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ABSTRACT

Common calibration techniques for head-mounted eye trackers rely
on markers or an additional person to assist with the procedure.
This is a tedious process and may even hinder some practical appli-
cations. We propose a novel calibration technique which simplifies
the initial calibration step for mobile scenarios. To collect the cali-
bration samples, users only have to point with a finger to various
locations in the scene. Our vision-based algorithm detects the users’
hand and fingertips which indicate the users’ point of interest. This
eliminates the need for additional assistance or specialized markers.
Our approach achieves comparable accuracy to similar marker-
based calibration techniques and is the preferred method by users
from our study. The implementation is openly available as a plugin
for the open-source Pupil eye tracking platform.
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1 INTRODUCTION

As smart devices become ubiquitous, eye gaze can enhance the
way in which we interact with objects around us [Majaranta and
Bulling 2014]. Head-mounted eye trackers (e.g., the Pupil [Kassner
et al. 2014]) enable mobile and pervasive eye tracking [Bulling and
Gellersen 2010] and researchers have already experimented with
attention-aware systems which are not constrained to a desktop
setting [Bace et al. 2016]. To infer the point of gaze or where the
user is looking, these regression-based eye tracking systems have
to go through an initial calibration phase.

Calibration is used to determine a mapping function between
the eye’s characteristics (e.g., the center of the pupil) and a point in
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Figure 1: Users can quickly and independently calibrate a
head-mounted eye tracker by pointing with their fingertip
at locations in the scene. No dedicated marker, display, or
additional assistance is required, enabling a calibration tech-
nique suitable for mobile and pervasive eye tracking.

the scene. High-end devices which rely on geometry-based gaze
estimation can be used without a calibration phase, however, the
high cost hinders the large-scale adoption. Cheaper, more flexible
regression-based systems require a careful initial calibration or a re-
calibration in case the device moves on the person’s head. Typically,
users have to collect N samples of gaze points at known locations.
In a laboratory setting, a common approach is to have a second
person assisting with the calibration by manually clicking on points
fixated by the user. An alternative is to use calibration markers,
which can be printed or displayed on a screen. They can also be
placed in the environment, thus making them reliable 3D position
markers. While beneficial for some applications, there are scenarios
where the environment cannot be augmented with markers. For e.g.,
in-the-wild or outdoor studies usually cover large areas and placing
markers would be impractical. When focusing on mobile settings,
users might not have a screen, a dedicated marker, or assistance
available. Additionally, current calibration methods are considered
difficult and tedious [Pfeuffer et al. 2013].

In this paper, we propose a novel method which enables users
to quickly and independently calibrate a head-mounted eye tracker.
Users do not need any specialized markers, they can use their own
fingertips (Figure 1). By pointing at locations in the scene and fix-
ating on their own fingertip, users can easily collect calibration
samples in different environments. For distances of about an arm’s
length, the proposed method achieves a comparable accuracy to
standard marker-based calibration. We also provide an implementa-
tion of this method as a plugin for the open-source Pupil platform.!

2 RELATED WORK

The user-dependent calibration [Duchowski 2007] is regarded as
one of the key challenges which hinders the wide adoption of eye
trackers. Researchers have tried to define guidelines to help with

!https://github.com/mihaibace/fingertip-calibration
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Figure 2: Method overview: Finger calibration requires hand segmentation and fingertip detection. The hand is segmented
based on color. Finger candidates are points on the convex hull enclosing the hand contour. A hull point is a finger candidate
if the angle between this point and two adjacent convexity defect points is smaller than a threshold (a = 60°).

selecting the number of points to use, their location, or the type of
mapping function [Kasprowski et al. 2014].

The Pupil open-source platform [Kassner et al. 2014] supports
several calibration methods: Markers displayed on a screen, printed
markers, or natural features. Pursuit calibration proposes the use of
moving targets with a known trajectory [Celebi et al. 2014; Pfeuf-
fer et al. 2013] and can achieve an angular error as low as 0.6°. A
different approach is to leverage user events and possible interac-
tions with a PC [Huang et al. 2016; Kasprowski and Harezlak 2016].
Egocentric visual saliency can also be used for a continuous self-
calibrating eye tracker [Sugano and Bulling 2015]. CalibMe [Santini
et al. 2017] is a marker-based calibration approach which facilitates
fast and unsupervised collection of a large number of calibration
points. Others have tried to reduce the number of re-calibrations
necessary and make them more time-efficient [Lander et al. 2016].

While the above methods provide good results in different sce-
narios, most of them rely on a display to show the markers, a second
person to assist with the procedure, or an initial calibration. We aim
to simplify the initial calibration step without the use of a screen
or additional assistance.

3 METHOD OVERVIEW

A gaze calibration algorithm collects sample points of known eye
gaze locations in order to estimate a gaze-to-output space mapping
function. We tackle this problem in a novel way. Users only have
to hold their hand and fingertip in the scene camera’s field of view
and fixate the tip of the finger. Once a fingertip has been detected,
the system will output an audio feedback to let users know that
multiple sample points are being collected from that specific loca-
tion. A second sound will inform users that the sampling process
has finished. Users can then move their fingertip to point towards
a different location to further collect calibration samples.

3.1 Hand and fingertip detection

Fingertip calibration relies on computer vision methods to seg-
ment the hand and detect the tip of the fingers. Figure 2 gives an
overview of our method. The first step is to apply a blur filter on
the input image to remove noise. The hand can be segmented from

the background with a binary mask which is obtained from color-
based segmentation in the HSV color space. In this space, only the
hue channel encodes the actual color information which makes
thresholding easier. In our implementation, we use a hue range
from 0° to 40°, a saturation range from 12% to 60%, and a value
range from 24% to 100%. The above parameters work well with
light-colored skin, however, there are more sophisticated skin seg-
mentation methods for general application [Bambach et al. 2015].
We fill small holes in the binary mask through dilation. We can
then use the resulting mask to segment the hand and remove the
background (Figure 2A).

Once the image has been segmented, the contour with the largest
area and its convex hull are computed (Figure 2B). Since the convex
hull spans the entire contour, the edge points of the convex hull can
be very dense. In order to group these dense edge points together
(meaning that only a single edge point belongs to a fingertip), each
edge point on the convex hull is assigned to a cluster. Two points
are assigned to the same cluster, if the corresponding Euclidean
distance is smaller than a certain threshold d. In our implementation,
we chose d = 50 px (frame resolution is 1280 x 720 px) and the
assignment and union of clusters is done through disjoint sets.
After assigning each edge point to a cluster, the points closest to
the center of their respective cluster are chosen to be the new edge
points representing their cluster. Figure 2C shows the outcome of
this reduction step.

To detect whether a hull point could represent a fingertip, we
first calculate the convexity defects of the convex hull. Figure 2D
shows the convex hull points in red, while convexity defects are
shown in yellow. a represents the angle between the two vectors
which are spanned by a hull point and two neighboring convexity
defects. In our implementation, if the angle « is smaller than 60°,
the hull point is identified as a finger (Figure 2E).

The last step of the finger detection algorithm is to correct the
center of the fingertip. In its current state, the algorithm selects a
convex hull point, but this point is located on the finger’s contour.
The hull points, which were detected as fingers, are shifted towards
the center of the fingertip. The direction for this translation is
obtained by looking at the angle bisector of @, which approximates
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the direction of the finger. Figure 2F shows the new positions of
the hull points after translating them along the finger direction
towards the fingertip.

3.2 Complete System

In addition to sampling calibration points, a complete eye tracking
system requires a pupil detection algorithm and a gaze mapping
function. In our implementation, we use the 2D pupil detector
provided with the Pupil software [Kassner et al. 2014]. This method
is robust to users who wear contact lenses or eyeglasses because
it does not rely on corneal reflections. The gaze mapping or the
transfer function which maps pupil positions to the scene space
is estimated through calibration. It has been shown that simpler
polynomial functions work better when the number of sample
points is low [Kasprowski et al. 2014]. Our prototype uses two
bivariate polynomials (Eq. 1):

x5 = AxX2 + Bxy? + CxXe + Dxye + Ex .

Ys = Ayxg + Byyg + Cyxe + Dyye + Ey W
where (x., ye) are the (x, y) coordinates in the eye space and (x5, ys)
are the target coordinates in the scene space. Mapping a two-
dimensional space to a one-dimensional space can be reduced to
the problem of surface fitting. Calculating the coefficients of the
two polynomials is done with the Levenberg-Marquardt algorithm
which solves non-linear least square problems.

4 EVALUATION

We conducted several experiments to evaluate the proposed finger
calibration method. The accuracy of a calibration is measured as
the average angular offset between fixation locations and the corre-
sponding ground truth targets. The more samples are collected, the
better the gaze mapping function can be estimated. Besides accu-
racy, the usability of an eye tracker is influenced by the calibration
time.

Our experiments were performed using the Pupil eye tracker
from Pupil Labs in a monocular set-up. The device was equipped
with one eye camera (60 Hz) and one scene camera (30 Hz). Our
finger calibration method was evaluated similarly to a typical 9-
point calibration where the users were instructed to collect sample
points from 9 different locations in a grid like pattern. In all the ex-
periments, users first performed a calibration and then an accuracy
test and had the freedom to choose the 9 points as they wanted.

4.1 Number of samples versus duration

In this first experiment, we analyze the number of samples neces-
sary per location or fixation target. The Pupil open-source platform
uses 30 sample points. A 9-point calibration would lead to 270
samples before removing any outliers.

The experiment was performed by an expert with more than one
year experience in working with the Pupil eye tracker. The tested
parameter is the number of samples per fixation. For each value of
this parameter (10, 20, 30, 40, or 50), we performed three sessions.
Each session involved a 9-point finger calibration followed by a
9-point finger accuracy test.

Figure 3 shows that varying the number of samples per fixa-
tion does not significantly influence the calibration accuracy. On
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Figure 3: No. of samples per fixation vs. calibration duration.

average, the angular error varies between 1.3° and 1.8° with the
minimum value being obtained for 30 calibration samples. One
possible explanation for this could be the time required to collect
these data points. The longer a user has to fixate a specific target,
the higher the chance of a saccade or attention shift which would
lead to incorrect samples. A calibration where only 10 samples per
fixation are collected requires, on average, around 21 s. In contrast,
collecting 50 samples increases the calibration time to around 37 s.

4.2 Preliminary user evaluation

The main goal of the proposed method is to enable users to quickly
and independently calibrate an eye tracker. So far, we have evalu-
ated the accuracy of the proposed method in a laboratory setting.
In this experiment, we compared finger calibration to standard
marker-based calibration. To make the comparison fair, the marker
was displayed on a mobile device’s screen and the calibration had
to be performed similarly (Figure 4).

n

Figure 4: The two conditions compared in the user evalua-
tion. (A) Finger calibration (B) Marker calibration with the
marker displayed on a mobile phone’s screen.

We designed a pilot user study and gathered quantitative and
qualitative data. Twelve adult subjects aged between 23 and 58
years old (M = 35.2, SD = 13.6, 8 male and 4 female) took part in
the evaluation. Nine participants were wearing vision correcting
glasses. Five users had previously been exposed to eye tracking,
however, only two of them had tried to calibrate an eye tracker
before. Most of the participants (9 out of 12) have a technical back-
ground. Each subject was asked to perform two tasks. The first task
was to calibrate an eye tracker with their finger, followed by a sepa-
rate accuracy test. The second task was to use the standard manual
marker calibration, again followed by an accuracy test. Users were
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informed to collect samples from 9 locations covering their field
of view in a grid-like pattern (similar to a 9-point on-screen cal-
ibration). There was no information given on how to spread out
the points or how to hold the finger/smartphone. Each calibration
session was performed twice. The presentation order of the condi-
tions was counterbalanced. After each task, each user was asked to
complete a System Usability Scale (SUS) [Brooke 1996] question-
naire. After completing both tasks, participants had to fill in an
additional form which compared the two conditions. The duration
of the experiment was between 15 and 20 mins per participant.

Mean angular error for finger calibration
6 Il Mean angular error for marker calibration

Finger 2.68°

Mean Angular Error (*)
&
|

Pe P8 P7 P5 P4 P1 P3 P10 P11 P6 P2 P12
Participant

Figure 5: The mean angular error per participant, sorted by
finger calibration error. The error bars represent the SD.

Figure 5 shows the mean angular error per participant. On av-
erage, the finger calibration error (M = 2.68°, SD = 0.820°) is com-
parable to the marker calibration error (M = 2.49°, SD = 0.673).
A student’s t-test reveals that the difference between them is not
statistically significant (¢£(22) = 0.640, p = 0.53, Cohen’s d = 0.253).

In terms of usability, the average SUS score for finger calibration
was 78.8 compared to 76.3 for marker calibration. The SUS does
not offer a guideline on how to compare scores, however, given its
wide use, the average score is considered to be 68. A student’s t-test
shows that the difference between finger (M = 78.75, SD = 16.93)
and marker calibration (M = 76.25, SD = 16.63) is not statistically
significant (#(22) = 0.365, p = 0.719, Cohen’s d = 0.149).

Qualitative feedback. At the end of the experiment, participants
had to fill in a questionnaire in which the two calibration methods
were compared in terms of preference, perceived speed, ease of
understanding, and the feeling of being in control. In terms of
perceived speed, half of the participants saw no difference between
the two methods, while 4 of them said that the finger calibration
seemed faster. 9 out of 12 participants found the two experiments
equally easy to understand, which was in line with our expectation.
In terms of control, 7 participants said that the finger gave them
a better sense of being in control. Overall, 7 out of 12 participants
expressed that they preferred the finger over the marker, 4 were in
favor of the marker, and 1 had no preference.

4.3 Hand segmentation

In this experiment, we quantitatively evaluated the hand segmenta-
tion on the EgoHands dataset [Bambach et al. 2015]. The dataset
contains 48 videos taken with a Google Glass from an egocentric
perspective, similar to a head-mounted eye tracker. It focuses on
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the interaction between two people and contains 4800 manually
annotated frames with pixel-level masks for hands present in the
scene (up to four segmentation masks, one for each person’s hand).

Our algorithm was designed to identify one segmentation mask,
the one with the largest contour. In 4177 images (87%), our segmen-
tation overlapped with one of the manually segmented hands. For
such cases, the overlap in pixels was, on average, 60%. For 61 im-
ages (1.3%), our method correctly identified that no annotated hands
were present in the scene. For the remaining 562 images (11.7%) our
algorithm failed to detect any. These results show that the proposed
method is simple and good enough for this application.

4.4 Runtime analysis

We evaluated the runtime of the finger detection algorithm on a
laptop with an i5 CPU @ 2.3 GHz. Small images (320 X 240 px) need
~7.7ms (~130 FPS), medium images (1280 X 720 px) need ~18 ms
(~55 FPS), and large images (1920 X 1080 px) need ~33 ms (~30 FPS).
This shows that our method is fast enough to accommodate the
Pupil’s scene camera frame rate.

5 DISCUSSION

Parallax Effect. The proposed method collects calibration samples
at about an arm’s length away from the user. If the distance to
the point of regard is different than the calibration distance, there
will be a parallax error. This happens due to the position of the
camera relative to the eye. This type of error is found on most video-
based monocular mobile gaze trackers and can also influence the
results of our method. [Mardanbegi and Hansen 2012] studied this
effect for different calibration and fixation distances. Methods like
CalibMe [Santini et al. 2017] allow calibrating at varying distances
but, to minimize the parallax error, require recalibration for every
target fixation plane. Our method is well suited for mobile scenarios,
but the calibration distance is limited. The best results are obtained
when the interaction happens closer to the user (e.g., in interaction
scenarios where the objects are within the user’s reach).

Area covered during calibration. In the user evaluation, for both
the calibration and the accuracy test, participants had to sample 9
locations within their field of view in a grid-like pattern. To simulate
a realistic scenario, they were not told how or where to place their
finger/smartphone. An analysis of these locations has shown that
points which fall outside of the calibration area will have larger
errors due to extrapolation.

6 CONCLUSION AND FUTURE WORK

We presented a novel calibration technique which simplifies the
initial calibration step for head-mounted eye trackers. Users collect
calibration samples by pointing with their fingers and fixating the
fingertip. No additional assistance or specialized calibration mark-
ers are necessary, thus enabling quick initialization for pervasive
and mobile eye tracking in any environment. The proposed method
achieves comparable accuracy to similar marker-based calibration.
Our preliminary user evaluation highlighted that the majority of
the participants preferred finger calibration over traditional mark-
ers. In the future, we plan to investigate and incorporate ways to
mitigate the parallax effect in situations where the fixation plane is
further away from the user.
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