1

Child 2

Preamble SOP

Preamble SOP

Child 3
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Fig. 2. Single-bit transmissions to a parent node: with (top) and
without (bottom) preambles. Time increases to the right.

Fortunately, many preamble transmissions can be
eliminated. For uplink communication, the parent trig-
gers (by means of a request message “R” in Figure
2 (top)) the children to send single bits of data (e.g.,
send requests) within a short time frame. Typically, these
single bit transmissions are preceded by preambles as in
Figure 2 (top).

However, since the parent’s preamble does already
synchronize all children, the latter can maintain synchro-
nization for the duration of several hundred bits using
their hardware clocks (see Section VII-B). Hence, single
bits can be transmitted without preambles as depicted in
Figure 2.

For downlink communication, where the parent has to
send individual bits to many children (e.g., acknowledg-
ments), many individual bit transmissions with individual

preambles can often be concatenated to a single packet
with a single preamble at the cost of an increased delay.
We will see an example in Section V.

B. Integer Operations

Let us assume that all or a subset of children need
to transmitk-bit unsigned integer values to the parent,
where the latter is interested in various aggregation
operations (OR, AND, MIN, MAX) on the set of values
of the children. Below we discuss efficient ways to im-
plement these operations, assuming synchronized nodes
and the communication model described in Section II-A.

Obviously, a bitwise “or” can be implemented by
having the children synchronously transmit their values
bit by bit. Our communication model ensures that the
parent will receive the bitwise “or” in timeO(k). Since
x AND y = x̄ OR ȳ (where x̄ is the bitwise inversion
of x), the bitwise “and” can be obtained if the children
invert their values before transmission and if the parent
inverts the received value.

By interpreting an integer value as a set (wherei is
contained in the set if and only if thei-th bit of the
value is 1), the operations OR and AND implement the
UNION and INTERSECTION of integer sets, respec-
tively. Integer values withk bits can then support sets of
up tok elements. Often, long sequences of zero bits have
to be transmitted where values represent integer sets with
only a few elements. However, as mentioned in Section
II-A, transmitting sequences of zeros equals doing noth-
ing, allowing for an energy-efficient implementation by
switching off the radio transmitter.

In order to compute MAX,k communication rounds
are performed. In thei-th round, all children send the
i-th bit of their value (wherei = 0 refers to the most
significant bit), such that the parent receives the bitwise
“or”. The parent maintains a variablemaxval which
is initialized to zero. When the parent receives a one,
it sets thei-th bit of maxval to one. The parent then
sends back the received bit to the children. Children
stop participation in the algorithm if the received bit
does not equal thei-th bit of their value as this implies
that a higher value of another child exists. Afterk
rounds or timeO(k), maxval will hold the maximum
among the values of the children. Note that children who
sent the maximum will implicitly know, since they did
not stop participation. Likewise, children who did not
send the maximum can also detect this. Additionally, all
children can find out the maximum by listening toall
messages sent by the parent. The MIN operation can be
implemented if the children invert their values before
the procedure and if the parent invertsmaxval after the
procedure.
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C. Vectorial and Parallel Integer Operations

In the previous section we discussed, how a single
instance of an integer operation can be performed. In
this section we discuss the efficient execution of mul-
tiple instances of the same operation. We distinguish
two different problems:vectorial and parallel integer
operations.

For a vectorial operation, each child has a vector of
n integer values, such that the parent would have to
perform an operationn times, where thei-th execution
considers the values at positioni in the vectors of the
children (cf. single instruction multiple data). However,
thesen sequential operations can be combined into a
single operation as described in the previous section,
where the messages contain the respective information
for all elements of the vector. Fork-bit integers, this
requires timeO(nk). A vectorial operation is more effi-
cient that the independent execution of many operations,
since many preambles and radio switches (transmit to
receive and vice versa) can be omitted.

For a parallel operation, the parents of multiple stars
that share one or more children have to perform the
same integer operation as depicted in Figure 1 (b). If all
involved nodes are synchronized, all of the above integer
operations can be performed (synchronously) in parallel.
For the OR and AND operations, our communication
model will ensure that all parents will obtain the correct
result for their respective children. For MIN and MAX,
the parent will in general not obtain the correct result.
However, each childn will find out whether it presented
the MIN/MAX value among the children who share a
parent with n. As explained in Section IV-B, a node
presented the MIN/MAX if it did not stop participation
in the algorithm. We will use this operation in Section
VI-A. Note that any number of such parallel operations
on k-bit values can be performed in timeO(k). Vectorial
and parallel operations can also be combined, requiring
time O(nk).

D. Bit Errors

The techniques described in the previous sections are
sensitive to errors, where one or more bits are not
correctly delivered to the receiver. For the discussion of
error handling we distinguish two cases. In the first case,
one or more nodes send the same bit value concurrently.
In this case, traditional error handling mechanisms such
as checksums or coding techniques can be used.

In the second case, two or more transmitters send
different bits concurrently. According to our commu-
nication model, the receiver will see the “or” of these
bits. In this case, checksums and coding techniques

cannot be applied, since the bitwise “or” of checksums or
encoded values is generally not equal to the checksum or
encoded value of the bitwise “or” of the original bits. For
example, ifb1 6= b2 are the bits to be transmitted by two
nodes ande(bi) are the encoded bits, thene(b1ORb2) 6=
e(b1) OR e(b2) must be expected.

To detect errors in this case, the bits can be sent
unencoded two or more times. If different values are
received, then an error is assumed. If three or more trans-
missions are performed, then errors can be corrected if
the majority of the transmissions are identical. Bluetooth
uses such a forward error recovery to protect its protocol
headers.

Sometimes it is possible to handle transmission er-
rors more efficiently at the application level. Errors
can be detected, for example, if constraints (e.g., mini-
mum/maximum/exact number of “1” bits in a received
bit vector) are known on the transmitted values. For
example, if a node signals a send request, then it should
be assigned a time slot for data transmission (see Section
V). Due to bit errors, a node may find that it hasn’t
been assigned a slot and can retry transmission in a later
round. Likewise, if a node didn’t signal a send request,
then bit errors may lead to the false assignment of a time
slot. Although this can result in reduced efficiency, it is
not strictly necessary to correct this error.

In the remainder of the paper we will assume error-
free transmissions. As part of future work, we will
incorporate the above techniques into our protocol.

V. STAR NETWORK

Using the basic techniques presented in the previous
section, we present a MAC protocol for star networks,
which will be used as a building block for the multi-hop
protocol presented in the subsequent section.

The protocol supports uplink communication from
the children to a parent, and downlink communication
from the parent to one or more children. Time-division
multiplexing is used to avoid collisions and to ensure
a deterministic behavior of the protocol. In order to
optimize bandwidth utilization, time slots are allocated
on demand to nodes that actually need to send data.

Let us assume for the discussion that children have
been assigned small, unique integer IDs in the range
1...N . We will show in Section VI how these can be
assigned.

The protocol proceeds in rounds with the parent acting
as a coordinator. A round starts with the parent broad-
casting a beacon message to the children. The beacon
contains an indicator whether this round is downlink
or uplink communication. If the round is downlink, the



5

beacon message will be followed by the payload data,
which will usually contain the address (e.g., ID) of the
target node(s). If this is an uplink round, children will
transmit send requests to the parent. After receiving these
requests, the parent constructs a schedule and broadcasts
it to the children. From this schedule, children can
deduce their time slot for transmission. During their time
slots, children send their payload data to the parent.
The parent will then acknowledge successful receipt.
If transmission failed, the affected children will try a
retransmission in the next round.

The beacon serves multiple purposes: it indicates the
begin of a new round, carries control information, and
synchronizes the children (by means of a preamble). For
the send requests and the acknowledgments, an integer
set of node IDs (i.e., a bit vector of lengthN ) is used to
reduce preamble transmissions as explained in Section
IV-A. A node with ID i is part of such a set if and only
if the bit i is “1” in the bit vector.

For the send requests, each child with pending data
sends such an integer set containing only its ID without
a preamble. The parent will then receive the UNION of
these sets as depicted in the lower part of Figure 2. The
parent then sends back the received integer set to the
children. Having received it, the children also know the
IDs of the nodes with pending send requests. Assuming
that nodes with smaller IDs send first, both parent and
children can assign time slots for the transmissions. After
receiving all the data transmissions, the parent sends an
integer set to the children that contains the IDs of the
children with successful transmissions.

Sched i

Preamble SOP

Preamble SOP Data

Data

1

1

Parent

Child 1

Child 2

Child 3

SOPPreamble ACK i−1

Fig. 3. Roundi of the optimized MAC protocol for star networks.

As a further optimization, the acknowledgment set can
be concatenated with the beacon of the following mes-
sage as depicted in Figure 3. Also, the schedule can be
sent without an additional preamble, since the preamble
that is part of the beacon is sufficient to synchronize the
children for the duration of several hundreds of bits (see
Section VII-B). Hence, preambles are only needed for
the beacon and for the payload data packets.

VI. M ULTI -HOP NETWORK

We now show how to extend the protocol for star
networks to a multi-hop network. This will be based on
a spanning tree of the network with the sink at the root,

where each internal node and its direct children form
a star that uses the protocol presented in the previous
section. As to avoid interference, stars are assigned
different communication channels.

(b)

1 2 3

(a)

i

i−1

i+1

B C
A D

Fig. 4. Distance from the sink (•) imposes a ring structure on
the network. Network links between nodes in the same ring are not
shown.

For our discussion let us assume that nodes possess
unique MAC addresses (e.g., 16 bit identifiers) and
that each node knows its hop-distance from the sink.
We show in Section VI-B how this can be achieved.
Nodes in the network can now be partitioned based on
their distance from the sink, such that nodes with equal
distance form a ring around the sink. We will denote the
ring of nodes with distancei as the ringi. A node in
ring i now has one or more parents in ringi − 1, and
zero or more children in ringi + 1. Note that nodes in
ring i + 1 by definition arenot within communication
range of nodes in ringi−1. Nodes in the same ring will
not interfere with each other, since they will either all
send or all receive at the same time.

A. Assigning Channels and IDs

In order to turn this hierarchical ring structure into
a tree, each node must be assigned to a single parent.
A parent in ring i then must share a channel with its
children in ringi+1, such that no other parent in ringi of
the children uses the same channel. More formally, this
requires the assignment of small integers (i.e., channel
identifiers) to nodes in ringi, such that nodes who share
a child in ring i + 1 are assigned different numbers.

We assumed in Section V that children of a single
parent are assigned small unique integer numbers. With
respect to the ring structure, this task can be formulated
as assigning small integers to nodes in ringi, such that
nodes who share a parent in ringi − 1 are assigned
different numbers.

The above two problems can be combined into a two-
hop graph coloring problem: assign small integers (i.e.,
colors) to nodes in ringi, such that nodes with the same
number do not share a common neighbor in ringi − 1
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or i + 1. Note that common neighbors in ringi are not
considered. In Figure 4 (b), a valid color assignment
would beA = D = 1, B = 2, C = 3.

In order to solve this problem, let us assume for now
that all nodes in ringsi − 1, i, i + 1 are synchronized,
such that the vectorial and parallel integer operations
described in Sections IV-B and IV-C can be applied.

Let us further assume that a small numberC is
known, such that the numbers1...C (thecolor space) are
sufficient to solve the coloring problem. We will discuss
C in Section VII-C. In practice,C will be equal to the
number of available radio channels.

Under these assumptions, we can use a deterministic
variant of the algorithm presented in [10] to solve the
above described two-hop graph coloring problem for ring
i. For this algorithm, each node in ringi maintains a
set P (the palette) of available colors, which initially
contains1...C. Initially, all nodes use the same commu-
nication channel.

The algorithm proceeds in rounds. In each round,
every node in ringi selects an arbitrary (e.g., smallest,
random) colorc from its paletteP . Some nodes may
have selected conflicting colors. For each possible color,
the algorithm will allow the nodes with the largest
respective MAC address to keep its color. All other
nodes reject the color. For this, each node sets up a
vector v[1...C] of MAC addresses with one entry for
each possible color.v[c] is set to the MAC address of
the node, all other entries are zero.

Now, all nodes in ringsi− 1 andi+1 synchronously
perform a vectorial parallel MAX operation (see Section
IV-C) over the vectorsv of the nodes in ringi. As a side
effect of this operation, all nodes in ringi will then know
whether or not they are the node with the maximum
MAC address for the selected color within two hops.
If a node is the maximum, then it keeps colorc and
is finished. The node will not participate in consecutive
rounds. If a node detects that it is not the maximum, it
removesc from P and proceeds with the next round. By
listening to the values received from the parents as part
of the MAX operation, the node can also find out which
colors have been selected by other nodes. These are also
removed fromP .

Since the above algorithm assigns at least one color
per round, it requires at mostC rounds to finish.

A node in ring i with color c will use the channel
associated withc for communication with its children in
ring i + 1. c will also be used by nodes in ringi as the
small integer ID for communication with its parent in
ring i− 1 (see Section V).

In a final step, all nodes in ringi synchronously
broadcast an integer set (i.e., bit vector) that contains

the selected colorc. Nodes in ringi + 1 will receive
the UNION (see Section IV-B) of the colors of all their
parents. By picking one of the colors and switching to
the according communication channel, every node in ring
i + 1 can select a single parent. Note that this selection
can be changed at any time, for example, if the parent
fails.

Note that the above procedure can be performed for
multiple rings in parallel, because ringsi− 1, i, i + 1 do
not interfere with ringsi + 3, i + 4, i + 5. Due to this,
rings i, i + 4, i + 8, i + 12, ... can be colored in parallel.
Hence, four parallel coloring steps are sufficient to color
an arbitrary network with an arbitrary number of rings.
Since each step requires at mostC rounds of the coloring
algorithm, an arbitrary network can be colored in4C
parallel rounds. Moreover, as each node knows its ring
number, it can autonomously decide when to start the
coloring algorithm, since it knows how many rounds are
required to color the other rings (e.g., after some point
in time t0, a node in ringi waits C(i mod 4) rounds
before starting with coloring).

B. Time Synchronization and Ring Discovery

In the previous section, we assumed that rings are
synchronized and each node knows its ring numberr
(i.e., distance from the sink). In this section, we show
how this can be accomplished.

In the protocol for stars described in Section V, the
parent sent a beacon message to synchronize its children.
This approach can be adopted to the ring structure (and
hence also to trees) as follows. For ring discovery, we
also include alevelfield in the beacon message. The sink
emits such a beacon with level 1. Nodes that receive this
beacon setr to the level contained in the beacon and do
themselves emit a beacon message with levelr + 1. In
addition, the node must ignore the beacon sent by its
children (which will contain levelr + 2).

During the setup phase, such a beacon broadcast is
performed before each round of the coloring algorithm
to keep the nodes synchronized.

sender C

receiver

sender B

Fig. 5. Identical transmissions by two senders with small synchro-
nization errors. The receiver will see slightly stretched “1” bits and
slightly compressed “0” bits.

A beacon broadcast can be used to synchronize the
receivers with respect to each other with high precision,
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since the broadcast is received almost concurrently by
all receivers [4]. Since the MAC protocol knows the
size of the beacon message and bit lengths and has total
control over access to the medium, the receivers can also
accurately synchronize to the sender of the beacon [5].
As in [4], multiple beacon transmissions can be used to
compensate the clock drift of the hardware clocks of the
nodes, which allows the nodes to stay synchronized even
longer after the transmission of a beacon.

In the initial ring structure used during tree setup,
each node may receive the beacon from two or more
(already synchronized) parents concurrently. In Figure
4 (b), for example, the node in ringi + 1 will receive
the beacon concurrently from nodesB andC in ring i.
According to our communication model, these identical
transmissions are merged, such the receiver will see the
“or” of all transmissions. If the parents have a small
mutual synchronization error, then the receiver will see
slightly stretched “1” bits and compressed “0” bits as
illustrated in Figure 5. However, if the duration of a
bit is long compared to synchronization errors, this can
be tolerated by the receiver. Hence, the bit length has
to be selected appropriately. See Section VII-B for a
discussion of this issue.

If the receiver synchronizes to the merged bit sequence
of all its parents, it will effectively synchronize to the
average of its parents. As a result, multiple parents im-
prove the robustness of synchronization with the parents.
Additionally, the synchronization precision errors among
neighboring receivers that share multiple parents will
benefit from this averaging process. We will analyze
synchronization performance in Section VII-B.

C. Maintenance

So far we have described the setup phase of BitMAC
that organizes the nodes of a deployed network into an
interference-free tree with the sink at the root. In this
section we discuss what happens if nodes are added or
removed after this initial setup. Note that node mobility
can be interpreted as removing a node and adding it
again at a different place. Please keep in mind that we
assumed in Section II-B that node mobility and node
additions are rare events.

Let us first consider what happens if a node is re-
moved temporarily or permanently, or if communication
is temporarily disturbed. In dense networks, each node
will typically possess communication links to multiple
parents in the initial ring structure. As the last step of
the setup procedure in Section VI-A, each node was
informed of the channels of all its parents, such that the
node could choose one parent by selecting the respective

channel. We also noted that this selection can be changed
at any time without the need for repeating tree setup.
Hence, if the selected parent fails, a node can switch over
to another parent simply by selecting the appropriate
communication channel. If a node “reappears” after a
temporary communication failure, no further actions are
required. Note that parent re-selection can also be used
to balance the load of the parents or to select a parent
with the best communication link etc.

If a node in ringi runs out of operational parents, the
tree is either partitioned or there are connections to the
remainder of the tree via neighbors in ringi or i + 1. If
the node scans all communication channels and does not
receive any beacon messages, the network is partitioned.
If the node does receive a beacon, then the node will
effectively move to another ring> i, since the sender of
the beacon in ring≥ i will become the new parent of
the node. In this case, the setup phase must be repeated.
For this, a special bit is used during signaling of send
requests. If a parent receives a “1” during this bit slot,
it will propagate the request to its parent and so on,
until the sink is informed, which eventually initiates a
reconstruction of the tree.

If a node is added to the network, it will first scan the
communication channels for beacon messages from other
nodes. Upon receiving a beacon, the node will signal a
rebuild request to its parent to enforce a reconstruction.

D. Operation Phase

Up to now we have discussed setup and maintenance
of BitMAC. In this section we discuss the operation
phase, where data are transmitted up and down the tree.

For synchronization, the procedure described in the
previous sections is used as well. However, at this point
every node has selected a single parent, and the stars
operate largely independent of each other (see below for
a detailed discussion of this issue). Each node will there-
fore receive the beacon from its single parent only, which
is sufficient to synchronize a parent and its children.

As discussed in Section V, the MAC protocol for the
stars proceeds in rounds, where each round starts with
a beacon broadcast. Using the procedure described in
Section VI-B, the rounds are synchronized among the
stars. However, in contrast to the setup phase, each node
will receive the beacon only from a single parent and bit-
level synchronization is only required among a parent
and its children. Synchronization requirements across
different stars are rather relaxed, since the stars operate
independent of each other due to the interference-free
channel assignment.

The rounds in all stars are of equal length. Hence, the
number of time slots for data transmission in a round



8

is also limited. If in a star more children signal a send
request than available time slots, the parent will schedule
the maximum possible number of transmission for the
round. Children which have not been assigned a time
slot will retry in the next round. However, the parent
remembers the children with rejected send requests to
give them preference in the next round(s).

Note that a node in ringi has to act both as a parent
for communication with children in ringi + 1 and as a
child for communication with its parent in ringi − 1.
Therefore, a node will act as a parent in even rounds
and as a child in odd rounds.

So far, BitMAC enables nodes to send data to its
parent or to its children in the tree. Various approaches
can be used to route data over multiple hops. For the
applications described in Section II-B, data is either sent
from nodes to the sink, or from the sink to some or all
nodes, which can be easily implemented. However, tree
routing protocols can be used to exchange data between
any two nodes in the network. Directed diffusion [9] or
TinyDB [16] could also be easily adopted to BitMAC.

VII. E VALUATION

To evaluate BitMAC, we apply a mix of experiments
involving actual hardware, analysis, and simulation. Ex-
periments are used to verify the basic operation of
the protocol elements on a few nodes. The obtained
results are used analytically or in simulations to evaluate
BitMAC in larger networks.

In particular, we will analyze the impact of the number
of available communication channels, the precision of
time synchronization, as well as delays and protocol
overhead of BitMAC. For this evaluation, we assume
a perfect channel (i.e., no bit errors).

A. OOK Bit Transmission

In a first experiment we validate our communication
model by showing that a node can indeed receive the
bitwise “or” of the transmissions of two other nodes.

For the hardware experiments we used BTnode3 [28]
sensor nodes, which provide a Chipcon CC1000 low-
power radio. Although this radio does not directly
support OOK transmission, an application note [29]
describes how to emulate it. For this, the transmitter
sets the frequency separation to 0 Hz and switches the
power amplifier in the transmitter section on and off to
transmit single bits. On the receiver side, the received
signal strength indicator (RSSI) is used to decide whether
a “1” is transmitted or not. A “1” is assumed if the RSSI
value is above a fixed threshold. The built-in analog-to-
digital converter (ADC) of the ATmega128 was used to

(a)

(b)

(c)

0 1

1

1

1

1

0 0 01 0

0 0 0

0 0 01

Fig. 6. RSSI measurements for reception of OOK data (time 0.2
ms/div, voltage 0.5/div), low voltage represents a “0” bit. (a) First
node sending “101000” (b) Second node sending “100010” (c) Both
nodes sending.

measure the analog RSSI output. The BTnode3 provides
a 7.328 MHz system clock, which allows a sampling rate
of 250 kilo samples per second (i.e., one sample every
4µs).

Note that radios with direct support for OOK and with
digital signal output (such as the RFM TR 1000 or newer
Chipcon radios) provide much better results. Hence, our
experiments with the Chipcon CC1000 can be considered
as worst-case results.

To verify OOK transmissions, we used three nodes in
the setup shown in Figure 7 (b). Two sender nodes are
triggered concurrently via a wire to start sending their
bits via radio. A receiver hears both transmissions. As
illustrated by the oscilloscope images in Figure 6, the
senders transmit the bit sequences (a) “101000” and (b)
“100010”. The third node receives (c) “101010”. The
images were obtained by connecting the analog RSSI
output of the receiver to the oscilloscope. A low voltage
represents a “0” bit.

B. Time Synchronization

In a second experiment, we evaluate the precision of
the time synchronization approach described in Section
VI-B using the setups shown in Figure 7 (a-d). All
nodes are connected by a wire to trigger the start of the
experiment att0. In (a), the top node starts transmission
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of a single “1” bit att0, which will be received by the
bottom node. In (b), the two top nodes start transmitting
a “1” bit concurrently att0. The receiver (i.e., bottom
node) measures the point in timetc corresponding to
the center of the received bit by averaging the points
in time corresponding to the rising (tl) and the falling
edge (tr) of the “1” bit. By observing the variation of
tc over multiple runs, we can estimate the precision of
time synchronization. In (c) and (d), the top node starts
transmitting a “1” bit att0. After receiving the bit and
measuringtc, the middle node(s) start(s) transmitting a
“1” bit at tc +tx with a small fixed delaytx. The bottom
node measurestc using the (or-ed) bit received from the
middle node(s).

(d)(a) (b) (c)

Fig. 7. Experiment setups and results for time synchronization. (a)
one hop, one sender (b) one hop, two senders (c) two hops, chain
(d) two hops, rhombus.

During the measurement oftc we observed rare (less
than 1%) larger variations fortl, while tr is rather stable.
However, since the duration of the bittbit is known,
we can detect these errors and correct them by setting
tl := tr − tbit in such cases. With this fix, we performed
the above measurements 100000 times to determine the
maximum variationterr of tc. The results are shown in
the diagram in Figure 7. A point on the curve indicates
the percentage (y axis) of the measurements for which
the variation oftc is bounded by an interval of a certain
length (x axis).

The diagram shows than the maximum variation in the
single-hop experiments (a) and (b) is about 20µs. For the

two-hop experiments we would expect about twice the
maximum variation of the single-hop measurements. In
the experiments we observed a maximum variation of
about 36µs, which is slightly smaller then the expected
value. As mentioned in Section VI-B, the results are
indeed slightly better if multiple senders are involved
(cases (b) and (d)).

As mentioned in the previous section, we can expect
that the above results can be significantly improved if the
radio directly supports OOK modulation and provides a
digital signal output. Indeed, the authors of [12] report
a maximum error of 2µs for the setup (a) when using
the RFM TR 1000, which is a 10-fold improvement over
our measurement results.

Let us now consider the worst case synchronization
error in larger networks. Ifterr is the worst case error
for a one-hop setup, then the worst case error afterr
hops isrterr. Note, however, that we can expect better
results if the network is dense, because then each node
has many parents in the ring structure.

In Section VI-B we mentioned that synchronization
errors lead to stretched or compressed bits. Hence,
the duration of a bittbit has to be long enough to
tolerate these effects. Let us assume that bits can still
be correctly received if their length is reduced totbit/2
due to synchronization errors. If the radius of the ring
is r, then tbit must be at least2rterr. For example, if
r = 7 and terr = 20µs, then tbit ≥ 280µs, which
equals a bit rate of about 3.5 kilobit per second. With
terr = 2µs, we would obtaintbit ≥ 28µs or 35 kilobit
per second. Note, however, that these “long” bits only
have to be used during the setup phase for control traffic.
Data transmissions can use any bit rate and modulation
scheme that is supported by the radio.

Let us finally consider for how long two nodes can
maintain synchronization using their hardware clocks,
assuming they are perfectly synchronized initially. With
a bounded clock driftρmax, at least1/(4ρmax) bits
can be transmitted until the synchronization error can
result in a bit duration smaller thantbit/2. For example,
the oscillator used on the BTnode3 providesρmax =
100 ppm according to the data sheet, which allows to
send up to 2500 bits without resynchronization. Note
that multiple synchronization rounds could be used to
compensate the clock drift to reduce the frequency of
synchronization.

C. Network Density

In Section VI-A we assumed the knowledge of a
constantC, such that the coloring problem can be solved
with C colors. We also mentioned that in practiceC is
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set to the number of available radio channels. Hence, we
have to examine which network density can be supported
by BitMAC given a certainC.

It is a well-known fact that a graph with maximum
node degree∆ can be colored with∆ + 1 colors. Since
the maximum two-hop degree (i.e., number of nodes
within distance≤ 2 hops) of a graph with maximum
degree∆ is at most∆2, we would need∆2 + 1 colors
for a standard two-hop coloring, where any two nodes
with distance≤ 2 must be assigned different colors.
However, recall from Section VI-A, that in our coloring
algorithm the effective two-hop neighborhood of a node
n in ring i is the set of nodes in ringi that share a
common neighbor withn in rings i − 1 or i + 1. We
will call the respective two-hop degree thetwo-hop ring
degree. We can expect that the two-hop ring degree of
nodes in a plane is significantly smaller than∆2.
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Fig. 8. Relationship between node density and node degrees. Nodes
with communication range 1 are randomly placed in a 10-by-10 area.

To verify this expectation we performed a set of
simulations, where a given number of nodes with com-
munication range 1 is randomly placed in a 10-by-10
rectangular area. The sink is placed at the center of the
area. For different numbers of nodes we determined the
average and maximum degree, as well as the average
and maximum two-hop ring degree. We performed 150
simulation runs and computed averages. The results are
depicted in Figure 8. As can be seen, the average and
maximum two-hop ring degrees are even smaller then
the average and maximum degree, respectively. The
figure also shows the actual minimum number of colors
(“Colors” in the legend) required by the coloring algo-
rithm described in Section VI-A. This value is obtained
by letting the algorithm always select the “smallest”
available color (i.e., the color represented by the smallest
integer ID) from the palette.

Recall from Section II-A that the Chipcon CC1000
supports up to 35 channels in the 868 MHz ISM band.

With this setup we can expect to be able to color random
graphs with an average degree of up to about 20.

If the number of channels is not sufficient to color
the graph, then some nodes will end up without a color
assignment after the coloring algorithm. Such nodes
cannot participate in the sensor network. However, the
remaining nodes will form an operational network. Due
to the high degree, this network is most likely connected.

D. Setup Phase

In this section we examine the setup phase of our
protocol, in particular we derive the amount of time
tsetup that is needed to setup a network with given
parameters.tsetup depends on the following parameters:
the durationtbit of a single bit as examined in Section
VII-B, the numberC of channels, the lengthLmac of a
MAC address in bits, the lengthLbeacon of the beacon in
bits, the timetrxtx needed to switch the radio between
transmit/receive modes, and the radiusr of the ring.
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Fig. 9. One parallel step of the coloring algorithm on ringi. Shaded
packets indicate data receptions.

As explained in Section VI-A, rings with numbers
i, i+4, i+8, i+12, ... can be colored in parallel. Hence,
4 parallel coloring steps are required. One coloring step
is illustrated in Figure 9. Each step consists of a beacon
broadcast for synchronization, followed by the coloring
algorithm. Recall from Section VI-A that the coloring
algorithm consists ofC rounds. In each round, a parallel
vectorial MAX operation is performed. In a final step,
colored nodes announce assigned colors to the children.
Let us consider the durationtstep of such a parallel
coloring step, which can be expressed as follows:

tstep ≤ tbeacon + C tround + tannounce

tbeacon ≤ 4 (Lbeacon tbit + trxtx)

tround ≤ 2 Lmac (C tbit + trxtx)

tannounce ≤ C tbit + trxtx

Due to the delay caused by the beacon broadcast, color-
ing of ring r is started at timertbeacon/4 after the sink
has initiated the setup. Hence, we obtain for the setup
time:

tsetup ≤ 4 tstep + r tbeacon



11

Let us consider the sample network we used for the
simulations in Section VII-C with 800 nodes. Withr =
7, C = 35, Lmac = 16, Lbeacon = 110, trxtx = 250µs,
we obtaintsetup ≤ 48s for tbit = 280µs, or tsetup ≤ 6s
for tbit = 28µs.

E. Operation Phase

In this section we evaluate the operation phase, where
payload data is transmitted from nodes towards the sink.
Let us assume that each round consists ofS slots for
data packets. Recall from Section VI-D that each node
acts as a child in even rounds and as a parent in odd
rounds. Hence, when a node wants to transmit, it may
have to wait up to two rounds until it can transmit a send
request to its parent. Then the packet is forwarded one
hop towards the sink in every round. Since the overlay
tree is a shortest-path tree from the sink to all nodes,
packets are always forwarded on the shortest path to the
sink. Hence, it takes at mosti + 2 rounds to deliver a
packet from a node in ringi to the sink, provided that
a free slot can be allocated in each round. If a free slot
cannot be assigned immediately, then a node may have
to wait for 2bC/Sc rounds until a slot is assigned, since
a parent cannot have more thanC children.

As with most other MAC protocols, there is a trade-off
between latency and energy consumption in BitMAC. If
the duration of a round (i.e.,S) is increased, the latency
will increase and energy consumption will decrease (due
to fewer beacon transmissions). The energy consumption
of an idle network is dominated by the duration of a
round and the length of the beacon. In every idle round,
each non-leaf node has to receive and transmit a beacon
(without acknowledgments and schedules), and has to
listen to C send-request bits from its children. A child
node only receives and forwards the beacon. Hence, we
obtain for the average radio-on time:

ton ≤ 2 (Lbeacon tbit + trxtx) + C tbit/2

Let us consider an example, whereC = 35, tbit = 52µs
(19200 baud),trxtx = 250µs, andLbeacon = 110. With
these parameters we obtainton ≤ 13ms. If the duration
of a round is 200ms, thenS = 9 data packets of 32 bytes
each can be delivered in each round. The duty cycle of
the nodes in an idle network is then about 6% on average.

If the network is not idle, then parents have to send
schedules and acknowledgments, resulting in an addi-
tional 2C bits. Overall, the time per round that cannot
be used for data transmissions is:

toverhead ≤ 2 Lbeacon tbit + 4 trxtx + 3 C tbit

Note that toverhead can be interpreted as the overhead
of our protocol compared to an ideal protocol, where
all nodes know a priori when to transmit data packets
without collisions. For the above example we obtain
toverhead ≤ 18ms, such that about 9% of the bandwidth
cannot be used for payload data transmissions if a round
lasts for 200ms.

VIII. D ISCUSSION

In this paper we assumed that links between nodes are
either error-free or nonexistent. A more realistic model
to characterize communication links is the distinction of
communication range, in which the communication is
more or less error-free, and interference range, in which
data transmitted from a node A to node B does harm
node C’s reception of data sent by node D. By design
of BitMAC, there are no collisions between nodes in
communication range, so we would like to discuss issues
related to nodes in interference range here.

Nodes on the same ring either transmit or receive at
the same time, hence neither collisions nor interference
do occur on one ring. Also, by the way the rings are
constructed, we conclude that transmissions from nodes
on ring i + 1 to nodes on ringi do not interfere with
parallel transmissions from ringi− 1 to i− 2 (3 hops).
Even if they would, we could insert a “buffer ring” to
avoid such interferences.

The vulnerable part of BitMAC is the channel and ID
assignment. If there are two nodes A and B which do
not have a common child or parent, they might choose
the same channel independently. Not having a common
child refers to not having a node in the communication
range. Yet still node A might have a child node C which
might be in interference range to node B and disturb
transmissions from B’s child nodes.

One way to alleviate this problem is to ensure that
such a node C is seen as a common child node of A
and B during coloring. This can be done by temporarily
increasing the radio power in such a way that the
communication range during this phase equals the inter-
ference range of the later communication. It is important
that the radio power is increased only during coloring,
otherwise the situation would not improve. By doing this,
additional parent-child links are created which are not
available at normal transmission power. Therefore, all
links should be validated by an additional link probing
phase. Real-world deployment will allow us to evaluate
this approach.

IX. RELATED WORK

Besides contention-based algorithms such as [3],
[15], [22], [25], a number of MAC protocols have
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been proposed that avoid contention using time or
frequency-division multiplexing. However, most of these
approaches suffer from serious limitations or drawbacks
as discussed below (e.g., long-range communication,
static schedules, low bandwidth utilization, high latency,
out-of-band time synchronization, some protocol ele-
ments introduce collisions, regular network topologies
required).

The approach in [1] partitions the network into large
clusters. In each cluster, a centralized scheduler assigns
time slots to nodes via long-range communication. After
the schedule has been assigned, nodes communicate via
multi-hop, short-range communication.

SS-TDMA [13] uses a fixed schedule throughout the
lifetime of the network and operates only on regular
topologies such as square and hexagonal grids. Due to
the fixed schedule, bandwidth utilization is low under
varying traffic conditions.

LEACH [7] partitions the network into clusters, where
the cluster head assigns a TDMA schedule to the nodes
in the cluster, such that nodes can send to the cluster head
via single-hop transmissions. Cluster heads are rotated to
distribute energy consumption equally among all nodes.
However, since cluster heads communicate via long-
range radio with the sink, all nodes must be capable
of long-range communication. BMA [14] is similar to
LEACH but provides dynamic slot allocations within
each cluster by means of single-bit transmissions similar
to our protocol for star networks.

With TRAMA [18], TDMA scheduling is replicated
over the nodes of the network. The schedule is adapted
to long-term traffic flows through the network. The
protocol assumes an out-of-band mechanism for time
synchronization and exhibits a high latency.

In EMAC [24], some nodes are assigned a slot in a
TDMA schedule and can transmit during this slot. All
nodes must listen during the slots of all its neighbors to
be able to receive data, which can represent a significant
energy overhead. Nodes that do not own a slot use
contention to compete for the right to transmit in a slot
owned by a neighbor. An out-of-band mechanism for
time synchronization is assumed. Due to the fixed slot
assignment, the bandwidth utilization is rather low.

LMAC [23] is a variant of EMAC, where nodes use
contention to compete for slots. All nodes must listen
to detect collisions. Messages are not acknowledged and
an out-of-band mechanism for time synchronization is
assumed. Due to the fixed slot assignment, the bandwidth
utilization is rather low.

The algorithm presented in [21] establishes a collision-
free TDMA schedule that adopts to varying network
topologies, but uses an underlying contention-based

MAC for establishing the schedule. An out-of-band
mechanism for time synchronization is assumed.

Two recent publications consider concurrent transmis-
sions of multiple senders. With SDJS [12], synchronized
nodes can decide to transmit a jam signal, such that
receivers can detect two cases: (1) no transmission, or (2)
one or more jamming nodes, which can be considered
as a form of “or” channel. This mechanism is used to
estimate the number of neighbors in an efficient way. In
[17], a very similar approach is mentioned. To transmit
a “1” bit, a sender emits a carrier signal. If a receiver
detects this carrier signal or a collision, then a “1” bit is
received. This feature is used in [17] to implement data
aggregation. No details on a possible implementation on
real hardware are given.

In [8], a time synchronization approach is described
which is somewhat similar to our approach to time
synchronization. There, a designated node emits a se-
quence of pulses. Nodes that hear this pulse sequence
predict when the next pulse will be sent and transmit a
synchronous pulse themselves at the predicted point in
time. Eventually, all nodes in the network will hear and
transmit synchronous pulse sequences.

X. CONCLUSION

We have presented and analyzed BitMAC, a deter-
ministic, collision-free, and robust protocol for dense
wireless sensor networks. BitMAC is based on an “or”
channel, where synchronized senders can transmit con-
currently, such that a receiver hears the bitwise “or”
of the transmissions. Using the BTnode3 platform, we
have shown the practical feasibility of this communi-
cation model and analyzed the performance of time
synchronization. We gave deterministic bounds on the
execution time of all protocol elements and showed that
the protocol overhead is small compared to an ideal
protocol. We are currently implementing the complete
protocol on the BTnode3 platform and intend to evaluate
it in a setup with about 100 nodes.

BitMAC includes a number of parameters (duration
of a round, bit length,C) which need to be properly
selected in order to efficiently support a specific network
setup. Although we illustrated by examples throughout
the paper that a reasonable default setting for the param-
eters can support a wide range of networks, it is desirable
to automatically adapt these parameters at runtime to
the actual network setup. For example, althoughC is
limited by the number of available radio channels and
has to be big enough to ensure a correct coloring of the
network, a smallerC results in better performance and
less protocol overhead. The duration of a round could be
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adapted to the actual traffic in order to find the best trade-
off between latency and energy consumption. Using a
variable bit length for control traffic that depends on
the distance from the sink (i.e., the ring number) could
eliminate the need for a predefined bit length.
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