Service Integration - A Web of Things Perspective

W3C Workshop on Data and Services Integration

Simon Mayer
Institute for Pervasive Computing
ETH Zurich, Switzerland

simon.mayer@inf.ethz.ch

The augmentation of everyday things by embedding computation and com-
munication abilities enhances their utility beyond their traditional use and gen-
erates substantial added value for individuals as well as companies. While iso-
lated “smart things” are already able to provide useful services to human users
(e.g., Nike+!, smart plant care?, etc.), the real potential of this development
lies in interconnecting the capabilities and services of such augmented devices
and thus creating an Internet of Things (IoT). Based on this concept, the Web
of Things (WoT) [3] aims at connecting devices by making them prime citizens
of the World Wide Web. The main advantage of this approach is that the use of
widely deployed and accepted Web standards and protocols like the Hypertext
Transfer Protocol (HTTP) or Uniform Resource Identifiers (URIs) allows for
high scalability, increased interoperability, and a low barrier of entry to use the
system (via one’s browser).

Within the WoT, we advocate the use of Representational State Transfer
(REST)-driven [1] resource-oriented architectures, meaning that every concept
that needs to be used or addressed receives a URI. This has advantages with
respect to the exchange of information between devices and the use of services
provided by them, as all communication takes place via well-defined interfaces
using basic HTTP verbs (e.g., GET, POST, PUT, DELETE) with defined semantics
(cf. Figure 1). When used according to standards and together with the content
negotiation feature of HT'TP, this system already provides a very basic service
integration scheme whose features are similar to what the Web Services stack
(WS-*) offers [6].

GET http://.../testspot/sensors/temperature
\\ Accept: application/json

J >

/

" {"value":23.6, "unit":"degrees celsius"}

Figure 1: Request to GET the current temperature from a sensor.

1See www.apple.com/ipod/nike/
2See www.koubachi.org

Service Integration in the Web of Things

To make Web-enabled devices widely usable, the interaction with such smart
things must be facilitated for both, other devices and human end-users. Current
research in the WoT domain therefore targets the development of a discovery and
look-up mechanism for Web-enabled devices. To allow the semantic discovery
of resources and to enable users of the system to find appropriate services, our
approach is to enrich smart things’ representations with metadata like names,
brands, tags, or geographical information. Our main goal when designing this
markup is to create a scheme that is simple to use not only for users of annotated
resources but also for their creators: The annotation format should be simple
enough to be generated and embedded not only by programmers but also by
Web developers to annotate their Web services (and Web-enabled things). In
addition to the annotations required for making smart things findable, informa-
tion on a device’s program interface must be provided for enabling device-device
interaction and service integration across devices. To this end, smart things rep-
resentations must specify, at the least, which URL to use to invoke the service,
what parameters to supply, and what response format to expect. Knowledge of
this information already allows for the semi-automatic construction of physical
or virtual mashups, i.e., applications that combine the functionality of services
provided by smart things and programs: Based on the information about which
devices could in principle interact with each other, a system could recommend
possible interconnections and thereby support users in mashing up smart things.

In our projects and prototypes, we have been gathering experience with
using different lightweight markup languages like Microdata and Microformats.
We have also looked at how much information can be possibly deduced by
simply crawling the representations of Web-enabled things. Finally, we have
investigated approaches of how to integrate descriptions provided using different
annotation formats and languages. In the following, we give an overview of our
findings.

Crawling Web-enabled Smart Things

With the term crawling, we refer to the recursive analysis of the REST interface
of resources and of their outgoing links. This can be useful to extract mean-
ingful metadata from smart things that do not provide any explicit semantic
description. The crawling of smart things’ Web representations has been evalu-
ated within the context of the Social Access Controller (SAC) application that
allows the sharing of smart things via social networks [2]. When a user reg-
isters a smart thing to be shared, the thing’s resource structure is crawled to
identify its resources and capabilities and a list of the resources is compiled and
presented. The user can then select which of his friends can interact with what
resource.

During crawling, the application makes use of the HTTP OPTIONS and HTTP
GET requests as well as content negotiation to get an image of the interface of
a smart thing. Adhering to the REST architectural style during the design
of our resource prototypes thus allows to deduce meaningful information (i.e.,
allowed HTTP methods, response types, authentication mechanisms) in this
way. Crawling also has benefits with respect to the extensibility of the Social
Access Controller as all our prototypes created after the implementation of SAC

This is a sensor called TestSpot1 that delivers the current temperature <html><div itemscope>
(on GET requests): 22.4 degrees celsius.
This is a
TestSpot1 is located in Zurich, more precisely at (47.378088, 8.549902). | sensor called
TestSpotl that delivers the
current temperature (on
GET requests):
22.4
degrees celsius.</br></br>

TestSpotl is located in

Zurich, more precisely at
47.378088,

8.549902).
</br></br>

</div>
</html>

Figure 2: Microdata-based annotation for a sensor node: Browser view and
HTML markup with annotations.

were compatible with the application. However, the data generated by crawling
smart things does only represent very rough information and, specifically, does
not enable automated service integration for smart things.

Semantic Resource Markup

To allow smart things to give more specific information about their relevant
properties regarding service integration, we have chosen to evaluate the use of
lightweight annotation formats like Microformats or Microdata. The modeling
of services in a resource-oriented style advocates the use of service descriptions
embedded directly in the Web representations of resources. These concepts
are especially interesting in the considered domain, as they allow to provide
integrated descriptions for both, humans and machines (cf. Figure 2).

Microformats Microformats® are a set of formats that are used to embed
semantic information directly in the HTML representation of a resource by
re-using existing (X)HTML tags. Already well-known formats that are increas-
ingly being exploited by search engines to index information on the Web are
geo, adr (both part of the hCard Microformat), and hProduct. The most
relevant Microformat for service integration is hRESTS [4] which specifies in-
formation on the RESTful services provided by a specific resource. The ex-
ample (cf. Listing 1) illustrates how to use Microformats to describe the use
of a service called ACME Hotels by sending a GET request to the endpoint at
http://example.com/h/{id} where “id” is replaced by the appropriate hotel
ID.

The main advantage of Microformats is that they lower the barrier of entry
for people to contribute to the proliferation of semantic data on the Web. How-
ever, while for instance the geo Microformat allows for automatic processing of
the embedded information, hRESTS still does not allow a machine to automati-
cally deduce a meaningful interface to the service, for instance due to the lack
of type information on the variables to embed.

3See microformats. org

<div class="service">

1

2 <p class="1label">ACME Hotels</p>

3 <div class="operation">

4 The operation is invoked using a

5 GET on

6 <code class="address">http://example.com/h/{id}</
code>, with

7 the hotel ID replacing <code>id
</code>.

8 </div>

o </div>

Listing 1: hRESTS service description markup, adapted from [4].

Microdata Microdata is a HTML5 specification* by the Web Hypertext Ap-
plication Technology Working Group (WHATWG) to embed semantic infor-
mation within Web pages similar to the way this is handled with Microfor-
mats. The main difference to Microformats is that Microdata uses new tag
attributes (e.g., itemscope, itemprop, etc., cf. Figure 2) to embed informa-
tion while Microformats overload the HTML class tag, which causes problems
for parsers to differentiate between semantic information and styling markup.
The semantics of Microdata are provided by Microdata vocabularies such as
http://data-vocabulary.org that includes definitions for Person, Event, Or-
ganization, etc. These terms are already supported by Google, while Google,
Bing, and Yahoo! have created the schema.org initiative that defines the vo-
cabulary for a more extensive collection of concepts. There are currently no
efforts to standardize a Microdata-based description language for RESTful ser-
vices. Still, this could be a practicable approach to creating lightweight, easily
understandable, and expressive Web-based resource annotations.

Decoupling Representation and Interpretation

We have recently proposed a way to achieve a decoupling between the format a
resource uses to describe its service interface and the format that is consumed
by prospective clients [5]. Our approach was to create a semantic discovery
service for Web-enabled smart things that is based on the application of multiple
Discovery Strategies to a Web resource’s representation: One strategy would
handle Microformats-based annotations, another would search for Microdata
markup, etc. To make this mechanism future-proof, we allow for the creation
and updating of strategies at runtime. The service thus enables developers and
users to create and submit new methods of parsing the semantic descriptions of
Web resources on demand.

Conclusion

We believe that the creation of standardized interface descriptions and formal
service contracts is of great importance for RESTful services, especially given
the proliferation of RESTful APIs on the Web. In this paper, we have provided
an overview of approaches to enable the integration of services provided by Web-
enabled smart things within the Web of Things domain. While a well-designed

4See www.whatwg.org/specs/web—apps/current-work/

RESTful interface already allows for very basic service integration, we advo-
cate providing further information on the program interface of a service using
standardized markup embedded in the HTML representation of its resources.
We note that, while in our opinion the hRESTS Microformat lacks expressive-
ness, creating standardized RESTful service descriptions based on Microdata is
feasible and desireable.

References

[1] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[2] D. Guinard, M. Fischer, and V. Trifa. Sharing Using Social Networks in
a Composable Web of Things. In Proceedings of the 1st IEEE Interna-
tional Workshop on the Web of Things (WoT 2010) at IEEE PerCom 2010,
Mannheim, Germany, Mar. 2010.

[3] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From the Internet of Things
to the Web of Things: Resource Oriented Architecture and Best Practices.
In D. Uckelmann, M. Harrison, and F. Michahelles, editors, Architecting the
Internet of Things. Springer, 2011.

[4] J. Kopecky, K. Gomadam, and T. Vitvar. hRESTS: An HTML Microfor-
mat for Describing RESTful Web Services. IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology, 1:619-625,
2008.

[5] S. Mayer and D. Guinard. An Extensible Discovery Service for Smart Things.
In Proceedings of the 2nd International Workshop on the Web of Things
(WoT 2011), San Francisco, USA, June 2011. ACM.

[6] L. Richardson and R. Sam. RESTful Web Services. O’Reilly Media, Inc,
Sebastopol, CA, USA, First edition, May 2007.

