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Abstract Many real-life scenarios can benefit from both

physical proximity and natural gesture interaction. In this

paper, we explore shared collocated interactions on

unmodified wearable devices. We introduce an interaction

technique which enables a small group of people to interact

using natural gestures. The proximity of users and devices

is detected through acoustic ranging using inaudible sig-

nals, while in-air hand gestures are recognized from three-

axis accelerometers. The underlying wireless communica-

tion between the devices is handled over Bluetooth for

scalability and extensibility. We present (1) an overview of

the interaction technique and (2) an extensive evaluation

using unmodified, off-the-shelf, mobile, and wearable

devices which show the feasibility of the method. Finally,

we demonstrate the resulting design space with three

examples of multi-user application scenarios.

Keywords Gesture recognition � Collocated interactions �
Group experience � Multi-user interaction � Smart objects

Introduction

Wearable devices such as smartwatches are becoming

wide-spread personal companions for multiple activities

ranging from activity tracking, communication, gaming,

storytelling, playing sports, to controlling appliances, and

many others. Social interaction and group activities are an

important part of our lives, and technology allows us to

interact with people from all over the world. Many of the

previously mentioned activities also have a strong social

component. Nevertheless, the social interaction experience

is mostly virtual. A virtual interaction happens through the

screen and actuators of our devices and does not take into

account the physical proximity between the users. For

example, even simple actions like sharing a photograph

among two friends do not change when the friends are

close to each other or spread over the globe.

We explore multi-user interactions between a group of

people who are physically close to one another. Our work

is inspired by the theory of proxemics established by

Edward Hall. It studies the way people mediate their

interactions with other people around them [12]. While this

theory covers different dimensions, one which certainly

influences and leads to higher interaction engagement is

interpersonal distance. Imagine a scenario where three

children are in a theme park and they want to interact with

a treasure chest as illustrated in Fig. 1. For the chest to

open, the three children have to be in front of the chest and
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all of them have to perform the same interaction (e.g. a

hand gesture), roughly at the same time. The key to unlock

the chest is a combination of physical proximity, collabo-

ration between the users, and interaction through hand

gestures. The treasure chest in our example is just an

abstraction for any smart/digital object. The concepts we

present here can be extended to public displays, toys, and

many other applications.

Our proposed interaction technique builds on existing

methods for gesture recognition and proximity detection to

enable collocated multi-user gestural interactions. We

leverage only standard features of off-the-shelf mobile and

wearable devices to recognize gestures and to detect

physical proximity: built-in motion sensors and inaudible

acoustic signals are used for an unobtrusive and seamless

interaction. The underlying communication is handled over

Bluetooth for scalability and extensibility.

To our knowledge, we present the first collocated multi-

user gestural interaction technique which uses acoustic

ranging and runs on mobile devices. We assess the building

block of this technique in different environments on

unmodified, off-the-shelf hardware and give practical rec-

ommendations which lead to robust results. We explore the

design space of this interaction technique and demonstrate

it with three multi-user application scenarios.

Related Work

Before coming to the description of the method, we review

related work that concerns the different aspects of this

interaction technique. First, we discuss systems that enable

multiple users to collaborate. Then, we look at systems that

use physical proximity in ubicomp applications. Further

on, we review techniques for recognizing gestures and

finally discuss methods to detect proximity.

Multi-user and Multi-device Interactions

The proliferation of affordable smart devices resulted in

consumers owning and carrying multiple connected devi-

ces with them. Multi-user collaboration scenarios require

devices to communicate with each other. Embedded sys-

tems or smartphones can be paired through simultaneous

shaking patterns [15, 23], simultaneous pressing of a but-

ton [38], bumping gestures [13], touch gestures spanning

multiple displays [14], or pinching gestures [27]. Sur-

faceLink [10] is a system that associates devices given a

specific gesture. This is an audio-based grouping, but it is

limited to devices that must share the same surface. An

overview of different ways to connect devices is given by

Jokela et al. [18]. These systems are mostly focusing on the

initial pairing of devices, while, in our work, we want to

support continuous interaction between the devices and its

users.

The problem of design and development of such cross-

device systems is still subject to research [5, 16]. Hud-

dleLamp [37] is a desk lamp with an integrated depth

camera which enables multi-user and multi-device inter-

action around a tabletop. Pass-them-around [26] is a col-

laborative photograph sharing application. A system which

aims to enable multi-user gestural interaction is Path-

Sync [4]. To interact with digital objects, users must

replicate a screen-presented pattern (e.g. a moving target

around the edges of a rectangle) with their hand. This

approach is similar to following a moving target with your

eyes [7]. However, it suffers from the same drawback that

objects have to be augmented with moving patterns which

is not always feasible.

Tracko [17] is a system which proposes a similar

interaction technique. Devices are located in 3D space with

audio signals, and cross-device interactions are supported

with touch gestures on the devices’ display. Our proposed

interaction technique supports in-air hand gestures and is

not limited to the device’s display.

HandshakAR [3] was our initial effort towards collo-

cated gestural interactions. Two users can effortlessly

exchange information when they perform the same greet-

ing gesture and are close to each other. In this paper, we

extend our initial proposal to multiple users, we present a

more detailed evaluation, and we explore the design space

with three application scenarios.

Collocated Interactions

Proxemic interactions have a great potential in a world of

natural user interfaces [11]. Systems can learn to take

advantage of people and devices as they move towards one

another. Marquardt et al. [30] introduced a system that

explored cross-device interaction using two different

Fig. 1 Concept art: Three children wearing smartwatches unlock a

treasure chest by performing a gesture together. The application is a

combination of collective gesture recognition, physical proximity

detection, and data transmission
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constructs, micro-mobility and F-formations. While these

methods require equipment to be installed within a room (a

combination of motion sensors, radio modules, and over-

head depth cameras), the system enabled users to collab-

oratively discuss digital artefacts without focusing on the

underlying technology. Gradual engagement is the concept

that connectivity and information exchange capabilities are

exposed as a function of inter-device proximity [28]. This

also requires an instrumented environment; proximity is

detected by an infrared-based motion capture system. The

Proximity Toolkit [29] supplies fine-grained proxemic

information between people and digital devices. The

toolkit gathers data from various hardware sensors and

transforms it into rich high-level proxemic information but

is not targeting off-the-shelf devices.

Gestural Interaction with Wearables

Gesture recognition from motion sensors has been compre-

hensively investigated in the literature. The recognition

methods usually rely on data from inertialmeasurement units

because such sensors are ubiquitous and available on all

devices. Different classification approaches like hidden

Markovmodels [35], artificial neural networks [24], support

vectormachines [44], or dynamic timewarping (DTW) [25]

can be used to discriminate between different gestures.

Our interaction technique leverages wearable devices

that can capture gestural interactions. Shen et al. [39] have

shown recently that it is possible to track the 3D posture of

the entire arm, both wrist and elbow, by only using the

inertial sensors on smartwatches. MoLe [42] is a system

that analyses motion data from typing movements using

smartwatches. A similar system has been proposed by

Arduser et al. [1], where text written on a whiteboard is

inferred from simple acceleration data. Fine finger gestures

like pinching, tapping, or rubbing can also be recognized

from the built-in motion sensors, as shown by [43]. Zhang

et al. further extend the gesture interaction space around

commodity smartwatches by enabling tap and swipe ges-

tures around the bezel or the band of a watch [45].

Recognizing gestures is not tied to motion sensors only.

Fu et al. [9] have proposed a system where nearby move-

ments can be recognized from sound. BodyScan [8] relies

on radio waves to sense human activities and vital signs.

GestureWatch [21] and HoverFlow [22] are both systems

that recognize in-air hand gestures performed over mobile

or wearable devices relying on infrared proximity sensors.

Hand gestures can also be recognized from a single RGB

camera found on most mobile devices [40]. WatchMe [41]

is a camera-based system that can track a pen or a laser

pointer on a drawing canvas and use this as an input

modality. Electromyography (EMG) with force-sensitive

sensors is an alternative to detect hand gestures.

EMPress [31] shows how the best arm position of EMG-

based systems is the forearm, meaning that such system

cannot be efficiently used with off-the-shelf smartwatches.

The above list is only a selection of existing systems that

hint at how non-touch screen gestures in general [2] can

extend the input space of wearables.

Proximity Detection

Many technologies for indoor device localization are avail-

able. Most of these estimate a distance or distances from

known landmark(s) with the help of audio or radio waves.

Unfortunately, measuring the distance with the radio received

signal strength indicator (RSSI) is not accurate in short ranges.

This is because the signal can vary greatly due to environ-

mental factors. Another option is the usage of motion sensors

(i.e. pedestrian dead reckoning [19]), which has the drawback

that the initial orientation of the device has to be known and

that the accuracy depends on the sensor precision. Given our

requirements ofwide availability, low cost, and high precision

at short distances, we focus on ranging methods that use

acoustic signals on commodity devices.

Tracko [17] is an acoustic tracking system which

leverages both Bluetooth Low Energy (BLE) and acoustic

signals to locate devices in 3D. The system is accurate for

distance up to 1.5 m, but it requires devices to support BLE

peripheral mode, a feature many devices do not support at

the moment. Another approach is Microsoft’s BeepBeep

system [33, 34] which uses two-way acoustic ranging for

calculating the positions of several devices relative to each

other. This ranging method has been explored and opti-

mized in different ways [6, 32, 36], and also lays the basis

for our interaction technique.

Collocated Multi-user Gestural Interactions

Overview

Our interaction technique is enabled by three main com-

ponents as shown in Fig. 2. The generic communication

Fig. 2 Overview of the components which enable collocated multi-

user gestural interactions
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layer interconnects and enables interoperability between

many different devices using Bluetooth as the communi-

cation protocol. The proximity layer estimates the pairwise

distances between people or devices via non-intrusive

acoustic ranging. The gesture recognition layer detects

hand movements and identifies in-air gestures using the

motion sensors of smartphones or wearables. On top of the

stack, the application layer takes advantage of all the other

layers to enable interaction among people who are in

physical proximity to one another.

Communication via Bluetooth

Enabling multi-user interaction through wearables requires

data exchange between the devices. Most modern wear-

ables (smartwatches or smartglasses) rely on a companion

smartphone and are used mainly to display calls, show

calendar entries and other types of notifications. The cur-

rent trend of manufacturers, however, is to switch towards

a watch-centric approach in which smartwatches become

fully independent computing platforms. There are many

wireless protocols and technologies available for connect-

ing multiple smart devices (e.g. NFC, Bluetooth, Wi-fi).

Considering the power consumption, the targeted dis-

tance ranges, and the support for interoperability between a

wide variety of different devices, Bluetooth is the best fit. It

is a client–server architecture and the network always

forms a star topology with the server in the middle. Having

a single device acting as a server can be a bottleneck, but

performance issues and failure handling were not the main

concerns of this work. In the future, multiple piconets

could be connected together, forming mesh networks and

thus solving this issue.

Proximity Detection via Acoustic Ranging

The proximity layer is based on two-way acoustic ranging,

a cooperative method to estimate the distance between two

smart devices. The main advantage of two-way ranging is

that the devices do not need to be synchronized [34], which

greatly simplifies the protocols. The participating devices

sequentially emit an acoustic signal, and they simultane-

ously record their own signal and the signal(s) produced by

the remote device(s). The distance estimate is based on

measuring the time elapsed between the two received audio

signals.

Distance Estimation

Figure 3 illustrates the ranging procedure for two devices.

(1) Device A emits a signal at time tA and records it with its

own microphone at time tA;A. (2) Device B records this

signal at time tA;B. (3) Device B emits another signal at

time tB and it records its own sound at time tB;B. (4) Device

A records B’s signal at time tB;A. If we denote dX;Y as the

distance between the speaker of device X and the micro-

phone of device Y, the following distance can be deter-

mined, where dA;A and dB;B are device-dependent

constants.

D ¼ c

2
� ðtB;A � tA;AÞ � ðtB;B � tA;BÞ
� �

þ 1

2
� ðdA;A þ dB;BÞ

ð1Þ

The round-trip time of flight between the two devices

only depends on the two time intervals between the

reception of the signals, i.e. ðtB;A � tA;AÞ on device A and

ðtB;B � tA;BÞ on device B.

This method requires the devices to have a microphone,

a speaker, and an underlying communication framework

for exchanging messages and coordinating the transmission

of the audio signals (in our case using Bluetooth). The

microphones must record sounds through the entire pro-

cess, and speakers have to emit signals sequentially (first

device A, then device B).

Reference Audio Signal

The reference audio signal must have a strong autocorre-

lation property. This ensures robustness against ambient

noise. Microsoft’s BeepBeep uses audible linear chirps for

ranging [34]. Curtis et al. improve the accuracy of Beep-

Beep by replacing the linear chirp with a maximum length

sequence [6]. Jin et al. use inaudible linear chirps, where

the signal includes a payload of additional information

using bi-orthogonal chirps [17].

We chose a linear chirp signal with a Gaussian envelope

due to its strong autocorrelation [6]. We have used a

Fig. 3 Acoustic distance estimation between two devices. Both

devices are simultaneously recording, where device A first emits a

signal and then B emits another signal. The approximate distance can

be derived by calculating the time difference of arrival
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48 kHz sampling rate for both the microphone and the

speaker, which is the current maximum on Android devi-

ces [17]. With such a sampling rate, we can reconstruct

signals which contain frequencies of up to 24 kHz (Nyquist

frequency). The aliasing of higher frequencies can be

avoided with a low-pass filter.

Two important aspects that affect the method’s robust-

ness are the signal length and the frequency bandwidth of

the chirp. The described ranging method works with both

audible and inaudible signals. Audible signals work better

in practice, but they can be disturbing to people. Alterna-

tively, we chose a frequency between 20 kHz and 24 kHz,

since most humans can only hear up to 20 kHz. Empiri-

cally, we have selected a signal length of 75 ms.

Signal Detection

We detect the reference chirp in the recorded signal via

cross-correlation. The computational complexity can be

reduced from Oðn2Þ to Oðn � logðnÞÞ using the fast Fourier

transform (FFT). The Fourier transforms in the prototype

applications were calculated using the JTransforms Java

library.

The distance estimation method requires peak detection

in the cross-correlation function with sub-sample accuracy.

Considering the practical sampling rate of 48 kHz and the

speed of sound, missing the cross-correlation sample

number by one can already result in an error of 0.7-cm

distance estimate. We have adopted the method proposed

by Peng et al. to find the correlation peaks [34].

Gesture Recognition via Motion Sensors

There are many ways to recognize hand gestures using

unmodified mobile and wearable devices. We adopted a

method based on DTW and measurements from a single

three-axis accelerometer. The gesture recognition compo-

nent consists of two parts: the quantization of the accel-

eration measurements and DTW.

Quantization reduces the size of the time series and

reduces the computational complexity of the DTW algo-

rithm. This is desirable when using wearable devices

because of their limited processing power. Furthermore,

quantization improves the recognition accuracy by

removing deviations that are not essential for the gesture,

such as accelerometer noise [25]. However, some param-

eter settings may impair the recognition accuracy because

they eliminate key acceleration features intrinsic for a

particular gesture. Thus, choosing the correct parameters is

important in this step.

Our method employs a sliding window mechanism. The

acceleration data of the time series is dynamically

compressed by an averaging window of size w and step

size v. In the prototype applications, the parameters have

been set to w ¼ 250 and v ¼ 200 ms.

Gesture recognition using DTW works by building a

predefined template dictionary, where at least one template

per gesture has to be stored. Gestures are recognized by

comparing a newly collected time series with all the

samples from the existing template dictionary and then the

best matching pair is selected (Fig. 4). It is not just a binary

decision, DTW returns a score for each gesture, so that

candidates can be ranked.

Evaluation

This section presents a thorough evaluation of the indi-

vidual components which enable the proposed interaction

technique. Our goal is to support unmodified wearable and

mobile devices. In our tests, we use two smartphones

(LG G3 and LG Nexus 5�) and two smartwatches (Sony

Smartwatch 3 and Motorola 360 Sport 2nd Generation).

Our evaluation discards the communication layer because

Bluetooth is an already established wireless standard and

focuses on the remaining two components: gesture recog-

nition and acoustic ranging.

Gesture Recognition

The gesture recognition component is based on DTW. To

evaluate the recognition accuracy, we tested this method on

two different gesture sets. One gesture set is based on

geometric shapes (Fig. 5, introduced by Kela et al. [20]),

Fig. 4 1 The accelerometer records a new sample S. 2 The sample

gets quantized into S’. 3 S’ is matched against every stored template

T of the template library. DTW is used to calculate the matching cost.

4 The gesture is recognized by selecting the pair with the lowest cost
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while the other represents a set of human to human gestures

(Fig. 6). This is a small, well-known collection of greeting

gestures from different cultures, but it is challenging

enough to make simple heuristic approaches fail. To our

knowledge, this collection of greeting gestures is an orig-

inal proposal.

Since the geometric gestures have already been evalu-

ated [25], we focus on the newly introduced greeting ges-

tures. For every gesture, we collected 20 samples from 5

participants using a Sony Smartwatch 3, which makes a

total of 800 samples. We tested our dataset under two

different conditions: user-dependent and user-indepen-

dent. In the user-dependent case, a test sample is matched

against all the other samples, including those belonging to

the same user and the same gesture class. In the user-in-

dependent case, a test sample cannot be matched to another

sample that belongs to the same user and same gesture

class.

The best recognition accuracy is achieved with a multi-

dimensional DTW algorithm. The distance measure rep-

resents the cumulative distances of the three dimensions (x,

y, and z) measured independently under DTW. Figure 7

shows the confusion matrix for the user-dependent case.

The recognition accuracy was around 97%, with

Precision ¼ 0:9739, Recall ¼ 0:9736, and F1 ¼ 0:9736.

For the user-independent case (Fig. 8), the recognition

accuracy drops significantly. The accuracy was around

53%, with Precision ¼ 0:5372, Recall ¼ 0:5389, and

F1 ¼ 0:5354. These results were expected since a sample

belonging to one user and gesture class can only be mat-

ched to samples belonging to different users. Moreover, the

participants were not instructed to perform those eight

greeting gestures in a particular way. Having the freedom

to perform those gestures leads to more variance in the

data.

The above experiments prove that DTW works well for

user-dependent gesture recognition. If we further limit the

scope of DTW to only the samples belonging to the same

user and average the per-user results, the recognition

accuracy is close to 99%.

Wearable devices are dependent on data quantization to

speed up DTW. To find the optimal parameters for the

quantization method, we compared both the window size

and the step size, which are the most relevant parameters

and measure the effect on both the recognition accuracy

Fig. 5 Gesture set 1, geometric gestures, proposed by Kela et al. [20]

Fig. 6 Gesture set 2, greeting gestures

Fig. 7 Confusion matrix for user-dependent gesture recognition

evaluation. Average accuracy 97%

Fig. 8 Confusion matrix for user-independent gesture recognition

evaluation. Average accuracy 53%
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and the running time of the algorithms. For each window

size, we evaluate several step sizes. As expected, the

recognition accuracy decreases when the window param-

eter is chosen too large (e.g. window size 2000 ms) or

when the window size parameter is chosen too small

(e.g. window size 10 ms).

Table 1 summarizes the running times of the optimal

parameters (combination of window size and step size). We

measured the time needed to recognize one gesture, namely

to find the closest match of a new sample from the template

dictionary. The running time only shows the time for the

DTW algorithm, excluding the quantization of the data.

This evaluation was performed on a PC with a Cor-

e 2 Quad CPU, 2.4 GHz. The table shows that the optimal

window size is 250 ms, whereas the optimal step size is

200 ms. The optimal run time is about 7 ms. Performing

the same experiment on the smartwatch resulted in a run

time of about 700 ms. While the difference is significant,

wearables are becoming more and more computationally

powerful, so this should become less of an issue in the

future.

Acoustic Ranging

We use inaudible chirp signals since they are not intrusive

for the human ear. Given such a signal, the maximum

distance that was measured using acoustic ranging was

23 m. Nevertheless, since our work focuses on close

proximity multi-user activities, we narrow down the eval-

uation to distances up to 5 m.

Hardware Sensitivity

Speakers and microphones found on consumer mobile

devices are supposed to be used to mainly reproduce and

record human voice; thus, when using inaudible signals

(signals in the ultrasound spectrum), they can show dif-

ferent sensitivity.

Figure 9 shows 4 frequency response plots relative to

two smartphones and two smartwatches while recording a

linear chirp, going from 200 Hz to 24 kHz, played from the

same external speaker. The devices were placed at the

same position while recording. As expected, the sensitivity

of the microphones decreases if the frequency goes above

10 kHz. For one of the devices (Motorola 360 smartwatch),

the sensitivity drastically decreases.

The sensitivity of the speakers is evaluated in a similar

way as the sensitivity of the microphone. Each device plays

a linear chirp, going from 200 Hz to 24 kHz, which is

recorded using a high-quality microphone (Neumann TLM

102). Since the two smartwatches are not equipped with

loudspeakers, we could perform this test only with the two

smartphones. Compared to the microphones, the speakers

do not vary much among the different devices (Fig. 10).

Similarly, the sensitivity of the speakers decreases above a

certain frequency, since most speakers are not designed for

high-pitch sounds.

Indoor Ranging Precision

Most smartwatches nowadays are only equipped with a

microphone for voice commands (i.e. � 4 kHz). Due to the

lack of loudspeakers on our smartwatch models, we were

unable to test the acoustic ranging on these wearables.

Table 1 Comparison of accuracy and running time for different

window sizes, evaluated on the first gesture set (Fig. 5)

Window Accuracy Run time Opt. step

(ms) (%) (ms) (ms)

2000 67.50 3.00 150

1000 88.75 4.94 200

500 92.50 20.80 100

250 92.50 7.74 200

100 91.25 248.41 30

80 92.50 96.71 50

50 91.25 257.88 30

25 90.00 514.32 20

10 90.00 1500.88 10 Fig. 9 Frequency response plots of a linear chirp recorded by the

microphones of four different devices
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Instead, we evaluated the acoustic ranging component on

an LG G3 and an LG Nexus 5� smartphones.

The subplots of Fig. 11 show the evaluation of the

precision of the acoustic ranging component at different

distances [0.1, 1, 2, 3, 4, 5] m. The main focus of this

evaluation are inaudible signals. Furthermore, to evaluate

the method’s reliability, multiple frequency bandwidths are

tested in the inaudible spectrum (2000, 1000, 750, 500 and

250 Hz). Each configuration is tested for a duration of

5 min. This resulted in approximately 115 distance

measurements for each configuration. The plots in the

figure show the precision of the different configurations

and the percentage of unsuccessful measurements (e.g. one

or both devices could not detect the signal).

Figure 12 shows the error deviation for all three time-

frames at the above-mentioned distances. It is clear that the

smallest timeframe (350 ms) is too short for the acoustic

ranging, since the error deviation is for all distances higher

than 150 cm. The other two timeframes, namely 550 and

750 ms, are significantly more robust, with a maximum

error deviation of 99.9 cm for the 550 ms timeframe and

69.8 cm for the 750 ms timeframe at 5 metres.

Comparing the three timeframes, it seems that the

550 ms timeframe is the best trade-off between time and

robustness.

Ranging Precision in Noisy Environments

The acoustic ranging component was also evaluated

against environmental conditions, in two noisy and highly

dynamic environments. Two LG Nexus 5� phones

repeatedly measured the distance to each other until 32

successful measurements were collected. The duration of

the chirp for recording was 550 ms, and the frequency

bandwidth was 750 Hz (from 21,000 to 21,750 Hz). Dur-

ing these measurements, people passed through the line-of-

sight of the two devices, meaning that the acoustic ranging

was performed with obstacles in its way. For both sce-

narios, the experiment was repeated three times, each with

32 measurements.

The first scenario is indoors, at the entrance of a cafe-

teria at lunch time. The devices were placed on the ground,

on both sides of a stairway (see Fig. 13), and the distance

Fig. 10 Frequency response plots of a linear chirp played by the

speakers of different mobile devices. The two smartwatches from

Fig. 9 do not have a built-in speaker

Fig. 11 Comparison of different frequency bandwidths. The term

‘‘signal miss’’ indicates the percentage of unsuccessful measurements.

The dotted line indicates a probability of 5%. The left side shows the

ranging errors are not significantly different, but the right side shows

larger bandwidths are more reliable

Fig. 12 Error deviation for different distances. The longer the

recording timeframe, the smaller the deviation becomes, which makes

the method more reliable
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between the two devices was 3.5 m. The average measured

distance was 350.86 cm, with a deviation of 49.79 cm and,

19.91% of unsuccessful measurements (e.g. one device did

not hear the signal). Compared to the results of the quiet

evaluation, for the same frequency spectrum, it can be seen

that the number of unsuccessful measurements significantly

increases in a noisy environment.

The second experiment was also performed in a cafe-

teria, but outdoors at a distance of 3.8 m. The average

measured distance was 392.9 cm, with an average error of

12.9 cm, a standard deviation of 34.65 cm, and the ratio of

unsuccessful measurement was 14.99%.

Acoustic Ranging with a Moving Device

This acoustic ranging experiment examines the distance

measurement between a stationary and a moving device.

The experiment is conducted using an LG Nexus 5� and

an LG G3. The recording timeframe is 550 ms. This results

in an approximate update rate of 1.56 s for each new

estimation when using the two phones. The experiment is

conducted in the following way (see Fig. 14): a mobile

phone s is placed on a table in a quiet indoor location. A

remote mobile device r is placed 5 m away. Afterwards,

both devices continuously measure the distance to each

other while r is moved on a direct path and with a constant

speed towards s. After r reaches s, it is moved backwards

on the same path and with the same speed towards its initial

location.

The experiment is repeated for three different movement

speeds: slow (�0.3 m/s), normal (� 0.5 m/s), and fas-

t (�1 m/s). Figure 15 shows the observed distances as a

function of time. The figure shows a clear path going from

5 m down to 0 m and then up to 5 m again for all three

movements. This indicates that the moment of interaction

could be predicted only by looking at the distance between

people.

Combined Evaluation Acoustic Ranging While

Performing Hand Gestures

In the previous sections, we evaluated the two main com-

ponents independently. Since the two components use a

completely different set of sensors, there is no apparent

dependency between the two. However, when performing

in-air hand gestures, the mobile device is moved. The

motion of the device can influence the reliability of the

acoustic ranging component because it changes the way

sound propagates through the medium. This section quan-

tifies this influence.

We conducted an experiment similar to the one where

we evaluate acoustic ranging with a moving device

(Fig. 15). Additionally, the person carrying the remote

device r continuously performs in-air hand gestures. The

Fig. 13 Experiments in noisy environments

Fig. 14 Sequence of events during the experiment. 1 The phone r is

placed 5 metres away from the phone s. 2 r moves towards s with a

certain speed until it reaches the device. 3 r is moved backwards

towards its initial position

Fig. 15 Observed paths for different movement speeds. In each path,

exactly one unsuccessful measurement occurred near the minimum

when the devices were close to each other
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geometric gestures (Fig. 5) are more suitable for this

evaluation. They need, however, to be adapted to a repet-

itive movement, which can be performed continuously

while one device moves towards the other and then backs

away. Due to this constraint, we introduce a new set of five

gestures (Fig. 16), which are the combination of the geo-

metric gestures. Both devices used in this experiment were

the Nexus 5�.

The experiment was performed 30 times: five different

gestures, two different speeds for hand movement (slow

and fast), each three times. The walking speed was kept

constant, with each trial lasting between 25 and 30 s. A

slow hand movement translates into about one gesture per

second, while a fast hand movement generates about two to

three gestures per second.

Figure 17 shows the average number of distance mea-

surement points when performing each of the five gestures.

For each setting, we counted the points when the distance

can be measured, the number of points when the distance

cannot be measured (due to one device not hearing the

signal played by the other device), and the number of

outliers (distance measurement larger than 15 m).

A more detailed analysis of the observed paths can be

seen in Fig. 18. The two upper figures show two of the

gestures from set 3, performed slowly while the distance

between the devices decreases from 5 m to 0 and increases

back to 5 m. The two lower graphs show two such gestures

executed at higher speed. When the hand movement speed

is increased, there are more situations when the distance

cannot be measured, as well as an increase in the number of

outliers.

The combined evaluation shows that the acoustic rang-

ing component is influenced by the movement of the

mobile device and depends on how fast the gesture is

performed. Nevertheless, enough distance measurement

points can be collected reliably, which can be used in the

proposed interaction technique.

Applications

To demonstrate the feasibility and flexibility of our inter-

action technique, we implemented several application

scenarios. Our first prototype was HandshakAR [3], an

application where users can effortlessly share contact

information when they perform the same greeting gesture

and are close to each other. However, this application was

limited to two participants. In this paper, we demonstrate

three additional applications which are suitable for a small

group of people. These examples also demonstrate the

potential design space for future collocated multi-user

gestural applications. For a more detailed demonstration,

please refer to the supplementary video material.

Treasure Chest

This scenario shows a treasure chest that is part of a trea-

sure hunt. The chest can only be opened if the whole team,

a group of three or more children, are physically close to it

(within 1 m) and perform the same hand gesture (Fig. 19).

If one of the children is further away or if they do not

perform the hand gesture together with their teammates,

the chest stays locked.

Collaborative Fitness

Fitness activities like running have a strong social com-

ponent. In this application scenario, teams of friends can

compete against one another and compare different statis-

tics like running distance, number of steps. The application

tracks the statistics of each individual member. Addition-

ally, if the team members run together (are in proximity),

their counts will be accumulated towards a group total

(Fig. 20). If one of the members is slower or much faster

and separates from the group, the points will not be

Fig. 16 Gesture set 3. Geometric gestures used for the combined

evaluation of the main components, acoustic ranging while contin-

uously performing hand gestures

Fig. 17 An overall comparison of the number of distance measure-

ments when performing different gestures with variable hand

movement speed (left is slow; right is fast). The faster the movement,

the fewer the number of times when the distance can be measured
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counted towards the group score. This creates an incentive

for the members to work as a team.

Collaborative Music Band

The third application scenario is built around music. When

friends get together, they can create an ad hoc band and

simulate playing an instrument (e.g. air guitar) with only

their mobile or wearable device. Each participant can play

one instrument at a time. The instruments do not have to be

allocated in advance. The first user who performs a certain

gesture (e.g. play the drums) will control that specific

instrument (Fig. 21). Our prototype supports two different

songs and multiple instruments (e.g. drums, piano, or

guitar).

Discussion

In this section, we discuss the advantages and the limita-

tions of the building blocks that support collocated multi-

user gestural interactions.

Fig. 18 A selection of 4 out of the total 30 observed paths which highlight different reliability cases. For example, the upper left figure shows no

points where the distance cannot be measured, while in the lower right figure there are many such points

Fig. 19 First application scenario: Interacting with a magical treasure

chest. Children can open the treasure chest when they are physically

close to one another and perform the same hand gesture (spiral like

motion with their device). The treasure chest is just a metaphor for

any smart or digital object

Fig. 20 Second application scenario: Friends running together. Each

device counts the individual number of steps and running distance.

When teammates are in proximity to one another, their individual

counts are accumulated towards the total group count
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Gesture Recognition via Motion Sensors

We presented a method based on DTW to recognize hand

gestures as user input modality. This approach does not

involve any learning, but it has been shown to provide good

results for user-dependent gesture recognition. This entails

that each user has to record a set of template gestures

before using the system. In such a scenario, the method

achieved a recognition rate close to 99%. With the pro-

posed applications, we have shown the flexibility of the

approach to reliably recognize different gestures from

different domains.

Proximity Detection via Acoustic Ranging

Our proximity detection is based on two-way ranging using

inaudible signals. This method can estimate the distance

between two devices at once. The maximum distance we

could measure was 23 m. In a quiet indoor environment,

the method achieves an error below 10 cm for distances of

up to 5 m, measured with two smartphones. For most group

applications, these ‘‘guarantees’’ are sufficient. In particu-

lar, this method estimates the distance better than methods

based on RSSI values (using off-the-shelf devices). A

limitation of the provided method is the lack of simulta-

neous ranging of multiple devices since one cannot dis-

tinguish the source of multiple audio signals. To support

multiple users, ranging is done in a round-robin fashion.

Further Aspects and Limitations

One important requirement of our method is the need for a

microphone and a speaker that work in the inaudible range.

This also influences the hardware and, as we have seen in

the evaluation section, devices like the Motorola 360

smartwatch are not sensitive enough to capture such

signals. Moreover, both smartwatches do not have any

loudspeakers, which is why our prototypes have been

implemented using smartphones. However, future devices

are expected to have additional and better sensors. One

limitation of Bluetooth is the power consumption which is

addressed by the newer version of the standard, BLE.

Extended use of the microphone, speaker, and motion

sensors can have a significant impact on the battery. In the

future, we plan to investigate the impact of our methods on

mobile and wearable devices in terms of power

consumption.

Conclusion

We presented a collocated multi-user gestural interaction

technique with unmodified mobile and wearable devices.

We support the development of new interaction possibili-

ties that bring people physically close to one another.

Proximity is detected with inaudible signals, hand gestures

are recognized from motion sensors, and communication

between the devices is handled over Bluetooth. All com-

ponents are unobtrusive and do not break the interaction

experience.

Our in-depth evaluation of the underlying components

shows that the proposed interaction technique is feasible on

unmodified devices. There are certain hardware limitations,

namely the lack of loudspeakers or low-pass filters on

microphones on some wearables, which hindered the end-

to-end evaluation on smartwatches. However, new wear-

ables might overcome these limitations and our work can

be transferred to fully support these devices. Finally, we

showcased the practical applicability of having collocated

multi-user gestural interactions with three real-world

applications.
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