
User Interfaces for Smart Things
A Generative Approach with Semantic Interaction Descriptions

Simon Mayer∗1, Andreas Tschofen1, Anind K. Dey2, and
Friedemann Mattern1

1Institute for Pervasive Computing, ETH Zurich
2HCI Institute, Carnegie Mellon University

April 4, 2014

Abstract

With ever more everyday objects becoming “smart” due to embed-
ded processors and communication capabilities, the provisioning of intu-
itive user interfaces to control smart things is quickly gaining importance.
We present a model-based interface description scheme that enables au-
tomatic, modality-independent user interface generation. User interface
description languages based on our approach carry enough information
to suggest intuitive interfaces while still being easily producible for devel-
opers. This is enabled by describing the atomic interactive components
of a device and capturing the semantics of interactions with the device.
We propose a taxonomy of abstract sensing and actuation primitives and
present a smartphone application that can act as a ubiquitous device con-
troller. An evaluation of the mobile application in a laboratory setup,
home environments, and an educational setting as well as the results of a
user study highlight the accessibility of the proposed scheme for applica-
tion developers and its suitability for controlling smart devices.

1 Introduction

The Internet of Things advocates networked “smart things” that are enabled to
interact and communicate with each other, with users, and with their surround-
ings and thereby become active participants in an environment of cooperative
services and (physical) applications [13]. The success and widespread adoption

∗This work is supported by the Swiss National Science Foundation under grant number
134631. Corresponding author: Simon Mayer, simon.mayer@inf.ethz.ch. Authors’ addresses:
S. Mayer, A. Tschofen, and F. Mattern: Institute for Pervasive Computing, ETH Zurich,
Universitätstrasse 6, 8092 Zurich, Switzerland; A.K. Dey: HCI Institute, Carnegie Mellon
University, NSH 2502C 5000 Forbes Ave., Pittsburgh, PA, USA.

1

(a) (b)

Figure 1: a) Browser-based interface to toggle a Web-enabled LED [15]. b)
Manually tailored mobile user interface of a smart electricity meter [30].

of the World Wide Web in linking documents and, later, in connecting indi-
viduals, has in turn driven a development commonly referred to as the Web
of Things, which aims at re-using Web patterns and Web protocols to make
networked physical objects first-class citizens of the World Wide Web [7]. In
the Web of Things, smart things are viewed as hierarchies of resources that are
uniquely addressable using Uniform Resource Identifiers (URIs) and whose in-
terfaces comply with the principles of Representational State Transfer (REST)
[5]. Leveraging the Web as an application layer for smart things allows for
familiar mechanisms that made the Web successful to be extended to such real-
world objects. Smart devices and their functionality can be directly referenced
and bookmarked and can easily be incorporated in physical mashups using well-
known and easy to use scripting languages or graphical programming concepts.

In the Web of Things domain, the main medium for a user to directly access
and control a smart thing is the Web browser, a widely available tool that
most users are familiar with [2, 4]. All user interaction happens via the thing’s
Web representation that displays sensed values and provides a simplistic, form-
based, interface to control actuation of the smart thing (Figure 1(a)). While
such an interface is easy to deploy or can even be generated automatically, it
is often neither intuitive nor efficiently usable and the interaction itself may be
cumbersome, especially when using a mobile device to interact with the smart
thing. As a remedy, interfaces may be provided that are manually tailored to
specific smart things (Figure 1(b)). However, these usually are expensive to
create and not flexible enough to adapt to different platforms and scenarios.

To bring Web-enabled smart things into peoples’ homes and enable humans
to better interact with smart thing environments, more intuitive but still easily
deployable interaction mechanisms are required. Here, our focus is on support-
ing explicit human interaction with smart things and thus emphasize the direct
and immediate monitoring and control of such devices – a concept different from
smart environments providing invisible background assistance. Such immediate

2

interaction is relevant especially if the controlled devices provide information
or perform actions of immediate value to the user (e.g., monitoring electricity
meters or controlling multimedia systems).

To enable the automatic generation of user interfaces for smart devices, a
model-based approach seems to be best suited [21, 6]: the smart thing embeds
a description of how other devices can interact with it in the form of a User
Interface Description Language (UIDL), and interaction devices (e.g., remote
controls or smartphones) use this information to provide an appropriate concrete
interface to the user. Such a system enables plug-and-play interaction within
smart things environments with no configuration effort other than embedding
the appropriate descriptions. Thereby, it greatly reduces the amount of time and
work needed to create appropriate and easily usable user interfaces for smart
devices [21].

In this paper, we present a high-level description scheme for smart things
that captures the semantics of an interaction with the device rather than pro-
viding an explicit, concrete encoding of an appropriate type of user interface
or its appearance. Based on this approach, we propose a modality-independent
taxonomy of interaction semantics for monitoring and controlling devices. Fur-
thermore, we present a concrete description language that captures interaction
semantics and, based on this language, a prototype implementation of a uni-
versal remote control application for smartphones. This application as well as
our description scheme have been evaluated within a controlled laboratory en-
vironment, with mock-up smart devices, in deployments in private homes, and
in a study that targeted the understandability and simplicity of the proposed
description scheme.

Our focus is to allow the provisioning of interaction descriptions for smart de-
vices by adding a minimal amount of markup that is simple to produce and easy
to understand for developers. Still, the description scheme is general enough to
be applicable to a wide range of interaction use cases, where we primarily con-
sider devices that monitor and control physical quantities in the real world. Such
devices are widespread in home and building automation systems (e.g., light
dimmers, window blind motors, or household appliances) but can also be found
in cars (e.g., air conditioning), electric musical instruments, toys, and many
other devices that we interact with in our daily lives. More and more, these
traditionally simple, isolated devices are being equipped with processing and
communication capabilities, thus transforming them into smart things. Since
the main functionality offered by such devices is to sense and/or actuate the
physical world, they can be modeled as actuators, sensors, or sensor-actuator-
composites. A light dimmer, for example, is a simple actuator that controls the
electric power supply of a lamp and consequently its brightness. A toy robot, in
contrast, might have multiple motors to control its movable parts, and sensors
to perceive its environment.

After discussing the terminology used throughout this document, we in-
troduce our approach of describing the high-level semantics of interactions in
Section 3. We detail how these interaction semantics can be captured in Section
4 and discuss elements of a language to describe them in Section 5. In Section

3

Figure 2: An interactor (light dimmer) and a stateful atomic interactive com-
ponent (dimmable lamp) whose state can be queried and manipulated.

6 we show a prototype application that interprets our interaction descriptions
and can be used as a generic mobile user interface in smart environments. We
present an evaluation of our language with respect to its generality, usability
for end users, and producibility for developers in Section 7 and discuss the po-
sitioning of our approach with respect to related work in Section 8. Finally,
we provide our conclusions and highlight avenues for potential future work in
Section 9.

2 Terminology

Throughout this paper, we consider an atomic interactive component to be
a physical or virtual object that provides a specific functionality to the user
and is not reasonably subdivisible (e.g., a light switch). In contrast, a more
complex device like a VCR can be subdivided into multiple atomic interactive
components, for instance its Play/Pause buttons and its volume controller. An
atomic interactive component either provides its current internal state as data
(sensor) or performs an action when reacting to a command (actuator).

We differentiate between two types of actuators: A stateful actuator is an
actuator whose state can, in addition to being manipulated by sending com-
mands, also be queried. One example for this is a dimmable lamp (cf. Figure 2)
whose state is the lamp’s current intensity/brightness. A stateless actuator can
be manipulated like a stateful actuator but does not hold a representation of
its internal state: tt can be triggered but not queried. An example is a digital
doorbell that plays a sound when triggered by a button press. Every stateless
actuator can in principle be transformed into a stateful actuator by exposing its
current state. However, for this type of actuator, representing the state is often
not necessary or results in too much overhead because the state does not play
an important role or is hard to capture.

The device or software abstraction that a human uses to interact with an
interactive component is called an interactor . In the example depicted in Figure
2, this is the light dimmer knob. Interactors can take many forms ranging
from traditional graphical user interfaces (GUIs) to gesture or speech-control
interfaces and to physical buttons or knobs.

4

3 Interaction Semantics and Atomic Interactive
Components

We postulate that an interaction description scheme should be usable by hetero-
geneous interaction devices, involving gesture-based, speech-based, graphical, or
physical interfaces like physical buttons or sliders (see [25]). Furthermore, to fos-
ter widespread adoption and actual usage in practice, a user interface modeling
language should, in addition to being expressive enough, be easy to understand
for developers (see [12]). Ideally, it should thus enable the embedding of inter-
action descriptions with only a few lines of easily producible markup.

Approaches to providing UIDLs proposed to date are limited in their support
for these requirements. Most target the provisioning of interface descriptions for
complete devices (see Section 8 for a thorough discussion of related work): the
user interface of a VCR, for instance, is usually specified in a single document
that, apart from describing the interfaces to each of the VCR’s components (e.g.,
the Play-button), lists all dependencies between components of the device. An
example of such a dependency is that the fast-forward button of the VCR should
only be active when a video is playing. Instead of describing devices as a whole
in this way, we claim that, especially within a Web context it is more beneficial
to embed interaction information directly into the devices’ atomic functional
components and not explicitly specify such dependencies. Other projects in
the domain of UIDLs have also advocated the decomposition of appliances into
their atomic interactive components (e.g., XWeb [24], the URC standard [31],
the PUC project [21], or MARIA [27]), but have not explored this further as an
approach that could yield simpler yet expressive interface description languages.

The traditional way of describing how one can interact with atomic interac-
tive components is to associate them with data type information: an element
which has an integer or float type with a range can be graphically represented
by a slider; an enum type corresponds to a dropdown menu, and so on. We
argue that providing such a data model, however, is only a specification of the
program interface to an interactive component. While this enables rudimentary
interaction with devices, the specification of data types is not sufficient for creat-
ing intuitive interfaces which, in our opinion, requires capturing the semantics
of the interaction. Therefore, we propose to abstract from user interface de-
scriptions to interaction descriptions, meaning that we do not model concrete
interface elements but instead the semantics of the interaction of the user with
a device (what exactly we mean by interaction semantics is discussed in detail
in Section 4.2). The possibility of adding more abstract information about in-
terface elements has also been expressed by the authors of the aforementioned
PUC papers and the URC standard, but has not been further explored as a
possibility to simplify user interface descriptions.

When analyzing traditional (built-in or remote) user interfaces for devices
like the ones mentioned above, one notices that certain types of interactors
(e.g., various kinds of knobs or combinations of buttons) occur again and again
but control very heterogeneous types of actuators and sensors. For instance,

5

from a user interface point of view, a light dimmer knob and a thermostat
knob are equivalent: although certainly a little unusual, it would be possible
to control a lamp’s brightness with a thermostat knob. This interchangeability
is not confined to interactors with similar physical appearance. In fact, both
brightness and temperature could also be controlled by a graphical slider widget,
or with speech commands (“increase/decrease brightness/temperature”). The
reason for this is that the semantics of interaction are the same for the two
interactive components: in both cases, the user scales a physical intensity.

We argue that this observation can be generalized: in the following, we
propose a classification of interactive components into semantic interaction cat-
egories that suggest appropriate interactors but are still general enough to be
applicable for a wide variety of smart things. Interestingly, although this idea
originates from the analysis of physical actuators and sensors, it can also be
applied to a range of appliances and software applications whose actuators and
sensors are virtual, because they employ physical metaphors (e.g., switches or
scroll bars) for their control. We hence take a different point of view on user
interfaces: rather than considering a “knob” as a physical entity that is emu-
lated in GUIs, we consider the interaction semantics behind knobs and argue
that such “conceptual knobs” occur in different forms which all encode the same
interaction intention, namely scaling a value between two extremes. Further-
more, we show that different interaction semantics do not exist by themselves
but rather can be arranged in a semantic interaction hierarchy, with the most
specific interaction types that carry most semantic constraints at the bottom
and the most generic interaction types at the top.

Building on these concepts, we suggest that it is possible to create interfaces
that represent a substantial improvement over traditional type-based widgets by
implementing only a relatively low number of abstractions to capture interaction
semantics. This can be leveraged to reduce the developers’ effort for providing
interface descriptions and thus fosters their widespread adoption. Furthermore,
specifying interaction descriptions on this more abstract level allows human
interaction with smart things regardless of the type of interaction device or
the modality of the interaction (e.g., gestures, haptics, or speech). Finally,
the selected level of abstraction and the hierarchical structuring of interaction
semantics enable the interaction device to adapt the manifested interface to its
own capabilities and/or user preferences. For instance, an interactor without
a graphical interface could still be able to generate an interface for switching
between different modes, or for scaling (e.g., using its gyroscope). We thus
claim that a scheme which describes interactions semantically is, in general,
more suitable to support user interaction within smart things environments
than other approaches to user interface modeling proposed in the literature
(e.g., [21, 24, 27, 31]).

Restricting our scheme to the description of the atomic interactive compo-
nents (in our case, URI-identified resources) of a smart thing leads to a low
entry barrier for users (e.g., Web developers) to create interaction annotations
for devices. Our approach is thus well-adapted to the devices that are our main
concern: in the context of the Web of Things, smart things are rather sim-

6

ple devices whose capabilities (i.e., interactive components) are hierarchically
structured due to the adoption of a hierarchical resource-oriented architecture
(REST, see [7]). For this reason, it is possible to view such a device as a struc-
tured collection of its sensors and actuators rather than as a single entity that
supports complicated tasks.

However, even if interactive components of a smart thing are described inde-
pendently, they can still be aggregated within composite user interfaces without
explicitly modeling semantic relationships between components. This is the case
because the user interface should usually only reflect a devices’ internal state
and not introduce further constraints. As an example, consider a simple user
interface for a television set that comprises a volume level and an on/off switch.
Showing the volume level interface as inactive when the device is switched off is
then not a constraint that is introduced by the user interface but rather reflects
the fact that the volume cannot be set without switching on the television set.
In our proposed concept, one would independently describe the switch and the
volume level and leave the decision whether the volume level is active or not to
the controlled device itself rather than to the interactor that renders the user
interface. We thus argue that the proposed language can also be used to de-
scribe interfaces for composite devices with dependencies between components
and refer to the discussion of this property in Section 7.

Apart from keeping descriptions simple to understand and produce, the de-
composition of devices into their atomic interactive components has further ad-
vantages regarding the generation of user interfaces: while it remains possible to
create thing-centric interfaces (i.e., to meld all capabilities of a device into a sin-
gle interface), the proposed approach adds the possibility to create task-centric
interfaces by integrating components of different smart things within a single
user interface. Examples for interfaces that are tailored around a specific task
are an interface that displays information from all temperature sensors within
one building or an interface geared toward watching a movie that incorporates
sensors and actuators from the television, stereo, and DVD player. Thus, this
property allows different devices or persons to view “their” smart environment
from different perspectives.

4 Capturing Interaction Semantics

In classical model-based approaches, interactive components are modeled mainly
or exclusively using data types. While our proposed description methodology
also makes use of data type information, it merely does so to describe the
exchanged data and not the user interface of the component per se. In fact, we
propose to describe components by using interaction descriptions that consist
of two parts, data type information for the data exchanged with the component
and information about the high-level semantics of the interaction.

7

4.1 Data Types

In the proposed interaction description format, every atomic interactive compo-
nent has an associated data type that represents the type of the entity state for
sensors and stateful actuators. For stateless actuators, it gives the type of the
argument that should be supplied when triggering the actuator. Our descrip-
tion supports the data types boolean, integer , number , enum, and string , where
the well-known types have the usual semantics. enum requires the definition of
allowed values, which can be given as a static list of values or as a list refer-
enced by a URL for dynamic sets of allowed values. Optional arguments include
defining the value’s unit and the allowed values or range. Allowed values for the
string type can be described as a regular expression or a definition according
to the JSON Schema1 format. Again, we stress that these types are not given
to derive an appropriate user interface but rather to populate derived interfaces
with meaningful values.

4.2 Semantic Interaction Abstractions

Knowledge about the data type already specifies how to interpret the compo-
nent’s state and which values are allowed as state and thus enables basic type-
safe interaction. Considering as an example a window blind controller with the
states “down,” “stop,” and “up,” a graphical interaction device could, for in-
stance, generate a drop-down list using only the type information (in this case,
enum). However, this interface is hard to understand and use, and unnatural:
it demands that users perform the mapping of their interaction intent (moving
the blind) to the choice of a state of the blind motor. Furthermore, to bring
the blind down just a little bit, the user would have to open the drop-down list
twice in rapid succession to start and stop blind movement, respectively. These
problems arise because the data type is only a specification of the program in-
terface to an interactive component and does not consider the semantics of the
interaction. As a way of capturing these interaction semantics, we propose the
concept of semantic interaction categories for interactive components, which we
call interaction abstractions. We have identified about a dozen distinctive inter-
action abstractions that capture interaction semantics related to sensing as well
as stateless and stateful actuation. Clearly, not every interaction with any smart
thing falls into one of these categories and the classification should, therefore,
be considered as a proof of concept that can be extended as required. However,
we found that the proposed categories already cover all of the use cases that we
consider within our deployments. The set of abstractions itself was obtained by
considering typical devices in several core domains where smart things play, or
are supposed to play, an important role:

• Home and building automation systems: lighting, HVAC, curtain & blind
control, audiovisual equipment, security, electricity metering, and so on.

1http://json-schema.org/

8

Name
Example
Symbol

State Description Example

get data General data. Display current song.

get value Ordered domain. Display temperature.

get

proportion

Ordered domain with
fixed range.

Display load of a server.

Table 1: Interaction abstractions for sensors

• Home and office appliances: washing machines, coffee machines, and so
on.

• Auditorium control systems: lighting, A/V selection and controls, controls
for peripherals like blackboards or projectors.

• Cars: air conditioning, drive controls, comfort controls, and so on.

• Public services: ticket machines, vending machines, and so on.

• Electronic toys and musical instruments.

Three of the proposed interaction abstractions apply to sensors, two to
stateless actuators, and eight to stateful actuators. For sensors (Table 1), an
interaction abstraction captures the nature of the measured data. The get

proportion abstraction, for instance, suggests that the value measured by a
sensor should be considered with respect to its possible range and rendered ap-
propriately, for instance as a progress bar or gauge. For actuators (Tables 2 and
3), the interaction abstraction stands for a primitive of actuation that provides
information with respect to three dimensions: the abstraction of actuation, the
semantics of values in the domain of the actuator, and the suggested interaction
pattern. As an example, consider the move abstraction (cf. Table 3) with data
type enum for the window blind controller that was described before:

9

Name
Example
Symbol

Description Example

trigger Trigger an action. Reset button.

goto
Adjust

one-dimensional state.
Change track on hi-fi

unit.

Table 2: Interaction abstractions for stateless actuators.

(a) (b) (c) (d)

Figure 3: Example user interfaces for (vertical) move actuators.

• The abstraction of actuation refers to the physical (or metaphorically
physical) actuation that the actuator can perform. The move interac-
tion primitive, for instance, implies that the performed actuation refers to
a movement.

• The semantics of values associate the values in the domain of the inter-
active component with a meaning or function. For move, the domain is
ordered with a neutral value in the middle, the neutral value corresponds
to no movement, and values below and above correspond to a movement
in one or the other direction.

• Concerning the suggested interaction pattern, a move interaction is usu-
ally composed of two parts: starting and stopping the movement. An
interactor can implement this by, for instance, falling back to the neutral
value (stop) when the user activity ends (e.g., when the user releases the
corresponding button).

Some interactors that satisfy these requirements for the move abstraction are
shown in Figure 3. Other components with the interaction abstraction move are,
for example, a robot arm motor, or an actuator that supports rewinding and
fast-forwarding a video (by “moving” the current point in time). As Figure 3
suggests, interaction abstractions are modality-independent and can be mapped
to graphical widgets, physical interactors, and speech or gesture commands.

10

Name
Example
Symbol

State Description Example

set General data.
Set text displayed on a

screen.

set value Ordered domain. Set minutes until alarm.

level
Ordered domain with a

neutral value.
Scale an image.

set

intensity

Ordered domain with
fixed range.

Set loudspeaker volume.

switch

mode
Operating mode. Switch ventilation mode.

switch On or off. Switch on/off lamp.

position
Point in

one-dimensional space.
Position window blind in
one-dimensional space.

move
One-dimensional

movement.
Move window blind.

Table 3: Interaction abstractions for stateful actuators.

Furthermore, a particular interaction abstraction usually can be superimposed
on interactive components of multiple different data types. This is the case
because it encodes the high-level semantics of an interaction, while the data type
depends on the implementation of an interactive component. As an example,
a more sophisticated blind control could be of type integer (instead of enum),
where the absolute value of the state would correspond to the speed of the blind
movement. Still, the appropriate interaction abstraction for this controller is
move.

The interaction abstractions can be organized in hierarchical taxonomies
(Figure 4), where the root abstractions get data, trigger, and set are the
most abstract ones possible. These three abstractions yield simple, solely type-
based interactors. Descending within the hierarchy, the semantic information

11

"General Data"

get data

sensors

get value

get proportion

stateless actuators

trigger

Push Me!

goto

stateful actuators

enter state

set

position

+-

levelset intensity

switch

on off

move

switch mode

0

105

set value

Figure 4: Interaction taxonomies for sensors, stateless actuators, and stateful
actuators.

gets more concrete. As an example, consider level, the parent abstraction
of move. It suggests that the domain of the actuator’s state is ordered with
a neutral value which should be reflected by corresponding interfaces (e.g., a
knob that snaps into place in the middle position). The move abstraction adds
information about the effects of setting this state (a movement).

The hierarchical organization of interaction abstractions can be exploited
as a fallback mechanism: if an interaction device does not know or does not
support a particular interaction abstraction, it can traverse the tree upward until
it finds a more general abstraction that it can handle. This enables the scheme
to also be used by simple interactors that only support a subset of the available
abstractions. Furthermore, the taxonomy stays extensible as new abstractions
do not have to be known by all interaction devices from the beginning. One can
thus build large taxonomies with arbitrarily specialized interaction abstractions
at their leafs.

Within our implementation of this concept, we aimed at generating small
taxonomies to make the descriptions easy to understand, embed, and interpret
for developers. We found, however, that the small set of abstractions proposed
earlier already covers a large set of interactive components (cf. Section 7).

5 Elements of a Semantic Interface Description
Language

The classification of interaction semantics together with the described taxon-
omy can be used to define a concrete semantic interface description language
by embedding information about the appropriate data type and interaction ab-
straction as metadata into the interactive components of devices. In this section,
we present elements of an implementation of such a language that is based on

12

the interaction abstractions shown earlier (Tables 1-3), and that allows user
interface devices to render interactors when confronted with a corresponding
interactive component. This language was used in a prototype implementation
of a generic mobile user interface for smart things, which is described in Section
6.

For reasons of legibility and understandability, the reference implementation
of our proposed language is shown in JavaScript Object Notation2 (JSON). A
description of the window blind controller mentioned above, for instance, then
looks as follows:

1 {

2 "type" : {

3 "name" : "enum",

4 "values" : ["down","stop","up"]

5 },

6 "abstraction" : {

7 "name" : "move",

8 "orientation ": "vertical"

9 }

10 }

The proposed concepts of our language can, however, be expressed and embed-
ded in multiple formats, for instance as XML documents or as HTML-based Mi-
croformats markup. For annotating Web-based smart things, we found HTML
Microdata3 to be particularly convenient because it allows to embed information
that is meaningful for humans and machines within the same document. Using
Microdata thus allows us to create a document that looks like an ordinary Web
site to humans but still contains all information that is necessary for interaction
devices to generate user interfaces. The following markup illustrates how to em-
bed the aforementioned description as Microdata in the HTML representation
of a device:

To move the blinds <span

itemprop =" orientation">vertical ly, set the

controller to one of the values <span itemprop ="type -

range">[down ,stop ,up] (data type: <span

itemprop ="type -name">enum).

An alternative to this direct embedding of interaction metadata in the Web
representations of our smart things is to store the descriptions on a remote
server and have devices provide links that point to them, for instance using
Web Linking4.

Our proposed interaction description language has been built around a small
kernel that consists of data type and interaction semantics information to keep
descriptions simple to understand and write for humans, and easy to parse for
machines. To enhance the experience of using an interface created from these

2http://www.json.org/
3http://w3.org/TR/microdata/
4http://tools.ietf.org/html/rfc5988

13

descriptors, we additionally propose optional properties that allow for the re-
finement of the interaction abstraction, for instance, to specify details of the
actuation or to define dedicated values. We briefly describe two such properties
that we found to be particularly helpful for augmenting automatically gener-
ated interfaces, anchors and orientation. Anchors can be used to add special
meaning to certain values or value ranges. For instance, specific values (e.g.,
the range of 95% to 100% when displaying the load of a server) can be marked
as potentially harmful (or particularly desirable), which then can be reflected in
the user interface. Similarly, especially for the move and position abstractions,
the desired interface orientation can be specified, for instance as vertical for a
window blind controller. Additional properties could be defined for increased
customization of user interfaces – doing so excessively, however, could poten-
tially corrupt the language’s simplicity. To allow for the possibility of manually
tailored user interfaces and the mixing of these and automatically generated
interfaces, our proposed description scheme also includes the possibility of spec-
ifying links to dedicated Web interfaces that can be displayed by interaction
devices.

We used JSON Schema, a specification used to define the structure of JSON
data, to create a formal definition of our language. This definition includes
a human-readable documentation of the language and contains all information
necessary for structural validation of interaction descriptions, which is useful
in automated testing. To give an example of such a specification, the following
JSON Schema document shows the structural definition of the move abstraction:

1 {

2 "name ":" move",

3 "description ":" Temporarily level a value of a device

property negatively or positively. Implies a

virtual or physical movement.",

4 "type ":" object",

5 "properties ":{

6 "unit ":{

7 "type ":" string"

8 },

9 "neutral ":{

10 "type ":[" string","number "]

11 },

12 "default increasing value ":{" $ref ":" default inc.

value"},

13 "default decreasing value ":{" $ref ":" default dec.

value"},

14 "anchors ": {"$ref ":" anchors"},

15 "orientation ": {"$ref ":" orientation "}

16 }

17 }

The schemas that are required to validate an interaction description using
this document (e.g., anchors or orientation) are defined in separate definitions
that are not reproduced here.

14

6 A Generic Mobile User Interface for Smart
Things

To evaluate the discussed concepts in practice, we implemented a prototype
application for mobile devices running the Android operating system. This
application interprets our interaction descriptions (see Sections 4 and 5) and
allows end users to interact with devices via automatically generated interfaces.
End users can also store interfaces locally on their interaction device and can
aggregate multiple of these within composite interfaces (i.e., as widget lists).
Specifically, using the application, users can create new task-centric composite
interfaces and give them a name that one can better relate to, such as “My
Lecture Hall Controls.” To populate a composite interface with widgets, users
can then select from the stored interactors. Composite interfaces can also be
associated to specific locations; for instance, an individually tailored lecture
room interface could be loaded whenever the user enters that room.

Our interactive components embed interaction descriptions as Microdata
within their HTML representations, which is mapped to our JSON reference
format using a discovery service that can handle smart things with embedded
semantic descriptions, presented in [14]. When the mobile application discovers
such a component, it retrieves its interaction description and instantiates an
appropriate interactor. If multiple suitable interactors are found, one of them
is rendered and the user is given the opportunity to browse through the other
interactors. From this point on, the application uses HTTP requests to get and
update the state of the component by exchanging plain values that correspond
to the type definition of the interactive component. Our application immedi-
ately provides multiple different interactors to users because the prototype was
created to load interfaces with different interaction modalities for demonstra-
tion purposes. For a final system that is used by end users, a single interactor
could be rendered, with the possibility of loading more interfaces if desired by
the user.

We implemented various graphical interactors (e.g., gauges, click wheels,
knobs) that correspond to the defined abstractions (see Figure 5 for some ex-
amples). Some of these also capture the optional definitions (for instance, a
knob with a value range as anchor that causes vibration and turns red when
this range is entered). Furthermore, we used smartphones as haptic input de-
vices and mapped interaction abstractions to physical movements of the handset
or interaction with the touchscreen. For instance, the handset can be tilted or
turned like a knob to switch between operation modes or to move a robot arm
(see Figure 6). One can trigger or switch by shaking the handset, and by
swiping over the screen, one can use the goto abstraction for stateless actu-
ators. The implemented generic mobile user interface for smart things shows
that it is indeed possible to map the interaction abstractions to heterogeneous,
also nongraphical, modes of interaction.

To further explore the modality-independence of the proposed description
scheme, we also investigated speech-based interaction where appropriate speech

15

Swipe to adjust the
brightness of the Red LED!86%

Shake to switch the
device on/off!

Figure 5: Smartphone interfaces for controlling the brightness of a LED (“set
intensity”, left and middle) and a power switch (“switch”, right).

Figure 6: Rotating the smartphone to move a toy robot arm (“move”).

commands are inferred based solely on the semantics captured by the interac-
tion abstraction. The only additional information needed to enable actuation
commands is related to the selection of the interaction target (e.g., by using
the target’s name): for a volume controller, the target could be “Volume”, for
a window blind motor, “Blind”; and so on. This information is not captured
by the interaction abstractions, as it is specific to every single actuator and
determined by user preferences. It can thus be provided either by the inter-
active component (e.g., as an additional name-annotation) or alternatively by
giving the user appropriate means to name smart devices himself. We defined
speech commands such as “move target up/down” and “stop target” for vertical
move actuators. Note that, besides leveraging the semantic information of the
interaction abstractions to choose appropriate command phrases to listen for,
we can also benefit from associated information about the interaction pattern.
For instance, the pattern in a move interaction is to start the movement and

16

then stop it again when the moved object has reached the desired position.
For speech interaction, this pattern translates to listening for a “move target
up/down” command, followed by a “stop target” command rather than only
a single command, such as, for instance, for a switch. Finally, the automati-
cally created speech interfaces also allow users to select their desired mode of
interaction, for instance by choosing which of the commands “increase/decrease
target” or “set target to value” to use for set value interactors. We imple-
mented speech-based interfaces for all proposed interaction abstractions in the
smartphone application and found that, in all cases, these were appropriate and
easy to use for controlling smart devices.

To start controlling a smart device, the smartphone must initiate a connec-
tion with the device and retrieve the embedded information about its interface.
Because our prototype application deals with smart things in a Web context,
we assume interactive components to have a Uniform Resource Locator (URL).
Given such URLs for smart things, resource association in our mobile prototype
application can be performed by various means: apart from manually entering
the URL of the object to interact with, the application is able to decode 2D
barcodes that encode device URLs. Furthermore, when installed on a device
that features an active Near Field Communication (NFC) component, an ap-
propriate interactor is displayed automatically when the phone comes close to
an NFC tag that encodes a resource URL. Finally, by making use of geograph-
ical location information offered by many of our prototype devices, we have
added context-sensitive behavior to the application: using the GPS module of
the mobile device, interfaces that are stored on it are ranked with respect to
their distance to the user and the closest interfaces are directly presented in the
application’s main interface. Operation within secured environments is enabled
by prompting the user to enter a username and a password to interact with
restricted device components.

7 Evaluation

The proposed description language and the mobile prototype application have
been deployed in various environments to determine whether our approach is
general enough to capture the interaction semantics of typical devices in In-
ternet of Things scenarios. We demonstrate the generality of the language by
discussing the multitude of devices that were annotated using the language and
give details about the concrete deployments in our laboratory and in private
homes in Section 7.1.

Next, in Section 7.2, we demonstrate that our proposed interaction descrip-
tions are producible not only by experts who are already familiar with our
system but also by individuals with little prior training. To show this, we
conducted a user study among 780 students from all faculties of our institu-
tion whose task was to create interaction descriptions for 19 scenarios from the
home automation domain. This study thus elicits the developers’ perspective
with respect to the creation of user interface descriptions.

17

Finally, in Section 7.3, we show that the interfaces that are generated from
our descriptions can be efficiently used by end users. After discussing how users
interacted with annotated devices from our deployments, we elaborate on two
case studies: the first shows how our language can be used in the context of
a lecture hall control system. Here, we particularly consider the creation of
composite, task-centric, user interfaces. The second case study, a user interface
for a music player, demonstrates that our interaction descriptions can be used
to create user interfaces for devices with a complex internal state, even though
they do not explicitly model dependencies between interactive components of a
device.

7.1 Assessing Generality: Laboratory and Real-World De-
ployment

To assess the generality of our proposed language, we first deployed the system
in a laboratory environment. We added interaction annotations to several ex-
isting deployments of smart things present in our lab: SunSPOT sensor nodes
(sensors: temperature, light, acceleration, orientation; actuators: tri-colored
LEDs), smart plugs (sensor: electricity meter; actuator: power switch), a toy
robot (sensor: ambient light; actuators: three motors), a remote-control toy
car, mobile loudspeakers, and a smart thermostat. In addition, we created
mockup implementations of a home automation system with embedded inter-
action annotations (lighting, blinds, stereo set, TV) and a lecture hall control
system (volume and microphone controls, lighting control, A/V, peripherals,
etc.). Specifically for the lecture hall controls, we modeled the exact capabil-
ities of the system installed in our institution’s lecture halls, which had not
been considered earlier when designing the interaction abstractions. To evalu-
ate the performance of the scheme with respect to more complex devices, we
also created a Web proxy for the iTunes music player application and modeled
interfaces to its functionality (e.g., controlling playback, adjusting the volume,
choosing a track to play from a playlist) using our interactions markup. Both
the lecture hall controls and the music player are discussed in more detail in
Section 7.3.

Our scheme and the prototype application were also tested outside of a lab-
oratory setting, as two members of our research group deployed the system in
their private homes. These individuals have used the system about once per
day, to control entertainment equipment and smart electricity outlets with me-
tering and switching capabilities. At the time of writing, one of the private
deployments still exists and has been running for a year (intermittently). We
found that our proposed interaction descriptions covered all sensors and actu-
ators present in our laboratory deployment, in the home automation scenarios,
the lecture hall control mockup, and the music player.

18

7.2 Assessing Producibility: User Study

Apart from exploring whether our language is suitable for describing user in-
terfaces in our use case scenarios, we also investigated the producibility of our
proposed interaction description language by creators of user interfaces for smart
things. A preliminary evaluation showed that for members of our research group
it was easy to create the interaction markup for typical use cases: after a 2-
minute introduction to the language, these individuals were able to apply the
data type information and interaction abstractions to all devices and software
components described earlier. However, to assess the accessibility of the descrip-
tion scheme and the ease of creating such interaction abstractions for individuals
that had not been exposed to the system before, we conducted an online user
study. Participants (N = 780) were asked to select appropriate interaction an-
notations and data types from the set described in Section 4 for 19 different
scenarios ranging from a simple doorbell button and lighting scene controls to
the description of interactive components of a VCR. Our test concentrates on
the selection of appropriate abstractions and data types instead of having the
participants implement a description because the implementation step can be
fully automated by providing an application that takes the selected abstrac-
tion/data type pairs as input and produces annotations in the JSON reference
format (see Section 5).

The study participants were students from all faculties of ETH Zurich with
a self-reported average proficiency with Information and Communication Tech-
nologies (ICT) of 3.65 (SD = 0.82) on a 5-point Likert scale (1=No Knowledge,
2=Basic Knowledge, 3=Good Knowledge, 4=Advanced Knowledge, 5=Expert
Knowledge). The participants had no prior knowledge of our project and no
training with using the interactions scheme. They were presented with a 1-page
description and reference document during the survey, which they were asked to
study for about 2 minutes before working on the scenarios. For every scenario,
the participants were asked to complete four tasks: (1) Select the most appro-
priate interaction abstraction, (2) select the appropriate data type, (3) give a
confidence level for their choice in (1), and (4) give a confidence level for their
choice in (2), where they selected the confidence levels on a 5-point Likert scale
(1=Not confident at all ... 5=Very confident). We also recorded the time taken
by the participants to work on the individual scenarios.

Across all scenarios, the participants selected a correct interaction abstrac-
tion in 84.2% (SD = 6.99%) of the cases, on average. To do all four tasks
associated with a scenario, they needed 40.3s, on average, where the high stan-
dard deviation of 16.7s is to a large part due to the high average time of 93s
that participants spent working on the first scenario (a doorbell button) and can
thus be largely attributed to habituation effects, as the order of the scenarios
was not randomized. The self-reported confidence level of the participants was
4.09 on average, with minor fluctuation across all scenarios (SD = 0.26). Eval-
uating the performance of participants with an ICT proficiency of (5/Expert
Knowledge) (N = 170) separately revealed that these performed a little better
than the average, selecting an appropriate abstraction in 88.7% (SD = 10.47%)

19

Figure 7: Performance and timing values for each of the 19 scenarios.

of the cases (16.9 correct answers out of 19).
Figure 7 shows the average performance of the participants as well as their

timing values for each of the 19 scenarios. We present two distinct values to
assess the participants’ performance: the values for Exact Abstraction show
how many of the study participants selected the interaction abstraction which
captures best (in our opinion) the semantics of the described scenario, while
the Correct Abstraction designates the percentage of participants who selected
a suboptimal abstraction that is appropriate for the scenario but captures less
of the semantic information. For each scenario, the Exact Abstraction is stated
in brackets. In general, the set of Correct Abstractions for a given scenario is

20

the Exact Abstraction plus all abstractions on the path of the most appropriate
abstraction to the tree root in the taxonomy (see Figure 4). From the data,
one can see that, for some of the scenarios, people strongly agree with each
other and with our assessment concerning the type of abstraction to be used
(e.g., for the Light Switch, Lighting Scene, and Display Track Name tasks). For
others, though, there is considerable disagreement about which abstraction of
interaction to use. As an example, consider the Picture Size scenario, where
participants were asked to specify the appropriate abstraction to set the zoom
level for a digital picture frame between 20% and 200% where 100% is considered
the neutral value of the interaction. In our opinion, the Exact Abstraction for
this scenario is level as it allows the specification of 100% to be the neutral
value of the interactive component. 31.2% of the participants indeed selected the
level abstraction; however, another 39.1% chose to either model the interaction
as set intensity or as set value. This is not wrong but rather represents
a different way of interpreting this interaction, which does not emphasize the
modeling of a distinct neutral value. For the Equalizer scenario, where the Exact
Abstraction is also level and it is more obvious that the neutral value should
be explicitly modeled, agreement between participants is much higher: 70.3%
of participants selected the level abstraction in this case.

For other categories, such as move (scenarios Blind (Move) and RC Car),
abstracting from the scenario to the appropriate interaction specifier and espe-
cially matching the states of the interactor (up button pressed, down button
pressed, no button pressed) to the corresponding actuator states (up, down,
stop) was more subtle and hard to grasp for the participants. Another interest-
ing scenario is Blind (Position): here, only 23.2% of the participants selected
the position category while 44.9% selected its parent abstraction set value

which demonstrates that they did not include the semantic information regard-
ing the positioning in one dimension. A possible explanation for this behavior
is that scrollbar-based window blind controls are not widespread and thus were
considered unnatural by the study participants.

Because our interaction abstractions are modeled on “natural” types of in-
teraction with devices and software abstractions, we did already expect that
individuals would be able to annotate devices before seeing the results of the
user study. However, we were still surprised by the high accuracy and high
degree of agreement with our choices, and especially by the very low amount of
time that participants required to produce the descriptions, which was under
one minute per scenario in most cases. Summarizing, the results of our study
show that the proposed scheme is very accessible, and not only for people with
good knowledge of ICT systems: most participants were able to productively
use it within minutes and with only negligible prior training. Considering the
timing and confidence values, the tasks were also fast and easy to perform. We
expect the discrepancies between the choice of optimal and suboptimal abstrac-
tions to strongly decrease when individuals approach the task of modeling more
rigorously and in the context of actually providing user interfaces rather than
answering questions in a survey.

21

7.3 Assessing Usability: Deployments and Case Studies

After discussing the generality of our language and its producibility for de-
velopers, we now assess the usability of interfaces that are created from our
descriptions. In Section 6, we introduced a concrete implementation of a mo-
bile application that generates interfaces for all defined interaction abstractions
and enables the user to create composite, task-centric, interfaces. We want to
point out that, due to our interaction descriptions being language- and device-
independent, this application represents only one of several possible ways of in-
terpreting our interaction abstractions, where the interaction abstractions were
mapped to simple Android widgets or made use of the Android API for sensor
access and haptic feedback. Our prototype application was tested by several
members of our research group and used to control and monitor the devices
described.

Test subjects reported that the generated interactors felt intuitive and ap-
propriate for controlling and monitoring all devices. Specifically, giving only
very little information (i.e., only the data type and name of the interaction ab-
straction without any of the optional properties) in most cases was sufficient for
creating an intuitive user interface, as our descriptions consider the high-level
semantics of interactions on multiple levels, as detailed in Section 4.2. Test
subjects especially enjoyed those interactors that bridged multiple modalities
by, for instance, making use of the sensors of the mobile device (e.g., shaking
the phone or speech input). When we enriched the descriptions with some of
the defined optional description elements, test subjects in particular liked the
haptic feedback capabilities of the prototype application (e.g., vibrations and
sounds triggered by anchor annotations).

The usability of the interfaces that are generated by our specific prototype
is, however, grounded in the usability of the underlying Android widgets and,
therefore, does not allow to conclude that our description language necessarily
leads to usable and intuitive user interfaces in all cases. Still, our prototype
shows that the language can definitely be used to create good user interfaces,
even though only simple mappings between our abstractions and Android wid-
gets are employed. One could also implement device controllers that map our
descriptions to different, more customized, final interfaces, or to interfaces that
support even more modalities, such as gesture-based interaction. Furthermore,
applications could be created that allow for more sophisticated composite user
interfaces – our prototype uses rather simple widget lists for this purpose.

In the following, we discuss two case studies to illustrate different aspects of
our language and the prototype application: The first targets personalized com-
posite user interfaces in the context of a lecture hall control system. The second
demonstrates that our language can indeed be used to describe devices with
a complex internal state, although the interaction descriptions do not specify
dependencies between different interactive components of a device.

Case Study 1: Lecture Hall Controls To test our approach within a
real-world setting, we created a mockup that emulates the specific auditorium

22

(a) (b)

Figure 8: a) Picture of the lecture hall control system in use at our institution.
b) Individually composed task-centric interface for accessing frequently used
controls, rendered on an Android smartphone.

controls that are in use in our institution5 (cf. Figure 8(a)). From past expe-
rience, we know that users who were not familiar with this system had trouble
navigating its different tabs (Lights, Room, etc.) in search of their desired con-
trols, a common mistake being that the Video tab was selected when looking
for the controls to select the system’s video input source. We also experienced
that non-German-speaking individuals had trouble with some of the interface
labels due to poor translation, for example with the “Beamer Power” controls
(top left corner of the system in Figure 8(a); the term “Beamer” is commonly
used in German to denote a “Video Projector”). Our goal was to recreate all
atomic interactive components of this lecture hall control system and let users
configure composite interfaces that are customized according to their individual
preferences using our prototype application. We had not considered this specific
auditorium control system when creating the interaction abstraction categories
and designing our language.

To test our idea, we created a mockup lecture room automation back-end,
added all interactive components of the auditorium control system as endpoints
to that server, and described them using Microdata annotations. In total, we
needed less than 30 minutes to annotate all 28 components, which include the
room lighting (setting the lighting level and mode), shades and blinds controls,
ventilation mode settings, and controls for the video and slide projectors, sound
system, and blackboards. Some of these components have strong dependencies
between each other: for instance, the projector shutter is only available when

5An AMX LLC Level 3 Modero Auditorium Control System

23

iTunes music player

(a) (b) (c)

Figure 9: Example user interfaces for the iTunes application, rendered on an
Android smartphone: a) Composite interface that displays all interactors asso-
ciated with the iTunes application. b) Full-screen user interface for the volume
controller (“move”). c) Manually created Web interface to select tracks.

the projector itself is switched on.
The composite interface that results from combining a specific user’s most

frequently used controls is shown in Figure 8(b). To create that interface, one
uses our prototype application to access the URL of the mockup (e.g., by scan-
ning a barcode or an NFC tag that is attached to the physical device or to a
proxy), which causes it to load all interface descriptions of the individual com-
ponents and store the corresponding interfaces locally. Next, one instantiates
a new task-centric interface, gives it a name (in Figure 8(b), this is “My Lec-
ture Controls (HG F 7)”), and selects which of the 28 loaded components this
composite interface should contain. The user can also choose to interact with
each of the components individually by accessing the corresponding “full-screen
interactor” (some examples of these were shown in Figure 5). Components can
also be rearranged and can be removed from a composite interface.

Case Study 2: Music Player Our description language does not allow to
explicitly model logical dependencies between interactive components of a de-
vice. This means that it cannot be used to express how different resources that
all belong to the same smart thing influence each other and how they affect the
global state of the device. For instance, and referring to the example shown in
Section 3, switching a television set off using its on/off button has an imme-
diate consequence on the internal state of the device (i.e., it is now switched
off) and also affects its other interactors: it is not anymore possible to con-

24

trol the volume of the TV or change the channel. Although such dependencies
cannot be modeled in our system, it can still handle complex devices whose
components are tightly coupled: using our generated interfaces to interact with
the iTunes application – a smart thing with strong dependencies between its
actuators and sensors and a complex internal state – is intuitive and effective
(see Figure 9). Although only the smart thing itself (i.e., the iTunes applica-
tion) keeps the global application state and delivers only partial views to the
interaction application on the smartphone, the generated interface for the music
player creates the illusion of the interactor being aware of the full internal state
of the iTunes application. This is possible because the interaction between the
smart thing and the smartphone application is, indeed, two-way: the interac-
tion application can permanently update the state of the rendered interactors
by querying the smart thing. Therefore, if, for instance, a specific interaction
becomes impossible (such as controlling the volume of the TV set in the earlier
example), the user interface can immediately reflect that change. Example in-
teractive components that we modeled for the iTunes application are its volume
control (set intensity), Play/Pause switch (switch), Rewind/Fast Forward
(move), an interface to skip tracks (goto), and the current track name display
(get data).

8 Related Work

Model-based user interfaces have been investigated for a long time, initially
with the goal of relieving application programmers from the task of manual
GUI creation. [19] and [10] represent examples of early work that focused on the
automatic generation of GUIs. This investigation led to the emergence of several
model-based user interface description frameworks (see [20] for an overview and
classification). However, the automatically generated interfaces were often not
well adapted to the application, which led to poor user experience (see [18]) and
the process of creating the models themselves proved to be rather cumbersome
[21].

The Personal Universal Controller (PUC) / Pebbles project represents a
pivotal step in the development of automatic user interface generation that
would transform hand-held computers into universal control devices [22, 21].
There, a description concept and concrete UIDL was proposed for appliances
such as televisions, telephones, VCRs, and photocopiers. The proposed UIDL
focuses on enabling high-quality interfaces, where some specifications consist of
as many as 100 functional elements. The authors emphasized the producibility
of interface descriptions and thus have designed the language to be easy to
learn and use. This has been verified in a user study where subjects needed
only an hour and a half of studying a tutorial document to be able to write
specifications for a VCR interface. In [23], the authors present an extension of
their system and introduce “smart templates” such as media-controls or time-
duration, to better encapsulate the meaning of interactors – the media-controls
template, for instance, contains Play and Stop controls. In contrast to our

25

work, appliances are thus viewed as collections of tightly coupled “appliance
objects” and their descriptions explicitly include logical dependencies between
these functional units. Other approaches to mitigate the problem of interface
specifications that are hard to create include the development of specialized
authoring software to allow developers to produce user interface descriptions,
which has been done, for instance, in the MARIA project [27].

The tight coupling of functional user interface components makes interface
descriptions hard to produce and, as we have shown, is not necessary to create
usable and intuitive interfaces. Rather, following our approach, it is sufficient
to describe the atomic interactive components of a smart thing on a level that
allows to exploit metaphors that developers are already familiar with (i.e., the
example symbols that are associated with our interaction abstractions). This
usage of meaningful abstractions to avoid dealing with low-level details indeed
represents the main motivation for model-based approaches – by focusing on
making our interaction metadata simple to understand, produce, and embed,
we thus attempt to “overcome the traditional separation between end users
and software developers” [26]. Furthermore, in our approach, the generated
interfaces are understood as a representation of the internal state of the de-
vice which is continuously updated. [11] refers to such interfaces, which feature
bidirectional communication between the controlled smart thing and the in-
teractor, as complementary , duplicated , or detached user interfaces, depending
on what kind of (attached) user interface the controlled device itself provides.
This feature directly enables to transfer interfaces from one device to another at
runtime in a process called user interface migration [26]. Due to the platform-
independence of our language, this can involve migrating user interfaces between
heterogeneous devices with diverse capabilities, for instance from a smartphone
to a physical switch or button. Because our language specifies the high-level
semantics of concrete interactions, it also supports multiple contexts of use and
preserves usability under these adaptations, properties which are referred to as
multi-targeting and plasticity [3].

Our work fully integrates multimodal user interfaces for heterogeneous in-
teractors, and thus differs from approaches such as PUC, which are aimed at
“traditional” mobile user interfaces with touch panels or small keys [29]. This
is important as the rise of the ubiquitous computing paradigm – where a per-
son uses multiple networked computing devices that are embedded in everyday
real-world objects – has led to a broadening of the design space of automatic
user interface creation [28]. In the ubiquitous computing paradigm, interactions
often take place in a spontaneous, ad-hoc fashion. Content and user interfaces
now have to be adapted to a wide variety of devices with varying screen sizes
(e.g., mobile phones vs. public displays) and heterogeneous capabilities (e.g.,
networked physical buttons vs. tablets with touchscreen, gyroscope, and ac-
celerometer). This has in turn led to user interface models being increasingly
abstracted from concrete GUIs to place more focus on user interaction on more
abstract levels, which, in particular, targets multidevice interfaces [26, 1]. One
of the first examples for this development is presented in [9], which introduces
the notion of “universal interaction” and represents a first step in the develop-

26

ment of a service architecture that supports heterogeneity in interactors and the
controlled objects.

Another approach that targets the automatic provisioning of user interfaces
that support multiple modalities of interaction is the XWeb project [24]. In
XWeb, user interface information is conveyed using XView descriptions that
contain information about interface elements such as icons, field names, layout,
and help texts and can also be used to generate speech interfaces. In that
respect, one should also mention Interplay [17], which focuses on device and
content integration as well as on the interaction with devices at the level of
the task to be accomplished. To this end, this work provides valuable insights
about speech analysis to enable the system to map spoken commands to specific
tasks. An ambitious project that focused on enabling people with disabilities to
control everyday devices using their specialized controllers – for instance, user
interfaces that are attached to wheelchairs – is the Universal Remote Console
/ V2 (URC) specification [31]. There, target devices (e.g., ATMs) transmit a
description of their abstract input/output behavior to the controller, which then
renders an appropriate user interface. Finally, the SUPPLE project [6] addresses
the provisioning of alternative user interfaces by stating interface generation
as a discrete constrained optimization problem that can be solved on the fly,
where, for instance, a person’s motor impairments are modeled as a cost function
to guide the optimization. Furthermore, this article includes a discussion of
some other approaches to model-based user interface generation that have been
published in the last decade. In contrast to our approach, the projects mentioned
in this paragraph require user interface descriptions that are difficult to create
for users or, especially in the case of SUPPLE, can only be created by experts.

With respect to conceptual work in the domain of model-based user interface
descriptions that studies the various abstraction levels of user interface design
[27, 16], the main novel features of our interaction description language affect
the level of the “Abstract User Interface6.” At this level, the descriptions of
“Abstract Interaction Objects” [16] are independent of the concrete platform
and interaction modality and are, rather, described in terms of their “seman-
tics” [26]. While Paternò and Meixner refer to the semantics of user interfaces,
we consider the semantics of the interaction itself and identified three concrete
components, or dimensions, of the interaction semantics that we detailed in Sec-
tion 4.2. With respect to the concrete interaction abstraction categories, our
language is related to the Dialog and Interface Specification Language (DISL) [8]
and to XForms7. DISL proposes eight basic widgets for user interaction (vari-
ablefield , textfield , etc.). XForms controls include abstractions such as trigger
(activation of a process) and secret (entry of sensitive information in a form).
We also propose a set of basic interaction abstractions but do not mix informa-
tion that relates to the type of data exchanged with the high-level semantics
of an interaction (see Section 4). This abstraction and separation of concerns,
combined with the bidirectional communication between interfaces and interac-

6http://www.w3.org/TR/abstract-ui/
7http://www.w3.org/MarkUp/Forms/

27

tive components, is the key to our descriptions being easy to understand and
produce and still being expressive enough to cover all our considered use cases.

9 Conclusions

Most user interface description languages model user interfaces as composites
of interactors like text input, value selection, and output widgets where the
appropriate interactor for an interactive component is selected based on its
data type. We instead propose a way to express the semantics of an interaction
that enables the generation of more intuitive graphical widgets as well as the
mapping of interactive components to gesture-based, speech-based, or physical
interfaces. One main advantage of our approach is that the provisioning of a
live interaction mechanism is reduced to the embedding of simple interaction
information into the representation of a smart thing. Decomposing devices
into atomic components and adding a small amount of simple information to
collections of resources has proven to be well suited for describing resources in
an expressive but still easy-to-use way. The high level of abstraction of this
information allows for the generation of modality-independent user interfaces
while taking into account the capabilities of the target device. Smart things
themselves do not need to be aware of what types of devices (e.g., PCs, handheld
devices, or even other smart things such as Web-enabled knobs or switches) use
this information and what kinds of interfaces these provide for users to control
them.

Based on this approach, we presented a taxonomy of typical high-level in-
teraction semantics and a description scheme that allows for the automatic
generation of intuitive user interfaces for smart physical things and software
components. We described a mobile device controller that generates user inter-
faces for smart things that embed a description of their interaction semantics
according to our proposed language. The evaluation of the prototype in a labo-
ratory deployment as well as in several deployments in private homes produced
good results in terms of the usability of the generated interfaces and the gener-
ality of the description language: the application can generate convenient user
interfaces where the user can choose between graphical, haptic, and speech-
based interfaces. Our taxonomy of interaction abstractions covers all devices
(physical and virtual) that we tried to include in our deployments as well as
via mockups such as a lecture theatre control system. Finally, a study of 780
participants showed that our proposed concepts for a user interface definition
language can be used by tech-savvy individuals without any special training.

In conclusion, we remark that the proposed concept can be extended in sev-
eral directions: First, it would be interesting to explore how context-sensitive
interfaces could be better supported by tailoring interaction patterns to the
user’s situation. For instance, human users often wish to interact differently
with a device in their immediate vicinity than when controlling the device from
a remote location. Most users probably prefer gradual/relative interaction prim-
itives over absolute interactors to interact with devices which they can physically

28

observe (e.g., dimming the lights in the room they currently are in) while they
will prefer the latter for remote control (e.g., remote-controlling the lighting
in their home from abroad). Information about a user’s location relative to
the interactive component could thus be considered when rendering the user
interface. Second, our approach of modeling interaction semantics could be ap-
plied not only to interactive components but also to interactors like physical
buttons or software primitives. For instance, a knob could embed a description
indicating that it is usable for controlling any interactive component of type
set value. Given this information, one can envision the user-driven or even
automatic matching of interactive components and interactors in flexible smart
environments. If desired by users, physical interactors like switches could easily
be assigned to control any device that has appropriate interaction semantics
and would not be anymore limited to controlling statically assigned interactive
components.

References

[1] Beaudouin-Lafon, M. Designing Interaction, not Interfaces. In Proceed-
ings of the Working Conference on Advanced Visual Interfaces (New York,
NY, USA, 2004), M. F. Costabile, Ed., ACM, pp. 15–22.

[2] Beigl, M., Schmidt, A., Lauff, M., and Gellersen, H.-W. The
UbicompBrowser. In Proceedings of the 4th ERCIM Workshop on User
Interfaces for All (Oct. 1998), C. Stephanidis and A. Waern, Eds., pp. 51–
86.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon,
L., and Vanderdonckt, J. A Unifying Reference Framework for multi-
target user interfaces. Interacting with Computers 15, 3 (2003), 289–308.

[4] Corcoran, P. M., and Desbonnet, J. Browser-style Interfaces to a
Home Automation Network. IEEE Transactions on Consumer Electronics
43, 4 (1997), 1063–1069.

[5] Fielding, R. T. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.

[6] Gajos, K. Z., Weld, D. S., and Wobbrock, J. O. Automatically Gen-
erating Personalized User Interfaces with SUPPLE. Artificial Intelligence
174, 12/13 (2010), 910–950.

[7] Guinard, D., Trifa, V., Mattern, F., and Wilde, E. From the
Internet of Things to the Web of Things: Resource Oriented Architecture
and Best Practices. In Architecting the Internet of Things, D. Uckelmann,
M. Harrison, and F. Michahelles, Eds. Springer, Berlin, Germany, 2011,
pp. 97–129.

29

[8] Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M.,
Coyette, A., and Vanderdonckt, J. Human-Centered Engineering of
Interactive Systems with the User Interface Markup Language. In Human-
Centered Software Engineering – Software Engineering Models, Patterns
and Architectures for HCI, A. Seffah, J. Vanderdonckt, and M. C. Des-
marais, Eds., Human-Computer Interaction Series. Springer, Berlin, Ger-
many, 2009, pp. 139–171.

[9] Hodes, T. D., Katz, R. H., Servan-Schreiber, E., and Rowe, L.
Composable Ad-hoc Mobile Services for Universal Interaction. In Proceed-
ings of the 3rd Annual ACM/IEEE International Conference on Mobile
Networking and Computing (New York, NY, USA, Sept. 1997), L. Pap,
K. Sohraby, D. B. Johnson, and C. Rose, Eds., ACM, pp. 1–12.

[10] Kim, W. C., and Foley, J. D. Providing High-level Control and Expert
Assistance in the User Interface Presentation Design. In Proceedings of the
Human-Computer Interaction, INTERACT ’93, IFIP TC13 International
Conference on Human-Computer Interaction (New York, NY, USA, Apr.
1993), S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, and T. N. White,
Eds., ACM, pp. 430–437.

[11] Lorenz, A. Architectural patterns for applications with external user
interface elements. Pervasive and Mobile Computing 9, 2 (2013), 269–280.

[12] Mathieson, K., Peacock, E., and Chin, W. W. Extending the Tech-
nology Acceptance Model: The Influence of Perceived User Resources.
ACM SIGMIS Database 32 (2001), 86–112.

[13] Mattern, F., and Floerkemeier, C. From the Internet of Computers
to the Internet of Things. In From Active Data Management to Event-Based
Systems and More, K. Sachs, I. Petrov, and P. Guerrero, Eds., vol. 6462 of
LNCS. Springer, Berlin, Germany, 2010, pp. 242–259.

[14] Mayer, S., and Guinard, D. An Extensible Discovery Service for Smart
Things. In Proceedings of the 2nd International Workshop on the Web
of Things (New York, NY, USA, June 2011), D. Guinard, V. Trifa, and
E. Wilde, Eds., ACM.

[15] Mayer, S., Guinard, D., and Trifa, V. Facilitating the Integration and
Interaction of Real-World Services for the Web of Things. In UrbanIOT
2010; Workshop at the Internet of Things 2010 Conference (IoT 2010)
(Tokyo, Japan, Nov. 2010).

[16] Meixner, G., Paternò, F., and Vanderdonckt, J. Past, Present, and
Future of Model-Based User Interface Development. i-com 10, 3 (2011), 2–
11.

[17] Messer, A., Kunjithapatham, A., Sheshagiri, M., Song, H., Ku-
mar, P., Nguyen, P., and Yi, K. H. InterPlay: A Middleware for Seam-
less Device Integration and Task Orchestration in a Networked Home. In

30

Proceedings of the 4th IEEE International Conference on Pervasive Com-
puting and Communications (Washington, D.C., USA, Mar. 2006), IEEE
Computer Society, pp. 296–307.

[18] Myers, B., Hudson, S. E., and Pausch, R. Past, Present, and Future
of User Interface Software Tools. ACM Transactions on Computer-Human
Interaction 7, 1 (2000), 3–28.

[19] Myers, B. A. A New Model for Handling Input. ACM Transactions on
Information Systems 8, 3 (1990), 289–320.

[20] Navarre, D., Palanque, P., Ladry, J.-F., and Barboni, E. ICOs: A
Model-Based User Interface Description Technique Dedicated to Interactive
Systems Addressing Usability, Reliability and Scalability. ACM Transac-
tions on Computer-Human Interaction 16, 4 (2009).

[21] Nichols, J., and Myers, B. A. Creating a Lightweight User Interface
Description Language: An Overview and Analysis of the Personal Universal
Controller Project. ACM Transactions on Computer-Human Interaction
16, 4 (Nov. 2009).

[22] Nichols, J., Myers, B. A., Higgins, M., Hughes, J., Harris, T. K.,
Rosenfeld, R., and Pignol, M. Generating Remote Control Interfaces
for Complex Appliances. In Proceedings of the 2002 International Con-
ference on Intelligent User Interfaces (New York, NY, USA, Jan. 2002),
ACM, pp. 161–170.

[23] Nichols, J., Myers, B. A., and Litwack, K. Improving Automatic
Interface Generation with Smart Templates. In Proceedings of the 2004
International Conference on Intelligent User Interfaces (New York, NY,
USA, Jan. 2004), J. Vanderdonckt, N. J. Nunes, and C. Rich, Eds., ACM,
pp. 286–288.

[24] Olsen, D. R., Jefferies, S., Nielsen, T., Moyes, W., and
Fredrickson, P. Cross-modal Interaction using XWeb. In Proceedings
of the 2000 International Conference on Intelligent User Interfaces (New
York, NY, USA, Jan. 2000), ACM, pp. 191–200.

[25] Ostermaier, B., Kovatsch, M., and Santini, S. Connecting Things
to the Web using Programmable Low-power WiFi Modules. In Proceedings
of the 2nd International Workshop on the Web of Things (New York, NY,
USA, June 2011), D. Guinard, V. Trifa, and E. Wilde, Eds., ACM.

[26] Paternò, F. Model-based tools for pervasive usability. Interacting with
Computers 17, 3 (2005), 291–315.

[27] Paternò, F., Santoro, C., and Spano, L. D. MARIA: A Universal,
Declarative, Multiple Abstraction-Level Language for Service-Oriented Ap-
plications in Ubiquitous Environments. ACM Transactions on Computer-
Human Interaction 16, 4 (Nov. 2009).

31

[28] Ponnekanti, S. R., Lee, B., Fox, A., Hanrahan, P., and Wino-
grad, T. ICrafter: A Service Framework for Ubiquitous Computing Envi-
ronments. In Proceedings of the 3rd International Conference on Ubiquitous
Computing (Berlin, Germany, Sept. 2001), G. D. Abowd, B. Brumitt, and
S. A. Shafer, Eds., vol. 2201 of LNCS, Springer, pp. 56–75.

[29] Tokunaga, E., Kimura, H., Kobayashi, N., and Nakajima, T. Vir-
tual Tangible Widgets: Seamless Universal Interaction with Personal Sens-
ing Devices. In Proceedings of the 7th International Conference on Multi-
modal Interfaces (New York, NY, USA, Oct. 2005), G. Lazzari, F. Pianesi,
J. L. Crowley, K. Mase, and S. L. Oviatt, Eds., ACM, pp. 325–332.

[30] Weiss, M., and Guinard, D. Increasing Energy Awareness Through
Web-enabled Power Outlets. In Proceedings of the 9th International Con-
ference on Mobile and Ubiquitous Multimedia (New York, NY, USA, Dec.
2010), M. C. Angelides, L. Lambrinos, M. Rohs, and E. Rukzio, Eds., ACM.

[31] Zimmermann, G., Vanderheiden, G., and Gilman, A. Prototype
Implementations for a Universal Remote Console Specification. In Extended
Abstracts of the 2002 Conference on Human Factors in Computing Systems
(Apr. 2002), L. G. Terveen and D. R. Wixon, Eds., ACM, pp. 510–511.

32

