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Figure 2. Classification rates (%) of individual classes for the dif-
ferent classification models trained on SIFTflow. Classes are or-
dered in descending order by the mean number of pixels they oc-
cupy (frequency) in scene images. Our goal is to decrease the
correlation between the trained models.

been shown that partitioning the training set performs better
than partitioning the feature space for large datasets [30].

We have observed that the classification error of a given
class is related to the mean number of pixels it occupies in
the scene images, as shown by the blue line in Figure 2.
This agrees with the findings of previous methods [28, 33]
that the classification error rate is related to the frequency
of classes in the training set. However, we go beyond that
by considering the frequency of the classes on the image
level, which targets the problem of smoothing out the less-
represented classes by a neighbouring background class.

To this end, we train three BDT models with the follow-
ing training data criteria: (1) a balanced subsample of all
classes C in the dataset, (2) a balanced subsample of classes
occupying an average of less than x% of their images, and
(3) a balanced subsample of classes occupying an average
of less than dx/2e% of their images.

The motivation beyond these choices is to reduce the
correlation between the trained BDT models as shown in
Figure 2. While the unbalanced classifier mainly misclas-
sifies the less-represented classes, the balanced classifiers
recover some of these classes while making more mistakes
on the more represented classes. By combining the like-
lihoods from all the classifiers, a better overall decision is
reached that improves the overall coverage of classes (Fig-
ure 1). We observed that the addition of more classifiers did
not improve the performance for any of our datasets.

The final cost of assigning a label c to a superpixel s
i

can then be represented as the combination of the likelihood
scores of all classifiers:
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where |C
j

| is the number of classes covered by the jth clas-
sifier and not covered by any other classifier with a smaller
number of classes.

The normalized weight w
j

(c) of class c can then be com-
puted as: w

j

(c) = w̃
j

(c)/
P

j=1,2,3,4 w̃j

(c). Normalizing
the output likelihoods in this manner gives a better chance
for all classifiers to be considered in the result with an em-
phasis on less-represented classes. In sec. 6, we show the
superior performance of our fusion scheme to other tradi-
tional fusion mechanisms: averaging and median rule.

5. Scene-Level Global Context

When exploiting scene parsing problems, it is useful
to incorporate the semantics of the scene in the labeling
pipeline. For example, if we know that a given scene is a
beach scene, we will expect to find labels like sea, sand,
and sky with a much higher probability than expecting to
find labels like car, building, or fence. We use the initial
labeling results of a test image in estimating the likelihoods
of all labels c 2 C (sec. 5.1). The likelihoods are estimated
globally over an image, i.e. there is a unique cost per label
per image. We then plug the global label costs into a second
MRF inference step to produce better results (sec. 5.2).

Our approach, unlike previous methods, does not limit
the number of labels to those present in the retrieval set but
instead uses the set to compute the likelihood of class labels
in a k-nn fashion. The likelihoods are normalized by counts
over the whole dataset and smoothed to give a chance to la-
bels not in the retrieval set. We also employ the likelihoods
in MRF optimization, not for filtering the number of labels.

5.1. Context-Aware Global Label Costs

We propose to incorporate semantic context through us-
ing label statistics instead of global visual features. The
intuition behind such choice is that ranking by global vi-
sual features often fails to retrieve similar images on the
scene level [29, 33]. For example, a highway scene could

fusion), which is fusing classifiers by averaging their like-
lihoods, and (vi) baseline + FC (median fusion), which is
fusing classifiers by taking the median of their likelihoods.
We also report results of (vii) full (without FV), which is full
system without using the Fisher Vector features.

We fix x = 5 (sec.4.1), a value that was obtained through
empirical evaluation on a small subset of the training set.

6.1. Results

We compare our results with state-of-the-art methods on
SIFTflow in Table 1. We have set K = 64 top-ranked train-
ing images for computing the global context likelihoods
(sec. 5.1). Our full system achieves 81.7% per-pixel accu-
racy, and 50.1% per-class accuracy, which outperforms the
state-of-the-art method of [33] (79.8% / 48.7%). Results
show that our fusing classifiers step significantly boosts the
coverage of foreground classes, where the per-class accu-
racy increases by around 15% over the baseline method.
Our semantic context (sec. 5) improves both the per-pixel
and per-class accuracies through optimizing for fewer labels
which are more semantically meaningful. Fisher Vectors
improved the recognition by around 3%. In Figure 6, we
show examples of parsing results on the SIFTflow dataset.

Method Per-pixel Per-class
Liu et al. [18] 76.7 N/A
Farabet et al. [7] 78.5 29.5
Farabet et al. [7] balanced 74.2 46.0
Eigen and Fergus [6] 77.1 32.5
Singh and Kosecka [25] 79.2 33.8
Tighe and Lazebnick [29] 77.0 30.1
Tighe and Lazebnick [28] 78.6 39.2
Yang et al. [33] 79.8 48.7
Baseline 78.3 33.2
Baseline (with balanced BDT) 76.2 45.5
Baseline + FC (NL fusion) 80.5 48.2
Baseline + FC (average fusion) 78.6 46.3
Baseline + FC (median fusion) 77.3 46.8
Full without Fisher Vectors 77.5 47.0
Full 81.7 50.1

Table 1. Comparison with state-of-the-art per-pixel and per-class
accuracies (%) on the SIFTflow dataset.

Table 2 compares the performance of the same variants
of our system with the state-of-the-art methods on the large-
scale LMSun dataset. LMSun is more challenging than
SIFTflow in terms of the number of images, the number of
classes, and the presence of both indoor and outdoor scenes.
Accordingly, we use a larger value of K = 200 in equation
6. Our method achieves near record performance in per-
pixel accuracy (61.2%), while placing second in per-class
accuracy. The effectiveness of the fusing classifiers tech-
nique is shown in the improvement of both per-pixel (by
3%) and per-class (by 4.5%) accuracies over the baseline
system. The global context step improves the class cover-
age by around 2%. Figure 7 shows the output of our scene

Figure 4. Analysis of the performance when varying the number
of trees for training the BDT model, at different values of top K
images for the global context step on the SIFTflow dataset. The
y-axis shows the per-pixel accuracies (%) and the x-axis show the
per-class accuracies (%) for different numbers of trees.

parsing system on some images from LMSun.

Method Per-pixel Per-class
Tighe and Lazebnick [29] 54.9 7.1
Tighe and Lazebnick [28] 61.4 15.2
Yang et al. [33] 60.6 18.0

Baseline 57.3 9.5
Baseline (with balanced BDT) 45.4 13.8
Baseline + FC (NL fusion) 60.0 14.2
Baseline + FC (average fusion) 60.5 11.4
Baseline + FC (median fusion) 59.2 14.7
Full without Fisher Vectors 58.2 13.6
Full 61.2 16.0

Table 2. Comparison with state-of-the-art per-pixel and per-class
accuracies (%) on the LMSun dataset.
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Figure 5. Classification rates (%) of individual classes for the base-
line, fused classifiers, and the full system on SIFTflow. Classes are
sorted from most frequent to least frequent.

We next analyze the performance of our system when
varying the number of trees T for training the BDT model
(sec. 4.1), and the number of top training images K in
the global label costs (sec. 5.1). Figure 4 shows the per-
pixel accuracy (on the y-axis) and the per-class accuracy
(on the x-axis) as a function of T for a variety of Ks. In-
creasing the value of T generally produces better classifica-
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Figure 1. Overview of the fusing classifiers approach. Likelihood scores from multiple models (3a) and (3b) are combined to produce the
final likelihoods at superpixels. Likelihood scores of foreground classes (e.g. person) are boosted via our combination technique. The
unbalanced (skewed) model in (3a) produces biased likelihoods towards background classes (e.g. road). This is reflected in the much larger
score (bigger circle) for the road class when compared to the person class and other less-represented classes. For the balanced classifier in
(3b), the scores are more balanced and less-represented classes get a higher chance (bigger circle) of being recognized.
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given c. We learn a boosted
decision tree (BDT) [4] model to obtain the label likeli-
hoods L

unbal
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, c). For implementation, we use the pub-
licly available boostDT 1 library. At this stage, we train the
BDT model using all superpixels in the training set, which
represent an unbalanced distribution of class labels C.

3.3. Smoothing and Inference

We formulate our optimization problem as that of maxi-
mum a posteriori (MAP) estimation of the final labeling L
using Markov Random Field (MRF) inference. Using only
the estimated likelihoods in the previous section to classify
superpixels yields noisy classifications. Adding a smooth-
ing term V (l

s

i

, l
s

j

) to the MRF energy function attempts to
overcome that issue by punishing neighboring superpixels
having semantically irrelevant labels. Our baseline attempts
to minimize the following energy function:
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where A is the set of adjacent superpixel indices and
V (l

s

i
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) is the penalty of assigning labels l
s

i

and l
s

j

to
two neighboring pixels, computed from counts in the train-
ing set combined with the constant Potts model following
the approach of [29]. � is the smoothing constant. We per-
form inference using the ↵-expansion method with the code
of [2, 14, 1].

1http://web.engr.illinois.edu/ dhoiem/software/

In the next two sections, we present our main contribu-
tions of how we improve the superpixel classification step
(section 4) and how we incorporate scene-level context to
achieve better results (section 5).

4. Improving Superpixel Label Costs

While foreground objects are usually the most notice-
able regions in a scene image, they are often misclassified
by parsing algorithms. For example, in a city street scene, a
human viewer would typically first notice the people, signs
and cars before noticing the buildings and road. However,
for scene parsing algorithms, foreground regions are often
misclassified as being part of the surrounding background
due to two main reasons. First, in the superpixel classifi-
cation step, any classifier would naturally favor more dom-
inant classes to minimize the overall training error. Sec-
ond, in the MRF smoothing step, many of the superpixels
which were correctly classified as foreground objects, are
smoothed out by neighboring background pixels.

We propose to improve the label likelihood score at each
superpixel to achieve a more accurate parsing output. We
design different classifiers that offer complementary infor-
mation about the data. All the designed models are then
combined to derive a consensus decision. The overview of
our fusing classifiers approach is shown in Figure 1. At test
time, the label likelihood scores of all the BDT models are
merged to produce the final scores at superpixels.

4.1. Fusing Classifiers

Our method is inspired from ensemble classifier tech-
niques that train multiple classifiers and combine them to
reach a better decision. Such techniques are specifically
useful if the classifiers are different [13]. In other words,
the error reduction is related to the uncorrelation between
the trained models [30], i.e. the overall error is reduced if
the classifiers misclassify different data points. Also, it has

 
a) Fusing Classifiers 
➤  combine likelihood scores from multiple classifiers to improve the 
overall classification accuracy 
➤  fusing classifiers performs well when the error of individual 
classifiers is uncorrelated 
➤  classification error related to mean number of pixels occupied by 
a class in scene images (x%) 
➤  combine 4 classification models 
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We present a nonparametric scene parsing approach that improves 
the overall accuracy, as well as the coverage of foreground classes 
in scene images: 
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global label costs 
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Figure 2. Classification rates (%) of individual classes for the dif-
ferent classification models trained on SIFTflow. Classes are or-
dered in descending order by the mean number of pixels they oc-
cupy (frequency) in scene images. Our goal is to decrease the
correlation between the trained models.

been shown that partitioning the training set performs better
than partitioning the feature space for large datasets [30].

We have observed that the classification error of a given
class is related to the mean number of pixels it occupies in
the scene images, as shown by the blue line in Figure 2.
This agrees with the findings of previous methods [28, 33]
that the classification error rate is related to the frequency
of classes in the training set. However, we go beyond that
by considering the frequency of the classes on the image
level, which targets the problem of smoothing out the less-
represented classes by a neighbouring background class.

To this end, we train three BDT models with the follow-
ing training data criteria: (1) a balanced subsample of all
classes C in the dataset, (2) a balanced subsample of classes
occupying an average of less than x% of their images, and
(3) a balanced subsample of classes occupying an average
of less than dx/2e% of their images.

The motivation beyond these choices is to reduce the
correlation between the trained BDT models as shown in
Figure 2. While the unbalanced classifier mainly misclas-
sifies the less-represented classes, the balanced classifiers
recover some of these classes while making more mistakes
on the more represented classes. By combining the like-
lihoods from all the classifiers, a better overall decision is
reached that improves the overall coverage of classes (Fig-
ure 1). We observed that the addition of more classifiers did
not improve the performance for any of our datasets.

The final cost of assigning a label c to a superpixel s
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can then be represented as the combination of the likelihood
scores of all classifiers:
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class c in the jth classifier.
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where |C
j

| is the number of classes covered by the jth clas-
sifier and not covered by any other classifier with a smaller
number of classes.

The normalized weight w
j

(c) of class c can then be com-
puted as: w

j

(c) = w̃
j

(c)/
P

j=1,2,3,4 w̃j

(c). Normalizing
the output likelihoods in this manner gives a better chance
for all classifiers to be considered in the result with an em-
phasis on less-represented classes. In sec. 6, we show the
superior performance of our fusion scheme to other tradi-
tional fusion mechanisms: averaging and median rule.

5. Scene-Level Global Context

When exploiting scene parsing problems, it is useful
to incorporate the semantics of the scene in the labeling
pipeline. For example, if we know that a given scene is a
beach scene, we will expect to find labels like sea, sand,
and sky with a much higher probability than expecting to
find labels like car, building, or fence. We use the initial
labeling results of a test image in estimating the likelihoods
of all labels c 2 C (sec. 5.1). The likelihoods are estimated
globally over an image, i.e. there is a unique cost per label
per image. We then plug the global label costs into a second
MRF inference step to produce better results (sec. 5.2).

Our approach, unlike previous methods, does not limit
the number of labels to those present in the retrieval set but
instead uses the set to compute the likelihood of class labels
in a k-nn fashion. The likelihoods are normalized by counts
over the whole dataset and smoothed to give a chance to la-
bels not in the retrieval set. We also employ the likelihoods
in MRF optimization, not for filtering the number of labels.

5.1. Context-Aware Global Label Costs

We propose to incorporate semantic context through us-
ing label statistics instead of global visual features. The
intuition behind such choice is that ranking by global vi-
sual features often fails to retrieve similar images on the
scene level [29, 33]. For example, a highway scene could

Figure 3. Scene-level global context. (a) The initial labeling of
a query image is used to (b) assign weights to the unique classes
in the image. A class with a bigger weight is represented by a
larger circle. (c) Training images are ranked by the weighted size
of intersection of their class labels with the query. (d) Global label
likelihoods are computed through label counts in the top-ranked
images.

be confused with a beach scene with road pixels misclassi-
fied as sand. However, ranking by label statistics, given a
relatively good initial labeling, retrieves more semantically
similar images that aim to remove outlier labels (e.g., sea
pixels in street scene), and recover missing labels in a scene.

For a given test image I , minimizing the energy function
in equation 2 produces an initial labeling L of the super-
pixels in the image. If C is the total number of classes in
the dataset, let T ⇢ C be the set of unique labels which
appear in L, i.e. T = {t |9s

i

: l
s

i

= t}, where s
i

is a su-
perpixel with index i in the test image, and l

s

i

is the label
of s

i

. We exploit semantic context in a probabilistic frame-
work, where we model the conditional distribution P (c|T )
over class labeling C given the initial global labeling of an
image T . We compute P (c|T )8c 2 C in a K-nn fashion:

P (c|T ) = (1 + n(c,K
T

))/n(c, S)

(1 + n(c̄, K
T

))/|S| , (6)

where K
T

is the K-neighborhood of initial labeling T ,
n(c,X) is the number of superpixels with label c in X ,
n(c̄, X) is the number of superpixels with all labels except c
in X , and |S| is the total number of superpixels in the train-
ing set. We normalize the likelihoods and add a smoothing
constant of value 1.

To get the neighborhood K
T

, we rank the training im-
ages by their distance to the query image. The distance
between two images is computed as the weighted size of
intersection of their class labels, intuitively reflecting that
the neighbors of T are images with many shared labels with
those in T . We assign a different weight to each class in T
in such a way to favor less-represented classes.

As shown in Figure 3, our algorithm works in three steps.

It starts by (1) assigning a weight !
t

to each class t 2 T ,
which is inversely proportional to the number of superpixels
in the test image with label t: !
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is the number of superpixels in the test image with label
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= t, and |I| is the total number of superpixels in the im-
age. Then, (2) training images are ranked by the weighted
size of intersection of their class labels with the test image.
Finally, (3) the global label likelihood L

global

(c) = P (c|T )
of each label c 2 C is computed using equation 6.

Computing the label costs is done online for a query
image without any batch offline training. Our method im-
proves the overall accuracy by using only the ground truth
labels of training images without any global visual features.

5.2. Inference with Label Costs
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We solve equation 7 using ↵-expansion with the extension
method of [5] to optimize label costs. Optimizing the en-
ergy function in equation 7 effectively minimizes the num-
ber of unique labels in a test image to those which have low
label costs, i.e. which are most relevant to the scene.

6. Experiments

We ran our experiments on two large-scale datasets:
SIFTflow [18] and LMSun [29]. SIFTflow has 2,488 train-
ing images and 200 test images. All images are of out-
door scenes of size 256x256 with 33 labels. LMSun con-
tains both indoor and outdoor scenes, with a total of 45,676
training images and 500 test images. Image sizes vary from
256x256 to 800x600 pixels with 232 labels.

We use the same evaluation metrics and train/test splits
as previous methods. We report the per-pixel accuracy (the
percentage of pixels of test images that were correctly la-
beled), and per-class recognition rate (the average of per-
pixel accuracies of all classes). We evaluate the following
variants of our system: (i) baseline, as described in sec. 3,
(ii) baseline (with balanced BDT), which is the baseline ap-
proach using a balanced classifier, (iii) baseline + FC (NL
fusion), which is the baseline in addition to the fusing clas-
sifiers with normalized-likelihood (NL) weights in sec. 4,
and (iv) full, which is baseline + fusing classifiers + global
costs. To show the effectiveness of our fusion method (sec.
4.2), we report the results of (v) baseline + FC (average
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Figure 6. Examples of parsing results on the SIFTflow dataset (best viewed in color). Top left is the original image, on its right is the
ground truth labeling, bottom left is the output from the baseline, on its right the output of the balanced classifier. Finally, the output of the
full system is on the far right (third column). The unbalanced classifier often misses the foreground classes by oversmoothing the results.
The balanced classifier performs better with foreground classes, but yields more noisy classification. The full system combines the benefits
of both classifiers, improving both the overall accuracy and the coverage of foreground classes (e.g., building, bridge, window, and person)

tion models that better describe the training data. At T �
400, performance levels off. As shown, our global label
costs consistently improve the performance over the base-
line method with no global context. Using more training
images (higher K) improves the performance through con-
sidering more semantically-relevant scene images. How-
ever, performance starts to decrease for very high values of
K (e.g., K = 1000) as more noisy images start to be added.

Figure 5 shows the per-class recognition rate for the
baseline, combined classifiers, and the full system on SIFT-
flow. Our fusing classifiers technique produces more bal-
anced likelihood scores that cover a wider range of classes.
The semantic context step removes outlier labels and re-
covers missing labels, which improves the recognition rates
of both common and rare classes. Recovered classes in-
clude field, grass, bridge, and sign. Failure cases include
extremely rare classes, e.g. cow, bird, desert, and moon.

6.2. Running Time

We analyzed the runtime performance for both SIFT-
flow and LMSun (without feature extraction) on a four-core

2.84GHz CPU with 32GB of RAM without code optimiza-
tion. For the SIFTflow dataset, training the classifier takes
an average of 15 minutes per class. We run the training
process in parallel. The training time highly depends on
the feature dimensionality. At test time, superpixel clas-
sification is efficient, with an average of 1 second per im-
age. Computing global label costs takes 3 seconds. Finally,
MRF inference takes less than one second. We run MRF
inference twice for the full pipeline. LMSun is much larger
than SIFTflow. It takes 3 hours for training the classifier,
less than a minute for superpixel classification per image,
less than 1 minute for MRF inference, and ⇠2 minutes for
global label cost computation.

6.3. Discussion

Our scene parsing method is generally scalable as it does
not require any offline training in a batch fashion. However,
the time required for training a BDT classifier increases lin-
early with increasing the number of data points. This is
challenging with large datasets like LMSun. Randomly sub-
sampling the dataset has a negative impact on the overall
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Figure 7. Examples of parsing results on the LMSun dataset (best viewed in color). The layout of the results is the same as in Fig. 6.
Foreground classes (e.g. screen, sidewalk, person, torso, pole, cloud, table, light, and elephant) are successfully recognized by our system.

precision of the classification results. We plan to investigate
alternative approaches like [26] of mining discriminative
data points that better describe each class. Our system still
faces challenges in trying to recognize very less-represented
classes in the dataset (e.g., bird, cow, and moon). This could
be handled via better contextual models per query image.

7. Conclusion

In this work, we have presented a novel scene parsing
algorithm that improves the overall labeling accuracy, with-
out smoothing away foreground classes which are important
for human observers. Through combining likelihood scores
from different classification models, we have successfully
boosted the strengths of individual models, thus improv-

ing both the per-pixel, as well as the per-class accuracies.
To avoid eliminating correct labels through image retrieval,
we have encoded global context into the parsing process in
a probabilistic framework. We have extended the energy
function to include global label costs that achieve more se-
mantically meaningful parsing output. Experiments have
shown the superior performance of our system on the SIFT-
flow dataset and comparable performance to state-of-the-art
methods on the LMSun dataset.
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Figure 2. Classification rates (%) of individual classes for the dif-
ferent classification models trained on SIFTflow. Classes are or-
dered in descending order by the mean number of pixels they oc-
cupy (frequency) in scene images. Our goal is to decrease the
correlation between the trained models.

been shown that partitioning the training set performs better
than partitioning the feature space for large datasets [30].

We have observed that the classification error of a given
class is related to the mean number of pixels it occupies in
the scene images, as shown by the blue line in Figure 2.
This agrees with the findings of previous methods [28, 33]
that the classification error rate is related to the frequency
of classes in the training set. However, we go beyond that
by considering the frequency of the classes on the image
level, which targets the problem of smoothing out the less-
represented classes by a neighbouring background class.

To this end, we train three BDT models with the follow-
ing training data criteria: (1) a balanced subsample of all
classes C in the dataset, (2) a balanced subsample of classes
occupying an average of less than x% of their images, and
(3) a balanced subsample of classes occupying an average
of less than dx/2e% of their images.

The motivation beyond these choices is to reduce the
correlation between the trained BDT models as shown in
Figure 2. While the unbalanced classifier mainly misclas-
sifies the less-represented classes, the balanced classifiers
recover some of these classes while making more mistakes
on the more represented classes. By combining the like-
lihoods from all the classifiers, a better overall decision is
reached that improves the overall coverage of classes (Fig-
ure 1). We observed that the addition of more classifiers did
not improve the performance for any of our datasets.

The final cost of assigning a label c to a superpixel s
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can then be represented as the combination of the likelihood
scores of all classifiers:
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where |C
j

| is the number of classes covered by the jth clas-
sifier and not covered by any other classifier with a smaller
number of classes.

The normalized weight w
j

(c) of class c can then be com-
puted as: w

j

(c) = w̃
j

(c)/
P

j=1,2,3,4 w̃j

(c). Normalizing
the output likelihoods in this manner gives a better chance
for all classifiers to be considered in the result with an em-
phasis on less-represented classes. In sec. 6, we show the
superior performance of our fusion scheme to other tradi-
tional fusion mechanisms: averaging and median rule.

5. Scene-Level Global Context

When exploiting scene parsing problems, it is useful
to incorporate the semantics of the scene in the labeling
pipeline. For example, if we know that a given scene is a
beach scene, we will expect to find labels like sea, sand,
and sky with a much higher probability than expecting to
find labels like car, building, or fence. We use the initial
labeling results of a test image in estimating the likelihoods
of all labels c 2 C (sec. 5.1). The likelihoods are estimated
globally over an image, i.e. there is a unique cost per label
per image. We then plug the global label costs into a second
MRF inference step to produce better results (sec. 5.2).

Our approach, unlike previous methods, does not limit
the number of labels to those present in the retrieval set but
instead uses the set to compute the likelihood of class labels
in a k-nn fashion. The likelihoods are normalized by counts
over the whole dataset and smoothed to give a chance to la-
bels not in the retrieval set. We also employ the likelihoods
in MRF optimization, not for filtering the number of labels.

5.1. Context-Aware Global Label Costs

We propose to incorporate semantic context through us-
ing label statistics instead of global visual features. The
intuition behind such choice is that ranking by global vi-
sual features often fails to retrieve similar images on the
scene level [29, 33]. For example, a highway scene could

Figure 3. Scene-level global context. (a) The initial labeling of
a query image is used to (b) assign weights to the unique classes
in the image. A class with a bigger weight is represented by a
larger circle. (c) Training images are ranked by the weighted size
of intersection of their class labels with the query. (d) Global label
likelihoods are computed through label counts in the top-ranked
images.

be confused with a beach scene with road pixels misclassi-
fied as sand. However, ranking by label statistics, given a
relatively good initial labeling, retrieves more semantically
similar images that aim to remove outlier labels (e.g., sea
pixels in street scene), and recover missing labels in a scene.

For a given test image I , minimizing the energy function
in equation 2 produces an initial labeling L of the super-
pixels in the image. If C is the total number of classes in
the dataset, let T ⇢ C be the set of unique labels which
appear in L, i.e. T = {t |9s

i

: l
s

i

= t}, where s
i

is a su-
perpixel with index i in the test image, and l

s

i

is the label
of s

i

. We exploit semantic context in a probabilistic frame-
work, where we model the conditional distribution P (c|T )
over class labeling C given the initial global labeling of an
image T . We compute P (c|T )8c 2 C in a K-nn fashion:

P (c|T ) = (1 + n(c,K
T

))/n(c, S)

(1 + n(c̄, K
T

))/|S| , (6)

where K
T

is the K-neighborhood of initial labeling T ,
n(c,X) is the number of superpixels with label c in X ,
n(c̄, X) is the number of superpixels with all labels except c
in X , and |S| is the total number of superpixels in the train-
ing set. We normalize the likelihoods and add a smoothing
constant of value 1.

To get the neighborhood K
T

, we rank the training im-
ages by their distance to the query image. The distance
between two images is computed as the weighted size of
intersection of their class labels, intuitively reflecting that
the neighbors of T are images with many shared labels with
those in T . We assign a different weight to each class in T
in such a way to favor less-represented classes.

As shown in Figure 3, our algorithm works in three steps.

It starts by (1) assigning a weight !
t

to each class t 2 T ,
which is inversely proportional to the number of superpixels
in the test image with label t: !
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= 1� n(t,I)
|I| , where n(t, I)

is the number of superpixels in the test image with label
l
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= t, and |I| is the total number of superpixels in the im-
age. Then, (2) training images are ranked by the weighted
size of intersection of their class labels with the test image.
Finally, (3) the global label likelihood L

global

(c) = P (c|T )
of each label c 2 C is computed using equation 6.

Computing the label costs is done online for a query
image without any batch offline training. Our method im-
proves the overall accuracy by using only the ground truth
labels of training images without any global visual features.

5.2. Inference with Label Costs

Once we obtained the likelihoods L
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(c) of each
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We solve equation 7 using ↵-expansion with the extension
method of [5] to optimize label costs. Optimizing the en-
ergy function in equation 7 effectively minimizes the num-
ber of unique labels in a test image to those which have low
label costs, i.e. which are most relevant to the scene.

6. Experiments

We ran our experiments on two large-scale datasets:
SIFTflow [18] and LMSun [29]. SIFTflow has 2,488 train-
ing images and 200 test images. All images are of out-
door scenes of size 256x256 with 33 labels. LMSun con-
tains both indoor and outdoor scenes, with a total of 45,676
training images and 500 test images. Image sizes vary from
256x256 to 800x600 pixels with 232 labels.

We use the same evaluation metrics and train/test splits
as previous methods. We report the per-pixel accuracy (the
percentage of pixels of test images that were correctly la-
beled), and per-class recognition rate (the average of per-
pixel accuracies of all classes). We evaluate the following
variants of our system: (i) baseline, as described in sec. 3,
(ii) baseline (with balanced BDT), which is the baseline ap-
proach using a balanced classifier, (iii) baseline + FC (NL
fusion), which is the baseline in addition to the fusing clas-
sifiers with normalized-likelihood (NL) weights in sec. 4,
and (iv) full, which is baseline + fusing classifiers + global
costs. To show the effectiveness of our fusion method (sec.
4.2), we report the results of (v) baseline + FC (average

Figure 1. Overview of the fusing classifiers approach. Likelihood scores from multiple models (3a) and (3b) are combined to produce the
final likelihoods at superpixels. Likelihood scores of foreground classes (e.g. person) are boosted via our combination technique. The
unbalanced (skewed) model in (3a) produces biased likelihoods towards background classes (e.g. road). This is reflected in the much larger
score (bigger circle) for the road class when compared to the person class and other less-represented classes. For the balanced classifier in
(3b), the scores are more balanced and less-represented classes get a higher chance (bigger circle) of being recognized.
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given c. We learn a boosted
decision tree (BDT) [4] model to obtain the label likeli-
hoods L
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, c). For implementation, we use the pub-
licly available boostDT 1 library. At this stage, we train the
BDT model using all superpixels in the training set, which
represent an unbalanced distribution of class labels C.

3.3. Smoothing and Inference

We formulate our optimization problem as that of maxi-
mum a posteriori (MAP) estimation of the final labeling L
using Markov Random Field (MRF) inference. Using only
the estimated likelihoods in the previous section to classify
superpixels yields noisy classifications. Adding a smooth-
ing term V (l
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) to the MRF energy function attempts to
overcome that issue by punishing neighboring superpixels
having semantically irrelevant labels. Our baseline attempts
to minimize the following energy function:
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where A is the set of adjacent superpixel indices and
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to
two neighboring pixels, computed from counts in the train-
ing set combined with the constant Potts model following
the approach of [29]. � is the smoothing constant. We per-
form inference using the ↵-expansion method with the code
of [2, 14, 1].

1http://web.engr.illinois.edu/ dhoiem/software/

In the next two sections, we present our main contribu-
tions of how we improve the superpixel classification step
(section 4) and how we incorporate scene-level context to
achieve better results (section 5).

4. Improving Superpixel Label Costs

While foreground objects are usually the most notice-
able regions in a scene image, they are often misclassified
by parsing algorithms. For example, in a city street scene, a
human viewer would typically first notice the people, signs
and cars before noticing the buildings and road. However,
for scene parsing algorithms, foreground regions are often
misclassified as being part of the surrounding background
due to two main reasons. First, in the superpixel classifi-
cation step, any classifier would naturally favor more dom-
inant classes to minimize the overall training error. Sec-
ond, in the MRF smoothing step, many of the superpixels
which were correctly classified as foreground objects, are
smoothed out by neighboring background pixels.

We propose to improve the label likelihood score at each
superpixel to achieve a more accurate parsing output. We
design different classifiers that offer complementary infor-
mation about the data. All the designed models are then
combined to derive a consensus decision. The overview of
our fusing classifiers approach is shown in Figure 1. At test
time, the label likelihood scores of all the BDT models are
merged to produce the final scores at superpixels.

4.1. Fusing Classifiers

Our method is inspired from ensemble classifier tech-
niques that train multiple classifiers and combine them to
reach a better decision. Such techniques are specifically
useful if the classifiers are different [13]. In other words,
the error reduction is related to the uncorrelation between
the trained models [30], i.e. the overall error is reduced if
the classifiers misclassify different data points. Also, it has

Figure 1. Overview of the fusing classifiers approach. Likelihood scores from multiple models (3a) and (3b) are combined to produce the
final likelihoods at superpixels. Likelihood scores of foreground classes (e.g. person) are boosted via our combination technique. The
unbalanced (skewed) model in (3a) produces biased likelihoods towards background classes (e.g. road). This is reflected in the much larger
score (bigger circle) for the road class when compared to the person class and other less-represented classes. For the balanced classifier in
(3b), the scores are more balanced and less-represented classes get a higher chance (bigger circle) of being recognized.
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of [2, 14, 1].

1http://web.engr.illinois.edu/ dhoiem/software/

In the next two sections, we present our main contribu-
tions of how we improve the superpixel classification step
(section 4) and how we incorporate scene-level context to
achieve better results (section 5).

4. Improving Superpixel Label Costs

While foreground objects are usually the most notice-
able regions in a scene image, they are often misclassified
by parsing algorithms. For example, in a city street scene, a
human viewer would typically first notice the people, signs
and cars before noticing the buildings and road. However,
for scene parsing algorithms, foreground regions are often
misclassified as being part of the surrounding background
due to two main reasons. First, in the superpixel classifi-
cation step, any classifier would naturally favor more dom-
inant classes to minimize the overall training error. Sec-
ond, in the MRF smoothing step, many of the superpixels
which were correctly classified as foreground objects, are
smoothed out by neighboring background pixels.

We propose to improve the label likelihood score at each
superpixel to achieve a more accurate parsing output. We
design different classifiers that offer complementary infor-
mation about the data. All the designed models are then
combined to derive a consensus decision. The overview of
our fusing classifiers approach is shown in Figure 1. At test
time, the label likelihood scores of all the BDT models are
merged to produce the final scores at superpixels.

4.1. Fusing Classifiers

Our method is inspired from ensemble classifier tech-
niques that train multiple classifiers and combine them to
reach a better decision. Such techniques are specifically
useful if the classifiers are different [13]. In other words,
the error reduction is related to the uncorrelation between
the trained models [30], i.e. the overall error is reduced if
the classifiers misclassify different data points. Also, it has
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