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Abstract—Internet of Things devices will by and large
be battery-operated, but existing application protocols
have typically not been designed with power-efficiency in
mind. In low-power wireless systems, power-efficiency is
determined by the ability to maintain a low radio duty
cycle: keeping the radio off as much as possible. We
present an implementation of the IETF Constrained Appli-
cation Protocol (CoAP) for the Contiki operating system
that leverages the ContikiMAC low-power duty cycling
mechanism to provide power efficiency. We experimentally
evaluate our low-power CoAP, demonstrating that an
existing application layer protocol can be made power-
efficient through a generic radio duty cycling mechanism.
To the best of our knowledge, our CoAP implementation is
the first to provide power-efficient operation through radio
duty cycling. Our results question the need for specialized
low-power mechanisms at the application layer, instead
providing low-power operation only at the radio duty
cycling layer.
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I. INTRODUCTION

The Internet of wireless things needs power-efficient
protocols, but existing protocols have typically been de-
signed without power-efficiency in mind. In low-power
wireless systems, the radio transceiver is typically the
most power-consuming component, so power-efficiency
translates into efficient radio duty cycling: the ability to
keep the radio off as much as possible.

The Internet protocol stack is a suitable solution to
realize an Internet of Things (IoT), a network of tiny
networked embedded devices that create a link to the
physical world. The narrow waist of IP can be used to
directly access sensor readings throughout a sustainable
city, acquire the necessary information for the smart
grid, or control smart homes, buildings, and factories.
The stack’s layered architecture helps to manage the
complexity.

We have implemented the IETF Constrained Appli-
cation Protocol (CoAP) [11] for Contiki, which enables
interoperability at the application layer through REST-
ful Web services. As depicted in Figure 1, we have
integrated a full protocol stack necessary for an IoT and
evaluated the system performance from an application
layer perspective.

Layer Protocol
Application IETF CoAP / REST Engine
Transport UDP
Network IPv6 / RPL
Adaptation 6LoWPAN
MAC CSMA / link-layer bursts
Radio Duty Cycling ContikiMAC
Physical IEEE 802.15.4

Figure 1. Low-power operation is done only in the Radio Duty
Cycling (RDC) layer, thereby separating low-power operation from
the application layer. This reduces complexity and follows the layered
architecture that allowed the Internet to evolve.

The contribution of this paper is that we are the first
to demonstrate power-efficient CoAP operation through
radio duty cycling. These results challenge the need
for specialized power-management at the application
layer: by constraining power management to the radio
duty cycling layer, complexity can be removed from the
application layer.

II. BACKGROUND

A. Power Efficiency through Duty Cycling

On typical IoT platforms, the radio transceiver is one
of the most power-consuming components. Listening is
as expensive as receiving packets. To conserve energy,
the radio transceiver must be switched completely off
for most of the time. Several radio duty cycling (RDC)
algorithms have been designed, allowing nodes to keep
the radio chip off for more than 99% of the time while
still being able to send and receive messages [4], [7].

In this work, we use the ContikiMAC RDC proto-
col [4]. ContikiMAC is a low-power listening MAC
protocol that uses an efficient wake-up mechanism to
attain a high power efficiency: with a wake-up frequency
of 8 Hz, the idle radio duty cycle is only 0.6% [4].

The ContikiMAC principle of operation is shown in
Figure 2. Nodes periodically wake up to check the radio
channel for a transmission from a neighbor. If a radio
signal is sensed, the node keeps the radio on to listen for
the packet. When the data frame is received, the receiver
sends an acknowledgment frame. To send a packet, the
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Figure 2. A ContikiMAC sender wakes its neighbors up by sending
a strobe of data frames until it gets an acknowledgment.

sender repeatedly sends the data frame until it receives
an acknowledgment, or until the packet was sent for
an entire wake-up period without an acknowledgment
being received.

B. The Constrained Application Protocol

The IETF Constrained Application Protocol (CoAP)
is an application-layer protocol designed to provide a
REST-like interface [5], but with a lower cost in terms of
bandwidth and implementation complexity than HTTP-
based REST interfaces. CoAP adopts patterns from
HTTP such as resource abstraction, URIs, RESTful
interaction, and extensible header options, but uses a
compact binary representations that are designed to be
easy to parse. Unlike HTTP over TCP, CoAP uses UDP.
This makes it possible to use CoAP in one-to-many and
many-to-one communication patterns.

Central CoAP mechanisms are:
1) Applications can send CoAP messages re-

liably (“confirmable”) or non-reliably (“non-
confirmable”). Confirmables are retransmitted
with exponential timeouts until acknowledged by
the receiver or reaching the maximum number of
retransmissions.

2) CoAP is intended to provide group communica-
tion via IP multicast, but this mechanism has not
yet been specified.

3) CoAP features native push notifications through
a publish/subscribe mechanism called “observing
resources” [6]. Clients can send a request with
an observe header option to a CoAP resource.
The server keeps track of these subscribers and
sends a response whenever the observed resource
changes.

4) For resource discovery, CoAP follows RFC 5785
by using the /.well-known/core path to
provide resource descriptions in its CoRE Link
Format [10]. This format extends Web Linking [9]
and defines attributes for a semantical type (“rt”),
interface usage (“if”), content-type (“ct”), and the
maximum expected size (“sz”) of a resource. In
addition, a directory service is intended.

When RAM for IP and application buffers is limited,
devices can only process a specific amount of data at
a time. Larger data can be handled by storing these
“chunks” in flash memory, for instance to receive a
new firmware or to provide a full datalog. To avoid
the need of a secondary protocol to exchange these
data, CoAP specifies a simple stop-and-wait mechanism
called “blockwise transfers” [1].

III. A LOW-POWER COAP FOR CONTIKI

We have implemented CoAP for the Contiki operat-
ing system, taking advantage of the Contiki REST layer
abstraction. This layer provides a generic abstraction for
RESTful applications [12]. Our CoAP implementation
is available from a public Git repository1. At the time
of writing, the code implements the CoAP draft speci-
fication version 07, released on 8 Jul 2011.

A. The Contiki REST Engine

Our REST Engine is an improvement of Contiki’s
REST layer by Yazar and Dunkels [12]. It provides
macros to define and automatically instantiate RESTful
Web service resources. The layering now follows Con-
tiki’s network stack model. This way, the application
code is fully decoupled from the underlying protocol,
and either CoAP-03, CoAP-07, or HTTP can be linked
to implement the RESTful Web services. We provide the
necessary mapping of RESTful methods, status codes,
header options, query variables, and so forth to their
CoAP and HTTP representations.

The new REST Engine offers three abstractions to
create RESTful resources:

RESOURCE: A basic REST resource is defined by
URI-path, allowed methods, and a string for the Web
Linking [9] information. For every resource, the appli-
cation must provide a resource handler function, which
receives the request and generates the corresponding
response. Both messages are accessed through the
REST Engine API, which hides the actual implementa-
tion (e.g., REST.set_header_etag(response,
etag_buf, etag_len)).

EVENT RESOURCE: This abstraction requires a
second handler function to be implemented by the
application developer. A user-defined event triggers this
handler, which can be a button press or a PUT to another
resource that caused a status update.

PERIODIC RESOURCE: Additional to the signa-
ture of the basic RESOURCE, the last macro takes a time
interval. With it, the REST Engine periodically calls a
second handler function similar to the one for events.
This function can be used to poll on-board sensors
and for instance perform a threshold check whether the
resource should be considered as changed.

1https://github.com/mkovatsc/SmartAppContiki
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Figure 3. With separate responses, the server can notify the client that
it received the request, enabling long processing times and avoiding
unnecessary retransmissions.

In the end, a typical RESTful Web service application
consists of a single C-file. It contains the resource
macros together with their handler functions and one
Contiki process that initializes the REST Engine, acti-
vates the resources, and optionally waits for user events
for any EVENT_RESOURCE.

B. Blockwise Transfers

Our CoAP implementation supports blockwise trans-
fers [1]. If a response generated by a resource handler
exceeds the client’s requested block size, the REST
Engine automatically divides the response without in-
volvement of the handler.

Resources can also process larger data in a chunk-
wise manner. For this, we manage the byte offset and
preferred chunk size for the handlers and map their
chunks to the blockwise transfer.2

C. Observing Resources

We implemented CoAP’s publish/subscribe
mechanism [6] as a resource post-handler that
automatically registers subscriptions when a request
was successful. This post-handler is configured by
default for EVENT_ and PERIODIC_RESOURCEs.
Their event and polling handlers then can use
REST.notify_subscribers() to publish
changed resource representation to all subscribers.

D. Separate Responses

Some resources may require a long processing time or
wait for hardware resources, such as a slow sensor, for
an unknown time. This could cause several unnecessary
request retransmissions or even a request timeout at the
client before the server can send the response. Thus,
CoAP provides “separate responses”, for which the
server sends an empty ACK instantly and a confirmable

2For an HTTP implementation, the REST Engine maps the chunks
to TCP segments to respect the IP buffer constraints.

message when finished (see Figure 3). Our implementa-
tion provides a pre-handler that takes care of the ACK
and the configuration of the actual response with new
message ID and type. We envisioned to implement a
benchmarking mechanism that automatically determines
response separation for resources. Due to our findings
discussed in Section IV-E, it would, however, only
consume precious memory. We recommend to configure
the pre-handler simply for every resource that might
have a processing delay, for instance because of a slow
sensor.

E. Resource Discovery

The CoRE Link Format [10] is generated
automatically for all resources. Our handler for
/.well-known/core also respects chunk-wise
processing and generates the required substrings3

within the bounds of the buffer provided by the REST
Engine.

F. CoAP Clients

The REST Engine makes implementation of CoAP
clients easy. We provide a blocking function call imple-
mented with protothreads to issue a request. This linear
programming model can also hide blockwise transfers,
as it continues first when all data were received.

G. Message Deduplication

The current implementation follows the consideration
of the CoAP specification to relax duplicate filtering.
Contiki is meant for memory-constrained devices. Here,
the management of several Internet IPv6 addresses
would pose a massive overhead while requests are
typically idempotent.

H. Memory Management

Contiki’s cooperative multi-threading allows us to
provide access to incoming payloads and byte strings
(e.g., the ETag, but also parsed query variables) directly
in the IP buffer. This in-place processing saves an
additional application layer buffer. For the response
generation, our REST Engine organizes buffers for the
resource handlers. The buffers are reused to serialize the
CoAP message in-place and store confirmables for re-
transmission. Our REST Engine lets developers define
the required chunk size for their application and then
will dimension the required buffers accordingly. The
required IP buffer size is checked as well.

Numeric header options are parsed and set with
additional integer variables. This eases read and write
access for the application, as CoAP uses a special
differential and run-length encoding for header options.

3The Link Format is basically a long, easily parsable string con-
sisting of all the resource paths and their Web Linking attributes.



ROM (kB) RAM (kB)
CoAP REST Engine total 8.5 1.5

Measured stack usage - 0.1
REST Engine 0.7 0.0
CoAP-07 base 4.5 0.0
CoAP-07 server 1.9 0.3
CoAP-07 transport 0.4 0.9
CoAP-07 observing 0.9 0.2
CoAP-07 separate 0.1 0.0

Table I. Our CoAP implementation including the REST abstraction
consumes 8.5 kB of ROM and 1.5 kB of RAM. The required stack
is small due to in-place processing and statically allocated buffers.

IV. EVALUATION

We evaluate both static and dynamic properties of our
low-power CoAP: memory footprint, energy consump-
tion, and data throughput.

A. Experimental Setup

We run all our experiments on Tmote Sky sensor
motes. The platform is based on a MSP430 16-bit CPU
running at 3.9 MHz. It provides a CC2420 radio chip,
48 kB of program flash and 10 kB of RAM. We use
a small, linear 4-hop network with static routes. One
Tmote Sky implements the 6LoWPAN border router
connected to a computer running Linux. The 802.15.4
radio is configured to channel 15, which underlies WiFi
interference. Unless explicitly mentioned, we always
use ContikiMAC and set the listener wake-up frequency
to 8 Hz, which corresponds to a 0.6% idle duty cycle.

The results displayed are averaged over 100 runs and
error bars show the standard deviations. We characterize
the motes energy consumption via Contiki’s built-in
energy profiler Powertrace [3].

B. Memory Footprint

Table I shows the detailed memory footprint of our
CoAP implementation for Contiki. The code is compiled
with msp430-gcc (GCC) 3.2.3 for the Tmote Sky.

In total, our implementation requires 8.5 kB of ROM
and 1.5 kB of RAM (heap plus measured maximum
stack for all CoAP and REST related functions). The
CoAP-07 base, which handles parsing, manipulation,
and serialization of CoAP messages, contains the largest
amount of program code, followed by the server mod-
ule, which connects to the IP stack. The CoAP-07
transport module requires the largest amount of RAM,
as it provides the mentioned message buffers. With the
used default settings, four confirmable messages with a
chunk size of 128 bytes can be stored at a time.

Being decoupled from the protocol and only using
the REST Engine API, the application code is compact.
A RESTful application with five resources as depicted
in Table II (in addition to the /.well-known/core
resource) only consumes 1.5 kB of ROM and 160 B of
heap.

URI-Path Functionality
/battery Voltage level as text or JSON
/event Button press notifications
/leds Control per key-value pairs in query and payload
/light Both light sensor readings as text or JSON
/push Periodic notifications

Table II. Our measured example application provides five non-trivial
resources with Link Format descriptions between 32 and 85 bytes. As
the CoAP REST Engine provides most functionality for RESTful Web
services, typical applications only use 1–2 kB of ROM.

For the implementation of an IoT system on memory-
constrained devices, the maximum supported chunk
size, i.e. CoAP block size, is a central design parameter.
It decides over the IP buffer size as well as the required
buffers for resource handlers and retransmissions. Due
to CoAP’s exponential block sizes between 16 and
1024 bytes, the steps above 128 bytes appeared to be
too coarse-grained and hence limit the design space.
It becomes hard to optimize the memory distribution
among different system components and to adjust to
different hardware resources.

C. Energy Consumption

To evaluate the trade-off between energy consump-
tion and latency, we set up an experiment in which
we issue a request to different motes in our 4-hop
network, with ContikiMAC disabled (best case latency)
and enabled (0.6% RDC). The requested CoAP resource
responds with an echoed 2-byte token and a fixed
payload of 64 bytes. Figure 4(a) shows the cumulated
consumption of all motes involved in the process. This
includes forwarding nodes as well as the targeted CoAP
server. As expected, ContikiMAC saves a lot of energy,
reaching an improvement by a factor of 26 compared
to no duty cycling. Figure 4(b) shows that the penalty
of duty cycling in terms of latency is acceptable with
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Figure 4. The overall energy consumption and latency for a
request with 64 bytes payload in the response and no fragmentation.
ContikiMAC substantially reduces the motes energy consumption
while keeping a reasonable end-to-end latency.



a duty cycle well below the 1% mark.4 The maximum
measured slow-down was about factor 6, keeping the
latency under 1 second over 4 hops. We argue that the
substantial lifetime increase offered by ContikiMAC is
in many cases worth paying this latency overhead.

D. Transmitting Large Data

Not all CoAP resource representations can fit into a
single 802.15.4 frame, so that either 6LoWPAN frag-
mentation or blockwise transfer is required. We focus
on fragmentation to analyze the energy consumption as
a fine-grained function of the payload size using RDC.
The energy cost of blockwise transfers would simply
correspond to multiple requests with the payload size
adjusted for the additional Block2 header option.

To enable energy-efficient transmission of consecu-
tive frames, we use link-layer bursts. When a sender has
several frames to send, it first wakes up its neighbors
with a ContikiMAC strobe and sets the “frame pending”
bit in the 802.15.4 frame header to tell the receiver that
another frame will follow. Remaining frames are sent
consecutively and acknowledged by the receiver until
the frame pending bit is unset.

We ran an experiment in which a client on the
computer requests a payload ranging between 1 and
512 bytes from a CoAP server, which also echoes a 2-
byte token. The client targets motes at 1, 2, and 4 hops
from the border router. We expected to see a step-wise
increment of the energy consumption as the number of
fragments increases.

Figure 5 shows the cumulative energy consumption
of all nodes involved in the request (forwarding and
server) and the request-response latency. The latter is
almost unaffected by 6LoWPAN fragmentation due to
the frame bursts. The increase in energy consumption
is, however, clearly noticeable for the first additional
fragment (in our configuration at 70 bytes for 4 hops
and 79 bytes for 1 and 2 hops). The following per-
fragment steps become less distinguishable. This is also
due to the link-layer bursts, which, besides time, save
the ContikiMAC strobes for every additional fragment.
Furthermore, we have a large standard error deviation
due to highly varying link quality: the experiment was
run in offices and the motes were subject to WiFi
interference. When packet loss occurs, ContikiMAC
simply transmits additional data frames until getting
an acknowledgment. Because of this lossy environment,
the total number of frames sent depends more on the
local link quality than on fragmentation. As a result, the
total energy cost and latency are roughly proportional
to the payload size and not discretely to the number of
6LoWPAN fragments.

4Note that the actual duty cycle depends on the data traffic.
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Figure 5. In lossy environments, the energy cost and latency when
sending large CoAP payloads depends more on the payload size than
the number of required 6LoWPAN fragments.

E. Optimizing Separate Responses

We examined the ability of separate responses to save
energy by avoiding request retransmissions. This applies
for resources that have a significant processing time,
which stays below the overall retransmission timeout,
though. We targeted a mote 4 hops from the border
router. Its CoAP resource takes a variable amount of
time to process the request, ranging between 1 and 24 s.
We tested two different CoAP configurations: the first
does not use separate responses, the second does.

Figure 6 shows the energy consumed by the motes
depending on the server-side response delay, without
and with separate response. The consumption graphs
increase linearly with the delay due to radio idle lis-
tening, but also show offsets due to the forwarded
(re)transmissions. After about 10 seconds, the two
curves cross: at this point, separate responses start
saving energy. Before this point, the mechanism spends
more energy than it saves because of the extra ACK.
In contrast to our expectation, the energy savings by
optimizing when to use separate responses are marginal,
even for very long-lasting requests. Note, however, that
for even longer requests, the mechanism is necessary to
avoid request cancellation.
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Figure 6. The separate response mechanism can save a little amount
of energy for resources that have a long processing time, but would
not exceed the overall request timeout.

V. RELATED WORK

There is a body of work in the wireless sensor
network field on radio duty cycling mechanisms [4],
[7]. We are not the first to argue the benefit of isolating
low-power mechanisms to a single layer, but we are the
first to demonstrate the implications of duty cycling for
IoT application layers, as exemplified by CoAP.

There are many implementations of CoAP, such as
libcoap [8], CoAPy5, jCoAP6, and Californium7, but
none has been evaluated in terms of low-power behavior
in a multi-hop network. Kuladinithi et al. [8] measure
the latency of their CoAP implementation, but without
any duty cycling and only in a single-hop network.
Colitti et al. [2] take a first step towards analyzing
the power consumption of the previous CoAP imple-
mentation for Contiki [12], but with a simplified power
model that only considers application data size and that
does not include the full energy consumption by the
system. By contrast, we are the first to experimentally
evaluate the full system power consumption of a multi-
hop IPv6/CoAP network.

VI. CONCLUSION AND FUTURE WORK

We presented our low-power CoAP implementation
for Contiki that leverages a generic radio duty cycling
mechanism to achieve a high energy efficiency. We
experimentally evaluated our implementation in a multi-
hop network and showed that the use of a duty cycle
results in a low power consumption, at the cost of a
higher latency. Our protocol-independent REST Engine
provides an abstraction to create RESTful Web ser-
vices. Our CoAP implementation addresses the trade-off
between memory-efficiency and a convenient API for
developers. In-place processing and the reuse of buffers
allows for a small memory footprint. We evaluated our
implementation and the general mechanisms of CoAP

5http://coapy.sourceforge.net/
6http://code.google.com/p/jcoap/
7https://github.com/mkovatsc/Californium/

in a realistic setting: a 0.6% idle RDC, link-layer bursts
for fragmented packets, and IP multihop routing on a
802.15.4 channel underlying WiFi interference.

Our experiments confirm that CoAP request/response
cycles are most energy-efficient when each message
fits into a single 802.15.4 frame. Once 6LoWPAN
fragmentation is performed, however, there is no need
to optimize the number of fragments. The number of
transmitted frames is dominated by the link quality and
clock synchronization, which affects the length of the
RDC strobe. Consequently, an optimization of the CoAP
block size definitions for 6LoWPAN fragments has no
significant benefit, at least when link-layer bursts and a
sender-initiated RDC layer are used.

Our implementation is available in the official Contiki
repository. In future work, we plan to evaluate the
possibilities and limitations of the RESTful approach
and how the IP-based IoT performs in terms of latency,
reliability, and battery-lifetime.
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