ETHzürich

Semantic Clustering for Robust Fine-Grained Scene Recognition

Marian George¹, Mandar Dixit², Gábor Zogg¹, and Nuno Vasconcelos² 1 Department of Computer Science, ETH Zurich, Switzerland

2 Statistical and Visual Computing Lab, UCSD, CA, United States

Problem

Recognize fine-grained scenes in cross-domain settings

- Fine-grained scenes share **common** objects
- Varying spatial configurations of objects (cluttered scenes) Especially true in cross-domain settings

Example: Store scenes

office supplies store

bookstore

Semantic Clustering

Phone dataset

Exploit semantic structure in fine-grained scenes

- Semantic scene descriptor
 - Project scene images to semantic space of object occurrences
 - Convert object occurrences in scenes to scene probabilities

Semantic Clustering

- Cluster semantic descriptors
- Learn a discriminative classifier for each discovered topic & combine decisions
- Better consensus \rightarrow Better generalization

Conditional Scene Probabilities 3

- Imparts invariance on representation
- Generalizes better than lower-level features
- No spatial encoding of objects

Experimental Evaluation

Filter objects by discriminative power:

 $\phi_{\theta}(o) = \max_{r \in \{1, \dots, |\mathcal{C}| - 1\}} p(\gamma^{-1}(r)|o; \theta) - p(\gamma^{-1}(r+1)|o; \theta)$

Datasets

٠

SnapStore

- 18 fine-grained store scenes
- Training: web & testing: real stores

	Bookstore	Domestic appliance				

MIT Scene 67 67 indoor scenes

Coarse-grained & same domain ٠

Web datasets SnapStore Training/Test SUN Web SUN 68.7 * 57.1 65.7

Dataset Bias

SnapStore Places phone 56.5 SnapStore 62.7 71.9 * 60.9 58.2 Web 67.6 64.2 59.2 53.8 Places Average classification accuracy (%)

Discovered Clusters

SnapStore, SUN & Places

- 9 store scene classes
- Cross-dataset performance
- * Same-dataset recognition accuracy (ground truth)
- performance drop > 12% when testing on phone images
- **SUN** and **Places** have very similar distributions \rightarrow not suitable for domain generalization (only ~3% drop)

Comparison with State-of-the-Art

Average classification accuracy (%)

Cross-Dataset Recognition

Train	Test	DeCaF	DeCaF-C	U-B	DICA	OB	OB-SC	OOM	OOM-SC
SnW	SnP	58.2	56.3	N/A	42.1	30.0	37.4	61.1	62.0
SUN	SnP	56.5	53.9	N/A	45.5	39.2	35.9	54.4	56.9
Pla	SnP	53.8	49.1	N/A	37.7	27.6	28.3	54.8	54.6
SnW,SnP	Pla,SUN	59.1	59.9	52.3	49.2	22.7	25.7	57.3	60.6
SnW,SUN	SnP,Pla	60.6	58.5	50.3	52.2	37.4	37.7	61.0	63.2
SUN,Pla,SnW	SnP	59.7	57.2	47.8	53.5	36.3	39.1	61.6	62.5
SUN,SnP,SnW	Pla	63.8	62.2	33.8	50.8	27.4	30.2	59.8	63.3
Averag	58.8	56.7	46.0	47.2	32.9	33.4	58.5	60.4	

- Semantic clustering outperforms other methods
- Clustering DeCaF performs worse than baseline $DeCaF \rightarrow low-level$ spatial maps vs. high-level semantic features
- Similarity between SUN and Places benefits DeCaF

Scene Likelihoods (OOM)

