
                                                               
  
 
SnapStore                                                       
•  18 fine-grained store scenes                                                                                      
•  Training: web & testing: real stores 
 
 
 
 MIT Scene 67                                         
•  67 indoor scenes  
•  Coarse-grained & same domain 
 
 SnapStore, SUN & Places 
•  9 store scene classes 
•  Cross-dataset performance 
 
  
 
 Comparison with State-of-the-Art                     Cross-Dataset Recognition                                    Scene Likelihoods (OOM) 
                          Average classification accuracy (%)   
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cluster 1 

cluster 2 

cluster 3 

cluster 4 

cluster 5 

florist grocery store restaurant 

bookstore clothing store coffee shop 

bookstore music store office supply 

clothing store sports store restaurant 

shoe shop furniture store coffee shop 

Fig. 1: Sample images from each discovered cluster when using k = 5 clusters.
Each row shows images from one cluster, specifically 2 images from 3 classes of
the cluster. Each cluster represents semantically related classes, e.g. cluster 1
contains images of flowers and vegitables shared between florist, grocery store,
and restaurant classes. In a similar manner, cluster 2 contains images of shelves
shared between bookstore, clothes shop, co↵ee shop and pharmacy classes.Clus-

ter 3 contains close-up images of books, notebooks, and CDs in bookstore, o�ce
supplies and music store. Also, cluster 4 show images of seating areas in fur-
niture store, clothing store, co↵ee shop, restaurant, shoe shop and sports store.
Finally, cluster 5 represents images where people are salient in the scene.

[5] Ours 

[2] Deep learning 

[3] Object-based 
baselines 
[4] Domain 
generalization 

[1] Legacy methods 

   [1]          [2]        [3]        [4]          [5] 

[1]                [2]          [3]            [5] 

•  Semantic clustering outperforms other methods 
•  Clustering DeCaF performs worse than baseline 

DeCaF à low-level spatial maps vs. high-level 
semantic features 

•  Similarity between SUN and Places benefits DeCaF 

Discovered Clusters 

SnapStore 

MIT Scene 67 
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Table 3: Ground truth and cross-recognition accuracy (%) of DeCaF+SVM base-
line on multiple fine-grained scene datasets

Training/Test SUN SnapWeb Places SnapPhone
SUN 68.7 57.1 65.7 56.5

SnapWeb 62.7 71.9 60.9 58.2
Places 64.2 59.2 67.6 53.8

Table 4: Cross-recognition accuracy (%) on SnapStore training set (SnW), Snap-
Store test set (SnP), SUN, and Places (Pla) datasets

Train Test DeCaF DeCaF-C U-B DICA OB OB-SC OOM OOM-SC
SnW SnP 58.2 56.3 N/A 42.1 30.0 37.4 61.1 62.0
SUN SnP 56.5 53.9 N/A 45.5 39.2 35.9 54.4 56.9
Pla SnP 53.8 49.1 N/A 37.7 27.6 28.3 54.8 54.6

SnW,SnP Pla,SUN 59.1 59.9 52.3 49.2 22.7 25.7 57.3 60.6
SnW,SUN SnP,Pla 60.6 58.5 50.3 52.2 37.4 37.7 61.0 63.2

SUN,Pla,SnW SnP 59.7 57.2 47.8 53.5 36.3 39.1 61.6 62.5
SUN,SnP,SnW Pla 63.8 62.2 33.8 50.8 27.4 30.2 59.8 63.3

Average 58.8 56.7 46.0 47.2 32.9 33.4 58.5 60.4

we first measured the cross-recognition performance of a linear SVM on DeCaF
fc7 features when using the training set of one dataset and the test set of another
dataset. We summarize the results in Table 3. Results show a significant bias
in datasets gathered from the web (SnapWeb, SUN, Places). This is shown by
the significant drop in performance by > 12% when using SnapPhone dataset,
which is gathered in real settings using a smartphone, as the testing set. In con-
trast, the cross-recognition performance when using SUN and Places datasets
as train/test sets is much better, with only 3% drop in performance when com-
pared to ground truth (same-domain) recognition. This emphasizes the benefits
of using the proposed SnapStore dataset in evaluating scene transfer methods.

We then evaluated the cross-recognition performance of the proposed method
and the baselines, as summarized in Table 4. Our method outperforms other
methods on five out of seven cross-domain scenarios and on average. The im-
provement of the proposed approach over DeCaF is more significant in the exper-
iment in Section 6.2. This is due to the similarity of images in SUN, Places, and
SnW, all collected on the web, which benefits the DeCaF baseline. When testing
on SnP even OOM beats DeCaF on 3 of 4 cases with an average of 58% vs. 57%.
Clustering DeCaF features (DeCaF-C) yielded worse performance than the De-
CaF baseline. This is because DeCaF features are spatial maps that discriminate
between parts of objects or at most individual objects. Thus, clustering them
produces clusters of visually similar object parts, limiting invariance against

* Same-dataset recognition accuracy (ground truth) 
•  performance drop > 12% when testing on phone images 
•  SUN and Places have very similar distributions à not 

suitable for domain generalization (only ~3% drop) 

Dataset Bias 

Experimental Evaluation 
 
 
 
 
 
 
 
 
 
 

Datasets 
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Recognize fine-grained scenes in cross-domain settings 
 
Recognize fine-grained scenes in cross-domain settings 
•  Fine-grained scenes share common objects 
•  Varying spatial configurations of objects (cluttered scenes) 

•  Especially true in cross-domain settings 
 
Example: Store scenes 
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•  Represent a scene image as conditional scene probabilities given detected objects: 
 

•  Filter objects by discriminative power: 

Exploit semantic structure in fine-grained 
scenes 
•  Semantic scene descriptor 

•  Project scene images to semantic space 
of object occurrences 

•  Convert object occurrences in scenes to 
scene probabilities 

•  Semantic Clustering  
•  Cluster semantic descriptors 
•  Learn a discriminative classifier for each 

discovered topic & combine decisions 
•  Better consensus à Better generalization 

2/4 

scene classes Training images of a 
scene class  

(e.g., children room) 
Detect objects in images 

(e.g., picture) OOM of picture 

Likelihood of picture in children room 

Probability of children room given 
that we detect a picture 

children 
room 

bedroom hospital 
room 

scene 
classes 

scene classes 

•  Model across a range of confidence levels 
•  Flexible objects arrangements in scenes across domains 

•  High-level quantization 
•  Imparts invariance on representation 
•  Generalizes better than lower-level features 

•  No spatial encoding of objects 

8 George et al.

From the OOM, it is possible to derive the posterior probability of a scene
class c given the observation of object o in an image x, at the confidence level
θ, by simple application of Bayes rule

p(c|o; θ) =
p(o|c; θ)p(c)∑
i p(o|i; θ)p(i)

, (4)

where p(o|c; θ) are the probabilities of occurrence of (2) and p(c) is a prior scene
class probability. The range of thresholds [θmin, θmax] over which θ is defined is
denoted the threshold bandwidth of the model.

Hard detections Given the image x, we apply to it the ith object detector,
producing a set of ni bounding boxes, corresponding to image patches Xi =

{z(i)1 , . . . , z(i)ni
}, and a set of associated detection scores Si = {s(i)1 , . . . , s(i)ni

}.
To estimate the posterior probabilities p(c|oi), we adopt a Bayesian averaging
procedure, assuming that these scores are samples from a probability distribution

p(θ) over confidence scores. This leads to p(c|oi) =
∑

k p(c|oi, θ = s(i)k )p(θ = s(i)k ).

Assuming a uniform prior over scores, we then use p(θ = s(i)k ) = 1/ni to obtain

p(c|oi) =
1

ni

∑

k

p(c|oi, θ = s(i)k ). (5)

In summary, the vector of posterior probabilities is estimated by averaging the
OOM posteriors of (4), at the confidence levels associated with the object de-
tections in x. This procedure is repeated for all objects, filling one row of M at
a time. The rows associated with undetected objects are set to zero.

The proposed semantic descriptor is obtained by stacking M into a vector
and performing discriminant dimensionality reduction. We start by finding an
object subset R ⊂ O which is discriminant for scene classification. This reduces
dimensionality from |O|× |C| to |R|× |C| as discussed in Section 4.3. This pro-
cedure is repeated using a spatial pyramid structure of three levels (1× 1, 2× 2,
and 3×1), which are finally concatenated into a 21K dimensional feature vector.

Soft detections A set of n patches X = {z1, . . . , zn} are sampled from the
image and fed to an object recognizer, e.g. a CNN. This produces a set S =
{s1, . . . , sn} of vectors sk of confidence scores. The vector sk includes the scores
for the presence of all |O| objects in patch zk. Using the OOM posteriors of (4),
each sk can be converted into a matrix Mk of class probabilities given scores.
Namely the matrix whose ith row is given by MK

i = p(c|oi, sk,i), which is the
vector of class probabilities given the detection of object oi at confidence sk,i.

The image x is then represented as a bag of descriptors X = {M1,M2, . . .Mn}
generated from its patches. This is mapped into the soft-VLAD [35, 23] represen-
tation using the following steps. First, the dimensionality of the matrices Mk is
reduced by selecting the most discriminant objects R ⊂ O, as discussed in Sec-
tion 4.3. Second, each matrix is stacked into a R× C vector, and dimensionality
reduced to 500 dimensions, using PCA. The descriptors are then encoded with
the soft-kmeans assignment weighted first order residuals, as suggested in [23].

Semantic Clustering for Robust Fine-Grained Scene Recognition 7

images. To first order, an object is discriminant for a particular scene class if it
appears frequently in that class and is uncommon in all others. In general, an
object can be discriminant for more than one class. For example, the “flower”
object is discriminant for the “flower shop” and “garden” classes.

We propose a procedure for discriminant object selection, based on the OOM
of the previous section. This relies on a measure of the discriminant power φθ(o)
of object o with respect to a set of scene classes C at confidence level θ. The
computation of φθ(o) is performed in two steps. First, given object o, the classes
c ∈ C are ranked according to the posterior probabilities of (4). Let γ(c) be the
ranking function, i.e. γ(c) = 1 for the class of largest probability and γ(c) = |C|
for the class of lowest probability. The class of rank r is then γ−1(r). The second
step computes the discriminant power of object o as

φθ(o) = max
r∈{1,...,|C|−1}

p(γ−1(r)|o; θ)− p(γ−1(r + 1)|o; θ). (3)

The procedure is illustrated in Figure 1c, where each curve shows the proba-
bility p(c|o; θ) of class c as a function of the confidence level. At confidence level
θ, the red, green, yellow, and blue classes have rank 1 to 4 respectively. In this
example, the largest difference between probabilities occurs between the green
and yellow classes, capturing the fact that the object o is informative of the red
and green classes but not of the yellow and blues ones.

Figure 3 shows examples of a discriminative and a non-discriminative object
in the SnapStore dataset. The discriminative object, book, occurs in very few
scene classes (mainly bookstore) with high confidence level. On the other hand,
the non-discriminant bottle object appears in several classes (grocery store, drug
store, and household store) with the same confidence level.

5 Semantic latent scene topics

In this section, we describe our approach of representing a scene image as scene
probabilities, followed by discovering hidden semantic topics in scene classes.

5.1 Semantic scene descriptor

In this work, we propose to represent an image x by a descriptor based on the
O×C matrix M of posterior probabilities p(c|o) of classes given objects detected
in the image. Object detectors or recognizers produce multiple object detections
in x, which are usually obtained by applying the recognizer or detector to image
patches. Object detectors are usually implemented in a 1-vs-rest manner and
return the score of a binary decision. We refer to these as hard detections. On
the other hand, object recognizers return a score vector, which summarizes the
probabilities of presence of each object in the patch. We refer to these as soft
detections. Different types of descriptors are suitable for soft vs. hard detections.
In this work, we consider both, proposing two descriptors that are conceptually
identical but tuned to the traits of the different detection approaches.

6 George et al.
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Fig. 3: An example of (a) a discriminative object (book) and (b) a non-
discriminative object (bottle). In each case, the left plot is identical to the plot of
Figure 1c. The discriminative object (book) occurs frequently in few categories
at a given confidence level. However, for the same confidence level, the bottle
object, occurs in many categories. The plot on the right of (a) and (b) shows the
occurrence normalized in 1-norm for each θ. The region above the maximal θ for
any occurrence is interpreted as 1 for the category with the highest probability.

prediction fo(x) according to

δ(x|o; θ) = h[fo(x)− θ] (1)

where h(x) = 1, x ≥ 0 and h(x) = 0 otherwise. Thus, δ(x|o; θ) is an indicator for
the assignment of image x to object class o at confidence level θ.

4.2 Learning an object occurrence model

Our Object Occurrence Model (OOM) answers the following question on a
threshold bandwidth of [θmin; θmax] with a resolution of ∆θ: “how many im-
ages from each category contain the object at least once above a threshold θ?”.
We do not fix the threshold of object detection θ at a unique value as this thresh-
old would be different across domains. Formally, given a set Ic of images from a
scene class c, the maximum likelihood estimate of the probability of occurrence
of object o on class c, at confidence level θ, is

p(o|c; θ) =
1

|Ic|

∑

xi∈Ic

δ(xi|o; θ). (2)

We refer to these probabilities, for a set of scene classes C, as the object occur-
rence model (OOM) of C at threshold θ. This model summarizes the likelihood of
appearance of all objects in all scene classes, at this level of detection confidence.

4.3 Discriminant object selection

Natural scenes contain many objects, whose discriminative power varies greatly.
For example, the “wall” and “floor” objects are much less discriminant than
the objects “pot,” “price tag,” or “flower” for the recognition of “flower shop”
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