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ABSTRACT
When people are introduced to each other, exchanging con-
tact information happens either via smartphone interactions
or via more traditional business cards. Crowded social events
make it more challenging to keep track of all the new con-
tacts. We introduce HandshakAR, a novel wearable aug-
mented reality application that enables effortless sharing of
digital information. When two people share the same greet-
ing gesture (e.g., shaking hands) and are physically close
to each other, their contact information is effortlessly ex-
changed. There is no instrumentation in the environment
required, our approach works on the users’ wearable devices.
Physical proximity is detected via inaudible acoustic signals,
hand gestures are recognized from motion sensors, the com-
munication between devices is handled over Bluetooth, and
contact information is displayed on smartglasses. We de-
scribe the concept, the design, and an implementation of
our system on unmodified wearable devices.

CCS Concepts
•Human-centered computing→ Ubiquitous and mo-
bile computing systems and tools;
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1. INTRODUCTION
Wearable devices are a specific class of miniature comput-

ers that have become increasingly popular. Smartwatches
and fitness trackers are pervasive in our lives, and smart-
glasses like Google Glass, Microsoft HoloLens, Meta1, or
Daqri2 are getting closer to real products than to lab proto-
types. Wearables have also gained significant interest in the
research community. These devices offer continuous sensing,

1http://www.metavision.com/
2http://www.daqri.com/products.html
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Figure 1: When two people are close to each other
(1) and share the same greeting gesture (2), their
contact information is effortlessly exchanged (3) and
displayed on the smartglasses.

information access, and interaction with the users that wear
them. They do not need to be turned on or off and they al-
low true multi-tasking, i.e., users do not need to stop doing
one activity to engage in another.

From a social point of view, technology plays an important
role in our lives and enables us to interact with people from
all over the world. For most cases, the smartphone can act
as a universal interaction device both with smart appliances
and between people. Besides voice and video calls, people
can also share photos, videos, or exchange messages. In his
theory of proxemics, Edward Hall showed that closer physi-
cal distances between people lead to higher engagement [4].
However, the way in which smart devices currently interact
does not change when their owners are physically far away
or close to one another.

Imagine the following simple, well-known scenario. When
two people are introduced to each other, they get acquainted
and want to exchange contact information. Business cards
have been traditionally the most common way to achieve this
task. More recently, people can exchange contact informa-
tion via their smartphones: by creating a new contact entry
or by using a social networking application like Facebook or
LinkedIn. These methods require explicit interaction from
the user and, for the latter, proximity does not play any role.
What if we could make the process of exchanging informa-
tion in specific contexts effortless?

Contributions of the paper
We propose HandshakAR, a wearable augmented reality sys-
tem for effortless information sharing between people who
are physically close to one another. Our system leverages



only existing off-the-shelf unmodified wearable devices. When
two people share the same greeting gesture and are physi-
cally close to each other, their contact information is ef-
fortlessly exchanged. Gestures are recognized from motion
sensors, physical proximity is detected via inaudible acous-
tic signals, and the exchanged information is displayed on
smartglasses. The underlying communication between the
devices is handled over Bluetooth.

With HandshakAR, we augment the interaction experi-
ence between people. We qualitatively and quantitatively
evaluate the components of the system in different settings
running on different unmodified smartphones, smartwatches,
and smartglasses.

2. RELATED WORK
There are several sensing technologies to track proxemic

relationships between people and devices in smart environ-
ments, e.g., cameras, inertial sensors, radio signals, acoustic
sensing, and combinations of those. An overview of related
technologies is given by Marquardt [13]. Our work is indi-
rectly related to toolkits and middlewares for proxemic user
interactions like the ProximityToolkit [12] or ProxemicUI [1],
but rather than providing a general framework, we focus
on what is currently feasible with ubiquitous unmodified
resource-constrained devices.

Connecting devices that share a common context (e.g.,
location) has been explored in several projects in the past
like Smart-Its Friends [6] or RFID-Shakeables[10]. Exam-
ples for concepts, systems, and devices for connecting people
include [16, 17, 11] (cameras), iBand [8], CommonTies [3]
(custom wearables), SocialSensing [5] (WiFi sensing), Room-
Sense [15] (audio sensing), High5 [9] (skin electric potential
sensing), etc. The Bonjour! [7] paper explores the prop-
erties of greetings in different cultures, but only hints at
how these greetings could be recognized with wearable tech-
nology. The office smartwatch [2] aims to improve interac-
tion in work environments by enabling locking/unlocking of
doors, virtual knocks and retrieving room information us-
ing a smartwatch. We present an effortless contact sharing
method that requires neither instrumentation in the envi-
ronment nor custom wearable hardware.

3. SYSTEM OVERVIEW
HandshakAR leverages unmodified off-the-shelf wearable

and mobile devices. Figure 1 illustrates the main compo-
nents and their purpose in the system. Users are equipped
with a wrist-worn motion tracking device (e.g., smartwatch)
and a head-mounted display (HMD) (e.g., smartglasses).
The wrist-worn device is responsible for detecting proximity
between people and for recognizing in-air greeting gestures.
The HMD is responsible for showing contextual information
(e.g., an electronic business card) at the right moment.

Next, we describe the main components of the system:
proximity detection via acoustic ranging, gesture recognition
via motion sensors, and information sharing between users
and devices.

Proximity detection
Radio waves have been applied in many indoor localization
technologies to estimate the distance between multiple smart
devices. Unfortunately, for short ranges, a distance measure-
ment based on the received signal strength indicator (RSSI)

is not accurate enough because the signals are affected by
environmental factors.

Our goal is a widely applicable, low cost, and accurate
ranging approach, therefore, we chose acoustic ranging for
close proximity detection. This method only requires the
devices to be equipped with a microphone and a speaker
which are given in most wearables.

HandshakAR builds upon two-way acoustic ranging, a
method initially introduced by Peng et al. in the BeepBeep
system [14]. The main advantage of two-way ranging is that
the participating devices do not need to be synchronized.
The devices sequentially emit an acoustic signal, and each
device records its own signal and the signal produced by the
remote device. The time difference between the two signals
is used to estimate the distance. Out-of-channel coordina-
tion between devices happens via Bluetooth.

Figure 2: Acoustic ranging between two devices.
Both devices are simultaneously recording, where
device A first emits a signal and then B emits an-
other signal. The distance between devices A and
B can be approximated from the difference of signal
arrival times.

Figure 2 presents the ranging procedure in more detail.
Device A emits a sound at timestamp tA and records its
own signal, with its own microphone, at timestamp tA,A.
Device B records A’s signal at timestamp tA,B . Afterwards,
device B emits a signal at timestamp tB and records it at
time tB,B . Similarly, device A records device B’s signal at
timestamp tB,A. The round trip time of flight can be cal-
culated from the time intervals between (tB,A − tA,A) and
(tB,B−tA,B). dA,A and dB,B represent the distance between
the microphone and speaker on a specific device and c is the
speed of sound.

D =
c

2
∗((tB,A−tA,A)−(tB,B−tA,B))+

1

2
∗(dA,A+dB,B) (1)

The reference signals have to be robust against ambient
noise. BeepBeep [14] uses linear chirps with a Gaussian
envelope to obtain a strong autocorrelation property. The
method’s reliability is dependent on several design param-
eters: the length of the recording timeframe, the length of
the signal, and the frequency band (e.g., audible, inaudible).
The reference chirp is detected using cross-correlation. This
operation is computationally expensive but can be acceler-
ated via the fast Fourier transform. To find the correlation
peaks, we adopt the method proposed by Peng et al. [14].
The parameters used in our prototype are listed in Section 4.



Figure 3: HandshakAR prototype. (A) The system is inactive. (B) The devices are in close proximity to each
other and, at the same time, a handshake greeting gesture was recognized. The devices exchange contact
information, in this case a Facebook friend request. (C) The contact information appears on the user’s HMD
(the Google Glass in our prototype).

Gesture recognition
We recognize in-air gestures from motion sensors directly on
the wearables using Dynamic Time Warping (DTW). Our
primary goal is not to advance existing gesture detection
and recognition algorithms, but rather to show that even
a simple approach like DTW can be used to detect hand
gestures.

DTW consists of two steps: data quantization and warp-
ing. The measurements from three-axis accelerometers within
a sliding time window (length w, step size v) are compressed.
Due to their limited processing power, wearables can benefit
from data quantization which reduces the size of the time
series and thereby the computational complexity. It can re-
move accelerometer noise, however, the parameters have to
be chosen carefully. By choosing w too large, we can loose
important features of the motion which may lead to lower
recognition accuracy. By choosing w too small, there might
be no compression (if w lower than the sampling rate) which
only adds computational overhead. The parameters which
yield a balanced trade-off between run time and recognition
accuracy are presented in the evaluation section. Gesture
recognition using DTW utilizes a predefined template dic-
tionary for each gesture. Our method can distinguish be-
tween eight different greeting gestures. At test time, the
new measurements are warped against all the templates in
the dictionary and a ranked list of candidates is returned,
from which the best matching pair is selected.

Information sharing
The wearables form a body area network (BAN). Bluetooth
technology enables wireless communication within a BAN
and across multiple BANs from multiple users. It also en-
sures interoperability between a wide range of wearable de-
vices.

Each BAN is based on a client-server architecture. The
wrist-worn device is responsible for managing the Bluetooth
connection to the HMD, which is a Google Glass in our
prototype. The server is also responsible for managing the
connection to other BANs from different users. The mes-
sages exchanged between the devices are JSON formatted
strings. The header contains information about the sender,
the type of the message, and a timestamp. In HandshakAR,
when two people shake hands, the BANs exchange contact
information, which is further relayed to the HMD.

Sharing contact information can raise privacy concerns.
We argue that such a system only has to be used in specific

contexts, for example, at a cocktail party or a networking
event. The wearable’s OS could offer a specific feature to
enable or disable such applications.

4. EVALUATION
We evaluated the feasibility of HandshakAR using un-

modified mobile and wearable devices. We experimented
with two different smartphones (LG G3 and Google Nexus
5X), two different smartwatches (Sony Smartwatch 3 and
Motorola 360 Sport 2nd Generation), and a Google Glass
as display. Due to the lack of loudspeakers on our smart-
watches, we were unable to test the acoustic ranging compo-
nent on these wearables. This is why in our prototype im-
plementation, presented in Figure 3, we use a smartphone.
We report results from evaluating the two main components
of the system: proximity detection and gesture recognition.
We discard the details and the evaluation of the underly-
ing communication framework since Bluetooth is an already
established standard.

Proximity detection
Proximity is estimated using the two-way ranging method
described previously. HandshakAR uses inaudible (> 20 kHz)
acoustic signals, as they are not intrusive to the human ear.
The maximum distance that we could measure in this fre-
quency range was around 20 m in an outdoor environment.
Our system is focused on close proximity, which is why we
limit the evaluation to distances up to 5 m. The characteris-
tics that influence the ranging mechanism are the recording
timeframe, the frequency bandwidth, and the length of the
chirp.

We evaluated the ranging component both indoors and
outdoors, both in quiet and dynamic noisy environments
(e.g., a cafeteria at lunchtime). We use a sampling rate of
48 kHz for both the microphone and the speaker, which is
the maximum on current Android devices. This implies that
we can reconstruct frequencies without aliasing up to 24 kHz
(Nyquist frequency). Most human ears can only hear sounds
up to 20 kHz, which is why we evaluate frequencies between
20 kHz and 24 kHz. The length of the chirp has been set
empirically to 75 ms.

We varied the distance (0-5 m), the frequency bandwidth
(250 Hz to 2000 Hz) and the recording timeframe (350 - 750 ms).
For each configuration, we collected over 100 sample points.
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Figure 4: Acoustic ranging measurements indoors. Signal misses represents the % of unsuccessful mea-
surements, where one device cannot detect the signal from the other device. The dotted line indicates a
probability of 5%.

Figure 4 illustrates the most significant results in an indoor
environment. Figure 4A shows that the measurement error
is below 20 cm which is not significant for the considered
scenario. The deviation shown in Figure 4B is quite similar,
however, we can see a significant impact on the method’s
reliability in Figure 4C because the chirp was often not de-
tected by the peer device. The frequency bandwidth with
the best overall performance is 21,000-21,750 Hz.

The length of the recording timeframe also has an impact
on the measurement error. We found the best compromise
between time and accuracy to be 550 ms which up to 3 m
has an error deviation under 10 cm (Figure 4D).

The method also has a few assumptions. As the 21’000 to
21’750 Hz band is in the inaudible spectrum, we require de-
vices to have a microphone which can operate in this range.
The current method does not support simultaneous ranging
of more than two devices. If multiple devices are present,
ranging happens in a round-robin fashion which impacts the
update frequency for a new distance measurement.

Gesture Recognition
The on-board gesture recognition is using DTW. We imple-
mented a multi-dimensional DTW, where the distance mea-
sure represents the cumulative distances of all dimensions
independently measured under DTW. A dependent multi-
dimensional DTW implementation is computationally more
expensive, a limitation for wearables.

Figure 5: We evaluate the gesture recognition com-
ponent on eight different greeting gestures.

The HandshakAR prototype stores a total of 80 samples,
10 samples for each of the eight predefined gestures (Fig-

ure 5). These samples were collected with the Nexus 5X,
the device used in the prototype (Figure 3). Each user has
to record their own set of gestures which will serve as a
template library when the system is running.

Additionally, using the Sony Smartwatch 3, we collected
a total of 800 greeting gesture samples (5 participants, 8 dif-
ferent gestures, 20 samples for each gesture, 3 s per gesture).
The users tested the recognizer with their own template li-
brary and DTW achieved close to 99% accuracy (without
any data quantization) for each participant. This outlines
that DTW works well in distinguishing gestures performed
by the same person. A user-independent gesture recognition
method is out of the scope of this paper.

We also evaluated the data quantization parameters, the
window size w and step size v. A good trade-off between
runtime and recognition accuracy is w = 250ms and v =
200ms. With these parameters, the recognition accuracy is
close to 98%, but much faster than without quantization. It
takes about 7 ms to classify a new sensor reading on a desk-
top computer and 700 ms on the Sony Smartwatch 3. The
difference is significant, but we expect wearables to become
computationally more powerful.

Further design aspects
For future work, we are interested in exploring the energy
consumption of our system. Extensive use of the micro-
phone and speaker can have an impact on the battery. Fur-
thermore, communication over Bluetooth and peer discovery
consume significant amounts of energy. This limitation can
be addressed by switching to a beaconing mode, however,
devices must support BLE peripheral mode.

5. CONCLUSION
We presented HandshakAR, a wearable augmented real-

ity system for effortless information sharing. Our system
combines proximity detection via acoustic ranging with ges-
ture recognition from motion sensors. HandshakAR is a
demonstrator for this concept which enables people to share
contact information and display it on the smartglass. No
explicit interaction from the users or any instrumentation of
the environment is required. Additionally, we demonstrated
the feasibility of the concept on unmodified devices and pro-
vided a set of practical design parameters to facilitate further
research.
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