A Magic Lens for Revealing Device Interactions in Smart Environments

Simon Mayer
ETH Zurich

simon.mayer@inf.ethz.ch

Yassin N. Hassan
ETH Zurich

hassany@student.ethz.ch

Gabor Soros
ETH Zurich

gabor.soros@inf.ethz.ch

Figure 1: A magic lens for visualizing communication links in smart environments. A) and B) Idea: Users can reveal communication links by
observing devices through a tablet computer. C) and D) Screenshots of our tool showing messages being passed between connected objects.

Abstract

Keeping track of device interactions in smart environments is a
challenging task for everyday users. Given the expected high num-
ber of communicating devices in future smart homes, it will be-
come increasingly important to put users more in control of their
smart environments by providing tools to monitor and control the
interactions between smart objects and remote services. We present
a system for collecting and visualizing interactions of Web-enabled
smart things and Web services in an intuitive and visually appealing
way. Our tool displays device interactions both using a Web-based
visualization application and in the form of a “magic lens” by aug-
menting the camera view of a tablet with relevant connections be-
tween recognized devices in the camera’s field of view.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems — Artificial, augmented, and vir-
tual realities C.2.3 [Computer-Communication Networks]: Net-
work Operations — Network monitoring

Keywords: Augmented Reality, Network Management, Smart En-
vironment, Visualization, Web of Things

1 Introduction

As ever more smart devices are connected to the Web of Things and
start cooperating within smart environments, end users can easily
lose track of interactions between those devices because the large
amount of network traffic is difficult to monitor and manage. For
example, LinkSys advertises routers with the slogan: “Do you have
a home full of devices that seem to have their own agenda?” The
feeling of not being in control of one’s smart environment is not
only inconvenient, but also induces privacy concerns and lowers
user acceptance [Brush et al. 2011].

Permission to make digital or hard copies of part or all of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author. Copyright is held by the owner/author(s).

SA’14: Symposium on Mobile Graphics and Interactive Applications,
Dec 03-06 2014, Shenzhen, China, ACM 978-1-4503-1891-4/14/12.
http://dx.doi.org/10.1145/2669062.2669077

We believe that keeping users informed about what their connected
smart devices are doing and why they are doing it will become in-
creasingly important when more and more traditionally isolated de-
vices such as refrigerators, stereo sets, and other domestic appli-
ances get connected. Devices in future smart homes will not only
interact with each other and with user interfaces, but also with ser-
vices that are hosted remotely, for instance by utility companies to
level peak loads in the energy grid, or by companies that analyze
a household’s data to provide advanced services to its inhabitants.
This development gives rise to a number of challenges that, if not
properly addressed, may hinder the widespread adoption of smart
homes because people can lose trust in the smart things present in
their homes and their remote services: domestic sensor data con-
tains detailed information about inhabitants’ lives that is potentially
valuable to companies. For instance, by analyzing only the electric-
ity load curve of a household, it is possible to determine whether
the inhabitants have a job, and to estimate the household income
[Beckel et al. 2013]. From the same data, an occupancy pattern can
be obtained and it can be potentially predicted when — and for how
long — the home will be unoccupied on a specific date in the future
[Kleiminger et al. 2011]. Beyond the issue of sensitive data leaving
the smart home, the fear of unauthorized remote control of devices
constitutes the most severe anxiety of people regarding connected
devices [Rocker et al. 2005].

End users must remain in control of which services their smart de-
vices communicate with and what the transmitted data is used for
by service providers. This is challenging because devices in smart
environments form complex networked systems and communicate
invisibly “behind the back” of inhabitants. Moreover, already today
many users find it difficult to configure and maintain the rather sim-
ple home networks, mainly because of the “invisibility of settings
and configuration information” as well as “poor strategies for diag-
nosis and troubleshooting” [Poole et al. 2008]. Managing a network
requires inhabitants to use tools that are hard to use for them [Grin-
ter et al. 2005] and some fear a loss of control of their environment
as smart homes are growing increasingly complex [Randall 2003].

Our contribution is a tool for collecting and visualizing device inter-
actions in smart environments. The tool consists of a logger that is
simple to deploy, a back-end server that stores logged interactions
between devices, and an augmented reality application that recog-
nizes smart devices and visualizes their interactions on top of the
camera view of a handheld device.



1.1 Related Work

Network management tools were originally created exclusively for
industrial environments, but were adapted for private users as the
complexity of networks in private homes increased. However, many
such tools focus on static network properties such as parental con-
trol settings. This seems to be changing with modern products such
as the LinkSys Smart Wi-Fi platform that enables users to monitor
and control devices in the network in real time. On the other hand,
applications such as Private Eye' let users monitor which remote
services their computer is communicating with, a concept that was
also demonstrated in the NetFlow project [Minarik and Dymacek
2008]. Recently, network monitoring tools have started to consider
network nodes as embodied devices and applications such as CAN-
VIS [Keith Mitchell 2005] were created that allow individuals to
select networking devices using their smartphones to obtain infor-
mation about how and how much they communicate with others.

‘We propose to use visual object recognition technologies and meth-
ods known from the domain of augmented reality to take these ap-
proaches to the next level, by visualizing data about connections
between devices and services on mobile user interfaces as an over-
lay for the physical world. This approach could allow users to
easily and intuitively monitor information flows between nodes in-
side their home networks and with remote services and thereby get
more in control of their network installations. Similar ideas are
applied for visualizing urban infrastructures, for instance in the Vi-
dente project [Schall et al. 2013] where underground tubing is vi-
sualized using an augmented reality application on a smartphone.
Our approach should enable users to better understand device asso-
ciations in their smart home and to perceive unwanted interactions,
where we aim to go beyond currently available network monitor-
ing approaches also with respect to the inspection depth that our
system allows: it is, using our methods, possible for users not only
to see HTTP packets that are transmitted between devices, but also
to inspect their contents in near real time. This has only rarely
been done before, for instance in the EtherPeg tool” that can dis-
play a network graph and visualize image files as they are passed
from one network node to another. Finally, our proposed network
analysis software can not only be used by administrators to mon-
itor information flows between devices, but also to control them
using an approach that is known as software-defined networking:
our system can be extended to give users the ability to control the
flow of packets between devices in a smart home and remote ser-
vices by configuring networking restrictions directly on their home
networking hardware, by “cutting” visualized connections on the
user’s handheld device.

In the rest of this paper, we present our network monitoring and
control system in greater detail, starting with a discussion of how
it obtains the necessary metadata about traffic flows in the network.
Next, we present two methods of how the collected data can be pre-
sented in an intuitive and visually appealing way: a Web view and
an augmented reality view with device recognition and a live visu-
alization overlay on a tablet device. Finally, we discuss potential
use cases of our approach.

2 System Overview

Our system consists of a real-time logging component that records
HTTP interactions between devices, a storage back end to persist
recorded messages, and a front end to visualize device interactions
for users (Fig. 2). A logging client is deployed on each observed
device and forwards metadata about communication with others to

ISee http://radiosilenceapp.com/private-eye
2See http://etherpeg.org/

captured
interactions Web Visualization
instant
updates
AR Visualization

Smart Devices Logging User Interface

Figure 2: System overview: Loggers are deployed on devices in a
smart environment and record their interactions. This data is stored
at a central back end and is pushed to visualization applications.

the central logging back end. This component is responsible for
storing the data about interactions and for forwarding them to con-
nected visualization clients using HTML5 WebSockets.> Alterna-
tively, visualization clients can also query the REST interface of the
back end to obtain information about past interactions.

We propose two different user interfaces to monitor device interac-
tions: first, a HTMLS Web application that visualizes the captured
interactions as a force-directed graph, and second, an augmented
reality (AR) application on mobile devices. This AR application
recognizes smart devices in the camera’s field of view, associates
the recognized devices with nodes in the interaction graph, and dis-
plays Web interactions between them as an overlay on the camera
view (see Fig. 1).

3 Logging

In our system, metadata about device interactions is logged in a
distributed way, where each Web server that is deployed on a smart
device reports its interactions with remote endpoints to a central
logging back end. It is therefore possible that the causal order of
observed interactions at the back end is inconsistent with the global
order of interactions between devices. However, since one main
purpose of our system is to help users monitor the causes and ef-
fects of device interactions in their smart environment, it is impor-
tant that the visualization of message flows between devices reflects
the causal order of these interactions. To achieve a consistent order-
ing of messages, we record the causal relations between interactions
using the vector clock algorithm [Mattern 1989]: The vector clocks
are piggybacked on HTTP messages between devices and our log-
ging software takes care of merging the local and incoming vector
clocks upon receiving a request or response.

To also capture interactions with external services and unobserved
devices (i.e., endpoints that are not under our control), our system
uses a combination of server-side and client-side logging, where the
concrete setup is chosen dynamically based on which of the two
endpoints in an interaction is directly observed by our software: If
both the server and the client are observed, we record the HTTP
request on the server side and the HTTP response on the client side.
If only the client is observed, it takes care of logging requests and
responses from external services and unobserved devices that it in-
teracts with. Conversely, if any observed node receives a request
from an unobserved client, it logs that request/response pair.

3.1 Monitoring Interaction Chains

Since most Web interactions in a Web of Things context are part of
a task that involves multiple HTTP requests and responses, our sys-
tem does not only record isolated requests but aggregates them to
interaction chains: all requests and responses within a chain are the
consequence of a single initial HTTP request. By visualizing entire
interaction chains, our tool thus enables users to inspect Web inter-
actions in their context, for instance allowing them to better decide

3See http://www.w3.org/TR/websockets/



whether a specific request to an external service was intended.

To enable our system to visualize series of interactions between de-
vices, we assign each captured HTTP interaction to an interaction
chain. Because it is not possible to understand causal relationships
between messages by merely observing network communication,*
our logging software adds an HTTP header entry that contains the
identifier of the current interaction to each outgoing request. Addi-
tionally, whenever a logged Web server receives a request that con-
tains an interaction chain identifier, it stores that ID and attaches it
to each outgoing HTTP request that it generates while processing
the incoming request. This technique represents a sound heuristic
of assigning requests to interaction chains — it might, however, hap-
pen that a server generates a new request while processing another
(and, thus, assigns the two requests to the same interaction chain)
although the requests have no causal relationship. Likewise, new
requests that are generated after the processing of another request
has finished are assigned to different interaction chains although
they might be related to the previously received request. Assigning
requests correctly to interaction chains in these scenarios, however,
would require our logging system to reconstruct the entire logic of
applications running on the smart devices, which is not the focus of
our project.

3.2 Intrusive and Non-intrusive Logging

In contrast to the non-intrusive sniffing of packets on the network-
ing hardware, our approach requires that server applications attach
the required HTTP headers to each outgoing request and merge vec-
tor clocks of incoming responses. To avoid burdening developers
of smart devices with manually modifying their server implementa-
tions, our system uses Java Agents that modify the bytecode of Java
classes using so-called class transformers. Using this approach, the
logging client can be deployed to Web servers that are based on
the Grizzly NIO framework® and use Ht tpURLConnection to
make requests without the need of modifying a single line of code
— instead, it is sufficient to attach our transformers when invoking
the application (by using the javaagent JVM parameter).

We believe that this small burden of modifying the startup proce-
dure of a deployed Web server is worthwhile for several reasons:
by logging requests at the application layer, our system is able to
trace the execution path of a request and thus can reconstruct inter-
action chains from HTTP messages. Furthermore, we gain access
to the full URI of an endpoint and the message payload (in case it
is unencrypted) which might be valuable to, for instance, automat-
ically classify requests and warn users about interactions that seem
suspicious. Finally, logging on the application layer is reasonable
for several pragmatic reasons: A previous project where we non-
intrusively logged device interactions by sniffing packets directly
on network infrastructure devices [Mayer et al. 2012a] was in many
cases unable to capture packets even on the network layer because
routers attempt to handle communication already at the link layer
for reducing processing overhead (i.e. we lose access to the source
and destination IP addresses). With the mechanism presented here,
we are not only able to differentiate between devices on the network
level but even between different resources that are served by a sin-
gle server which, in our opinion, by itself legitimates the approach
of this paper.

4 Web Visualization Interface

To visualize logged interactions between devices, we implemented
a HTMLS application that allows end users to inspect Web interac-

4This is due to the stateless nature of the HTTP protocol.
5See https://grizzly. java.net/

Figure 3: The graph view of our application can visualize inter-
actions of network endpoints in a force-directed graph. This figure
shows a visualization of a search infrastructure (see [Mayer et al.
2012b]) whose nodes execute a distributed wave algorithm.

tions between devices and remote services in real time and to re-
play recorded interactions. Our Web application visualizes device
interactions as a force-directed graph where devices or services are
represented as nodes and interactions between them are visualized
as dots that travel on the edges of this graph (see Fig. 5). Our Web
application makes use of several HTMLS5 Javascript APIs (HTML
Canvas® and WebSockets). All the processing and filtering of the
incoming data is executed on the client side. The server only stores
and relays the captured interactions, the logging back end does not
perform any pre-processing of the captured data.

Because the travel time of a message in a local network is only
a few milliseconds and users would thus not be able to trace in-
teraction chains, our application virtually increases the latency of
each interaction to one second for the purpose of the visualization.
Consequently, using the vector clocks that give a consistent causal
ordering of interactions between devices, our application delays the
visualization of some messages — still, the start of each new interac-
tion chain corresponds to the actual beginning of that chain, in real
time.

4.1 Web Visualization Modes

Our Web application provides two visualization modes, the Graph
view and the Timeline view (see Fig. 5 A and B), as well as a “split
view” that displays both next to each other.

Graph View The graph view of our Web application (see Fig. 3
and Fig. 5 A) renders and animates a dynamic force-directed graph
where devices or services are represented as nodes and interactions
between them are visualized as dots that travel on the graph’s edges
— the graph is aware of interaction chains: for instance, in Fig. 3, all
interactions that are caused by the client’s initial request to the top
node of a distributed search infrastructure are assigned to the same
chain. Interacting nodes exert an attractive force on each other and
unrelated nodes are repelled. The graph topology is updated on
each frame with the most recent interactions — nodes that do not
participate in any interactions gradually disappear from the graph.

Timeline View The timeline view visualizes Web interactions be-
tween devices in chronological order by connecting send and re-
ceive events on different devices that are arranged along the y-axis
of the timeline. This view can be used to inspect the exact order of

6See http://www.w3.org/TR/2dcontext /



the interactions. In contrast to the graph view, however, it does not
provide any information about the topology of the communication.

4.2 Inspection and Filtering

Users can inspect details of each interaction (HTTP headers, status
codes, and message payload) by clicking the corresponding edge in
the graph and timeline views. They can also navigate to related in-
teractions using previous/next buttons. Finally, the interface allows
users to configure filters that change the visibility or color of inter-
action chains with specific properties that can be described using a
simple domain-specific language. For instance, to filter all requests
from the “TV” node to the google . com endpoint, the user would
use this expression:

Request (from=TV) ->Request (to="google.com")

Multiple such specifications can be combined using AND and OR
operators to create custom interaction filters.

5 Magic Lens Visualization Interface

While the Web visualization gives a convenient overview of interac-
tions between devices, we consider even more intuitive to use a per-
sonal mobile device that augments the user’s environment with live
connections. To enable this, we implemented a visual multi-object
recognition technique that is able to detect several pre-defined ob-
jects in the camera view of a handheld device. The application then
queries the logging back end for interaction metadata of the recog-
nized devices and overlays the communication links on the camera
frames (see Figs. 1 and 5), thereby transforming the handheld de-
vice into a “magic lens” [Bier et al. 1993].

5.1 Recognition pipeline

Out proof-of-concept visual recognition algorithm is able can rec-
ognize up to four distinct objects in the camera view simultaneously
and we tested it with up to 12 object classes. The recognition was
implemented using the OpenCV library.” We first resize the camera
frames to a resolution of 320x240 pixels and then extract FAST9
keypoints [Rosten and Drummond 2006] with non-maximum sup-
pression. To separate objects, we spatially cluster the keypoints
with the DBSCAN algorithm [Ester et al. 1996] using a search ra-
dius of 30 pixels. Each keypoint cluster returned by DBSCAN is
assumed to belong to a single object. For each keypoint within a
cluster’s bounding box (see Fig. 4) we extract SURF [Bay et al.
2008] descriptors. The object classes are then described in the Bag
of Words model [Csurka et al. 2004]: the descriptors are quantized
and a codebook of “visual words” is created. The description of
each smart device is then a histogram computed over these words.

During the training phase we take 10-15 snapshots each smart de-
vice, process the images in the pipeline described above and train
binary SVMs for each object. Later, at run time, camera frames are
processed in the above pipeline and the SVMs determine the most
probable object class in each bounding box of keypoint clusters. We
assume that objects are sufficiently textured (i.e., contain at least 40
keypoints) and that there is little background clutter. We achieve a
frame rate of about 1.8 FPS when having four devices recognized
simultaneously on a Nexus 5 smartphone.

5.2 Limitations

Note that our approach does not track objects but re-detects them
at subsequent frames therefore it cannot handle occlusions and can-

Thttp://wWwww.opencv.org

Figure 4: Recognizing multiple objects in a plain background:
extracted feature points are clustered spatially and each cluster’s
bounding box region is passed to the object classifiers.

not separate objects that are close to each other. Also, background
clutter would cause the algorithm to fail because DBSCAN would
return over-sized keypoint clusters that might contain more than one
object. The algorithm cannot differentiate objects that look alike:
for instance, recognizing cars represents an especially challenging
task because of the visual similarity of distinct vehicles. Our algo-
rithm can recognize specific cars only if unique features of that car
are visible in the camera frame (and in the training images).

6 Applications

We envision the proposed system to be applicable in a number of
use cases that range from educating students about distributed algo-
rithms to enabling inhabitants of smart homes to track what kind of
information is leaving the domestic environment, and where control
commands to their devices come from. In this section, we describe
five such scenarios to illustrate the merit of our proposed approach
for visualizing Web interactions.

6.1 Smart Homes

Providing smart home inhabitants with a tool that enables them to
stay aware of data that enters and leaves their home, as well as of
interactions between smart devices within their domestic environ-
ment represents the original motivation for the work presented in
this paper. Our system can clearly facilitate the monitoring of de-
vices that handle privacy-sensitive data for end users, for instance
with respect to smart electricity meters [Rial and Danezis 2011]
— to find out which remote endpoints are accessing the domestic
smart meter using our tool, users are merely required to point the
camera of their tablet at the smart meter and observe the overlaid
interactions (Fig. 5 C). Using the Web interface, users can addi-
tionally examine individual messages and play back earlier interac-
tions between the domestic device and remote servers. Our system
also enables users to monitor control commands that are sent to de-
vices in their smart home, for instance to smart thermostats that are
controlled by a remote service — this is especially relevant in sce-
narios where the control logic of appliances is provided by cloud
services [Kovatsch et al. 2012]. Finally, our tool helps in moni-
toring interactions between devices in smart environments — while
this is not demanded by users at the moment, we believe that the
accelerating deployment of home automation solutions will make it
increasingly relevant to track such “behind-the-back” communica-
tion. This is also important with respect to current research in the
Web of Things domain that targets the ad-hoc creation of physical
mashups based on user goals [Mayer et al. 2014]. In such scenarios,


http://www.opencv.org

Figure 5: A) The graph view of our Web visualization interface is useful for monitoring complex interactions between devices and services
while its timeline view (B) emphasizes temporal relationships. C) Screenshot of the AR interface of our tool that visualizes interactions in
smart homes in real time, for instance between a smart meter and utility companies or other parties that handle personal data. D) Screenshot
that shows an overlay of interactions between clients and a smart car (as well as with three other endpoints).

users should be provided with a tool that helps them to monitor and
manage interactions between devices, if only to give them a feeling
of being in control of their smart home.

6.2 Smart Factories

Production processes in factories increasingly involve dynamic in-
teractions between individual manufacturing devices, to enable
rapid reconfigurations which allow the process to evolve and adapt
to the mass customization of products [Lastra and Delamer 2006].
The technologies proposed in this chapter could support operators
within such environments to rapidly determine which devices talk
to each other and what data is transmitted between them at any
given moment. This is especially helpful when devices that are
involved in a process start to be aware of their functionality, thus
enabling the dynamic reconfiguration of the system at run time.

6.3 Smart Firewalls

With respect to both, smart homes and smart factories, we believe
that it could be beneficial to combine the systems presented in this
chapter with network infrastructure that can be remotely configured
by users. In this case, if users discover an interaction between de-
vices or with a remote service that they feel uncomfortable about,
this connection could be instantly terminated and prevented in the
future literally at the fling of a finger by configuring a firewall rule
on a network router. This combination of software-defined net-
working with our augmented reality interfaces that display interac-
tions holds great potential to facilitate not only network monitoring
but also the management of device networks.

6.4 Smart Cars

Another scenario we find as an interesting use case for our system
concerns smart cars where the ability to monitor interactions is rele-
vant to protect drivers from attacks on their privacy such as location
profiling or the misuse of private data by authorities [Dotzer 2006].
To demonstrate the applicability of our system in this domain, we
combined the back-end server infrastructure of a vehicle-to-cloud
communication platform called CloudThink® with our logging soft-
ware. The combined system allows users to monitor interactions of
clients with telemetry data from about 30 vehicles using the Web

8The CloudThink project http://cloudthink.mit.edu/ is a
joint effort by Massachusetts Institute of Technology, ETH Zurich, the Sin-
gapore University of Technology and Design, and the Masdar Institute of
Science and Technology to make vehicle telemetry data accessible to other
applications on the Web, in near real time.

interface of our visualization tool as well as displaying these inter-
actions as a live overlay on handheld devices (Fig. 5 D).

6.5 Smart Debugging and Education

We believe that our system could be applied in educational environ-
ments, similar to visualization tools for algorithms and data struc-
tures. Several studies in the domain of algorithm visualization have
shown that students believe such tools support them in learning
rather abstract programming methods such as sorting or line sweep
algorithms, and examination results also reflect these benefits [Kar-
avirta et al. 2010]. By visualizing interactions between distributed
agents, our tool extends the scope of the broad domain of software
visualization [Price et al. 1993] beyond individual programs. This
is, for instance, relevant with respect to advanced topics in the do-
main of distributed algorithms (e.g., regarding leader election, dis-
tributed termination detection, and with respect to general wave al-
gorithms, see Fig. 3). Our system can be used to illustrate these be-
cause it also takes care of preserving the causal relationships within
interactions that stretch over multiple exchanged messages — at the
same time, the tool itself represents a very convincing example to
demonstrate the benefits of vector clocks in classrooms. We rec-
ommend using the Web visualization interface for these use cases
— potentially, however, the magic lens interface of our visualiza-
tion tool can be used in educational settings as well, for instance in
robotics courses.

7 Conclusion

We presented a tool that gives end users immediate visual feedback
about the Web interactions between devices within their smart envi-
ronment. Our tool is easy to combine with current Web server tech-
nologies and allows to monitor HTTP messages that it aggregates
to interaction chains to elicit the causes and effects of communi-
cations between smart devices and with remote services. We pro-
posed a Web-based control interface and an AR visualization tool
that recognizes devices and displays messages that are exchanged
among them in real time as an overlay of the camera view of a hand-
held device. We believe our system will help to put users more in
control of smart environments by enabling them to understand the
communication of their devices, thus mitigating privacy concerns
and increasing user acceptance of smart environments.

Future Work While our proof-of-concept prototype can recog-
nize about a dozen smart objects, the applied rather simple object
recognition is limited in terms of scalability and robustness. Our fu-
ture work will focus on finding a recognition algorithm that is faster
to compute and is more robust to background clutter. To overcome



the challenging task of differentiating similar-looking objects, we
propose to make better use of context of the device that runs the
recognition algorithm other than visual features in its camera feed.
We particularly suggest to make use of the (indoor) location of the
handheld device and also consider sensors such as its microphone,
gyroscope, and accelerometer, broadening the scene understanding
algorithm beyond the visual computing domain.

Acknowledgements The project has been partially funded by
the Swiss National Science Foundation (grant number 134631).

References

BAY, H., Ess, A., TUYTELAARS, T., AND VAN GooL, L. 2008.
Speeded-Up Robust Features (SURF). Computer Vision and Im-
age Understanding 110, 3, 346-359.

BECKEL, C., SADAMORI, L., AND SANTINI, S. 2013. Automatic
Socio-Economic Classification of Households Using Electricity
Consumption Data. In Proceedings of the 4th International Con-
ference on Future Energy Systems (ACM e-Energy 2013), ACM.

BIER, E. A., STONE, M. C., PIER, K., BUXTON, W., AND
DEROSE, T. D. 1993. Toolglass and Magic Lenses: The See-
through Interface. In Proceedings of the 20th Annual Conference
on Computer Graphics and Interactive Techniques, ACM, SIG-
GRAPH ’93, 73-80.

BRUSH, A. J., LEE, B., MAHAJAN, R., AGARWAL, S., SAROIU,
S., AND DIXON, C. 2011. Home Automation in the Wild: Chal-
lenges and Opportunities. In Proceedings of the ACM CHI Con-
ference on Human Factors in Computing Systems (Vancouver,
Canada), ACM, 2115-2124.

CSURKA, G., DANCE, C. R., FAN, L., WILLAMOWSKI, J., AND
BRrAY, C. 2004. Visual Categorization with Bags of Keypoints.
In Proceedings of the Workshop on Statistical Learning in Com-
puter Vision (SLCV).

DOTZER, F. 2006. Privacy Issues in Vehicular Ad Hoc Networks.
In Privacy Enhancing Technologies, G. Danezis and D. Martin,
Eds., vol. 3856 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 197-209.

ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996.
A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In KDD, 226-231.

GRINTER, R. E., EDWARDS, W. K., NEWMAN, M. W., AND
DUCHENEAUT, N. 2005. The Work to Make a Home Network
Work. In Proceedings of the ninth conference on European Con-
ference on Computer Supported Cooperative Work, 469—488.

KARAVIRTA, V., KORHONEN, A., MALMI, L., AND NAPS, T. L.
2010. A Comprehensive Taxonomy of Algorithm Animation
Languages. J. Vis. Lang. Comput. 21, 1, 1-22.

KEITH MITCHELL, NICHOLAS J. P. RACE, M. C. 2005. CAN-
VIS: context-aware network visualization using smartphones. In
Proceedings of the 7th Conference on Human-Computer Inter-
action with Mobile Devices and Services (Mobile HCI 2005).

KLEIMINGER, W., BECKEL, C., AND SANTINI, S. 2011. Op-
portunistic Sensing for Efficient Energy Usage in Private House-
holds. In Proceedings of the Smart Energy Strategies Conference
2011.

KOVATSCH, M., MAYER, S., AND OSTERMAIER, B. 2012. Mov-
ing Application Logic from the Firmware to the Cloud: Towards

the Thin Server Architecture for the Internet of Things. In Pro-
ceedings of the 6th International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing (IMIS 2012).

LASTRA, J. L. M., AND DELAMER, 1. M. 2006. Semantic Web
Services in Factory Automation: Fundamental Insights and Re-
search Roadmap. IEEE Transactions on Industrial Informatics
2,1, 1-11.

MATTERN, F. 1989. Virtual Time and Global States of Distributed
Systems. In Proc. Workshop on Parallel and Distributed Algo-
rithms, North-Holland, C. M. et al., Ed., 215-226.

MAYER, S., BECKEL, C., SCHEIDEGGER, B., BARTHELS, C.,
AND SOROS, G. 2012. Demo: Uncovering Device Whispers in
Smart Homes. In Proceedings of the 11th International Confer-
ence on Mobile and Ubiquitous Multimedia (MUM 2012).

MAYER, S., GUINARD, D., AND TRIFA, V. 2012. Searching in
a Web-based Infrastructure for Smart Things. In Proceedings of
the 3rd International Conference on the Internet of Things (1oT),
IEEE Computer Society, 119-126.

MAYER, S., INHELDER, N., VERBORGH, R., DE WALLE, R. V.,
AND MATTERN, F. 2014. Configuration of Smart Environ-
ments Made Simple - Combining Visual Modeling with Seman-
tic Metadata and Reasoning. In Proceedings of the 4th IEEE
International Conference on the Internet of Things (IoT 2014).

MINARIK, P., AND DYMACEK, T. 2008. NetFlow Data Vi-
sualization Based on Graphs. In Proceedings of the 5th In-
ternational Workshop on Visualization for Computer Security,
Springer, 144-151.

POOLE, E. S., CHETTY, M., GRINTER, R. E., AND EDWARDS,
W. K. 2008. More Than Meets the Eye: Transforming the User
Experience of Home Network Management. In Proceedings of
the 7th ACM Conference on Designing Interactive Systems (DIS
2008), ACM, 455-464.

PRICE, B. A., BAECKER, R. M., AND SMALL, I. S. 1993. A
Principled Taxonomy of Software Visualization. J. Vis. Lang.
Comput. 4, 3,211-266.

RANDALL, D. 2003. Living Inside a Smart Home: A Case Study.
In Inside the Smart Home, R. Harper, Ed. Springer, 227-246.

RIAL, A., AND DANEZIS, G. 2011. Privacy-preserving smart
metering. In Proceedings of the 10th Annual ACM Workshop on
Privacy in the Electronic Society (WPES 2011), ACM, 49-60.

ROCKER, C., JANSE, M. D., PORTOLAN, N., AND STREITZ, N.
2005. User Requirements for Intelligent Home Environments: A
Scenario-Driven Approach and Empirical Cross-Cultural Study.
In Proceedings of the 2005 Joint Conference on Smart Objects
and Ambient Intelligence: Innovative Context-aware Services:
Usages and Technologies, ACM, 111-116.

ROSTEN, E., AND DRUMMOND, T. 2006. Machine Learning for
High-Speed Corner Detection. In Proceedings of the 9th Eu-
ropean Conference on Computer Vision (ECCV 2006), Lecture
Notes in Computer Science. Springer, May, 430—443.

SCHALL, G., ZOLLMANN, S., AND REITMAYR, G. 2013. Smart
Vidente: advances in mobile augmented reality for interactive
visualization of underground infrastructure. Personal and Ubig-
uitous Computing 17,7, 1533—1549.



