
DISS. ETH NO. 18787

Application-level System and Tool
Support for Auto-ID Application

Development

A dissertation submitted to the
ETH ZURICH

for the degree of

Doctor of Sciences

presented by
Matthias Lampe

Master of Science Computer Science, Portland State University
born June 10, 1971
citizen of Germany

accepted on the recommendation of
Prof. Dr. Friedemann Mattern, examiner

Prof. Dr. Elgar Fleisch, co-examiner

2010

2

 3

Abstract

Radio Frequency Identification (RFID) systems have begun to find great-
er use in the consumer object identification market, in industrial automa-
tion, and in mobile asset and supply chain management, in a wide range
of industries such as retail, pharmaceutical, and defense. The term auto-
matic identification (Auto-ID) applications is used to generalize RFID
applications and includes other Auto-ID technologies such as barcode or
Bluetooth. More complex Auto-ID applications also use sensor technolo-
gies not only to identify objects but also to track their state (e.g. tempera-
ture sensors to ensure quality of perishable goods).

Bridging the gap between the physical world of objects (e.g., products
and logistical units) and the digital world of IT systems to improve exist-
ing business processes is the main driver of the widespread RFID adop-
tion. However, even if the gap between the physical and the digital world
is bridged, there is still a gap between applications or enterprise resource
planning (ERP) systems on one side and Auto-ID systems on the other.
Application developers are faced with several challenges: Instead of con-
centrating on the application or business logic they have to deal with Au-
to-ID specific details such as readers, tags, or specific error sources. They
also have to duplicate code when developing a new application for captur-
ing Auto-ID data from readers, for filtering and aggregating Auto-ID data
to increase their accuracy, for providing persistent storage and querying
capabilities, and for reacting to business events such as the arrival of a
shipment.

To facilitate the development of Auto-ID applications, this thesis pro-
vides concepts, programming models, building blocks and tools that ab-
stract from Auto-ID specific details and provide the necessary services
and the appropriate level of reuse. In particular, the contributions are:

• an Auto-ID Object Model that abstracts from low-level Auto-ID
and sensor concepts which provides the means for an application to
model and represent its domain as the base for the application logic.
The model focuses on the domain of Auto-ID applications, that is,

4

applications whose application logic is based on an implicit or ex-
plicit model of the physical world and is triggered by (near) real
time observations of the physical world through Auto-ID readers
and sensors.

• a state machine-based programming model that allows defining Au-
to-ID related micro business processes. Typically Auto-ID applica-
tions are not interested in all the dynamic changes of the observed
physical objects. The business process definitions allow an Auto-ID
application to integrate application logic into an Auto-ID infrastruc-
ture in order to only report exceptionally states related to the objects,
their properties and relationships.

• a visual tool-based approach to instantiate, configure and manage
an Auto-ID infrastructure. Typically an Auto-ID infrastructure con-
sists of many different hardware and software components that have
to be customized to fit the need of a certain application domain.
Such an instantiation and configuration is a tedious task and re-
quires programming skills in addition to Auto-ID and application
domain knowledge. The visual tool-based approach provides a con-
crete representation of the application domain and supports non-
software developers in the different tasks over the lifecycle of an
Auto-ID infrastructure.

The evaluation, based on a prototypical implementation of an Auto-ID
Infrastructure called the Object Monitoring System (OMS) and on several
representative case-studies, shows that the contributions of the thesis pro-
vide the right level of abstractions and services to facilitate the develop-
ment of Auto-ID applications in several different application domains.
The Auto-ID Object Model provides for an adequate representation of the
application domains. The programming model allows defining a variety
of Auto-ID related business processes in the application domains support-
ing fast processing of Auto-ID data in a business workflow. The visual
tool-based approach proves to facilitate the instantiation, configuration
and deployment of the Auto-ID infrastructures in the application domains
especially for non-software developers.

All in all, this thesis provides sound concepts and its contributions help
to facilitate the development of Auto-ID applications, help to decrease
development costs and, in general, contribute to the dissemination of Au-
to-ID technologies in industry and other areas of application.

 5

Kurzfassung

Radio Frequency Identification (RFID) Systeme finden eine immer grös-
sere Verbreitung bei der Konsumgüter-Identifikation, in der industriellen
Automatisierung, im Mobile Asset und Supply Chain Management sowie
in weiteren Bereichen wie zum Beispiel Einzelhandel, Pharma und Ver-
teidigung. Der Begriff „automatische Identifikationsanwendungen“ (Au-
to-ID-Anwendungen) verallgemeinert RFID-Anwendungen und beinhal-
tet andere Auto-ID-Technologien wie Barcode oder Bluetooth. Komple-
xere Auto-ID-Anwendungen benutzen ausserdem Sensor-Technologien
zum Überwachen der Objektzustände (z.B. Temperatursensoren, um die
Qualität von verderblichen Gütern sicherzustellen).

Der Haupttreiber bei der Einführung von RFID ist die Überbrückung
der Lücke zwischen der physischen Welt der Objekte, d.h. der Produkte
und logistischen Einheiten, und der digitalen Welt der Informationssys-
teme zur Optimierung der vorhandenen Geschäftsprozesse. Auch wenn
die Lücke zwischen der physikalischen und der digitalen Welt überbrückt
wird, gibt es jedoch weiterhin eine Lücke zwischen den Anwendungen
oder Enterprise-Resource-Planning-Systemen (EPR-Systemen) auf der
einen Seite und den Auto-ID-Systemen auf der anderen.

Anwendungsentwickler sind mit mehreren Herausforderungen konfron-
tiert: Anstatt sich rein auf die Anwendung und Geschäftslogik konzentrie-
ren zu können, müssen sie sich mit Auto-ID-spezifischen Details wie Le-
segeräten, Transpondern oder besonderen Fehlerquellen beschäftigen.
Ausserdem kommt es zur Duplizierung von Code bei der Entwicklung ei-
ner neuen Anwendung zur Erfassung von Auto-ID-Daten von Lesegeräten,
zum Filtern und Aggregieren von Auto-ID-Daten, um deren Qualität zu
verbessern, zur Bereitstellung von persistentem Speicher und Abfrage-
funktionalität und zur Reaktion auf geschäftsrelevante Ereignisse wie z.B.
der Zustellung einer erwarteten Lieferung.

Um die Entwicklung von Auto-ID-Anwendungen zu erleichtern und zu
unterstützen, liefert die vorliegende Arbeit Programmiermodelle, Baustei-
ne und Werkzeuge, die von Auto-ID-spezifischen Details abstrahieren,

6

und die die erforderlichen Dienste und die geeigneten Stufen der Wieder-
verwendung anbieten. Im Einzelnen sind die Beiträge dieser Arbeit:

• Ein Auto-ID-Objektmodell, das von systemnahen Auto-ID- und
Sensor-Konzepten abstrahiert und für eine Anwendung die Mög-
lichkeit bietet, ihre Domäne als Basis für die Anwendungslogik zu
modellieren und darzustellen. Der Fokus liegt auf der Klasse der
Auto-ID-Anwendungen, d.h. auf Anwendungen, deren Anwen-
dungslogik auf einem impliziten oder expliziten Modell der physi-
schen Welt basiert und von (Beinahe)-Echtzeit-Beobachtungen der
physischen Welt durch Auto-ID-Lesegeräte gesteuert wird.

• Ein auf Zustandsautomaten basierendes Programmiermodell, das
die Definition von Mikro-Geschäftsprozessen erlaubt. Auto-ID-
Anwendungen sind normalerweise nicht an allen dynamischen Än-
derungen der zu beobachteten physischen Objekte interessiert. Die
Definition von Geschäftsprozessen gibt einer Auto-ID-Anwendung
die Möglichkeit, Anwendungslogik direkt in eine Auto-ID-
Infrastruktur zu integrieren. Dadurch können Berichte an die An-
wendung auf besondere Zustände der Objekte, deren Eigenschaften
und Beziehungen eingeschränkt werden.

• Eine auf visuellen Werkzeugen basierte Vorgehensweise, um eine
Auto-ID-Infrastruktur zu instanziieren, zu konfigurieren und zu
verwalten. Eine Auto-ID-Infrastruktur besteht aus vielen verschie-
denen Hardware- und Softwarekomponenten, die an die speziellen
Erfordernisse einer Anwendungsdomäne angepasst werden müssen.
Solch eine eine Instanziierung und Anpassung ist eine schwierige
Aufgabe und erfordert neben dem Auto-ID-Wissen und der
Kenntniss über die Anwendungsdomäne Softwareentwicklungs-
kenntnisse. Die auf visuellen Werkzeugen basierte Vorgehensweise
bietet eine konkrete Repräsentation der Anwendungsdomäne im
Sinne der Endanwender-Programmierung an. Sie unterstützt damit
Anwender ohne Softwareentwicklungskenntnisse bei den verschie-
denen Aufgaben, die im Laufe des Lebenszyklus einer Auto-ID-
Infrastruktur anfallen.

Eine Evaluation, basierend auf einer prototypischen Implementierung
einer Auto-ID-Infrastruktur, dem Object Monitoring System (OMS) und
mehreren repräsentativen Fallstudien, zeigt, dass die Beiträge dieser Ar-
beit eine geeignete Stufe der Abstraktion zur Unterstützung und Vereinfa-
chung der Entwicklung von Auto-ID-Anwendungen bieten. Das Auto-ID-

 7

Objektmodell erlaubt die adäquate Repräsentation der verschiedenen An-
wendungsdomänen. Das Programmiermodell ermöglicht die Definition
einer Vielzahl von Geschäftsprozessen in den verschiedenen Anwen-
dungsdomänen und unterstützt damit die übergreifenden Geschäftsabläufe.
Die auf visuellen Werkzeugen basierte Vorgehensweise kann die Instan-
ziierung, Anpassung und Verwaltung der Auto-ID-Infrastrukturen in den
Anwendungsdomänen deutlich erleichtern.

Zusammengenommen sollten die im Rahmen der Dissertation erarbeite-
ten und evaluierten Ansätze helfen, die Entwicklung von Auto-ID-
Anwendungen weiter zu vereinfachen, Entwicklungskosten einzusparen
und damit einen Beitrag zur Verbreitung von Auto-ID-Technologien in
vielfältigen Anwendungsbereichen zu leisten.

8

 9

Table of Contents

Abstract .. 3
Kurzfassung ... 5
Table of Contents ... 9
Table of Figures ... 13
Table of Tables .. 17
Abbreviations ... 19
1. Introduction ... 21

1.1. Motivation .. 21
1.2. Contributions of the Thesis ... 22

1.2.1. Auto-ID Object Model .. 22
1.2.2. Visual Tool Approach ... 23
1.2.3. Methodology ... 24

1.3. Thesis Outline ... 24
2. Auto-ID Technologies ... 27

2.1. Barcode Technology ... 28
2.2. RFID Technology ... 30

2.2.1. RFID System Components and Operating Principles 30
2.2.2. RFID Standards .. 34

2.3. Other Wireless Auto-ID Technologies 36
2.4. Sensor Technology ... 37

3. Auto-ID System Requirements .. 39
(R1) Object Representation ... 41
(R2) Object Persistency .. 42
(R3) Object Relationships ... 42
(R4) Location Information .. 42
(R5) Object Identification ... 43
(R6) Object Identifier .. 43
(R7) Object Data Enrichment ... 43
(R8) Physical World Interaction ... 44
(R9) Business Context Enrichment ... 44
(R10) Data Dissemination ... 45

10

(R11) Auto-ID Data Aggregation ... 45
(R12) Auto-ID Data Filtering ... 46
(R13) Fault and Configuration Management 46
(R14) Tag Identifier Management .. 46
(R15) Tag User Memory ... 46
(R16) Sensor Support .. 47
(R17) Actuator Support ... 47
(R18) External Reader Triggers .. 47
(R19) Loose Coupling of Components ... 47
(R20) Configurability of System ... 48
(R21) Privacy .. 48
(R22) Other Application Requirements .. 48

4. Auto-ID Infrastructure Concepts and Implementation 49
4.1. Filtering and Aggregation of Observations 51
4.2. Overview of Location Models .. 53

4.2.1. Geometric Location Models ... 53
4.2.2. Symbolic Location Models ... 54
4.2.3. Hybrid Location Models ... 54
4.2.4. Semantic Location Models ... 54
4.2.5. Summary and Discussion ... 54

4.3. Auto-ID Object Model .. 55
4.3.1. Physical Object Representation .. 57
4.3.2. Properties of Objects ... 62
4.3.3. Functions .. 65
4.3.4. Object History and Queries... 67
4.3.5. Business Process Support ... 69

4.4. Auto-ID Infrastructure Implementation 80
4.4.1. Object Monitoring System .. 82
4.4.2. Alternative Implementation Approaches for the Auto-ID
Object Model History .. 90

4.5. Related Work and Discussion ... 93
4.5.1. EPC Network .. 95
4.5.2. Auto-ID Middlewares/Infrastructures 101
4.5.3. Ubiquitous Computing Infrastructures 107

5. Visual and Generative Tool-based Auto-ID System Development
Process ... 111

5.1. Generative and Visual Programming Concepts 113
5.1.1. Generative Programming .. 113

 11

5.1.2. Visual Programming ... 116
5.2. Auto-ID System Development Process 120

5.2.1. Visual Instantiation Tool .. 124
5.2.2. Generation Tool .. 129
5.2.3. Deployment Definition and Deployment Tool 130

5.3. Related Work .. 132
6. Case Studies ... 137

6.1. Smart Medicine Shelf ... 137
6.2. Tool Management in Aircraft Maintenance 143
6.3. Augmented Knight’s Castle .. 150
6.4. Discussion ... 158

7. Conclusion ... 163
7.1. Auto-ID Object Model and Business Process Support 164

7.1.1. Contribution .. 164
7.1.2. Limitations and Future Work .. 166

7.2. Auto-ID Application Development Process 168
7.2.1. Contribution .. 168
7.2.2. Limitations and Future Work .. 169

8. Appendices .. 171
8.1. Formal Definitions of the Auto-ID Object Model Set Definition
Language in EBNF .. 171
8.2. Formal Definitions of the Auto-ID Object Model Business
Process Condition Definition Language in EBNF 172
8.3. Example Business Process Definition in XML 173
8.4. OMS Database Implementation Details 174
8.5. XML Schemes of the VIT / Generator 174

Bibliography .. 185

12

 13

Table of Figures

Figure 2-1 Bridging the media gap between the physical and digital world
(based on [62]) ... 27
Figure 2-2 Barcode types of the EAN.UCC systems 29
Figure 2-3 ISO/IEC standardized 2-dimensionale barcodes 30
Figure 2-4 Operation principles and components of an RFID system 31
Figure 2-5 Different types of RFID transponders and readers 33
Figure 2-6 BTnode (a) and Tmote (b) sensor nodes (from [3] and [15]) . 36
Figure 3-1 Auto-ID usage in a medical supply chain scenario (source:
EPCglobal)... 39
Figure 3-2 Auto-ID readers in a distribution center feeding captured data
to different applications (source: EPCglobal) ... 41
Figure 3-3 Overview of Auto-ID infrastructure requirements including
their dependencies ... 44
Figure 4-1 Layers of Auto-ID infrastructure .. 50
Figure 4-2 Example for filtering and aggregation of observations 53
Figure 4-3 Auto-ID Object Model instantiation 56
Figure 4-4 Overview of Auto-ID Object Model 57
Figure 4-5 Auto-ID Object Model entities representing physical objects in
the real world ... 58
Figure 4-6 Example instance of the Auto-ID Object Model (UML object
diagram representation) ... 59
Figure 4-7 Example instance of the Auto-ID Object Model (simplified
floor and tree representation) ... 60
Figure 4-8 Auto-ID Object Model entities representing physical objects in
the real world (emphasis on entity Property) ... 64
Figure 4-9 Example model instance with emphasis on Property and
Function ... 65
Figure 4-10 Auto-ID Object Model entities representing physical objects
in the real world (emphasis on entity Function) 66
Figure 4-11 History of located object MineralWater1L.130 67
Figure 4-12 History of the location CooledStorage 68

14

Figure 4-13 Auto-ID Model with emphasis on Business Process Support
 ... 70
Figure 4-14 State machine to monitor the incoming shipment #1020 73
Figure 4-15 Auto-ID Infrastructure deployment for retail store example
 ... 80
Figure 4-16 OMS Architecture Overview ... 81
Figure 4-17 SQL base query for LocationsOfObject query 87
Figure 4-18 SQL base query for LocatedObjects query 87
Figure 4-19 EPCglobal Architecture Framework compared to OMS 96
Figure 4-20 Comparison of different Auto-ID middleware/ infrastructure
approaches ... 103
Figure 5-1 Tool support for the Auto-ID infrastructure layers 112
Figure 5-2 Generative domain model (from [40]) 114
Figure 5-3 Software development based on Domain Engineering (from
[41]) ... 115
Figure 5-4 Fregean versus analogical representation 117
Figure 5-5 Auto-ID Application Development Process 123
Figure 5-6 GUI of the Visual Instantiation Tool 126
Figure 5-7 Set Management dialog .. 128
Figure 5-8 Conststructing a set comparison expression 129
Figure 5-9 GUI of the Deployment Definition Tool 131
Figure 5-10 Example deployment of Deployment Tool 132
Figure 5-11 OBS Bean Bilder (from [35]) ... 134
Figure 5-12 . LEGO Mindstorms Programming Environment 135
Figure 6-1 Setup of the Smart Medicine Shelf Application 138
Figure 6-2 Auto-ID Object Model instance for Smart Medicine Shelf .. 139
Figure 6-3 Instantiating the Smart Medicine Shelf with the VIT 140
Figure 6-4 Business processes of the Smart Medical Shelf 141
Figure 6-5 Smart Medical Shelf deployment ... 142
Figure 6-6 Setup of the Smart Toolbox prototype (left) and the Smart
Tool Inventory applications (right) .. 144
Figure 6-7 Auto-ID Object Model instance for the tool management in
aircraft maintenance application .. 145
Figure 6-8 Instantiating the tool management in aircraft maintenance
application with the VIT .. 146
Figure 6-9 Toolbox business processes Base Check (left) and Routine
Check (right) of the tool management in aircraft maintenance application
 ... 148

 15

Figure 6-10 Tool inventory business processes of the tool management in
aircraft maintenance application .. 149
Figure 6-11 tool management in aircraft maintenance application
deployment .. 150
Figure 6-12 Overall setup of the Augmented Knight’s Castle 151
Figure 6-13 Auto-ID Object Model instance of the Augmented Knight’s
Castle ... 152
Figure 6-14 Instantiating the Augmented Knight’s Castle with the VIT 153
Figure 6-15 Business processes of the Augmented Knight’s Castle 156
Figure 6-16 Antennas embedded in the playset (left) and RFID
transponders to tag toy pieces (right) ... 157
Figure 6-17 Augmented Knight’s Castle deployment 158
Figure 8-1 SQL statements to create the object and property history 174

16

 17

Table of Tables

Table 4-1 Filter types ... 51
Table 4-2 Aggregate types ... 52
Table 4-3 Formal state transition conditions of example process 78
Table 4-4 Overview of definition language for state transition condition 79
Table 4-5 Comparing OODBMS and ORDBMS..................................... 90
Table 4-6 Available time-relational DB layers .. 92
Table 4-7 Layers, data models and data processing of an Auto-ID
infrastructure .. 94
Table 5-1 Configuration and instantiation tasks for the Auto-ID
infrastructure software components ... 121
Table 5-2 Configuration and instantiation tasks supported by VIT 125
Table 5-3 Configuration and instantiation tasks supported by the
Deployment Definition Tool .. 130
Table 6-1 Business processes of the Smart Medical Shelf 140
Table 6-2 Business processes of the tool management in aircraft
maintenance application .. 147
Table 6-3 Business processes of the Augmented Knight’s Castle 154
Table 6-4 Auto-ID system requirements implemented by the presented
approach .. 159

18

 19

Abbreviations

ALE Application Level Events
Auto-ID Automatic Identification
EAS Electronic Article Surveillance
EAN European Article Association
EBNF Extended Backus Naur Form
ECA Event Condition Action
EPC Electronic Product Code
EPCIS EPC Information Services
ERP Enterprise Resource Planning
GUI Graphical User Interface
HAL Hardware Abstraction Layer
HTML Hyper Text Markup Language
HTTP Hypertext Transfer Protocol
ID Identification
ISO International Standardization Organization
JAR Java Archive
LLRP Low Level Reader Protocol
LUS Look-Up Service
MRO Maintenance, Repair and Overhaul
OMS Object Monitoring System
OODBMS Object-Oriented Database Management System
ORDBMS Object-Relational Database Management System
PML Product Markup Language
POS Point-of-sale
RDBMS Relational Database Management System
RFID Radio Frequency Identification
SCM Supply Chain Management
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SQL Structured Query Language
TCP/IP Transmission Control Protocol/Internet Protocol

20

TDB Temporal Database
Ubicomp Ubiquitous Computing
UCC Uniform Code Council
UPC Uniform Product Code
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML eXtensible Markup Language

 21

1. Introduction

1.1. Motivation

Radio Frequency Identification (RFID) systems have recently begun to
find greater use in the consumer object identification market, in industrial
automation, and in mobile asset and supply chain management, in a wide
range of industries such as retail, pharmaceutical, and defense. The use of
RFID systems in these application domains has also been promoted by ef-
forts of the Auto-ID Center to develop low cost RFID tags as an econom-
ical replacement of barcodes [133]. Traditionally RFID has been used
among others in electronic article surveillance (EAS), livestock tracking,
ski ticketing, toll collection, and car immobilizers [154].

Bridging the gap between the physical world of objects (i.e. products
and logistical units) and the digital world of IT systems to improve exist-
ing business processes [63] is the main driver of the widespread RFID
adoption. Automated data gathering through RFID eliminates manual la-
bor and avoids the discontinuity between physical processes and the asso-
ciated information processing. This results in more accurate and detailed
data, higher process efficiencies, increased product quality, and cost sav-
ings through faster and better information processing.

Applications using RFID are often labeled automatic identification (Au-
to-ID) applications. This more general term also includes identification
technologies such as traditional barcode and other technologies which can
be used to automatically identify objects (e.g. Bluetooth or Wireless
LAN). More complex applications also use sensor technologies not only
to identify objects but also to track their state (e.g. temperature sensors
used to ensure the quality of perishable goods).

However, even if the physical and the digital world get closer together,
there is still a gap between the applications or enterprise resource plan-
ning (ERP) systems on one side and the RFID systems on the other. Ap-
plication developers are faced with several challenges: Instead of concen-
trating on the application or business logic they have to deal with RFID

22

specific details such as readers, tags, or RFID error sources. They also
have to duplicate code when developing a new application for capturing
the RFID data from the readers, for filtering and aggregating RFID data to
increase their accuracy, for providing persistent storage and querying ca-
pabilities, and for reacting to business events such as the arrival of a
shipment.

It is therefore important to develop appropriate programming models
and building blocks (e.g. middleware or frameworks) that abstract from
RFID specific details and provide the necessary services and the appro-
priate level of reuse to facilitate the development of Auto-ID applications.

1.2. Contributions of the Thesis

In this section, we outline the two main contributions of the thesis to ad-
dress the needs to support the software building process of Auto-ID appli-
cations on different levels: First, an Auto-ID Object Model and the Ob-
ject Monitoring System (OMS), a component implementing the model,
and second, a visual tool-based approach to the instantiation, configura-
tion and management of an Auto-ID infrastructure. The approach that was
taken during the course of the thesis is also presented in this section.

1.2.1. Auto-ID Object Model
The widespread adoption of RFID and other Auto-ID technologies re-
quires not only low cost tags and readers, but also software components
that, on the one side, manage readers, filter and aggregate captured RFID
data, and on the other side, combine and enrich the RFID data with appli-
cation logic, and generate appropriate business events, by providing a
consistent object model to the application.

In this thesis, we will concentrate on the latter and present the Auto-ID
Object Model and the services related to it. The object model is an ex-
tended hierarchical, symbolic location model, in which physical objects
also define locations. The object hierarchy represents containment rela-
tionships between objects. Objects are identified by a unique identifica-
tion, for example, the electronic product code (EPC) proposed by the Au-
to-ID Center at MIT, and can have dynamic and static properties (e.g.
temperature, size or expiry date). The model also includes object persis-
tence, query capabilities, and business event generation. The latter is a

 23

mechanism based on state machines that provide a declarative program-
ming model to formulate subscriptions for business events.

In this thesis, we also discuss possible approaches in the implementation
of the described model to provide a scalable and performing infrastructure.
We analyze approaches including temporal databases, tree database ex-
tensions and object databases. In addition, we present a prototypical im-
plementation of such an infrastructure, called the Object Monitoring Sys-
tem (OMS).

1.2.2. Visual Tool Approach
A software component or infrastructure that implements the Auto-ID Ob-
ject Model and its services facilitates the development of Auto-ID appli-
cations to a great extend. However, an Auto-ID infrastructure usually
consists of many different hardware and software components (e.g. read-
ers, sensors, filtering and aggregation components, distributed OMS com-
ponents) that have to be customized to fit the need of a certain application
or application domain. Such an instantiation and configuration is a tedious
task and requires programming skills in addition to RFID and application
domain knowledge. During runtime, the management of such an infra-
structure poses similar problems. To address these issues, we propose a
visual tool-based approach to the instantiation, configuration and man-
agement of an Auto-ID infrastructure.

In particular, we show how such a tool allows a non-programmer to vi-
sually construct a hierarchical object model using a concrete representa-
tion of floor plans. Objects could be, for example, buildings, rooms,
shelves, boxes or fork-lifters. Readers and sensors can be placed and con-
figured, and are automatically linked to objects. In addition, the business
event subscriptions can be defined.

We also show that the tool facilitates the overall process at different
stages in the lifecycle process. During design time, it allows instantiating
the Auto-ID application model towards a certain Auto-ID application (e.g.
a retail store management application) and facilitates the configuration of
all components of an Auto-ID infrastructure. For the deployment phase, it
offers a different view to visually setup and to connect the different hard-
ware and software components. During runtime it can act as a “manage-
ment cockpit” to dynamically visualize the state of the infrastructure and
allow changes to the setup and configuration. In addition, it can also be a
testing tool to simulate the movement of objects to test the business logic.

24

1.2.3. Methodology
In order to derive a system family model for Auto-ID applications, we
analyze applications of different domains such as consumer object identi-
fication market, industrial automation, mobile asset and supply chain
management, traditional applications such as livestock tracking, ski tick-
eting, or toll collection, and novel and envisioned applications such as
smart spaces enabled by Auto-ID technologies.

Coming from the application analysis we derive a list of Auto-ID appli-
cation requirements that a system should fulfill to facilitate the develop-
ment of Auto-ID applications. Based on these requirements, the Auto-ID
Object Model and the OMS were designed and implemented.

To evaluate the proposed Auto-ID model and visual tool-based ap-
proach, we applied the Auto-ID application development process to dif-
ferent applications and evaluated it:

1. The Smart Medicine Shelf is an automated shelf in hospitals that
keeps track of different kinds of medications that require different
conditions (e.g. certain vaccines have to be cooled) and require dif-
ferent access rights (e.g. a nurse is not allowed to access certain
drugs).

2. The retail store supply chain application provides support for the lo-
gistical management of a retail store (e.g. keep track of incoming and
sold goods, automatic replenishment of products in the sales area,
control of temperature in freezers, etc.).

3. The tool management in aircraft maintenance application keeps track
of tools and parts in an aircraft maintenance environment and in-
cludes the Smart Toolbox and Automated Tool Inventory applica-
tions.

4. The Augmented Knight’s Castle application is a pervasive compu-
ting playset which enriches the child’s pretend play by using back-
ground music, sound effects, and verbal commentary of toys that
react to the child’s play.

1.3. Thesis Outline

In the second chapter, we provide an overview of several Auto-ID and
sensor technologies (including barcode, RFID and Bluetooth) with an
emphasis on RFID. We briefly discuss the technological principles of op-
erations insofar as they are important to the contribution of the thesis.

 25

The application scenario of a pharmaceutical supply chain is described
in the third chapter. Based on this scenario we derive system require-
ments for the building blocks to support Auto-ID application development.

The fourth chapter presents the Auto-ID Object Model and the services
related to it. We begin by introducing the object model and argue that it is
a sufficient model to abstract from RFID specific details. We continue by
describing the details of the model and the services that a component im-
plementing the model has to provide. In addition, the Auto-ID based mi-
cro business processes that the model provides are presented. We finally
discuss possible approaches in the implementation of the described model
to provide a scalable and performing infrastructure and present an overall
design of such an infrastructure called the Object Monitoring System
(OMS). The related work section of this chapter describes related ap-
proaches including the work of the Auto-ID Center at MIT (i.e., the EPC
Network), Auto-ID Infrastructures, database-centric approaches and ubi-
quitous computing infrastructures.

In the fifth chapter we give an overview of visual and generative pro-
gramming concepts and propose a visual tool approach to the instantiation,
configuration and management of an Auto-ID infrastructure. We present
the visual “all-in-one” tool, describe its concrete representation of the ap-
plication, its roles in the instantiation, configuration and management
process, and argue for its usage instead of ‘manually’ configuring and
managing an infrastructure. The design of the visual tool is discussed tak-
ing state-of-the art end-user programming concepts into account. In addi-
tion, the tool includes application generation and deployment concepts
that are also discussed in detail.

The sixth chapter presents several case studies from different applica-
tion domains as a proof-of-concept of the presented work. For each case
study, the Auto-ID application development process is sketched and com-
pared to a traditional approach to argue for the effectiveness of the pre-
sented model, tool and process. The analyzed Auto-ID applications are:
The Smart Medicine Shelf, the tool management in aircraft maintenance
application including the Smart Toolbox and Automated Tool Inventory
and the Augmented Knight’s Castle.

In the seventh chapter we draw the conclusion and provide an outlook
to further work.

26

 27

2. Auto-ID Technologies

Several technologies exist that allow identifying physical objects, animals
and human beings automatically. Commonly used contactless Auto-ID
technologies are barcode and RFID, however, other wireless technologies
that provide a unique id have been used such as infrared communication
(IrDa), Bluetooth, ZigBee or wireless LAN (WLAN).

Auto-ID and Sensor-Technologies

Physical world

C
os

t o
f d

at
a

en
try

Punch card Keyboard Barcode

Manual measuring Machine sensing

Digital World
(e.g. Information systems)

Figure 2-1 Bridging the media gap between the physical and digital
world (based on [62])

A major focus of using Auto-ID technologies is the avoidance of media
gaps since they bridge the gap between the real world of physical objects
on the one hand and the digital world in the form of information systems
(e.g., ERP or warehouse management system) on the other (see
ure 2-1) [62]. The consequences include lower error rates, higher process
efficiency, enhanced product quality and cost savings thanks to faster and

28

better information processing. Moreover, Auto-ID technologies provide
the basis for many other applications which go beyond simple identifica-
tion such as continuous cold chain monitoring using sensor technology or
the real-time localization of objects in production or logistics processes.

Historically, barcodes have been in use in the US since 1974 and in Eu-
rope since 1977 and were the first commercial Auto-ID technology that
has been used in retail and logistics to identify products. Generally, bar-
codes are used to only identify product classes; however, standardized
barcode extensions also allow identifying product instances. RFID tech-
nology has been used since 1966 only for electronic article surveillance
(EAS) and since 1979 to identify animals. Further RFID applications in
the 1980ies and 1990ies were car toll systems, car immobilizers, access
control (including ski lifts) and first payment applications. The last couple
of years, the field of RFID application is now increasingly expanding.
The increasing usage of RFID over barcode is also due to the many bene-
fits of RFID compared to barcode technology. The public discussions of
RFID transponder technology promoted by the Auto-ID Center and the
planned use of RFID in the supply chains of retail companies (e.g., Wal-
Mart and Metro) or in the logistics processes of the US Department of
Defense have led to a growing emphasis on the potentials of this technol-
ogy for improving business processes.

2.1. Barcode Technology

The barcode technology was commercially introduced through the Uni-
form Product Code (UPC) Council, which later became the Uniform Code
Council (UCC). The European Article Association, today known as EAN
International, was founded with the objective to develop a barcode system
compatible to the system by UCC that should be used outside North
America. Most application today using barcode are based on the
EAN.UCC barcode system.

Two types of barcodes exist: (i) Linear barcodes (i.e. 1-dimensional
barcodes) that are mainly used to store article numbers and are printed on
product packages and (ii) 2-dimensional barcodes that can store more in-
formation and used, for example, in document management and ticketing
applications.

Both 1-dimensional and 2-dimensional barcodes are used world-wide to
identify products, packages and transportation units along supply chains.

 29

EAN-13 is the barcode symbology that is most widely used in Europe, for
instance, to scan products at the point-of-sale (POS). From January 1st
2005 on, all American and Canadian companies that are members of UCC
have to be able to also read EAN-13 barcodes. 2-dimensional barcodes
are mainly used in applications that require coding more data than simple
identification numbers, for example, a shipping address.

The EAN.UCC system is managed by the standardization organization
GS1 [6] and provides world-wide unique numbers for the identification of
the following types of objects along the supply chain:
• Goods and services (Global Trade Item Number)
• Shipping containers (Serial Shipping Container Code)
• Reusable containers, packages and pallets (Global Returnable Asset

Identifier)
• Objects (Global Individual Asset Identifier)
• Service relationships (Global Service Relation Number)
• Locations (Global Location Number)

UPC-A UPC-E
>

EAN-13
><

EAN-8

0 6 1 1 0 1 2 3 4 5 6 7 8 4

UCC/EAN-128
(01) 28880123456788

ITF-14

RSS-14 RSS-14-Stacked RSS Limited Composite
Symbol mit CC-A

Figure 2-2 Barcode types of the EAN.UCC systems

These identification numbers are encoded in barcodes commonly using
the following five symbologies: EAN/UPC, ITF-14, UCC/EAN-128, Re-
duced Space and EAN.UCC Composite and Data Matrix [78]. A symbol-
ogy describes the rules that define the coding of a number using the
graphical symbols of barcodes (i.e. the lines and gaps). The symbologies

30

for 1-dimensional barcodes of the EAN.UCC system that differ in the
number of ciphers and the coding schema are shown in Figure 2-2.

The differences of the existing 2-dimensional barcodes are
• the area of application for which they have been developed,
• the number of bits that can be coded,
• the robustness towards errors, and
• the quality of the hardware that is needed to read them.
Some of the 2-dimensional barcodes have been standardized by

ISO/IEC such as Data Matrix, MaxiCode, QR Code, und PDF417 (see
Figure 2-3). All these codes have a variety of options and features, for ex-
ample, several variants for error correction.

Figure 2-3 ISO/IEC standardized 2-dimensionale barcodes

2.2. RFID Technology

The following sections give a technical overview of RFID technologies.
A more detailed technical presentation of RFID technology is given in [61,
157, 98].

2.2.1. RFID System Components and Operating Principles
A typical RFID system comprises three components: the RFID reader
with the coupling unit (i.e. coil or antenna), the RFID transponder(s) and
the host with the application using the RFID data (see Figure 2-4).

The reader, which is connected to the host via a serial or network con-
nection, serves depending on the specific RFID system solely as a reader
or as a read/write unit if the transponders contain user memory. The ap-
plication on the host sends commands and data to the reader which after
executing the commands sends the return data back to the application.
Examples for commands are “read all identification numbers of all trans-
ponder that are in the read range” or “write the following data in the user
memory of the transponder with the following ID”.

 31

The reader encodes and modulates the commands on an alternating
magnetic respectively electro-magnetic field. For passive and semi-
passive transponders the field is not only used to transmit data but also the
energy to power the microchip of the transponder. Active transponders
have their own batteries as energy source.

All transponders that are within the field and read range of the reader
receive the transmitted commands and data and then demodulate and de-
code them. After executing the command they transmit the return data
back to the reader using the field.

RFID
transponder (2)

host / application

coupling unit
(coil or antenna)

data

com
m

ands

RFID
transponder

RFID
transponder

RFID
reader

(1) for passive and semi-passive transponders only
(2) contains unique ID and optional user memory

Figure 2-4 Operation principles and components of an RFID system

The common operating principle for RFID technology is to use an al-
ternating magnetic respectively electro-magnetic field to exchange infor-
mation between the reader and the transponders. There are two different
underlying technologies used: conductive coupling and backscatter coupl-
ing. Conductive coupling is based on the principle of induction, that
means, the reader creates with its coil an alternating magnetic field that
induces a current in the coils of the transponders. The transponders use
the same field to transmit information back to the reader. Backscatter
coupling uses an electro-magnetic field that is created using the antenna
of the reader. Such an electro-magnetic wave propagates in the space and

32

induces a current in the antennas of the transponders. The transponders
use the reflected wave to transmit information back to the reader.

The operating frequencies of most RFID systems lie within the license-
free ISM bands (Industrial-Scientific-Medical) which are made available
worldwide for industrial, scientific and medical applications. In addition,
there is the frequency range below 135 kHz and around 900 MHz. This
means that the typical operating frequencies of an RFID system fall with-
in the following four ranges:

• 100–135 kHz (low frequency, LF, inductive coupling)
• 13.56 MHz (high frequency, HF, inductive coupling)
• 868 MHz (Europe) / 915 MHz (USA) / 950–956 MHz (Japan,

planned) (ultra-high frequency, UHF, backscatter coupling, first
systems using inductive coupling)

• 2.45 GHz and 5.8 GHz (microwave, MW, backscatter coupling)
Regulations impose further restrictions on the operation of RFID sys-

tems within the authorized frequency bands. The regulations state the
maximum permitted transmission powers or field strengths, permitted si-
debands and standardized measurement methods. The frequencies in the
range around 135 kHz and 13.56 MHz are available for RFID systems
worldwide. This is not the case with frequencies in the UHF range where
efforts are being made to harmonize regulations in order to permit world-
wide operations of UHF RFID systems.

A transponder typically consists of a microchip and a coupling unit.
Depending on the different technology the coupling unit is either a coil
(for conductive coupling) or an antenna (for backscatter coupling). The
unique identification number of the transponder is stored in a memory
block of the microchip. The identification number can be written during
manufacture in the factory or later prior to initial use. In addition to trans-
ponders that only contain an identification number, most transponders in
use also contain additional user memory which can be written and read.
The range for write access is usually shorter than for read access as the
former consumes more energy. For applications that require storing more
complex data and keeping it secure, transponders with more complex
memory structure and security features exist. The user memory of such
RFID transponders is usually split into sections for which access can be
regulated by means of codes or challenge response methods.

Many different forms and materials are used for transponders depending
on the specific RFID technology and application domain. Examples are so

 33

called “smart labels” which are placed on an adhesive foil to easily attach
them to products and packages, or transponders that are packaged in spe-
cial plastic to be resistant against acid. Figure 2-5 shows a selection of
different types of transponders (a. LF transponders in glass capsules for
animal tracking, b. standard HF smart label, c. UHF transponder with di-
pole antenna, and d. UHF transponder with two folded dipole antenna).

a.

b.

c.

d.

e. f.

h.g.

Figure 2-5 Different types of RFID transponders and readers

The form and size of the reader depends mainly on their coupling unit,
that means, the technology used. Mobile readers are components where
the reader, coupling unit and host with application are integrated and
packaged together to be handled by a person for mobile readings of trans-
ponders typically with lower read ranges (see Figure 2-5, e.). Standard
readers are typically packaged in an industry conform casing and an ex-
ternal coupling unit (see Figure 2-5, f.). To be able to read a large number
of transponders, for example packages or products on a pallet at incoming
goods, the coupling units of a reader can be arranged to a “gate” which
also increases the read range. In a similar way the coupling units of a
reader (especially for HF) can be arranged to form a “tunnel” where the
transponders move through. The magnetic field strength inside the tunnel
can be much higher that commonly used since the tunnel shields the field
which leads to higher detection rates.

34

RFID systems can be divided into three categories, based on the typical
read range: systems which operate up to a range of 1 cm are referred to as
close coupling systems. They work with inductive coupling and are main-
ly used in security-related applications such as access control systems or
payment systems. Remote coupling systems also work with inductive
coupling but in a distance range of up to one meter. Depending on appli-
cation, the operating frequency is typically 135 kHz or 13.56 MHz. Sys-
tems with a range of more than one meter are called long-range systems.
They typically operate with operating frequencies of 868/915 MHz or 2.5
GHz. However, various manufacturers also refer to RFID systems with a
range of up to a meter as long-range systems. Generally speaking, the
achievable read range depends on a large number of factors (among other
operating frequency, size, shape and quality of the RFID transponder’s
antenna and ambient conditions). It is therefore difficult to compare the
read ranges of different RFID systems. Under ideal conditions, an RFID
system operating in the UHF band can achieve a read range of 5 to 7 m.
Under real-life conditions this range is only seldom achieved. For semi-
active RFID systems the read range is up to 15 m, for active systems up to
100 m. LF and HF systems have a typical read range of 1-1.5 m. In com-
parison with UHF systems, however, they are less susceptible to interfe-
rence through ambient conditions.

The strengths of RFID, particularly in comparison with the barcode, are
to be found in the fully automatic, simultaneous detection of several RFID
transponders, with no line of sight required between reader and RFID
transponder. This means that RFID transponders can be embedded in ob-
jects without them being visible from the outside, thus enabling their use
in extreme conditions such as dirt or heat. A higher read range is also
possible than is the case with barcode scanners; furthermore, information
on an RFID transponder with memory can be changed while in use, which
is not possible with a barcode.

2.2.2. RFID Standards
The various standards for RFID can be classified in the following three
categories: Air-interface standards, tag data standards and reader-host in-
terface standards.

Air-interface standards specify the interface between RFID transpond-
ers and readers and are intended to ensure that the RFID transponders and
readers of different manufacturers can communicate with one another. For

 35

this purpose, the standards define not only the physical layer with carrier
frequency, encoding, timing, modulation technique and data transmission
rates but also the multiple-access method and the command set. The ap-
propriate standardization efforts have largely been undertaken by the Joint
Technical Committee 1 (JTC1) of the International Standards Organiza-
tion (ISO) and the International Electrotechnical Commission (IEC) as
well as more recently by EPCglobal Inc., the successor organization of
the Auto-ID Center.

In the HF frequency band, the standards are ISO 15693, ISO 14443 and
ISO 18000 Part 3. In addition, EPCglobal is developing a standard for HF.
In the UHF range there are the following two standards: ISO 18000 Part 6
and EPCglobal UHF Class 1 Generation 2 [57]. Alongside the standardi-
zation efforts in the HF and UHF ranges, there are also standards for the
LF and MW frequency ranges under ISO 18000. Here, the LF section
largely corresponds to the earlier standard ISO 11785 and its further de-
velopment ISO 14233.

As far as tag data standards for RFID transponders are concerned, a ba-
sic distinction can be drawn between two different approaches. In all parts
of ISO 18000 the individual RFID transponder is designated by a unique
identification number which is already written onto the RFID transpond-
er’s microchip during the manufacturing process. Information on the
product designated by the RFID transponder can be stored in the RFID
transponder’s memory by the user, while the size of the memory is varia-
ble and only the maximum value is specified (e.g. 8 kB for ISO 18000
Part 6 Mode A). The RFID transponders which meet one of the specifica-
tions of the Auto-ID Center or its successor organization EPCglobal
merely contain a unique identification number, the “electronic product
code” (EPC), but no additional memory. Information on the product to
which the RFID transponder is fixed, such as e.g. manufacturer’s code,
product type and serial number, is encoded in the EPC itself [50].

Reader-host standards relate to the communication between reader and
IT infrastructure. Within the framework of EPCglobal, the Reader Proto-
col [56], Reader Management [55] and Low Level Reader Protocol
(LLRP) [53] standardize in different ways the access to readers for appli-
cations. The LLRP, which allows more control over the underlying reader
hardware and air-interface, is currently the preferred protocol by
EPCglobal and reader hardware manufacturer and will succeed the Reader
Protocol.

36

2.3. Other Wireless Auto-ID Technologies

In addition to the most prominent Auto-ID technologies, other wireless
communication technologies that provide a unique ID can be used for the
purpose of identification. Potential technologies widely available are
infrared communication (IrDa) [7], Bluetooth [2], ZigBee [19] or wire-
less LAN (WLAN) [17].

A “tag” using such a technology could simply be the communication
unit itself built into another device (e.g. a cell phone or a notepad) or a
special “active tag” hardware that includes the communication unit. Exist-
ing sensor nodes or special modules such as the BTnode [27] (using Blu-
etooth), the Tmote [15] (using ZigBee) or the Epsilon Wi-Fi module [5]
(using WLan) can easily be utilized as “active tags” (see Figure 2-6 and
also Section 2.4). Using RFID terminology, a reader for such tags is a
base station using the same communication technology and special soft-
ware that manages the discovery of the tags.

(a) (b)
Figure 2-6 BTnode (a) and Tmote (b) sensor nodes (from [3] and [15])

Since the different technologies have their advantages and drawbacks,
applications have to select a technology depending on their specific re-
quirements. Bluetooth and WLAN (i.e., communication standards based
on IEEE 802.11) have the disadvantage of high energy consumption since
the communication unit has to be active for a reader to discover these
units. However, Bluetooth provides sleep modes to reduce energy con-
sumption and has been successfully used as communication technology
for sensor nodes [91]. Another drawback of Bluetooth is the discovery
protocol which can take up to several seconds to discover and connect to
a tag. Moreover, the reader can keep connections to only 7 units at a time
and connection switching has to be performed for more units.

 37

ZigBee (resp. the underlying communication protocol IEEE 802.15.4)
has the advantages of very low energy consumption and a simple and fast
discovery protocol. In addition, a ZigBee unit can easily connect to 65535
other units. The drawback of ZigBee is the low data transfer rate if large
amounts of data have to be transmitted.

Infrared as a communication technology has the drawbacks of necessary
line-of-sight, low read range and narrow read angle, and susceptibility
towards artificial light. Infrared is therefore limited for applications with
few tags in close proximity to a reader.

2.4. Sensor Technology

Sensor technology in addition to or in combination with Auto-ID technol-
ogy provides a means to automatically obtain environmental information
about the world of physical objects to be stored in the virtual world of in-
formation systems. Many applications such as supply chain management
benefit from environmental information that is connected to locations,
goods or transportation units. For example, knowing that the temperature
of a chemical for IC production left a well-defined temperature range dur-
ing transportation, or knowing that a container was dropped or opened
during transportation can save production and logistics costs. For simple
environmental information such as temperature, sensors bridge the media
gap leading to more accurate and detailed data in the information systems.
Moreover, sensors allow measuring environmental parameters that could
otherwise not be acquired.

Results coming from engineering fields such as micro system technolo-
gy and nanotechnology lead to new advances in short range sensor tech-
nology. The size of sensors is further reduced and the environmental pa-
rameters that sensors can measure lead from typical physical values such
as temperature, light or acceleration to sensors that are able to detect gases
and liquids. Moreover, new generations of sensors are able to report their
measurements wirelessly using energy from an electro-magnetic field in
their environment [112]. Sensors can also be incorporated directly into
RFID tags, for example a humidity sensor build into an EPCglobal Gen2
transponder [161].

The three fields that contribute to the overall functionality of a sensor
are: Sensor structure, manufacturing technology, and signal processing
algorithms [89]. The advances in sensor technology can therefore be attri-

38

buted to the technical progress in these three fields. As Kanoun et. al.
states, “in the last years, a significant upturn is observed in these fields
involving a great potential for completely novel approaches of sensors
and sensor systems” [89].

According to Singh [140], the following development trends contribute
among others to the advances in the field of sensor technology:

• Microelectromechanical systems (MEMS) technology to develop
new forms of sensing.

• Developments in the electronics area lead to miniaturization and
ruggedization of sensors increasing the potential application areas.

• Incorporation of intelligence into sensors (e.g., microprocessor/ mi-
crocontroller- or chips-based) enables preprocessing and smarter
sensing such as real-time processing already on the sensor platform.

• Networking of sensors enables collaborative and smarter sensing.
• Standard evolution such as the IEEE 1451 sensor standard family

[108, 110] enables plug and play of sensor platforms and leads to a
greater adoption of sensors.

Networking of sensors emerged to an own research field of sensor net-
works. A sensor network consists of sensor nodes that form a virtual wire-
less network to collaboratively measure different environmental parame-
ters and perform processing of sensor data. Sensor nodes are devices that
combine sensing, computing and wireless communication capabilities.
Typically, they consist of an embedded microcontroller platform, a radio
transceiver with antenna, different types of sensors and a battery (see Fig-
ure 2-6 for two typical sensor node hardware). The topology of the net-
work and other properties depend highly on the application the network is
used for [59, 84]. The main application areas for sensor networks are:
Species and environmental monitoring, agriculture and farm-animal
monitoring, intelligent environments, production, logistics and asset
tracking, facility management, military, and disaster relief [90, 128].

 39

3. Auto-ID System Requirements

The following paragraphs outline a supply chain scenario – a pharmaceut-
ical supply chain with a pharmaceutical manufacturer, a distribution cen-
ter and a drug store (see Figure 3-1) – that represents common applica-
tions of Auto-ID technology. Emphasis is given on the distribution center
(see Figure 3-2). We use this scenario and the use cases to derive and illu-
strate the system requirements that an Auto-ID infrastructure should ad-
dress.

Figure 3-1 Auto-ID usage in a medical supply chain scenario (source:
EPCglobal)

40

Pharmaceutical goods are produced and shipped to the distribution
center. When leaving the manufacturer, the goods are identified by read-
ers at the dock doors for outgoing shipments, checked that the shipment is
complete and correct and an advance shipping notice (ASN) is generated
for the distributor.

The goods arrive at the distribution center and are identified by the
readers at the dock door for incoming goods. In addition to the IDs, state
about the goods such as temperature during transport is received from
sensors on the cases. The captured information is processed and the
shipment is checked for completion and correctness using the information
of the ASN. Aggregated information is then transmitted to enterprise re-
source systems. The goods are placed in the warehouse, where readers
regularly scan the inventory and monitor the state of the goods. At regu-
lar intervals the inventory counts of the corresponding product categories
are updated in the legacy warehouse management (WM) systems. If the
state of certain goods is invalid, warehouse staff is notified to check and
correct the conditions.

Goods for drugs and retail stores are picked from the warehouse and
packed at the corresponding pick and pack station. A reader monitors the
tagged items currently packed so that a local application can support
staff with a near real-time comparison of items actually packed and the
items on the pack list.

Before the shipments are loaded into the trucks at the loading dock, they
pass a reader that scans the tag on the pallet and passes this information
to the supply chain management system, which sends an ASN to the reci-
pient of the shipment. On a nightly basis, all tag IDs of the items packed
and shipped are transmitted to the healthcare authorities to comply with
pedigree legislation.

To maintain an adequate service level, the readers report exceptions to
a remote system monitor. Auto-ID system integrators can inspect a confi-
guration of a reader and reconfigure reader devices remotely.

Based on an analysis of different Auto-ID applications including the

above and the study of other work on Auto-ID/RFID middleware [28, 38,
66, 129, 131], we identified the following high-level system requirements
an Auto-ID infrastructure should meet.

The system requirements are related to and dependent on each other
(see Figure 3-3) and can be roughly categorized into the following two

 41

groups: System requirements dealing with “low-level” Auto-ID issues,
that means, issues that are concerned with Auto-ID reader and data man-
agement (Requirements (R11) to (R18)) and system requirements dealing
with “high-level” Auto-ID issue, that means, issues that are dealing with
Auto-ID data organization and enrichment, which is closer to the applica-
tion domain (Requirements (R1) to (R10), (R19) and (R20)).

The system requirements are further refined and specified in the Auto-
ID infrastructure concepts and the Auto-ID Object Model which are pre-
sented in section 4.

Figure 3-2 Auto-ID readers in a distribution center feeding captured da-
ta to different applications (source: EPCglobal)

(R1) Object Representation
Applications that deal with physical objects or human beings that are au-
tomatically identified are commonly not interested in Auto-ID specific
details such as readers, tags or tag memory; instead they would like to
deal with representations of the physical objects. The system should
therefore provide an object representation of the physical objects in which
an application is interested. The system has to keep the object representa-
tion in sync with the corresponding physical objects in the real world.

42

Physical objects that are monitored by an Auto-ID system are for exam-
ple products that move through a supply chain such as the drugs in the
scenario above, movable assets such as reusable containers or pallets, or
animals on a farm. Human beings could be monitored for access control
or security reasons, or in healthcare environments such as hospitals or old
people’s homes.

(R2) Object Persistency
The objects in the system that represent the physical objects with their da-
ta have to be stored persistently to keep a history of objects and allow ap-
plications to query the data. For example, to detect counterfeit drugs the
SCM application queries the system to retrieve the track and trace infor-
mation about certain drugs in question from production to their current
location. If the trace is not valid or broken, the drug could be a potential
counterfeit. The system has to provide both a persistency mechanism for
the object representations and a query mechanism for the application to
retrieve persisted data.

(R3) Object Relationships
Many applications are interested in information related to several objects
in a certain relationship. One important relationship is the neighboring ob-
jects relationship, i.e. objects are neighbors if they are together at the
same location. A chemical monitoring application might, for example, be
notified when containers with hazardous chemicals are stored together in
a room.

Another important relationship is the containment relationship, that
means, objects that are contained in another object. Examples for con-
tainment are pharmaceutical goods that are contained in a shipping case
or retail items in a shopping cart.

(R4) Location Information
The system has to provide a mechanism to enrich Auto-ID and sensor da-
ta with location information since applications are interested in locations
of objects, for example, when a certain object was at a certain location.
The query of a track and trace application should return a list of times, lo-
cations and object states for that given object.

 43

For many applications, symbolic location names (e.g., “incoming goods
dock door 110” to specify the location of the dock door number 110 of the
incoming goods section) are sufficient in the business context definitions.
Since the symbolic location names have to be manually defined for an ap-
plication, the system has to provide mechanisms to add and modify the
location names.

(R5) Object Identification
Object representations in the system have to be automatically synchro-
nized with the physical objects they represent via Auto-ID and sensor
technologies. The object representation should reflect the physical objects
in near real time to allow applications quick interactions with the physical
world. The system has to support different Auto-ID and sensor technolo-
gies and needs to be designed in a way to allow integration of future tech-
nologies.

(R6) Object Identifier
Physical objects have to be uniquely identified in object representation of
the system. A variety of identifier schemes are possible ranging from
simple numbers to article or product numbers, to symbolic names. The
system has to support different numbering schemes; however, the num-
bering scheme has to be meaningful to the application.

To automatically determine the ID for a physical object, the ID stored in
the memory on the Auto-ID tag can be used, either directly or by translat-
ing the ID to an object ID. One prominent example for an object identifier
schema is the electronic product code (EPC) [50] that comprises three
parts, namely the product manufacturer ID, the product type ID, and the
serial number. The EPC is available in different representations. This in-
cludes a representation that is suitable for storage in tag memory as well
as representations as uniform resource locators which can be easily
processed by applications and humans. To convert between the different
representations, a tag identifier translation mechanism is required [51].

(R7) Object Data Enrichment
In many cases, identified objects can be enriched with additional related
data that is of interest to the applications. This could, for example, be in-
formation about the color, size or weight of a product, an expiry date for a

44

drug, the current temperature inside of a container, or the number of usag-
es of a tool. The additional object data should be retrieved from different
sources such as databases, dynamically provided by sensors, or even
stored on memory of the tag attached to the object. The information can
be specific for an object class or an object instance, and it can stay the
same or change over the life cycle of a physical object (i.e. static or dy-
namic information).

(R8) Physical World Interaction
The system has to provide the means to allow applications the interaction
with the physical world. In addition, it has to provide the means to allow
the physical world to trigger functionality in the system respectively the
system to react to certain conditions in the physical world.

(R2) Object
Persistency

(R7) Object Data
Enrichment

(R4) Location
Information

(R3) Object
Relationships

(R16) Sensor
Support

(R6) Object
Identifier

(R11) Auto-ID Data
Aggregation

(R12) Auto-ID
Data Filtering

(R15) Tag
User Memory

(R18) External
Reader Triggers

(R13) Fault/Config.
Management

(R19) Loose
Coupling

(R14) Tag Identifier
Management

(R17) Actuator
Support

(R8) Physical
World Interaction

(R9) Bus iness
Context Enrichment

(R1) Object
Representation

(R5) Object
Identification

(R10) Data
Dissemination

(R20) Configurability

Figure 3-3 Overview of Auto-ID infrastructure requirements including
their dependencies

(R9) Business Context Enrichment
The dynamic changes in the object representation of the physical objects
correspond to the changes in the physical world. Many applications are
not interested in all these changes but only in exceptional states related to

 45

objects, their properties and relationships. Examples in the presented sce-
narios are the completion of an incoming shipment, reaching the expiry
date of drugs in a shelf, or exceeding a temperature threshold inside a cool
truck.

The system has therefore to provide a mechanism that interprets the
captured Auto-ID data respectively the object representation in specific
business context over time.

(R10) Data Dissemination
Many benefits commonly associated with Auto-ID require data sharing
across the supply chain [22]. The information in the object representation
and the data enriched by the business context is usually of interest not on-
ly to a single application, but to a diverse set of applications across an or-
ganization and its authorized business partners.

The data must thus be broadcast to the entities that indicated an interest
in the data, such as the SCM system. Due to the event-driven nature of
many processes monitored with the help of Auto-ID systems, there is a
need to support asynchronous messaging as well as a query-response
model. In the example above, the health care regulatory authority ex-
ecutes a daily query to retrieve data, whereas the pick and pack applica-
tion is notified asynchronously whenever a new package of drugs arrives.
Different applications also require different latencies. Applications that
need to respond immediately to local interaction with the physical objects,
such as the pick and pack application, require short notification latency
that is comparable to the observation latency. Legacy applications that are
not designed to handle streaming data might need to receive batched up-
dates on a daily schedule.

(R11) Auto-ID Data Aggregation
Auto-ID systems generate a significant amount of data that can be aggre-
gated in a number of different ways. Auto-ID data can be aggregated in
the time domain, e.g., by generating entry and exit events, and in the
space domain, e.g., by combining data from different readers and reader
antennas that observe the same location or by detecting the movement of
a tagged object.

In our scenario, a single dock door could be monitored by two Auto-ID
readers. The Auto-ID events are aggregated and the original reader ID is

46

replaced by the ID of a logical reader that was defined for the dock door
location. Since Auto-ID permits identification at the instance-level rather
than at the class-level, there is also the possibility to report the quantity of
objects belonging to a specific category. This kind of an aggregation is
needed for those legacy IT systems that cannot handle instance-level data.

(R12) Auto-ID Data Filtering
In addition to aggregation, filtering can greatly reduce the amount of data
that is generated. Different applications are interested in a different subset
of the total data captured, based on the reader, reader antenna, and tag in-
volved. In the supply chain scenario, certain application might only be in-
terested in tags attached to pallets that can be filtered using the tag type.

(R13) Fault and Configuration Management
The proliferation of readers and sensors mandates fault and configuration
management. This includes monitoring the health of Auto-ID readers and
accessing the Auto-ID reader configurations remotely. The result is that
Auto-ID readers can be integrated into IT service management, just like
any other computing hardware.

(R14) Tag Identifier Management
Auto-ID permits the unique identification of objects through the identifi-
cation of a tag attached to that object. The object can therefore be identi-
fied either by an object identifier stored in the memory on the Auto-ID tag
or an ID that is unique for the tag. Different numbering schemes exist for
such identifiers and have to be supported by the system.

(R15) Tag User Memory
Many tags feature not only memory space for an identifier, but for addi-
tional data. The system should thus provide means to write to and read
from this additional memory. This additional memory can then be used to
store application or object data such as expiry dates in order to facilitate
data exchange where no network access is available.

 47

(R16) Sensor Support
In many applications it is not sufficient to only identify objects. The cur-
rent state of the objects in the physical world has also to be detected. This
is important for many types of goods such as perishable goods that have
to be cooled, drugs that have to stay within a predefined temperature
range, chemicals that should not be exposed to light, or fragile goods that
easily break if not handled with care. The system has thus to provide the
means to integrate sensors such as temperature, humidity, light or shock
sensors, process their data and make the object state accessible by the ap-
plications.

(R17) Actuator Support
Applications often have to quickly interact with the physical world using
different kinds of actuators. For examples, a smart medical shelf applica-
tion has to keep a shelf with anesthetics locked if an unauthorized person
identifies himself and only unlock the shelf for an authorized medical
doctor. Other examples are actuators to give feedback to users such as
traffic lights to signal the state of a shipment to a fork lift operator.

(R18) External Reader Triggers
In many applications, there is no need to operate Auto-ID readers conti-
nuously. Due to the limited bandwidth available, it is even undesirable to
have readers transmit, while no tags are present [66]. To initiate the tag
inventory process at a reader when there are tagged objects arriving in the
read range, external sensors, such as motion sensors, should thus be able
to trigger the readers. In our example, the readers at the dock door only
operate when items enter their read range. The arrival is detected by a mo-
tion sensor in front of the dock door.

(R19) Loose Coupling of Components
The setup of an application scenario involves a variety of different kind of
components, both physical components such as readers or sensors and
software components such as databases, low level and high level Auto-ID
data processing and persistent data storage, and ERP systems. During run-
time some of these components might get unavailable or new components
are added. In order for the system to be flexible, the system and the com-
ponents should be loosely coupled.

48

(R20) Configurability of System
Since the setup of an application scenario involves configuring and in-
stantiating a variety of different kind of components, both physical and
software components (see also section (R19)), the system has to provide
the means to easily configure a complete application setup and instantiate
all components. Application domain experts, i.e., non-software engineers,
should be able to perform such a configuration and instantiation.

(R21) Privacy
The intended deployment of Auto-ID-based tracking solutions in today’s
retail environments epitomizes for many the dangers of an Orwellian fu-
ture: unnoticed by consumers, embedded tags in our personal devices,
clothes, and groceries can unknowingly be triggered to reply with their ID
and other information, potentially allowing for a fine-grained yet unobtru-
sive surveillance mechanism that would pervade large parts of our lives
[72, 106].

An Auto-ID infrastructure should consider these consumer fears and the
legal guidelines that apply for data collection. If Auto-ID communication
protocols support dedicated privacy enhancing features [70], the Auto-ID
infrastructure will also need to support their use. Requirements concern-
ing privacy are not part of the scope of this thesis and are discussed in
great detail in [72, 105, 106].

(R22) Other Application Requirements
Other application requirements, for example requirements that relate to
security and scalability, are not discussed here in detail, since they are not
unique to Auto-ID system design.

 49

4. Auto-ID Infrastructure Concepts and Im-
plementation

An Auto-ID infrastructure consists of Auto-ID readers, sensors and ac-
tuators that are deployed in an application context, for example, across
the different locations of interest in a supply chain. The filtering and ag-
gregation of the captured data (i.e. the Auto-ID tag observations and the
measured physical properties of the sensors) and the management of the
readers and sensors are the responsibilities of the Filtering and Aggrega-
tion layer. Different filter and aggregation concepts components [28, 53,
47, 13, 66, 67, 131] guarantee that only relevant data is provided to the
higher layers resp. the applications. Figure 4-1 shows the different layers
of an Auto-ID infrastructure including their relationships.

Filtering and Aggregation provides many concepts that facilitate the de-
velopment of Auto-ID applications. However, the level of abstraction is
still close to the concepts of Auto-ID readers and sensors. As stated in the
system requirement (R1), applications are commonly not interested in Au-
to-ID specific details.

It is therefore important to provide appropriate abstractions and repre-
sentations of Auto-ID and sensor specific details and offer the necessary
services, support for simple application logic and the appropriate level of
reuse to bring the development of Auto-ID applications on the next level.
This would allow system and domain engineers to build Auto-ID applica-
tions and reduce the need for custom software development to a minimum.

In an overall architecture of an Auto-ID infrastructure we therefore pro-
pose the Data Enrichment, Representation and Persistency layer that pro-
vides application-level support with abstractions appropriate for many
Applications and Information Systems. The responsibilities of this layer
can be grouped into the following main categories (see Figure 4-1):

• Enriching Auto-ID data with business logic (e.g., location informa-
tion or information about the state of a physical object)

50

• Providing adequate representation of data for an application (e.g. as
physical objects with their relationships)

• Keeping a data history (i.e., persistency of data) including query
capabilities which is important for track and trace applications

• Providing Auto-ID related business process support to allow fast
processing of the data in a business workflow

Filtering and Aggregation
Filtering and aggregation of Auto-ID and sensor data
Management of readers and sensors

Readers
Identify tags
Access tag user memory
Filtering on air-interface

Data Enrichment, Representation and Persistence
Enriching Auto-ID data with business logic
Providing adequate representation of data
Data persistence
Auto-ID related business process support

Applications and Information Systems

Sensors
Measure physical
properties

Actuators
Physical world
interaction

Figure 4-1 Layers of Auto-ID infrastructure

Since the Filtering and Aggregation layer is the base of the higher layers,
the filtering and aggregation concepts are shortly presented in section 4.1.
The concepts the Data Enrichment, Representation and Persistency layer
is based on are the Auto-ID Object Model which provides an object repre-
sentation of the physical objects in an application setting including their
properties, containment relationships and the services related to it. The
Auto-ID Object Model (see section 4.3) is based on a symbolic, hierar-
chical location model which is discussed in a short overview of location

 51

models in section 4.1. Based on the Auto-ID Object Model, a state ma-
chine-based model to provide business process support is presented. Sec-
tion 4.4 presents an overview and discussion of an implementation of the
Data Enrichment, Representation and Persistency layer. The related work
in the fields of Ubicomp Infrastructures and Auto-ID middleware is pre-
sented in section 4.5.

4.1. Filtering and Aggregation of Observations

Auto-ID readers and sensors produce an enormous amount of data that is
highly redundant or not of interest to an application or higher layer. By
applying appropriate filtering and aggregation of the data, the amount can
be significantly reduced [38, 121, 23]. The following filtering and aggre-
gation concepts have been developed in cooperation with C. Flörkemeier
and a detailed description in conjunction with a proposal for an imple-
mentation can be found in [66].

For example, a palette with 10 packages of different products that ar-
rives at a dock door that is observed by an RFID reader might reside in
the read range for approximately 10 seconds. Since a typical UHF RFID
reader has tag read rates of up to 1000 tags per seconds [88], the readers
would generate about 100 observations per seconds of the packages. This
would result in approximately 1000 observations during the 10 seconds in
the read range. Since the application is only interested if the packages ar-
rived, filtering out the palette tags and aggregating the tags of the pack-
ages to eliminate duplicate reads can reduce the observations to only a
couple.
Table 4-1 Filter types

Filter by Description
Reader Identifi-
er

This filter type allows the application to specify that it is
only interested in data from a particular set of readers.

Tag Identifier
and Data

The application can define the tag population that it is in-
terested in, e.g., the restriction to tags attached to pallets.

The removal of certain tag observations based on the reader which gen-

erated the observation and the tag data captured is usually referred to as
filtering. Table 4-1 shows the most common filter types. Many readers

52

and RFID protocols support filtering that is carried out on the air interface
for bandwidth considerations.

Aggregation is desired to reduce the flood of raw tag reads to more
meaningful events such as the first appearance of a tag in the read range
and its subsequent disappearance. Aggregation is also needed to address
the problem of temporary false negative reads and to smooth the data ac-
cordingly. The aggregation types we propose are listed in Table 4-2.
Table 4-2 Aggregate types

Aggregate types Description
Observed Over a certain duration all duplicate reads of tags are

eliminated by this aggregate type.
Entry & Exit This aggregate type reduces a number of successful

reads of a tag to the best estimate when the tag appeared
and disappeared from the read range.

Count Applications can prefer to receive information about the
total number of items of a specific category detected ra-
ther than the individual ID of each object.

Passage This observation indicates the direction, in which a
tagged object is moved, as a tag moves from one reader
to another. Applications prefer receiving a passage ob-
servation rather than being forced to interpret a sequence
of entry and exit observations from two individual read-
ers.

Logical Readers When an application does not distinguish between two
readers, this aggregate type allows it to logically join
their read range.

Figure 4-2 gives an example for filtering and aggregation of Auto-ID

data. In the example scenario, the dock door is monitored by two Auto-ID
readers Reader1 and Reader2. The EPCs and a timestamp of the detected
objects are given. The observations of the two dock door readers are
combined into observations of a logical reader DockDoor. Duplicate
EPCs are eliminated by applying the Observed aggregation and the EPCs
of palettes are filtered (in this case EPC 11.49.40). In addition, the quanti-
ties of product categories are calculated.

 53

EPC Timestamp
61.43.10 10:28.22
11.49.40 10:28.23
61.43.15 10:28.24
61.43.10 10:28.24
58.49.20 10:40.12
58.49.28 10:40.12
11.49.40 10:40.13
58.49.28 10:40.13
61.43.20 10:42.10
61.43.25 10:42.10
61.43.20 10:42.12
58.49.32 10:43.12

Reader 1

Dock Door

Filter &
Aggregate

EPC example format: company.productClass.productSerial,
e.g. 61.64.28

EPC Timestamp
61.43.12 10:28.23
61.43.15 10:28.25
11.49.40 10:51.25
61.43.11 10:28.25
58.49.25 10:40.11
58.49.25 10:40.12
58.49.20 10:40.13
11.49.40 10:40.14
61.43.20 10:42.20
61.43.20 10:42.20
58.49.32 10:43.10

EPC Timestamp
61.43.10 10:28.22
61.43.12 10:28.23
61.43.15 10:28.24
61.43.11 10:28.25
58.49.25 10:40.11
58.49.20 10:40.12
58.49.28 10:40.12
61.43.20 10:42.10
61.43.25 10:42.10
58.49.32 10:43.10

COUNT(61.43.*) = 6
COUNT(58.49.*) = 4

Logical Reader

Reader 2 Dock Door

Figure 4-2 Example for filtering and aggregation of observations

4.2. Overview of Location Models

Since many Auto-ID applications are interested in the locations of physi-
cal objects, the concept of location of physical objects takes an important
part in the Auto-ID Object Model. It is important to understand the differ-
ent concepts of location models that exist to be able to better understand
the decision to base the Auto-ID Object Model on a symbolic location
model.

Location models provide the representation of locations of objects. The
representation of spaces, locations and the objects they contain is very
important to location aware systems and Auto-ID application domains.
Location models can be classified in the following four categories: Geo-
metric, symbolic, hybrid and semantic location models as described in the
following sections.

4.2.1. Geometric Location Models
Geometric location models [107] contain points, areas and volumes
represented as n dimensional tuples of coordinates. A point in a geometric
space does not have the relationship to what it points to. A physical model

54

is a geometric model that specifies the position of places or points based
on a global coordinate system [124]. A geometric model can have one or
more reference coordinate systems. In this case the coordinate systems are
not absolute but relative to some reference point. For example, to retrieve
the distance information it is necessary to perform coordinate system
transformations. The accuracy of the information of this model is high,
but the information acquired has to be translated to one of the reference
coordinate systems.

4.2.2. Symbolic Location Models
Symbolic location models [107] identify locations with human-readable
names and abstractions such as room, building, city, etc. There are three
kinds of the symbolic model: cell, zone and a location domain model.
They differentiate in the permission to the overlapping of locations. This
model lacks the precision but it models the containment relationships very
well (e.g. building contains a room). This model requires the manual defi-
nition of the names used in the model. The set of names depends on the
application domain and the spatial resolution of the model.

4.2.3. Hybrid Location Models
Hybrid location models [107] combine advantages of two previous mod-
els. They give the needed precision to the symbolic description (i.e. loca-
tions are represented with both coordinates and symbolic names). Howev-
er, the mapping between a specific space and its symbolic representation
has to be provided.

4.2.4. Semantic Location Models
Semantic location models [124, 75] focus on the relationships between
spaces allowing location definitions that do not physically exist. For ex-
ample, the department of computer science has offices in different build-
ings but from an organizational point of view they are part of the same
department. There is a semantic connection between them even though
they are not physically connected.

4.2.5. Summary and Discussion
One important requirement on a location model is its scalability. It has to
be possible to add new locations into the location model that can monitor

 55

their areas, as well as to enable monitoring of many mobile objects in a
system. The location information can be stored in a tree, but sometimes it
is important to model an object that has more than one parent (e.g. a door
between two rooms has both rooms as parent). In that case the lattice
structure is more appropriate to model the location data. A graph ap-
proach enables modeling of complex relationships which is also useful for
semantic models to represent logically connections between locations.

The location models use two different ways to associate a located object
with a location [44]: containment and positioning. Containment deter-
mines positions of objects by identifying regions which contains these ob-
jects. Symbolic models use containment. Positioning tracks objects by ac-
quiring their coordinates in the reference coordinate system. Each object
is represented by its current position and the relations between objects can
be represented by distance between them. Positioning is used by physical
and geometric location models.

The choice of a specific model depends on the application domain that
should be supported [83], on the resolution needed by the application and
on the accuracy and precision required. For example, if we need to com-
pute distances between objects it is better to use a coordinate location
model, since it is much easier to compute distances using coordinates.

4.3. Auto-ID Object Model

The objective of the proposed Auto-ID Object Model is to provide an ab-
straction from the low-level Auto-ID and sensor concepts (e.g., tag obser-
vations or tag memory) and the means for an application to model its do-
main as the base for the application logic. However, the Auto-ID Object
Model does not intend to provide a world model that allows describing
any potential application domain. The model focuses on the domain of
Auto-ID applications, that is, applications whose application logic is
based on an implicit or explicit model of the physical world and is trig-
gered by (near) real time observations of the physical world through Au-
to-ID readers and sensors.

For a specific Auto-ID application, the model has to be instantiated, that
is, the Auto-ID application creates an instance of the model using an im-
plicit (e.g., hard-coded in the application) or explicit (e.g., file-based) de-
scription of the instantiation (see Figure 4-3). Such an instance of the
model contains static information such as the locations of the application

56

domain and dynamic information that changes during the life-time of the
application such as objects and object state information observed by Au-
to-ID readers and sensors.

Figure 4-3 Auto-ID Object Model instantiation

The Auto-ID Object Model is based on a symbolic location model, in
which physical objects also define locations (see Figure 4-4). The term
object stands for the entity in the model that represents physical objects in
the real world (e.g., the object Fork-Lifter12 in an object model instance
represents the fork lifter #12 in the physical world). Auto-ID readers in-
dentify physical objects by their Auto-ID tags. The representation of
physical objects using a symbolic location model are discussed and de-
scribed in detail in section 4.3.1.

Properties represent additional dynamic or static business information
about objects (see section 4.3.2). Such information is received and related
to an object in the model using property sources (e.g., product information
databases, sensors or data on Auto-ID tags read by Auto-ID readers).

Functions (see section 4.3.3) are the abstraction for the interaction of
the system with the physical world. The interaction is then performed by
actuators such as locking a door or setting a signal light to red.

The entities in the presented Auto-ID Object Model are the concepts
with which an application and the business process support are interfacing.

 57

Figure 4-4 Overview of Auto-ID Object Model

4.3.1. Physical Object Representation
Physical objects of the real world play the central part in the model and
are represented by the model entity Object. As a reference for the applica-
tion an Object has an identifier that is unique for the application or appli-
cation domain. A prominent candidate for such an identifier is the elec-
tronic product code (EPC) as specified by EPCglobal [50]. It provides a
container for different number schemes that are extendable. Currently, the
standard includes the following number schemes:

• Serialized General Trade Identifier (SGTIN)
• Serial Shipping Container Code (SSCC)
• Serialized Global Location Number (SGLN)
• Global Returnable Asset Identifier is (GRAI)
• Global Individual Asset Identifier (GIAI)
• Department of Defense (DoD) Universal ID

All EPC identifiers have a symbolic representation which can be used as
the ID for objects in the Auto-ID Object Model. For example, a SGTIN
EPC could look like urn:epc:id:sgtin:0037000.112345.400. It
contains information about the producer, product class and the product
serial number for a product which can be used by the application to count
the number of products of a certain class in a shipment or filter on prod-
ucts of a specific producer. However, any other ID schema can be used by
an application.

58

+ID
Object

AutoID Reader identifies

0..*

containsIs_linked_to

10..*

Auto-ID
Object Model

Real World
of Physical
Objects Physical Object

AutoID Reader

+TagID
+ObjectID

Auto-ID Tag

is_attached_to

represents represents

+LocationID
Location is_located_at

+ID
Object

represents

<<Parent Object>> <<Child Object>>

Figure 4-5 Auto-ID Object Model entities representing physical objects
in the real world

Figure 4-5 presents a different look on the Auto-ID Object Model. On
top of the striped line, the entities Object and Auto-ID Reader of the mod-
el are shown with their relationships. Below the striped line, the physical
objects of the real world which the model entities represent are shown.

The Auto-ID Object Model does not differentiate between physical ob-
jects and locations. They are both represented by the model entity Object
which is shown in Figure 4-5 by making parent and child Object types in
the model explicit. The containment relationship between Objects impli-
citly expresses that a physical object is located at a location, that is, the
containment relationship between a child and a parent Object can be also
be read as “the child object is located at the parent object”.

 For example, two bottles of water which are located in the cooled sto-
rage of the backroom of a retail store are represented in the model as
shown in Figure 4-6: The parent Object Backroom contains the two child
Objects CooledStorage and FrozenStorage. CooledStorage itself contains
the two water bottles as child Objects (MineralWater1L.130 and Mine-
ralWater1L.230). Figure 4-7 gives a more simplified representation of a
model instance using a floor plan of the different locations and physical
objects and a tree view (the Auto-ID readers are denoted by green rhom-
bus, the yellow triangle denotes sensors).

 59

Figure 4-6 Example instance of the Auto-ID Object Model (UML object
diagram representation)

As shown in Figure 4-6 and Figure 4-7, in an Auto-ID Object Model in-
stance, the Objects and the containment relationships between all the Ob-
jects are represented as an object tree in which an Object can have zero to
n child Objects. The Auto-ID Object Model is therefore based on a sym-
bolic location model (see section 4.2.2). The reason for choosing a sym-
bolic location model and representing physical objects and locations as
Objects is the way Auto-ID readers monitor their environment.

An Auto-ID reader detects and identifies the Auto-ID tag that is at-
tached to a physical object. Physical objects can be detected only in the
read range of an Auto-ID reader and, except for specialized active RFID
technology, a reader cannot determine the exact location of a physical ob-
ject but only that it is contained in the read range. Auto-ID readers can
therefore automatically determine a containment relationship if they are
positioned in such a way that the read ranges of the readers cover the
whole area of a location. The Auto-ID readers are linked in the model to
the parent Object for which they determine its containment relationships.

Another possibility to monitor a location that has a limited number of
entrances is to place readers at these entrances to determine if a physical
object entered or left a location (see the placement of the readers on the
floor plan in Figure 4-7). Such a multiple reader installation is often com-
bined with a light barrier to be able to determine if a physical object just
passed a reader or really entered or left a location. In the Filtering and

60

Aggregation layer such installations are specially processed and so called
passage events are generated (see section 4.1).

Figure 4-7 Example instance of the Auto-ID Object Model (simplified
floor and tree representation)

Summarizing the above, the core of the Auto-ID Object Model is de-
fined by:

• Physical objects and locations are represented by Objects.
• An Object has a unique identifier (ID) in the context of an applica-

tion which is the symbol by which it is represented.
• An Object can contain other objects (i.e. the child objects). It may

also be contained by one object (i.e. the parent object).
• An object may have a link to one or more Auto-ID readers, which

automatically identify the child objects of the object to which the
reader is linked (i.e. the reader determines the containment of ob-
jects).

The Auto-ID Object Model definition has the following implications:
• A location cannot exist without an object that defines the location,

that is, the two concepts of object and location are merged into one.
This greatly simplifies an instance of the model since the applica-
tion only has to define and manage its objects. Many of these defi-
nitions happen automatically since objects carry their IDs which are
obtained automatically by Auto-ID readers of the container object.

• The application has to define a strategy for automatically retrieving
the IDs of Objects. The possibilities are: (a) using the TagID of the
Auto-ID tag that is attached to the physical object, (b) using an Ob-

 61

jectID stored on the Auto-ID tag (e.g. EPC), (c) providing a map-
ping table or algorithm for mapping TagIDs to ObjectIDs.

• The static structure of the object tree, i.e. the static objects such as
buildings, rooms, shelves and their containment relationships have
to be defined by the application.

• Links to Auto-ID readers have to be defined by the application.
Moreover, there are the following implicit Object types that can exist in
an application domain:

• Static Objects such as buildings, rooms or loading areas that scarce-
ly change over the lifetime of an application. If a building is remo-
deled or a new one is constructed the model entities have to be
adapted accordingly.

• Semi-static Objects such as shelves, cool boxes, promotion sale
areas that frequently change over the lifetime of an application.
However, the change cannot be determined automatically and the
model entities have to be adapted accordingly.

• Mobile Objects that defining a location such as fork lifters, trans-
portation units, shopping carts. They are mobile in the physical
world (i.e., they can easily change their location) and have Auto-ID
readers linked to them to determine their contained objects.

• Simple Objects such as products that frequently move through the
Object tree of the application domain.

Static and semi-static Objects have to be managed manually by adapting
the model instance of the application accordingly. Simple Objects on the
other hand are automatically managed by the model implementation. Mo-
bile Objects have to be partly managed manually, for example, the Auto-
ID reader link has to be set. However, the location change of the Mobile
Object is managed by the model implementation. If a Mobile Object
leaves the monitored locations of the Object tree of the application do-
main, the model implementation either has to cache the Mobile Object
and its contained Objects or initiate an update of the containment relation-
ship when the Mobile Object enters a monitored location again. Other-
wise the information about the contained objects would be lost.

For example, an RFID reader mounted on a fork lifter monitors the pa-
lette and its content which the fork lifter is carrying. In the model instance,
the detected Objects will be contained in the fork lifter Object. By itself
the fork lifter might be detected by a passage reader of the backroom. In

62

the model instance, the fork lifter Object with its containing objects will
be contained by the backroom Object.

In order for an application to define the static structure of the Object
tree, the Auto-ID Object Model provides the following tree construction/
destruction operations to an application:
• addObject(childId, parentId) adds a new object with childId

under the object with parentId in the object tree.
• deleteObject(objectId) removes an already defined object with
objectId including all child objects from the object tree.

• move(objectId, newParentId) reconstruct the location tree. It
moves the object with objectId and all child objects to the new parent
object with newParentId.

To attach or remove links to Auto-ID readers the following operations
are supported:
• addReader(objectId, readerId) which attaches a reader with
readerId to the Object with objectId.

• removeReader(objectId, readerId) which detaches a reader
with readerId from the Object with objectId.

4.3.2. Properties of Objects
A physical object may have properties that further describe the object and
its state. These properties can be static, that is, they do not change over
the lifetime of an object (e.g, expiry date or color), or dynamic if they fre-
quently change their value (e.g., temperature or usage counts). Moreover,
properties can belong to a single object (e.g. usage counts of a certain
tool) or to a class or group of objects (e.g. volume or size of water bottles).

In the Auto-ID Object Model a Property of an Object simply consist of
a name-value pair (see Figure 4-8). The Properties of an Object are in a
common application setting distributed over different sources (e.g. sen-
sors or tag memory). The concepts of Properties and Property Sources are
introduced to abstract both from the different methods to access the val-
ues of a property and the different types of Properties (i.e. belonging to a
single object or object class). For example, the access to a temperature
sensor incorporated into an Auto-ID tag is quite different from accessing
object class related information from a product database or ERP system.
In the Auto-ID Object Model the access is always the same through a
Property of an Object.

 63

Figure 4-8 illustrates the different Property Sources and how the model
entities represent the physical entities of the real world and Figure 4-9
presents an example model instance with several Properties attached to
the Objects. In the simplified representation of a model instance, sensors
are denoted by a yellow triangle (see Figure 4-7). The most common
Property Sources are:

• Auto-ID tag user memory. Auto-ID tags such as RFID tags (active
and passive) often contain user memory from several bytes to kilo
bytes. The application can define which properties are stored for
which object class on the user memory. Auto-ID readers read the
user memory of interest that is on an Auto-ID tag attached to a
physical object.

• Sensors. The values of environmental parameters that are measured
by a sensor can be linked to a Property of an Object. The sensor can
be connected to a location or a physical object.

• Product Information Databases. Global product databases such as
SYNFOS [150] and 1SYNC [20] store all related information about
products. Companies that produce these products or other partners
in the supply chain can subscribe to get access to these databases.
The information is typically static information about objects such as
ingredients of a food product, color or the measures of a product.

• Internal Property Storage. Properties connected to an Object can be
defined by the application at startup or during runtime. These prop-
erties can, for example, describe static Objects or add any other in-
formation needed by the business processes.

• Other external sources. Many other potential data sources in the
network or the Internet exist where information about Objects can
be retrieved. For example, Object information in legacy or ERP
systems within the application domain, or information in public In-
ternet databases such as book information at Amazon.com.

64

Figure 4-8 Auto-ID Object Model entities representing physical objects
in the real world (emphasis on entity Property)

Summarizing the above, the concept of Property in the Auto-ID Object
Model is defined by:

• A Property is a name-value pair.
• An Object can have zero to n Properties.
• Each Property has a Property Source that sets its value.
• A Property Source abstract from the method to access a property

and can be Auto-ID tag memory, a sensor value, product informa-
tion databases, and internal or external data sources.

The Property definition has the following implications:
• The application has to define the link between Property Sources,

Properties and Objects. This can be based on Object classes or spe-
cial groupings based on the Object ID.

 65

• The application has to provide a definition of the Auto-ID tag user
memory structure for the stored property values. Since the Filter
and Aggregation layer typically allows naming user memory areas,
the application has to simply define the link between name of the
Property and name of the user memory.

• Internal Properties connected to an Object have to be defined by the
application during instantiation of the model in order for the model
implementation to allow access to such a Property.

• Connection and access information for external information sources
have to be provided at instantiation time for the model implementa-
tion to access these sources.

ID = CooledStorage
: Object

ID = NormalStorage
: Object

ID = Backroom
: Object

contains contains

Name = Temperature
Value = 8

aProperty : Property

Name = ExpirationDate
Value = 01.10.2011

aProperty : Property

ID = MineralWater1L.230
: Object

ID = MineralWater1L.130
: Object

contains contains

Name = ExpirationDate
Value = 01.08.2010

aProperty : Property

Name = LockDoor
Parameters

aFunction : Function

... ...

...

...

Figure 4-9 Example model instance with emphasis on Property and
Function

4.3.3. Functions
Functions of Objects in the Auto-ID Object Model are defined by a name
and a list of parameters that are interpreted by the Function (see Fig-
ure 4-10). They act as the abstraction for actuator control (e.g., locks or
light signals) and can be executed by the application or by business
processes of the model. Figure 4-9 presents an example model instance
with a Function to lock the doors attached to the Object Backroom.

66

+Name
+Parameters

Function

Actuator

0..* 1

Auto-ID
Object Model

Real World
of Physical
Objects

Physical Object

is_attached_to

represents

+LocationID
Location is_located_at

represents

is_at

+ID
Object

0..*

contains

represents

Figure 4-10 Auto-ID Object Model entities representing physical objects
in the real world (emphasis on entity Function)

Functions therefore offer fast interaction with the physical world. For
example, in a smart medical shelf application, a business process detects
the badge of the person accessing it and only unlocks the doors via the
lock actuator if the person is authorized. Actuators can either be attached
to physical objects (e.g., lights, buzzer or sound) or to locations (e.g. door
lock, light signal) depending on their usage.

Actuators can be used to interact with human beings in the real world or
control processes where no human beings are involved. For example, a
signal light that gets green if all products of a shipment arrived at a dock
door and the fork lift driver is allowed to drive with the shipment into the
storage area.

Summarizing the above, the concept of Functions in the Auto-ID Object
Model is defined by:

• A Function has a name and takes a list of parameters.
• An Object can have zero to n Functions.
• A Function abstracts from physical actuators to allow interaction

with the real world.
The Function definition has the following implications:

 67

• The application has to define the link between Functions and Ob-
jects. This can be based on Object classes or special groupings
based on the Object ID.

• Since Functions are specific for the application domain, the applica-
tion also has to provide the implementation for the provided func-
tion in the Auto-ID Object Model implementation.

• The application has to provide the connection and access informa-
tion for the actuators needed by the Functions.

4.3.4. Object History and Queries
The Auto-ID Object Model does not only provide a representation of the
current states of physical objects, but also information that depends on time,
i.e. we include time as an important concept in our model. Applications are
usually interested in the following two history information about physical
objects:

1. The history of a located-object, that is, all locations at which the phys-
ical object was located, e.g., a supply chain management application
needs to know all places of interest at which a certain product has
been to get a track and trace of the product.

2. The history of a location, that is, all physical objects that were located
at the given location, e.g., an application monitoring chemicals
needs to know for an audit which chemicals have been at a storage
location over a certain time span in the past, to determine if any
safety violation happened.

Figure 4-11 illustrates another example for the history of the located
Object MineralWater1L.130 over a certain duration in the past: (1) First
the Object arrives with a shipment at DockDoor-12, (2) next it is moved
by a fork lifter (ForkLifter-12) into the Backroom, (3) and is stored in the
CooledStorage, (4) from which it is finally moved to the CooledShelf-2.
All parent Objects are shown until the root Object RetailStore.

Figure 4-11 History of located object MineralWater1L.130

68

Figure 4-12 illustrates an example for the location history of the Object
CooledStorage over a certain duration in the past: (1) two water bottles
are contained in CooledStorage, (2) a fork lifter driver (Staff-2342311)
drives with a fork lifter (ForkLifter-12) and four loaded water bottles into
the CooledStorage, (3) he unloads the bottles and leaves the storage
(omitted in the figure), and (4) the final state where the extra four bottles
are contained together with the first two bottles in the CooledStorage.

Figure 4-12 History of the location CooledStorage

The Auto-ID Object Model provides querying of location information of
Objects. Since time is included in our location model the application can
query not only the present location information but also changes that hap-
pened in the past. The application can make the following requests:

• Where is physical object X located at?
• Which physical objects are at location X?
• Where was the physical object X located at time T1?
• Where was the physical object X located during the time interval

T1-T2?
• Which physical objects were located at location X at time T1?
• Which physical objects were located at location X during the time

interval T1-T2?
These requests can be performed using the following two queries with

their parameters:
1. GetLocationsOfObject. Retrieves all parent Objects for the Ob-

ject in question (objectID) from the start time (timestamp) for

 69

the given duration where duration can be zero for a point in
time. An optional parameter level, specifies how many parent Ob-
ject levels should be returned for the results (e.g., if all the levels to
the root Object should be retrieved, level would be all).

2. GetLocatedObjects. Retrieves all child Objects for the parent
Object in question (objectID from the start time (timestamp) for
the given duration where duration can be 0 for a point in time.
An optional parameter level, specifies how many child Object le-
vels should be returned for the results (e.g., if only the direct child-
ren should be retrieved, level would be 1).

The queries for the results shown in Figure 4-11 and Figure 4-12 could
look like:

• GetLocationsOfObject(objectID=MineralWater1L.130,
timestamp=10.10.2009 06:30:00,duration=1d, lev-
el=all)

• GetLocatedObjects(objectID=CooledStorage, time-
stamp=10.10.2009 12:30:00,duration=30min, lev-
el=all)

4.3.5. Business Process Support
The dynamic changes in the Auto-ID Object Model correspond to the
changes in the physical world. Many applications are only interested in
exceptional states related to Objects and their Properties such as the com-
pletion of an incoming shipment, reached expiry dates of products in a
shelf, or the temperature inside a cool box that exceeds a threshold.

In most cases a business process that also needs business knowledge
about the application domain can be defined to determine such exception-
al states. Applications would need to implement such business processes
that would involve querying the Auto-ID Object Model instance quite
frequently. The disadvantages of such an approach are the following:

• High query traffic on the Auto-ID Object Model instance with the
increased network traffic involved for the communication.

• First, system engineers have to define the business processes, and
then software engineers have to implement them often re-
implementing similar concepts over and over again.

We therefore propose a business process support combined with the Au-
to-ID Object Model. A business process can be defined using a state ma-
chine-based model with transition conditions and actions based on the

70

state of Objects in the Auto-ID Object Model instance. The application is
only notified in cases of exceptional states.

+Name
+Value

Property

+Name
+Parameters

Function
+Name
BusinessProcess

0..*

3..*

1

1

0..*

Action
+Name

State

TransitionCondition

end
start

1

1
1

enter

exit 1

0..*

1

1

+ID
Object

0..*

contains

is_linked_to

1

0..*

1

0..*

0..*

+Name
Set

1..*

0..*

Figure 4-13 Auto-ID Model with emphasis on Business Process Support

Overview of Business Process Support
The analysis of Auto-ID applications has shown that an event mechanism
based simply on conditions of Object and Property configurations is not
sufficient to describe many exceptional states. The decision if an excep-
tional state occurred often depends on a related state that has happened a
certain time before the state in question. This dependency of states over
time can very well be expressed and modeled using state machines. In ad-
dition, state machines express a kind of business process flow that is well
known in industry and state machines can be modeled using available de-
sign and modeling tools such as UML [118].

 71

In the Auto-ID Object Model (see Figure 4-13), a business process is
always linked to an Object representing a location or physical object in
which the business process is interested. A business process comprises of
several States (at least three, i.e., for start, end and the application defined
state) which have Transitions between them. State transitions are coupled
to certain configuration of Objects and their Properties. A transition hap-
pens if the Condition describing the transition is true. Conditions can in-
volve presence or absence of a set or number of objects or object proper-
ties and time constraints. It is also possible to logically combine different
conditions to describe a transition. The conditions are defined using an
Auto-ID Object Model specific condition language that allows access to
the model and provides several operators to formulate the logical condi-
tions (see below).

Actions such as reporting to the application can be defined to take place
in the following three cases: (i) when a transition is performed, (ii) when a
state is entered, and (iii) when a state is exited. The following Actions can
be used in the Auto-ID Object Model:

• Model Action. A model action provides a business process access to
the Auto-ID Object Model instance, for example, to execute a
Function, set the value of a Property or even allow changes in the
Object tree.

• Application Reporting. The most common action of a business
process is a report sent to the application. For example, after a
shipment arrived a notification is sent to the application with infor-
mation taken from the model instance such as the Objects of the
shipment and the parent Object where it arrived.

• Information System Reporting. A business process of an Auto-ID
Object Model instance often has to report information into an in-
formation system in an application domain. Many different systems
exist such as ERP systems, databases, or application servers.
Among others, the following information system reporting are sup-
ported:

o EPCIS Event Generation. As an interface to EPC Network
components such as the EPC Information Services (EPCIS)
Repository, EPCIS events can be generated and stored in a
given EPCIS Repository. From an EPC Network point of
view, the implementation of the Auto-ID Object Model then
acts as an EPCIS Capturing Application. The relationship be-

72

tween the Auto-ID Object Model and the EPC Network are
discussed in detail in the related work section 4.5.

o SAP Connector. As one of the most prominent ERP System,
SAP comprises many modules where information about an
application domain is stored. The application has to custom-
ize a connector to an SAP system to its needs.

o Custom Information System Reporting. In many application
domains other information systems, databases or legacy sys-
tems exists where information has to be stored. An applica-
tion has to provide such custom components if they need to
be used as actions in a business process.

• Custom action. In a highly distributed and connected application
domain, many more actions can be imagined. The following list
gives some examples for custom actions:

o Reporting to external partners, for example, in a supply chain
scenario, a retail store can be notified about an outgoing
shipment via an advance shipping notice using EDIFACT
[43].

o Notification of workers, staff, etc. on their mobile devices
(e.g. SMS to a retail store staff if the temperature in a cool
box leaves the allowed limits).

o Reporting using Web 2.0 technology such as RSS feed or
Twitter.

A Business Process Example
Figure 4-14 illustrates an example of a state machine definition of the
business process for an incoming shipment. In the example, the business
process is linked to the Object IncomingGoods which represents the loca-
tion of all incoming shipments. The application is interested if an ex-
pected shipment that arrived is complete (i.e., all products specified in an
advance shipping notice were shipped), or incomplete. In the first case,
the application can mark the shipment in the ERP system as done, in the
second case, the application marks the shipment to be followed up and
opens an issue for a service staff.

In the first state Awaiting Shipment, the process has a list of expected
products for the shipment and awaits the start of the shipment. If the first
products are detected (i.e., the Objects representing the products become
child Objects of IncomingGoods) the next state Shipment Arriving is en-

 73

tered and as an enter action a timer is started. When all products of the
shipment have been detected (i.e., all Objects are child Objects of Inco-
mingGoods) the state Shipment Complete is entered and the enter action is
executed that notifies the application of the complete shipment. The
process then ends.

If after 5 minutes not all products have been detected the state Shipment
Potentially Incomplete is entered and the enter action is executed that no-
tifies a local staff on his mobile device to check what the state of the
shipment is. If new products of the shipment are detected the state Ship-
ment Arriving is entered again, otherwise if after 10 minutes not all prod-
ucts have been detected the state Shipment Incomplete is entered and the
enter action is executed that notifies the application of the incomplete
shipment. The process then ends. Further more detailed examples are pre-
sented with the case studies in section 6.

Awaiting
Shipment

Shipment
Arriving

/ reset timer

Shipment
Incomplete

/ notify application

Shipment
Complete

/ notify application

First Objects of
Shipment detected

All Objects of
Shipment detected

Shipment Potentially
Incomplete

/ notify staff to check

After 5min,
not all Objects of

Shipment detected
New Objects of
Shipment detected

After 10min,
not all Objects of
Shipment detected

Shipment #1020
Linked to Object IncomingGoods
List of objectIDs comprising the shipment

Figure 4-14 State machine to monitor the incoming shipment #1020

Formal Definition of State Transition Conditions
The conditions in the example above are described informally to illustrate
the overall process. The business process support of the Auto-ID Object
Model, however, provides a domain specific language to formally define
the conditions that must be true for a transition between two states. The
transition condition definition language consists of the following two
parts:

74

1. A definition language for sets of Objects based on their IDs and
Properties. These sets can be defined at instantiation time or also
dynamically by the application. A formal definition in EBNF is
given in Appendix 8.1 and Appendix 8.2.

2. A definition language for conditions that is based on set comparison
of predefined sets (using the set definition language) and sets of
Objects in the Object tree of the Auto-ID Object Model instance
(using query operators of the model). A formal definition in EBNF
is given in Appendix 9.3

Defining Sets
There are three different types of sets in that can be defined using the set
definition language:

a) Object Set that is defined by enumerating all IDs of the Objects
which comprise the set, for example, all the IDs of the staff of a re-
tail store. The enumeration can be simply a list of IDs or could be
generated automatically using a database table or query.

b) Pattern Set that consists of Objects whose IDs match a pattern de-
fined for the given set. The widely used and available Perl regular
expressions have been chosen to define the pattern. Pattern sets are
of importance in application domains where IDs of Objects are
structured, for example, using the EPC a pattern set can be used to
define a set of Objects of a certain producer.

c) Property Set that comprises Objects whose Properties match given
property conditions, for example, a set of Objects whose expiry
date has been passed. Property sets can be defined by giving a con-
dition for the property values using standard comparison operators
or by the condition for the existence of a specific property.

For example, the object set definition of the staff of a retail store that is
allowed to drive a fork lifter named ForkLifterDrivers would be:

OBJECTS 'Staff-2342110', 'Staff-2341512',
'Staff-2342220', 'Staff-2342311', 'Staff-2342488'

The pattern set definition of all one liter mineral water bottles (of the
examples above) named MineralWater1L would be:

PATTERN '/^[MineralWater1L]/'
The property set definition of all Objects whose expiry date passed (i.e.,

whose Property expiryDate is less than today, taken that today is
10.10.2009) named ExpiredProducts is:

PROPERTY expiryDate LT 10.10.2009

 75

The Auto-ID Object Model provides the following two set operations:
• addSet(SetName, SetDefinition) to add a new set defined in the

SetDefinition.
• removeSet(SetName) to remove the set with the given name.

Defining State Transition Conditions
The definition of a transition condition for states is based on the compari-
son of a predefined set as described above with a set of Objects in the Ob-
ject tree (i.e., currently observed physical objects). In addition, count op-
erations on certain sets can be performed and conditions based on the
properties of the Object to which the business process is linked can be de-
fined. A state transition condition can be construction by logically com-
bining different condition expressions using parenthesis and the logical
operators AND, OR and NOT. Table 4-4 gives an overview of the definitions
for the state transition conditions.

1. Set Comparison
The set comparison expression is defined in two ways, where the first set
is specified either by the level of containment relative to the Object to
which the business process is linked or by a set built by combining a con-
tainment set Set1 and a predefined set Set2:

Set1 SetComareOp Set3
(Set1 SetOp Set2) SetComareOp Set3

where the set comparison operator SetCompareOp can be ISEQUALSET,
ISINTERSECTION, ISSUBSET, ISSUPERSET or ISEMPTYSET. For the
last operator, the second set Set3 is omitted. They are defined as:

• SetA ISEQUALSET SetB is true, iff SetA is equal to SetB (i.e.
they contain exactly the same Objects).

• SetA ISINTERSECTION SetB is true, iff SetA and SetB have at
least one common Object.

• SetA ISSUBSET SetB is true, iff all objects from SetA are con-
tained in the SetB.

• SetA ISSUPERSET SetB is true, iff all objects from SetB are
contained in the SetA.

• SetA ISEMPTYSET is true, iff SetB contains no objects.
All of the set operators, except ISEMPTYSET, operate with object sets as

a second parameter, whereas pattern and property sets can be used only
with ISINTERSECTION and ISSUBSET.

76

Set1 is the set of currently observed Objects which is dynamically

created. It represents the current containment of the Object to which the
business process is linked. The set can be specified by indicating the level
of containment:

• CHILDREN. Only the direct child Objects comprise the set.
• LEVEL n (where n is a natural number > 1). All Objects that are in-

cluded in the nth level in the Object sub tree hierarchy comprise the
set. Level 1 is equivalent to CHILDREN. If n exceeds the actual
level of the Object sub tree, the set is empty.

• LAST. All Objects that are included in the last level in the Object
sub tree hierarchy comprise the set.

• LEVEL n-m (where n, m are natural numbers > 1 and m > n). All
child Objects from and including the nth level up to and including
the mth level in the Object sub tree hierarchy comprise the set. If n
exceeds the actual level of the Object sub tree, the set is empty. If m
exceeds the actual level of the Object sub tree, the Objects are taken
up to the last level.

• ALL. The Objects of the entire Object sub tree comprise the set.
The first set in the set comparison expression can be built using the set

operators INTERSECTION or COMPLEMENT. INTERSECTION defines a set
that contains the objects that are members in set Set1 and Set2. COM-
PLEMENT defines a set that contains the objects that are members of Set1
but not of Set2.

For example, in the business process that is linked to the Object Inco-
mingGoods (see Figure 4-14), the following set comparison expression
can be used to check if all Objects of the expected shipment (i.e. the set
ObjectsShipment1020) are located at IncomingGoods:
ALL ISSUPERSET ObjectsShipment1020
The comparison operator ISSUPERSET is used and not ISEQUALSET

since other objects such as fork lifters, staff or other shipments can be also
located at IncomingGoods.

Another set comparison expression allows checking if a set contains a
certain Object. The set in question is specified by the level of containment
relative to the Object to which the business process is linked:

Set1 HASELEMENT ObjectID
where Set1 is defined as described above.

 77

2. Count Comparison
The count comparison is used to compare the number of Objects in a set
with a given natural number. A count comparison expressions can be de-
fined in the following two ways:

COUNT (Set1) CompareOp number
COUNT (Set1 SetOp Set2) CompareOp number

The set Set1 is either a set specified by the level of containment rela-
tive to the Object to which the business process is linked (i.e. CHILDREN,
LEVEL n, ALL) or a set built by combining a containment set Set1 and a
predefined set Set2 using the set operators INTERSECTION, COMPLE-
MENT or SUBSET. INTERSECTION defines a set that contains the objects
that are members in set Set1 and Set2. COMPLEMENT defines a set that
contains the objects that are members of Set1 but not of Set2. With
SUBSET we can check if Set1 is a subset of the Set2, in which case the
COUNT operator returns the size of the Set1. The result of the count oper-
ations has to be compared to a given number.

For example, in a business process that is linked to the Object Back-
room (see Figure 4-7), it is required to test if the number of fork lift driv-
ers exceeds 4 which would result in a warning to the drivers. The count
comparison expression would be:
COUNT (ALL INTERSECTION ForkLifterDrivers) > 4
By building the intersection of all Objects in the sub tree below Back-

room with the set ForkLifterDrivers only the fork lift driver Objects
that are actually contained in the Backroom can be counted, all other Ob-
jects are not taken into consideration.

3. Property Comparison
The property comparison allows comparing the current value of a Proper-
ty of the Object to which the business process is linked with a given value.
The property comparison expressions is defined in the following two ways:

PROPERTY PropertyName CompareOp fnum
PROPERTY PropertyName = string

In the first definition the Property with the name PN can be compared
with a floating point number. For Properties that are not represented by
numbers, the second definition allows testing for equality with a given
string.

For example, if the business process is linked to the Object CooledSto-
rage (see Figure 4-7) the following property comparison expression can

78

be used to test if the Property of CooledStorage with the name Tempera-
ture has a value that is higher than 10 degrees Celsius:

PROPERTY Temperature > 10.0
Our location model provides the following operations to manage busi-

ness processes:
• addBusinessProcess(ObjectId , businessProcessName, businessPro-

cessDefinition)
• removeBusinessProcess(ObjectId , businessProcessName)

where businessProcessDefinition includes a list of states with their ac-
tions and a list of state transitions with their conditions and actions as
shown in see Figure 4-13 (colored entities belong to a business process).

Detailed Definition of Business Process Example
The formal definitions of the state transition conditions given in the de-
scription of the example above (i.e. Monitoring Incoming Shipment
#1020) are shown in Table 4-3. Note that the second transition defines in
its model action a new temporary set with the objects of shipment #1020
that have not yet been detected named MissingObjectsShipment1020.
Table 4-3 Formal state transition conditions of example process

Transition condition Definition of condition
First Objects of Ship-
ment detected

ALL ISINTERSECTION
 ObjectsShipment1020

After 5min, not all Ob-
jects of Shipment de-
tected

TIMER GE 0:05.00
NOT(ALL ISSUPERSET
 ObjectsShipment1020)

New Objects of Ship-
ment detected

ALL INTERSECTION
 MissingObjectsShipment1020

After 10min, not all Ob-
jects of Shipment de-
tected

TIMER GE 0:10.00
NOT(ALL ISSUPERSET
 ObjectsShipment1020)

All Objects of Shipment
detected

ALL ISSUPERSET ObjectsShipment1020

Section 6 presents several detailed examples of business process defini-

tions as proof-of-concept of the presented business process support in the
Auto-ID Object Model.

 79

Table 4-4 Overview of definition language for state transition condition

Expression Description
StateTransitionCondition Expression that consists of

a number of Conditio-
nExpression that can be
logically combined using
AND, OR, NOT and paren-
thesis.

ConditionExpression Condition expressions can
be set, count or property
comparison expressions.

Set1 SetComareOp Set3
with SetComareOp as ISEQUALSET, ISIN-
TERSECTION, ISSUBSET, ISSUPERSET,
ISEMPTYSET
and Set1 as CHILDREN, LEVEL n-m, ALL
and Set3 is Object, Pattern or Property set

Set comparison expression
that compares two sets of
Objects.

(Set1 SetOp Set2) SetComareOp Set3
with SetOp as INTERSECTION, COMPLEMENT
and SetCompareOp, Set1, Set3 as given
above

Set comparison expression
that compares two sets of
Objects where the first set
is constructed.

Set1 HASELEMENT ObjectID
with Set1, as given above

Set comparison to check if
a set contains a certain
Object.

COUNT (Set1) CompareOp num
 with ComareOp as >, <, =, >=, <=

Count comparison expres-
sion which compares the
count of Objects in the set
to a natural number.

COUNT (Set1 SetOp Set2) CompareOp num
with SetOp as INTERSECTION, COMPLEMENT,
SUBSET
and ComareOp as >, <, =, >=, <=

Count comparison expres-
sion which compares the
count of Objects in the
constructed set to a natural
number.

PROPERTY PropertyName CompareOp fnum
with ComareOp as >, <, =, >=, <=

Property comparison ex-
pression that compares the
value of a property to a
given floating point num-

80

Expression Description

ber.
PROPERTY PropertyName = string Property comparison ex-

pression that tests the val-
ue of a property to equali-
ty with a given string.

4.4. Auto-ID Infrastructure Implementation

The concepts presented in the previous section, i.e. the Auto-ID Object
Model, have been prototypically implemented as a software component
called the Object Monitoring System (OMS). The overall design and im-
plementation are briefly described in this section. We also discuss possi-
ble implementation approaches of the Auto-ID Object Model including
temporal databases, tree database extensions and active databases. More-
over, an outlook is given on a distributed implementation of the model.

Figure 4-15 Auto-ID Infrastructure deployment for retail store example

 81

The OMS implementation relies on the following components of other
layers of the Auto-ID Infrastructure (see Figure 4-1):

• Filtering & Aggregation (F & A) Middleware that implements the
concepts described in section 4.1 and that provides adequate inter-
faces to the OMS such as a publish/subscribe mechanism to retrieve
the filtered and aggregated Auto-ID observations. In addition, inter-
faces to the lower layers allow retrieving data from readers and sen-
sors.

• Auto-ID Readers that either get polled by or push their data to the
F & A Middleware. A reader can have 1 to N antennas connected to
it which are managed by an integrated or attached multiplexer.

Client Application

Reader Sensor Actuator

Object Monitoring System (OMS)

Property
Processing

Query
Processing

History

OMS Services

Incoming Observation Processing

Object
Tree

Business
Process
Support

F & A Middleware

Messaging

LUS

External
Databases

Figure 4-16 OMS Architecture Overview

82

• Sensors that observer environmental parameters which are retrieved
by the F & A Middleware.

• Look-Up Service (LUS) that acts as a directory to dynamically re-
trieve connection information of existing components of the Auto-
ID Infrastructure. Each component has to register itself using a
unique ID after starting up (i.e., each component of the Auto-ID In-
frastructure can be addressed with its ID).

The OMS itself provides services to the application layer, e.g., to ERP
systems or application domain specific software. For example, Fig-
ure 4-15 illustrates an Auto-ID Infrastructure deployment for a retail store.
In the example, several instances of the F & A Middleware balance the
load of data and processing and provide the filtered and aggregated data
to the OMS. Different business processes of the OMS send notification
and data to a retail store application that provides a management cockpit
for the store manager, to an ERP system, and to a notification system that
relays notifications to mobile devices of the retail store staff.

4.4.1. Object Monitoring System
We prototypically implemented the Auto-ID Object Model and the busi-
ness process support in a software component called the OMS which pro-
vides persistency of an Auto-ID Object Model instance (i.e. Object histo-
ry), query capabilities and services to access and modify the Auto-ID Ob-
ject Model instance (i.e. the Object tree) and the business processes. The
OMS is implemented using the Java Platform, Enterprise Edition (Java
EE) [149]. Figure 4-16 gives an overview of the overall architecture of
the OMS including its subsystems. Important components and OMS sub-
systems are described in the following sections.

F & A Middleware
The OMS implementation supports the following Filtering and Aggrega-
tion Middlewares:

• The RFID Stack Event Layer (EL) [119] is a filtering and aggrega-
tion software developed in conjunction with OMS. The EL supports
all the filtering and aggregation concepts described in section 4.1. It
provides a flexible framework for building chains of processors (i.e.
filters or aggregators) that allow for a high degree of flexibility. In
addition, it supports processing of sensor data. Since there are no
software interface standard for sensors, sensor adaptors have to be

 83

developed for all different types of sensors that are distributed in an
Auto-ID Infrastructure.

• EPC Filtering and Collection Middleware using the ALE interface
standard [47] by EPCglobal supports not all of the filtering and ag-
gregation concepts described in section 4.1: Count and Passage ag-
gregations are not supported. Moreover, since it is aimed only at
RFID infrastructures, sensors are not supported. Some of the appli-
cation scenarios implemented with the OMS make use of the Fos-
strak Filtering and Collection middleware [69].

An Auto-ID infrastructure deployment for a specific application setup
might therefore use a mix of the two supported Filtering and Aggregation
Middlewares.

LUS
The LUS is typically a directory server such as LDAP. The prototypical
implementation of OMS uses an instance of OpenLDAP [120] where all
software components have to be registered at application setup or compo-
nents such as the RFID Stack Event Layer (see above) can register them-
selves dynamically. The OMS use the javax.naming.directory
package to access the OpenLDAP instance. For each software component
the following information has to be stored in a LDAP record:

• ID of the software component that acts as the key in LDAP (e.g.
POS_EL for the RFID Stack Event Layer that manages all point of
sales readers)

• Connection information (URL=tcp://10.0.128.20:6000) that con-
tains all the necessary information for OMS to connect to such a
component.

In the Auto-ID Object Model, Auto-ID readers are linked to Objects us-
ing an ID for a reader. Since the OMS does not connect directly to readers
it needs to know the mapping between a reader and the Filtering and Ag-
gregation Middleware that manages the reader. This mapping information
is also stored in LDAP since it can change dynamically.

Incoming Observation Processing
All the incoming data from the readers and sensors via the Filtering and
Aggregation Middlewares is stored in a queue that is ordered by the time
of the incoming event. It is assumed that all components in the Auto-ID
Infrastructure have the correct global time. This can be achieved by a dis-

84

tributed time synchronization algorithms such as the Network Time Pro-
tocol (NTP) [113, 114]. For example, a network connected from a sensor
might be slow which leads to events that reach the OMS later than reader
observations even if they happened earlier in time. Ordering the events by
their time stamp provides a best effort to process the events in the order
the occurred in the physical world. The time window of the processing of
the events in the queue can be adjusted depending if the application
should be closer to real time or if network latencies should be smoothed.

Auto-ID reader observations contain the following type of information:
• Timestamp
• ID of the reader
• Type of Observation (i.e. entry or exit)
• List of IDs of the observed physical objects resp. tags (e.g. tag IDs

or EPCs)
If the IDs of the physical objects are already object IDs such as EPCs,

they can be directly mapped to Objects in the Object tree. Otherwise they
have to be translated from tag IDs to object IDs using a mapping table or
rules for the specific application domain. Such mapping tables have to be
provided as part of the OMS instantiation/configuration. The reader ID
defines the parent Object of the observed Objects under which they are
added as child Objects. For example, the following observation results in
the two new child Objects MineralWater1L.130 and MineralWater1L.230
under the Object CooledStorage to which the reader GateReader-2 is
linked:

10.10.2009 12:30:00, GateReader-2, ENTRY,
[MineralWater1L.130, MineralWater1L.230]

Sensor observations and Auto-ID tag memory reads are delegated to the
property processing module of the OMS.

Object Tree
The Object tree is the core of the OMS. It is a tree data structure that can
also be described as an instance of the Auto-ID Object Model which con-
tains all Objects and their containment relationships that represent the cur-
rent state of the physical world. All the described entities, their relation-
ships and services of Auto-ID Object Model are implemented in the Ob-
ject tree. The tree provides services to add, move and remove Objects resp.
Object sub trees, and to add and remove a link to a reader or sensor.

 85

The whole Object tree is kept in an in-memory data structure to provide
fast access (i) for adding Objects by the processing of incoming observa-
tions, (ii) for the evaluation of state transition conditions, and (iii) for que-
ries of the current state of the Objects.

Property Processing
Sensor observations and Auto-ID tag memory reads are processed spe-
cially since they result in the change of property values of Objects in the
Object tree. In addition, properties that are retrieved by external databases
are also handled in the property processing module.

A sensor observation contains the following type of information:
• Timestamp
• ID of the sensor
• Pair of sensor property and value

Using the ID of the sensor, the corresponding Object in the Object tree
to which the sensor is connected can be found. The processing of sensor
observations is then handled by the corresponding instance of the property
source that manages the value change of the property of the Object in-
cluding the mapping of sensor property to Object property. For example,
the following sensor observation results in the change of the property
Temperature of the Object CooledStorage to which the sensor tempSense-
15 is linked to 10.2 degrees Celsius:

10.10.2009 13:30:00, TempSense-15, temp=10.2
An Auto-ID tag memory read contains the following information:
• Timestamp
• ID of the reader
• ID of the physical object resp. tag from which memory was read
• List of IDs with field name-value pairs that represent memory sec-

tions of the read tag
Using the reader ID and tag ID resp. Object ID, the Object in the Object

tree to which the property belongs can be found. The processing of sensor
observations is then handled by the corresponding instance of the property
source that manages the value change of the property of the Object in-
cluding the mapping of fields to Object properties. Tags used in applica-
tions to store fields on them have been either EPC Gen2 transponder (i.e.
UHF tags) or Philips I-Code transponder (i.e. HF tags that offer 46 bytes
of user memory). For example, the following tag memory read results in

86

the change of the properties ExpiryDate and Weight of the Object Mine-
ralWater1L.130:

10.10.2009 12:30:00, ShelfReader-10,
MineralWater1L.130, [ExpiryDate=12.10.2009,
Weight=1]

In the current implementation only SQL databases that are accessed us-
ing JDBC connections are supported to retrieved property values from ex-
ternal databases. In the OMS configuration, the application has to specify
for which type or class of Objects a certain mapping of a property to an
attribute in a SQL database applies. In addition, the polling frequency has
to be defined for refreshing a property value.

History and Query Processing
The object history contains all past object data including properties and
object containment relationships. Since the emphasis of the OMS proto-
type was not a performant implementation of the history, it is imple-
mented by simply using relational database tables similar to the approach
of [156] which are stored in the open source RDBMS MySQL database.
OMS uses the following two tables to store the history of properties and
objects (see Figure 8-1 Appendix 8.4 for the SQL DDS):

• Table property_history:
(ObjectID, PropertyName, PropertyValue, Timestamp)

• Table object_history:
(ParentObjectID, ObjectID, EnterTime, ExitTime)

The MySQL database accessed is wrapped by a HistoryManager that
provides services to update, remove and query the database. When the in-
coming observation processing handles an Auto-ID reader observation, in
addition to updating the Object tree, the corresponding record in the data-
base is update. Property value changes are handled equivalently.

The HistoryManager also allows querying the history of objects and
properties. The queries are translated into SQL queries and are executed
by the HistoryManager. The application has the option to wait for the
query results or get the query result through a notification channel speci-
fied by the application for larger more time consuming queries. The histo-
ry allows querying the database using two kinds of queries that can be pa-
rameterized (see also section 4.3.4):

• LocationsOfObject query that gets all locations of a given Object
(i.e. all the parent Objects) for a certain time range.

 87

• LocatedObjects that gets all Objects situated at a given location (i.e.
the child Objects) for a certain time range.

Since most queries are interested in a structured result in the form of
Object subtrees, the results for both queries consists of recursive SQL
queries.

For the LocationsOfObject query, the SQL base query (see Figure 4-17)
is executed first to retrieve all the parent objects where the object in ques-
tion was located. For each parent object the query is executed again with a
narrowed down time range and so on for their parent object until the spe-
cified level or the root object is reached.

SELECT LocationID, EnterTime, ExitTime
FROM object_history
WHERE ObjectID = 'objectID' AND
 ((ExitTime >= 'timeFrom'
 AND EnterTime <= 'timeTo')
 OR EnterTime <= 'timeTo')

Figure 4-17 SQL base query for LocationsOfObject query

Similarly for the LocatedObjects query, the SQL base query (see Fig-
ure 4-18) is executed first to retrieve all the child objects that have been
located at the location object in question. For each child object the query
is then executed again with a narrowed down time range and so on for
their child objects until the specified level or a leaf object is reached.

SELECT ObjectID, EnterTime, ExitTime
FROM object_history
WHERE LocationID = 'locationID' AND
 ((ExitTime >= 'timeFrom'
 AND EnterTime <= 'timeTo')
 OR EnterTime <= 'timeTo')

Figure 4-18 SQL base query for LocatedObjects query

Business Process Support
The implementation of the business processes support in the OMS con-
sists of the following functions:

• Processing the definitions of business processes and activating the
state machine of a business process

• Managing the state transitions of all state machines

88

• Executing the actions of state transitions or states
Business processes in the OMS are defined using XML. For the busi-

ness process example presented in section 4.3.5 and illustrated in Fig-
ure 4-14 and Table 4-3, a snippet of the definition is (the complete defini-
tion is given in Appendix 8.3):

<business-process-definition>
 <states>
 <state name="START"/>
 <state name="Awaiting Shipment"/>
 [..]
 <state name="Shipment Incomplete">
 <action type="enter"
 kind="report"
 client="wms-app"
 objects="ALL INTERSECTION
 ObjectsShipment1020"/>
 </state>
 [..]
 </states>
 <transitions>
 [..]
 <transition start="Shipment Arriving"
 end="Shipment Complete">
 <condition>
 CHILDREN ISSUPERSET ObjectsShipment1020
 </condition>
 </transition>
 [..]
 </transitions>
</business-process-definition>

The state machines are implemented based on a generic Java finite state
machine framework. After processing the definition of the business
process and its state machine, a new state machine with all states, transi-
tions and actions is instantiated and initialized into the start state. The set
and transition condition definition language is defined and parsed using
JFlex [95], a Lexical Analyser Generator for Java and CUP [87], a LALR
Parser Generator for Java.

The state machine management mainly consists of evaluating the state
transition conditions. For all possible state transitions of all state ma-
chines, so called hints are set in the Object tree that signal the condition
evaluator that a certain part of a condition has changed and needs to be re-

 89

evaluated. Thus, only expressions where the underlying data has changed
are evaluated which increases the performance of the state machines.

If a certain state transition takes place, all the actions involved are ex-
ecuted. Actions in the OMS are modeled as a framework and can there-
fore be easily extended (i.e. client application can implement new sub-
classes of an abstract class Action and load this class into OMS at run-
time). The following actions have been implemented in the OMS: Model
Action, Application Reporting and EPCIS Event Generation (see also sec-
tion 4.3.5).

OMS Services and Messaging
The OMS Services are the collection of all services the Auto-ID Object
Model provides which are described in section 4.3. Summarizing it con-
sists of services to

• access and modify the Object tree and link Auto-ID readers and
sensors to objects

• define properties and property sources
• define functions and link actuators
• query the history
• set and remove business process definitions
• set or change OMS properties and configuration (e.g. tagID-

objectID mapping tables or OMS specific runtime parameters)
Client applications can access these services through the messaging

layer of the OMS which manages all the connections and communication
with the client applications. The OMS supports an arbitrary number of
client applications that identify themselves with a client ID. Client appli-
cations can have two roles:

• Applications that perform administrative tasks (e.g. adding sets or
business processes, or performing changes in the Object tree)

• Applications that request or receive data from business processes or
Object tree queries.

Messaging with the client application is handled using XML and TCP
or HTTP message-transfer-bindings. All OMS services are represented
through XML messages that can be sent to the OMS by a client applica-
tion. In addition, messages are defined for queries and query results and
business process notification actions.

90

4.4.2. Alternative Implementation Approaches for the Auto-ID
Object Model History
The current prototypical implementation of the history of the Auto-ID
Object Model simply uses a relational database management system
(RDBMS). The disadvantage is the gap between the object-oriented mod-
el of the hierarchical Object tree and the relational model of the history.
Moreover, the temporal aspect of the history has to be taken into account
in the SQL queries. Other database concepts such as object-oriented or
temporal databases provide an alternative approach for the implementa-
tion of the Auto-ID Object Model. Other interesting approaches are the
RDBMS extensions such as the PostgreSQL extension for tree support.

Object-oriented Database Approach
The great advantage of the object-oriented database approach is that on
the one hand an application such as the OMS can store objects in their en-
tirety in a persistent manner. On the other hand it can access objects re-
trieved from the database (i.e. stored persistently) in the same way as it
accesses run-time objects in memory. This adds greatly to the transparen-
cy of the whole application, considering that there is only a single data
type to handle.

When discussing object databases, the following two kinds of approach-
es can be taken: Object-oriented [125, 33, 93] or Object-relational
DBMSs [145, 146]. Table 4-5 gives a short overview of the advantages
and disadvantages of the two approaches.
Table 4-5 Comparing OODBMS and ORDBMS

Object-oriented Database Sys-
tems (OODBMS)

Object-relational Database Systems
(ORDBMS)

• Integrate seamlessly with an
object-oriented programming
language

• Database itself handles an ob-
ject as an entity, compared to
data rows as the entity of
RDBMSs

• Same data model can be used
to design an application and
the underlying database

• Trade-off between traditional
RDBMSs and OODBMS

• Core database is relational
• Additional layer on top of database

performs the object-relational
mapping

• Mapping layer translates OO-style
data modifications written in the
Object Definition Language and
queries Object Query Language to

 91

Object-oriented Database Sys-
tems (OODBMS)

Object-relational Database Systems
(ORDBMS)

• Objects created within an ob-
ject-oriented programming
language can persist on disk
in a transparent way, com-
plete with their structure,
procedures and values

the relational definition/query lan-
guage of the core database

• Needs OO application specialists,
RDBMS specialists, and object-
relational mapping specialists

Object-oriented functionality would facilitate the implementation of the

history of the Auto-ID Object Model. It would allow storing an Object di-
rectly, including the references to its parent Object and its child Objects,
the linked Auto-ID readers and sensors, and its properties. An extensive
overview over commercially and freely available object-oriented databas-
es can be found at [30].

Temporal Database Approach
Temporal databases (TDBs) are an extension to relational DBMS. The
TDB glossary [45] defines a TDB as follows: “A temporal database is a
database that supports some aspect of time, not counting user-defined
time.” As a synonym we could also speak of Time-oriented Databases. A
more in depth introduction to TDBs can be found in [60, 151].

Storing the object history of the Auto-ID Object Model in a database
means that the same object will be stored in a lot of records. Each time an
object moves from one location to another, the exit time of its currently
valid record is set, and a new record is created in order to reflect the new
location of the object. First of all this introduces a difficulty in terms of
the primary key used for the object history table. It would be natural to
use the Object ID as primary key within a table of objects and their loca-
tions. However this is not possible, since the object IDs are not unique in
the temporal dimension. Two possible solutions are conceivable: Either
we take a composite primary key, for example the Object ID and its enter
time, or we introduce an additional column with a unique ID. Second we
introduce the problem of time-integrity. If we want to have available a
continuous history of every object, it is very important that there be no
gap between the exit time of an object’s previous location and the enter
time of its new location. Checking this on the application level is not very
comfortable; instead it would be more transparent to indicate only the

92

new location of an object, and having the DBMS set both timestamps au-
tomatically. All these requirements would be met by a TDB.
Table 4-6 Available time-relational DB layers

Product Name Target RDBMS
TimeDB All major RDBMS
JTemporal All major RDBMS
Timetier Oracle
Tiger Oracle
TAU BerkeleyDB, MySQL
BtPgsql PostgreSQL

As of today, no native TDB exists, instead there are layers and modules
available for all major RDBMS systems that emulate some temporal fea-
tures (see Table 4-5). They offer their own temporal-augmented data
query/definition languages and translate these to standard SQL. For ex-
ample, JTemporal [25] is a Java framework that manages temporal asso-
ciations and relieves the developers of many time related issues.

PostgreSQL Extension: The module ltree
ltree [139] is one of the extension of the PostgreSQL [11] RDBMS. It
provides support for storing and querying hierarchical data by introducing
new PostgreSQL data types ltree, ltree[], lquery, and ltxtquery, operators
on them, and predefined functions for easier handling of these new data
types.

A hierarchy tree created through ltree is stored in a single table with a
column named label path that is constructed for each node/row according
to a rule. A simple example would be a tree where Retailstore is the
root node, Backroom one of its children, and CooledStorage a child
node of Backroom. The label path of the node CooledStorage would
then be Retailstore.CooledStorage.CooledStorage. The opera-
tors and functions defined on objects of the type ltree allow querying the
tree to a specified depth, matching node names according to a pattern
which can be defined by special modifiers, or testing whether a tree T1 is
a descendant/ancestor of another tree T2.

The functionality provided by ltree would facilitate storing the Object
tree in a DBMS and would enable the OMS to query the tree with a single
call to the ltree module, instead of querying the database for each and

 93

every parent object of an object in question as it is needed, for example in
the LocationsOfObject query (see section 4.4.1).

4.5. Related Work and Discussion

The need for Auto-ID data management and an Auto-ID infrastructure in-
cluding hardware abstraction and middleware have been discussed in a
number of publications [28, 38, 63, 66, 121, 129, 131, 132, 152, 123].
They all agree in structuring an Auto-ID infrastructure in different layers,
which can be generalized as followed:

1. A hardware layer that contains the readers, sensors and tags and the
networking hardware. Readers and sensors can have integrated
software that performs low-level Auto-ID data processing. Readers
and sensors have a common interface towards the higher layer or
some kind of hardware abstraction / device controller approach is
offered.

2. A middleware layer that contains software that collects Auto-ID
raw data from different readers. It filters and aggregates the raw da-
ta to prevent redundant information and provides meaningful Auto-
ID observations to the higher layer. Auto-ID middleware is some-
times referred to as Auto-ID Edgeware.

3. An application and information system layer that contains applica-
tions responsible for enriching Auto-ID observations with applica-
tion and business relevant context. In addition, persistency of the
enriched data is provided. Existing enterprise applications, informa-
tion systems and business workflows are integrated with the
enriched Auto-ID data.

The layers group hardware and software components for an Auto-ID in-
frastructure. The layers can also be associated with a corresponding data
model or representation: (i) The hardware layer models data simply as tag
IDs and tag memory (i.e. raw data), (ii) the middleware works with Auto-
ID data as events or observations that include the source of the event (i.e.
the reader or sensor), a list of tag or object IDs or sensor values and a list
of fields with their values and (iii) the application and information system
layer has an implicit or explicit model of the physical objects and their
state which can simply be an extension to Auto-ID events including busi-
ness context information such as location or business activity or a more
complex object-based model of the physical world.

94

In the last years much research has been performed concerning the first
two layers to provide an adequate interface to Auto-ID hardware and to
provide “clean” Auto-ID data to applications in an efficient manner. The
main objective of approaches for filtering and aggregating Auto-ID data is
the elimination of duplicate observations of tags and dealing with false-
positive and false-negative observations.

Since some approaches for Auto-ID data processing and middleware in-
clude concepts of layer three (e.g. enriching data with business informa-
tion), we propose to separate layer three into a layer for data enrichment,
representation and persistency and a layer for applications and informa-
tion systems (see Table 4-7).
Table 4-7 Layers, data models and data processing of an Auto-ID infra-
structure

Layer Data Model Data Processing / Functions
Hardware / Hard-
ware Abstraction

Raw Auto-ID
Data

Low-level processing re-
lated to air-interface (identi-
fication, memory access, fil-
tering)

Filtering and Aggre-
gation

Auto-ID ob-
servation/
event

Collection, filtering and ag-
gregation of data from mul-
tiple readers

Data Enrichment,
Representation and
Persistency

Auto-ID spe-
cific data
model /
Object repre-
sentation

Enrichment of Auto-ID data
with business context
Representation of physical
objects
Persistency of data model
Business process support

Applications and In-
formation Systems

Application
specific, asso-
ciated with
master data in
ERP systems

Application-specific func-
tions, e.g. track and trace of
objects, visualization of ob-
ject flows, management
cockpit

In the following sections, we relate existing research to our approach us-

ing different criteria including Auto-ID data models and representations,
data processing, provided functionality and services to applications and
support for application logic and business processes. Related work can be

 95

grouped into: EPC Network approach (see section 4.5.1), Auto-ID mid-
dleware and infrastructures (see section 4.5.2) and approaches in Ubiquit-
ous Computing infrastructures (see section 4.5.3).

4.5.1. EPC Network
One of the major research and standardization efforts in the area of Auto-
ID was the Auto-ID Center, founded in 1999 at the Massachusetts Insti-
tute of Technology (MIT) with several industrial sponsors [130]. The goal
of the Auto-ID Center was to foster research to provide low cost RFID
tags and readers [133], a standardized numbering scheme for objects
identified via RFID, the Electronic Product Code (EPC) [29], and an in-
frastructure for the RFID data management and sharing across the supply
chain [22]. The research of the Auto-ID Center was supported by a net-
work of universities and research centers, the Auto-ID Lab.

In 2003, the Auto-ID Center was transformed into EPCglobal Inc., a
nonprofit organization with the objective to commercialize and manage
the EPC standards and to continue the development of standards [64, 153].
The Auto-ID Labs, in cooperation with EPCglobal, continue to perform
research in a variety of Auto-ID related research areas.

The family of EPCglobal standards related to EPC, air interface proto-
cols, software interfaces and directory services are combined in the
EPCglobal Architecture Framework [52, 153, 38, 69], also called the EPC
Network. The software standards of the EPC Network describe interfaces
and data structures for communication and roles that software components
fulfill when implementing an interface (see Figure 4-19). The standards the
EPC Network can be grouped according to the layers described above (see
Figure 4-20). Starting from the hardware layer, the standards are:

• Tag Data Standard [50] describing the EPC
• Low Level Reader Protocol [53] to communicate with RFID readers
• Application Level Events (ALE) [47], the interface to communicate

with the RFID Middleware
• EPC Information Services (EPCIS) [48] describing interfaces to store

to and query data from an EPCIS Repository
• Object Naming Service (ONS) [54] a look-up service for EPCIS repo-

sitories
The EPC acts as a meta-schema that allows integrating existing number

schemes widely used in different application domains such as the Serialized
General Trade Identifier (SGTIN) or the Serial Shipping Container Code

96

(SSCC). Another supported schema is the Serialized Global Location
Number (SGLN) to identify locations. The Tag Data and the Tag Data
Translation [51] standards define different representations of an EPC: A
binary representation which is stored in memory of RFID tags and a sym-
bolic representation in a URN format. For example, a SGTIN EPC could
look like urn:epc:id:sgtin:0037000.112345.400. It contains in-
formation about the producer, product class and the product serial number
for a product which can be used by the application to count the number of
products of a certain class in a shipment or filter on products of a specific
producer.

Filtering & Collection

RFID Reader

EPCIS Repository

EPCIS Accessing Application

EPCIS Capturing Application

EPCIS Capture Interface

Application Level Events Interface

Low Level Reader Protocol

EPCIS Query Interface

Object Naming Service
ONS Interface

Event Layer
EL Interface

OMS
OMS Interface

Application /
Information System

EPC Network Thesis Approach

Figure 4-19 EPCglobal Architecture Framework compared to OMS

The Filtering and Collection Middleware role defined trough the ALE
interface provides filtering and aggregation of raw RFID data from read-
ers and acts as a single interface to the potentially large number of readers
that make up an Auto-ID system deployment. The ALE interface hides
Auto-ID technology details from the applications and provides a pub-

 97

lish/subscribe mechanism for applications to define in which filtered and
aggregated data they are interested. Filtering can be performed on EPC-
level, that is EPCs can be filtered based on producer or object class for
SGTIN EPCs. In general, the filtering is achieved via bitmasks on the
EPC. Aggregation allows summarizing all EPCs observed over a certain
period of time, called an Event Cycle, and eliminating duplicate observa-
tions. In addition, reports can be generated based on all observed EPCs or
only the new ones (i.e., additions) resp. the ones that are not observed any
more (i.e., deletions). Another form of aggregation is the bundling of all
observed EPCs of several readers into the observations of a so called logi-
cal reader. Once the readers capture relevant tag data, they notify the
middleware, which combines the data arriving from different readers in a
report that is sent to the subscribed applications according to a predeter-
mined schedule. The ALE specification defines a SOAP message trans-
port binding for the subscription communication channel and an XML
and TCP/HTTP message transport binding for the notification channel.

The EPC Information Services (EPCIS) consists of three roles and two in-
terfaces. The roles are the EPCIS Repository, a database for Auto-ID events
enriched with business information (called EPCIS Events), the EPCIS Cap-
turing Application that stores EPCIS Events in the EPCIS repository and the
EPCIS Accessing Application that queries the EPCIS Repository for EPCIS
Events.

The EPCIS Repository is defined through the two interfaces for storing
EPCIS Events in the repository, via the EPCIS Capture Interface, and for
retrieving them via the EPCIS Query Interface. The EPCIS Query Inter-
face provides synchronous and asynchronous queries for the applications.
Both capturing and querying data is based on the data model of EPCIS
Events that contain all relevant data describing an event. There are the fol-
lowing four types of events:

• Object Event describing an observation of one or many objects
identified via an EPC

• Aggregation Event describing the physical aggregation of several
objects (e.g. packages loaded on a palette)

• Quantity Event describing the number of objects of a certain object
class

• Transaction Event connecting EPC observations with business
transactions

98

EPCIS Events contain data about the date and time the event happened,
the main information what happened (i.e. the list of EPCs, parent and
child EPCs for aggregation events or quantity for quantity events), where
the event happened (i.e. the read point identifying the reader and the busi-
ness location) and data why the event happened (i.e. the business step or
the business transaction). Data that enriches an EPCIS Event with busi-
ness information such as business location or business step is based on
master data that is organized into vocabularies to structure the master data
for different application domains. For example, business context for fast-
moving consumer goods (FMCG) is described in its own vocabulary that
defines the possible business steps including picking, shipping or storing.

Since the data of EPCIS Events highly depend on the business context
and the application domain, implementations of the EPCIS Capturing Ap-
plication role differ significantly from each other and will thus have to be
developed on a case-by-case basis. EPCIS Events could be generated au-
tomatically only for trivial cases such as simple EPCIS Object Events de-
scribing a simple observation of a physical object.

Applications that retrieve data from the repository act as EPCIS Access-
ing Applications. As such an application (e.g., a warehouse management
system) is not a middleware component and resides in the application and
information system layer.

In a distributed application environment such as supply chain scenarios,
EPCIS Accessing Applications need the access path to EPCIS Reposito-
ries in order to retrieve data about required EPCs. EPCglobal provides
two different look-up services for EPCIS Repositories: First, the Object
Naming Service (ONS) and second the Discovery Services. ONS is an ex-
isting standard that is merely an extension of the existing Domain Name
Service (DNS) infrastructure. ONS only allows look-up of EPCIS Reposi-
tories of manufacturers of goods identified with an EPC (i.e., the organi-
zation that brings an EPC into life). The Discovery Service standard is
still in work and will provide information about all or selected EPCIS Re-
positories that store information about an EPC in question.

Comparison of the Thesis Approach with the EPC Network
Since the hardware layer is out of scope of our approach, the OMS merely
uses Auto-ID readers with different interfaces including readers with the
LLRP. Likewise, we also incorporate the symbolic representation of the
EPC as a numbering and identification scheme for objects in the Auto-ID

 99

Object Model. The main advantage is its standardized structure that has
the advantage of filtering and aggregating on owner or object class level
simply based on the EPC. Other advantages are its widely usage and ac-
ceptance among all Auto-ID middleware approaches. For example, a
SGTIN EPC in its symbolic representation could look like
urn:epc:id:sgtin:0037000.112345.400. Since the EPC is not li-
mited to identifying consumer goods using the GTIN, we also apply it to
identify location objects, readers and sensors in the Auto-ID Object Mod-
el. Using the EPC also allows for a seamless integration of the OMS and
an EPC Network deployment (see Figure 4-19).

Compared to the filtering and aggregation concepts presented in sec-
tion 4.1, the Filtering and Collection Middleware resp. the ALE interface
provide the filter types of reader identifier, tag identifier and data and the
aggregation types observed, entry and exit, and logical readers. Since
these filtering and aggregation types are sufficient to generate clean Auto-
ID data as input for the higher layers, a Filtering and Collection Middle-
ware implementation can act as a feeder for the OMS. Only the passage
aggregation type does not exist and has to be adapted in the OMS based
on enter and exit aggregation types.

Analyzing business context enrichment, the Filtering and Collection
Middleware only provides very limited mechanisms to incorporate busi-
ness logic (i.e., using logical readers as locations). It does not allow ex-
tending filtering and aggregation or providing own mechanisms via plug-
in. It also does not provide persistency of ALE events.

The EPCIS data model, that is the EPCIS Events, does not provide a
complete model of physical objects. The EPC as an object identifier can
be seen as a representation of a physical object. However, object proper-
ties cannot be modeled in EPCIS Events. Locations can be attached to any
type of EPCIS Events as business locations. This allows for a track and
trace of objects identified via EPCs. The EPCIS meta data also provides
child relationships between locations. The major drawback in the EPCIS
data model is the emphasis on EPCIS events describing observations re-
lated to EPCIS. It does not provide a model that represents the physical
world at a certain moment in time. The EPCIS is merely a collection of
events that can be used to reconstruct certain observation of the physical
world using a varying number of queries depending on the needed infor-
mation. In contrast, the Auto-ID Object Model provides a structured re-
presentation of the physical worlds of objects, their properties and their

100

relationships. Since the Auto-ID Object Model provides already a certain
level of business context (i.e. locations and certain properties), it is partly
on the same level as the data model of the EPCIS. On the other side, cer-
tain actions of the business process support of the Auto-ID Object Model
also correspond with EPCIS Events.

The EPCIS Repository is simply a database only for EPCIS Events. It
does not allow storing other kind of events such as ALE or custom events.
Moreover, it does not automatically generate EPCIS Events nor does it
provide any business or application logic support. Information about
business processes is only supported as data fields identifying business
steps or transactions related to an EPC observation. Business context
enrichment has to be implemented in an EPCIS Capturing Application
that links the Auto-ID observations from the Filtering and Collection
Middleware and other information from additional application dependent
sources with EPCIS Events to be stored in an EPCIS Repository. Since
the OMS provides actions for creating and storing EPCIS Events, the
OMS can take on the role of an EPCIS Capturing Application. The OMS
can therefore integrate into an EPC Network deployment and provide
non-standardized generic capturing application support (see Figure 4-19).
The business process definitions provide the means to define how to
transform the state of observed physical objects and their relationships in-
to events relevant for a higher business workflow. An EPC Network dep-
loyment can easily be setup using the components of the open source project
Fosstrak [67, 69]. In the model of the OMS the EPCIS Repository would
reside in the application and information system layer.

The ONS and the proposed Discovery Service only provide a look-up
for EPCIS Repositories. In an Auto-ID infrastructure deployment many
more hardware and software components exist that have to be connected.
This connection should ideally happen via loose coupling in case compo-
nents have to be exchanged or an access path to a component is changing.
A more general look-up service as presented in our approach provides for
such a loose coupling among components of an Auto-ID infrastructure.

Generally analyzing the EPCglobal Architecture Framework, it only
supports Auto-ID with EPC as the identifier. No sensor or actuator sup-
port is provided in the different standards. Only sensors such as light bar-
riers that act as triggers for readers can be modeled in the EPC Network
on a low-level in the LLRP and ALE. The Auto-ID Object Model ab-
stracts from sensors through object properties and actuators through func-

 101

tions. Research concerning sensor support for RFID tags (i.e., EPC class
3) and RFID tags that can act as sensor nodes in a network (i.e., EPC class
4) is ongoing [156, 49].

Another analysis of the EPC Network [126] argues that in an EPC Net-
work deployment the EPCIS Repositories offering persistence to EPCIS
Events are not sufficient and that a new component called Enterprise Loca-
tion Services is needed. Such a service would provide advantages related to
Auto-ID in an enterprise and would not be targeted to the benefits related to
the exchange of Auto-ID data such as EPCIS Events among enterprises in a
supply chain. The Enterprise Location Services would store all Auto-ID re-
lated events simply with their location before interpreting these events and
generating EPCIS Events. Such a service would provide in exceptional cases,
such as a safety incident or an incomplete shipment, valuable information
about the cause of such events that are not available when only considering
EPCIS Events [121]. The OMS providing the persistence of the Auto-ID
Object Model fulfills most of the requirements of the proposed Enterprise
Location Services in an EPC Network deployment. Only the efficiency and
the access control requirement are not fulfilled since they are out of scope of
our research.

4.5.2. Auto-ID Middlewares/Infrastructures
Besides the EPC Network there are a number of open source and com-
mercial Auto-ID middleware approaches and research in Auto-ID data
management available. The Auto-ID middleware approaches [123, 148, 28,
97, 4, 46, 136] are either database-centric [156, 86] or extend existing en-
terprise application servers. The emphasis of most of these approaches is
to provide data filtering, aggregation and simple data enrichment. Very
little generic application-level support is offered. Other research in Auto-
ID data management exists in the field of complex event processing [156,
162, 79] and in applying agent-based approaches [111].

Among the database-centric approaches of RFID data management
Wang [156] presents a temporal data model for RFID using a Dynamic
Relationship ER Model (DRER). The temporal aspect of their model is
related to proposed temporal aspects in SQL [143]. The presented DRER
model describes dynamic relationships between the following entities:
Readers, locations, objects and transactions. For example the relationship
between location and object is expressed as the object-location relation-
ship containing the location, the object and a start and end time at which

102

the object was at the location. Similarly the reader-object relationship is
expressed as an observation containing the reader, the object and the
timestamp at which the object was observed by the reader. The model is
instantiated in a RDBMS as tables for the entities and tables for the rela-
tionships. In addition to the temporal data model, effective query support
for complex queries such as tracking of objects and automatic data acqui-
sition and rule-based transformation to filter and aggregate data is de-
scribed. The transformation mechanism includes a simple declarative rule
definition language and allows data filtering of observations, location
transformations based on observation and data aggregation resulting in
containment object-object relationships and object-transaction relation-
ships.

Compared to our approach the presented model mixes Auto-ID specific in-
formation (i.e., readers, reader-location and observation), with object-related
information (i.e. object, object-location and transaction). The transformation
mechanism is on the one hand responsible to filter and aggregate raw data
and on the other hand to fill the model (i.e. for the object-location, object-
containment and object-transaction relationships). The second part is data
enrichment with context whereas the first part simply is filtering and aggre-
gation. The model therefore combines data representation and processing of
two layers. Our approach clearly separates Auto-ID specific data processing
relying already on filtered and aggregated data by lower layers and provid-
ing a clear object model to applications abstracting from Auto-ID specific
details. We use a similar approach of database model and queries for the ob-
ject history, since it follows accepted methods in temporal database ap-
proaches [143]. Business process support can only be seen in automatically
determining a transaction that is related to an object observation. This results
in updates in the model which applications have to query. Our approach on
the other side provides full business process support with actions to notify
applications or integrate with information systems.

A complementary approach for RFID data management is presented by
Hu et al. [86]. The emphasis is placed on the representation of the object
identifier EPC as a bitmap data type in the RDBMS. The advantage is the
support for queries on part of the EPC such as producers or object class
which would not be possible if the EPC would be stored as a string or in-
teger data type. Several possible database table representations for differ-
ent applications and the related queries are presented, in addition to an
implementation of the proposed EPC data type in a RDBMS. The pre-
sented approach would allow implemented the OMS with a much higher

 103

performance than the current prototype implementation which uses a sim-
ple string data type to store the object identifier in the object history.

Hardware

Filtering and
Aggregation

Data Enrichment
with Context

Business process
support

Ed
ge

w
ar

e
Se

rv
er

RF
ID

 P
re

m
is

e
Se

rv
er

O
bj

ec
t M

on
ito

rin
g

Sy
st

em
 (

O
M

S)
Ev

en
t L

ay
er

W
in

RF
ID

Ed
ge

-S
er

ve
r

Persistency

Representation
(Auto-ID Data Model)

Representation
(Object Model) Au

to
-I

D
 O

bj
ec

t
M

od
el

 /
 O

M
S

RF
ID

M

id
dl

ew
ar

e
EP

CI
S

Re
po

si
to

ry

Thesis
Approach

EPCglobal
Interfaces

Oracle
Sensor
Server

UCLA
WINMEC

SAPIBM
WebSphere

Microsoft

D
at

a
Re

po
.

In
te

gr
a-

tio
n

In
te

gr
a-

tio
n

Bi
zT

al
k

RF
ID

Au
to

-I
D

 I
nf

ra
st

ru
ct

ur
e

O
bj

ec
t E

ve
nt

Re

po
si

to
ry

Readers (LLRP/proprietary interface)
Sensors

LL
RP

Re

ad
er

Figure 4-20 Comparison of different Auto-ID middleware/
infrastructure approaches

Several approaches in managing Auto-ID data are based on complex
event processing [109] which has its root in active database research [36].
These approaches [156, 162, 79] are based on an Auto-ID data specific
event model. The rules that can be defined in such event processing range
from simple event condition action (ECA) rules to complex petri net
based rule definitions that also incorporate temporal data processing.
Since these rules are based on Auto-ID specific concepts (i.e., Auto-ID

104

observations) and events and not a model representing the state of the
physical world, formulating more complex business rules such as the ar-
rival of a shipment becomes a tedious task and requires deep knowledge
of the complex rule definition languages.

Comparing our approach to the more complex rules including temporal
aspects, we provide a data model that abstracts from Auto-ID specific de-
tails and allows for rule definitions that are much closer to the language of
business processes than rules based on Auto-ID observations. Conceptual-
ly, our approach is based on state changes of the objects in our model that
results in events to applications and not on events that are the result of
Auto-ID observations. From a more abstract point of view, our approach
can also be seen as complex event processing, since the object model of
an application is dynamically generated based on Auto-ID observation.
However, the main advantage of our approach is (i) the Auto-ID Object
Model which represents the real world more intuitively than Auto-ID ob-
servations and (ii) the simpler definition of business processes which pro-
vides a language with which a system engineer or domain expert is more
familiar.

At the University of California LA (UCLA) research concerning RFID
and middleware issues is performed under the umbrella of the Wireless
Internet for Mobile Enterprise Consortium (WINMEC) [12]. Their ap-
proaches resulted in an RFID middleware called WinRFID [123, 148].
The architecture of WinRFID is layered in five layers that can be mapped
to some of the layers presented above (see Table 4-7). The hardware and
protocol layer abstracts from different RFID hardware and air and reader
communication protocols. WinRFID supports the integration of a variety
of different readers. The data processing layer performs filtering and ag-
gregation of RFID data. Applications can create their own data processors
using rules to define filters and aggregators. Data processors can be linked
in a chain which allows for a flexible definition of filtering and aggrega-
tion mechanisms. RFID data and other information can be modeled as dif-
ferent events such as system events (indicating the system status), device
events (indicating device status), data events (transporting RFID data) or
user events (indicating status determined by user defined rules). The rule
approach to filtering is related to complex event processing described
above and allows the generation of events based on the input of other
events. The data presentation layer allows creating different XML-based
representation of event data in formats that can be processed by applica-

 105

tions. Different so called connectors are available that perform the data
representations and communication with applications. Two connectors are
provided: the database connector that allows populating an RDBMS with
processed events (i.e. data persistency) and the portal connector that pro-
vides data to web portals using a publish/subscribe mechanism.

The WinRFID approach provides Auto-ID application support starting
from the hardware layer up to the persistency layer (see Figure 4-20). The
filtering and aggregation mechanism is similar the approach of the Event
Layer that can be used to feed events into the OMS. The flexibility to
combine events in a chain and the ability to provide additional event pro-
cessors using the rules allows the enrichment of the data with business
context. The data representation, however, is only based on events and no
consistent Auto-ID data or object model is provided. Incorporating busi-
ness rules from the application into a WinRFID deployment using the
provided rules is therefore not a straightforward task. The rules contain
many Auto-ID specific concepts and will mix these concepts with appli-
cation domain concepts. Maintaining these rules for an application will be
complicated and costly. Moreover, no specific business process support is
provided. Events notifying an application about exceptional states of the
physical objects have also to be implemented using rules and low-level
events.

A multi-agent based RFID middleware approach is presented in [111].
The presented RFID middleware is based on Agent-oriented Software
Engineering concepts and uses the Process for Agent Societies Specifica-
tion and Implementation (PASSI) methodology [39] which facilitates the
design and implementation by providing tools, patterns and automation.
The multi-agent approach has the advantage of distributed and concurrent
problem solving and new patterns of interactions such as cooperation,
coordination and negotiation. The different types of agents in the pre-
sented approach have certain responsibilities such as controlling a reader,
generating events or reporting events. The agents are grouped into the fol-
lowing layers: Device management, data management and interface layer
similar to our presented layers above. Inter-agent communication is based
on an ontology that describes the different entities such as reader, antenna,
tag or event. The event generation and event data model is based on the
EPCglobal ALE standard (see section 4.5.1). As a case-study an asset
management application is presented.

106

Since the filtering and aggregation mechanism is based on the ALE in-
terface, only limited business context enrichment and no business process
support can be delivered. The approach using multi-agents has the men-
tioned advantages and provides a valuable contribution to the develop-
ment of RFID middleware. Especially for a highly distributed Auto-ID
deployment the agent-based approach allows for an easy distribution and
scalability. However, since the communication with the application is still
based on traditional interfaces there is no advantage in Auto-ID applica-
tion development.

Several commercial Auto-ID middleware and infrastructure approaches
are extensions of existing database and application servers. The Oracle
Sensor Edge Server [10, 4], the IBM WebSphere RFID Premises Server
[16, 46] and the Microsoft BizTalk RFID Server [1, 136] provide all the
EPCglobal ALE and EPCIS standard interfaces and allow integrating
LLRP readers and readers with proprietary interfaces using adapters that
are provided for the most common readers. In addition to the EPCglobal
interfaces, proprietary interfaces of the different application servers can
be used by applications, for example to plug-in filters or aggregators or
special reporting tools. By extending the filtering and aggregation capa-
bilities, applications are provided more flexibility than the ALE interface
would allow which provides basic data enrichment with business context
(see Figure 4-20). All applications provide a data model based on Auto-
ID concepts.

All three approaches provide high performance filtering and aggregation
mechanisms and an Auto-ID data model, however, they are still based on
Auto-ID specific concepts and none of the approaches provide a clear ob-
ject model. Business process support is not offered and has to be imple-
mented by special applications or by the integration of workflow enter-
prise software.

The SAP Auto-ID Infrastructure (AII) is based on research on smart
items [28, 97]. As the three other commercial approaches, the AII provides
the EPCglobal interfaces of ALE and EPCIS. However, partly it is still
based on an outdated Auto-ID data model of the Auto-ID Center, the Prod-
uct Markup Language (PML) [65]. In the business enrichment, the AII goes
one step further than the other commercial approaches and offers a hierar-
chal location model in addition to Auto-ID events. In the location model, de-
tected objects can be added based on rules that the application can define
similar to the approach of Wang [156] described above. The AII therefore
partly provides an object model with location and objects represented

 107

through their EPC. However, the rules can only be used to construct the
location-object model which is persisted but cannot be applied on the
model itself to provide business process support. The AII does not pro-
vide a consistent object model to which all of the stored data has to comp-
ly.

4.5.3. Ubiquitous Computing Infrastructures
Ubiquitous Computing (Ubicomp) infrastructures such as GAIA [127, 82],
Aura [144, 73], or Nexus [71, 24] provide general models and application
abstractions that focus on concepts such as persons and devices, user mo-
bility, intelligent environments, and the processing and modeling of con-
text information. The goal of these very general and abstract approaches
is to support the construction of a great variety of Ubicomp applications
that follow the vision of Marc Weiser [158]. An overview of existing
Ubicomp middleware and infrastructures is presented in [135].

However, due to the generality of the Ubicomp approaches, the effort to
build applications is still high. Identification and monitoring of objects is
interwoven in these infrastructures and not clearly separated against other
services. Each infrastructure defines a different object model for the iden-
tification and monitoring service. For example, the data model of Nexus
is a distributed location model that supports the development of spatial
aware applications, that means location is the most important entity in this
model.

Our approach focuses only on the identification and monitoring of ob-
jects as a basic building block to construct Auto-ID applications. The Au-
to-ID Object Model provides a more restricted but also more focused ob-
ject model on which an application or infrastructure can be build and
which can be extended. We do not need to take many different physical
entities into account (e.g. distinguish between persons, devices or prod-
ucts), the main objective of our model is to represent the physical world
as objects that can be automatically identified and their relationships. Ap-
plications that need to differentiate objects of certain types can easily add
properties to these objects or define object IDs to include object types or
classes.

Compared to symbolic location models presented in [107, 26] our mod-
el is extended by time, i.e. we provide a history of objects and their prop-
erties, which is also provided by Nexus. The Auto-ID Object Model
merges the concepts of object and location into the single concept of ob-

108

ject. In addition, state machines with conditional state transitions based on
a certain state of the objects in the model are offered to provide business
process support and notify applications only in exceptional cases. In con-
trast to the complex rule language in the GAIA infrastructure we operate
only with sets of objects, number of objects, and object properties.

Some Ubicomp infrastructures such as the Cooltown infrastructure [94,
124] use the semantic location model. Since our location model is based
on Auto-ID technology, that means object information is provided by Au-
to-ID sensors, it is difficult to automatically represent the symbolic group-
ing of objects. For our purposes of representing object containment it suf-
fices to detect the real physical containment relationship.

Römer et al. and Schoch propose a smart identification framework for
Ubicomp applications [129, 134]. The goal of the framework is to contri-
bute towards the realization of the vision of a world with ‘smart’ everyday
items. Smart everyday items differ from regular everyday items insofar as
they know their whereabouts, perceive their environment, and are able to
communicate with other smart things. The framework includes a model to
describe the world of collaborating everyday items. The model consists of
locations, things, and tags attached to them and a representation of the
thing in an IT system. The framework also includes a service infrastruc-
ture that allows for the coupling of the tag and its representation and that
provides a history of the smart things and query capabilities.

Compared to our approach, the smart identification framework also pro-
vides an object model where objects, their locations and their relation-
ships can be described. The representation of physical objects is called
virtual counterparts. However, the model includes Auto-ID concepts of
tags thereby mixing several concepts. Moreover, it differentiates between
the physical object and its representation in an IT system which makes the
implementation of an object transparent to the application and not only
the abstraction. In the Auto-ID Object Model we only provide the abstrac-
tion of physical objects (i.e., Object, Property and Object relationships) to
the application. The smart identification framework places its emphasis
on the management of smart things and provides only services of these
smart things to the application. There are no mechanisms that allow appli-
cations to plug-in application logic directly into the infrastructure that
manages the smart things comparable to the business process support of
the Auto-ID Object Model.

 109

The approach of smart things goes beyond the scope of Auto-ID appli-
cations where physical objects are identified and applications are interest-
ed in the whereabouts and state of these objects. Smart things take a more
active role and are able to actively communicate with each other and the
environment. The application setup is therefore far more complicated than
for Auto-ID applications which involve application logic on the smart
things. Our approach therefore reduces the object model to provide sim-
plicity to the applications and emphasizes more on the support for appli-
cations.

110

 111

5. Visual and Generative Tool-based Auto-ID
System Development Process

The previous section described how the gap between the applications or
information systems on the one side and the Auto-ID systems on the other
can be bridged by providing appropriate data representation, application
logic support and services to the applications and information systems.
Applications can build on interfaces that abstract from Auto-ID specific
details. In an Auto-ID application deployment, applications interface with
the Data Enrichment, Representation and Persistency layer, represented
by the OMS component, that has to be instantiated and configured accord-
ing to the required needs of the specific application domain. Moreover,
the other components in a deployment such as look-up services, filtering
and aggregation components, readers, sensors and actuators and their
connections have to be configured.

Typically these configurations have to be defined in component specific
formats (e.g. XML or text based configurations) and often certain parts of
components have to be implemented and integrated into these compo-
nents. These tasks require specific knowledge of all software and hard-
ware components of an Auto-ID application deployment in addition to
software development skills.

We propose to bridge this gap between Auto-ID application developers
on one side and the components of an Auto-ID infrastructure on the other
by an development process based on generative and visual programming
concepts. The visual tool-based process provides a concrete representa-
tion of the application domain and supports non-software developers in
the different tasks over the lifecycle of an Auto-ID infrastructure. During
design time, it allows to instantiate the Auto-ID application model to-
wards a certain Auto-ID application (e.g. a retail store management appli-
cation) and facilitates the configuration of all components of an Auto-ID
infrastructure. For the deployment phase, it offers a different view to vi-
sually setup and to connect the different hardware and software compo-

112

nents. During runtime it can act as a “management cockpit” to dynamical-
ly visualize the state of the infrastructure and allow changes to the setup
and configuration. In addition, it can also be a testing tool to simulate the
movement of objects to test the business logic. As shown in Figure 5-1,
the proposed tools support all the different layers of an Auto-ID infra-
structure.

Since the Auto-ID Application Development Process is based on differ-
ent concepts of generative and visual programming, an overview of these
concepts is given in section 5.1. The process and the visual tools are pre-
sented in section 5.2 and compared to related work in section 5.3.

Filtering and Aggregation
Filtering and aggregation of Auto-ID and sensor data
Management of readers and sensors

Readers
Identify tags
Access tag user memory
Filtering on air-interface

Data Enrichment, Representation and Persistency
Enrichment of Auto-ID data with business logic
Adequate representation of data
Persistency of data including query capabilities
Auto-ID related business process support

Applications and Information Systems

Sensors
Measure physical
properties

Actuators
Physical world
interaction

Ap
pl

ic
at

io
n

an
d

Sy
st

em
-le

ve
l T

oo
ls

Figure 5-1 Tool support for the Auto-ID infrastructure layers

 113

5.1. Generative and Visual Programming Concepts

5.1.1. Generative Programming
Czarnecki defines Generative Programming as “a software engineering
paradigm based on modeling software system families such that, given a
particular requirements specification, a highly customized and optimized
intermediate or end-product can be automatically manufactured on de-
mand from elementary, reusable implementation components by means of
configuration knowledge.” [40]

From this definition, two requirements for Generative Programming can
be extracted. First, a set of elementary, reusable components is needed
from which a family of systems can be generated and second, through the
use of automation, these components can be combined to produce a soft-
ware system. A family of systems can be defined and generated from a
common model, a generative domain model, which includes three ele-
ments (see Figure 5-2):

1. A family of systems, which forms the problem space. The problem
space consists of the domain-specific (i.e. application-specific) con-
cepts and features needed to define the implementation components.

2. The components from which the systems can be built, the imple-
mentation components. These, in composition with each other, form
the solution space. The configuration knowledge specifies how the
implementation components may be combined, and more impor-
tantly, defines defaults for as many features as possible. This is im-
portant since it minimizes the work of application generators.

3. Constraints and rules on how the components and their features can
be put together, the configuration knowledge. The solution space is
composed of all possible combinations of implementation compo-
nents that adhere to the restrictions given by the configuration
knowledge. Optimally, the implementation components are de-
signed such that the number of possible combinations is maximized
while keeping the implementation intersections between compo-
nents at a minimum. To implement the generative domain model,
generators are used. They represent the configuration knowledge
and assemble the implementation components specified by a system
specification.

114

Figure 5-2 Generative domain model (from [40])

Generative Programming offers many advantages, but at certain costs.
The most important characteristic of Generative Programming is that all
advantages depend on the fact that it is comprised of two complete devel-
opment cycles: The generative domain model, developed for reuse, and
the usage of the model, actually reusing it.

From this characteristic stem many advantages. First of all, since the
implementation components and the configuration knowledge can be
reused for each member of the solution space. Development costs are re-
duced with each member produced. If new members need to be produced,
most of the implementation components and configuration knowledge
stay the same and the implementation components being improved conti-
nually instead of being replaced by specialized components.

However, the reliance on the reusability of the components and the
model means also that the monetary and temporal cost to develop said
components is higher than creating one system. From this we conclude
that Generative Programming should be deployed if it is possible to guar-
antee a high reusability rate and a big enough strategic time window in
which to place the products generated with Generative Programming.

As opposed to conventional software engineering, which concentrates
on single systems, Domain Engineering focuses on providing reusable so-
lutions for a family of systems. It does this by collecting, organizing, and
storing constituents of systems in a particular domain in the form of reus-
able concepts and units, but also by providing the means to
reuse/assemble/adapt/combine these assets (e.g., domain models, software
architectures, design standards, communication protocols, code compo-
nents and application generators), when building new systems. An exam-

 115

ple for this is a generic system from which concrete systems and/or com-
ponents are instantiated, which are then reused in different systems.
Domain engineering consists of three main process parts (see upper part of
Figure 5-3) [41]:

• Domain Analysis. Analyzing the domain and defining a set of reus-
able, configurable requirements for the systems in the domain.

• Domain Design. Developing a common system family architecture
and formulating a production plan.

• Domain Implementation. Implementing the reusable parts of the
system and the generators.

Figure 5-3 Software development based on Domain Engineering (from
[41])

Based on the results of domain engineering, systems can be built. This
process is called Application Engineering [41]. Figure 5-3 illustrates how
domain engineering and application engineering interact. The require-
ments analysis for new applications takes advantage of existing domain
analyses and the resulting domain model. In the case a customer require
special features not allowed for in the domain model, these requirements
are fed back into the domain knowledge but also passed on as a custom
design to the product configuration created from the domain design. The
custom design is then implemented by a custom development and inte-

116

grated with the result from a generated or manual composition of the do-
main implementation to compose the final application.

5.1.2. Visual Programming
The definition of visual programming encompasses conventional flow
charts and graphical or visual programming languages. A visual pro-
gramming language (VPL) is defined as any programming language that
allows the user to specify a program in a two-(or more)-dimensional way
[31]. Conventional textual programming languages (TPL) are not consi-
dered two-dimensional since the compiler or interpreter processes them as
one-dimensional streams of characters [142]. The most common goals of
visual programming are best summarized in [31]:

• Make programming more accessible.
• Improve programming correctness, that is, reduce the error rate of

programmers.
• Improve programming speed.

Five common strategies are usually used to achieve these goals [31, 32]:
• Directness. In the field of human computer interaction (HCI), di-

rectness refers to the distance that has to be covered from the action
of formulating a goal and the achievement of the goal. In the con-
text of object manipulation, it refers to the feeling that the user is
directly manipulating the object [138].

• Explicitness. Semantics are inherently contained in the graphical
structure. For example, a system could express the containment re-
lationship between objects by drawing them inside another.

• Liveness. Liveness refers to immediate visual semantic feedback of
program edits.

• Concreteness. The converse of abstractness. This means that pro-
grams are expressed on particular instances.

• Simplicity. VPLs use fewer concepts. For example, many VPLs do
not need the user to worry about pointers or memory allocation.

The advantages of visual programming are obvious. The human visual
system is very well suited for two- or three-dimensional visual processing.
For example, whereas the textual representation of a program relies on the
syntactical representation of structures, a visual representation could
make use of various gestalt laws [37, 80, 159] to display program struc-
ture and functionality.

 117

Current programming practice is to design program structure using
graphical aids, for example UML diagrams and flow charts. But as soon
as the implementation and instantiation stage is reached, the graphical
structures are translated into a textual representation, which only uses ru-
dimentary visual aids like textual indentation or syntax highlighting. Easi-
ly human-decoded visual representations make way for more abstract re-
presentations, which need more time to be processed.

Despite current practice, theories that improve upon the discrepancy be-
tween representations have been stated already a long time ago. David
Canfield Smith writes almost thirty years ago: “The most articulate repre-
sentation for a program requires the least translation between the internal
representation in the mind and the external representation in the medium.”
[142] He draws upon ideas by Sloman, who distinguishes two kinds of
data representation, “analogical” and “Fregean”. In an analogical system,
parts and their relations are represented in such a way that “the structure
of the representation gives information about the structure of what is
represented.” [141], whereas Fregean systems are based on Frege’s syn-
tactic and semantic theories [74], for example represented by textual pro-
gramming languages. Although current programming languages also
represent the structure of what is represented, there exists a huge gap be-
tween the textual representation of a program and the program as a func-
tional unity. Object oriented classes were successful in improving the re-
presentation, but only modestly.

Figure 5-4 Fregean versus analogical representation

One of the goals of Visual Programming is to enable humans to pro-
gram without having been trained to be able to read and write the textual
representation of a program (accessibility). To that end, most VPL use
analogical representations whose structures have functionalities that are as
close as possible to those of the structures represented. An example for
the two representations is given in Figure 5-4. Both parts of the figure de-

118

scribe the same functionality. The left part uses a Fregean representation,
using a Java interface as a description, whereas the right part describes the
program in analogical “terms”. Both representations need to be decoded.
But it is assumed that the Fregean representation needs more abstract
knowledge (i.e. about the programming language Java) to be decoded
than the right part, whose representation requires knowledge about ma-
thematical symbols (Venn diagrams [137, 155] in this case).

A very similar approach is presented in [137], where linguistic and dia-
grammatical representations of logic are compared. The key distinction is
that the diagrammatical representation relies on the reader’s perceptual
inferences, whereas the linguistic representation relies more on the con-
ventions of the associated representation system known to the reader.

The theories mentioned above are mainly concerned with the informa-
tion transfer from the representation to the user. Fairly recently, research-
ers have investigated in user studies [122, 160] on how programs or parts
thereof are represented mentally. In these studies, programmers were
asked to describe their mental imagery during the design of programs,
solving given problem cases. The importance of using mental imagery has
been shown previously [81]. However, it has been found that the mental
imagery varied considerably between test subjects (e.g. most used textual
and graphical representations intermixed, but some exclusively used a
textual representation). Despite that, a few common elements in using
mental imagery could be extracted [122]:

• Mental imagery was dynamic and subject to control by the user.
• Information was not uniformly distributed, but focused and more

detailed at the point the user chose to concentrate on.
• Information was spread over multiple levels.
• Areas that had not yet been solved were marked specifically, using

for example a fuzzy representation.
• Users readily used multiple representations for a given structure.
• Most of the structures were labeled textually, suggesting a multi-

modal thought process.
Although these findings suggest a smaller translation distance from

mental representation to visual programming language representation than
textual representation, this point is still disputed [77].

Recently, papers that investigate visual programming in specific con-
texts have indicated that most of the advantages and disadvantages of vis-
ual programming are closely related to the area in which they are used

 119

[117]. One of these areas where the usability of VPLs compared to TPLs
varies with the context is whether they are used in programming-in-the-
small or programming-in-the-large [76]. Programming-in-the-large is the
activity of programming systems that consist of many modules, or small
programs, interacting with each other [42]. Programming-in-the-small is
about exclusively writing these modules. Software engineering as a dis-
cipline originated from the realization that the two programming styles
are handled fundamentally different: “structuring a large collection of
modules to form a ‘system’ is an essentially distinct and different intellec-
tual activity from that of constructing the individual modules.” [42]

Despite the fact that most of the visual programming research effort has
been concentrated on visual programming languages for programming-in-
the-small, they do not seem to be well suited for the task. To compare the
performance of VPLs and TPLs on a low level, [117] defines a graphic
metric (using graphic tokens) based on the assumption that there are three
ways (tokens) of combining graphic units: adjoinment, when graphical
units touch each other, linkage, where units are linked through special
graphical devices; and containment, where one unit is enclosed in another.
Although the graphical representation handles graph relations better (i.e.
has a lower token count), the textual representation is much better suited
to tree-like relations (e.g. “4 * 3 + 1”) which occur very often at this pro-
gramming level.

Stemming from the same source is the problem of the large space used
to display a program [96]. Possible solutions for this problem are scrolling,
introducing an abstraction mechanism like a hierarchical structure, where
only the current level is visible, or as presented in [76], a zooming me-
chanism, that only displays features around a certain depth. There are a
few advantages, for example that fewer concepts are required to program:
“de-emphasizing issues of syntax and providing a higher level of abstrac-
tion” [115]. The programmer does not have to deal with pointers, memory
allocation, and the like. Still, it seems that on a low programming level,
the mental abstractions performed by the user are closer to the textual re-
presentation than to a graphical representation.

On the other hand, VPLs appear to perform very well in the area of pro-
gramming-in-the-large, an example of which is the object oriented pro-
gramming paradigm. Application examples for this type of VPL are de-
scribed in [21, 34, 76]. The same graphic metric that favors TPLs in pro-
gramming-in-the-small, seems to favor VPLs in programming-in-the-

120

large. The reason for this is that with programming-in-the-large, the se-
mantic expressions are often graph-based. Also, since the modules are
most of the time encapsulated in files, the textual expression of relations
is costly, compared to the graphic representation between modules, which
can be expressed using one of the abovementioned three types of relations
[117]. VPL environments utilizing high-level basic elements have been
quite successful in context of a specific application domain, which is of-
ten small. In the last decade, a few VPL environments have been re-
searched, which use user-customizable high-level components, for exam-
ple [76, 96]. Many have been developed commercially, with mixed suc-
cess, for example Sanscript, or Khoros.

Despite the fact that many VPLs have been designed and implemented,
and generally favored by test users [160], usage has been marginal [58]. A
reason for this might be the fact that changing software design has a high
cost-of-entry due to investments made in older, better established para-
digms, and also due to the fact that software developers are hesitant to
learn new paradigms.

5.2. Auto-ID System Development Process

In a specific application scenario (e.g., a retail store or a whole supply
chain), the Auto-ID infrastructure consisting of its hardware and software
components has to be initially instantiated. This instantiation involves the
following categories of tasks:

1. Setup of hardware, that is the readers, sensors, actuators and servers
2. Configuration of hardware, for example reader parameters to tune

the anti-collision algorithm or the dense reader mode
3. Setup of software, for example installing databases or software

components
4. Configuration of software, for example, definition of objects in the

OMS or filters in the Filtering and Collection middleware
The first category of tasks has to be performed in the physical world, for

example readers with their antennas have to be deployed at the required
locations and connected to a network. The second category is typically
done by the system integrator that provides the reader and sensor which
are Auto-ID technology specialists. The third category involves the setup
of standard software components which is typically done by system ad-
ministrators of the involved parties of the application scenario.

 121

In the proposed Auto-ID Application Development Process we concen-
trate on the fourth category. The configuration of the Auto-ID software
components is specific for the application scenario and brings the Auto-
ID infrastructure in a state where it can be used by the applications. The
software components in question are:
• Reader and sensor software
• Filtering and aggregation components such as Event Layer or

EPCglobal Filtering and Collection middleware
• Object Monitoring System (OMS)
• Lookup Service (LUS)
The specific configuration and instantiation tasks for the software com-

ponents, grouped by the layers of an Auto-ID infrastructure, are listed in
Table 5-1.
Table 5-1 Configuration and instantiation tasks for the Auto-ID infra-
structure software components

Layer Taks
Hardware • Setup and configuration of readers, sensors and actu-

ators with their correct IDs and registration of these
IDs with the LUS

• Definition of read cycles and reporting of readers
(e.g. how often and for how long will a read cycle be
performed)

• Definition of measuring and reporting of sensors
Filtering and
Aggregation

• Setup and configuration of filtering and aggregation
components with their correct IDs and registration of
these IDs with the LUS

• Definition and configuration of filtering, aggregation
and reporting of the filtering and aggregation com-
ponents (e.g. event cycle definitions for Filtering &
Collection components or filter chain definitions for
Event Layer components)

• Definition of field names for user memory on Auto-
ID tags

• Configuration of the connections between filtering
and aggregation components and the readers and sen-
sors that should report to these components

122

Layer Taks
Data Enrich-
ment, Repre-
sentation and
Persistency

• Definition of the static and semi-static objects (e.g.
buildings, rooms or shelves) and their containment
relationships in the Auto-ID Object Model instance
(i.e. the object tree)

• Definition of mobile objects (e.g. fork lifters or
shopping carts)

• Definition of existing functions of objects
• Implementation and integration of application specif-

ic functions
• Definition of existing properties of objects and their

property sources
• Implementation and integration of application specif-

ic property sources (e.g. properties taken from legacy
information systems)

• Definition of the readers, sensors and actuators in the
OMS and their links to objects in the object tree

• Definitions of object sets that are used in the business
processes

• Definitions of all business processes specific for the
application scenario which are managed by the OMS
(i.e. definitions of state machines, state transition
conditions and actions)

• Implementation and integration of application specif-
ic actions (e.g. custom information system reporting
or notifications to mobile devices)

• Configuration of connections to filtering and aggre-
gation components such as the Event Layer or
EPCglobal compliant Filtering and Collection mid-
dlewares including the definition of user memory
fields on Auto-ID tags

Applications
and Informa-
tion Systems

• Definition of the configuration of the structure (i.e.
the schema) of the look-up service (e.g. LDAP
schema to store the different component records)

The Auto-ID Application Development Process defines certain steps

and provides visual tools to support non-software developers in the differ-

 123

ent tasks over the lifecycle of an Auto-ID infrastructure (see Figure 5-5).
The process corresponds to the application engineering steps in the soft-
ware development based on domain engineering described in
tion 5.1.1 (see also Figure 5-3).

In the analysis phase, the application scenario is analyzed by Applica-
tion Analysts. The result of the analysis is an Application Specification
that contains an extensive, semi-formal specification of the application in-
cluding the business processes that are triggered by the physical objects in
the real world, the locations of interest and their hierarchical structure,
and properties of physical objects that are of interest to the application or
the business processes. The analysis corresponds to business analysis and
requirements engineering in traditional software engineering.

Figure 5-5 Auto-ID Application Development Process

This Application Specification is the input for the Application Engineer
in the instantiation phase (i.e., the design phase in traditional software
engineering). The Application Engineer formally specifies the instantia-
tion of the Auto-ID infrastructure using the Visual Instantiation Tool
(VIT) (see section 5.2.1). The VIT provides the Application Engineer
with a concrete representation of the application definitions (e.g. the Au-
to-ID Object Model instance is represented as a floor plan) and no soft-

124

ware development knowledge is needed. The output of the VIT is a de-
scription of the configurations of the OMS and the filtering and aggrega-
tion components. In addition, the System Integrator provides the configu-
ration descriptions of the readers, sensors and actuators.

These configuration descriptions and the bare software components are
the input for the Generation Tool (see section 5.2.2) in the generation
phase (i.e., in traditional software engineering the implementation phase).
The Generation Tool automatically generates instantiated software com-
ponents, that is software components that contain the specific configura-
tion, and a description of the hardware configuration in the format re-
quired for the Deployment Tool.

In the deployment phase, the Auto-ID System Administrator who has
the information about the different servers and the deployed hardware de-
fines the actual deployment of the software components using the Visual
Deployment Definition Tool (VDDT) (see section 5.2.3). The VDDT
takes the information about the instantiated software components as input
and provides the Auto-ID System Administrator with a visual toolkit to
create a deployment plan for the Auto-ID Infrastructure. The output of the
VDDT is the Deployment Description. The Deployment Tool takes the
Deployment Description as input and automatically deploys the instan-
tiated software components to their servers. This requires a deployment
infrastructure in place on the servers. The Auto-ID Infrastructure is now
fully instantiated, deployed and ready for the application to be used.

During the runtime phase, a visual tool similar to the VIT, provides a
Management Cockpit to interested actors. For example, the store manager
in a retail store scenario can use the tool to get an overview of the physi-
cal objects and their movements in the store, the running business process
and their reporting actions. The Management Cockpit was not in the
scope of this thesis and is not described further.

5.2.1. Visual Instantiation Tool
The VIT is the main tool in the Auto-ID System Development Process.
The Application Engineer can perform most of the instantiation and con-
figuration tasks required for the OMS (see Table 5-2). The Application
Engineer does not need any programming skills or software development
knowledge.

 125

Table 5-2 Configuration and instantiation tasks supported by VIT

Tasks
(see Table 5-1)

Function
in the VIT

• Definition of the static and semi-static ob-
jects and their containment relationships

Draw and define ob-
jects in Floor Plan
View or define Objects
in Tree View

• Definition of mobile objects Define objects in Tree
View

• Definition of existing functions of objects
• Integration of application specific functions

(implemented outside of VIT)

Add functions to se-
lected object in Func-
tions View

• Definition of existing properties of objects
and their property sources

• Integration of application specific property
sources (implemented outside of VIT)

Add properties and
property sources to se-
lected object in Proper-
ty View

• Definition of the readers, sensors and actua-
tors in the OMS and their links to objects in
the object tree

Add reader, sensor or
actuator to objects in
Floor Plan or Tree
View

• Definitions of object sets that are used in the
business processes

Add sets with Set
Management

• Definitions of all business processes specific
for the application scenario which are ma-
naged by the OMS

• Integration of application specific actions
(implemented outside of VIT)

Add business process
including state and
transition definitions to
selected object using
Business Process Man-
agement

As stated in section 5.1.2, the main goals of visual programming are to

make programming more accessible to some particular audience and to
improve the correctness and speed with which people perform program-
ming tasks. The VIT fulfills these goals for application engineers. It re-
lieves them from defining extensive XML configuration files which re-
quire knowledge about their complex XML schemas. Using XML-based
editors would improve the syntactic correctness, however, the semantic

126

correctness would still suffer. The accessibility of the visual representa-
tion using a floor plan of the application scenario supported by a tree view
that emphasizes the object hierarchy is very high and many tasks can be
fulfilled in less time.

Figure 5-6 GUI of the Visual Instantiation Tool

The VIT uses the above mentioned strategies (see section 5.1.2) of visu-
al programming: The visual representation of the Auto-ID Object Model
instance provides a concrete representation where the application engi-
neer can directly manipulate the objects and their relationships. Some as-
pects of semantics (e.g. object containment relations or reader linked to
objects) are inferred without the application engineer needing to explicitly
state them. During the manipulation of the model instance, the application
engineer gets immediate semantic visual feedback (i.e., liveness). For ex-
ample, adding or removing an object is shown both in the floor plan and
tree view. The definition of the model instance becomes simpler since the
application engineer can think in application concepts and does not need
to worry too much about XML specific syntax or semantics.

 127

Figure 5-6 visualizes the graphical user interface (GUI) of the VIT. The
GUI is structured in the following areas: (1) The Floor Plan View, (2) the
Tree View, (3) the Properties and Functions View, and (4) functions of
the VIT provided as menus or toolbar actions. In addition, the Set and
Business Process Management is provided in dialogs accessible via menu
items.

Floor Plan View
The Floor Plan View visualizes the Auto-ID Object Model instance as a
floor plan. The view allows the user to intuitively draw a 2-dimensional
floor plan of a building or other structure.

The user can modify the plan by dragging or deleting previously drawn
line segments, defining objects through an area enclosed by line segments,
and add readers, sensors or actuators by dragging the corresponding sym-
bol onto a defined object. The VIT automatically determines the contain-
ment relationship of objects while drawing and defining objects. For ex-
ample, drawing a room and then drawing three shelves inside the room
will result in automatically placing the three shelves inside the room in
the tree hierarchy.

Although the view represents a 2-dimensional view, the 3rd dimension is
supported by objects that can have different levels in the 3rd dimension
(e.g., a shelf with different levels of storage). The visible object on the
view then stands for the currently chosen level of the complete object. A
complete object represents a container that includes all levels of an object.
Levels in the Auto-ID Objects Model instance are simply represented as
child objects of the complete object.

Tree View
The Tree View shows the Auto-ID Object Model instance emphasizing
the object hierarchy. This view presents the user with complementary in-
formation since objects are represented by their object ID and clearly
showing the object containment relationships.

The Tree View also shows the links to readers, sensors or actuators of
objects. Changes in the Floor Plan View and Tree View are synchronized.
However, not all functionality of the Floor Plan View is available in the
Tree View due to the different representation (e.g., objects can only be de-
fined through drawing them on the Floor Plan View).

128

Properties and Functions View
The Properties and Functions View provides a tabular view on the proper-
ties and functions of the currently selected object. The user can add new
properties and define the property source and modify existing properties.
In a similar manner, the user can add and modify the functions of an ob-
ject.

Menu and Toolbar Actions
Several functions of the VIT are provided as menu or toolbar items. There
are several menus that group functions such as file functions (e.g. load
and save of a model instance), typical edit functions such as copy, cut,
paste and remove, management of levels of objects, starting of set and
business process management, and user options.

The two toolbars contain quick access buttons that support carrying out
actions with only one click and are short cuts for frequently used actions.
The toolbar on the left of the Floor Plan View includes actions to select
and define objects and add links to readers, sensors and actuators. The
toolbar on the top provides quick access to load, save, zooming of the
floor plan and level management of the currently selected object.

In addition, a context pop-up menu exists for actions on the Floor Plan
View.

Figure 5-7 Set Management dialog

 129

Set and Business Process Management
Since the sets in the Auto-ID Object Model are not bound to an object, the
Set Management dialog is opened via a menu item only. The dialog al-
lows adding and modifying object, pattern and property sets. Figure 5-7
shows adding a property set. Defining the property condition is supported
by a constructor that enforces the syntactic constraints of the set definition
language. In addition, the definition can always be modified directly in
the textual expert view of the set definition.

The Business Process Management dialog can be opened via a menu or
context menu item and applies to the currently selected object. The states
and their transitions can be graphically defined similar to a UML state di-
agram. The conditions of the state transitions can be defined using the de-
finition language for state transition condition either in textual expert
mode that gives complete freedom or using a constructor that enforces the
syntactic constraints of the language.

Figure 5-8 Conststructing a set comparison expression

 The constructor allows building a condition using expressions, logical
operators and parentheses as building blocks. The expressions can be de-
fined similar to the conditions in the property set definition. The different
parts of the expression can be chosen from a drop down list that either de-
pends on syntax of the expression (e.g., the possible compare operators)
or other definitions of the user (e.g., the existing sets of objects). For ex-
ample, Figure 5-8 illustrates how to construct the following set compari-
son expression:

NOT (ALL ISSUPERSET ObjectShipment1020)

5.2.2. Generation Tool
The Generation Tool is not a visual tool that requires user interaction. It
can be started in the workflow of the Auto-ID Application Development
Process either directly from the VIT or manually. The Generation Tool
takes two kinds of input: First, the output of the VIT and additional confi-
guration descriptions (i.e., about readers, sensors and actuators), and
second, the OMS, Filtering and Aggregation, and custom made software
components. The tool then generates fully configured and instantiated
software components that are ready to be deployed and hardware configu-

130

ration descriptions that will be used to configure already deployed hard-
ware (i.e., readers, sensors and actuators) if necessary.

In the concepts of the Domain and Application Engineering (see Fig-
ure 5-3), the Generation Tool provides the step from the domain imple-
mentation (i.e., the OMS and Filtering and Aggregation software compo-
nents) via the integration step (i.e., configuring the domain components)
towards the construction of the final application (i.e., integrating the cus-
tom made components). The Generation Tool contains the needed confi-
guration knowledge such as default settings, default dependencies and
construction rules (see Figure 5-2) to build the final application, that is,
the fully instantiated and configured components.

The prototype implementation of the Generation Tool is using the tech-
nology of Extensible Stylesheet Language Transformation (XSLT) [18] to
transform the XML output of the VIT into an XML document that acts as
the configuration of the OMS. The configuration is packaged in the Java
archive (JAR) files of the OMS. In addition, custom components are con-
figured and integrated into the JAR files of the OMS. Based on the hard-
ware configuration description, for each reader, sensor and actuator that
needs to be configured a configuration description is created that is used
by the Deployment Tool.
Table 5-3 Configuration and instantiation tasks supported by the Dep-
loyment Definition Tool

Taks Function in Deployment
Definition Tool

• Configuration of the connections between
filtering and aggregation components and
the readers and sensors that should report
to these components

Define Auto-ID Connec-
tion between compo-
nents

• Configuration of connections of the filter-
ing and aggregation components and the
OMS to which the component should re-
port

Define Auto-ID Connec-
tion between compo-
nents

5.2.3. Deployment Definition and Deployment Tool
After the Generation Tool, all software components are configured, pack-
aged and ready for deployment. The Deployment Definition Tool pro-
vides a visual interface that allows the Auto-ID System Administrator to

 131

specify the deployment of the Auto-ID infrastructure. The deployment in-
formation includes two kind of information: First, for each software com-
ponent the server (i.e., physical node) to which it should be deployed.
Second, all the connections between the software components, that means,
the definition to which higher component a specific component should re-
port its data (see Table 5-3).

The Deployment Definition Tool is based on the Graphical Instantiation
Environment (GIE) which was developed at ETH. The GIE provides an
extensible framework to create graphical editors for components and con-
nections between these components. The Deployment Definition Tool ex-
tends the GIE by providing all the visual and syntactic information about
the components and connection that exist in an Auto-ID infrastructure.
The GUI of the Deployment Definition Tool (see Figure 5-9) mainly con-
sists of a toolbox with the available components and connections and a
panel that contains the deployment as a visual representation of the com-
ponent instances and their connection.

Figure 5-9 GUI of the Deployment Definition Tool

The Deployment Definition Tool enforces specific constraints on the
deployment definition, for example, software components can only have
Hardware Connections to Physical Nodes or RFID Readers can only be

132

connected with Auto-ID Connections to EL Instances. In the example,
shown in Figure 5-9, the OMS will be deployed on a server and the two
EL instances on another server. The same deployment as an UML dep-
loyment diagram is shown in Figure 5-10.

127.0.02

127.0.0.1

Object Monitoring System

Event Layer

RFID Reader
127.0.0.10

RFID Reader
127.0.0.11

Event Layer

RFID Reader
127.0.0.10

Figure 5-10 Example deployment of Deployment Tool

The Deployment Tool takes the information from the Deployment Defi-
nition Tool and performs the actual deployment of the configured and in-
stantiated software components. In addition, using the hardware configu-
ration description, all readers, sensors and actuators are configured. After
the Deployment Tool successfully finished its deployment, the whole Au-
to-ID infrastructure is set-up and in an initial state, ready to be used by the
applications. In our prototype implementation, the Deployment Tool uses
the Java Web Start technology [8] to deploy and start the software com-
ponents automatically.

5.3. Related Work

There are several related approaches based on generative and visual pro-
gramming concepts such as domain-oriented design environments or
component-based construction kits. The general concepts related to our
approach have been described in sections 5.1.1 and 5.1.2. The following
selected research projects or visual programming environments are related
to our approach.

Another visual programming environment is, for example, the Peter
System [116], a visual programming tool for programmers and non-

 133

programmers, in which programs are put together on a tree structure from
a variety of basic components.

UML modeling tools can also be seen as visual programming environ-
ments with which a user can instantiate a UML model (e.g. a UML class
diagram) based on the UML meta model [118]. In many cases, even
source code or source code skeletons can be created based on visual UML
definitions.

Many system modeling environments are based on visual programming
environments, for example, Simulink [14], an environment for multi-
domain simulation and Model-Based Design for dynamic and embedded
systems. It is an interactive graphical tool for modeling, simulating, and
analyzing dynamic, multi domain systems. It lets the user describe, simu-
late, evaluate, and refine a system's behavior through standard and custom
block libraries. Simulink is used as a system modeling tool in a variety of
applications such as unmanned flight control systems, health risk predic-
tions, agricultural research, car engineering, satellite software develop-
ment and chip design.

The Board Software Instantiation Environment (OBSIE) [35] tackles the
problem of developing systems for physical devices or facilities: Engi-
neers who are application specialists specify the control system of a de-
vice but the implementation of the control system if performed by soft-
ware specialist based on the specification. The information gap between
the application specialist and the software specialist can lead to misun-
derstandings and is error-prone and cost-intensive.

The OBSIE is a generative programming environment, which allows the
application specialist, given a clearly defined framework, whose compo-
nents are preferably implemented as black box components, to compose
them together and instantiate a new program without the need to be a
software specialist. The OBSIE has a development process that clearly
defines the workflow of domain and application engineering and the in-
volved tools and artifacts. The domain components are the components of
the existing framework that can be further customized (i.e., the frame-
work be instantiated) to build a concrete application. The OBSIE is pre-
sented with a specific framework, the Attitude and Orbit Control Systems
framework (AOCS) used for satellite control systems.

The OBSIE is based on the JavaBean component model using different
XML schemas to describe the different steps in the customization process.
It also uses a visual programming environment based on the Java Bean

134

Builder (see Figure 5-11) to customize and connect the components. The
customization information is then used in a generator based on XLST to
create instantiation code which together with the framework components
composes the application.

Figure 5-11 OBS Bean Bilder (from [35])

The programming environment for the LEGO Mindstorms [9] robots is
a graphical editor and code generator to visually create LEGO Robot
Command System (RCX) code. First, a visual representation of the pro-
gram is designed in the graphical editor, and then the textual representa-
tion (the code) is generated and used in the RCX. The RCX building
block is a programmable microprocessor, which is able to execute RCX
code and to which several sensors and actuators can be connected. The
new generation of Lego Mindstorms has a slightly different and enhanced
programming environment based partly on LabView [92].

To represent parts of a program design, the programming environment
uses special building blocks whose look resembles normal LEGO blocks
as the concrete representation of the program. A wide variety of pre-
defined blocks exists to cover a program (see Figure 5-12). Blocks are
drag-and-dropped onto the lower LEGO connection part of existing

 135

blocks. The textual representation, an ASCII representation of the RCX
code, is structurally a direct translation from the visual representation into
a textual representation which resembles C code.

Figure 5-12 . LEGO Mindstorms Programming Environment

However, even if the visual representation is quite directly mapped to its
textual representation, this does not mean that the representations are
equal from a user interface standpoint. The program structure in visual
form is much faster acquisitioned due to the right level of detail shown to
the user, the use of color to distinguish elements and the clear definitions
of block connectivity and program flow direction.

136

 137

6. Case Studies

To evaluate the proposed Auto-ID Object Model and visual tool-based
approach, we applied the Auto-ID Application Development Process to
several different application scenarios. Our approach is not only suitable
for supply chain applications, but a variety of different applications based
on the Auto-ID Object Model. The applications and an evaluation are pre-
sented in the following case studies acting as a proof-of-concept of our
approach:

1. Retail store supply chain application
2. Smart Medicine Shelf in hospitals
3. Tool management in aircraft maintenance application
4. Augmented Knight’s Castle, a pervasive computing play set
Since the retail store supply chain application is presented as the exam-

ple application already in section 4 and 5, it is not further presented in this
section.

6.1. Smart Medicine Shelf

The Smart Medicine Shelf is an automated shelf in a health care environ-
ment (e.g., in a hospital) that keeps track of different kinds of medication
that require different conditions (e.g. certain vaccines have to be cooled)
and require different access rights (e.g. a nurse is not allowed to access
certain drugs).

The objective of using the Smart Medicine Shelf is to improve stock
management of drugs in a hospital. The Smart Medicine Shelf frequently
informs a hospital ERP system about its inventory and reports exceptional
states to the same system or other interested applications. The benefits of
the Smart Medicine Shelf are among others:
• The availability of medication can be improved and out-of-stock sit-

uations can be avoided. The Smart Medicine Shelf reports low num-
ber of drugs to the ERP system that automatically invokes reple-
nishment orders.

138

• The Smart Medicine Shelf avoids the cumbersome process of check-

ing the expiry date on each folding box and reduces the number of
drugs that has to be thrown away due to reached expiry dates. A
warning is sent to the responsible medical personnel such as the
pharmacists if drugs are about to expire soon.

• A user interface can indicate drugs that have been recently recalled
and which are still contained in the shelves. In addition, applications
monitoring recalled drugs can inform medical personnel to remove
them from the Smart Medicine Shelf.

• Access to restricted drugs can be enforced by only unlocking a spe-
cial compartment of the shelf for authorized medical personnel only.
This requires that all medical personnel can be identified, for exam-
ple by Auto-ID tags in their badges.

• Since medication has to be stored under certain conditions (e.g., cer-
tain temperature or humidity), sensors monitor the correct conditions
and report warnings if they are violated.

• Synchronizing different Smart Medicine Shelves in a hospital even
increases the benefits. For example, medications that are needed in a
certain department which are not available there might be available
in another department. Instead of reordering the medications, they
can be fetched from the Smart Medicine Shelf of the other depart-
ment.

Figure 6-1 Setup of the Smart Medicine Shelf Application

 139

The principle of monitoring medications using RFID and providing the
above listed benefits was developed in a prototype of the Smart Medicine
Shelf [68, 99] (see Figure 6-1). It can be extended to a larger setup used in
hospitals. The Smart Medicine Shelf consists of four main locations resp.
compartments as shown in the instance of the Auto-ID Object Model in
Figure 6-2 (readers are marked by green diamonds, sensors by yellow tri-
angles and actuators by orange triangles on the head):

• Surrounding. The location where medical personnel is identified. In
the example a medical doctor with the ID Doctor-1020 is located at
the surrounding.

• Storage. The shelves for drugs that are neither cooled nor have re-
stricted access. In the example, the storage consist of two shelves
with different drugs (IDs are given as pseudo EPCs).

• Cooled Storage. The shelves contain drugs that have to be stored at
lower temperatures (e.g. vaccines).

• Protected Storage. The shelves contain the drugs that only autho-
rized personnel can access. The storage is protected by a lock (i.e.,
the actuator lock).

Figure 6-2 Auto-ID Object Model instance for Smart Medicine Shelf

Following the Auto-ID Application Development Process (see sec-
tion 5.2), the model instance (see Figure 6-2) was created with the VIT
(see Figure 6-3). In this case, the metaphor of compartments or boxes was
used as a visual representation instead of a floor plan.

140

Figure 6-3 Instantiating the Smart Medicine Shelf with the VIT

The Auto-ID triggered business processes that are part of the model in-
stance to monitor the drugs and their state and report exceptional states to
the ERP system and applications are listed in Table 6-1, together with the
object in the model instance to which they are connected.
Table 6-1 Business processes of the Smart Medical Shelf

Object Connected Business Processes
Surrounding Restrict Access
Storage Check Expiry Date

Monitor Temperature and Humidity (15º C)
Check Recalled Drugs

CooledStorage Check Expiry Date
Monitor Temperature and Humidity (5º C)
Check Recalled Drugs

ProtectedStorage Check Expiry Date
Monitor Temperature and Humidity (15º C)
Check Recalled Drugs

The business process definitions of three business processes are shown

in Figure 6-4. The business process “Restricted Access” monitors the
child objects of the object Surrounding. If at least one object belonging to
the set “AuthorizedPersonnel” is in the set CHILDREN then the lock se-
curing the ProtectedStorage is opened (i.e., if a doctor is located at the

 141

Surrounding). Likewise if no doctor is located at the Surrounding any
more, the Shelf is about to lock after 1 minute. The set AuthorizedPerson-
nel is defined as a pattern set, where all authorized personnel has an ID
that starts with “Doctor”. In a real-world deployment, the personnel ID
might contain a different pattern that identifies doctors.

Shelf locked
/ PARENT.ProtectedStorage.closeLock

Shelf unlocked
/ PARENT.ProtectedStorage.openLock

CHILDREN
ISINTERSECTION

AuthorizedPersonnel

Shelf about to be locked
/ reset TIMER

Set AuthorizedPersonnel:
PATTERN '/^[Doctor]/'

NOT CHILDREN
ISINTERSECTION

AuthorizedPersonnel

TIMER GE 0:01.00

Checking drugs
for expiration

Drugs close to
expiration in shelves
/ notify ERP System

/ notify Personnel

Set DrugsCloseToExpiration:
PROPERTY expiryDate LE 15.10.2009
AND
PROPERTY expiryDate GT 10.10.2009

ALL ISINTERSECTION
DrugsCloseToExpiration

NOT ALL ISINTERSECTION
DrugsCloseToExpiration

No drugs close to
expiration in Shelves

Waiting for
next check

/ reset TIMER

Temperature
valid

Temperature
potentially invalid

/ notify ERP System
/ reset TIMER

PROPERTY Temperature < 2.0
OR PROPERTY Temperature > 8.0

Temperature
invalid

/ notify ERP System
/ notify Personnel

PROPERTY Temperature >= 2.0
AND PROPERTY Temperature <= 8.0

TIMER GE 24:00.00

TIMER GE 0:05.00

Figure 6-4 Business processes of the Smart Medical Shelf

The business process “Check Expiry Date” starts with a state where all
objects in the shelves are checked if they contain at least one object that
belongs to the set “DrugsCloseToExpiration”. This set is updated by the
ERP system each day and contains objects whose property “expiryDate”
is in the range of five days from the day of checking (i.e., the expiry date
is about to be reached). If there are drugs detected that are close to expira-
tion then the ERP system is notified with a report containing all objects in

142

question. In addition, an application that generates a message to the re-
sponsible personnel is notified. The following state resets a timer and
waits for one day until a next check is performed which means that expi-
ration is only checked once a day.

Figure 6-5 Smart Medical Shelf deployment

The correct temperature range in the CooledStorage is checked by the
business case “Monitor Temperature”. If the property “Temperature” of
the object CooledStorage leaves a defined temperature range of 2º to 8º
Celsius a state is set that indicates a potential temperature violation which
also notifies the ERP system for audit purposes. If after 5 minutes the
temperature is still outside the required range, the temperature is set as
invalid. The ERP system is notified and also responsible personnel to
check the cause of the temperature violation. In a similar manner, the hu-
midity can be monitored.

 143

The business process “Check Recalled Drugs” checks if objects in all
shelves contain at least one object belonging to the set “RecalledDrugs”
which is frequently update by the ERP system. This check is performed
once an hour modeled in a similar way as states and transitions as the
check once a day in the business process DrugsCloseToExpiration.

The deployment of the Smart Medical Shelf components is performed
using the Deployment Definition Tool and the Deployment Tool. Fig-
ure 6-5 illustrates the final deployment. In this case the Event Layer com-
ponent and the OMS component are deployed on different machines since
the filtering and aggregation of the Event Layer could also be used for
other existing Smart Medical Shelf instances in the same application sce-
nario. Only one reader is used to monitor the shelves of the different
compartments using a multiplexer that scans through the different anten-
nas. In this scenario one antenna monitors one shelf. The Surrounding is
monitored by another reader since reading the badges of the personnel in-
volves another RFID technology than detecting the drugs.

6.2. Tool Management in Aircraft Maintenance

The objective of the tool management in aircraft maintenance application
is to improve the overall maintenance, repair, and overhaul (MRO)
process for aircrafts by providing a better management of movable assets,
that is the tools used by the mechanics. Since strict regulations define re-
quirements for quality, safety, and documentation of the MRO process,
improving the tool management can lead to a more secure and cost effi-
cient process.

The tool management in aircraft maintenance application [68, 104, 103,
147] consists of several movable toolboxes of the mechanics which in-
clude a great variety of tools (called the Smart Tool Box) and one tool in-
ventory where mechanics can check-out special tools they infrequently
need (called the Smart Tool Inventory). Both the tool boxes and the tool
inventory monitor the tools they contain and provide services to improve
the MRO process. The tool boxes report exceptional states (e.g., missing
tools) to the ERP system. The tool inventory is closely coupled with the
inventory management system of the ERP system. The benefits of the tool
management in aircraft maintenance application are among others:
• The Smart Tool Box (see Figure 6-6, left) eliminates the cumber-

some process of performing the required routine and base complete-

144

ness checks since the tools are constantly monitored in the tool box.
The status of the routine checks is displayed to the mechanic using
the traffic light metaphor. A green light signals that all the correct
tools are contained, a yellow light indicating that tools which do not
belong to the box, in addition to all correct tools are contained, and a
red light signaling that some tools are missing. Base checks after an
MRO tasks is finished have to be initiated by the mechanic using a
button on the tool box. The status of base checks is reported to the
ERP system for audit purposes.

Figure 6-6 Setup of the Smart Toolbox prototype (left) and the Smart
Tool Inventory applications (right)

• The Smart Tool Inventory (see Figure 6-6, right) automates the
check-out and return process of specialized tools. Tools are checked-
out by a mechanic who identifies himself under the supervision of
the person responsible for the tool inventory. During unattended
shifts the mechanic can perform a self check-out. The information
about the mechanic and the tools being checked-out or returned are
submitted to the tool inventory system which offers a web applica-
tion to retrieve all tool related information. Time consuming searches
for tools in the inventory or manual keeping track of tool information
is thereby eliminated.

• MRO actions, tool usage, and completeness checks are documented
automatically. This ensures accuracy and completeness while reduc-
ing cumbersome manual tasks caused by paper-based documentation.
As a result, legal requirements are enforced and accurate documenta-
tion improves planning of the following MRO tasks.

 145

• Tool usage both for the tools in the tool boxes and in the tool inven-
tory can be estimated based on the number and time of the tools be-
ing out of the toolbox resp. checked-out of the tool inventory. This
allows replacing or maintaining a tool in time and therefore avoids
delays due to broken tools. Tools that require maintenance or re-
placement are communicated to the mechanic when placing the tool
into the toolbox resp. to the person responsible for the tool inventory
when a tool is returned.

MROBuilding

Hangar-1 ToolInventory

200.310.005

200.315.001

Shelf-1

Shelf-2

200.320.002
...

200.400.001

200.420.003

200.510.010
...

Toolbox-1

Drawer-1-1

...

200.100.001

200.101.001

200.102.001
...

Drawer-1-2

Drawer-1-3

200.150.001

200.151.001

200.210.001

...

Toolbox-2

Drawer-2-1

...

Drawer-2-2

Drawer-2-3

...

...

Hangar-2

Toolbox-3

Drawer-3-1

...

200.100.003

200.101.003

200.105.003
...

Drawer-3-2

Drawer-3-3

200.151.003

200.152.003

200.210.003

...

Mechanic-14

200.300.001

Checkout-Return

200.410.005

Mechanic-12

...

Toolbox-4 Shelf-3

...

Figure 6-7 Auto-ID Object Model instance for the tool management in
aircraft maintenance application

146

The tool management in aircraft maintenance application consists of
four main locations and several mobile objects which are structured in
child objects as shown in the instance of the Auto-ID Object Model in
Figure 6-7 (readers are marked by green diamonds, sensors by yellow tri-
angles and actuators by orange triangles on the head):

• Hangar. The main location where MRO tasks are performed at the
aircrafts. The MRO Building has two hangars.

• Toolbox. The toolbox of a mechanic contains the tools in several
drawers. The traffic light indicating the state of the toolbox is mod-
eled as an actuator and the button to initiate the base checks as a
sensor. The toolboxes are mobile objects, that is, they are child ob-
jects of the different hangars that can move from one to the other
and, in addition, monitor their own content.

• ToolInventory. The tool inventory contains the tools in different
shelves and compartments. A special child object defines the loca-
tion where the check-out and return takes place. A check-out or re-
turn process is triggered as soon as a tool or mechanic is identified.
A traffic light indicates the state of the check-out resp. return
process.

Figure 6-8 Instantiating the tool management in aircraft maintenance
application with the VIT

The model instance was created with the VIT (see Figure 6-8). The
floor plan shows the two hangars, the tool boxes and the tool inventory.

 147

The different shelves of the toolboxes and the tool inventory are drawn
using the special feature of the VIT to define levels. For example, a tool-
box that is shown as a rectangle defines the object Toolbox-1. The levels
which have been added can be seen in the top right toolbar of the VIT.
Levels then define the Drawer child objects of the object Toolbox-1.
Table 6-2 Business processes of the tool management in aircraft
maintenance application

Object Connected Business Processes
Toolbox-n Base Check, Routine Check
Shelf-n Required Tool Maintenance
Checkout-Return Checkout Return

The Auto-ID triggered business processes that are part of the model in-

stance to monitor the tools and report exceptional states to the ERP sys-
tem and applications are listed in Table 6-2, together with the object in the
model instance to which they are connected. The business process defini-
tions of business processes are shown in Figure 6-9 and Figure 6-10.

The business process “Routine Check” (see Figure 6-9) starts with a
state where all tools are contained within the drawers of the toolbox
(completeness) and no other tools (e.g., of other toolboxes) are contained
in the toolbox (correctness). The toolbox is modeled in such a way that its
direct child objects are the three drawers and a mechanic who identifies
himself by placing his ID badge on the reader on top of the toolbox. The
tools are therefore contained one level below the direct child objects. If
the completeness and correctness criterion is invalidated, the set that
comprises of Level 2 (i.e., the tools in the drawers) is not equal to the set
of all the tools of the toolbox. The routine check simply switches between
the two states complete and incomplete depending on the condition of the
tools in the toolbox.

In the “Base Check” business process, a mechanic has to identify him-
self and intentionally press the button on the toolbox, which initiates the
“Base check in progress” state. The button is modeled as a property “But-
ton” that can have the values 0 (i.e., not pressed) or 1 (i.e., pressed). A
blinking yellow light acts as a feedback for the mechanic. The check for
completeness resp. correctness is performed equivalently as in the routine
check. The result (i.e., complete or incomplete) is sent to the ERP system
together with data of the object tree of the toolbox. A green, blinking light

148

indicates that the base check was successful, that is, completeness and
correctness could be validated. If the check was unsuccessful, a red,
blinking light is shown. The base check is concluded by switching of the
lights and the transition to the first state, waiting for another base check.

Figure 6-9 Toolbox business processes Base Check (left) and Routine
Check (right) of the tool management in aircraft maintenance applica-
tion

For the tool inventory, the “Checkout Return” business process moni-
tors the check-out and return of tools (Figure 6-10). The process starts in a
waiting state until at least one tool is placed onto the check-out and return
counter monitored by a reader or a mechanic is identified. The mechanic
has a different reader since the personnel ID system is a different RFID
system than the tool identification. The yellow light indicates that the sys-
tem detected tools and the mechanic. If both checked-out and available
tools are placed on the counter, the system cannot decide which action the
mechanic wishes to perform and the business process transits into the “Il-
legal action” state indicated by a red light. At least one tool that is
checked out is modeled by the state comparison expression ALL ISIN-

 149

TERSECTION CheckedoutTools. The second part of the condition is
the check if any available tools are detected: From the set of detected
tools, all checked-out tools are removed. If any tool is left, it must be a
tool that is still available. As soon as the illegal state is cleared, the check-
out or return process continues. If the mechanic or clerk presses the but-
ton and at least one tool and a mechanic have been identified, the action
to perform is decided and indicated by a yellow, blinking light. If the de-
tected tools are checked-out, they are returned by the mechanic; otherwise,
they are checked-out. The action with the data about the tools and the me-
chanic is sent to the ERP system and the successful action is indicated by
a green light. The business process concludes by switching off the lights
and transitioning to the first state.

Set CheckedoutTools:
PROPERTY checkedOut = true
Set Tools:
PATTERN '/^[200.]/'
Set Mechnics
PATTERN '/^[Mechanic]/'

Returning tools
/ showGreenLight

/ notify ERP System

Checking out tools
/ showGreenLight

/ notify ERP System

Waiting for
checkout or return

Checkout or return in progress
/ showYellowLight

Checkout or return complete
/ showNoLight

ALL ISINTERSECTION Tools
OR
COUNT (ALL ISINTERSECTION Mechanics) = 1

ALL ISINTERSECTION CheckedoutTools
AND
(ALL COMPLEMENT CheckedoutTools)
ISINTERSECTION Tools

ALL ISEMPTYSET

Deciding on action
/ showYellowBlinkingLight

PROPERTY Button = 1
AND

ALL ISINTERSECTION Tools
AND

COUNT (ALL ISINTERSECTION
Mechanics) = 1

NOT
(ALL ISINTERSECTION
CheckedoutTools)

Illegal action
/ showRedLight

NOT([see
incoming
transition])

ALL ISINTERSECTION
CheckedoutTools

Figure 6-10 Tool inventory business processes of the tool management
in aircraft maintenance application

150

The deployment of the components of the tool management in aircraft
maintenance application is performed using the Deployment Definition
Tool and the Deployment Tool. Figure 6-11 illustrates the final deploy-
ment. A simple Event Layer component is performing filtering and ag-
gregation already on the toolbox. The data is then sent via wireless com-
munication to the OMS component. The OMS is deployed together with
the Event Layer that filters and aggregates the incoming observations
from the hangar and tool inventory readers. The shelves of the tool inven-
tory are monitored using readers with multiplexer that scan through the
different antennas.

Figure 6-11 tool management in aircraft maintenance application
deployment

6.3. Augmented Knight’s Castle

Playing with toys is an essential part of the childhood. Besides being a re-
creational amusement and pure fun, playing also serves as an important
function for the psychological, physiological and social development of a

 151

child. To further support creativity and inspire the fantasy of children,
traditional toys can be enriched by adding multimedia content and special
effects to them. The ideal entertainment and learning experience then
comes from the combination of physical experience, virtual content, sto-
rytelling and the imagination of the child.

Figure 6-12 Overall setup of the Augmented Knight’s Castle

The objective of the Augmented Knight’s Castle as a pervasive compu-
ting playset (see Figure 6-12) is to foster the children’s pretend play and
offer ideal possibilities of integrating interactive learning experiences into
the children’s play. The development of the Augmented Knight’s Castle
including a user study with children is described in [102, 85, 101, 100].

The main features of the Augmented Knight’s Castle are that based on
the current game situations or learning scenario, multimedia content or
special effects are played. This happens either as a response to an action
(e.g., the fanfare is played when the king comes out of his quarters) or
randomly (e.g., a dog barks or birds chirp). The multimedia and special
effects are:
• Short verbal commentaries of figures in the play (e.g., the knight that

gets bored since he is not moved for a while)

152

• Verbal stories of figures (e.g., the king that explains the life in a cas-

tle)
• Sounds (e.g., a fanfare, background sounds of animals, the canon fir-

ing, or the dragon roaring)
• Background music that adapts to the play
• Special effects such as lightning the water at the fairy spring or emit-

ting smoke out of the dragon’s dungeon

Figure 6-13 Auto-ID Object Model instance of the Augmented Knight’s
Castle

The Augmented Knight’s Castle consists of four main locations and two
special objects as shown in the instance of the Auto-ID Object Model in
Figure 6-13 (readers are marked by green diamonds, sensors by yellow
triangles and actuators by orange triangles on the head). The four main
locations have each a loudspeaker (i.e., actuators) where sounds and mu-
sic can be played:

• Castle. The castle has several sub locations where toy figures are
monitored. The bridge that can be lowered is an object itself that if
detected indicates that it is lowered.

• Inn. The inn is a house with a main room and a cellar which is close
to the castle.

 153

• Dragon Tower. The tower is the head quarter of the dark knights
with a dungeon where the red dragon lives. A special actuator in the
dungeon can release smoke as a special effect.

• Forest. The fairy spring and the enchanted tree are part of the forest.
More magical toy figures are associated with the forest. The fairy
spring has a light actuator to create a special light effect of the wa-
ter.

• Magic Bottle and Magic Wand. These two objects are modeled as
locations below the root object. They are special toys that children
can use to point to other toy figures and locations (e.g., the Magic
Wand can touch the queen to create during play). They both have
an acceleration sensor and light and vibration actuators.

Following the Auto-ID Application Development Process, the model in-
stance (see Figure 6-13) was created with the VIT (see Figure 6-14). The
metaphor of a building plan represents the different toy buildings.

Figure 6-14 Instantiating the Augmented Knight’s Castle with the VIT

The Auto-ID triggered business processes that are part of the model in-
stance to monitor the toy figures and enrich the play of the children are
listed in Table 6-3, together with the object in the model instance to which
they are connected. Since there are many options in the rich play envi-
ronment, many business processes at different locations exist. They can
be classified according to the multimedia content they are playing into
business processes that:

154

• generate general background sounds depending on the toy figures at
a location. For example, CraftsmenWorking has two states: One
where craftsmen figures are detected, the other where they are ab-
sent. In the first state a custom action plays random background
sounds of craftsmen at work. In a similar manner CastleSounds,
KnightsTraining, KnightsFighting or PeopleTalking are modeled.

• create figure specific sounds and special effects at a location. For
example, DragonInDungeon plays roaring sounds and special
smoke effects if the dragon is in the dungeon. Other examples are
GhostInCastle, CanonFiring or FanfareForKing.

• let certain play figures utter small phrases or sentences. These ver-
bal commentaries act as impulses to the child’s play and depend on
the figure residing at a location and their activities. For example,
WelcomeKnights invokes a welcome phrase for the knights, if a
king’s knight is detected at the drawing bridge. Other examples are
PeopleLooking, WelcomeKnights or DragonInactive.

• give certain play figures a voice to tell stories. These stories often
depend on interaction of the child with the figure. Examples are
KingsCastleTour, InnkeeperStory or FairyStory. As shown below,
these business processes are more complex depending on the level
of interaction and options the story offers.

Table 6-3 Business processes of the Augmented Knight’s Castle

Object Connected Business Processes
Castle KingsCastleTour, CanonFiring, GhostInCastle,

CastleSounds
DrawBridge DrawBridgeUpDown, FriendOrFoeEntering, Wel-

comeKnights
Courtyard FanfareForKing, CraftsmenWorking, KnightsTrain-

ing, KnightsFighting, DragonRoaring
Hall PeopleTalking, KingGivingAudience
Tower PeopleLooking
Prison PrisonerStory, GhostInPrison
Inn InnkeeperStory, PeasantStory
Room PeopleCelebrating, InkeeperWaiting
Cellar WhereIsTheChest, FindTheTreasureStory
DragonTower DragonTowerSounds

 155

Object Connected Business Processes
TowerArea DarkKnightsTalking, KnightsFighting
TopLevel DarkKnightsLooking
MediumLevel DarkKnightsLooking
Dungeon DragonInDungeon, DragonInactive
Forest ForestAnimalSounds, DragonRoaring
FairySpring FairyAwaitingKing, FairyStory, FairySpringSounds
EnchantedTree EnchantedTreeStory, FindTheTreasureStory
MagicBottle TouchObject, ShakingBottle
MagicWand TouchObject, MovingWand

The business process definitions of three representative business

processes are shown in Figure 6-15. The business process “DragonIn-
Dungeon” checks if the object Dragon is in the Dungeon. If the Dragon is
there, a roaring dragon sound is played and smoke as special effects is set
off. After 5 seconds the dragon sound is played and smoke is set off one
more time. If the dragon leaves the Dungeon, the dragon sound is played
again. The business process “CraftsmenWorking” plays background
sounds of one craftsman working if exactly one object of the set
Craftsmen is present at the Courtyard. If more than one craftsman is
present a different sound is played. To avoid playing sounds too often and
thereby annoying the children, the process waits a minute and transits into
the first state.

In the more complex business process “FairyStory”, the Fairy if present
at the Fairy Spring without the Unicorn, offers the child to tell a story
about unicorns if the child brings the unicorn to the Fairy Spring. In addi-
tion, to playing the verbal suggestion, the water of the Fairy Spring is
light up and a timer is started. If after 1 minute the unicorn is not at the
Fairy Spring, the Fairy closes the suggestion and the lights are switched
off. If the Unicorn is detected at the Fairy Spring, a light music is played
and the Fairy starts telling a story. If during the story telling the Fairy is
moved away from the Fairy Spring, the story is interrupted and a sugges-
tion to continue the story by bringing the Fairy back to the Fairy Spring is
played. If nothing happens, the suggestion is played after one minute
again. Another minute later, the Fairy closes the suggestion. If the Fairy is
brought back, the story continues. After 5 minutes, the story finishes and
the Fairy asks the child to tell her a story.

156

No craftsmen present

Single craftsman
present

/ play sound
“One Craftsman at work”

COUNT (ALL
ISINTERSECTION

Craftsmen) = 1

Set Craftsmen:
PROPERTY craftsmen = true

Several craftsmen
present

/ play sound
“Craftsmen at work”

COUNT (ALL
ISINTERSECTION
Craftsmen) > 1

Keeping silent
/ reset TIMERTIMER GE 0:01.00

Fairy not present

Fairy finished story
/ stop music

/ switchOffLight
/ notify application

Fairy waiting for unicorn
/ reset TIMER
/ lightupWater

/ play “Do you want to hear a story
about Unicorns. Bring the

Unicorn close to the spring.”

ALL HASELEMENT Fairy
AND NOT
(ALL HASELEMENT Unicorn)

Fairy tells story
/ play music “elf chants”
/ play “Once upon a time

the unicorns...”

ALL
HASELEMENT
Unicorn
/ reset TIMER

Fairy interrupts story
/ play “Do you want to know how

the story continues? Bring me
back to the spring.”

NOT (ALL
HASELEMENT
Fairy)
/ rest TIMER2

TIMER GE 0:01.00
/ play “Maybe
another time”

TIMER GE 0:05.00
/ play “Did you like
the story? Tell me a
story that you know!”

TIMER2 GE 0:02.00
/ play “Maybe
another time”

TIMER2 GE 0:01.00

ALL
HASELEMENT

Fairy
/ continue play

Dungeon is empty

Dragon is in dungeon
/ play dragon-sound

/ activateSmoke

ALL
HASELEMENT

Dragon
/ reset TIMER

NOT(ALL
HASELEMENT
Dragon)
/ play dragon-sound

TIMER GE 0:00.05

Figure 6-15 Business processes of the Augmented Knight’s Castle

Designing a truly pervasive computing game and learning experience,
we required that the augmentation does not interfere with, block or com-
promise the traditional play in any way (i.e., toys are handled in the way

 157

children are used to). RFID readers hidden in the playset detect the posi-
tion of objects (in our case 13.56 MHz RFID, see Figure 6-16, left). RFID
tags of different sizes are attached to or incorporated into the pieces of the
playset to uniquely identify them (see Figure 6-16, right).

The two point-and-touch toys, the Magic Bottle and the Magic Wand,
rely on the custom-built mobile RFID reader module (Skyetek M1-mini
RFID reader controlled by a BTnode that is used as a Bluetooth device
server). In addition, the BTnote has several sensors and actuators attached
to it.

Figure 6-16 Antennas embedded in the playset (left) and RFID
transponders to tag toy pieces (right)

The deployment of the components of the Knight’s Castle is performed
using the Deployment Definition Tool and the Deployment Tool. Fig-
ure 6-17 illustrates the final deployment. The Event Layer, the Object
Monitoring System, and the application are all deployed on one machine,
called the Base Station, which is typically hidden in the playset. The dif-
ferent main locations are monitored by readers with multiplexer that scans
through the different antennas which monitor the sub locations. Using on-
ly one reader with a multiplexer and antennas for all locations is not ac-
ceptable since it would result in up to 2 seconds worst-case until an object
is detected on an antenna. The loudspeakers are part of a Dolby Surround
system which is activated using a special sound library by the application.
The two BTnode reader and sensor components communicate with a Blu-
etooth module on the Base Station which routes the communication to the
Event Layer.

158

Smoke
Actuator

Base Station

Object Monitoring System

Augmented Knight’s
Castle Application

Event Layer

Sound Library

BT Communication

Antenna 4

Dolby Surround
System

BTnode

Reader

Skyetek ReaderAntenna 2

Antenna 1

Reader
Multiplexer

Loudspeaker

Antenna 5

Antenna 1

Reader
Multiplexer

...
Antenna 1

Reader
Multiplexer

Antenna 2

Antenna 1

Reader
Multiplexer

Loudspeaker Loudspeaker Loudspeaker

Vibration

LEDs

Sensors

BTnode

Reader

Skyetek Reader

Vibration

LEDs

Sensors

Castle Inn Dragon Tower Forest Magic Bottle Magic Wand

...

Figure 6-17 Augmented Knight’s Castle deployment

6.4. Discussion

The Auto-ID Object Model provides for an adequate representation of the
application domains and provides the right level of abstractions. The
model instances could be clearly defined and the locations modeled as an
object hierarchy. Merging the concepts of location and object greatly
simplifies the model instances. Properties of objects hide the specific
sources of object related information. The most common property sources
are provided and specific data sources can be easily implemented. The
state machine based programming model is powerful enough to define a
great variety of Auto-ID related business processes in the application do-
mains, yet simple enough that application developers can focus on the ap-
plication logic they want to achieve. From a broader view, the micro
business processes can be seen as the parts of higher workflow processes
in an application domain that have been pushed closer to the physical ob-

 159

jects on which they depend. Reports of business processes can then trig-
ger the higher workflow.

The Auto-ID Application Development Process and tools greatly facili-
tates the instantiation, configuration and deployment of an Auto-ID infra-
structure. No specific knowledge of the software components is needed
and the application engineer can concentrate on the modeling of the ob-
ject tree and the definition of the business processes. Since the process
separates instantiation and deployment, a different user, typically an Au-
to-ID system administrator with specific knowledge about the server
hardware manages the deployment of the components.

The high-level Auto-ID system requirements that are based on an analy-
sis of different Auto-ID applications and that an Auto-ID infrastructure
should meet are presented in section 3. Table 6-4 lists these system re-
quirements and explains which concept of our presented approach imple-
ments the required feature. Our contributions (i.e., the Auto-ID Object
Model, the business process support, the OMS and the Auto-ID Applica-
tion Development Process) focus on the requirements R1-R10, R19 and
R20. Requirements R11-18 are implemented by standard Auto-ID readers
such as LLRP Readers or the filtering and aggregation middlewares such
as the Event Layer or the ALE Middleware. The filtering and aggregation
concepts can be seen as a minor contribution of our approach onto which
the other concepts build.
Table 6-4 Auto-ID system requirements implemented by the presented
approach

System Require-
ment

Implemented by Auto-ID Object Mode
or Auto-ID Infrastructure feature

Sec-
tions

(R1) Object Re-
presentation

The Auto-ID Object Model provides a repre-
sentation of physical objects as its core con-
cept. The OMS maps tag observations to ob-
ject movements in the object tree.

 4.3.1
 4.4.1

(R2) Object Per-
sistency

The object tree is constantly stored to a
RDBMS where it can be queried by the ap-
plications.

 4.3.4
 0 4.4.
1

(R3) Object Rela-
tionships

The Auto-ID Object Model directly supports
the containment relationship between objects.
The child objects of an object define the
neighbor relationship among themselves.

 4.3.1
 4.4.1

160

System Require-

ment
Implemented by Auto-ID Object Mode

or Auto-ID Infrastructure feature
Sec-
tions

(R4) Location In-
formation

All objects implicitly define a symbolic loca-
tion identified by their ObjectID. If geospa-
tial coordinates of objects are needed they
can be represented as an object property.

 4.2.2
 4.3.1
 4.4.1

(R5) Object Iden-
tification

Objects are identified by the OMS using ei-
ther the TagID of the observation or by the
ObjectID stored on the tag. Via the Event
Layer reps. ALE Middleware the OMS ab-
stracts from different Auto-ID or sensor sys-
tems.

 4.3.1
 4.4.1

(R6) Object Iden-
tifier

The Auto-ID Object Model requires a unique
ObjectID for each object. The OMS can ei-
ther map TagIDs to ObjectIDs or preferably
use ObjectIDs such as the EPC.

 4.3.1
 4.4.1
 2.2

(R7) Object Data
Enrichment

The Auto-ID Object Model provides addi-
tional object data by offering Properties of
objects. As an abstraction of different data
sources, PropertySources are provided.

 4.3.2
 4.4.1

(R8) Physical
World Interaction

The system reacts to the physical world by
detecting physical objects via their tags and
by reading from sensors. Interaction is pro-
vided by actuators which are abstracted in the
Auto-ID Object Model by the concept of
Functions.

4.3.2
 4.3.3
4.4.1

(R9) Business
Context Enrich-
ment

Business processes based on the Auto-ID
Object Model offer a rich mechanisms to
formulate conditions and process flow to re-
port exceptional states to applications.

 4.3.5
4.4.1

(R10) Data Dis-
semination

Several reporting actions in the business
process support of the Auto-ID Object Mod-
el/OMS allow notifying applications and in-
formation systems of exceptional states.
The Event Layer reps. ALE Middleware also
allow applications to directly register with
them to receive filtered and aggregated Auto-

 4.3.5
4.4.1

 161

System Require-
ment

Implemented by Auto-ID Object Mode
or Auto-ID Infrastructure feature

Sec-
tions

ID observations.
(R11) Auto-ID
Data Aggregation

The presented aggregation mechanisms pro-
vided by the Event Layer reps. ALE Mid-
dleware allow aggregating observations into
e.g. enter/exit events.

 4.1
 4.4.1

(R12) Auto-ID
Data Filtering

The presented filtering mechanisms provided
by the Event Layer reps. ALE Middleware
allow filtering on ObjectIDs and ReaderIDs.

 4.1
 4.4.1

(R13) Fault and
Configuration
Management

LLRP Readers provide a Simple Network
Management Protocol (SNMP) interface that
allows integrating the reader into an existing
hardware monitoring infrastructure.

2.2

(R14) Tag Iden-
tifier Management

Most RFID systems provide a unique TagID
(e.g., Philips I-Code) or provide user memory
to store a unique ID.

 2.2

(R15) Tag User
Memory

Most RFID systems provide user memory on
tags, e.g. the EPC Gen2 Tags.

2.2

(R16) Sensor
Support

The Auto-ID Object Model abstracts from
sensors by using PropertySources. Arbitrary
sensors can be added to the system by im-
plementing plug-ins for the OMS.

4.3.2
 4.3.3
4.4.1

(R17) Actuator
Support

The Auto-ID Object Model abstracts from
actuators that are supported by the OMS by
using Functions. New actuators can be added
by implementing plug-ins for the OMS.

 4.3.3
4.4.1

(R18) External
Reader Triggers

LLRP Readers can be triggered by external
sources.

2.2

(R19) Loose
Coupling of
Components

Components are dynamically connected us-
ing a lookup service where components are
specified by IDs.

4.4.1

(R20) Configura-
bility of System

OMS, EventLayer resp. ALE Middleware are
configurable by XML files. The Auto-ID
Application Development Process provides
visual configuration for end users.

4.4.1
 5.2

162

 163

7. Conclusion

In this thesis, we argue that despite existing Auto-ID systems, Auto-ID
application developers are still facing several challenges: Instead of con-
centrating on the application or business logic they have to deal with Au-
to-ID specific details and have to re-create features when developing new
Auto-ID applications, for example to represent and enrich data or to react
to business events.

To bridge this gap between the software applications or information sys-
tems such as ERP systems on one side and the Auto-ID systems on the
other, this thesis provides concepts, programming models, building blocks
and tools that abstract from Auto-ID specific details and provide the ne-
cessary services and the appropriate level of reuse to facilitate the devel-
opment of Auto-ID applications. The major contributions are:

• The Auto-ID Object Model abstracts from low-level Auto-ID and
sensor concepts and provides the means for an application to model
and represent its domain as the base for the application logic.
Moreover, a state machine-based programming model allows defin-
ing Auto-ID related micro business processes to report exceptional
states of the monitored objects to the applications.

• The Auto-ID Application Development Process is a visual tool-
based approach to instantiate, configure and manage an Auto-ID in-
frastructure. The approach provides a concrete representation of the
application domain and supports non-software developers in the
different tasks over the lifecycle of an Auto-ID infrastructure.

The Object Monitoring System (OMS) is a prototypical implementation
of an Auto-ID infrastructure that includes the proposed concepts. Using
the OMS, both the Auto-ID Object Model and the Auto-ID Application
Development Process were evaluated, based on several different applica-
tion scenarios to demonstrate that our approach is applicable for a variety
of different applications domains. The applications and application do-
mains we analyzed are: A retail store supply chain application that pro-
vides support for the logistical management; the Smart Medicine Shelf, an

164

automated shelf in hospitals that keeps track of different kinds of medica-
tions that require different conditions; the tool management in aircraft
maintenance application which keeps track of tools and parts in an aircraft
maintenance environment; and the Augmented Knight’s Castle, a perva-
sive computing playset which enriches a child’s pretend play by using
background music, sound effects, and verbal commentary of toys that
react to the child’s play.

In this final section, we revisit the proposed concepts and benefits of the
contributions. We also discuss limitations of the approaches and outline
potential future work.

7.1. Auto-ID Object Model and Business Process Sup-
port

7.1.1. Contribution
The Auto-ID Object Model provides an abstraction from the low-level
Auto-ID and sensor concepts (e.g., tag observations or tag memory) and
provides the means for an application to model its domain as the base for
the application logic. However, the Auto-ID Object Model does not in-
tend to provide a world model that allows describing any potential appli-
cation domain. The model focuses on the domain of Auto-ID applications,
that is, applications whose application logic is based on an implicit or ex-
plicit model of the physical world and is triggered by (near) real time ob-
servations of the physical world through Auto-ID readers and sensors.

The Auto-ID Object Model is based on a symbolic location model, in
which physical objects also define locations. The term object stands for
the entity in the model that represents physical objects in the real world.
Objects can contain other objects and thereby form a hierarchical object
tree. Auto-ID readers that are linked to objects indentify physical objects
by their Auto-ID tags. Identified objects then become the child objects of
the object to which the reader is linked. Properties represent additional
dynamic or static business information about objects. Such information is
received and related to an object in the model using property sources (e.g.,
product information databases, sensors or data on Auto-ID tags read by
Auto-ID readers). Functions are the abstraction for the interaction of the
system with the physical world. The interaction is then performed by ac-
tuators such as locking a door or setting a signal light to red.

 165

For a specific Auto-ID application, the model is instantiated. Such an
instance contains static information, i.e. objects that represent locations of
the application domain and dynamic information that changes during the
life-time of the application such as objects and object state information
observed by Auto-ID readers and sensors.

The dynamic changes in the Auto-ID Object Model correspond to the
changes in the physical world. Many applications are only interested in
exceptional states related to objects and their properties such as the com-
pletion of an incoming shipment, reached expiry dates of products in a
shelf, or the temperature inside a cool box that exceeds a threshold.

In most cases a business process that also needs business knowledge
about the application domain can be defined to determine such exception-
al states. In traditional approaches, applications would need to implement
such business processes that would involve querying the Auto-ID Object
Model instance quite frequently leading to high traffic for the OMS.
Another disadvantage would be that first, system engineers have to define
the business processes, and then software engineers have to implement
them, thereby often re-implementing similar concepts over and over again.

Our approach offers a business process support combined with the Au-
to-ID Object Model. A business process can be defined using a state ma-
chine-based model with transition conditions and actions based on the
state of objects in the Auto-ID Object Model instance. The application is
only notified in cases of exceptional states.

The rationale for a state based approach is that the analysis of Auto-ID
applications has shown that an event mechanism based simply on condi-
tions of object and property configurations is not sufficient to describe
many exceptional states. The decision if an exceptional state occurred of-
ten depends on a related state that has happened a certain time before the
state in question. This dependency of states over time can very well be
expressed and modeled using state machines. In addition, state machines
express a kind of business process flow that is well known in industry and
state machines can be modeled using available design and modeling tools
such as UML.

In the Auto-ID Object Model, a business process is always linked to an
Object representing a location or physical object in which the business
process is interested. A business process comprises of several states
which have transitions between them. State transitions are coupled to cer-
tain configurations of objects and their properties. A transition happens if

166

the condition describing the transition is true. Conditions can involve
presence or absence of a set or number of objects or object properties and
time constraints. It is also possible to logically combine different condi-
tions to describe a transition. The conditions are defined using an Auto-ID
Object Model specific condition language that allows access to the model
and provides several operators to formulate the logical conditions. Actions
can be defined to take place when a transition is performed, when a state
is entered and when a state is exited. Actions can be model-actions such
as executing a function or setting a property, reporting-actions, that is
sending reports to applications and information systems, or custom-
actions provided by the application.

Our evaluation, based on several representative case-studies of different
application domains, shows that the Auto-ID Object Model provides for
an adequate representation of the application domains and provides the
right level of abstractions. The model instances could be clearly defined
and the locations modeled as an object hierarchy. Merging the concepts of
location and object greatly simplifies the model instances. Properties of
objects hide the specific sources of object related information. The most
common property sources are provided and specific data sources can be
easily implemented. The state machine based programming model is po-
werful enough to define a great variety of Auto-ID related business
processes in the application domains, yet simple enough that application
developers can focus on the application logic they want to achieve. From
a broader view, the micro business processes can be seen as the parts of
higher workflow processes in an application domain that have been
pushed closer to the physical objects on which they depend. Reports of
business processes can then trigger the workflow.

7.1.2. Limitations and Future Work
The hierarchical symbolic location model as base for the Auto-ID Object
Model has been chosen since it fits naturally with Auto-ID readers moni-
toring a not well defined space around them. The model therefore pro-
vides no direct support for geospatial information such as coordinates of
objects and calculations such as distance between objects. Geospatial in-
formation could be stored as a property of objects extending the model to
a hybrid location model. However, special calculations have to be pro-
vided by the application. The closeness of objects can only be derived by
the neighboring relationship, that is, all the child objects of one parent.

 167

In the location tree, containment relationships are optimal represented,
for example, a shelf with its compartments is modeled as a shelf object
with compartments as child objects. In this case, the real physical con-
tainment is mapped to our model. However, since an object can only have
one parent object, certain cases cannot be naturally modeled. For example,
a building with two floors and two wings where rooms should be con-
tained in floors and wings. A lattice or graph structure with multiple par-
ents would allow modeling this relationship. In our model, objects that
define a combination of floors and wings would have to be introduced.

Since objects only exist in a model instance if they are defined statically
or if they are monitored by a reader, an object that leaves the read range
of a reader also leaves the model instance, that is, no information is avail-
able of that particular object any more. Mobile objects (i.e., objects that
move and also monitor their surrounding such as a fork lifter or shopping
cart) have therefore to be defined in the instantiation phase of the model.
The OMS will then keep these objects in the model under the special lo-
cation “unknown” in case they are not monitored any more. If they are de-
tected again, the object with its sub tree will become available.

Many business processes can successfully be modeled with the state
machine based programming model. However, since one design objective
for the model is simplicity, the model has its limits if transition conditions
and dependencies among states get too complex. In this case, the state
machine definitions would get rather complicated and its value for appli-
cation developers would decrease. If the application logic gets too com-
plex, only elementary parts of the process would be modeled as a business
process of the Auto-ID Object Model. The overall process flow is then
handled by the application which is notified by the elementary business
processes.

Currently the OMS is only a prototypical implementation of the Auto-
ID Object Model, the business process support and object persistency and
query capabilities. For a software component that can be used in produc-
tive environments, performance optimizations have to be implemented
such as a more performant database approach as discussed in this thesis.
In addition, the management mechanism of the state machines can be im-
proved and the reporting and messaging can be extended. For application
domains with large number of locations and objects such as large supply
chains, the OMS could be implemented as a distributed system. Since the
Auto-ID Object Model is a hierarchical model it can be naturally distri-

168

buted to allow processing of state machines in parallel. The distribution of
the model does not need to be transparent to the application. Connecting
to a certain OMS node, the application would perceive the sub tree as its
model. Connecting to the root OMS node, the application would be pro-
vided with the complete model.

In the future, the Auto-ID Object model and the business process sup-
port have to be applied to more application domains to further refine and
extend the model. By instantiating the model for different application
scenarios, the right balance between a simple and a powerful model will
increase and the model will stabilize.

7.2. Auto-ID Application Development Process

7.2.1. Contribution
Typically an Auto-ID infrastructure consists of many different hardware
and software components that have to be set up, configured and custo-
mized to fit the need of a certain application domain. Typically the confi-
gurations of these components such as OMS, filtering and aggregation
middlewares, readers and sensors have to be defined in component specif-
ic formats (e.g. XML or text based configurations) and often certain parts
of the components have to be implemented and integrated into these com-
ponents. Such an instantiation and configuration is a tedious task and re-
quires programming skills, specific knowledge of all software and hard-
ware components of an Auto-ID application deployment, in addition to
the application domain knowledge.

In this thesis, we present the Auto-ID Application Development Process
to bridge this gap between Auto-ID application developers on one side
and the components of an Auto-ID infrastructure on the other. The
process is based on generative and visual programming concepts and pro-
vides a concrete representation of the application domain and supports
non-software developers in the different tasks over the lifecycle of an Au-
to-ID infrastructure.

In the instantiation phase, a visual tool, the Visual Instantiation Toolkit,
allows an application engineer to intuitively construct a hierarchical ob-
ject model using the metaphor of building and floor plans as a concrete
representation. Objects such as buildings, rooms, shelves, or boxes can be
drawn on a plan. Readers and sensors can be placed and configured, and

 169

are automatically linked to objects. In addition, business processes linked
to objects can be defined. A generation tool automatically creates instan-
tiated software components that contain the specific configuration, and a
description of the hardware configuration in the correct format. These
components are then deployed using a visual deployment tool for a system
administrator to define the hardware machines for the components and
their communication relationships.

Our evaluation, based on several representative case-studies of different
application domains, shows that the process and tools greatly facilitates
the instantiation, configuration and deployment of an Auto-ID infrastruc-
ture. No specific knowledge of the software components is needed and the
application engineer can concentrate on the modeling of the object tree
and the definition of the business processes. Since the process separates
instantiation and deployment, a different user, typically an Auto-ID sys-
tem administrator with specific knowledge about the server hardware
manages the deployment of the components.

7.2.2. Limitations and Future Work
The visual metaphor of building and floor plans to represent the Auto-ID
Object Model needs to be reinterpreted for certain application domains.
For example, for the Smart Medicine Shelf, a box drawn on the plan
represents not a vertical view onto a building but a horizontal view on the
compartments of the shelf. The concreteness of the visual metaphor could
therefore be improved further. Different metaphors could be offered from
which the application engineer could choose. For certain application do-
mains such as supply chain management, a specific metaphor could be
developed to increase the concreteness even further.

To have a better overview over more complex state machines used in
the business process definitions, an intelligent zoom mechanism that re-
duces the information according to the zoom level would be beneficial.
Standard zooming simply reduces all information proportionally.

The definition of state transition using the Auto-ID Object Model set
and state transition definition language is currently provided as a textual-
based construction kit. For more complex state transition definitions this
feature is not intuitive any more. A more visual approach should be taken
based on metaphors for set theory operations. For example, the set inter-
section operation could be visualized through two overlapping ellipses.

170

Currently the Visual Instantiation Tool and the deployment tool are only
prototypical implementations. For the usage in productive environments,
the stability and performance have to be further improved. To verify the
metaphors used for the visual representations, user studies with applica-
tion engineers of different application domains should be conducted. Re-
sults from these user studies could improve the usability of the tools and
the overall development process. The process and tools could also be ex-
tended to provide for a more seamless integration of ERP systems and
other information systems into the Auto-ID application development.

 171

8. Appendices

8.1. Formal Definitions of the Auto-ID Object Model Set
Definition Language in EBNF
Sets = SetDecl {Sets}.
SetDecl = “SET” SetName “:” SetType.
SetType = ObjectSet | PatternSet | PropertySet.
ObjectSet = “OBJECTS” ObjectsDecl.
ObjectsDecl = ObjectDecl “,” ObjectsDecl |
ObjectDecl.
ObjectDecl = “'” ObjectId “'”.
PatternSet = “PATTERN '” PatternString “'”
 | “PATTERN
PatternString = “/” (Alpha | Digit | Char) { Alpha
| Digit | Char } “/”.
PropertySet = BoolExpr.
BoolExpr = BoolTerm | (BoolExpr “OR” BoolTerm).
BoolTerm = BoolFactor | (BoolFactor “AND”
BoolTerm).
BoolFactor = PropertyExpr | (“(”BoolExpr “)”)
 | (“NOT” BoolFactor).
PropertyExpr = “PROPERTY” PropertyName
PropertyCond.
PropertyCond = “EXISTS” | NumOp FloatNumber |
DateOp Date | “=” String.
NumOp = “=” | “>” | “<” | “>=” | “<=”.
DateOp = “EQ” | “GT” | “LT” | “GE” | “LE”.
SetName = Ident.
ObjectId = Ident.
Ident = Alpha {Alpha | Digit | IdentChar}.
String = {Alpha | Digit | IdentChar}.
Alpha = “a” | “b” | “c” | …| “z” | “A” | “B”.| “C”
|…| “Z”.
Digit = “0” | “1” | “2” | “3” | “4” | “5” | “6” |
“7” | “8” | “9”.

172

Char = “_” | “-“ | “+” | “& “ | “*” | “?” | “(“ |
“)” | “{“ | “}” | “[“ | “]” | “^” | “.” | “!” |
“:” | “=” | “|” | “$” | “\” | “#” | “'” | “`”.
IdentChar = “_” | “-“ | “+” | “& “ | “*” | “?” |
“{“ | “}” | “[“ | “]” | “^” | “.” | “!” | “=” |
“|” | “$” | “\” | “#” | “`”.
Date = Digit Digit "." Digit Digit "." Digit Digit
Digit Digit

8.2. Formal Definitions of the Auto-ID Object Model
Business Process Condition Definition Language
in EBNF
StateTransitionCondition = ConditionExpr.
ConditionExpr = ConditionTerm

| (ConditionExpr "OR" ConditionTerm).
ConditionTerm = ConditionFactor

| (ConditionFactor "AND" ConditionTerm).
ConditionFactor = SimpleConditionExpr

| (" (" ConditionExpr ")")
| ("NOT" ConditionFactor).

SimpleConditionExpr = SetExpr | CountExpr
| PropertyExpr.

SetExpr = EqualSetDecl | IntersectSetDecl
 | SubSetDecl | SuperSetDecl.

EqualSetDecl = Level "ISEQUALSET" SetName.
IntersectSetDecl = Level "ISINTERSECTION" SetName.
SubSetDecl = Level "ISSUBSET" SetName.
SuperSetDecl = Level "ISSUPERSET" SetName.
CountExpr = "COUNT (" Level CountSetOp SetName ")"

NumOp Number
| "COUNT (" Level ")" NumOp Number.

CountSetOp = "INTERSECTION" | "SUBSET".
PropertyExpr = "PROPERTY" PropertyName NumOp

FloatNumber
| "PROPERTY" PropertyName "=" String.

Level = "ALL" | "CHILDREN" | "PARENT"
| ("LEVEL" Number).

NumOp = "=" | ">" | "<" | ">=" | "<=".
SetName = Ident.
PropertyName = Ident.
Ident = Alpha {Alpha | Digit | IdentChar}.

 173

Alpha = “a” | “b” | “c” | …| “z” | “A” | “B”.| “C”
|…| “Z”.

Digit = = “0” | “1” | “2” | “3” | “4” | “5” | “6”
| “7” | “8” | “9”.

IdentChar = “_” | “-“ | “+” | “& “ | “*” | “?” |
“{“ | “}” | “[“ | “]” | “^” | “.” | “!” | “=”
| “|” | “$” | “\” | “#” | “`”.

8.3. Example Business Process Definition in XML
<business-process-definition>
 <states>
 <state name="START"/>
 <state name="Awaiting Shipment"/>
 <state name="Shipment Arriving">
 <action type="start-time"
 timerName="shipmentTimer"/>
 </state>
 <state name="Shipment Potentially Incomplete">
 <action type="enter"
 kind="notify-staff"
 className="oms.action.NotifyStaff"
 args="mobile,0441234567"/>
 </state>
 <state name="Shipment Incomplete">
 <action type="enter"
 kind="report"
 client="wms-app"
 objects="ALL INTERSECTION
 ObjectsShipment1020"/>
 </state>
 <state name="Shipment Complete">
 <action type="enter"
 kind="report"
 client="wms-app"
 objects="ObjectsShipment1020"/>
 </state>
 <state name="END"/>
 </state>
 </states>
 <transitions>
 <transition start="START"
 end="Awaiting Shipment">

174

 </transition>
 <transition start="Awaiting Shipment"
 end="Shipment Arriving">
 </transition>
 <transition start=""
 end="">
 </transition>
 <transition start=""
 end="">
 <transition start=""
 end="">
 <transition start=""
 end="">
 <transition start=""
 end="">
 <transition start=""
 end="">
 </transitions>
</business-process-definition>

8.4. OMS Database Implementation Details

CREATE TABLE ‘property_history‘ (
‘ObjectID‘ varchar(400) NOT NULL,
‘PropertyName‘ varchar(400) NOT NULL,
‘PropertyValue‘ varchar(400) NOT NULL,
‘Timestamp‘ bigint(64) NOT NULL
);
CREATE TABLE ‘object_history‘ (
‘ObjectID‘ varchar(400) NOT NULL,
‘ParentID‘ varchar(400) NOT NULL,
‘EnterTime‘ bigint(64) NOT NULL
‘ExitTime‘ bigint(64) NOT NULL
);

Figure 8-1 SQL statements to create the object and property history

8.5. XML Schemes of the VIT / Generator
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--W3C Schema erstellt mit XMLSpy v2005 rel. 3 U
(http://www.altova.com)-->

 175

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="actionstring" type="xs:string"/>
 <xs:element name="actiontype" type="xs:string"/>
 <xs:element name="boundedArea">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="segment" minOc-
curs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id"
type="xs:string"/>
 <xs:attribute name="fid"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="boundedAreas">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="boundedArea" maxOc-
curs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="canvas">
 <xs:complexType>
 <xs:attribute name="height"
type="xs:string" use="required"/>
 <xs:attribute name="width"
type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="children">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="object" minOc-
curs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="coords">
 <xs:complexType>
 <xs:attribute name="x" type="xs:string"
use="required"/>

176

 <xs:attribute name="y" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="definition">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0" maxOc-
curs="unbounded">
 <xs:element ref="name"/>
 <xs:element ref="offset"/>
 <xs:element ref="length"/>
 </xs:choice>
 <xs:attribute name="id"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="definitions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="definition" maxOc-
curs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="fieldmap">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="pattern"/>
 <xs:element ref="definitions"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="fieldmaps">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="fieldmap" maxOc-
curs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="gfx-objects">
 <xs:complexType>
 <xs:sequence>

 177

 <xs:element ref="canvas" minOc-
curs="0"/>
 <xs:element ref="segments" minOc-
curs="0"/>
 <xs:element ref="boundedAreas" mi-
nOccurs="0"/>
 <xs:element ref="coords" minOc-
curs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="length" type="xs:string"/>
 <xs:element name="mastermodel">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="gfx-objects"/>
 <xs:element ref="tree"/>
 <xs:element ref="passages"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="object">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="gfx-objects"/>
 <xs:element ref="properties"/>
 <xs:element ref="states"/>
 <xs:element ref="readers"/>
 <xs:element ref="sensors"/>
 <xs:element ref="passages"/>
 <xs:element ref="children"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"
use="required"/>
 <xs:attribute name="current_level"
type="xs:string"/>
 <xs:attribute name="inside"
type="xs:string"/>
 <xs:attribute name="next_level_id"
type="xs:string"/>
 <xs:attribute name="vit_type"
type="xs:string"/>

178

 <xs:attribute name="level_number"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="offset" type="xs:string"/>
 <xs:element name="passage">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="properties" minOc-
curs="0"/>
 <xs:element ref="states" minOc-
curs="0"/>
 <xs:element ref="readers" minOc-
curs="0"/>
 <xs:element ref="sensors" minOc-
curs="0"/>
 </xs:sequence>
 <xs:attribute name="fid"
type="xs:string"/>
 <xs:attribute
name="containing_segment_fid" type="xs:string"/>
 <xs:attribute name="id"
type="xs:string"/>
 <xs:attribute name="segment_fid"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="passages">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="passage" minOc-
curs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="pattern" type="xs:string"/>
 <xs:element name="properties">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="property" minOc-
curs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 179

 <xs:element name="property">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="value"/>
 <xs:element ref="type"/>
 <xs:element ref="sourcetype" minOc-
curs="0"/>
 <xs:element ref="source" minOc-
curs="0"/>
 </xs:sequence>
 <xs:attribute name="name"
type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="reader">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="gfx-objects"/>
 <xs:element ref="properties"/>
 <xs:element ref="states"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="readers">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="reader" minOc-
curs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="rootobject">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="children"/>
 <xs:element ref="object"/>
 </xs:choice>
 <xs:attribute name="id" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="segment">

180

 <xs:complexType>
 <xs:attribute name="id"
type="xs:string"/>
 <xs:attribute name="passage"
type="xs:string"/>
 <xs:attribute name="x1"
type="xs:string"/>
 <xs:attribute name="x2"
type="xs:string"/>
 <xs:attribute name="y1"
type="xs:string"/>
 <xs:attribute name="y2"
type="xs:string"/>
 <xs:attribute name="fid"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="segments">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="segment" maxOc-
curs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="sensor">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="gfx-objects"/>
 <xs:element ref="properties"/>
 <xs:element ref="states"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="sensors">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sensor" minOc-
curs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 181

 <xs:element name="set">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="type"/>
 <xs:element ref="definition"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="sets">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="set" maxOc-
curs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="source" type="xs:string"/>
 <xs:element name="sourcetype" type="xs:string"/>
 <xs:element name="state">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="definition"/>
 <xs:element ref="actiontype"/>
 <xs:element ref="actionstring"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="states">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="state" minOc-
curs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="tree">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="rootobject"/>
 </xs:sequence>
 </xs:complexType>

182

 </xs:element>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 <xs:element name="view">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="gfx-objects"/>
 <xs:element ref="tree"/>
 <xs:element ref="passages"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="vit-instance">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="fieldmaps"/>
 <xs:element ref="sets"/>
 <xs:element ref="view"/>
 <xs:element ref="mastermodel"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--W3C Schema erstellt mit XMLSpy v2005 rel. 3 U
(http://www.altova.com)-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="definition" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="set">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="type"/>
 <xs:element ref="definition"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="sets">
 <xs:complexType>
 <xs:sequence>

 183

 <xs:element ref="set" maxOc-
curs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="type" type="xs:string"/>
</xs:schema>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--W3C Schema erstellt mit XMLSpy v2005 rel. 3 U
(http://www.altova.com)-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="definition">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="offset"/>
 <xs:element ref="length"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="definitions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="definition" maxOc-
curs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="fieldmap">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="pattern"/>
 <xs:element ref="definitions"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="fieldmaps">
 <xs:complexType>
 <xs:sequence>

184

 <xs:element ref="fieldmap" maxOc-
curs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="length" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="offset" type="xs:string"/>
 <xs:element name="pattern" type="xs:string"/>
</xs:schema>

 185

Bibliography

[1] BizTalk RFID Server, Microsoft Corporation, 2009,
www.microsoft.com/biztalk/en/us/rfid.aspx.

[2] Bluetooth Special Interest Group, www.bluetooth.org.
[3] BTnodes - A Distributed Environment for Prototyping Ad Hoc

Networks, 2007, http://btnode.ethz.ch.
[4] Enterprise Information Architecture for RFID and Sensor-Based

Services, Oracle White Paper, 2006, available from:
www.oracle.com/technology/products/sensor_edge_server/collatera
l/Oracle_SES_Technical_White_Paper.pdf.

[5] Epsilon Wi-Fi Module Family Product Brief, G2 Microsystems,
2009, available from:
www.g2microsystems.com/downloads/PB_Epsilon_Modules_Final
.pdf.

[6] GS1 - The global language of business, www.gs1.org.
[7] Infrared Data Association, www.irda.org.
[8] Java Web Start Technology,

http://java.sun.com/javase/technologies/desktop/javawebstart/index.
jsp.

[9] Lego Mindstorms, http://mindstorms.lego.com.
[10] Oracle Sensor Edge Server,

www.oracle.com/technology/products/iaswe/edge_server.
[11] PostgreSQL - a powerful, open source object-relational database

system, www.postgresql.org.
[12] RFID at WINMEC, 2005, http://winmec.ucla.edu/rfid/.
[13] The Savant Version 0.1. MIT-AUTOID-TM-003, Oat Systems and

MIT Auto-ID Center, 2002.
[14] Simulink, The MathWorks, Inc.,

www.mathworks.com/products/simulink/.

186

[15] Tmote Sky Datasheet, Moteiv Corporation, 2006, available from:

www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf.
[16] WebSphere RFID Premises Server, IBM, 2004, http://www-

306.ibm.com/software/pervasive/ws_rfid_premises_server/.
[17] Wi-Fi Alliance, www.wi-fi.org.
[18] XSL Transformations (XSLT) Version 2.0, W3C Recommendation,

2007, available from: www.w3.org/TR/2007/REC-xslt20-
20070123/.

[19] ZigBee Alliance, www.zigbee.org.
[20] 1SYNC, Supply chain data synchronization,

www.transora.com/home.html.
[21] P. Ackermann, D. Eichelberg and B. Wagner, Visual Programming

in an Object-Oriented Framework, Swiss Computer Science Confe-
rence, Zurich, Switzerland, 1996.

[22] K. Alexander, T. Gilliam, K. Gramling, M. Kindy, D. Moogimane,
M. Schultz and M. Woods, Focus on the Supply Chain: Applying
Auto-ID within the Distribution Center, Auto-ID Center, 2002.

[23] Y. Bai, F. Wang and P. Liu, Efficiently Filtering RFID Data
Streams, in D. Lee and C. Li, eds., First International VLDB Work-
shop on Clean Databases, Seoul, Korea, 2007, pp. 54-56.

[24] M. Bauer, C. Becker and K. Rothermel, Location Models from the
Perspective of Context-Aware Applications and Mobile Ad Hoc
Networks, Personal and Ubiquitous Computing, Springer-Verlag,
London, UK, 2002, pp. 322 - 328.

[25] T. Beck, JTemporal temporal framework for Java, 2002,
http://jtemporal.sourceforge.net/.

[26] M. Beigl, Special Issue on Location Modeling in Ubiquitous Com-
puting, Personal and Ubiquitous Computing (2002), pp. 311 - 312.

[27] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund and L.
Thiele, Prototyping Wireless Sensor Network Applications with
BTnodes, in H. Karl, A. Willig and A. Wolisz, eds., Wireless Sen-
sor Networks, First European Workshop, EWSN 2004, Springer-
Verlag, Berlin, Germany, 2004, pp. 323-338.

[28] C. Bornhoevd, T. Lin, S. Haller and J. Schaper, Integrating Auto-
matic Data Acquisition with Business Processes - Experiences with
SAP's Auto-ID Infrastructure, 30st international conference on very

 187

large data bases (VLDB), VLDB Endowment, Toronto, Canada,
2004, pp. 1182-1188.

[29] D. L. Brock, The Electronic Product Code (EPC) - A Naming
Scheme for Physical Objects, Auto-ID Labs Whitepaper, MIT-
AUTOID-WH-002, Auto-ID Center, 2001, available from:
www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-002.pdf.

[30] C. Browne, NonRelational Database Systems - Object Oriented Da-
tabases, http://linuxfinances.info/info/oodbms.html.

[31] M. M. Burnett, Visual Programming, in J. G. Webster, ed., Encyc-
lopedia of Electrical and Electronics Engineering, John Wiley &
Sons Inc., New York, NY, USA, 1999.

[32] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang and P.
vanZee, Scaling Up Visual Programming Languages, Computer,
1995, pp. 45-54.

[33] R. G. G. Cattell, D. K. Barry, D. Bartels, M. Berler, J. Eastman, S.
Gamerman, D. Jordan, A. Springer, H. Strickland and D. Wade,
eds., The Object Database Standard: ODMG 2.0, in The Morgan
Kaufmann Series in Data Management Systems, Morgan Kaufmann
Publishers, 1997.

[34] V. Cechticky, P. Chevalley, A. Pasetti and W. Schaufelberger, A
Generative Approach to Framework Instantiation, (2003).

[35] V. Cechticky and A. Pasetti, Generative Programming for Space
Applications, Data System in Aerospace (DASIA) Conference,
Prague, Czech Republic, 2003.

[36] S. Chakravarthy, ed., Bulletin of the Technical Committee on Data
Engineering. Special Issue on Active Databases, IEEE Computer
Society, 1992.

[37] D. Chang, L. Dooley and J. E. Tuovinen, Gestalt Theory in Visual
Screen Design: A New Look at an Old Subject, Computers in Edu-
cation: Australian Topics, Australian Computer Society, Inc., Co-
penhagen, Denmark, 2002, pp. 5-12.

[38] S. Chawathe, V. Krishnamurthy, S. Ramachandran and S. Sarma,
Managing RFID Data, 30st international conference on very large
data bases (VLDB), VLDB Endowment, Toronto, Canada, 2004, pp.
1189-1195.

188

[39] A. Chella, M. Cossentino and L. Sabatucci, Tools and patterns in

designing multi-agent systems with passi, WSEAS Transactions on
Communications, 3 (2004), pp. 352-358.

[40] K. Czarnecki and U. W. Eisenecker, Analysis and design methods
and techniques, in K. Czarnecki and U. W. Eisenecker, eds., Gener-
ative Programming: Methods, Tools, and Applications, Addison
Wesley, 2000, pp. 19-59.

[41] K. Czarnecki and U. W. Eisenecker, What is this book about?, in K.
Czarnecki and U. W. Eisenecker, eds., Generative Programming:
Methods, Tools, and Applications, Addison Wesley, 2000, pp. 1-16.

[42] F. DeRemer and H. Kron, Programming-in-the large versus pro-
gramming-in-the-small, International Conference on Reliable Soft-
ware, Los Angeles, California, 1975, pp. 114 - 121.

[43] Deutsches Institut für Normung e.V. (DIN), DIN 16557-3. Elektro-
nischer Datenaustausch für Verwaltung, Wirtschaft und Transport
(EDIFACT); Allgemeine Einführung für Einheitliche Nachrichten-
typen (UNSMs), 1994.

[44] S. Domnitcheva, Location Modeling: State of the Art and Chal-
lenges, Ubicomp 2001, Atlanta, USA, 2001.

[45] C. Dyreson, F. Grandi, W. Käfer, N. Kline, N. Lorentzos, Y. Mitso-
poulos, A. Montanari, D. Nonen, E. Peressi, B. Pernici, J. F. Rod-
dick, N. L. Sarda, M. R. Scalas, A. Segev, R. T. Snodgrass, M. D.
Soo, A. Tansel, P. Tiberio and G. Wiederhold, A Consensus Glos-
sary of Temporal Database Concepts, ACM SIGMOD Record, 23
(1994), pp. 52-64.

[46] A. Eisma, Building RFID solutions with the IBM WebSphere RFID
Device Infrastructure, Software for Sensor Networks Workshop at
the International Conference on Object Oriented Programming,
Systems, Languages and Applications (OOPSLA), Portland, OR,
2006.

[47] EPCglobal, Application Level Events 1.1.1 Standard - Part 1, 2009,
available from: www.epcglobalinc.org/standards/ale/ale_1_1_1-
standard-core-20090313.pdf.

[48] EPCglobal, EPC Information Services Standard v. 1.0.1, 2007,
available from:
www.epcglobalinc.org/standards/epcis/epcis_1_0_1-standard-
20070921.pdf.

 189

[49] EPCglobal, EPC Tag Class Definitions, 2007, available from:
www.epcglobalinc.org/standards/TagClassDefinitions_1_0-
whitepaper-20071101.pdf.

[50] EPCglobal, EPC Tag Data Standard v. 1.4, 2003, available from:
www.epcglobalinc.org/standards/tds/tds_1_4-standard-
20080611.pdf.

[51] EPCglobal, EPC Tag Data Translation Standard v. 1.4, 2009, avail-
able from: www.epcglobalinc.org/standards/tdt/tdt_1_4-standard-
20090610.pdf.

[52] EPCglobal, EPCglobal Architecture Framework v. 1.3, 2009, avail-
able from:
www.epcglobalinc.org/standards/architecture/architecture_1_3-
framework-20090319.pdf.

[53] EPCglobal, Low Level Reader Protocol Standard v. 1.0.1, 2007,
available from: www.epcglobalinc.org/standards/llrp/llrp_1_0_1-
standard-20070813.pdf.

[54] EPCglobal, Object Naming Service Standard v. 1.0.1, 2008, availa-
ble from: www.epcglobalinc.org/standards/ons/ons_1_0_1-
standard-20080529.pdf

[55] EPCglobal, Reader Management Standard v. 1.0.1, 2007, available
from: www.epcglobalinc.org/standards/rm/rm_1_0_1-standard-
20070531.pdf.

[56] EPCglobal, Reader Protocol Standard v. 1.1, 2006, available from:
www.epcglobalinc.org/standards/rp/rp_1_1-standard-20060621.pdf.

[57] EPCglobal, Review of Hardware Action Group's UHF Generation 2
Protocol Working Group Activities, 2004, available from:
www.epcglobalinc.org/standards_technology/EPCTagDataSpecific
ation11rev124.pdf

[58] M. Erwig and B. Meyer, Heterogeneous Visual Languages - Inte-
grating Visual and Textual Programming, 11th International IEEE
Symposium on Visual Languages, Darmstadt, Germany, 1995.

[59] D. Estrin, D. Culler, K. Pister and G. Sukhatme, Connecting the
Physical World with Pervasive Networks, IEEE Pervasive Compu-
ting, 1 (2002), pp. 59-69.

190

[60] O. Etzion, S. Jajodia and S. Sripada, eds., Temporal Databases: Re-

search and Practice, in Lecture Notes in Computer Science, Vol.
1399, Springer, 1998.

[61] K. Finkenzeller, RFID-Handbook - Fundamentals and Applications
in Contactless Smart Cards and Identification, 2nd edition, Wiley &
Sons LTD, 2003.

[62] E. Fleisch, Business Perspectives on Ubiquitous Computing, M-Lab
working paper (2001).

[63] E. Fleisch and M. Dierkes, Ubiquitous computing: Why Auto-ID is
the logical next step in enterprise automation, Auto-ID Center
Technical Reports, Auto-ID Center, 2003, available from: www.m-
lab.ch.

[64] C. Floerkemeier, EPC-Technologie - vom Auto-ID Center zu
EPCglobal, in E. Fleisch and F. Mattern, eds., Das Internet der Din-
ge - Ubiquitous Computing und RFID in der Praxis: Visionen,
Technologien, Anwendungen, Handlungsanleitungen, Springer
Verlag, Berlin, 2005, pp. 87-100.

[65] C. Floerkemeier, D. Anarkat, T. Osinski and M. Harrison, PML
Core Specification 1.0, Technical Report STG-AUTOID-WH005,
Auto-ID Center, 2003, available from:
www.autoidlabs.org/uploads/media/STG-AUTOID-WH005.pdf.

[66] C. Floerkemeier and M. Lampe, RFID middleware design - ad-
dressing application requirements and RFID constraints, Smart Ob-
jects Conference (SOC), Grenoble, France, 2005, pp. 219-224.

[67] C. Floerkemeier, M. Lampe and C. Roduner, Fosstrak: Open Source
RFID Software Platform, 2006, www.fosstrak.org.

[68] C. Floerkemeier, M. Lampe and T. Schoch, The Smart Box Con-
cept for Ubiquitous Computing Environments, Smart Objects Con-
ference (sOc), Grenoble, 2003, pp. 118-121.

[69] C. Floerkemeier, C. Roduner and M. Lampe, RFID Application
Development with the Accada Middleware Platform, IEEE Systems
Journal. Special Issue on RFID Technology, 1 (2007), pp. 82-94.

[70] C. Floerkemeier, R. Schneider and M. Langheinrich, Scanning with
a Purpose – Supporting the Fair Information Principles in RFID
protocols, in H. Murakami, H. Nakashima, H. Tokuda and M. Ya-
sumura, eds., Ubiquitious Computing Systems. Revised Selected
Papers from the 2nd International Symposium on Ubiquitous Com-

 191

puting Systems (UCS 2004). Lecture Notes in Computer Science
(LNCS). Lecture Notes in Computer Science (LNCS), Tokyo, Ja-
pan, 2004, pp. 214–231.

[71] D. Fritsch, D. Klinec and S. Volz, NEXUS - Positioning and Data
Management Concepts for Location Aware Applications, Interna-
tional Symposium on Telegeoprocessing, Sophia-Antipolis, France,
2000, pp. 171-184.

[72] S. Garfinkel and B. Rosenberg, eds., RFID: Applications, Security,
and Privacy, Addison-Wesley, 2005.

[73] D. Garlan, D. Siewiorek, A. Smailagic and P. Steenkiste, Project
Aura: Toward Distraction-Free Pervasive Computing, IEEE Perva-
sive Computing, 4 (2002), pp. 22-31.

[74] P. Geach and M. B. Black, Translations from the Philosophical
Writings of Gottlob Frege, 3rd edition, Rowman & Littlefield Pub
Inc, 1980.

[75] R. Glassey and I. Ferguson, Location Modeling for Pervasive Envi-
ronments, First UK-UbiNet Workshop, London, UK, 2003.

[76] M. Gorlick and A. Quilici, Visual Programming in the Large versus
Visual Programming in the Small, IEEE Symposium on Visual
Languages, St. Louis, MO, USA, 1994.

[77] T. R. G. Green and M. Petre, When Visual Programs are Harder to
Read than Textual Programs, in G. C. v. d. Veer, M. J. Tauber, S.
Bagnarola and M. Antavolits, eds., Human-Computer Interaction:
Tasks and Organisation, 6th European Conference on Cognitive Er-
gonomics, Rome, Italy, 1992.

[78] GS1, Bar Code Types, BarCodes & Identification, GS1,
www.gs1.org/barcodes/technical/bar_code_types.

[79] W. Guangming and J. Gonglian, Research and Design of RFID Da-
ta Processing Model Based on Complex Event Processing, Interna-
tional Conference on Computer Science and Software Engineering,
2008, pp. 1396-1399.

[80] H. Helson, The Fundamental Propositions of Gestalt Psychology,
Psychological Review, 40 (1933), pp. 13-32.

[81] T. Helstrup and R. E. Anderson, Visual discovery in mind and on
paper, Memory & Cognition, 21 (1993), pp. 283-293.

192

[82] C. K. Hess and R. H. Campbell, A Context-Aware Data Manage-

ment System for Ubiquitous Computing Applications, International
Conference of Distributed Computing Systems (ICDCS 2003),
Providence, Rhode Island, 2003.

[83] J. Hightower and G. Borriello, Location Systems for Ubiquitous
Computing, IEEE Computer, 34 (2001), pp. 57-66.

[84] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and K. Pister,
System architecture directions for networked sensors, 9th Int’l Conf.
Architectural Support Programming Languages and Operating Sys-
tems (ASPLOS-IX), ACM Press, 2000.

[85] S. Hinske, M. Lampe, N. Yuill, S. Price and M. Langheinrich,
Kingdom of the Knights: evaluation of a seamlessly augmented toy
environment for playful learning, Proceedings of the 8th Interna-
tional Conference on Interaction Design and Children, ACM, Como,
Italy, 2009.

[86] Y. Hu, S. Sundara, T. Chorma and J. Srinivasan, Supporting RFID-
based item tracking applications in Oracle DBMS using a bitmap
datatype, Proceedings of the 31st international conference on Very
large data bases (VLDB), VLDB Endowment, Trondheim, Norway,
2005, pp. 1140 - 1151.

[87] S. Hudson, F. Flannery and C. S. Ananian, CUP - LALR Parser
Generator in Java, Department of Computer Science. Technische
Universität München., 2003, http://www2.cs.tum.edu/projects/cup/.

[88] Impinj Inc., Speedway Reader, 2008, available from:
www.impinj.com/uploadedFiles/Documents/Reader/Speedway_Rea
der_Brochure_11_08.pdf.

[89] O. Kanoun and H.-R. Tränkler, Sensor Technology Advances and
Future Trends, IEEE Transactions on Instrumentation and Mea-
surement, 53 (2004), pp. 1497-1501.

[90] O. Kasten, A State-Based Programming Model for Wireless Sensor
Networks, Ph.D. Thesis, No. 17397, Department of Computer
Science, ETH Zurich, Zurich, Switzerland, 2007.

[91] O. Kasten and M. Langheinrich., First Experiences with Bluetooth
in the Smart-Its Distributed Sensor Network, Workshop on Ubiqit-
ous Computing and Communication at PACT 2001, 2001.

 193

[92] S. H. Kim and J. W. Jeon, Programming LEGO mindstorms NXT
with visual programming, International Conference on Control, Au-
tomation and Systems (ICCAS), Seoul, Korea, 2007.

[93] W. Kim, Introduction to Object-Oriented Databasesedition, The
MIT Press, 1990.

[94] T. Kindberg and J. Barton, A Web-Based Nomadic Computing Sys-
tem, Computer Networks, 35 (2001), pp. 443--456.

[95] G. Klein, S. Rowe and R. Décamps, JFlex - The Fast Lexical Ana-
lyser Generator, 2008, http://jflex.de/.

[96] D. Koelma, R. v. Balen and A. Smeulders, SCIL-VP: A multi-
purpose visual programming environment, ACM/SIGAPP Sympo-
sium on Applied Computing, ACM Press, Kansas City, Missouri,
United States, 1992, pp. 1188 - 1198.

[97] U. Kubach, Integration von Smart Items in Enterprise-Software-
Systeme, in H. Sauerburger, ed., Ubiquitous Computing, HMD -
Praxis der Wirtschaftsinformatik, Vol. 229, dpunkt.verlag GmbH,
Heidelberg, 2003, pp. 56-67.

[98] M. Lampe, C. Floerkemeier and S. Haller, Einführung in die RFID-
Technologie, in E. Fleisch and F. Mattern, eds., Das Internet der
Dinge - Ubiquitous Computing und RFID in der Praxis: Visionen,
Technologien, Anwendungen, Handlungsanleitungen, Springer
Verlag, Berlin, 2005, pp. 69-86.

[99] M. Lampe and C. Flörkemeier, The Smart Box Application Model,
in G. Kotsis, ed., Advances in Pervasive Computing, OCG, Vienna,
Austria, 2004.

[100] M. Lampe and S. Hinske, The Augmented Knight’s Castle - Inte-
grating Pervasive and Mobile Computing Technologies into Tradi-
tional Toy Environments, in C. Magerkurth and C. Röcker, eds.,
Concepts and technologies for Pervasive Games - A Reader for
Pervasive Gaming Research, Shaker Verlag, 2007.

[101] M. Lampe and S. Hinske, Integrating Interactive Learning Expe-
riences into Augmented Toy Environments, Pervasive Learning
Workshop at Pervasive 2007, Toronto, Canada, 2007.

[102] M. Lampe, S. Hinske and S. Brockmann, Mobile Device based In-
teraction Patterns in Augmented Toy Environments, in T. Strang, V.
Cahill and A. Quigley, eds., Third International Workshop on Per-

194

vasive Gaming Applications, PerGames 2006, Dublin, Ireland, May
2006, pp. 109-118.

[103] M. Lampe, M. Strassner and E. Fleisch, RFID in Movable Asset
Management., in G. Roussos, ed., Ubiquitous and Pervasive Com-
merce - New Frontiers for Electronic Business, Computer Commu-
nications and Networks, Springer-Verlag, 2005, pp. 53-74.

[104] M. Lampe, M. Strassner and E. Fleisch, A Ubiquitous Computing
Environment for Aircraft Maintenance, ACM Symposium on Ap-
plied Computing, Nicosia, Cyprus, 2004.

[105] M. Langheinrich, Personal Privacy in Ubiquitous Computing -
Tools and System Support, ETH Zurich, Zurich, Switzerland, 2005.

[106] M. Langheinrich, RFID and Privacy, in M. Petkovic and W. Jonker,
eds., Security, Privacy and Trust in Modern Data Management,
Springer-Verlag, 2006.

[107] U. Leonhardt, Supporting Location-Awareness in Open Distributed
Systems, PhD Thesis, Departement of Computing, Imperial College
of Science, Technology and Medicine University of London, Lon-
don, 1998.

[108] T. R. Licht, The IEEE 1451.4 proposed standard, IEEE Instrumen-
tation & Measurement Magazine, 4 (2001), pp. 12-18.

[109] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systemsedition, Addi-
son-Wesley Longman Publishing Co., Inc., 2001.

[110] J. Mark and P. Hufnagel, The IEEE 1451.4 Standard for Smart
Transducers, IEEE 1451.4 Standard Working Group, 2009, availa-
ble from:
http://standards.ieee.org/regauth/1451/IEEE_1451d4_Standard_Gen
l_Tutorial_090104.pdf.

[111] L. V. Massawe, F. Aghdasi and J. Kinyua, The Development of a
Multi-Agent Based Middleware for RFID Asset Management Sys-
tem Using the PASSI Methodology, Sixth International Conference
on Information Technology: New Generations, 2009, pp. 1042-
1048.

[112] F. Mattern, Vom Verschwinden des Computers – Die Vision des
Ubiquitous Computing, in F. Mattern, ed., Total vernetzt, Springer-
Verlag, 2003, pp. 1-41.

 195

[113] D. L. Mills, RFC 956: Algorithms for Synchronizing Network
Clocks, Request for Comments, Internet Engineering Task Force
(IETF), 1985, available from: http://tools.ietf.org/html/rfc956.

[114] D. L. Mills, RFC 1305: Network Time Protocol (Version 3), Re-
quest for Comments, Internet Engineering Task Force (IETF), 1992,
available from: http://tools.ietf.org/html/rfc956.

[115] B. A. Myers, Taxonomies of Visual Programming and Program Vi-
sualization, Journal of Visual Languages and Computing, 1 (1990),
pp. 97-123.

[116] M. Nemecek, The Peter System - a visual programming tool for
easy and quick application creation 1999,
www.gemtree.com/peter.htm.

[117] J. V. Nickerson, Visual Programming: Limits of Graphic Represen-
tation, IEEE Symposium on Visual Languages, Los Alamitos, CA,
USA, 1994, pp. 178-179.

[118] Object Management Group Inc., OMG Unified Modeling Language
(OMG UML), Superstructure, Version 2.2, 2009.

[119] P. Oehen, RFID Stack Event Layer, Term Project, Institute for Per-
vasive Computing, Department of Computer Science, ETH Zurich,
Zurich, 2005.

[120] OpenLDAP, OpenLDAP - community developed LDAP software,
1998, www.openldap.org.

[121] M. Palmer, Seven Principles of Effective RFID Data Management,
Progress Software, 2004, available from:
www.dbis.ethz.ch/education/ws0708/infsyst_lab/rfid_resources/7pri
nciples.pdf.

[122] M. Petre and A. F. Blackwell, Mental Imagery in Program Design
and Visual Programming, International Journal of Human-
Computer Studies, 51 (1999), pp. 7-30.

[123] B. S. Prabhu, X. Su, H. Ramamurthy, C.-C. Chu and R. Gadh,
WinRFID: A Middleware for the Enablement of Radiofrequency
Identification (RFID)-Based Applications, in R. Shorey, A. L.
Ananda, M. C. Chan and W. T. Ooi, eds., Mobile, Wireless, and
Sensor Networks: Technology, Applications, and Future Directions,
John Wiley & Sons, Inc., 2006, pp. 331-336.

196

[124] S. Pradhan, Semantic Location, Personal and Ubiquitous Compu-

ting, 4 (2000), pp. 213-216.
[125] B. R. Rao, Object-Oriented Databases: Technology, Applications,

and Productsedition, McGraw-Hill Companies, 1994.
[126] C. Roduner and C. Floerkemeier, Towards an Enterprise Location

Service, International Symposium on Applications and the Internet
Workshops (SAINT 2006 Workshops), IEEE Computer Society,
Phoenix, Arizona, USA, 2006, pp. 84-87.

[127] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell and K. Nahrstedt, Gaia: A Middleware Infrastructure to
Enable Active Spaces, IEEE Pervasive Computing (2002), pp. 74-
83.

[128] K. Römer, Time Synchronization and Localization in Sensor Net-
works, Ph.D. Thesis, No. 16106, Department of Computer Science,
ETH Zurich, Zurich, Switzerland, 2005.

[129] K. Römer, T. Schoch, F. Mattern and T. Dübendorfer, Smart Identi-
fication Frameworks for Ubiquitous Computing Applications,
Wireless Networks, 10 (2004), pp. 689-700.

[130] S. Sarma, A History of the EPC, in S. Garfinkel and B. Rosenberg,
eds., RFID: Applications, Security and Privacy, Addison-Wesley,
2005, pp. 37-55.

[131] S. Sarma, Integrating RFID, ACM Queue, 2 (2004), pp. 50-57.
[132] S. Sarma, D. L. Brock and K. Ashton, The Networked Physical

World - Proposals for Engineering The Next Generation of Compu-
ting, Commerce & Automatic Identification, 2000,
www.autoidcenter.org/research/MIT-AUTOID-WH-001.pdf.

[133] S. Sarma, S. Weis and D. Engels, RFID Systems and Security and
Privacy Implications, Workshop on Cryptographic Hardware and
Embedded Systems, Springer, 2002, pp. 454-470.

[134] T. Schoch, Concepts and System Structures to Support Collaborat-
ing Everyday Items, Ph.D. Thesis, No. 15908, Department of Com-
puter Science, ETH Zurich, Zurich, Switzerland.

[135] T. Schoch, Middleware für Ubiquitous-Computing-Anwendungen,
in E. Fleisch and F. Mattern, eds., Das Internet der Dinge -
Ubiquitous Computing und RFID in der Praxis: Visionen, Techno-

 197

logien, Anwendungen, Handlungsanleitungen, Springer Verlag,
Berlin, 2005, pp. 119-140.

[136] K. D. Schwartz, BizTalk RFID: Making RFID Deployments Easy,
Simple and Economical, Microsoft Corporation, 2007, available
from: www.microsoft.com/biztalk/en/us/wp-rfid.aspx.

[137] S.-J. Shin, The Logical Status of Diagramsedition, Cambridge Uni-
versity Press, Cambridge, England, 1994.

[138] B. Shneiderman, Direct Manipulation: A Step Beyond Program-
ming Languages, IEEE Computer, 16 (1983), pp. 57-67.

[139] T. Sigaev and O. Bartunov, ltree - a PostgreSQL contrib module for
tree-like structures, 2002,
www.sai.msu.su/~megera/postgres/gist/ltree/.

[140] J. P. Singh, Development Trends in the Sensor Technology: A New
BCG Matrix Analysis as a Potential Tool of Technology Selection
for a Sensor Suite, IEEE Sensors Journal, 4 (2004), pp. 664-669.

[141] A. Sloman, Interactions between philosophy and AI: The role of in-
tuition and non-logical reasoning in intelligence, 2nd IJCAI, Lon-
don, 1971.

[142] D. C. Smith, Pygmalion: An executable electronic blackboard,
(1977).

[143] R. T. Snodgrass, M. H. Bohlen, C. S. Jensen and A. Steiner, Transi-
tioning Temporal Support in TSQL2 to SQL3, in O. Etzion, S. Ja-
jodia and S. Sripada, eds., Temporal Databases: Research and Prac-
tice, Springer, 1998, pp. 150-194.

[144] J. P. Sousa and D. Garlan, Aura: an Architectural Framework for
User Mobility in Ubiquitous Computing Environments, Software
Architecture: System Design, Development, and Maintenance (Pro-
ceedings of the 3rd Working IEEE/IFIP Conference on Software
Architecture), Kluwer Academic Publishers, 2002, pp. 29-43.

[145] M. Stonebraker, Object-Relational DBMS: The Next Wave, Infor-
mix Software, CA, available from:
http://db.cs.berkeley.edu/papers/Informix/www.informix.com/infor
mix/corpinfo/zines/whitpprs/illuswp/wave.htm.

[146] M. Stonebraker, P. Brown and D. Moore, Object-Relational
DBMSs: Tracking the Next Great Waveedition, Morgan Kaufmann
Publishers, San Francisco, 1999.

198

[147] M. Strassner, M. Lampe and U. Leutbecher, Werkzeugmanagement

in der Flugzeugwartung - Entwicklung eines Demonstrators mit
ERP-Anbindung, in E. Fleisch and F. Mattern, eds., Das Internet
der Dinge - Ubiquitous Computing und RFID in der Praxis: Visio-
nen, Technologien, Anwendungen, Handlungsanleitungen, Springer
Verlag, Berlin, 2005, pp. 261-277.

[148] X. Su, C.-C. Chu, B. S. Prabhu and R. Gadh, On the Identification
Device Management and Data Capture via WinRFID Edge-Server,
IEEE Systems Journal. Special Issue on RFID Technology, 1
(2007), pp. 95-104.

[149] Sun Microsystems, Java EE at a Glance, Sun Developer Network
(SDN), 2009, java.sun.com/javaee.

[150] SYNFOS, SYNFOS services,
www.sinfosweb.de/serviceDE/Default.aspx?LANG=E.

[151] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev and R. T.
Snodgrass, eds., Temporal Databases: Theory, Design, and Imple-
mentation, in Database Systems and Applications Series, Benja-
min/Cummings Pub. Co., Redwood City, CA, 1993.

[152] F. Thiesse, Architektur und Integration von RFID-Systemen, in E.
Fleisch and F. Mattern, eds., Das Internet der Dinge - Ubiquitous
Computing und RFID in der Praxis: Visionen, Technologien, An-
wendungen, Handlungsanleitungen, Springer Verlag, Berlin, 2005,
pp. 101-117.

[153] F. Thiesse, C. Floerkemeier, M. Harrison, F. Michahelles and C.
Roduner, Technology, Standards, and Real-World Deployments of
the EPC Network, IEEE Internet Computing, 13 (2009), pp. 36-43.

[154] J. R. Tuttle, Traditional and emerging technologies and applications
in the radiofrequency identification (RFID) industry, IEEE Radio
Frequency Integrated Circuits Symposium, Denver, CO, 1997.

[155] J. Venn, On the Diagrammatic and Mechanical Representation of
Prepositions and Reasonings, Philosophical Magazine and Journal
of Science (1880).

[156] F. Wang and P. Liu, Temporal Management of RFID Data, 31st
VLDB Conference, VLDB Endowment, Trondheim, Norway, 2005.

[157] R. Want, RFID explained: a primer on radio frequency identifica-
tion technologiesedition, Morgan & Claypool Publishers, 2006.

 199

[158] M. Weiser, The Computer for the Twenty-First Century, Scientific
American (1991), pp. 94-100.

[159] M. Wertheimer, W. Köhler and K. Koffka, Gestaltpsychologie, Ber-
lin, 1910.

[160] K. N. Whitley and A. F. Blackwell, Visual Programming: The Out-
look from Academia and Industry, in S. Wiedenbeck and J. Scholtz,
eds., Proceedings of the 7th Workshop on Empirical Studies of Pro-
grammers, Alexandria, VA USA, 1997, pp. 180-208.

[161] J. Yi, M. Heiss, F. Qiuyun and N. A. Gay, A Prototype RFID Hu-
midity Sensor for Built Environment Monitoring, International
Workshop on Education Technology and Training and International
Workshop on Geoscience and Remote Sensing, 2008, pp. 496-499.

[162] C. Zang and u. Fan, Complex event processing in enterprise infor-
mation systems based on RFID, Enterprise Information Systems, 1
(2007), pp. 3-23.

Curriculum Vitae

Matthias Lampe

 Personal Data
 Date of Birth June 10, 1971
 Birthplace Mannheim
 Citizenship Germany

 Education
 1982 –1986 Gymnasium Markdorf, Germany
 1982 –1991 Gymnasium Schramberg, Germany
 Jun 1991 Abitur
 1991 –1992 Military Service, Memmingen, Germany
 1992 –1997 University of Constance, Undergraduate Student at the Department

of Physics and Computer Science
 Apr 1995 Vordiplom Physik
 1997 –1999 Portland State University, Oregon, USA, Graduate Student at the

Department of Computer Science
 Nov 1999 Master of Science in Computer Science
 2002-2008 ETH Zurich, Switzerland, Ph.D. Student at the Department of

Computer Science

 Employment
 1997 Web Developer/Assistant Network Administrator at Fischer Com-

puter Technik GmbH, Radolfzell, Germany
 1998 –1999 Graduate Teaching Assistant at the Department of Computer

Science, Portland State University, Oregon, USA
 1999 Internship in Project Management at Freightliner Corporation,

Portland, Oregon, USA
 1999 Post-Grad Internship at Narita Labs, Waseda University, Tokyo,

Japan
 2000 –2001 Research Assistant at the Department of Computer Science, Uni-

versity of Constance, Germany
 2001 –2002 Lecturer in Software Engineering at the University of Applied

Science St. Gallen (Fachhochschule St. Gallen), Switzerland
 2002 –2008 Research Assistant at the Department of Computer Science, ETH

Zurch, Switzerland

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 450
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

