CoAP for the Web of Things:
From Tiny Resource-constrained
Devices to the Web Browser

Matthias Kovatsch
Institute for Pervasive
Computing

ETH Zurich

Zurich, Switzerland
kovatsch@inf.ethz.ch

Copper (cu)

4th International Workshop on the Web of Things (WoT 2013)
Copyright is held by the author/owner(s).
UbiComp '13 Adjunct, Sept 8-12, 2013, Zurich, Switzerland.

Abstract

The Constrained Application Protocol (CoAP) is a new
Web protocol standardized by the IETF. It is not a mere
compression of HTTP, but a re-design from scratch
following the REST architectural style. Thus, its features
are tailored for Internet of Things (loT) applications and
machine-to-machine (M2M) scenarios with highly
resource-constrained devices. While this makes CoAP very
interesting for the Web of Things (WoT) initiative, it is
still detached from the Web world of browsers and
intuitive user interaction. We present the first attempts to
unite these two worlds, so that everyday objects endowed
with tiny, low-cost computing devices can become first
class citizens of the Web. Our Copper (Cu) project brings
CoAP support to the Web browser and has been out in
the wild since late 2010. Thus, we were able to conduct a
user study among industry and research developers who
know both, Web-based CoAP and earlier proprietary
protocols for networked embedded systems. The result
shows that industry developers and those with longer
experience agree even more that Internet protocols and
patterns from the Web ease application development for
tiny, resource-constrained devices.

Author Keywords
CoAP, WoT, loT, Web browser, scripting, user study

Figure 1: The Tmote Sky is a
highly resource-constrained
platform: It only has 48 KiB of
ROM and 10 KiB of RAM. It is
able to implement an
RFC-compliant IP stack together
with an energy-saving MAC
protocol and CoAP at the
application layer. The program
flash is, however, too small to
also include the cryptographic
libraries required for a full
security handshake. Requiring
extreme optimization or external
support makes the Tmote Sky a
borderline Class 0 device.

Introduction

Web technology is ubiquitous. Using the Web has become
part of our everyday lives and, moreover, many tech-savvy
people without explicit training are able to create their
own Web applications. Thus, the Web of Things initiative
aims for applying the well-known and proven patterns
from the Web to the demanding loT domain [3, 20]. As a
result, devices can be browsed and bookmarked, Web
pages can directly include real-time data from sensors,
and users can build physical mashups that augment and
control their everyday objects [5]. This is an important
step from traditional networked embedded systems to a
truly ubiquitous Internet of Things.

In this course, the IETF has been standardizing the
Constrained Application Protocol (CoAP) [16]. It is a new
Web protocol that was designed to meet the requirements
of highly resource-constrained devices and M2M scenarios.
CoAP closes the gap between microcontroller-based
low-power devices and the Web of Things, as HTTP over
TCP is not feasible in these environments. RESTful
applications can now talk end-to-end to tiny devices using
URIs for addressing and uniform interfaces for interaction.

Yet CoAP targets M2M applications without the direct
user interaction known from the Web of Things. Our goal
is to push CoAP closer to the Web world of browsers with
intuitive front-ends, easy scripting, and the human in the
loop. For this, we enabled CoAP support directly in the
Web browser and released Copper (Cu)*, a Firefox add-on
whose source code is also available on GitHub?. In
another project, we extended the JavaScript language
with an API for direct interaction with tiny loT devices
[9]. Our CoapRequest object is similar to AJAX's

Thttps://addons.mozilla.org/de/firefox/addon /copper-270430/
2https://github.com/mkovatsc/Copper

XmlHttpRequest and allows to create mashups with tiny
devices without the need for application-level gateways.

The WoT initiative mainly advocates the ease of
application development resulting from the adoption of
Web patterns. To evaluate this intuitive feeling, Guinard
at al. conducted a study with 69 computer science
students [4]. It shows that REST is considered easier to
learn and more suitable for programming loT devices than
the RPC-like WS-* Web services.?

With Copper (Cu) available since late 2010 and around
400 steady users, we were able to find 48 participants to
conduct a related study that, apart from researchers, also
includes 16 industry developers. This paper focuses more
on the Web integration of devices opposed to traditional
networked embedded systems. Those usually run
proprietary protocols that are highly optimized for a given
application, but increase development costs and cause
technological islands. The study supports our hypothesis
that Internet and Web protocols ease development in this
domain. Furthermore, it also gives good input on how to
continue with the seamless integration of CoAP into the
existing Web.

Constrained Application Protocol (CoAP)

In 2010, the Internet Engineering Task Force (IETF)
charted a new working group for “Constrained RESTful
Environments” (CoRE). Its goal is to provide a framework
for resource-oriented applications intended to run on
constrained IP networks. These networks consist of
resource-constrained devices, which the IETF divides into

3 In a business environments where many WS-* services and more-
over policies for QoS and security are already established, WS-* is
recommended. Here, the Devices Profile for Web Services (DPWS)
is a good alternative that also builds on IP connectivity for resource-
constrained devices. [10]

https://addons.mozilla.org/de/firefox/addon/copper-270430/
https://github.com/mkovatsc/Copper

Figure 2: New platforms with an
ARM Cortex-M3 SoC fall into
the Class 1 category. With

128 KiB of ROM and 16 KiB of
RAM they have enough space for
a full network stack secured
through Datagramm Transport
Layer Security (DTLS). Larger
Cortex versions with up to 1 MiB
of ROM already fall into Class 2.

the following three classes. Note that the given memory
sizes are not strict rules, but rather a rule of thumb. The
classification is mainly decided through the device
capabilities:

Class 0 devices are not capable of running an
RFC-compliant IP stack in a secure manner. They
require application-level gateways to connect to the
Internet.

Class 1 devices are the most resource-constrained devices
that can directly connect to the Internet with integrated
security mechanisms. This requires about 100 KiB of
ROM and about 10 KiB of RAM. They cannot employ a
full protocol stack using HTTP over TLS, though, and
require lightweight and energy-efficient protocols. This
class is in the focus of the CoRE working group.

Class 2 devices almost show the characteristics of normal
Internet nodes like notebooks or smartphones, which is
possible with about 250 KiB of ROM and about 50 KiB
of RAM. Yet they can still benefit from lightweight and
energy-efficient protocols to free resources for the
application or reduce operational costs.

Also other networking aspects are subject to constraints
such as low achievable data rates and high packet loss.
Class 1 devices have very limited buffers and mostly use
low-power communications such as IEEE 802.15.4
through 6LoWPAN (IPv6 over Low power Wireless
Personal Area Networks) [7]. The verbosity of HTTP is
ill-fitted for such environments. Also TCP performs badly
when it is only used for short-lived request/response
exchanges instead of bulk data transport. The SYN/ACK
handshake alone might take a second when a low radio
duty cycle is required for battery operation.

Thus, the working group designed a new protocol suite
from scratch that goes far beyond a simple compression of
HTTP (cf. EBHTTP [19]). Following the REST
architectural style [2], CoAP is based on patterns from the
Web: a request/response interaction model between
application endpoints, uniform interfaces that allow for
interoperability, resources that are addressable by URIs,
Internet Media Types that represent resource state, and
caching and proxying to enable scalability.

CoAP is a binary protocol that runs over UDP. A
messaging sub-layer adds a thin control layer that provides
duplicate detection and optionally reliable delivery of
messages based on a simple stop-and-wait mechanism for
retransmissions. On top, the request/response layer
enables RESTful interaction through the well-known
methods GET, PUT, POST, and DELETE as well as response
codes that are defined with only a few deltas to the
HTTP specification [1]. In addition, CoAP offers features
that make the real difference for the loT.

Observing Resource

CoAP enables native push notifications. Clients can
“observe" resources for state changes through a simple
publish/subscribe mechanism [6]. The server keeps track
of interested clients and pushes the new representation
whenever the observed resource changes. This follows a
best-effort approach and aims to guarantee eventual
consistency. That means not every state change will arrive
at the clients, but all clients will eventually receive the
latest representation of the resource. This can be
compared to the debouncing of a button, where
intermediary states can be ignored and filtering is actually
desirable. However, Reliable propagation of every event
can still be achieved with the right design of the resource
and its representations.

coap+sms://+123456789/

container/bananas/temperature

Figure 3: CoAP does not only
work over IP. Alternative
transports also use URIs for
addressing. Being delay tolerant,
CoAP can for instance run over
SMS, which uses its own reliable
and delay-tolerant delivery.

Group Communication

Being based on UDP, CoAP is able to use IP multicast to
provide RESTful group communication. Clients can use
safe and idempotent methods to interact with a group of
devices. Group management and best practices are
defined in a supplementary document [13].

Resource Discovery

The CoRE working group also defined a format for
resource metadata, the CoRE Link Format [15]. It is
based on Web Linking [11] and uses link attributes to
provide information such as the provided content formats
(“ct”) or and the maximum expected size (“sz") of a
resource. It is also used to annotate light-weight semantic
information such as resource type (“rt") or interface
usage (“if"). CoAP servers provide a list of all their
resources at the well-known URI path

/ .well-known/core [12]. This list can also be filtered
using the desired attributes as URI query parameters. On
start-up, endpoints can also register at a resource
directory [17] to enable look-ups while the node is
sleeping or otherwise disconnected from the network.

Alternative Transports

Although UDP is the primary transport for CoAP, the
protocol was designed to run over several alternatives as
well, including TCP for back-end purposes. Many loT
devices are connected though cellular networks that do not
have IP connectivity, for instance to lower implementation
costs, due to limited coverage, or to temporarily conserve
energy. They can use the Short Message Service (SMS) or
Unstructured Supplementary Service Data (USSD)
bindings of CoAP, as those transports match the
properties of constrained RESTful environments [18].

CoAP in the Web Browser

To prototype the full Web experience for tiny loT devices,
we implemented an add-on for Mozilla Firefox [8]. Our
Copper (Cu) Coap user-agent allows interaction with
embedded Web resources by simply entering a CoAP URI
into the addressbar and using the RESTful methods GET,
PUT, POST, and DELETE. It is comparable to other REST
add-ons such as Poster* or RESTClient®, but Cu in
addition implements CoAP. It registers a protocol handler
for the coap URI scheme, which integrates these URIs
seamlessly into the browser. Users can browse devices,
bookmark their resources like normal Web pages, and
follow links in HTML documents to discover new devices.

[hretox~ E=rE)
of -or 1] sky025.h108/sensors/light 3¢ | (11| ve0.in. ethz.ch/ K
€ 1 coap://sky025.n108:5683/sensors/light w 39 Google
(& Discover () Ping ‘ €3 ceT (L) posT [puT (Y DEETE) beewe‘ Payload \ Behavior - ConP13

sky025.h108:5683 (RTT: 80ms)
2.05 Content

Header Value Option Value Info

Code 2,05 Content
lessage 1D 23198
Options 1

=

Payload (44)

light:
t
photosynthetic: 190
solar: 166
}

1

Figure 4: The server resources are discovered through the
CoRE Link Format and shown on the left for browsing. The
debug options on the right are optional and can be used to set
header options to custom values for testing and debugging.

*https://addons.mozilla.org/en-US /firefox/addon /poster/
Shttps://addons.mozilla.org/en-US /firefox/addon /restclient/

coap+sms://+123456789/container/bananas/temperature
coap+sms://+123456789/container/bananas/temperature
https://addons.mozilla.org/en-US/firefox/addon/poster/
https://addons.mozilla.org/en-US/firefox/addon/restclient/

Academia
and
hobbyists
(30+2)

Figure 5: Our study has 48
participants of which 16 are using
loT devices or CoAP as industry
developers. Two participants are
pure hobbyists. In the evaluation,
we counted them as non-industry,
i.e., academia.

The average experience is 4.3
years whereas 15 participants
have been active in the field for
at least five years.

Our add-on can also render different Internet media types
typically provided by devices, e.g., JSON as depicted in
Figure 4.

Copper (Cu) primarily targets developers that want to
explore, test, and debug RESTful Web services based on
CoAP—for HT TP-based services, the Web browser is
already a popular tool to do so. In addition to the basic
GUI elements to browse resources and issue different
requests, Cu provides manual override for the full set of
CoAP header options and a detailed log in the Firefox
console, so developers can intensively test their
applications or own CoAP implementations. While
experienced users can also use Copper (Cu) to configure
their devices or retrieve data from them, it is not made for
pure end-users of WoT applications. Our add-on is a
generic browser for tiny resource-constrained devices and
thus is missing a presentation layer which is usually
application-specific.

Although Copper (Cu) is fully written in JavaScript,
CoAP requests cannot be issued from other scripts
running in the browser. This means, JavaScript from an
external Web page cannot include CoAP resources in an
AJAX-like manner and user scripting is only available
through editing the add-on sources. Our assumption was
that WoT mashups would mainly be faceless scripts that
augment and automate devices invisibly in the
background. For this, we created the CoapRequest object
for a standalone RESTful runtime container that executes
server-side JavaScript [9]. The following study shows,
however, that there is a broad interest in AJAX-like
interaction with CoAP-enabled devices on Web pages to
provide application-specific front-ends for end-users.

CoAP User Study

Following up the study by Guinard et al. [4], we published
a questionnaire to evaluate the WoT vision in the context
of highly resource-constrained networked embedded
systems. In this domain, the use of IP and Web patterns
is relatively new and numerous alternative, often
proprietary, protocols exist. To find enough experts who
know and worked with both approaches and, hence, can
give a qualified feedback, we advertised the study over the
following channels: (i) The Contiki® and TinyOS’ mailing
lists, which reach mostly researchers in the area of
Wireless Sensor Networks, (ii) European
Telecommunications Standards Institute (ETSI) M2M
associates, who have a good overview of the available
technologies for loT and M2M solutions, and (iii)
followers of the IETF standardization, who often have
decades of experience in the field. The latter two groups
mostly consist of people with an industry background.

We received N=48 responses from people who worked
with CoAP or loT devices as researchers (51%), industry
developers (34%), students (28%), hobbyists (9%), and
lecturers (4%); multiple roles are possible. The experience
in the relevant fields (wireless sensor networks, traditional
networked embedded devices, and Web technologies)
varies from beginners to experts with up to 20 years of
experience (4.3 years on average). Their answers are used
to confirm or reject the following hypotheses:

1. Internet protocols and Web patterns ease the
development of distributed software for
resource-constrained devices.

2. CoAP is a required extension for the Web to
integrate resource-constrained devices.

Shttp:/ /www.contiki-os.org/
"http://www.tinyos.net/

http://www.contiki-os.org/
http://www.tinyos.net/

m Overall

® Academia

® Industry

® Less than 5 years

m 5 years and more

Standalone
client
(23%)

Web browser

integration of CoAP
(77%)

Figure 7: Most participants
preferred the Web browser as
client for device interaction.

Internet protocols ease the Web patterns ease the
development of distributed

software for tiny devices. software for tiny devices.

CoAP in addition to HTTP is a
development of distributed necessity for the Internet of Things. support for CoAP in the future.

[|

| expect native Web browser | prefer using a HTTP-COAP cross-
proxy for accessing devices.

Figure 6: Likert scale responses by our 48 participants (0 = strongly disagree, 4 = strongly agree, error bars: +/- 1 std. dev.)

3. The Web browser is a preferred tool to interact with
these devices when there is no physical interface
meant for direct interaction.

4. Other tools are only preferred when a task is to be
automated through a script or program.

IP, Web Patterns, and CoAP

For the first part, we used a five-level Likert scale from
strongly disagree (0) to strongly agree (4), i.e., resulting
values of more than 2 mean agreement with our
statement. Based on the given background information
(see Figure 5), we separated the responses into different
groups: (i) academia, (i) industry, (iii) less than five years
of experience, and (iv) five or more years of experience.
For each comparing statements (e.g., academia vs
industry), we perform the Wilcoxon rank-sum test to see
if the two sets significantly different from each other. For
each statement, we give the corresponding p-value
together with the sample sizes.

Figure 6 shows general agreement on our first hypothesis.
Overall, Internet protocols are slightly more accepted to
ease development (3.3) than Web patterns (3.1). They
are also more appreciated by participants with longer
experience (3.7 vs 3.1 with less then five years).®
Interestingly, participants with an industry background
agree more with the advantages of Web patterns (3.5)
than academia (3.0).°

Our second hypothesis about the necessity of CoAP can
also be confirmed, although the overall agreement is
slightly lower (3.0) and has a slightly higher standard
deviation (1.06). CoAP as additional Web protocol finds
high acceptance among participants with an industry
background (3.5 vs 2.8 in academia), though.® (similar value)

The participants are a little less confident about native
CoAP support in Web browsers (2.8), although they

80-4 vs 5+ years: p — value < 0.01, Ng_4 = 33, N5s4 =15
9Industry vs academia: p — value < 0.001, N; = 16, N, = 32

Californium (Cf)

GUI client
5% Sensinode
NanoService
Californium (Cf) Java Client

console client
10%\

/5%

libcoap client
17%

Copper (Cu)
41%

Figure 9: Market share of
different CoAP clients on
workstations and laptops. Clients
mentioned only once or without
specific name are consolidated in
“other.”

rather disagree with the usage of an HTTP-CoAP
cross-proxy (1.8). Conversely, the latter means that direct
communication with devices is preferred.

CoAP support in Web Browsers

In a second part, we directly asked what way of user
interaction with tiny devices is preferred. 77% voted for
the Web browser over a standalone CoAP client. The
most agreed-on reasons are that this way, no additional
software is required (3.1, stdev. 0.9) and that the Web
integration feels natural (3.0, stdev. 1.0). The only
agreed-on reason for using a standalone CoAP client was
that it is better suited for scripting and integration into a
larger system (2.9, stdev. 0.7). Other reasons had more or
less neutral outcome.

Figure 8 (on the next page) shows the client usage profiles
of the participants. Being a contributor to the CoRE
working group, our CoAP implementations have always
been early reference implementations for others. Thus,
one of the main use cases is debugging own
implementations. The other applications are in line with
the role of a Web browser in traditional RESTful Web
services and reflect the preference for Web browser
integration of CoAP.

CoAP Client Market Share

Copper (Cu) is currently the only CoAP client available
that integrates into the Web browser. Figure 9 shows that
41% of the participants who use CoAP on their
workstation or laptop (N=41) use our browser add-on as
primary client, followed by the command line libcoap client
with 17%. The main reason for using a different CoAP
client was by far the need for automation and scripting
with 55% of the answers and the "l do not use Firefox”
runner-up with mere 8%. Although the JavaScript source
code of our add-on is available, only 2 participants (6%)

have adapted it to their needs. 47% stated that they are
“not familiar enough with Firefox add-ons” to do so, while
the remaining 47% did not consider this option.

Conclusion

Developers from industry and academia that deal with
networked embedded systems are convinced that Internet
protocols and patterns from the Web facilitate their job.
Also the Web-like interaction with tiny devices is
preferable, as 77% favor the Web browser integration of
CoAP over standalone clients. From the expectations but
even more from the individual comments, we conclude
that users would prefer full CoAP support in Web
browsers. A primary concern is the creation of intuitive
Web front-ends that directly include device data without
the need for a cross-proxy. We also take away that CoAP
scripting support within the browser would be highly
appreciated and that our CoapRequest object APl is the
right approach. This would, for instance, satisfy the
feature requests for logging and visualization of historic
values, since well-known libraries such as jQuery Flot!®
can be used for this.

In the future, we will continue with the Web browser
integration and provide AJAX-like CoAP support by
porting Actinium’s CoapRequest object to the browser.
Another concern is the support for CoOAP’s security
modes. Due to the efforts of the IETF “Real-Time
Communication in WEB-browsers" working group,
browser vendors already started to integrate DTLS, e.g.,
for direct video chat or gaming [14]. CoAPs support,
however, requires additional patches to make DTLS
available through the scripting API. This could become
the next big step towards native CoAP support in the
Web browser and a prosper Web of Things.

Ohttp://www.flotcharts.org/

http://www.flotcharts.org/

Giving a demo (at a conference, open house, etc.)

Retrieving information / controlling actuators

Debugging own CoAP implementation

Developing new applications
Browsing existing COAP Web services
Configuring devices

Checking the health of deployments
Measurements

Teaching

Other

Web browser

m Different client

0 5

10 15 20 25 30

Figure 8: Copper (Cu) has been available since CoAP draft 03. Thus, one of the main applications of it is the debugging of other
CoAP implementations. Still, there have been other clients around and usability must have been the reason for choosing this reference
implementation in particular.

Acknowledgements

We want to thank all study participants for their time.
Special thanks to those, who provided us with detailed
feedback in the individual comment.

References

[1]

2]

3]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and Berners-Lee, T.
Hypertext Transfer Protocol - HTTP/1.1. RFC
2616, 1999.

Fielding, R. T. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

Guinard, D. A Web of Things Application
Architecture - Integrating the Real-World into the

[4]

(5]

[6]
[7]

(8]

Web. PhD thesis, ETH Zurich, 2011.
Guinard, D., lon, I., and Mayer, S. In Search of an

Internet of Things Service Architecture: REST or
WS-*? A Developers’ Perspective. In Proc.
MobiQuitous (Copenhagen, Denmark, 2011).
Guinard, D., Trifa, V., Pham, T., and Liechti, O.
Towards Physical Mashups in the Web of Things. In
Proc. INSS (Pittsburgh, PA, USA, 2009).

Hartke, K. Observing Resources in CoAP. I-D:
draft-ietf-core-observe-08, 2013.

Hui, J., and Thubert, P. Compression Format for
IPv6 Datagrams over |EEE 802.15.4-Based Networks.
RFC 6282, 2011.

Kovatsch, M. Demo Abstract: Human—CoAP
Interaction with Copper. In Proc. DCOSS
(Barcelona, Spain, 2011).

[9]

[10]

[11]

[12]

[13]

[14]

Kovatsch, M., Lanter, M., and Duquennoy, S.
Actinium: A RESTful Runtime Container for
Scriptable Internet of Things Applications. In Proc.
loT (Wuxi, China, 2012).

Lerche, C., Laum, N., Moritz, G., Zeeb, E.,
Golatowski, F., and Timmermann, D. Implementing
Powerful Web Services for Highly
Resource-Constrained Devices. In PERCOM
Workshops (Seattle, WA, USA, 2011).

Nottingham, M. Web Linking. RFC 5988, 2010.
Nottingham, M., and Hammer-Lahav, E. Defining
Well-Known Uniform Resource Identifiers (URIs).
RFC 5785, 2010.

Rahman, A., and Dijk, E. Group Communication for
CoAP. I-D: draft-ietf-core-groupcomm-09, 2013.
Rescorla, E. RTCWEB Security Architecture. |-D:
draft-ietf-rtcweb-security-arch-06, 2013.

[15] Shelby, Z. Constrained RESTful Environments
(CoRE) Link Format. RFC 6690, 2012.

[16] Shelby, Z., Hartke, K., and Bormann, C. Constrained
Application Protocol (CoAP). I-D:
draft-ietf-core-coap-17, 2013.

[17] Shelby, Z., Krco, S., and Borman, C. CoRE Resource
Directory. I-D: draft-ietf-core-resource-directory-00,
2013.

[18] Silverajan, B., and Savolainen, T. CoAP
Communication with Alternative Transports. I-D:
draft-silverajan-core-coap-alternative-transports-01,
2013.

[19] Tolle, G. Embedded Binary HTTP (EBHTTP). I-D:
draft-tolle-core-ebhttp-00, 2010.

[20] Wilde, E. Putting Things to REST. Tech. Rep.
2007-015, School of Information, UC Berkeley,
Berkeley, CA, USA, 2007.

	Introduction
	Constrained Application Protocol (CoAP)
	Observing Resource
	Group Communication
	Resource Discovery
	Alternative Transports

	CoAP in the Web Browser
	CoAP User Study
	IP, Web Patterns, and CoAP
	CoAP support in Web Browsers
	CoAP Client Market Share

	Conclusion
	Acknowledgements
	References

