Distributed Computing (1987) 2:161-175 © Springer-Verlag 1987

Algorithms for distributed termination detection *
Friedemann Mattern

Department of Computer Science, SFB124, University of Kaiserslautern,
P.O. Box 3049, D-6750 Kaiserslautern, Federal Republic of Germany

Abstract. The termination problem for distributed computations is analyzed in the
general context of asynchronous communication. In the underlying computational
model it is assumed that messages take an arbitrary but finite time and do not nec-
essarily obey the FIFO rule. Time diagrams are used as a graphic means of repre-
senting the overall communication scheme, giving a clear insight into the
difficulties involved (e.g., lack of global state or time, inconsistent time cuts) and
suggesting possible solutions.

Several efficient algorithms for the solution of the termination problem are pre-
sented. They are all based on the idea of message counting but have a number of
different characteristics. The methods are discussed and compared with other
known solutions.

Key words: Distributed termination — Termination detection — Asynchronous
communication systems — Distributed programming — Decentralized control —
Atomic model of computation — Global snapshots — Communication deadlock de-
tection — Global quiescence — Diffusing computation

* This work has been supported by the Deutsche Forschungsgemeinschaft (DFG)
as part of the SFB124 research project “VLSI-Design and Parallelism”

Distributed Computing (1987) 2:161-175

RISTRIBUTED
QRAPUITING

© Springer-Verlag 1987

Algorithms for distributed termination detection *

Friedemann Mattern

Department of Computer Science, SFB124, University of Kaiserslautern, P.O. Box 3049, D-6750 Kaiserslautern,

Federal Republic of Germany

Friedemann Mattern received
the Diploma in computer science
Jrom the University of Bonn,
West Germany, in 1983. He is
now a research scientist in the
Department of Computer Science
at the University of Kaiserslau-
tern and is currently completing
his Ph.D. His primary research
interests include distributed al-
gorithms, programming language
design, and compiler construc-
tion. The author can be reached
by electronic mail via maitern
(@ incas.uucp or mattern%
uklirh. uucp @ Germany.csnet.

Abstract. The termination problem for distributed
computations is analyzed in the general context
of asynchronous communication. In the underlying
computational model it is assumed that messages
take an arbitrary but finite time and do not neces-
sarily obey the FIFO rule. Time diagrams are used
as a graphic means of representing the overall com-
munication scheme, giving a clear insight into the
difficulties involved (e.g., lack of global state or
time, inconsistent time cuts) and suggesting possi-
ble solutions.

Several efficient algorithms for the solution of
the termination problem are presented. They are
all based on the idea of message counting but have
a number of different characteristics. The methods
are discussed and compared with other known so-
lutions.

Key words: Distributed termination — Termina-
tion detection — Asynchronous communication

* This work has been supported by the Deutsche Forschungsge-
meinschaft (DFG) as part of the SFB124 research project
“VLSI-Design and Parallelism™

systems — Distributed programming — Decentra-
lized control — Atomic model of computation —
Global snapshots — Communication deadlock de-
tection — Global quiescence — Diffusing compu-
tation

1 Introduction

In distributed systems, where processes communi-
cate solely by messages, the detection of termina-
tion of a distributed computation is non-trivial
since no process has complete knowledge of the
global state, and global time does not exist a priori.
The distributed termination problem was brought
into prominence by Francez (1980), and since then,
numerous solutions with different characteristics
have been proposed. Most of these solutions are
based on CSP or some other model of distributed
computation with a synchronous message passing
scheme. In contrast to this we will discuss the dis-
tributed termination problem in the more general
context of asynchronous communication, where
transmission delays are arbitrary but finite and
messages are not necessarily received in the same
order in which they were sent.

A distributed computation is considered to be
globally terminated if every process is (locally) ter-
minated and no messages are in transit. “Locally
terminated” can be understood to be a state in
which a process has finished its computation and
will not restart any action unless it receives a mes-
sage. This abstract view of distributed termination
is equivalent to a global deadlock state in the com-
munication deadlock model discussed by Chandy
et al. (1983) and Chandy and Misra (1985). It is
merely a matter of interpretation as to whether
a system is terminated or deadlocked; the more

162

abstract and general term global quiescence is now
sometimes used to denote such situations (Chandy
and Misra 1986; Shavit and Francez 1986). The
problem is to design a scheme which will detect
global termination or quiescence by means of addi-
tional control messages.

Termination, as we understand it, is a property
of the global state of a distributed computation.
The termination predicate is persistent, i.e., once
such a state has been reached, it will “never”
change. Our communication oriented termination
model in which each process is blocked and every
communication channel is empty, contrasts with
a more general but also more application depen-
dent termination model, in which a distributed
computation is considered to be finished, if some
arbitrary predicate on the global state has been
reached.

Persistent predicates of the global state in dis-
tributed systems can be tested by distributed snap-
shot algorithms; the basic algorithm (Chandy and
Lamport 1985) is easily adapted for asynchronous
message passing schemes without FIFO character-
istic. Such a snapshot algorithm may in principle
be used to detect the communication oriented ter-
mination property (Bougé 1985b). However, be-
cause termination is a more specialized global
predicate, our well tailored algorithms are simpler
and more efficient than augmented snapshot algo-
rithms.

2 The atomic model of distributed
computation

A distributed system consists of a fixed set of pro-
cesses which communicate exclusively by messages.
All messages are received correctly after an arbi-
trary but finite delay, and communication is asyn-
chronous, i.e., a process never waits for the receiver
to be ready before sending a message. Therefore,
the communication system is assumed to have un-
limited buffer capacity (or, taking a more realistic
view, to maintain a transparent flow control mech-
anism). It is not required that messages sent over
the same communication channel obey the FIFO
rule.

We first present the characteristics of a transac-
tion oriented model of distributed computation sim-
ilar to an earlier one used in other termination
detection methods (e.g., Dijkstra et al. 1983; Topor
1984):

(1) At any given time, a process is either active
or idle.

(2) Only idle processes may receive messages. (This
simplifies presentation of the detection algo-

F. Mattern: Algorithms for distributed termination detection

rithms. It is not a serious restriction, since due
to (5) a process may change from active to idle
shortly before receiving a message. The condi-
tion can also be fulfilled by buffering incoming
messages and considering this message buffer
to logically belong to the communication sys-
tem).

(3) On receipt of a message a process may change
from idle to active.

(4) Only active processes may send messages.
(Since we are not concerned with the initializa-
tion problem, we assume that all processes are
initially idle and a message arrives from outside
the system to start the computation; alterna-
tively we may assume that initially a process
may be either active or idle).

(5) A process may change from active to idle at
any time.

We confine ourselves to systems in which every
process will eventually become idle, although this
property is generally undecidable. It can easily be
verified that if one of the termination detection al-
gorithms is applied to a system in which some pro-
cesses remain in their active state forever, the algo-
rithm itself will not terminate.

If a process is only active during a finite time
interval [t,,t,], the exact duration of its active
phase is irrelevant. Because message delay is arbi-
trary, all messages sent during this interval could
also be sent at the beginning of the phase, taking
a little longer on their way to the destination pro-
cess (Figs. 1, 2).

A convenient method of representing the dy-
namic overall communication scheme is by means
of time diagrams: For each process a horizontal
line is drawn parallel to an imaginary global time
axis and the activity of the process is emphasized.
In the case of the atomic model this is indicated

e

Fig. 1

Fig. 2

F. Mattern: Algorithms for distributed termination detection

by a dot. Messages are drawn as arrows, going
from one activation spot to another further to the
right. A time cut is regarded as a line crossing all
process lines; ideally (when relying on “global
time” in a sense that will become clearer later) this
would be a straight vertical line. More formally,
we can regard the time cut of a distributed compu-
tation in the atomic model as a set of actions char-
acterized by the fact that whenever an action of
a process belongs to that set, all previous actions
of the same process also belong to the set.

By assuming that all local actions are per-
formed in zero time, we get rid of the two process
states “active” and “idle”. In the atomic model of
distributed computation, a process may at any time
take any message from one of its incoming commu-
nication channels (provided one exists), immediate-
ly change its internal state and at the same instant
send out any number of messages, possibly none
at all (otherwise the computation will not termi-
nate). To take a more pictorial view of the atomic
model, messages can be thought of as flowing
steadily but with various speeds towards their des-
tination, eventually hitting a process. Then either
nothing happens and the message is quietly con-
sumed, or new “particles” are ejected, as if from
an atomic reaction. For convenience, we assume
that all atomic actions (including those of the su-
perimposed detection algorithm) are totally global-
ly ordered, i.e., no two actions occur at the same
time instant.

Provided that every local computation initiated
by the receipt of a message terminates, the transac-
tion oriented model is equivalent to the atomic
model of distributed computation. However, the
atomic model, which is similar to the actor mes-
sage-passing model (Clinger 1981), is especially ap-
propriate when reasoning about distributed sys-
tems, because there is no concurrent activity of pro-
cesses. This is in contrast with the synchronous
CSP-model, in which message passing is instanta-
neous but processes are concurrently active. We
consider the atomic model to give us a better in-
sight into the problem of distributed termination
and to assist us in finding solutions for it.

3 The problem

In the atomic model a distributed system is termi-
nated at time t, if at this instant all communication
channels are empty, i.e., if there is no message in
the system which has been sent but not yet re-
ceived.

In Fig. 3 the system is not terminated at ¢, be-
cause two messages on their way to P, have not yet

163

been received. The system is terminated at ¢ since
no message crosses the vertical line representing the
time cut. The system is also terminated at ¢, but
this is an initialization problem we will not discuss
further. Even if the time cut is represented by a
zigzag (Fig. 6), the system is terminated at the time
fixed by the rightmost point (t, in Fig. 6) if no
messages are crossing it. Obviously there can be
no process activity to the right of such a time cut.

Let us assume that one dedicated process P;,
the initiator, wants to know if the computation
has terminated. Because it has no global view of
the system, two problems arise:

(1) It can not ask the communication medium
or the channels whether there are any messages
still to be received, since information can only be
obtained from processes.

(2) If P sends control messages to all processes
then they are all received at different times. (These
additional control messages are distinct from the
basic messages of the underlying application).

Let us assume without loss of generality that
processes P, ..., B, are ordered in sequence of the
arrival of the control message and that P, is the
initiator sending control messages directly or indi-
rectly to all other processes.

To find out whether any messages have not
yet been received, the most obvious solution is to
let every process count the number of sent and re-
ceived basic messages. We denote the total number
of basic messages P, has sent at (global) time instant
t by s;(t), and the number of messages received
by r;(t). The values of the two local counters are
communicated to the initiator upon demand. Hav-
ing directly or indirectly received these values from
all processes the initiator can accumulate the
counters. In Fig. 4 the time instants at which the

control wave

Fig. 4

164

Pn f.
FP3
P2

P1 /w

Fig. 5

processes receive the control messages and commu-
nicate the values of their counters to the initiator
are symbolized by striped dots. These are con-
nected by a line (representing a “control wave”)
which induces a time cut. In the example shown
in Fig. 4 the accumulated values indicate that two
messages were sent and one message was received.
The initiator obtains the accumulated result after
t, and notices that the system has not been termin-
ated. This was because a message crossed the con-
trol wave, possibly initiating some communication
to its right (“behind the back communication”).

Unfortunately because of the time delay of the
control wave, this simple algorithm is not correct.
Figure 5 shows that the counters can become cor-
rupted by messages “from the future”, crossing
from the right side of the control wave to its left.

The accumulated result indicates that one mes-
sage was sent and one was received — although
the computation has not yet actually terminated.
The cause of this misleading result lies in the incon-
sistent time cut. A time cut is considered to be
inconsistent, if when the diagonal line representing
it is made vertical, by compressing or expanding
the local time scales (without changing the relative
order of the local events of a process), a message
crossing the control wave is found to travel back-
wards in time.

Using the set characterization of a time cut out-
lined in Chapter 2 we can define a time cut to be
inconsistent if a message from an action outside
the time cut set activates an action belonging to
the set.

In order to analyze the problem in more detail,
we denote the total number of messages sent and
received by all processes at time ¢ by

S(t):=).s;(t) and R(t):=) r;(t) respectively.

i i

We then formally define a system of processes
P (iel for some index-set I) in the atomic model
to be terminated at time ¢ if and only if S(t)= R(1).

One readily sees that this complies with the in-
tuitive understanding “all messages sent have been
received” or “all communication channels are
empty”.

F. Mattern: Algorithms for distributed termination detection

Since the control messages of the “naive count-
ing method” are received by the processes P at
different time instants t;, the initiator wrongly com-
pares

S*=) si(t) to R*=) r(t)

instead of comparing S(t) to R(t) for some fixed
time instant t.

Global time in a distributed system is merely
a myth, since a distributed system allows each ob-
server his or her own global time. The same com-
putation can be depicted by different but equivalent
time diagrams. These differ in the absolute global
time instants assigned to the atomic actions but
preserve the relative order of the local events of
a process as well as the activation ordering. The
latter represents the communication between ac-
tions; an action is activated by the receipt of a
message which was sent by another previously ac-
tive action — messages are always received after
they were sent. The invariance of the local event
ordering and the activation ordering amongst all
possible “observations” (i.e., time diagrams) of a
computation is fundamental for preserving causa-
lity (Lamport 1978 ; Clinger 1981).

In situations for which an equivalent time dia-
gram exists, where all processes receive the control
messages at the same time instant t,, we obviously
have a consistent time cut. In that case S$*=_S(t,)
and R*=R(ty) and consequently S*=R* implies
S(to)=R(tp), i.e. termination at t,. It should be
clear now, that the naive counting method does
work for consistent time cuts!

Various methods can be applied to correct the
situation for general time cuts, some ideas are:

(1) Detect inconsistent time cuts and possibly
restart the algorithm at a later time, i.e. detect the
arrival of a message from the future (Chapter 6.1).

(2) Avoid inconsistent time cuts by designing
a scheme which provides only consistent time cuts
and prohibits messages from crossing the wave
from right to left (Beilken et al. 1985).

(3) Do not rely on simple accumulated
counters; treat the basic messages more individually
in order not to relate the sending of one message
to the receipt of another (Chapters 6.2 and 7).

(4) Impose tighter control on the basic mes-
sages (e.g., freeze basic communication for a certain
time, acknowledge every single message directly,
impose a FIFO-ordering ...). We will not discuss
algorithms that rely on such methods, because they
give rise to inherently inefficient solutions or ser-
iously restrict our general model of distributed
computation,

F. Mattern: Algorithms for distributed termination detection

4 A solution — the four counter method

A very simple solution, which can be improved
upon in various ways, consists of counting twice
using the previously discussed (wrong) naive count-
ing method and comparing the results. After the
initiator has received the response from the last
process and accumulated the values of the counters
R* and S*, it starts a second control wave, resulting
in R"* and §'*. We claim that the system is termi-
nated, if the values of the four counters are equal,
LefRI=ISE—Rx Sk

In fact, we prove a slightly stronger result: If
R*=S"* then the system was terminated at the
end of the first wave (¢, in Fig. 6). A few very simple
lemmata prepare the proof of this conjecture.

Let t, denote the time instant at which the first
wave is finished, and t3>1(, the starting time of
the second wave (see Fig. 6).

(1) The local message counters are monotonic, t <
t" implies s;(t) <s;(¢') and r;(t) <r,(t)).
Proof. Follows from the definition.

(2) The total number of messages sent, or received,
is monotonic, t<t" implies S(t)<S(f) and
R(t)<R(?).

Proof. Follows from the definition and (1).

(3) R*<R(t,).

Proof. Follows from (1) and the fact that the
values r; are collected before (<) ¢,.

(4) S'"*=>S8(t3).

Proof. Follows from (1) and the fact that all
values s; are collected after (=) ¢5.

(3) Forall t: R(£)<S(1).

Proof. The nonnegative deficit D (t):=S(t)— R(t)
i1s the number of messages in transit; D(t)>0

is an invariant (induction on the number of ac-
tions).

The proof of the conjecture now follows directly:

R*=8"*=>R(t,) = S(t) (3,4
=>R(t;)=S(t,) (2)
=R(t,)=S5(t,) (5)

1.¢., the system is terminated at t,.

If the system is terminated before the start of
the first wave, it is trivial that all messages arrived
and hence the values of the accumulated counters
are identical. Therefore termination is detected by
the algorithm after its occurrence within two
“rounds”,

It should be noted that the second wave of an
unsuccessful termination test can be used as the

165

Fig. 6

first wave of the next trial. However, the problem
with this method is to decide when to start the
next wave after an unsuccessful test, since there
is a danger of an unbounded control loop being
set up. This possibility is avoided in the solutions
presented in Chapters 6.2 and 7.

One rather nice property of the method when
implemented on a ring is its symmetry. In this case
any process can start termination detection by
sending out a ciruclating control message which
collects the counters; synchronization or mutual
exclusion is not necessary, and several control
waves can be concurrently active. Furthermore, no
process needs to know the total number of pro-
cesses.

5 The sceptic algorithm and its variants

[t is observed, that the values of the counters ob-
tained by the first wave of the four counter method
can become corrupted if there is activity at the
right of the wave between t; and ¢, (the time delay
of the wave, see Fig. 6). To detect such activity,
it is also possible to use flags initialized by the
first wave, and set by the processes when they re-
ceive (or alternatively when they send) messages.
A second wave only needs to check if any of the
flags have been set, in which case a possible corrup-
tion is assumed. Several variants of this “sceptic
algorithm” can be devised (e.g., counting and
checking the flags in a combined wave (Kumar
1985)), but a general drawback is that in general
at least two waves are necessary to detect termina-
tion. Since the sceptic algorithm is merely a simple
variant of the four counter method, a proof is not
given.

In synchronous message passing models,
counters are not needed since a synchronous mes-
sage can not cross both waves, but flags to detect
“behind the back communication™ are still neces-
sary. Algorithms based on this principle are to be
found in previously described solutions of the ter-
mination problem (Dijkstra et al. 1983; Francez
and Rodeh 1982; Topor 1984).

It is possible to devise several variants concern-
ing the logical control topology:

166

An initiator asking every process individually
corresponds to a star topology. Implementation on
a ring is also possible, but symmetry is not as easily
achieved as with the four counter variant, since
different waves may interfere when a single flag
is used in each process.

Another very interesting control configuration
is a spanning tree, either fixed, or constructed dy-
namically (Lavallee and Roucairol 1986) or impli-
citly by an echo algorithm (Chang 1982). Echo algo-
rithms used as a parallel graph traversal method
induce two phases on a node: The “down” phase
is characterized by the receipt of a first control
message (which is propagated to all other neigh-
bors), the “up” phase by the receipt of the last
of the echoes from its neighboring nodes. (An echo
travelling in the opposite direction to a control
message is generated whenever the node is either
a leafl and gets a control message, is still engaged
with a previously received control message or when
the last echo from its neighbors arrives). These two
phases can be used as the two necessary waves
of the sceptic termination detection method (Mat-
tern 1986). The echo principle permits a decentra-
lized implementation of the sceptic algorithm, al-
lowing concurrency without as serious a bottleneck
as with the star topology.

Static trees are used in termination detection
algorithms by Topor, Francez and Rodeh for mod-
els based on synchronous communication (Topor
1984; Francez 1980; Francez and Rodeh 1982).
The more interesting dynamic spanning trees are
used in the diffusing computation scheme (Dijkstra
and Scholten 1980; Misra and Chandy 1982; Sha-
vit and Francez 1986) and also in the deadlock
detection method by Chandy et al. (1983). A similar
solution is presented in Chapter 7.

6 Single wave detection algorithms

Even if the system has already terminated when
a sceptic algorithm is started, in general at least
two waves are necessary. (If S* =0 in the first wave,
then the system was terminated initially; and, of
course, a second confirmation wave is not neces-
sary). At the expense of increasing the amount of
control information or augmenting every message
with a time stamp, termination can be detected
in one single wave after its occurrence.

6.1 The time algorithm

In the time algorithm each process is equipped with
a local clock represented by a counter initialized
to 0.

F. Mattern: Algorithms for distributed termination detection

P

Pn
P3 A
. past X&iﬂm future

P1 /

Fig. 7

A control wave started by the initiator at time
i, accumulates the values of the counters and “syn-
chronizes” the local clocks by setting them to i+ 1.
In this way the control wave separates “past” from
“future” (Fig. 7). A process is made aware of the
fact that it has received a message from the future,
Le., one that crossed the wave from right to left
and corrupted the counters, due to the time stamp
of the message being greater than its own local
time. After such a message has been received, the
current control wave is nullified on arrival at the
process (Fig. 7).

Since all inconsistent time cuts are detected, the
fact that the method is correct can be deduced
from the considerations at the end of Chapter 3.
The realization of a single initiator variant is
straightforward, here we give a slightly more com-
plicated symmetric implementation on a ring of n
processes (n>1) where any process may start the
termination test independently of all other pro-
cesses.

Every process F; (1 <j<n) has a local message
counter COUNT (initialized to 0) holding the value
s;—rj, a local discrete CLOCK (initialized to 0)
and a variable TMAX (also initialized to 0) holding
the latest send-time of all messages received by F.
F; behaves as follows:

(a) When sending a basic message to P:
1. COUNT«—COUNT+1;
2. send({CLOCK, ...)> to B;
/* time-stamped basic message */
(b) When receiving a basic
(TSTAMP, ...>:
3. COUNT«—COUNT—1;
4. TMAX +—max(TSTAMP, TMAX);
5. /* process the message */
(c) When receiving a control message
{TIME, ACCU, INVALID, INIT):
6. CLOCK «—max(TIME, CLOCK); /* syn-
chronize */
7. if INIT = /* complete round? */
8. thenif ACCU=0 and not INVALID
then “ terminated”™
9. else “try again?”
10. end_if’;

message

F. Mattern: Algorithms for distributed termination detection

11. else send{TIME, ACCU +COUNT,
INVALID or TMAX >=TIME,
INIT)
to -F{’jnm(hl]+l 5

12. end_if;

(d) When starting a control round:
13. CLOCK «—CLOCK +1;
14. send{CLOCK, COUNT, false, ;>

to 'F(.jmod n)+1 ;

A control message consists of four components.
The first indicates the (local) time at which the con-
trol round was started, the second is the accumula-
tor for the message counters, the third is a flag
which is set when some process received a basic
message from the future (TMAX=TIME) and the
last component is the identification of the initiating
process. The first component of a basic message
is always the time stamp.

It is easy to see that, for each single control
wave, any basic message crossing the wave from
the right side of its induced time cut to its left
side is detected. It is also obvious that different
control waves do not interfere, they merely advance
the local clocks even further. Once the system is
terminated, the values of the TMAX variables re-
main fixed and since for every process P
TMAX;<max CLOCK; (l1<i<n), the process
with the maximum clock value can detect global
termination within one round. Other processes
may need more rounds, but because of the clock
synchronization in line 6, the different clock values
should be rather close together. Optimizations con-
cerning this point are possible (e.g., allowing only
one active control wave per process or collecting
the maximum clock value while visiting the pro-
cesses).

Several variations of the time stamp principle
are possible, in some of which it is endeavoured
to maintain a global virtual time by synchronizing
the local clocks with every basic message. This
principle was inspired by Lamport (1978). Rana,
Apt and Richier make use of it in their termination
detection algorithms which rely on the synchro-
nous CSP-model (Rana 1983; Apt and Richier
1985). Reminiscent of this principle are methods
for obtaining consistent snapshots (Chandy and
Lamport 1985). Lai proposes a snapshot-based al-
gorithm for a general asynchronous and dynamic
model using time-stamped messages (Lai 1985,
1986) which is similar to our principle.

The values held in the counters serving as
clocks can be kept bounded, since if a new control
wave is only started after the previous one has fin-
ished, messages travelling backwards in time can

167

not cross more than one time-boundary. Therefore
a counter modulo k (k=>2) is sufficient, with the
only drawback that it is not possible to discern
very old messages from corrupting messages, possi-
bly resulting in unnecessary nullifications of the
control waves. Implementations of this principle
are especially well suited to single initiator configu-
rations.

The bounded clock-counter variant of the time
algorithm for k time-zones can be realized on a
star configuration (with E, in the center as the ini-
tiator) as follows. Each process P (1<j<n) has a
message counter COUNT initialized to 0, a boolean
flag TIME_WARP initialized to false (set to true
whenever a basic message from a future time-zone
arrives) and a variable TIME_ZONE with possible
values 0...k—1, initialized to 0. Any process F,
(j#0) behaves as follows:

(a) When sending a basic message to P:
1. COUNT«—COUNT+1;
2. send (TIME_ZONE, ... > to P;
(b) When receiving a basic
{TSTAMP, ...>:
3. COUNT«—COUNT—1;
4, TIME_ WARP«——TIME_WARP or
TSTAMP =(TIME_ZONE+ 1) mod k;
5. /* process the message */
(c) When receiving a control signal from F:
6. send (COUNT, TIME WARP> to B, ;
7. TIME WARP<«—false;
8. TIME_ZONE«—(TIME_ZONE+1) mod
k;

message

The initiator P, sends an otherwise empty signal
to each P, waits for the replies and accumulates
the reported message counters and TIME_WARP
flags. It announces global termination if the accu-
mulated counter equals 0 and all flags are false,
otherwise it begins another query.

Note, that although the clock counters can be
kept bounded, the same is not true for the message
counters since our model allows an arbitrary
number of basic messages to be in transit at any
time.

6.2 Vector counters

A drawback of the time algorithm is the augmenta-
tion of every basic message with a time stamp. Its
purpose is to detect messages from the future which
corrupt the counters. Another method of termina-
tion detection consists of counting the messages
in such a way, that it is not possible to mislead
the accumulated counters. We first describe an im-

168

plementation of this method on a ring of n pro-
cesses and then prove that this idea is correct.

Every process B, (1 <j<n) hasa COUNT vector
of length n, where COUNT[i] (1 <i<n) denotes
the i-th component of the vector. A circulating con-
trol message also consists of a vector of length n.
For each process P, the local variable COUNT[i]
(i#j) holds the number of basic messages which
have been sent to process P, since the last visit of
the control message. Likewise, the negative value
of COUNT[j] indicates how many messages have
been received from any other process. At any
(global) time instant, the sum of the k-th compo-
nents of all n COUNT vectors including the circu-
lating control vector equals the number of mes-
sages currently on their way to B for some fixed
k (1<k<n). It is easily verified that this property
is maintained invariant by the implementation
shown here. (Remember that in the atomic model
all local actions are assumed to be performed in
zero time.)

For simplicity in exposition of this algorithm,
we assume that no process communicates with it-
self and that P, is identical to P,. An arithmetic
operation on a vector is defined by operating on
each of its components; and 0* denotes the null-
vector.

Process P, behaves as follows:

{COUNT is initialized to 0*}
(a) When sending a basic message to P, (i #)):
l. COUNT[i]«—COUNT[i]+1;

(b) The following instructions should be executed
at the end of all local actions triggered by the
receipt of a basic message:

2. COUNT[j]«—COUNT[j]—1;
3. if COUNT[j]=0 then
4. if COUNT=0*
then “system terminated™
5. else send accumulate (COUNT)

to By
6. COUNT «—0%;
7. end_if;
8. end_if:

(c) When receiving a control message ‘accumulate

(ACCU>":

9. COUNT«—COUNT+ACCU;
10. if COUNT[] <0 then
11. if COUNT=0*
then “system terminated”
12. else send accumulate (COUNT»
to P, :

J

F. Mattern: Algorithms for distributed termination detection

13. COUNT «—0%;
14. end_if;
15. end_if;

An initiator F, starts the algorithm by sending the
control message ‘accumulate {0*>’ to P, ,.

Some sort of mechanism not actually shown
in the realization of the algorithm must be em-
ployed to ensure that every process is visited at
least once by a control message, i.e., that the circu-
lating control vector performs at least one com-
plete round after the start of the algorithm.

Every process counts the number of outgoing
messages individually by incrementing the counter
indexed by the receiver’s process number (line 1);
the counter indexed by its own number is de-
cremented on receipt of a message (line 2). When
receiving the circulating control message, it accu-
mulates the values (line 9). A check is then made
(line 10) to determine whether any basic messages
known to the control message have still not ar-
rived. If this is the case (COUNT[j]>0), the con-
trol message is removed from the ring and regen-
erated at a later time (line 5) when all expected
messages have been received. For this purpose,
every time a basic message is received, a test is
made to check whether COUNT[] is equal to 0
(line 3).

Note that lines 4-15 are only executed when
the control vector is at F. In order to understand
the algorithm it is helpful to realize that there is
at most one process P, with COUNT[;]>0 (an
easily verified property since no process communi-
cates with itself), and that if this is the case, the
control vector “parks™ at the process (guard at
line 10: line 12 is not executed and the control vec-
tor remains at P).

An interesting characteristic of this method is
that the control wave waits for basic messages
which take a long time. Another property of the
algorithm discerning it from previously described
methods, is that, once the control message has been
started and has made one full round, it remains
active until the distributed computation finishes
and termination is reported. Termination can be
detected by any process. The algorithm (at least
the version presented here) must not be started
more than once.

If it is not required that the control message
waits at nodes for outstanding basic messages, the
algorithm can be simplified considerably by remov-
ing lines 3-8 as well as lines 10 and 15. Other vari-
ants of the algorithm which allow processes to send
messages to themselves, or there to be several con-
currently active control waves, started by different

F. Mattern: Algorithms for distributed termination detection

processes, as well as implementations using other
logical configurations are readily devised.

The number of control messages of the algo-
rithm is bounded by n(m+ 1), where m denotes the
number of basic messages, because at least one bas-
ic message is received in every round of the control
message, excluding the first round. The fact that
after k rounds at least k—1 basic messages have
been received is easily proved by induction on the
number of control cycles k: The base case for k=1
is trivial. Inductively, assume that after k (where
k>0) rounds have been performed and the control
message is again at the initiator, at least k — 1 basic
messages have been received but termination has
not yet been detected. Then there exists a basic
message whose sending, but not receipt, was regis-
tered during the k-th round, i.e. a message that
crossed the k-th control wave of the time diagram.
As a feature of the algorithm, the control wave
belonging to the next round waits at the receiver
process for the expected message, if it has still not
arrived by this time. This shows that at least one
more message will be received during the (k+ 1)-th
control cycle.

In order to prove the central idea of the algo-
rithm, namely that the system is actually terminat-
ed at the instant when the accumulated vector be-
comes the null-vector, we examine the last cycle
of the control message in the time diagram depicted
in Fig. 8. (Remember that at least one round is
completed.)

Assume that the accumulated vector at some
process P is the null-vector (i.e. the number of regis-
tered messages sent by each process equals the
number of registered messages it received) but that
there is activity on the right of the control wave.
The earliest process (R, in Fig. 8) that becomes ac-
tive after the control wave at time t, can become
so only due to an activating message which crosses
the wave. This means that the sending of the mes-
sage is registered, but not its receipt. For a corrup-
tion of the counter COUNT [i] to take place, there
must be a compensating message that crosses the
wave from right to left whose arrival at P is de-

B

Pn
Pi \
’ :
J 1
P+t . AN
nonexisting ! !
corrupting 't t 2
message 1
Fig. 8

169

tected, but whose sending goes unnoticed. Such a
message must be received before ¢, (the time instant
at which the wave passes P) and consequently (be-
cause messages do not travel backwards in time)
must also be sent out before t;. However, every
message sent before ¢, is registered by the control
wave; no process activity exists at the right of the
wave before t;, because the first activation takes
place at t,>t;. We conclude that a message cross-
ing the control wave affects the counters in such
a way that no corruption is possible. Hence there
is no possibility of detecting false termination.

7 Channel counting

In the vector counter method each message is
counted twice; by its sender and by its receiver.
The sender has individual counters indexed by the
recipient of the messages, whereas the receiver does
not differentiate between the senders.

The channel counting method can be regarded
as a refinement of the vector counter method; the
receiver takes note of the sender and keeps track
of the number of messages received by each node,
using the appropriate counter. We make use of the
idea on a dynamically constructed tree. The princi-
ple is similar to a recently presented method (Ku-
mar 1985) which is based on counting messages
on every communication channel and a marker
which traverses the network on a cycle.

Each process B has n counters, Cj,, ..., C}h,
for outgoing messages and n counters, Cy, ..., C,;,
for incoming messages. C;; is incremented on re-
ceipt of a message from process P, and Cj; is incre-
mented when sending a message to F,. Upon de-
mand, each process informs the initiator of the
values of the counters. The initiator reports termi-
nation if C;;=C}j for all i,j. It should be noted
that the (virtual) communication channels from P
to P are not necessarily empty if C;; equals CJ
for some i, j; although it is claimed that this is the
case if the condition holds for all i, j.

The proof that no false termination can be re-
ported is left out, since it is very similar to the
one for the vector counter method. It basically con-
sists of showing that there is no compensating
“corrupting” message for the message that activat-
ed the first process to the right of the last control
wave (see also Kumar 1985).

The information available at the initiator for
channels from B to P, for which C;;#C/; allows
the dedicated revisiting of certain nodes. However,
the channel counting method probably has no ad-
vantages over the vector counter method for ring
and star topologies. Basic messages have to be

170

aware of their sender and the amount of control
information is increased, since there are two
counters for each edge of a fixed communication
graph, or in the general case, n? counters.

The method actually becomes practicable if it
is combined with the echo algorithm (Chapter 5)
where test messages flow “down” on every edge
of the graph and echoes proceed in the opposite
direction. The value of the counter C;; is transmit-
ted upwards from process P, to B by an echo;
whereas for reasons that will become clear later,
a test message sent by P to P carries the value
of C;j with it. (In the standard application of the
echo algorithm all values of C;; and C;; would
be transmitted upwards by echoes until all values
are accumulated at the initiator). A process receiv-
ing a test message from another process (the “acti-
vator”), propagates it in parallel to any other pro-
cesses to which it has sent basic messages whose
receipts have not yet been confirmed. If it has al-
ready done this, or if all basic messages sent out
have been confirmed, an echo is immediately sent
to the activator. There are no special messages of
acknowledgement. A process P, receiving the value
of C;; by an echo, knows that all messages it sent
to B have arrived if the value of C;; equals the
value of its own counter C;;. An echo is only pro-
pagated towards the activator if an echo has been
received from each active subtree and all channels
in the subtrees are empty.

As in the similar diffusing computation scheme
(Dijkstra and Scholten 1980), it is assumed that
a special process, the initiator, starts the computa-
tion by sending messages to some other nodes in
a single spontaneous event. It is also the initiator
which later starts the distributed termination detec-
tion algorithm.

In the realization of our algorithm, shown fur-
ther on in this chapter, each process P, has 3 arrays
of counters:

OUT[i] counts the number of basic messages sent
to P

IN[i] counts the number of basic messages re-
ceived from P,

RECT[i] records the number of its messages P, is
aware have been received by P.

OUT[{] corresponds to Cj;, IN[i] to C;;. A vari-
able ACTIVATOR is used to hold the index-
number of the activating process (line 5) and the
counter DEGREE is used to indicate how many
echoes are still missing. It is incremented when
sending a test message (line 20) and decremented
on receipt of an echo (line 9). I[f DEGREE >0, then

F. Mattern: Algorithms for distributed termination detection

the node is “engaged” and further activations by
test messages are immediately reacted to with echo
messages (line 4).

An echo is also immediately generated if
OUT=REC (line 3), i.e., if the process sent no mes-
sages at all or if all messages sent out have been -
acknowledged. Lines 1015 guarantee that an echo
is only generated if the arrival of all basic messages
has been confirmed and all computations in the
subtrees finished. This is achieved by sending off
further test messages after the last echo has arrived
(lines 10—12). They revisit any of the subtree root
processes which have not yet acknowledged all ba-
sic messages sent to them. The procedure PROPA -
GATE increases the value of the variable DE-
GREE if any processes are visited, thus prohibiting
the generation of an echo (lines 13-15).

In order to minimize the number of control
messages, test messages should not overtake basic
messages. To achieve this, test messages carry with
them a count of the number of basic messages sent
over the communication channel (line 19). If a test
message overtakes some basic messages (and it it-
self is not overtaken by basic messages), its count
must be greater than the value of the IN-counter
of the receiver process. In this case the test message
is held back by some mechanism, and delivered
at a later instant, when all basic messages have
been received (guard m <IN [{] in point c).

Process P, behaves as follows:

{OUT, IN, REC, DEGREE are initialized to 0*
resp. 0}
(a) When sending a basic message to P:
l. OUT[i]«—OUT[i]+1;
(b) When receiving a basic message from P:
2. IN[i]«—IN[]+1;

(c) On receipt of a control message test {m) from
P. where m<IN[i]:

3. if DEGREE>0o0or OUT=REC
/* already engaged or */
/¥ subtree is quiet */

4. then send echo {IN[i]) to P;
5. else ACTIVATOR «—i;

/* trace activating process */
6. PROPAGATE;

/¥ and test all subtrees */
7. end_if;

(d) On receipt of a control message echo (m) from
P:

8. REC[i]e—m;

F. Mattern: Algorithms for distributed termination detection

9. DEGREE«—DEGREE —1;

/* decrease missing echoes counter */
10. if DEGREE =0 then

/* last echo checks whether all */

/¥ subtrees are quiet */
11. PROPAGATE;
12. end_if;
13. if DEGREE =0 then

/* all echoes arrived, everything quiet */
14. send echo {IN[ACTIVATOR]>

to Pcrivator s
15. end_if;

() The procedure PROPAGATE called in lines
6 and 11 is defined as follows:
16. procedure PROPAGATE:
17. loop for K=1 to ndo

18. if OUT[K]#REC[K] then
/* confirmations missing */
19. send test (OUT[K]) to Pg;
/* check subtree */
20. DEGREE+«—DEGREE+1;

/* more echoes outstanding */
210 end_if;
22. end_loop;
23. end_procedure;

A snapshot of an execution of the algorithm is
shown in Fig. 9.

The initiator starts the termination test only once,
in the same way as if it had received a test (0)-
message from some imaginary process F,. Instead
of eventually sending an echo to Ry, it reports ter-
mination. Test messages only travel along channels
which were used by basic messages, nodes that did
not participate in the distributed computation are
not visited by test messages. For each test message,
an echo is eventually sent in the opposite direction.

There must be at least one test message travell-
ing along every channel previously used by basic

echo
r
\
ouTI)
—
o
K test
RECI] e
»Moasic msg
P/ test msg

171

messages. Therefore, if e denotes the number of
such channels, at least 2 e control messages are gen-
erated. It is easy to see that if the termination test
is started after the global termination condition
has been satisfied, no channel is used by a test
message more than once. Therefore, exactly 2 e con-
trol messages are required in this case, some of
them being concurrently active.

At least one basic message must have been sent
between the sending of two test messages along
the same channel. This results in an upper bound
of 2m control messages, where m denotes the
number of basic messages. This worst case should
rarely occur, particularly if the termination test is
started well after the computation proper. This
contrasts the channel counting algorithm with the
method proposed by Dijkstra and Scholten (1980)
and Shavit and Francez (1986). In their method,
test messages do not exist and each basic message
is acknowledged by an echo; therefore the number
of control messages is exactly m. The exact number
of control messages involved in the channel count-
ing method is difficult to estimate, but in reason-
able situations should be much smaller than m.

Counting the sent and received messages indi-
vidually per communication channel is also sug-
gested by Chandy and Misra, but in their method
the counters C;; and C;j are both located at pro-
cess P and each single basic message is acknow-
ledged by an echo (Chandy and Misra 1985). The
overall scheme of our channel counting method
is also reminiscent of their distributed deadlock de-
tection method (Chandy et al. 1983).

8 Discussion

Unlike most other works on distributed termina-
tion, we have described and analyzed the problem
for the general case of asynchronous communication.
Two conceptual mechanisms were found to be use-
ful in understanding and presenting solutions for
the problem: The atomic model as an abstract mod-
el of distributed computation and time diagrams
as a convenient means of representing the overall
communication scheme. The atomic model and
time diagrams are also valuable for demonstrating
various properties of the methods and in proving
the algorithms to be correct.

A distributed system is defined as being termin-
ated if all messages sent, are also received. This
leads to the idea of counting messages, and in fact
all our methods are based on message counting.
We showed that a crude method of counting leads
to false results, whereas more sophisticated count-
ing principles can cope with inconsistent time cuts

172

and the lack of global time. A crucial observation

is that, in the time diagram, basic messages crossing

the line representing the control wave, especially
those crossing over to its left side, should not be
allowed to go unnoticed.

We presented several termination detection al-
gorithms with different characteristics, and many
more variants can be devised. An ideal method
should cause the smallest possible overhead, allow
fast detection of termination, impose no restric-
tions on the computation proper and be easily im-
plementable. Other desirable properties are symme-
try, i.e., the algorithm is syntactically identical for
each process and any process may start the detec-
tion algorithm (Tan and van Leeuwen 1986; Mat-
tern 1986) and genericity (processes do not have
global knowledge, such as the total number of pro-
cesses) (Bougé 1985a). Obviously, there is no one
general method whose features are best in every
case. According to the intended use and by taking
into consideration the characteristcs of the under-
lying application and system, a method with the
appropriate properties must be chosen.

Among others, the following considerations
should be taken into account:

e When will the termination test be started? In
most cases when the system is already terminat-
ed or near the start of the computation? (E.g.,
a process might start the test only when its local
state indicates the possibility of global termina-
tion, or the algorithm might be triggered by a
sufficiently large timeout).

® Should it be possible for an arbitrary process
to initiate the test or is there a predesignated
process for doing this? Is the method to cope
with several concurrently active detection
waves ?

® [s it intended that the test should terminate as
quickly as possible and possibly report a nega-
tive result, or should it remain active until the
global termination state has been reached?

@ Is it possible to assign a higher priority to basic
messages than control messages, so that they are
given preferential treatment?

® Are there any application or system dependent
reasons (e.g., fixed communication channels,
communication bottlenecks, one way communi-
cation etc.) for preferring one control configura-
tion to another?

® How does the length of the control messages
affect efficiency? Should their total number be
minimized and what degree of concurrency is
best?

e [s it feasible to alter basic messages, e.g., aug-
ment them with a time stamp?

F. Mattern: Algorithms for distributed termination detection

To assist in choosing the most appropriate ter-
mination detection scheme for a particular applica-
tion, we summarize and compare the main proper-
ties of our methods:

(1) The four counter method:

a) Each process must be visited at least twice.

b) The solution is symmetric and “reentrant”. The
processes are not aware of their identification
number and local variables are not changed by
the control wave. Thus an arbitrary process may
start the algorithm and several control waves may
be active in parallel. (In this case the control wave
must carry with it a counter or the identification
tag of the initiator). The algorithm is easily adapted
for dynamic systems because the processes need
not be aware of their total number.

¢) Various control configurations are possible, for
instance stars, rings or trees. Rings are symmetric
but sequential, whereas stars and trees allow paral-
lel execution of the algorithm. In the star topology
a predesignated process starts the termination test.
The same is true for fixed trees. If an echo imple-
mentation is used and it is possible for an arbitrary
process to start the algorithm, more control infor-
mation is necessary, particularly if several control
waves are concurrently active.

d) There is no upper bound on the number of con-
trol messages. It is necessary to guess when the
algorithm should be restarted after an unsuccessful
trial.

(2) The sceptic algorithm:

a) The method is very similar to the four counter
method and comments q, ¢, and d also apply here.

b) The use of flags minimizes the amount of con-
trol information (i.e., using one single accumulated
counter, and in some places flags instead of
counters), but in the case of concurrent activations
it slightly complicates the algorithm.

(3) The time algorithm:

a) It may be sufficient to visit each node only once.
b) Symmetric and reentrant variants of the algo-
rithm can be devised, although they are slightly
more complicated than comparable implementa-
tions of the four counter method.

c) The comments on control configurations and
the total number of control messages involved in
the sceptic and four counter methods also apply
here.

d) Each basic message must be augmented with
a time stamp.

(4) The vector counter method:
a) As in the time algorithm it may be sufficient
for each node to be visited just once.

F. Mattern: Algorithms for distributed termination detection

b) We presented a single initiator implementation
of the method on a ring where a process may not
communicate with itself. However the main idea
of the method is also applicable to more general
cases.

¢) In contrast to the time algorithm basic messages
need not be changed.

d) The amount of information transferred by con-
trol messages is larger than in all the other meth-
ods.

e) Processes must be aware of their total number
or at least of the number of neighboring processes
to which they send basic messages.

f) In the presented implementation the test re-
mains active until the computation proper finishes.
The algorithm never reports a negative result.

g) Control messages wait for basic messages. The
worst case communication complexity for the
shown implementation is O(mn), where m denotes
the number of basic messages and n the number
of processes.

(5) Channel counting:

a) Comments a, ¢, e, and f of the vector counting
method also apply to this algorithm.

b) The only reasonable control configuration
seems to be the scheme induced by the echo algo-
rithm. In this implementation control messages
only carry a single counter with them.

c) As in the vector counter method, control mes-
sages can wait for basic messages. The worst case
communication complexity is O(m). However the
algorithms should not be assessed on this criterion.
The exact number of control messages of both
methods is highly dependent on the communica-
tion patterns of the underlying computation
proper, the characteristics of the communication
system and the time at which the algorithm is
started.

d) In contrast to the ring implementation of the
vector counter method, the echo channel counting
algorithm permits concurrent execution.

The particular computational model we have
used, comprises the main difference between our
methods and other known solutions of the distrib-
uted termination problem. Few other methods are
based on or suited to a communication oriented
termination model in which message passing is
asynchronous without FIFO characteristics. Ter-
mination detection is easier for synchronous mes-
sage passing models especially since it is not neces-
sary for the messages to be counted. Although our
algorithms also work in the synchronous case,
simpler variants of the sceptic algorithm (Francez
and Rodeh 1982; Dijkstra et al. 1983; Topor 1984)

173

or other synchronous solutions of the problem (Ar-
ora and Sharma 1983; Szymanski etal. 1985)
should also be taken into consideration.

[f message passing is not instantaneous, but up-
per bounds exist on message delay, solutions with
time-out mechanisms are conceivable (Lozinskii
1984, 1985). In systems where messages obey the
FIFO rule, another principle can be applied: a con-
trol message can clear the communication channels
by sweeping all basic messages before it. Misra
makes use of this principle but although he pres-
ents a distributed algorithm his solution is inher-
ently sequential; a single marker traverses all edges
of the communication graph (Misra 1983). A better
solution in which markers are sent out in parallel,
is presented in a recent paper on a quiescent prop-
erties detection paradigm (Chandy and Misra
1985). If control messages have a lower priority
than basic messages, solutions with bounded mem-
ory and O(m) message complexity are conceivable
(Rozoy 1986).

Our algorithms are not intended for dynamic
systems, in which processes can be dynamically
generated. Cohen and Lehmann discuss solutions
for such systems which are based on “responsibility
trees” (Cohen and Lehmann 1982). In their model
a process which creates a new process becomes
responsible for it, but destruction of processes is
not possible. Lai also gives solutions to the distrib-
uted termination problem for dynamic systems (Lai
1985, 1986). Our methods, particularly those where
the processes are not aware of their total number,
can be extended to cope with dynamic systems:
A process creating a new one sends a virtual basic
message to the newly generated process, to itself,
or to some other dedicated process (e.g. the initia-
tor). The message is only considered as being re-
ceived when the new process has been integrated
into the control topology.

How realistic is the atomic model of distributed
computation? The normal form of CSP programs
(e.g., Apt 1986) where I/O commands are only al-
lowed in guards at an outer main loop, is actually
a transactional programming style. However in
general, it is not necessary to impose such a restric-
tive structure. In systems based on models which
are not transaction oriented (i.e., implicitly received
messages trigger the execution of uninterruptible
operations), but where messages can be received
at arbitrary places (e.g., programming languages
with an explicit receive statement), the programmer
has to ensure that whenever no more messages are
being sent, the local termination state is signalled
at appropriate parts of the program. In order to
avoid blocking processes in an unnoticed deadlock

174

state, a process should accept control messages
whenever it is waiting for basic messages.

It should be easy to adapt the proposed termi-
nation detection methods to characteristics of var-
ious systems and applications. Most of the algo-
rithms have been realized in the distributed pro-
gramming language CSSA (Mattern and Beilken
1985) implemented on the INCAS experimental
distributed system (Nehmer et al. 1987). The princi-
ples should also be applicable to other quiescence
and persistent global state detection problems, e.g.
distributed infimum approximation (Tel 1986) or
concurrent on-the-fly garbage collection (Tel et al.
1986) and problems from related areas such as dis-
tributed debugging or distributed databases.

Acknowledgments. The author would like to thank Christian
Beilken, Mike Reinfrank and Mike Spenke, for valuable com-
ments and many fruitful discussions, and Jackie Randell, who
revised the English text. The assistance of the other members
of the SFB124 research project is also gratcfully acknowledged.
Special thanks to the referees for their comments.

References

Apt KR, Richier J-L (1985) Real time clocks versus virtual
clocks. In: Broy M (ed) Control flow and data flow: Con-
cepts of distributed programming. Springer, Berlin Heidel-
berg New York, pp 475-501

Apt KR (1986) Correctness proofs of distributed termination
algorithms. ACM Trans Program Lang Syst 8(3):388-405

Arora RK, Sharma NK (1983) A methodology to solve distrib-
uted termination problem. Inf Syst 8(1):37 39

Beilken C, Mattern F, Reinfrank M (1985) Verteilte Terminier-
ung — cin wesentlicher Aspekt der Kontrolle in verteilten
Systemen. Report SFB124-41/85, Department of Computer
Science, University of Kaiserslautern, FRG

Bougé L (1985a) Symmetry and genericity for CSP in distrib-
uted systems. Report 85-32, LITP, Universite Paris 7, France

Bougé L (1985b) Repeated synchronous snapshots and their
implementation in CSP. In: Brauer W (ed) 12th Coll Au-
tomata, Lang and Programming. Springer, Berlin Heidel-
berg New York, LNCS 194, pp 63-70

Chandy KM, Misra J, Haas LM (1983) Distributed deadlock
detection. ACM Trans Comput Syst 1(2):144-156

Chandy KM, Lamport L (1985) Distributed snapshots: Deter-
mining global states of distributed systems. ACM Trans
Comput Syst 3(1):63-75

Chandy KM, Misra J (1985) A paradigm for detecting quiescent
propertics in distributed computations. In: Apt KR (ed)
Logics and models of concurrent systems. Springer, Berlin
Heidelberg New York, pp 325-341

Chandy KM, Misra J (1986) An cxample of stepwise relinement
of distributed programs: quiescence detection. ACM Trans
Program Lang Syst 8(3):326-343

Chang EJH (1982) Echo algorithms: Depth parallel operations
on general graphs, IEEE Trans Software Eng SE-8(4):391
401

Clinger WD (1981) Foundations of actor semantics. Report Al-
TR-633, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, USA

F. Mattern: Algorithms for distributed termination detection

Cohen S, Lehmann D (1982) Dynamic systems and their distrib-
uted termination. Proc ACM SIGACT-SIGOPS Symp Prin-
ciples Distributed Comput, Ottawa, pp 29-33

Dijkstra EW, Scholten CS (1980) Termination detection for dif-
fusing computations. Inf Process Lett 11(1):1-4

Dijkstra EW, Feijen WHJ, van Gasteren AJM (1983) Deriva-
tion of a termination detection algorithm for distributed
computations. Inf Process Lett 16(5):217-219

Francez N (1980) Distributed termination. ACM Trans Pro-
gram Lang Syst 2(1):42-55

Francez N, Rodeh M, Sintzoff M (1981) Distributed termina-
tion with interval assertions. In: Diaz J, Ramos 1 (eds)
Proc Int Colloq Formalization of Programming Concepts.
Springer, Berlin Heidelberg New York, LNCS 107, pp 280-
289

Francez N, Rodeh M (1982) Achieving distributed termination
without freezing. [EEE Trans Software Eng SE-8(3):287-
292

Kumar D (1985) A class of termination detection algorithms
for distributed computations. In: Maheshwari N (ed) 5th
Conf on Foundations of Software Technology and Theoreti-
cal Computer Science, New Delhi. Springer, Berlin Heidel-
berg New York, LNCS 206, pp 73100

Lai T-H (1985) Termination detection for dynamic distributed
systems with non-first-in-first-out communication. Report
85-16, Computer and Information Science Research Center.
Ohio State University, Columbus, USA

Lai T-H (1986) A termination detector for static and dynamic
distributed systems with asynchronous non-first-in-first-out
communication. In: Kott L (ed) 13th Coll Automata, Lang
and Programming. Springer, Berlin Heidelberg New York,
LNCS 226, pp 196-205

Lamport L (1978) Time, clocks and the ordering of events in
a distributed system. Commun ACM 21(7): 558565

Lavallee I, Roucairol G (1986) A fully distributed (minimal)
spanning tree algorithm. Inf Process Lett 23:55-62

Lozinskii EL (1984) Yet another distributed termination. Re-
port 84-2, Department of Computer Science, The Hebrew
University of Jerusalem, Isracl

Lozinskii EL (1985) A remark on distributed termination. Proc
5th Internat Conf on Distributed Computing Systems,
Denver, pp 416-419

Mattern F, Beilken C (1985) The distributed programming lan-
guage CSSA — a short introduction. Report 123/85, De-
partment of Computer Science, University of Kaiserslautern,
FRG

Mattern F (1986) Asynchronous distributed termination — par-
allel and symmetric solutions with echo algorithms. Report
SFB124-21/87, Department of Computer Science, Universi-
ty of Kaiserslautern, FRG

Misra J, Chandy KM (1982) Termination detection of diffusing
computations in communicating sequential processes. ACM
Trans Program Lang Syst 4(1):37-43

Misra J (1983) Detecting termination of distributed computa-
tions using markers. Proc 2nd Ann ACM Symp Principles
Distributed Comput, Montreal, Quebec, pp 290 294

Nehmer J et al. (1987) Key concepts of the INCAS multicom-
puter project. IEEE Trans Software Eng SE-13(8):913
923

Rana SP (1983) A distributed solution of the distributed termi-
nation problem. Inf Process Lett 17(1):43 46

Richier J-L (1985) Distributed termination in CSP: Symmetric
solutions with minimal storage. In: Mehlhorn K (ed) Proc
STACS 85. Springer, Berlin Heidelberg New York, LNCS
182, pp 267-278

Rozoy B (1986) Model and complexity of termination for dis-
tributed computations. In: Gruska J, Rovan B, Wiedermann

F. Mattern: Algorithms for distributed termination detection

J (eds) Proc Math Found Comp Sc 86. Springer, Berlin Hei-
delberg New York, LNCS 233, pp 564 572

Shavit N, Francez N (1986) A new approach to detection of
locally indicative stability. Report RC 11925 (4 53703), IBM
Thomas J Watson Research Center, Yorktown Heights,
USA

Tan RB, van Leeuwen J (1986) General symmetric distributed
termination detection. Report RUU-CS-86-2, Department
of Computer Science, University of Utrecht, The Nether-
lands

Tel G (1986) Distributed infimum approximation. Report

Note added in proof

Since the first version of this article was submitted, many papers
on the distributed termination problem have been published.
The following list completes the references:

Alek Y, Saks M (1987) Detecting global termination conditions
in the face of uncertainty. Techn Rep, Bell Laboratories,
Murray Hill, USA

Augusteijn L (1986) Establishing global assertions in a distrib-
uted environment. ESPRIT project 415, Doc. No. 183, Phi-
lips Research Laboratories, Eindhoven, The Netherlands

Arora RK, Rana SP, Gupta MN (1986) Distributed termination
detection algorithm for distributed computations. Inf Pro-
cess Lett 22:311-314 [The algorithm is wrong. See Tan RB,
Tel G, Van Lecuwen J (1986) Comments on * Distributed
termination detection algorithm for distributed computa-
tions™. Inf Process Lett 23:163

Chandrasekaran S, Kannan CS, Venkatesan S (1987) Elfficient
distributed termination detection. Proc IFIP Conl Distrib-
uted Processing. North-Holland, Amsterdam New York Ox-
ford

Dijkstra EW (1987) Shmuel Safra’s version of termination detec-
tion. Report EWD998-0, Department of Computer Science,
University of Texas at Austin, USA

Erikson O, Skyum S (1986) Symmetric distributed termination.
In: Rozenberg G, Salomaa A (eds) The book of L. Springer,
Berlin Heidelberg New York, pp 427 430

Ferment D (1986) Finite or not finite solutions for the distrib-
uted termination problem. Report 86-11, LITP, Universite
Paris 7, France

Ferment D, Rozoy B (1986) Possibility and impossibility of
solutions for the distributed termination problem. Report
86-8, LITP, Universite Paris 7, France

Ferment D, Rozoy B (1987) Solutions for the distributed termi-
nation problem. In: Albrecht A, Jung H, Mehlhorn K (eds)
Parallel algorithms and architectures. Springer, Berlin Hei-
delberg New York, LNCS 269

Hazari C, Zedan H (1987) A distributed algorithm for distrib-
uted termination. Inf Process Lett 24:293-297 [It is not
the ‘classical’ distributed termination problem: processes
are never reactivated. See also Tel G, Van Leeuwen J (1987)
Comments on “ A distributed algorithm for distributed ter-
mination™. Inf Process Lett 25:349]

Helary J-M, Jard C, Plouzeau N, Raynal M (1987) Detection

175

RUU-CS-86-12, Department of Computer Science, Univer-
sity of Utrecht, The Netherlands

Tel G, Tan RB, van Leeuwen J (1986) The derivation of graph
marking algorithms from distributed termination detection
protocols. Report RUU CS-86-11, Department of Com-
puter Science, University of Utrecht, The Netherlands

Topor RW (1984) Termination detection for distributed compu-
tations. Infl Process Lett 18(1):33-36

Szymanski B, Shi Y, Prywes NS (1985) Synchronized distributed
termination. IEEE Trans Software Eng SE-11(10):1136
1140

of stable properties in distributed applications. Proc 6th
ACM Symp Principles Distributed Comput

Koo R, Toueg S (1987) Effects of message loss on distributed
termination. Tech Rep, Department of Computer Science,
Cornell University, USA

Lai T-H (1986) Termination detection for dynamic distributed
systems with non-first-in-first-out communication. J Parallel
and Distributed Computing 3:577-599

Lai T-H (1987) Message-optimal algorithms for termination
detection in broadcast networks. Department of Com-
puter and Information Science, The Ohio State University,
USA

Mattern F (1987) Experience with a new distributed termination
detection algorithm. In: Gafni E, Raynal M, Santoro N,
Van Leeuwen J, Zaks S (eds) Proc 2nd Int Workshop Dis-
tributed Algorithms, Amsterdam. Springer, Berlin Heidel-
berg New York, LNCS

Mattern F (1987) An efficient distributed termination test. Re-
port SFB124-32/87, Department of Computer Science, Uni-
versity of Kaiserslautern, FRG

Miiller H (1987) High level petri nets and distributed termina-
tion. In: Voss K, Genrich HJ, Rozenberg G (eds) Concur-
rency and nets. Springer, Berlin Heidelberg New York,
pp 349 362

Roucairol G (1987) On the construction of distributed pro-
grams. In: Paker Y, Banatre J-P, Bozyigit M (eds) Distrib-
uted operating systems: theory and practice. Springer, Berlin
Heidelberg New York, pp 47-65

Saikkonen H, Ronn S (1986) Distributed termination on a ring.
BIT 26:188-194

Sanders BA (1987) A method for the construction ol probe-
based termination detection algorithms. Proc IFIP Conf
Distributed Processing. North-Holland, Amsterdam New
York Oxford

Shavit N, Francez N (1986) A new approach to detection of
locally indicative stability. In: Kott L (ed): 13th Coll Au-
tomata, Lang and Programming. Springer, Berlin Heidel-
berg New York, LNCS 226, pp 344-358

Verjus JP (1987) On the proof of a distributed algorithm. Inf
Process Lett 25:145-147

Zébel D (1986) Programmtransformationen zur Ende-Erken-
nung bei verteilten Berechnungen. Informationstechnik
28(4):204-213

