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Abstract

The goal of visual image understanding is to have machines which can perceive the world

similar to a human. Achieving this goal will provide numerous opportunities for machines

to seamlessly interact with users, improving the quality of life of individuals. As the

need for understanding a large number of scene classes with thousands of objects grows,

there is a gradual shift towards a more fine-grained understanding of scenes. Thus, image

understanding algorithms are now faced with the need to be able to scale to an increasing

number of scenes and objects, and to better discriminate between fine-grained scenes.

Furthermore, we would like to achieve these goals in a robust and generalizable manner,

in such a way that the developed algorithms are effective in understanding scene images

taken with smartphones, digital cameras, security cameras, or any other means without

any further modification or adjustment.

Traditional methods rely on visual appearance information to understand scenes. In

contrast, to achieve the desired detailed, yet generalizable, level of scene understanding,

we need to explore high-level semantic information of scenes. Such information will

enable machines to perceive relationships, co-occurrences, and informativeness of the

different components of a scene image in a similar manner to a person. Among the

different components of scenes, objects provide the richest semantic entity of a scene

image; they provide hints about the type of the scene, its location, and how closely it relates

to other scenes. Furthermore, objects enable algorithms to reason about the semantic

relationships among the different components of a real world scene. In this thesis, we

propose techniques for a fine-grained level of scene understanding through exploiting high-

level contextual scene knowledge. We show how to jointly exploit the visual appearance

and context of objects in scenes; how to explore the underlying semantic space of related

fine-grained scenes; and how to recognize a wide range of objects in scenes and exploit

iii



Abstract

global scene context.

In many real-world applications, like assistive vision or robotics, a visual recognition

system is faced with the challenge that there is a significant mismatch between the

distribution of the training data and the test data where the system will be applied. An

even more challenging scenario happens when no data is available from the test domain

during the training process. As for scenes, we argue that describing a scene image in terms

of its constituent objects provides an effective approach to tackle this challenge, where

objects provide a high level of abstraction which enhances the generalization ability of the

representation. This is especially true if there are no available scene images during the

training process, but only images of the fine-grained objects that may occur in them. We

propose to describe a scene image by retrieving all its constituent fine-grained objects in a

multi-label image classification scheme. We jointly reason about the visual appearance

of objects, their co-occurrence statistics, and the amount of expected overlap among

the retrieved objects in a given scene image. This is achieved by optimizing an energy

function which incorporates the three criteria to reach a final labeling of a given scene

image. Results show the effectiveness and efficiency of our approach in simultaneously

retrieving all the specific objects in a given scene image in a single optimization step.

While objects provide a powerful notion for describing scenes, some fine-grained

scenes may share common objects which imposes challenges on the ability to differentiate

between them. In several fine-grained scene domains, e.g. the domain of store scenes, there

exists subgroups of scene images that are more related to each other than to other scene

images, for example by sharing more common objects with each other. Automatically

discovering these more confusing groupings allows the system to learn more discriminant

models for each subgroup that yield a better consensus decision when combined. We

propose an approach to describe scene images using conditional scene probabilities, where

each image is represented by how likely it belongs to each scene class conditioned on its

constituent objects. We then cluster scene images in this semantic space to enable the

system to exploit the underlying semantic structure of scene images and learn a more

discriminant model for each subgroup. We show that our proposed approach outperforms

traditional scene recognition methods when faced with challenging fine-grained scenes.

Motivated by the significant importance of objects in achieving a better scene under-

standing, we finally propose an approach to recognize a wide range of objects in scene

parsing methods. Scene parsing aims at labeling regions of a scene image with their seman-

tic classes, as a way of holistic scene understanding. Retrieval-based parsing systems rely

on retrieving similar images to a given scene image and then computing label likelihoods
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for each region in the given image. These likelihoods are obtained through matching the

regions with those of the set of retrieved images in a nonparametric scheme. These systems

have the advantage of scaling to a large number of scenes and objects, however they are

heavily biased towards the recognition of background regions which harms the recognition

of more salient foreground objects. We propose an approach that boosts the recognition

of foreground objects in scene images by combining the label likelihoods from several

nonparametric classifiers. We show how to design the different classifiers with the goal

of maximizing the gain when combining their decisions. We also propose a method that

reasons about which region labels often co-occur in one scene to discover outlier labels

and recover missing labels in parsing results. We demonstrate that combining likelihoods

and exploiting the scene context in terms of label statistics yields better parsing results

than traditional retrieval-based systems.
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Zusammenfassung

Das Ziel der automatischen Analyse und Erkennung visueller Szenen besteht darin, ma-

schinelle Systeme zu befähigen, die Welt ähnlich wie Menschen wahrnehmen zu können.

Dies würde Maschinen zahlreiche Möglichkeiten zur nahtlosen Interaktion mit Menschen

eröffnen, was in geeigneten Szenarien die Lebensqualität Betroffener erhöhen kann.

Durch das Streben nach Erkennung von immer mehr unterschiedlichen Szenen mit

tausenden von Objekten vollzieht sich allmählich ein Übergang hin zu einer feingranularen

Perzeption visueller Szenen. Dabei steht man vor der Herausforderung, Algorithmen zur

Szenenanalyse für die wachsende Zahl von Szenenklassen und Objekten skalierbar zu

machen sowie genauer zwischen einzelnen Szenen hoher Auflösung diskriminieren zu

können. Gleichzeitig soll dies in einer robusten und generalisierbaren Weise erreicht

werden, sodass die entwickelten Algorithmen ohne Modifikation oder Anpassung Szenen

erkennen können, seien sie von Smartphones, Digitalkameras, Überwachungskameras

oder anderen Geräten aufgezeichnet worden.

Herkömmliche Methoden zur Szenenanalyse beruhen lediglich auf Informationen zum

visuellen Erscheinungsbild. Um den angestrebten Detaillierungsgrad bei gleichzeitiger

Generalisierbarkeit zu erreichen, muss auf abstrakterer Ebene zusätzlich die latente Se-

mantik der Szenen genutzt werden. Diese semantische Information sollte es maschinellen

Systemen in einer ähnlichen Weise wie einem Menschen ermöglichen, Aussagen, Zu-

sammengehörigkeit und wechselseitige Bezüge der verschiedenen Bildkomponenten zu

erkennen. Dabei stellen unter den verschiedenen Komponenten einer Szene die abgebil-

deten Realweltobjekte die semantisch reichhaltigsten Entitäten dar; sie geben Hinweise

auf die Art der Szene, den Ort sowie die Bezugsstärke zu anderen Szenen. Darüber

hinaus ermöglichen sie geeigneten Algorithmen, Schlüsse über die semantischen Bezie-

hungen zwischen den verschiedenen Komponenten der Szene zu ziehen. Dementsprechend
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Zusammenfassung

präsentieren wir in der vorliegenden Arbeit Techniken zur feingranularen Szenenerken-

nung unter Nutzung von abstraktem kontextuellem Szenenwissen; wir zeigen dabei auf,

wie in Szenen das visuelle Erscheinungsbild und der Kontext von Objekten gemeinsam

genutzt werden kann, wie der zugrundeliegende semantische Raum exploriert werden

kann, wie eine grosse Anzahl verschiedener Objekte erkannt werden kann und wie hierfür

der globale Szenenkontext verwendet werden kann.

Bei vielen Anwendungen, wie zum Beispiel bei Assistenzsystemen oder in der Robotik,

steht ein optisches Erkennungssystem vor der Herausforderung, dass eine signifikan-

te Diskrepanz zwischen den Trainingsdaten und den Falldaten, auf denen das System

ausgeführt wird, besteht. Noch grösser ist die Schwierigkeit, wenn während des Trai-

ningsprozesses keine Daten der Anwendungsdomäne verfügbar sind. Wir zeigen, dass die

Beschreibung eines Szenenbildes durch die abgebildeten Szenenobjekte eine effektive Her-

angehensweise zur Bewältigung dieser Herausforderung darstellt. Dies ist insbesondere

dann der Fall, wenn keine Szenenbilder der Anwendungsdomäne während des Trai-

ningsprozesses verfügbar sind, sondern höchstens Einzelbilder der Szenenobjekte. Wir

schlagen vor, ein Szenenbild durch Erfassen aller feingranularen Objekte, die Teil der

Szene sind, zu beschreiben. Das Erkennen dieser Objekte geschieht durch ein Multi-Label-

Bildklassifikationsschema. Wir steuern den Klassifikationsvorgang unter Einbezug der

visuellen Information, der Statistiken bezüglich des gemeinsamen Auftretens von Objek-

ten und der Grösse des erwarteten Überschneidungsbereichs der erkannten Objekte im

Szenenbild. Dies wird durch die Optimierung einer Energiefunktion erreicht, die diese drei

Kriterien miteinbezieht, um eine abschliessende Kennzeichnung einer gegebenen Szene

zu erzielen. Versuchsergebnisse belegen die Wirksamkeit und Effizienz unseres Ansatzes

beim gleichzeitigen Erkennen aller Objektinstanzen eines gegebenen Szenenbildes in

einem einzigen Optimierungsschritt.

Abgebildete Objekte stellen ein ausdrucksstarkes Konzept zur Beschreibung von Sze-

nen dar. Jedoch kann es sein, dass unterschiedliche Szenen auf feingranularer Ebene

aus teilweise gleichen Objekten bestehen, was Schwierigkeiten bei der Unterscheidung

dieser Szenen mit sich bringt. In vielen Domänen, beispielsweise bei Ladenszenen, gibt

es Teilgruppen von Szenenbildern, die stärker miteinander in Beziehung stehen als mit

anderen Szenenbildern, etwa aufgrund des Vorhandenseins gemeinsamer Objekte. Das

automatische Erkennen solcher Konfusionsgruppen erlaubt es dem System, gut diskri-

minierende Modelle für die einzelnen Teilgruppen zu erlernen, die dann in Kombination

eine bessere Entscheidung ermöglichen. Dementsprechend schlagen wir vor, Szenenbilder

durch bedingte Wahrscheinlichkeiten zu beschreiben, die jedes Bild dadurch charakte-
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risieren, wie wahrscheinlich es – bedingt durch dessen konstituierende Objekte – zu

einer bestimmten Szenenklasse gehört. Anschliessend werden die Szenenbilder in diesem

semantischen Raum zu Clustern gruppiert, um dem System zu ermöglichen, die zugrunde-

liegenden semantischen Strukturen der Bilder zu nutzen und für jede Teilgruppe stärker

diskriminierende Modelle zu erlernen. Wir zeigen, dass unser vorgeschlagener Ansatz die

herkömmlichen Szenenerkennungsmethoden übertrifft, sobald er auf den schwierigeren

feingranularen Szenen zur Anwendung kommt.

Motiviert durch die hohe Bedeutung der konstituierenden Objekte für die Optimierung

der Szenenerkennung schlagen wir schliesslich einen Ansatz vor, mit dem bei der Szenen-

analyse eine grosse Bandbreite an Objekten erkannt werden kann. Die Szenenanalyse zielt

darauf ab, im Sinne eines ganzheitlichen Szenenverständnisses Teilbereiche eines Sze-

nenbildes mit der zugehörigen semantischen Klasse zu kennzeichnen. Retrieval-basierte

Analysesysteme beruhen darauf, zu einem gegebenen Szenenbild ähnliche Bilder abzuru-

fen und mit diesen die Wahrscheinlichkeiten (“Likelihoods”) zutreffender Bildlabels für

jeden Teilbereich des gegebenen Szenenbildes zu berechnen. Die Werte erhält man durch

einen nichtparametrischen Abgleich der Teilbereiche des Szenenbildes mit entsprechenden

Bereichen in den abgerufenen Bildern. Diese Verfahren haben den Vorteil, dass sie gut

mit der Zahl von Szenen und Objekten skalieren. Allerdings fokussieren sie stark auf die

Erkennung von Hintergrundregionen, was die Erkennung von relevanten Objekten im

Vordergrund verschlechtert. Wir schlagen daher für die Objekterkennung im Vordergrund

von Szenenbildern einen Ansatz vor, bei dem die Bildlabel-Wahrscheinlichkeiten mehrerer

nichtparametrischer Klassifikatoren kombiniert werden. Wir zeigen, wie diese Klassifi-

katoren konzipiert werden können, um den Gewinn ihrer kombinierten Entscheidung zu

maximieren. Zudem schlagen wir eine Methode vor, die ermittelt, welche Labels von

Teilbereichen in einer Szene oft gemeinsam auftreten, um Ausreisser zu erkennen und

fehlende Labels zu ergänzen. Wir zeigen, dass man durch die Kombination von Bildlabel-

Wahrscheinlichkeiten und die Nutzung des Szenenkontexts im Sinne der Label-Statistiken

bessere Analyseergebnisse erzielt als mit herkömmlichen retrieval-basierten Systemen.
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Chapter 1
Introduction

When observing a visual scene for a few seconds, a person can seamlessly perceive a vast

amount of information about the scene, like its constituent objects, their interactions, the

environment, and much more. Not only can humans describe such visible characteristics

of their surroundings, but they can also reason about the correlations among the different

components of the scene, the saliency of each component, and other semantic knowledge,

which contribute to the astonishing ability of a person to sense the world. Empowering

machines with such ability to semantically understand the visual world like a human

does is an important problem for computer scientists in order to improve the quality of

daily lives of people. Such “intelligent” machines will be able to assist users in their

healthcare, educational, navigation, and leisure needs through context-aware algorithms.

The prevalence of the information age brought along physical environments that are

equipped with an abundance of imaging devices. People take images with their digital

cameras, smartphones, or wearable devices that capture their daily activities creating

opportunities for computer systems to achieve better user interaction through a better

understanding of the user’s surrounding world.

Traditional machine vision systems focus on providing a coarse-grained understanding

of visual scenes. These systems usually rely on the availability of thousands or millions of

images that can be used with sophisticated machine learning techniques to learn useful

information about the scenes. Such coarse-grained understanding of scenes is often not

sufficient for a machine to perceive the amount of detailed knowledge needed for an

effective service of user needs. For example, if a person is in a store, not only do we need

to know that it is a store, we also need to know what kind of store, what section of the store
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she is currently at, and even the store name which would provide us with useful contextual

knowledge. Thus, there is an increasing need for fine-grained image understanding.

Achieving such an understanding is challenging for several reasons. First, fine-grained

scenes share common objects and spatial layouts which makes it more confusing to

differentiate between them than coarse-grained scenes. Second, it is expensive and

unpractical to gather large datasets for each fine-grained scene to train machine learning

models that have good generalization performance when applied to unseen images. Thus,

we need to develop image representations and recognition algorithms that are robust

against the widely varying conditions of images captured by users. For example, images

of a given scene captured by a visually-impaired person, an elderly person, and a security

camera are expected to be different in their viewing angles, amount of blur, distance to

objects, and other imaging conditions. Also, the machine vision system needs to correctly

infer the properties of the scene using as few training images as possible, making the

currently successful systems trained using millions of scene images gathered from the

web [156] not best suited for the problem. To achieve the desired fine-grained level

of image understanding, we need to explore high-level semantic information of scenes.

Such information will enable machines to perceive relationships, co-occurrences, and

informativeness of the different components of a scene image in a similar manner to a

person. It also provides a higher level of abstraction than low-level visual information,

effectively improving the generalization performance.

Among the different components of scenes, objects provide the richest semantic entity

of a scene image; they provide strong hints about the scene environment, as well as which

objects may occur in the same scene. For example, as shown in Figure 1.1, if the presence

of a car in a given scene suggests that the environment maybe a highway, a city street, or

a garage, then the simultaneous recognition of a pedestrian crossing in the same scene

suggests that the scene environment is more likely to be a city street rather than a highway

or a garage. Furthermore, objects provide contextual information about scenes at multiple

levels; locally as well as globally. For example, on the local level, the presence of a

building in an image suggests the presence of sky in adjacent pixels in the upper part of

the image, and side walk or road in adjacent pixels in the lower part of the image. While

on a more global level, the presence of the building suggests the presence of a car or a

person somewhere in the image, not necessarily adjacent to the building. Such contextual

knowledge of object co-occurrences is shown in Figure 1.2. For decades, computer vision

systems have tried to recognize the presence of objects in images [19, 76, 93, 99, 109, 136]

or detect their exact locations [20, 38, 50, 96], starting with object-centric images where

the object occupies the majority of the image’s pixels [37, 57, 101], transitioning to scene-
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Figure 1.1: Objects give hints about scene environment. If the presence of a car in a given scene

suggests that the environment maybe a highway, a city street, or a garage, then the

simultaneous recognition of a pedestrian crossing in the same scene suggests that the

scene environment is more likely to be a city street rather than a highway or a garage.

centric images, where objects are shown in more natural settings interacting with and

occluded by other objects in the scene [35,88,117,145]. These methods only reason about

the visual appearance of objects, targeting the recognition of isolated objects. However,

exploiting visual appearance when combined with reasoning about other semantic aspects

of the scene, like the environment and the co-occurrences of objects, is more beneficial

on two fronts: improving the recognition performance of the objects in the scene and

achieving a deeper understanding of the scene.

In this thesis, we explore high-level semantic knowledge to achieve a fine level of

image understanding. We present methods that improve the robustness and generalization

ability of the learnt models when applied in widely varying imaging conditions. The main

contributions of this thesis are:

• Reasoning about Visual Appearance of Objects and Scene Context: We present

an approach that describes a scene image in terms of its constituent objects in a

multi-label image classification scheme. We show that jointly reasoning about the

visual appearance of the objects, their co-occurrence statistics in the scenes, and the

amount of expected overlap between the objects in a scene image is both effective

and efficient in describing scene images [46].

• Robust Semantic Clustering of Fine-Grained Scenes: We show that fine-grained

scenes can be further divided into subgroups, where each subgroup contains images

that are more semantically related to each other. We present an approach to discover

these latent subgroups, effectively exploiting the underlying semantic structure

3
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Figure 1.2: Objects provide contextual knowledge on local and global levels. On the local level,

the presence of a building in an image suggests the presence of sky in adjacent pixels

in the upper part of the image, and side walk or road in adjacent pixels in the lower

part of the image. While on a more global level, the presence of the building suggests

the presence of a car or a person somewhere in the image, not necessarily adjacent to

the building. The presence of the building also provides hints about unlikely objects in

the scene, e.g. water or sand.

of fine-grained scenes which improves the robustness and generalization of scene

recognition performance [48].

• Recognizing a Wide Range of Objects in Scenes: We show that the recognition of

objects in scenes can be improved by exploiting the knowledge about the frequency

of objects in scene images, how prevalent an object is in a given image, and which

objects often co-occur in a given scene on a global level [45].
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1.1 Reasoning about Scene Context and Visual Object Appearance

1.1 Reasoning about Scene Context and Visual

Object Appearance

In real-world applications, like assistive vision or robotics, vision systems are frequently

faced with the need to process images taken under very different imaging conditions

than those in their training sets. For example, store images taken with a smartphone

can differ significantly from those found on the web, where most image datasets are

collected. The variation can be in terms of the objects displayed (e.g. the latest clothing

collection), their poses, the lighting conditions, camera characteristics, proximity between

camera and scene items, or blur. It is well known that the performance of vision models

can degrade significantly due to these variations [110, 133]. This is frequently called

the cross-domain setting, since the domain of test images is different from that seen in

training. If images from the test domain are available during the training process, labelled

or unlabelled, the system can be adapted to the test domain using knowledge from both the

training and the testing domains [108]. In contrast, if the system is faced with the more

challenging situation of the absence of images from the testing domain during training,

then the system needs to be able to generalize to any unseen domain in an autonomous

manner. As for scenes, we argue that describing a scene image in terms of its constituent

objects provides an effective approach to tackle this challenge, where objects provide a

high level of abstraction that enhances the generalization ability of the representation. This

is especially true if there are no available scene images during the training process, but

only images of the fine-grained objects that may occur in them.

In this thesis, we propose to describe a scene image by retrieving all its constituent fine-

grained objects in a multi-label image classification scheme. Traditional image retrieval

systems only reason about the visual appearance of objects. Thus, each object in a scene

image is retrieved in an isolated manner. However, if we jointly reason about visual

appearance of objects and high-level context in scene images, a deeper understanding of

the image is achieved. In our work, we exploit the visual appearance of objects, their

co-occurrence statistics, and the amount of expected overlap among the retrieved objects

in a given scene image to simultaneously retrieve all the specific objects in an image.

This is achieved by optimizing an energy function which incorporates the three criteria to

reach a final labeling of a given image. Results show the effectiveness of our approach

in simultaneously retrieving all the specific objects in the given scene image in a single

optimization step. Our method is significantly more efficient than alternative object

detection approaches, and can scale to thousands of possible objects.
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1.2 Semantic Clustering of Fine-Grained Scenes

While objects provide a powerful notion for describing scenes, it is typical for fine-grained

scenes to share common objects. This in effect may cause confusion for vision systems,

which limits their ability to differentiate between these scenes. For example, in the domain

of store scenes, some images of both shoe shops and sports stores contain shoes. Similarly,

some images of furniture stores, coffee shops, and waiting areas in shoe shops contain

chairs or sofas. In effect, scene images that share more common objects with each other

are more semantically related to each other than to other images. Exploiting such inherent

semantic structure in fine-grained scene images, as shown in Figure 1.3, allows the system

to discover these subgroups and their contextual relationships. Accordingly, the system is

able to learn more discriminant models for each subgroup, which yield a better consensus

when combined.
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coffee shop furniture store 
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Figure 1.3: Semantic clustering of fine-grained scenes. It is common in fine-grained scenes that

some scene images share more common objects with each other than with other images,

thus are more semantically related to each other. For example in the domain of store

scenes, some images of both shoe shops and sports stores contain shoes. Similarly,

some images of furniture stores, coffee shops, and waiting areas in shoe shops contain

chairs or sofas. Exploiting such underlying semantic structure of scene images improves

our understanding of the scenes and allows us to develop more discriminative systems.
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To discover these latent semantic groupings in fine-grained scene images, we propose an

approach that first projects scene images to a semantic space, namely the space of objects.

We then describe scene images using conditional scene probabilities, where each image

is represented by how likely it belongs to each scene class conditioned on its constituent

objects. This contextual image description enables us to automatically cluster scene images

to discover the hidden subgroups in this semantic space. Thus, the system is able to exploit

the underlying semantic structure of scene images and learn a more discriminant model

for each subgroup. To further improve the understanding of the underlying semantic space,

we examine the relative informativeness and discriminability of each object for each scene.

Some objects are very informative of their respective scenes, for example flower pots for

flower shops. In contrast, other objects may occur in almost every scene, for example

doors or boxes, which may harm the discriminative ability of the system. Discarding these

less informative objects serves to better disambiguate fine-grained scenes. We show that

our proposed approach outperforms traditional scene recognition methods when faced

with challenging fine-grained scenes.

1.3 Recognizing a Wide Range of Objects in Scenes

Motivated by the significant importance of objects in achieving a better scene understand-

ing, we finally propose an approach to recognize a wide range of objects in scene parsing

methods. Scene parsing is the assignment of semantic labels to each pixel in a scene image,

as a way of holistic scene understanding.There are various outdoor and indoor scenes

(e.g., beach, highway, city street and airport) that image parsing algorithms try to label.

Among the main challenges that face image parsing methods is that their recognition rate

significantly varies among different types of classes. Background classes, which typically

occupy a large proportion of the image’s pixels, usually have uniform appearance and

are recognized with a high rate (e.g., water, mountain, and building). Foreground classes,

which typically occupy relatively few pixels in the image, have deformable shapes and

can be occluded or arranged in different forms. Such classes (e.g., person, car, and sign)

represent salient image regions that often capture the eye of a human observer. However,

they frequently represent failure cases with recognition rates significantly lower than those

of background classes.

Recently, retrieval-based image parsing methods have been proposed [34, 58, 90, 124,

132, 147] to efficiently handle the increasing number of scenes and objects. As shown
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Figure 1.4: Retrieval-based parsing systems. These systems rely on retrieving similar images to a

given scene image and then computing label likelihoods for each region in the given

image. These likelihoods are obtained through matching the regions with those of the

set of retrieved images in a nonparametric scheme.

in Figure 1.4, retrieval-based methods typically start by reducing the problem space

from individual pixels to superpixels. First, an image set is retrieved, which contains

the training images that are most visually similar to the query image. The number of

candidate labels for a query image is restricted to the labels present in the retrieval set

only. Second, classification likelihood scores of superpixels are obtained through visual

features matching. Finally, context is enforced through minimizing an energy function

that combines the data cost and knowledge about the classes co-occurences in neighboring

superpixels. Retrieval-based methods can straightforwardly scale to an increasing number

of scenes and objects, which makes them suitable for the problem of large-scale scene

understanding. However, these methods still suffer from the significant bias towards

background regions, harming the recognition performance of notable foreground objects.

In the last part of this thesis, we show how to boost the likelihoods of foreground,

less-represented, objects in an accurate manner that improves the overall understanding of

the scene. We propose to reason about the likelihood of different labels for each region

through considering multiple models, as shown in Figure 1.5. Fusing decisions from
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Figure 1.5: Our scene parsing approach boosts the recognition of foreground objects in scene

images. Likelihood scores of foreground classes (e.g. person) are boosted via our

combination technique. The unbalanced (skewed) model in (a) produces biased like-

lihoods towards background classes (e.g. road). This is reflected in the much larger

score (bigger circle) for the road class when compared to the person class and other

less-represented classes. For the balanced classifier in (b), the scores are more balanced

and less-represented classes get a higher chance (bigger circle) of being recognized.

multiple sources allows us to recognize the different semantic elements of the scene

when the visual appearance is not discriminative enough. We show how to design the

different models with the goal of maximizing the gain when combining their decisions.

We also propose a method that reasons about which region labels often co-occur in one

scene to discover outlier labels and recover missing labels in scene parsing results. For

example, through reasoning about the frequent labels that we observe in a highway scene,

e.g. road, car, bridge, and sky, we can discover that semantic labels like sea or boat are

more unlikely to be present in a given highway scene. Thus, we target a deeper semantic

understanding of the scene, reasoning about its different components. We demonstrate

that combining likelihoods and exploiting scene context in terms of label statistics yield

better parsing results than traditional retrieval-based systems, achieving a more coherent

scene interpretation.

1.4 Organization of the Thesis

In the next chapter, we present our work in describing scene images by exploiting the

visual appearance of their constituent objects, while imposing spatial and co-occurrence

constraints. Such constraints serve to disambiguate visually similar objects in scenes.

In Chapter 3, we show how to further explore the underlying semantic structure of fine-

grained scenes to better distinguish between them. In Chapter 4, we present our method of
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achieving a more coherent interpretation of scenes through incorporating high-level scene

semantics and boosting the recognition of salient scene elements. Finally, in Chapter 5,

we conclude and discuss directions for future work.

Parts of the thesis have been published earlier in peer-reviewed conferences and work-

shops. The contributions in the first part of Chapter 2 were published in [46]. The

dissertation author developed the algorithm, gathered the dataset, conducted the experi-

ments, and wrote the paper. The application scenario studied in Section 2.6 was published

in [47]. The dissertation author developed the algorithm and wrote most of the paper.

The second author contributed to conducting the experiments as part of his BSc thesis

project supervised by the dissertation author. Chapter 3 is based on the work submitted for

publication [48]. The dissertation author developed most of the algorithm, conducted the

experiments, and wrote most of the paper. The second author contributed to gathering the

proposed dataset and developing few parts of the algorithm during his MSc thesis project

supervised by the dissertation author. Chapter 4 is based on [45].
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Chapter 2
Reasoning about Visual Object

Appearance and Scene Context

The ubiquity of smart devices with embedded cameras, for example smartphones, smart-

glasses, or smartwatches, allows people to seamlessly capture images throughout their

daily activities, which enables these devices to better understand the surrounding world of

their users. Such an understanding creates numerous opportunities for these systems to

assist the users in their daily tasks, provide context-aware recommendations, or enable

them to enjoy a better quality of life. This is especially useful for visually impaired or

elderly users with greater needs. In this chapter, we introduce an approach for seman-

tic image understanding in a real-world challenging scenario, namely grocery shopping.

Specifically, we describe our approach for instance-level retrieval in context. We target the

problem in the domain of supermarket images, where our goal is to retrieve all the specific

product instances in a supermarket scene image reasoning about the visual appearance of

the products and the overall scene context. We also study an application scenario, namely

assisted shopping, to demonstrate the importance of addressing this problem in improving

the quality of daily lives of people in Section 2.6.

2.1 Introduction

To visually understand an image, visual recognition systems try to recognize the object

or scene classes of an image through applying machine learning techniques using a large
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number of training images. Improving the performance of such systems requires training

the model using as many images as possible that are drawn from the same distribution as

the test images [133]. However, in many real-world applications, we face the challenge

that the testing images are taken in completely different settings than the training images.

For example, in the domain of assisting the visually impaired, or vision for mobile robots,

images are very likely to suffer from blur, specularities, unusual viewing angles, a lot of

background clutter and very different lighting conditions. Gathering and labeling images

that try to mimic the natural environments for which the system is used, is a tedious and

very time-consuming task.

A fine-grained level of semantic understanding of an image provides an effective way to

tackle the challenge sketched above. While visual features can vary greatly among diverse

natural environments, semantic knowledge on the other hand enjoys the advantage of

being more consistent across environments. Such consistency, allows the system to have a

better generalization ability when applied in differing conditions. An important step to

achieve such a fine-grained understanding of a given scene is to describe its elements in a

highly detailed manner. For example, instead of just recognizing that there is a person in

an image, we recognize that this person is a woman of middle age and average-height. An

even better understanding can be achieved if the system is able to recognize the specific

woman in the image. This problem is referred to as instance-level retrieval, where the

goal is to retrieve the specific instances of objects in an image. Exploiting our semantic

knowledge of the scene, for example which objects frequently occur together and their

spatial distribution in the scene, can improve the retrieval of the specific object instances.

Accordingly, a fine-grained understanding of the scene is achieved.

A real-life environment where objects provide rich semantic knowledge of the scene is

inside grocery stores. We can successfully interpret the surroundings of a person in the

store by just reasoning about the specific product instances present in his vicinity. Recently,

image recognition in the retail products domain has become an interesting research topic

due to the remarkable advancements in the capabilities of mobile phones and mobile vision

systems [122,134]. A mobile vision algorithm to recognize products in an image has a wide

range of potential applications, ranging from identifying individual products to provide

review and price information, to the assisted navigation in supermarkets. Furthermore,

mobile retail products recognition can assist the visually impaired in shopping, encouraging

them to independently perform daily activities, which promotes their social wellness.

Building a system that parses an image featuring several retail products taken with a

smartphone introduces several challenges. This includes the cross-dataset recognition
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challenges mentioned earlier. Product images available through online shopping websites

are taken in ideal studio-like conditions, which are very different from real life images

taken with mobile phones in shops, as illustrated in Figure 2.1 and Figure 2.2. These

challenges are aggravated when having only one image per product for training and

thousands of products (labels) to match against. Due to the increasing number of new

products every day, the system also needs to be scalable with no or minimal retraining

whenever a new product is introduced. To be applicable in the visually impaired domain,

the designed scheme cannot rely on any feedback from the user in improving the retrieved

results. The system has to work in a completely autonomous manner. Recognizing

grocery products, in particular, is challenging as there are multiple products that have

very similar visual appearance except for minor features like the color of the package, or

some text describing the product. Finally, runtime efficiency is crucial for mobile vision

systems, which makes semantic segmentation or sliding window detection approaches

computationally expensive for our problem.

In this work, we propose an approach for instance-level retrieval in context. Specifically,

we target simultaneous recognition and localization of all the individual products in a

retail store image taken in real-life settings. We automatically infer the total number and

locations of objects present in an image in a single optimization round, unlike other more

expensive object detection techniques. We achieve runtime efficiency through the use

of discriminative random forests, deformable spatial pyramid dense pixel matching, and

genetic algorithm optimization. Cross-dataset recognition is performed, where our training

images are taken in ideal conditions with only one single training image per product label,

while the evaluation set is taken using a mobile phone in real-life scenarios in completely

different conditions. New objects can be added to the dataset with minimal need of global

retraining of the system. In addition, we provide a large novel dataset for products image

search in cross-dataset settings.

2.2 Related Work

Image Classification and Retrieval

Image classification is a rich and successful topic in computer vision. Given an image

of an object or a scene, the goal is to classify the image into its corresponding object or

scene class. There is a vast amount of work in image classification [7,28,29,40–42,76,84,
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85, 85, 86, 94, 96, 105, 130], thus it is out of the scope of this dissertation to discus each of

these approaches. Instead, we focus on the work that is most related to ours, specifically

instance-level image retrieval.

In instance-level image retrieval, we want to retrieve instances of the exact same

object or scene of a given query image. The instances are retrieved from a usually large

dataset. Until recently, most state-of-the-art approaches to this problem relied on extracting

local image descriptors, e.g. SIFT [93], and assembling them into a fixed-length image

descriptor. In the bag-of-visual-words (BOV) framework [19], this descriptor is computed

as a histogram of visual-word counts. Denser image representations, such as GIST [104]

and compressed Fisher Vectors [109], were proposed as more compact representation

than the BOV. Fisher Vectors have a very high expressive power, which yields impressive

image retrieval results. The high-dimensional Fisher Vector representation is usually

transformed into a more compact representation using one of several data encoding

methods, e.g. [16, 56, 65, 140]. An encoding method which yields excellent results is the

Hamming embedding [64] (HE) method, which provides binary signatures that refine the

matching based on visual words. Other approaches target the image retrieval problem

through metric learning [5, 17, 21, 68, 141]. Such methods leverage the class labels of the

images to learn pairwise similarity measures between image descriptors. Others propose

to leverage the class labels of images to instead describe an image as a vector of attribute

scores [7, 24, 27, 31, 81, 115]. Recently, deep convolutional neural networks (CNNs) [83]

have achieved very impressive performance in image classification [76]. It has been

shown that the activation features from the top layers of deep CNNs can be successfully

transferred to other classification and retrieval tasks [30].

Also related to our work are approaches for object recognition in context [15, 44, 126].

Geometric constraints are enforced in [62], while semantic relations are imposed as a post

processing step using conditional random fields (CRF) in [113]. These approaches rely on

semantic information extracted from training scene images to improve object recognition

or detection in testing scene images. Different from these approaches, we incorporate

semantic context at a global scene level in an instance-level retrieval framework in cross-

dataset settings. During the training process, we have images of object instances that can

occur in scenes along with their category-level labels, while at testing time we have scene

images taken in real settings under significantly varying conditions.

Product recognition has gained increasing interest in the past few years [67, 89, 97, 122,

134] due to the fast advancements in computer vision techniques and the availability of

computationally powerful mobile devices like smartphones and watches. Image retrieval
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is used in [67] and [89] to retrieve images visually similar to a query image. Both the

query images and the training images contain a single product from the same dataset.

In [122], image retrieval is also targeted but in cross-dataset settings through query object

segmentation combined with iterative retrieval. Both the training images and query images

contain a single product but with different background conditions. Through segmenting the

product, better results are achieved. There are several commercial product search engines

for single product recognition, like Google Goggles1 and Amazon Flow2 that achieve

good performance for planar and textured categories like CD or book covers. Closely

related to our system are approaches that focus on grocery product recognition [97]. A

grocery product dataset of 120 product instances is proposed in [97]. Each product is

represented by an average of 5.6 training images downloaded from the web and test images

are manually segmented from video streams of supermarket shelves. Each test image

contains a single segmented product. A baseline approach of SIFT [93], color histogram,

and boosted Haar-like [138] feature matching is performed.

Multi-Label Image Classification

Multi-label image classification [70, 129, 152] differs from multi-class recognition [123]

in that a single image is classified using multiple labels. Multi-label classification usually

incorporates modelling the correlation between the labels, which significantly boosts the

semantic classification performance [129]. In [153], Genetic Algorithm optimization is

utilized for filtering the selected features, which are then used for classification. Unlike

[153], we do not have any multi-label training data. Our system, instead, targets multi-label

classification by simultaneously recognizing multiple objects in the image. Our training

set consists of images representing a single product in ideal conditions. In [153], Genetic

Algorithm optimization is utilized for filtering the selected features, which are then used

for classification. However, our approach targets filtering the number of recognized labels

as a final optimization step.

Object detection is an important problem in computer vision that [32, 38, 50] targets

the simultaneous recognition and localization of the object classes present in an image.

Sliding-window approaches extract dense features, like HOG [20] features, and apply

sliding window classification models or deformable part-based models [38] on image

patches to classify each image patch as an object or non-object. However, these techniques

1www.google.com/mobile/goggles/
2http://flow.a9.com/
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require a large number of labeled training examples, which makes them unsuitable for

classes with sparse examples or high intra-class variations. Exemplar support vector

machines (SVMs) [96] were proposed to handle classes with few training examples or

high intra-class variations. This method has proven to be effective in detecting visually

similar objects to the ones in the test image. Recently, features from the top layers of

deep convolutional neural networks extracted from category-independent region proposals

have been used successfully in object detection [50]. However, all these methods are

computationally expensive in both training and testing and cannot scale to thousands of

objects as is the case in our problem.

Object Datasets

There are several existing general object datasets, which consist of hundreds, or more

recently thousands, of object classes. Such datasets include Caltech 101 [37], Caltech

256 [57], PASCAL [35], LabelMe [117], the large-scale imageNet dataset [25], among

others. Orthogonally, fine-grained object datasets consist of images of sub-ordinate closely

related categories. Such datasets include Caltech-UCSD Birds [142] dataset, Oxford

Flower [102] dataset, and Stanford Cars [75] dataset. While both general and fine-grained

object recognition datasets are essential for training and testing machine vision systems,

they do not address the cross-dataset challenges which we face in real life. Specifically,

the training and testing images have similar data distributions, which may affect the

generalization ability of the trained machine learning models.

Mostly related to our proposed dataset are datasets of product images which are gathered

in cross-dataset settings. A dataset of grocery products was proposed in [97], however the

dataset size is much smaller than ours with only 120 grocery products in the training set.

Each product category represents a single specific product (i.e. no hierarchies or classes of

products). We run our experiments on our proposed dataset as well as the one presented

in [97]. In [122], a sports product image dataset is collected. Both the training images and

the 67 query images contain a single shoe product per image.

2.3 Grocery Products Dataset

Grocery products introduce many challenges to the object recognition problem, which

deteriorates the performance of traditional object recognition techniques. Many products
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(a) Sample training image from the ”Office Material” category

(b) Sample training images from the ”Cleaning Material” category

(c) Sample training images from the ”Kids” category

(d) Sample training images from the ”Chips” category

(e) Sample training images from the ”Snacks” category

Figure 2.1: Sample training images from our collected dataset. Each training images is downloaded

from the web in ideal studio conditions. Each product instance is represented by a

single image in the dataset.

have similar appearance with only minor differences in the color of the package, size of

the package, or some text on the box. Non-planar products, like bottles or jars, lower

the matching performance considering that we only have one training image per product.

Besides, evaluation images contain very little background regions, which makes it a

rather challenging task to recognize every single product in the image. We built a new

supermarket products dataset which can be used in multi-label fine-grained cross-dataset
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Figure 2.2: Sample testing images from our collected dataset. Testing images are taken in real

stores with a smartphone. Each image consists of multiple products which are occluded,

rotated, and sometimes deformed. Testing images suffer from blur and specularities.

object recognition. Our dataset consists of 8350 training images spanning 80 product

categories downloaded from the web. Each grocery product is represented by exactly one

training image taken in ideal studio conditions with a white background. On the other

hand, test images are taken in real-life scenarios using a mobile phone. Each test image

contains several products ranging from 6 to 30 products per image. Test images are taken

with different lighting conditions, viewing angles and zoom levels, introducing many

challenges to the recognition process.
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Training images are organized in hierarchical categories. For example, a Snickers

chocolate bar is classified as ”Food/Candy/Chocolate”. The number of training images in

each fine-grained category ranges from 25 to 415 images, with an average of 112 different

retail products in each category – one training image for each product. We added an

additional label for background regions. The images for the background label represent

shelves and price tags, extracted from test images. Examples of training images are shown

in Figure 2.1.

One of the main goals of this work is to investigate cross-dataset multi-label image

classification. Accordingly, our evaluation set is collected in completely different con-

ditions from the training set. A total of 680 images are taken in different grocery stores

covering the different classes in the training dataset. Testing images impose additional

challenges, like specularities, different viewing angles, rotated or occluded products as

shown in Figure 2.2.

We ran our experiments on 27 classes of the “Food” category products in addition to the

background class, which represents shelves and price tags, with a total number of 3235

images. Deformable objects, like nuts bags, chips, and bakery are included in the “Food”

category of our dataset. To evaluate the performance of our algorithm, we annotated 680

test images with all the products from the 27 training classes. The ground truth of each

test image specifies bounding boxes with a corresponding single product label for each

bounding box. A single bounding box covers a group of instances of the same product in

a test image as shown in Figure 2.3.

2.4 Multi-label Image Classification

In this section, we describe the design and implementation details of our algorithm. Figure

4.1 shows an overview of our system. Our proposed technique consists of three main

steps. The first two steps filter the best matching products to a given test image through

two successive ranking procedures. The third step simultaneously localizes and infers the

total number of objects present in the test image through globally minimizing an energy

function.

Although we are going to use specific algorithms for each step of our pipeline, any other

algorithm which fits to a single step can be applied. For example, we used discriminative

decision trees [148] for multi-class ranking, but it would suffice to use support vector
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Figure 2.3: Sample test images with ground truth annotations from our proposed dataset.

machines (SVM) for classification. Similarly, we can use any matching algorithm for the

second step of our pipeline like SIFT flow [91] or sparse features matching.

2.4.1 Multi-class Ranking

To reduce our search space from thousands of possible matches to tens up to a few

hundreds of images, we train a classification model using the given training images and

then use a voting scheme, explained below, to retrieve the top-ranked object classes.

For training, we use the discriminative random forests [148] technique. This technique

combines the efficiency of random forests in exploring an extremely large feature set

through randomization [8], with discriminative feature mining that captures fine-grained

characteristics of image regions to distinguish between different image classes. The

training set contains a single image for each product with a total number of 3235 images in

27 classes. We extract dense SIFT feature descriptors [94] on each image with a spacing

of four pixels, with five patch sizes: 8, 12, 16, 24, and 30 to account for different scales.

Visual vocabulary codebook of 256 code words is then constructed using k-means. Larger

dictionary sizes did not yield further performance improvements, while increasing the

memory and computational requirements. Descriptors are assigned to code words using

Locality-constrained Linear Coding (LLC) [139].

To retrieve the top ranked object classes for a given test image, we designed a voting

algorithm, which first divides the test image into grids with different sizes. We, then,

classify each grid region separately using the trained model. We gather votes for each

class in the trained model by counting the number of grid segments belonging to that class.

For each test image, we return the top k classes. Our proposed class ranking technique

handles two important challenges faced in cross-dataset object recognition, specifically

in the products recognition domain. First, each object in the test image is surrounded

by many other objects which have very similar features, which can easily confuse the
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2.4 Multi-label Image Classification

Figure 2.4: System overview: (a) Given a test image, (b) we first filter the categories which the test

image may belong to, (c) then we match the test image against all images in the filtered

categories. (d) An energy function is then optimized given the top-ranked matches to

obtain the final list, along with inferred locations, of detected products.

classifier. By dividing the image into patches of different sizes, we limit such confusion.

Second, by collecting the total number of votes for grids, we lower the impact of regions

in the image suffering from difficult imaging conditions in affecting the final classification

decision.

In the experiments section, we detail the parameters used for multi-ranking and we

show how the multi-label ranking performance is improved through gathering votes over

grid patches rather than classifying the whole image once.

2.4.2 Retrieving Visually Similar Instances

To achieve simultaneous recognition and localization of specific object instances in each

test image, we apply fast dense pixel matching through deformable spatial pyramid

matching [72]. No training is required to perform this step. Furthermore, it contributes to

the scalability of our system, in such a way that adding new specific objects to the dataset

does not require retraining the random forests step, as long as these objects fall under one

of the pre-existing classes.

The goal is to rank the images in terms of appearance agreement while enforcing

geometrical smoothness between neighboring pixels. The matching objective can be
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Chapter 2 Reasoning about Visual Object Appearance and Scene Context

expressed formally by minimizing the energy function [72]:

E(t) = ∑
i

Di(ti)+α ∑
i, j∈N

Vi j(ti, t j), (2.1)

where Di is a data term which measures the average distance between local descriptors

within node i in the first image to those located within a region in the second image

after shifting by ti. Vi j is a smoothness term, α is a constant weight, and N denotes

pairs of nodes linked by graph edges. The energy function is minimized using loopy

belief propagation. Training images are scaled to 200x200 pixels and test images are

scaled to 600x450 pixels, which empirically yielded good matching results. We use the

mean difference of dense color SIFT [94] feature descriptors as our data term. In all the

experiments, the value of α was fixed at 0.005 following [72].

A segmentation mask is obtained specifying the inferred location of every pixel in

each matched image with respect to the current test image. The matching costs, along

with the segmentation masks are used in the next step of our pipeline to produce the final

multi-labeling results as explained in section 2.4.3.

2.4.3 Reasoning about Appearance and Context

Once we obtain a ranked list of matching correspondences, we then consider only the

top N images, which will be in the range of very few tens of images, to obtain our final

multi-labeling results. We formulate our problem in a genetic algorithm (GA) optimization

model [51]. A GA offers an optimization heuristic to search inside a problem’s solution

domain, as it is usually intractable to examine all possible solutions of a given problem.

The quality of a given solution is determined using a fitness function, which is the objective

function to be minimized using GA.

To define our multi-label image classification objective function, let q be our current test

image. We want to find the L ⊂ N images which minimize the following energy function:

E(L) = α ∑
l∈L

Dlq(l,q)+βULq(L,q)+ γCL, (2.2)

where Dlq is the data term between image l ∈ L and the current test image q, ULq is the

uncoverage term, which measures the proportion of pixels not covered by any image l in L

when the whole set is warped to q. Finally, our context term CL models the prior knowledge
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about the co-occurrence of recognized products in the query image. α , β , and γ are weight

parameters.

We chose our data term Dlq to measure the mean difference between the dense SIFT

descriptors between the two images, as defined by [72]. We experimented with adding

other features like normalized RGB color histogram. However, the performance was worse

with global color, where most products are colorful and the lighting conditions of test

images are very different from training images.

The coverage term ULq penalizes results which do not cover a big proportion of the test

image. If we define Slq to be the set of non-overlapping pixels in q covered by l when

warped to q, then ULq can be defined as:

ULq(L,q) = 1−
1

z
∑
l∈L

|Slq|, (2.3)

where z is the total number of pixels in the test image q and |Slq| is the cardinality of the

set Slq. This, again, helps in overcoming the challenge of having multiple database images

with very similar visual appearance. Such images will all be ranked as top matches, but

for only one object in the test image. Just taking the top ranked results, would then yield

very poor coverage of the objects present in the test image.

The context term CL models the prior probability that the labels which appear in the final

retrieved set of images occur together. In other multi-label classification approaches, this

knowledge is usually inferred from the training images. In our case, this knowledge cannot

be obtained from the training images, as each image in our training set contains only a

single product. We overcome this problem through utilizing the hierarchical structure

of our solution. We model the prior distribution such that images (or product instances)

which fall under the same category are more likely to occur together than those which

fall in different categories. The probability of co-occurrence is higher for more restrictive

categories than for broader categories.

CL = 1− ∑
li,l j∈L

P̃(li, l j), (2.4)

where P̃(li, l j) is the prior distribution over the pairwise co-occurence of labels.

The overall energy function in Eq. 2.2 is globally minimized using a constrained genetic

algorithm (GA) [51]. We represent the population of possible solutions as a binary vector

of length N, where each element represents the decision of inclusion for each image in the
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set. At each step, the genetic algorithm randomly selects a subset of possible solutions

and uses them as parents to produce the children for the next generation. The population

evolves toward an optimal solution, through consecutive generations. We used the ”ga”

method provided in the Matlab Global Optimization Toolbox. To constrain the type of

children which the algorithm creates at each step to be binary, we implemented special

creation, crossover, and mutation functions [22].

2.5 Experimental Evaluation

2.5.1 Experimental Design

Datasets

We evaluated the performance of our approach on two datasets:

1. 680 annotated test images from the proposed “Grocery Products” dataset, with a

total number of 3235 products in 27 leaf node classes. Test images contain products

of all subcategories in the “Food” category ranging from 6 to 30 product items per

image. Regions in the test images which contain objects that do not belong to the

database are given a null label.

2. 885 extracted test images from the GroZi-120 [97] dataset. There is a total of 676

training images representing 120 grocery products. Each product is represented by

2-14 training images with an average of 5.6 images. There are no classes of products

(i.e. each class has only one specific product). The originally provided test images

were unsuitable, since each image contains a single product item. No shelves images

were provided. We, instead, extracted video frames from the provided 29 video files,

each representing the whole frame as shown in Figure 2.5. Each test image contains

4-15 grocery product items. Training images are downloaded from the web in ideal

conditions, while test images are taken in grocery stores with different conditions.

Implementation Details

We trained 100 trees with a maximum depth of 10. We gathered votes for each test image

over 57 patches of 5 different grid sizes. The motivation behind choosing these values is
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explained in section 2.5.5. The values of the parameters for the energy function (defined in

Eq. 2.2): α , β , and γ are optimized using coordinate descent as detailed in section 2.5.4.

Evaluation Metrics

We measure the performance of our proposed system using three metrics: mean average

precision (mAP), mean average product recall (mAPR), and mean average multi-label

classification accuracy (mAMCA) [10]. We chose non-standard measures because standard

measures usually address the performance of single-instance retrieval. mAP is measured

by computing the average precision over all test images for different values of the number

of top matched images (n) we consider in the matching step, and then the mean is taken

over all values of n (ranging from 5 to 70) to capture the joint precision-recall performance.

We count groups of specific products in a test image not individual product items (Figure

2.3). We measure the mAPR by computing the average labeling performance (recall) of

the retail product items present in an image, and then the mean is computed across all

images. To compute mAMCA over the test dataset D, suppose Yx is the set of ground truth

labels for test image x and Px is the set of prediction labels. We can define the multi-label

score for image x as

score(Px) =
|Yx ∩Px|

|Yx ∪Px|
. (2.5)

Thus, the multi-label classification accuracy can be measured as

accuracyD =
1

|D| ∑
x∈D

score(Px). (2.6)

To analyze the performance of our multi-class ranking approach, we also use two

measures: mean average recall (mAR) per-class and mean average accuracy (mAA) over

the test images. We vary K, i.e. the number of predicted classes from 1 to the total number

of classes and measure the true positive and false positive rates accordingly.

In the next sections, we first perform quantitative and qualitative evaluation of our

system in Section 2.5.2. We then perform an in-depth analysis of our GA optimization

in Section 2.5.4. Results on the GroZi-120 dataset are reported in Section 2.5.3. Finally,

multi-class ranking is discussed in Section 2.5.5.
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Method mAP(%) mAMCA(%) mAPR(%)

Baseline [72] 13.53 11.77 37.33

Full 23.49 21.19 43.13

without global optimization 16.93 15.07 43.36

with ground truth ranking 42.56 38.02 45.63

FV(1024 dim) 8.62 6.41 20.73

FV(4096 dim) 11.26 9.95 22.14

HE(k=200000, ht=22) 4.26 3.96 12.13

Table 2.1: Multi-label image classification performance for baseline labeling, different versions

of our system, and state-of-the-art classification and instance-level image retrieval

techniques.

Method mAP mAMCA mAPR

Baseline [72] 7.62 6.24 16.59

Full 13.21 7.5 9.37

without global optimization 9.54 7.1 17.56

with ground truth ranking N/A 43.03 43.03

FV(1024 dim) 4.44 5.49 12.50

FV(4096 dim) 7.34 5.74 15.16

HE(k=200000, ht=22) 6.32 5.23 10.54

Table 2.2: Performance on the Grozi-120 dataset. System parameters are optimized to maximize

average precision rate.

2.5.2 Multi-label Image Classification Performance

To evaluate the performance of our proposed approach, we vary the number of predicted

classes of the multi-class ranking K from 1 to the total number of classes and report the

mAMCA and mAPR values on different variants of our system, as shown in Table 2.1: (1)

full system (Full), (2) our system without performing global optimization (i.e. retreive

all the n top-ranked images from the dense pixel matching results on the k top-ranked

class categories), (3) our system if we have perfect ranking performance of the multi-class

ranking step, and (4) ground truth ranking without performing global optimization. We

compare the performance of our algorithm to state-of-the-art classification and instance-

level image retrieval techniques: Fisher Vectors [109] (FV) and Hamming Embeddings

[64] (HE). For FV, we use 1024 and 4096 dimensional encodings without PCA. We

also report the performance of FV (4096 dim) with Geometric Consistency Checks with

RANSAC re-ranking on the top 100 images. For HE, we use k = 200,000 visual words

for building the bag-of-words histogram representation which was shown to yield good
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(a)

(b)

Figure 2.5: Sample (a) training and (b) testing images from the Grozi-120 dataset.

performance and we use a fixed Hamming threshold ht = 22 following [64]. We also

compare to the baseline method of ranking all the images by just dense pixel matching

score [72] and taking the top n matches.

Our full system achieves 23.49% mAP and 21.19% mAMCA over all the 680 test

images, which outperforms the baseline method by over 9%. Our method also significantly

performs better than other state-of-the-art approaches. FV and HE are efficient algorithms

which achieve impressive precision on other benchmarks. However, for our case, the

distribution of the training data from which the GMM model is built (for FV), or the BOF

dictionary is built (for HE) is significantly different from the data distribution of the test

set. In addition, these methods are better suited for general rather than fine-grained object

recognition.

To verify the impact of our global optimization step, we also report results when we

pick the top n-ranked images from the matching step as our final multi-label classification

result without any optimization (baseline). We notice that the mAMCA degrades by more

than 6%, as more irrelevant images are considered in the final result.

We also show the performance results if we run our dense pixel matching ranking and

global optimization steps using the images of the ground truth classes (i.e., we assume that
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the multi-label ranking step gives a perfect ranking of predicted categories for each test

image). This yields a substantial improvement in the mAP and mAMCA, which shows

that our system’s performance could be further improved by experimenting with different

classification techniques. When evaluating the system, the parameters are optimized for

maximizing the precision and accuracy of recognition. Accordingly, the recall performance

is not much improved given the chosen values of the parameters. Showing the improvement

of precision for the same achieved recall values gives an indication of how ground truth

ranking can improve the performance of the system. Better recall values can be achieved

at the cost of lowering the precision. Ground truth ranking without global optimization

achieves a better recall value but at the expense of a significantly lower mAP value.

In Figure 2.6, we show sample results from running our full system on different test

images to illustrate the effectiveness of our proposed technique. We show the original test

image, the inferred labels, and their predicted locations in the test image. Failure cases are

mainly due to significant visual resemblance between training images (like the cereal box

in the Figure), severe specularities, and blurry conditions of test images. Wrong facing

products are failure cases, but they can be addressed with additional training images.

2.5.3 Performance on the Grozi-120 Dataset

We ran our experiments on 885 test images extracted from 29 video files taken with a

smartphone in a supermarket (see Figure 2.5). We used the same metrics and compared

to the same approaches as in Section 2.5.2. Our system significantly outperforms other

methods and the baseline method as shown in Table 2.2. Note that the mAP value for the

ground truth ranking variant of our system will always have a value of 100.0% because

each product category represents a specific product in the Grozi-120 dataset. Better recall

values can be achieved if we relax the restriction of maximizing the precision performance.

Figure 2.7 shows sample results from running our algorithm on the Grozi-120 dataset. Our

method effectively recognizes and infers the locations of the objects in a test image.

We note that our system achieves lower mAP values on the Grozi-120 dataset than on

our proposed dataset. This is due to the fact that there are only 5.6 images per product

(which represents a class) on average for training which greatly degrades the results of

the discriminative random forests. This is verified in the significant improvement of the

system performance when using ground truth ranking. Further more, a large proportion of

the test images in the Grozi-120 dataset suffer from blurriness. Nevertheless, our system
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Figure 2.6: Examples of two multi-label image classification results. Left column shows the test

image, then the retrieved product instances, and finally their inferred locations in the

test image.

Figure 2.7: Examples of two multi-label image classification results on the Grozi-120 dataset. Left

column shows the test image, then the retrieved product instances, and finally their

inferred locations.

outperforms other approaches. Also, there is no available prior information. We adjusted

the prior model to be the l1-norm of the total number of recognized products in the image.
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2.5.4 Genetic Algorithm Optimization

We analyze the performance of our GA optimization by investigating the mAP when

choosing different parameter values for K, n, α , β , and γ . We first study the effect of

the number of filtered classes K in the multi-ranking step and the number of top matches

n in the dense pixel matching step on the mAP performance of the system. Figure 2.8a

shows the mAP as a function of n for different values of K = 5, 7, 9, 13, 15. For each

combination of n and K, we obtain the optimal values of α , β , and γ which maximize

the mAP using coordinate descent optimization. It is shown that increasing the number

of classes K generally improves the mAP. However, as K keeps increasing, more noise

is added to the filtered set which decreases the mAP. Best performance is obtained for K
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Figure 2.8: (a) Mean average precision as a function of the total number of matches (n) for different

values of the number of filtered classes (K). (b) Mean average precision as a function

of the total number of top matches (n) when turning on the GA optimization and when

turning off the GA optimization. Our GA step significantly yields better performance.
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Baseline 1 seg 5 seg 57 seg

mAA 25.56 63.55 62.52 64.00

mAR 22.4 57.22 53.32 58.35

Table 2.3: Multi-class ranking performance. Baseline is the binary classification of test images.

= 13 classes. As expected, mAP decreases as n increases, but at the same time the recall

improves. In Figure 2.8 (b), we plot the mAP as a function of n for K = 13 when turning

off the GA optimization, by setting α = 0, β = 0, and γ = 0, and when turning on the

GA optimization by fixing α = 0.33, β = 0.05, and γ = 0.29 (obtained using coordinate

descent). Our GA step significantly improves the mAP performance. Also, our curve is

flatter which shows that our method is more tolerant to noise imposed by adding more

images in the dense pixel matching step.

2.5.5 Multi-class Ranking Analysis

To demonstrate the impact of our multi-class ranking scheme, we report the mAA and

mAR values using (1) different number of segments (i.e. votes), as opposed to (2) using

the whole image (i.e. 1 segment) for ranking, and (3) performing binary classification of a

test image (baseline). We have experimented with different, empirically chosen, segment

sizes. Results in Table 2.3 show that ranking classes through gathering classification votes

consistently yields better performance. The impact of regions in the image that suffer from

specularities or very wide variation in viewing angles is regularized by considering other

patches which have better conditions.

2.5.6 Runtime Efficiency

Our system consists of 3 steps: (1) Multi-class ranking, (2) fast dense pixel matching,

and (3) global optimization. We ran our experiments on a single 2.4G CPU with 4 GB of

RAM without code optimization. Step (1) takes an average of 0.2 seconds per test image,

not considering feature extraction time. Step (2) takes 0.35 seconds per each matching

operation, and finally step (3) converges to an optimal solution in around 1.4 seconds when

we consider the top 20 images for optimization. Accordingly, the total runtime of our

algorithm is 1.95 seconds, where the time for dense pixel matching which is parallelized

for n top-ranked images. The most time consuming task is the LLC feature extraction.
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2.6 Application: Product Recognition for Assisted

Shopping

In this section, we study a concrete scenario where product recognition can improve the

shopping experience of users. Specifically, we present a system which visually recognizes

the fine-grained product classes of items on a shopping list, in shelves images taken with

a smartphone in a grocery store. Recognizing the products which the user is facing can

be further used in recommending related products, reviewing prices, and assisting the

user in navigating inside an unfamiliar store. Assisted navigation in stores is essential

for improving the autonomy and independence of the visually impaired in performing

their shopping activities. When populating a shopping list, users frequently write the

names or the brands of products instead of their respective classes (e.g., Coca-Cola

instead of soft drink). Since our goal is to recognize the product classes, we need to map

product names/brands to their respective classes in a scalable and efficient manner with no

supervision from the user.

In this work, we address the problem of large-scale fine-grained product recognition in

cross-domain settings. The designed method should satisfy the following requirements:

• Scalability to a large number of product classes and product instances; require no

or minimum re-training when adding new products to the dataset or changing the

packaging of some of the existing products.

• Robustness to cross-domain settings; to be applicable in real-world settings with thou-

sands of supermarkets and millions of users with different characteristics and health

conditions.

• Autonomy; automatically recognize the product classes corresponding to strings of

product names or brands entered by the user with no supervision on the input.

• Runtime efficiency; the designed solution should be efficient to run within seconds.

In Figure 2.9, we show an overview of our system, which consists of three components

that improve the shopping experience of the user: (a) Text recognition on product pack-

aging; automatically recognize useful text on a grocery product packaging like the name

and brand of the product using text detection and optical character recognition (OCR)

techniques applied on the training images of grocery products. This information is then

used to assist the user by automatically recognizing the product class once a word is

entered into the shopping list application. This procedure is scalable to a continuously
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increasing number of grocery products as it only relies on the ground truth classes of

training images without any bounding boxes or additional information from the user. (b)

Product class recognition; recognize the fine-grained class of a shelves image taken with

a smartphone in a real grocery store. Our system works in cross-dataset settings where

training images are in different conditions from testing images. We use our proposed

GroceryProducts dataset [46], which contains 26 fine-grained product classes with 3235

training images downloaded in ideal condition from the web and 680 test images taken

with smartphones in real stores. The evaluation of our system shows the effectiveness of

discriminative patches in capturing meaningful information on product packaging. (c)

Recognition improvement by user feedback; continuously improve the accuracy of our

system through applying active learning techniques.

Related Work

Our system is related to the problem of fine-grained object recognition in computer

vision. Several approaches have been proposed for recognizing sub-ordinate categories of

birds [13, 26, 142, 154], flowers [102, 121], and other classes [4, 75, 107]. The techniques

used in these methods along with the representation of images are significantly different

from our target domain of grocery products.

A system which targets grocery product detection in video streams was proposed

in [143]. The system tries to find items on a shopping list in video streams of supermarket

shelves. Keypoints in the image are recommended to search for products. The system uses

the dataset of 120 products proposed in [97]. The authors, however, restrict the search

space for each test image to 10 products only, by limiting the number of possible items on

a shopping list. Furthermore, they assume that training images of the items on the list are

given as an input to the system during query time, which is challenging to scale in real

settings with thousands of products. Product detection is performed using naı̈ve Bayes

classification of SURF [6] descriptors. Our system is different in several ways. First, we

do not restrict the number of items present on the shopping list. Instead, we automatically

map each item on the list to its fine-grained product class through our proposed text-

recognition-on-product-packaging approach (Section 2.6.1). Accordingly, our method is

scalable to a continuously increasing number of products, where no user input is needed

for populating the list. Second, instead of naı̈ve Bayes classification, our approach for

product recognition relies on discovering discriminative patches on product packaging

that differentiate between visually similar products. Finally, we evaluate our system on a
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Figure 2.9: Overview of our system. It consists of three main components: (a) text recognition

on product packaging, (b) visual recognition of fine-grained product classes, and (c)

recognition improvement by user feedback.

much larger dataset, which significantly affects the product recognition accuracy; while

each product class in [97] is represented by an average of 5.6 images of the same specific

product, each product class in [46] is represented by an average of 112 specific products

(each specific product is represented by one image), which is challenging to capture by a

single model.

2.6.1 Text Recognition on Product Packaging

Users usually write the names or brands of products instead of their respective classes (e.g.,

corn flakes instead of cereal) when populating a shopping list. As our goal is to recognize

the product classes, we need to efficiently map words in the list to their respective classes

with no supervision from the user. To achieve this goal, we automatically recognize the

text on each product packaging in our training set and compute a histogram to represent

how many times each word is encountered in a given class. This histogram is used to

measure the confidence of mapping a given word to a corresponding class and is used to

rank the possible classes for a given word.

Recognizing text using optical character recognition (OCR) techniques in natural images

requires segmenting text regions from the rest of the image. Applying OCR techniques to

whole product images failed to retrieve any useful information. To automatically recognize

text regions on each product packaging, we use the approach presented in [63]. The

input image first needs to be preprocessed by converting it to grayscale, padding, and

normalizing it by subtracting the image mean and dividing by the standard deviation. Then
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Figure 2.10: Histogram of word occurrences on the product packaging in the “Coffee” category in

the dataset.

the text/no-text classifier in [63] is applied on the intermediate image. The output of the

classifier is a score for each pixel representing how likely it contains text as shown in

Figure 2.9a on the top. To create bounding boxes of text regions, we first mask out all

pixels with a classification score of 10 or below to leave only high-scored pixels. Following

that, we dilate the remaining pixel areas in 6 iterations as the remaining patches are usually

of relatively small sizes. Finally, we ignore all regions with a size of 230 pixels or less,

since they likely correspond to short or non-meaningful words such as weight declarations,

or no text at all. An example of detected bounding boxes on a product are shown in Figure

2.9a on the top. Once the text regions are segmented, we use the OCR method in [127]

to recognize the text in each bounding box. A histogram is then built to represent the

frequency distribution of words in each class. The histogram of detected words for class

“Coffee” in our dataset is shown in Figure 2.10.

When the user writes a product name in the shopping list, the corresponding class

is automatically detected if the word occurs in a single class only in the training set.

Otherwise, a filtered list of classes ranked by the histogram value is shown to the user to

choose from as shown in Figure 2.11. This list typically contains around four classes only,

which significantly improves the user experience of populating the shopping list.
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Figure 2.11: Our shopping assistant. The user enters a textual string which is matched against the

pre-computed keyword database, and a filtered list of classes is shown to the user.

2.6.2 Product Class Recognition of Shelves Images

Fine-grained grocery product classification poses several challenges as discussed earlier.

Such challenges are further aggravated when considering cross-dataset settings in which

training images and test images have very different conditions in terms of blur, lighting,

deformation, orientation, and the number of products in a given image.

Relying on low-level image features such as SIFT [93] or HOG [20] faces difficulty

in capturing meaningful image features which are robust against such challenges. The

recently proposed mid-level image representations [29, 69, 125] have achieved impressive

results in object and scene classification tasks as they provide a richer encoding of images.

Such methods try to discover discriminative patches of a given class, which are patches

that occur frequently in the images of the class while they rarely occur in images of other

classes. We argue that discriminative patches are beneficial for fine-grained cross-dataset

grocery product classification for the following reasons: (1) several product classes may

share a common logo. Such image regions are confusing for the classifier and degrades

the performance of the system. By extracting discriminative patches from each class, such

regions are discarded, which yields better results. (2) While training images are taken in

ideal studio conditions, testing images suffer from deformations and occlusions which

results in only partial matches between training and testing images. Through relying on
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features from several image patches instead of whole image, more robust representation

is achieved. (3) Several specific product items in a class share common regions, e.g.,

many rice images contain a rice bowl and many coffee images contain a cup of coffee

on the packaging. Capturing such regions and ignoring other less-discriminative regions

improves the informativeness of the class model.

To discover discriminative patches on grocery product packaging, we use the method

of [125] to extract mid-level discriminative patches from training images of each grocery

product class. The method iterates between clustering and training discriminative SVM

Figure 2.12: Top 10 discovered discriminative patches for the top 10 correctly classified product

classes in the GroceryProducts dataset.
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detectors. An SVM detector trained on a cluster tries to find similar patches to those in

the cluster, which ensures the discriminative property of the cluster. At each step, cross-

validation is applied to avoid overfitting. We use the same parameter settings as in [125].

HOG [20] descriptors of size 8x8 cells with a stride of 8 pixels per cell are computed

at 7 different scales. For each class, negative training images are random images from

all the other classes in the dataset. The algorithm outputs a few thousand discriminative

patches, which are then ranked by the purity and discriminativeness of their clusters. We

then take the top 210 patch detectors of each grocery product class to represent each class,

as recommended by [125]. Figure 2.12 shows the top 10 discriminative patches for the top

10 correctly classified classes in the GroceryProducts dataset.

The next step is to represent each image by a single feature vector that is suitable for

learning a standard SVM classification model. First, we run each patch detector on the

whole image. Then, we form a histogram with number of bins equal to the number of

classes in the dataset (26 in our case). Each histogram bin contains the highest detection

score of the most confident patch of that class, i.e., we do two consecutive steps of max-

pooling, first we take the highest score of detecting each of the 210 patches of a class

then we take the highest score among all patches. Thus, the histogram has much lower

dimensionality than the related ObjectBank [86] descriptor, which makes our descriptor

more computationally efficient. Furthermore, our descriptor is not affected by increasing

the number of patch detectors per class, as only one value per class is stored in the

histogram. To further ensure better runtime performance, we run detectors at a single

scale. These histograms are then used to train 1-vs-all linear SVM classifiers for each

grocery product class.

To encode spatial information of the extracted features, we use the spatial pyramid

image representation [82], which has shown significant improvements to the bag-of-words

model in object as well as scene classification tasks. We use 2-level spatial pyramid

representation. For each image region, we compute the histogram of detection scores

described above. Then, we concatenate the histograms from all the image regions, resulting

in a histogram of length NumberOfClasses× (1×1+2×2) dimensions. The resulting

histograms are then used to train 1-vs-all linear SVM classifiers for each grocery product

class, resulting in much improved performance over the whole image histograms as they

encode richer information about the spatial arrangement of patches in a given image.

In the evaluation section, we show the superior performance of using discriminative

patches in fine-grained product classification over other traditional methods like bag-of-

visual-words [19] and low-level image features.
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2.6.3 Adaptive Threshold for User Notification

We designed our system to be robust against misclassification. This happens for example

when the query image contains only background, e.g. floor or ceiling, without any products,

or contains product classes which are not in the dataset. Our system only notifies the user of

a recognized product if its classification score is higher than a specified threshold. Higher

thresholds means that we only notify the user of a product if we are highly confident about

the classification result, which results in higher precision at the cost of lower recall values.

To find a suitable certainty score, we computed a precision-recall curve when gradually

increasing the SVM classification score. In Section 2.6.5, we perform an analysis of the

resulting curve. There are several ways to find a suitable value, e.g. by user satisfaction

studies.

2.6.4 Recognition Improvement by User Feedback

Human users interact constantly with our system, continuously delivering images from

the testing domain. These new input images can be used for enhancing the recognition

accuracy while maintaining minimal supervision from the user. While our system is

generally robust to cross-domain settings, further improvements are expected when images

from the test domain are involved in the training process. Active learning [95] allows us

to select a subset from the user-provided images to be manually labeled. By selecting the

images with the least confident classification score (i.e., those nearest to the learnt SVM

hyperplane), the SVM classifier can be re-trained with this additional information to better

discriminate the training data. Active learning allows us to select only few images to be

labeled, which significantly lowers the amount of manual supervision maintaining high

user satisfaction and scalability of our system.

2.6.5 Experimental Evaluation

Experimental Setup

We evaluate the recognition performance of our system using the average classification

accuracy. To compute the average accuracy over the testing set D, we define

accuracyD =
1

L

L

∑
i=1

ki

ni
, (2.7)
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where ki is the number of correctly classified images in class i, L is the total number of

classes and ni is the total number of images in class i.

In all our experiments, we do not rely on any bounding boxes or annotations when

classifying testing images to ensure the autonomous behaviour of our system. The ground

truth labelling of testing images assumes one class per image, i.e., each testing image

contains products from the same fine-grained class. We scale test images to a maximum

height of 1080 pixels.

The shopping assistant has been tested on an LG Nexus 5 running Android Lollipop 5.1.

The phone features an 8 MP camera. Images are captured at a resolution of 3264 x 2448

pixels. Featured sensors which are used within the application are the camera, proximity

sensor with two states and accelerometer.

We used the following parameters for our algorithms: the 1-vs-all SVM classifiers were

trained using a radial basis function (RBF) kernel with C = 2048 and λ = 2. The initial

threshold for the discriminative patch detectors was fixed at -1.5.

Classification Performance

To evaluate the performance of the visual recognition component of our system (Section

2.6.2), we compute the average accuracy for the following variants of our system:

1. Full: discriminative patches + 2x2 pyramid + SVM

2. DP & SVM: discriminative patches on whole image + SVM

3. DP & HS: discriminative patches + take the class of the patch with highest score as

the class of the image (i.e., no SVM training)

4. DP & 2x2 Pyramid & HS: discriminative patches + 2x2 pyramid + take the class of

the patch with highest score in all 5 regions (1x1+2x2)

5. Baseline: 128-dimensional SURF descriptors quantized by bag-of-words (BoW)

model with 200 words + SVM

Table 2.4 shows the average accuracy of the different variants of our system and

the baseline method. Our full system achieves an average accuracy of 61.9%, which

significantly outperforms the average accuracy of 12.4% of the baseline method. Using

spatial pyramid representation results in a notable improvement in the performance of our
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Method Accuracy(%)

Baseline 12.4

DP & SVM 41.8

DP & HS 46.6

DP & 2x2 Pyramid & HS 49.9

Full (DP & 2x2 Pyramid & SVM) 61.9

Table 2.4: Average classification accuracy of different variants of our method and the baseline

method on the GroceryProducts dataset.

system, where it improves the average accuracy by around 20%. To examine the quality

of the discovered discriminative patches, we report results when using the class of the

highest scoring patch among all patches of all classes as the class of the image (DP &

HS). We achieved an average accuracy of 46.6%, which impressively outperforms using

an SVM classifier (DP & SVM) by around 5%. Accordingly, the discovered patches are

of high quality and represent the data well. The classification accuracy when taking the

class of the highest scoring patch in all image regions using 2x2 spatial pyramid (DP &

2x2 Pyramid & HS) is inferior to using an SVM classifier (Full), as the histogram used for

classification encodes richer image information through spatial context.

Figure 2.13 shows the confusion matrix of classification accuracy over all the 26 classes

of the dataset. The top 10 correctly classified classes are Coffee, Pasta, Tea, Cereals, Water,

Rice, Sauces, Snacks, Biscuits, and Soups. Such classes have distinct product packaging

that yield highly discriminative patches as shown in Figure 2.12. For example, Coffee

class is characterised by the cup of coffee on most products, and pasta bags usually are

transparent showing the uniquely textured pasta inside.

Failure cases include Bakery, Chips, Ice Tea, and Milk classes. Reasons for the poor

performance varies from one class to the other. For instance, Bakery class lacks the

presence of logos or discriminative Figures on the packaging. Products vary in texture and

shape, and are highly deformable which makes it challenging to match training images

with testing images. Chips packaging is often made up of plastic foil which is prone to

reflections and deformations that hinder patch detection. If we inspect the Ice Tea class,

we observe that it has been misclassified as Soft Drinks in 75% of the test cases. This is

explained by the common shape and general appearance of both classes. Also, they often

share the same manufacturer which makes it more challenging to differentiate between

them. Milk class is mostly confused with Yoghurt due to similar packaging shape.
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Figure 2.13: Confusion matrix of the classification results for the 26 fine-grained classes of the

GroceryProducts dataset.

Adaptive Threshold Analysis

Figure 2.14 shows the precision/recall curve when varying the threshold of the SVM

score. As we tighten the certainty score, the precision increases but at the cost of lower

coverage of recognized products (less recall). As can be seen from the graph, our system

achieves high precision values of over 90% for recall values up to 50% which highlights

the usability of our system. Through user satisfaction studies, a suitable threshold can be

specified which satisfies user needs and convenience.

Active Learning Performance

To examine the effectiveness of active learning in improving the recognition accuracy, we

ran 3 different experiments where we divide the original testing set of 680 images into
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Figure 2.14: Precision-recall curve for thresholding the SVM classification score. Our method

yields high precision of over 90% for recall values up to 50%, as shown by the flatness

out our curve.

2 disjoint sets: a learning set and a testing set. The testing set is remained fixed and is

used to test the performance of the SVM classification. The learning set is used in the

iterations of the active learning process, where we gradually increment the number of

labeled images from the learning set which are used in re-training the SVM classifier. In

each of the 3 experiments, we vary the number of images in the learning set and the testing

set. For each iteration in the active learning process, we executed 10 runs with randomly

selected learning sets and averaged the accuracy. Figure 2.15 shows the result for the

first experiment with a maximum learning set size of 180 images, a constant testing set

size of 500 images, and iteration step size of 20 images. The initial accuracy is 60.5%. It

increases with an increasing learning set up to a size of 140 images, after which it stagnates

and stays stable at 64.4%. Similar behaviors are observed with the other 2 experiments.

For the second experiment of a learning set size of up to 280 images, a constant testing set

size of 400 images, and iteration step size of 20 images, the accuracy increases again with

increased size of the learning set, stabilizes at around 160 images with 65.5% accuracy,

and decreases slightly to 65.2% after 220 images which can be attributed to the addition

of outlier images that confuse the classifier. The final setting uses a learning set size of

up to 500 images, a constant testing set size of 180 images, and iteration step size of 50
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images. The initial accuracy with no learned images is relatively low at 56.0%. It then

increases up to 64.0% with 450 learned images, after which it drops slightly to 63.9% at

500 learned images.

The experiments show that our active learning procedure succeeds in improving the

recognition accuracy due to the addition of more informative images to the training set,

with the advantage of minimal supervision to maintain user satisfaction and computational

efficiency.

Runtime Performance

We run our experiments on a machine with Intel Core i7-4770 CPU running at 3.40

GHz and 16 GB RAM without code optimization. Training of each of the 1-vs-all

SVMs takes around 16.8 seconds. Classifying a single image with our proposed method

including feature extraction time takes on average 27.6 seconds and 106.9 seconds with

the additional use of 2x2 spatial pyramids, when using a single thread. The main time

consuming task in the classification process is running the patch detectors. Accordingly,

Figure 2.15: Average classification accuracy for increasing number of images used for learning

in the active learning procedure. Testing set size is fixed at 500 images, maximum

learning set size is 180 images, and the iteration step size is 20 images.

44



2.6 Application: Product Recognition for Assisted Shopping

the runtime of the classification process can be easily improved through parallelization as

the discriminative patch detectors are completely independent.
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Chapter 3
Semantic Clustering for Fine-grained

Scene Recognition

In the previous chapter, we studied scene environments that can be uniquely described by

their constituent fine-grained objects. In this chapter, we proceed to more challenging fine-

grained scenes that share common objects and spatial configurations, limiting the ability

of the vision system to discriminate between them. Such scenes often suffer from clutter,

which implies the need for more invariant yet discriminative representations than those of

coarse-grained scenes. To tackle these challenges, we propose to explore the underlying

semantic structure of fine-grained scenes to build models which can discriminate between

these confusing scenes and generalize well across varying imaging conditions. Concretely,

we propose a semantic image representation of fine-grained scenes that captures the

likelihood of each scene class for a given scene image. We then cluster these semantic

descriptors to discover which scene images are more semantically related to each other

than to other images. We show how to effectively exploit the contextual knowledge

inherent in the constituent objects of the scene and how to overcome the ambiguity of

having multiple objects shared between different scene categories.

3.1 Introduction

Reasoning about the scene environment is a fundamental task in image understanding. An

effective way to address this task is through scene classification, an important problem in
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computer vision. Discovering the discriminative aspects of a scene in terms of its global

representation, constituent objects and parts, or their spatial layout remains a challenging

endeavor. Indoor scenes [112] are particularly important for applications such as robotics.

They are also particularly challenging, due to the need to understand images at multiple

levels of the continuum between things and stuff [1]. Some scenes, such as a garage or

a corridor, have a distinctive holistic layout. Others, such as a bathroom, contain unique

objects. All of these challenges are aggravated in the context of fine-grained indoor scene

classification, which targets the problem of sub-ordinate categorization. While it has been

previously studied in the realm of objects, e.g. classes of birds [142], or flowers [102], it

has not been studied for scenes.

Many approaches have been proposed for scene classification [7, 9, 54, 69, 86, 104, 112,

125, 144, 155]. These can be roughly divided into two major classes. A popular approach

is to represent a scene in terms of its semantics, using a pre-defined vocabulary of visual

concepts and a bank of detectors for those concepts [28, 30, 54, 86, 116]. A second class

of approaches relies on the automatic discovery of mid-level patches in scene images,

usually by optimizing some criteria for scene discrimination [69, 125]. While all these

methods have been shown able to classify scenes, with varying degrees of success, there

have been no previous studies of their performance for fine-grained classification. This is,

in great part, due to the absence of fine-grained scene classification datasets. The absence

of such studies leaves many open questions. For example, a holistic representation,

such as the scene gist [104] may be sufficient to classify a dataset of coarse-grained

classes, with very different visual appearance. However, this type of representation is

clearly not powerful enough to distinguish the store classes of Figure 3.2. This issue has

been recognized in the recent literature, which has started to address the recognition of

scenes through representations based on parts or objects, either detected explicitly [28] or

indirectly [155, 156].

Keeping in sync with the overall theme of this thesis, we target the scene recognition

problem in cross-dataset settings which are common in real-world applications. To

address the dataset bias problem [133], many domain adaptation approaches have been

proposed [3, 14, 33, 43] to reduce the mistmatch between the data distributions of the

training samples, referred to as source domain, and the test samples, referred to as the

target domain. In domain adaptation, target domain data is available during the training

process, and the adaptation process needs to be repeated for every new target domain. A

related problem is domain generalization, in which the target domain data is unavailable

during training [49, 71, 98, 103, 146]. It addresses the question of “how to successfully
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apply the knowledge learnt from one or multiple source domains to any unseen target

domain?”. Such problem is important in real-world applications where different target

domains may correspond to images of different users with different cameras and imaging

conditions.

In this chapter, we study the problem of domain generalization for fine-grained scene

recognition by considering store scenes. As shown in Figure 3.2, store classification

frequently requires the discrimination between classes of very similar visual appearance,

such as a drug store vs. a grocery store. Yet, there are also classes of widely varying

appearance, such as clothing stores. This makes the store domain suitable to test the

robustness of models for scene classification. Our goal is twofold: first to identify an

invariant scene representation that is robust enough to support transfer, and secondly to

exploit the underlying structure of such scene space to improve the generalization ability

of the learnt classifiers.

To this end, we make the following contributions. We first propose a semantic scene

descriptor that jointly captures the subtle differences between fine-grained scenes, while

being robust to the different object configurations across domains. We compute the

occurrence statistics of objects in scenes, capturing the informativeness of each detected

object for each scene. We then transform such occurrences into scene probabilities, where

each scene image is represented by how likely it belongs to each scene class. This is

complemented by a new measure of the discriminability of an object category, which is

used to derive a discriminant dimensionality reduction procedure for object-based semantic

representations. Second, we argue that scene images belong to multiple hidden semantic

domains that can be automatically discovered by clustering our semantic descriptors. By

learning a separate classifier for each discovered domain, the learnt classifiers are more

discriminant. Furthermore, fusing the classifiers’ decisions at test time improves the

generalization performance on any unseen target domain. An overview of our proposed

approach is shown in Figure 3.4.

The third contribution is the introduction of the SnapStore dataset, which addresses

fine-grained scene classification with an emphasis on robustness across imaging domains.

It covers 18 visually-similar store categories, with training images downloaded from

Google image search and test images collected with smartphones. To the best of our

knowledge, SnapStore is the first dataset with these properties.

Finally, we compare the performance of the proposed method to state-of-the-art scene

recognition and domain generalization methods, in experiments involving datasets that
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Figure 3.1: Overview of our semantic clustering approach. (a) scene images from all scene classes

are first projected into (b) a common space, namely object space. (c) Object occurrence

models are computed to describe conditional scene probabilities given each object.

The maximal vertical distance between two neighboring curves at a threshold θ is

the discriminability of the object at θ . (d) Scene images are represented by semantic

scene descriptors (bottom), and clustering these descriptors exploit the hidden semantic

domains in fine-grained scene classes (top).

range from fine to coarse-grained. These show the effectiveness of the proposed scene

transfer approach.

3.2 Related Work

Recent approaches have been proposed to target domain generalization for vision tasks.

They can be roughly grouped into classifier based [71, 146] approaches and feature-

based [49, 98] approaches. In [71], a support vector machine approach is proposed that

learns a set of dataset-specific models and a visual-world model that is common to all

datasets. An exemplar-SVM approach is proposed in [146] that exploits the structure

of positive samples in the source domain. In feature-based approaches, the goal is to

learn invariant features that generalize across domains. In [98], a kernel-based method

is proposed that learns a shared subspace. A feature-learning approach is proposed

in [49] that extends denoising autoeconders with naturally-occurring variability in object

appearance. While the previous approaches yield good results in object recognition, their

performance was not investigated for scene transfer. Also, to the best of our knowledge,

there is no prior work that exploits a semantic approach to domain generalization.

A related problem to domain generalization is domain adaptation [108], in which the

target domain data is available during training. It aims to compensate for the mismatch

in data distribution between source and target domains. Several approaches have been

proposed to adapt classifiers to the target domain [14, 33], or transform the input features
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between domains [3,43,53,55,77].We, instead, focus on the generalizatin ability to unseen

domains without the need for retraining.

Our work is related to approaches that discover latent domains in data [52, 61]. An

approach based on the MMD criterion is proposed in [52] while a clustering-based ap-

proach is proposed in [61], which constrains k-means to learn domain clusters assuming an

explicit form of distribution in the data. In contrast, our method discovers semantic clusters

of scene images in an unsupervised manner without assuming any form of distribution.

Furthermore, we rely on our proposed “semantic” descriptors, which provide a higher

level of abstraction that can generalize better than low-level visual features in [52, 61]. We

also note that our goal is not to propose a new clustering method, but rather to project the

training images into a semantic space that can yield informative groups when clustered

using off-the-shelf methods, e.g. k-means. A more sophisticated method than k-means,

like the one proposed in [52], can be used on top of our semantic features.

Many authors have argued for the use of semantic image representations for recogni-

tion [7, 28, 29, 69, 78, 86, 114, 125]. A semantic translation of images/image regions is

typically achieved using classifiers trained to detect high level visual concepts, such as

objects [7, 28, 86], holistic themes [78, 114], and exemplars or parts [29, 69, 125, 130].

The scores of these classifiers, commonly referred to as semantic features, indicate the

closeness or like-ness of an image to these high-level visual concepts. The abstraction

endowed by such a mapping has been argued to improve generalization for classification

and recognition tasks [114].

Previous proposals for semantic scene classification can be categorized into bag-of-

semantics (BoS) classifiers [7, 28, 78, 86], exemplar classifiers [29, 69, 96, 125], and scene

CNNs [156]. The BoS approach uses classifiers trained to detect regional scene concepts,

such as “themes” and “objects”. These classifiers produce semantic descriptors from

local image regions. A scene is considered as an orderless collection or a “bag” of

semantic descriptors, and summarized using techniques such as max pooling [86], average

pooling [78], or Fisher vector encoding [28]. Exemplar based classifiers, are trained using

mid-level parts discovered with sophisticated mining techniques [29, 69]. The parts can be

viewed as discriminative superpixels extracted from images [29,69,130]. A Convolutional

Neural Network (CNN) [76, 156], is another example of a classifier that has demonstrated

the ability to discover ”semantic” entities in higher levels of its feature hierarchy [151,155].

The receptive fields of many filters in the scene CNN of [156] were shown to detect objects

that are discriminative for the scene classes [155]. Their performance reported on several

scene classification benchmarks is considered to be state-of-the-art. Our proposed method
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investigates scene transfer using a network trained on objects only, namely imageNET [25].

This is achieved without need to train a network on millions of scene images, which is the

goal of transfer. We compare the performance of the two in Section 3.6.1.

The main difference between these methods are i) the level of semantic abstraction,

ii) the nature of semantic vocabulary, and iii) invariance of feature summarization. BoS

methods rely on “object” detection. Exemplars on the other hand do not learn detectors for

whole “objects”. Although some units of a Scene CNN [156] are shown to identify objects,

many others respond to parts of objects or distinctive superpixels learned from scenes.

While the semantic vocabulary of BoS methods is a pre-determined set of concepts, CNNs

and exemplar models learn without object or part annotations. Exemplar detectors are

highly tuned to the training set and, therefore, less likely to generalize across datasets and

visual domains (e.g. images acquired using different types of cameras.). Generic object

detectors, on the other hand, are robust to such variations [30]. Finally, a CNN encodes the

semantic outputs of its units using a non-linear template (the fully-connected layers). It is

therefore, likely to capture the “gist” of a scene with a more-or-less unchanging layout (eg:

movie theater, assembly line, amphitheater). BoS based classifiers model the semantic

features in an i.i.d. manner. The resulting scene representation (eg. Fisher vector) exhibits

greater invariance towards variable scene layouts (eg. bedroom, living room, stores) and is

complimentary to the gist-like behavior of a scene CNN.

Among the previous attempts in scene recognition, our method is mostly related to

semantic object-based methods, especially [28,86]. Our proposed method is more invariant

than these methods; these approaches provide an encoding based on raw (CNN-based)

detection scores which vary widely across domains. In contrast, we quantize the detection

scores into scene probabilities for each object. Such probabilities are adaptive to the

varying detection scores through considering a range of thresholds. The process of quanti-

zation imparts invariance to the CNN-based semantics, thus improves the generalization

ability. We compare with both representations in Section 3.6.1.

3.3 SnapStore Dataset

In order to study the importance of objects for fine-grained scene recognition, we have

assembled the SnapStore dataset. This covers 18 fine-grained store categories, shown

in Figure 3.3. Stores are a challenging scene classification domain for several reasons.

First, many store categories have similar gist, i.e. similar global visual appearance and
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spatial layout. For example, grocery stores, drug stores, and office supply stores all tend

to contain long rows of shelves organized in a symmetric manner, with similar floor and

ceiling types. Second, store categories (e.g., clothing) that deviate from this norm, tend to

exhibit a wide variation in visual appearance. This implies that image models applicable to

store classification must be detailed enough to differentiate among different classes of very

similar visual appearance and invariant enough to accommodate the wide variability of

some store classes. Some of these challenges are illustrated in Figure 3.2. Such challenges

are further pronounced when training and test images are collected under significantly

different imaging conditions.

SnapStore contains 6132 training images, gathered with Google image search. The

number of training images per category varies from 127 to 892, with an average of 341.

Training images were scaled to a maximum of 600 pixels per axis. Testing images were

taken in local stores using smartphones. This results in images that are very different

from those in the training set, which tend to be more stylized. The test set consists of 502

images with ground truth annotations for store class, store location type (shopping mall,

street mall, industrial area), GPS coordinates, and store name. Images have a fixed size

of 960× 720 pixels. Test images differ from training images in geographical location,

lighting conditions, zoom levels, and blurriness. This makes SnapStore a good dataset in

which to test the robustness of scene classification algorithms to wide domain variations.

While datasets such as Places [156] or SUN [145] contain some store categories, our

proposed dataset is better suited for domain generalization of fine-grained scenes due to

the following reasons; First, SnapStore contains store classes that are more confusing, e.g.,

Drug store, DIY store, Office supplies store, and Multimedia store. Also, large datasets

favor the use of machine learning methods that use data from the target domain to adapt

to it. Instead, we are interested in testing the impact of the representation on transfer.

Thus, smaller datasets are more suitable for this, because machine learning does not work

that well. Unlike larger datasets, the images of SnapStore are explicitly chosen to stress

robustness. This is the reason why the test set includes images shot with cellphones, while

the training set does not. Overall, SnapStore is tailored for the evaluation of representations

and enables the study of their robustness at a deeper level than Places or SUN. We compare

the performance on the three datasets in Section 3.6.1.
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Grocery store 

Hobby and DIY 

Drug store 

(a) Confusing store categories 

Clothes store 

(b) Store category with varying spatial and lighting conditions 

Figure 3.2: Challenges of fine-grained scene classification of store classes. (a) Some categories

are significantly visually similar with very confusing spatial layout and objects (e.g.,

drug store, grocery store, and do-it-yourself store). (b) Other store classes have widely

varying visual features from one store to the other, which is difficult to model (e.g.,

clothes store).
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Restaurant 
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Office and stationary 

Sports store 
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Figure 3.3: An overview of our proposed fine-grained scene classification SnapStore dataset. The

dataset contains 18 store categories that are closely related to each other. For each

category, 3 training images are shown.
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3.4 Discriminative Objects in Scenes

Scene recognition covers the spectrum from the recognition of things, such as objects,

to the recognition of stuff, such as textures. While a toilet is a very good predictor of a

bathroom scene, forest images may be more easily recognized as textures. In between,

there is a wide array of scenes that can benefit from object recognition, even if object cues

are not sufficient for high recognition accuracy. For example, we expect to see flowers in a

flower shop, shoes and shoe boxes in a shoe shop, and chairs and tables in a furniture shop.

The increasing availability of large image datasets like LabelMe [117] and ImageNet [25]

as well as powerful object detectors, provides new opportunities for the training of large

numbers of object detectors, robust enough to be useful in scene recognition [50, 76, 86].

Nevertheless, it remains challenging to learn models that capture the discriminative

power of objects for scene classification. First, objects can have different degrees of

importance for different scene types (e.g., chairs are expected in furniture stores, but also

appear in shoe stores). Rather than simply accounting for the presence of an object in

a scene, there is a need to model how informative the object is of that scene. Second,

object detection scores can vary widely across images, especially when these are from

different domains. In our experience, fixing the detection threshold to a value with good

training performance frequently harms recognition accuracy on test images where the

object appears in different poses, under different lighting, occluded, etc.

In this section, we describe our method for capturing the subtle discriminative properties

of objects in fine-grained scene categories.

3.4.1 Object Detection and Recognition

An object recognizer ρ : X → O is a mapping from some feature space X to a set of

object class labels O, usually implemented as

o = argmax
k

fk(x), (3.1)

where fk(x) is a confidence score for the assignment of a feature vector x ∈ X to the kth

label in O. An object detector is a special case, where O = {−1,1} and f1(x) =− f−1(x).
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In this case, f1(x) is simply denoted as f (x) and the decision rule of (3.1) reduces to

o = sgn[ f (x)]. (3.2)

The function f (x) = ( f1(x), . . . , fO(x)), where O is the number of object classes is usually

denoted as the predictor of the recognizer or detector. Component fk(x) is a confidence

score for the assignment of the object to the kth class. This is usually the probability P(o|x)

or an invertible transformation of this probability.

3.4.2 Learning an Object Occurrence Model

Given an object recognizer, or a set of object detectors, it is possible to detect the presence

of object o in an image x at confidence level θ by thresholding the prediction fo(x)

according to

δ (x|o;θ) = h[ fo(x)−θ ] (3.3)

where h(.) is the Heaviside step, h(x) = 1,x ≥ 0 and h(x) = 0 otherwise. If x is a complex

image, it is also possible to apply fo in a sliding window manner, select the location and

window size x∗ of largest response, and apply the thresholding of (3.3) to fo(x
∗). In either

case, δ (x|o;θ) is an indicator for the assignment of image x to object class o at confidence

level θ .

Given a set Ic of images from a scene class c, the maximum likelihood estimate of the

probability of occurrence of object o on class c, at confidence level θ , is

p(o|c;θ) =
1

|Ic|
∑

xi∈Ic

δ (xi|o;θ). (3.4)

We refer to these probabilities, for a set of scene classes C, as the object occurrence model

(OOM) of C at confidence level θ . This model summarizes the likelihood of appearance

of all objects in all scene classes, at this level of detection confidence.

From the OOM, it is possible to derive the posterior probability of a scene class c given

the observation of object o in an image x, at the confidence level θ , by simple application

of Bayes rule

p(c|o;θ) =
p(o|c;θ)p(c)

∑i p(o|i;θ)p(i)
, (3.5)

where p(o|c;θ) are the probabilities of occurrence of (3.4) and p(c) is a prior scene
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class probability. The range of thresholds [θmin,θmax] over which θ is defined is denoted

the threshold bandwidth of the model. This is dependent on the detector/recognizer

implementation.

3.4.3 Discriminant Object Selection

Natural scenes contain many objects, whose discriminative power varies greatly. For

example, the “wall” and “floor” objects are much less discriminant than the objects “pot,”

“price tag,” or “flower” for the recognition of “flower shop” images. To first order, an

object is discriminant for a particular scene class if it appears frequently in that class and

is uncommon in all others. In general, an object can be discriminant for more than one

class. For example, the “flower” object is discriminant for the “flower shop” and “garden”

classes.

We propose a procedure for discriminant object selection, based on the OOM of the

previous section. This relies on a measure of the discriminant power φθ (o) of object

o with respect to a set of scene classes C. Note that, as was the case for the OOM, the

discriminant power is indexed by the confidence level θ . The computation of φθ (o) is

performed in two steps. First, given object o, the classes c ∈ C are ranked according to the

posterior probabilities of (3.5). Let γ(c) be the ranking function, i.e. γ(c) = 1 for the class

of largest probability and γ(c) = |C| for the class of lowest probability. The class of rank r

is then γ−1(r). The second step computes the discriminant power of object o as

φθ (o) = max
r∈{1,...,|C|−1}

p(γ−1(r)|o;θ)− p(γ−1(r+1)|o;θ). (3.6)

The procedure is illustrated in Figure 3.4, where each curve shows the probability

p(c|o;θ) of class c as a function of the confidence level. At confidence level θ , the red,

green, yellow, and blue classes have rank 1 to 4 respectively. In this example, the largest

difference between probabilities occurs between the green and yellow classes, capturing

the fact that the object o is informative of the red and green classes but not of the yellow

and blues ones. Since this difference is large, the proposed score of discriminant power

indicates that the object is discriminant for the classification of the four scene classes.

Figure 3.5 shows examples of a discriminative and a non-discriminative object in the

SnapStore dataset. The discriminative object, book, occurs in very few scene classes

(mainly bookstore) with high confidence level. On the other hand, the non-discriminant
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bottle object appears in several classes (grocery store, drug store, and household store)

with the same confidence level.

3.5 Semantic Latent Scene Domains

In this section, we first describe our method of representing a scene image in terms of the

scene probabilities obtained from the Object Occurrence Models (OOMs), as shown in

Figure 3.6. Then, we exploit the underlying semantic structure of such representation to

discover hidden domains in scene classes, as shown in Figure 3.4.

3.5.1 Semantic Scene Descriptor

In this work, we propose to represent an image x by a descriptor based on the O×C

matrix M of posterior probabilities p(c|o) of classes given objects detected in the image,

as shown in Figure 3.6. Object detectors or recognizers usually produce multiple object

detections in x. Since these are usually obtained by applying the recognizer or detector

to image patches, the image is represented as a collection of patches X = {z1, . . . ,zn}.

These could be based on a sliding window or other form of patch extraction. In general,

patch detections tend to have different confidence scores. Furthermore, depending on

θ
max 

θ
min 

θ
 

1
 

0
 

Figure 3.4: Discriminative power of an object detector. The threshold bandwidth is shown on the

x-axis and occurrence probability on the y-axis. The maximal vertical distance between

two neighboring curves at a threshold θ is the discriminative power of the object at θ .
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Figure 3.5: An example of (a) a discriminative object (book) and (b) a non-discriminative object

(bottle) on the SnapStore dataset. In each case, the left plot is identical to the plot

of Figure 3.4. Note that the discriminative object (book) occurs frequently in few

categories at a given confidence level. However, for the same confidence level, the

bottle object, occurs in many categories (grocery store, drug store, and household store).

To further illustrate the discriminative power of an object, the plot on the right of (a)

and (b) shows the occurrence normalized in 1-norm for each θ over the whole range.

The region above the maximal θ for any occurrence is interpreted as 1 for the category

with the highest probability.
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Figure 3.6: Semantic scene descriptor. Each scene image is represented by how likely it belongs to

each scene class. These likelihoods are obtained from the object occurrence models

(OOMs) of each detected or recognized object in the scene image.

whether a detector or a recognizer is used, they may be hard or soft. Object detectors are

usually implemented in a 1-vs-rest manner and return the score of a binary decision. We

refer to these as hard detections, since they address the presence of a single object in the

patch. On the other hand, object recognizers return a score vector, which summarizes the

probabilities of presence of each object in the patch. We refer to these as soft detections.

Soft detections produce substantially more information about the presence of each object

in the scene than hard detections. While a recognizer provides one probability per patch

for each object, a detector may not return a single detection for the object in the entire

image. In result, different types of descriptors are suitable for soft vs. hard detections. In

this work, we consider both, proposing two descriptors that are conceptually identical but

tuned to the traits of the different detection approaches.

Hard Detections

In the hard detection regime, the set of posterior probabilities of (3.5) derived from an

image can be very sparse. Since objects are detected individually, we consider the estimate

of each row of the matrix M, i.e. the vector p(c|oi) for the ith row, sequentially. Given

the image x, we apply to it the ith object detector, producing a set of ni bounding boxes,

corresponding to image patches Xi = {z
(i)
1 , . . . ,z

(i)
ni
}, and a set of associated detection
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scores Si = {s
(i)
1 , . . . ,s

(i)
ni
}. To estimate the posterior probabilities p(c|oi), we adopt a

Bayesian averaging procedure, assuming that these scores are samples from a probability

distribution p(θ) over confidence scores. This leads to

p(c|oi) = ∑
k

p(c|oi,θ = s
(i)
k )p(θ = s

(i)
k ). (3.7)

Assuming a uniform prior over scores, we then use the estimate p(θ = s
(i)
k ) = 1/ni to

obtain

p(c|oi) =
1

ni
∑
k

p(c|oi,θ = s
(i)
k ). (3.8)

In summary, the vector of posterior probabilities is estimated by averaging the OOM

posteriors of (3.5), at the confidence levels associated with the object detections in x. This

procedure is repeated for all objects, filling one row of M at a time. The rows associated

with undetected objects are set to zero. Hence, for most images, M is a very sparse matrix.

The proposed semantic descriptor is obtained by stacking M into a vector and performing

discriminant dimensionality reduction. We start by finding an object subset R⊂O which

is discriminant for scene classification. This reduces dimensionality from |O|× |C| to

|R|× |C| as discussed in Section 3.4.3. This procedure is repeated using a spatial pyramid

structure of three levels (1× 1, 2× 2, and 3× 1), which are finally concatenated into a

21K dimensional feature vector.

Soft Detections

In the soft detection regime, a set of n image patches X = {z1, . . . ,zn} are sampled from

the image and fed to an object recognizer, e.g. a CNN. This produces a set S = {s1, . . . ,sn}

of vectors sk of confidence scores. The vector sk includes the scores for the presence of

all |O| objects in patch zk. Using the OOM posteriors of (3.5) each of these object score

vectors can be converted into a matrix Mk of class probabilities given scores, namely the

matrix whose ith row

MK
i = p(c|oi,sk,i). (3.9)

consists of the vector of class probabilities given the detection of object oi at confidence

level sk,i.

The image x is then represented as a bag of descriptors X = {M1,M2, . . .Mn} generated

from its patches. This is mapped into the soft-VLAD [54, 66] representation using the
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following steps. First, the dimensionality of the matrices Mk is reduced by selecting the

most discriminant objects R ⊂ O, as discussed in Section 3.4.3. Second, each matrix

is stacked into a R×C vector, and dimensionality reduced to 500 dimensions, using

PCA. The descriptors are then encoded with the soft-kmeans assignment weighted first

order residuals, as suggested in [54]. We do not use a spatial pyramid encoding for the

soft-VLAD descriptor as it is generally not necessary [28, 54].

3.5.2 Unsupervised Semantic Clustering

When learning knowledge from web data or multiple datasets, it is usually assumed that

training images may come from several hidden domains [103, 146] which may correspond

to different viewing angles or imaging conditions. While previous works rely on image

features like DeCaF fc6 [30] to discover latent domains in object datasets, we instead

propose to discover semantic hidden domains that provide a higher level of abstraction,

which generalizes better than lower-level features especially for scene datasets. Each of

the hidden domains can contain an arbitrary number of images from an arbitrary number

of scene classes which are semantically related. For example, furniture store images can

be semantically divided into different groups, as shown in Figure 3.4, including 1) images

of dining furniture which are semantically related to some images in ‘coffee shop’ and

‘restaurant’ classes, 2) images of seating furniture, like sofas and ottomans, which are

related to waiting areas in ‘shoe shop’ class, and 3) images of bedroom furniture which

are more unique to furniture stores. By exploiting such underlying semantic structure of

fine-grained classes, we can learn more discriminant classifiers which generalize better

across domains as follows; better discriminability is achieved by learning a separate

multi-class classifier for each latent domain. Improved generalization ability is achieved

through integrating the decisions from all the learnt classifiers at test time, reaching a

better consensus decision [73]. This is especially useful when the test image does not

fall uniquely into one of the discovered domain as is usually common in cross-domain

settings.

In practice, we first partition the training data into D semantic latent domains using

k-means clustering over our semantic descriptors (Section 3.5.1) from all training images.

Note that unlike most related work, we do not assume any underlying distribution in the

data and we do not utilize scene labels in discovering the latent domains. We then learn a

classifier fc,d(x) for each class c in each latent domain d using only the training samples

in that domain. The classifier models of each latent domain are learnt using 1-vs-rest SVM
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with linear kernel, using the JSGD library [2]. The regularization parameter and learning

rate were determined by 5-fold cross validation.

At test time, we predict the scene class of an image x as the class with the highest

decision value after average pooling the classifier decisions from all latent domains, by

using

y = argmax
c

D

∑
d=1

fc,d(x). (3.10)

We also experimented with max pooling over classifier decisions, which yielded inferior

results. By fusing the classifier decisions from all domains, our method generalizes well

to unseen target domains.

3.6 Experimental Evaluation

3.6.1 Experimental Design

A number of experiments were designed to evaluate the performance of our fine-grained

scene transfer method. All datasets are weakly labeled - scene class labels, no object

bounding boxes - and we report average classification accuracy over scene classes. In

all experiments, hard object detections were obtained with the RCNN of [50] and soft

detections with the CNN of [76]. We empirically fix k = 5 for k-means clustering (Section

3.5.2), however the results are insensitive to the exact value of k.

3.6.2 Analysis of the Object Ocurrence Model (OOM) and

Discriminant Object Selection

In this experiment, we used the new SnapStore dataset, which addresses fine-grained

classification, and MIT Scene 67 [112], which addresses coarse-grained indoor scenes.

The latter includes 67 indoor scene categories. We used the train/test split proposed by the

authors, using 80 training and 20 test images per class.

Figure 3.7 shows the matrix of posterior class probabilities learned by the OOM, for

hard detections on SnapStore. A similar plot is shown in Figure 3.8 for soft detections on

MIT Scene 67. The figures shows a heatmap of the probabilities p(c|oi;θ) of (3.5) at the
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Figure 3.7: Scene likelihoods for all scene classes for (a) the top 10 discriminative objects and (b)

the least discriminative objects using RCNN-200 on SnapStore

Table 3.1: Classification accuracy as a function of the number of discriminant objects for SnapStore

and MIT Scene 67

Dataset OOM [CNN-1000] OOM [CNN-500] OOM [CNN-300]

SnapStore 43.1 44.6 45.4

MIT Scene 67 68.0 68.2 66.4

confidence level θ = 0.9. Note that the OOM captures the informative objects for each

scene class, e.g., bookshelf is highly discriminant for the bookstore class. Furthermore,

when an object is discriminant for multiple classes, the class probabilities reflect the

relative importance of the object, e.g., table is discriminant for coffee shops, furniture

stores, and restaurants but more important for the coffee shop class. While nearly all
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

desk

file

washer

monastery

four-poster

palace

stretcher

horizontal bar

turnstile

punching bag
0

0.2

0.4

0.6

0.8

1

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

bison

sloth bear

water ouzel

bald eagle

white stork
0

0.5

1

(b)

Figure 3.8: Scene likelihoods for all scene classes for (a) the top 10 discriminative objects and

(b) the least discriminative objects using soft detections (CNN) on the MIT Scene 67

dataset.

∗-scene names corresponding to relevant IDs:

1: airport inside,

7: bedroom,

9: bowling,

13: church inside,

15: cloister,

19: concert hall,

20: corridor,

22: dentaloffice,

24: elevator,

34: inside bus,

40: laundromat,

50: office,

51: operating room.

coffee shop images contain tables, furniture store images sometimes depict beds, sofas

or other objects, and some pictures of fast-food restaurant lack tables. Similarly for MIT

Scene 67, the OOM captures the informative objects for each scene class, e.g, desk for

office and stretcher for operating room. Figures 3.7b and 3.8b shows the same heatmap

for the least discriminant objects. The scene probabilities are now identical for all objects,

which are hardly detected in any of the scenes.

Figures 3.9 and 3.10 show the top five correctly-classified scene classes on SnapStore

and MIT Scene 67. Scene classes are sorted from top to bottom by decreasing classification

accuracy. For each scene, we show the most probable objects (most common object on
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Figure 3.9: Scene categories of higher recognition rate for hard detections on SnapStore. Each row

shows test images from one scene class along with the most frequent objects in that

class.

the left) along with the bounding box of highest detection score. While there are noisy

detections in each class, e.g. accordion in clothes shop and bookshelf in sports store, as a

whole the detections are quite informative of the scene class. Failure cases on SnapStore

include multimedia store, office supply store, and toy store. The first two are mostly due

to the lack, among the 200 object classes supported by the detector, of the objects needed

to discriminate between these classes and classes such as drug store or grocery store. The

ability to detect objects like music CDs or stationary items would benefit the recognition
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Figure 3.10: Scene categories of higher recognition rate for soft detections on MIT Scene 67. Each

row shows test images from one scene class along with the most frequent objects in

that class.

of such classes. Toy stores are a bigger challenge, due to the wide variety of toys they

can contain, resulting in a large diversity of shapes, sizes, and arrangements. For MIT

Scene 67, the localization accuracy of bounding boxes is less than that of the RCNN (hard

detections) method but still informative of the presence and approximate location of a

certain object. Failure cases for MIT Scene 67 include prison cell, elevator, and casino
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classes. Such classes are characterized by a distinctive global structure with very few or

no objects.

Next, we investigated the performance as a function of the number of selected discrim-

inant objects (Section 3.4.3). Table 3.1 summarizes the performance of soft-detections

(CNN) without semantic clustering, when using different numbers of objects. For both

datasets, the selection of discriminant objects is beneficial, although the gains are larger

in SnapStore. Using a reduced object vocabulary also reduces the dimensionality of the

descriptors, leading to more efficient classification. For hard detections on SnapStore,

we observed a similar improvement of performance for reduction from the 200 object

vocabulary of the RCNN to 140 objects. On MIT Scene 67, the 200 object vocabulary

proved inadequate to cover the diversity of objects in the 67 scene classes. Given these

results, we fixed the number of objects at 140 for hard-detections (RCNN) and 300 for

soft detections (CNN) on SnapStore. On MIT Scene 67, we used 200 and 500 objects,

respectively.

3.6.3 Qualitative Analysis of Discovered Clusters

In Figure 3.11, we show sample images from each discovered cluster in SnapStore

when using k = 5 clusters. Our discovered clusters are semantically meaningful, where

each cluster represents scene classes that share common objects. For example, cluster

1 contains images of flowers and vegitables shared between florist, grocery store, and

restaurant classes. In a similar manner, cluster 2 contains images of shelves shared

between bookstore, clothes shop, and pharmacy classes. Also, cluster 4 show images of

seating areas in clothing store, coffee shop, restaurant, shoe shop, and sports store. This

emphasizes the effectiveness of our semantic clustering approach, and that the proposed

represntation successfully exploits the underlying semantic structure in the different scene

classes. In contrast, relying on low-level image features, e.g. DeCaF, is more biased

towards overall scene shape and tends to cluster images of the same scene together, which

does not improve the recognition results.

3.6.4 Cross Recognition Performance on the SnapStore Dataset

We performed a comparison to state-of-the-art scene recognition and transfer methods

on the 18 classes of SnapStore in Table 3.2. To perform a fair comparison with the
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cluster 1 

cluster 2 

cluster 3 

cluster 4 

cluster 5 

florist grocery store restaurant 

bookstore clothing store coffee shop 

bookstore music store office supply 

clothing store sports store restaurant 

shoe shop furniture store coffee shop 

Figure 3.11: Sample images from each discovered cluster in SnapStore when using k = 5 clusters.

Each row shows images from one cluster, specifically 2 images from 3 classes of the

cluster. Each cluster represents semantically related classes, e.g. cluster 1 contains

images of flowers and vegitables shared between florist, grocery store, and restaurant

classes. In a similar manner, cluster 2 contains images of shelves shared between

bookstore, clothes shop, coffee shop, and pharmacy classes. Cluster 3 contains close-

up images of books, notebooks, and CDs in bookstore, office supplies, and music

store. Also, cluster 4 shows images of seating areas in furniture store, clothing store,

coffee shop, restaurant, shoe shop, and sports store. Finally, cluster 5 represents

images where people are salient in the scene.

ObjectBank [86] method, we additionally compare with ObjectBank when using the same

RCNN and CNN detections as our method, in exactly the same settings. Note that we

cannot compare with Undo-Bias [71] in this experiment as it requires the source domains

to be explicitly associated multiple datasets. We compare with their method in Section

3.6.5.

OOM with RCNN outperformed all other methods, including a finetuned Places CNN.

This is attributed to the modeling of the differences between fine-grained scenes and

handling the variations of object arrangements across domains. Our semantic clustering
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Method Accuracy (%)

GIST [104] 22.8

DiscrimPatches [125] 25.0

ObjectBank [86] 32.6

ImageNET finetune 38.6

ImagetNET fc7 + SVM (DeCaF) [30] 40.2

Places finetune 42.4

Places fc7 44.2

ObjectBank [CNN] 34.8

ObjectBank [RCNN] 36.3

fc8-VLAD (semantic FV) [28]* 43.8

DICA [98] 24.2

OOM [CNN]* (Ours) 45.4

OOM [RCNN] (Ours) 45.7

OOM-semanticClusters [RCNN] (Ours) 47.9

Table 3.2: Comparison of classification accuracies on SnapStore. *-Indicates results for a single

scale of 128×128 patches

procedure further improves the recognition by ≈ 2%. Note that Places fc7 is trained on

scenes, while we use a network trained on objects only, which shows successful scene

transfer. Places fine-tune surprisingly yielded worse performance than Places fc7. This is

because Places fine-tune overfits to training views, performing better on images from the

training domain, but worse on the new domain. This is an example of the benefits of using

SnapStore. Our method improves over ObjectBank by ≈ 9%, when using CNN detectors

and recognizers as in our settings. This is attributed to our invariant representation

that does not rely on raw detection scores that are different across domains. The small

dimensionality of the DICA descriptor limits its discriminative ability to capture the subtle

differences between fine-grained scene classes.

3.6.5 Cross Recognition Performance on Multiple Datasets

Here, we evaluate the effectiveness of the proposed algorithm when using multiple fine-

grained scene datasets. We also study the bias in each dataset, showing the benefits of

using SnapStore to test the robustness of recognition methods.
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Datasets

We used images from the 9 fine-grained store scene classes that are common among

SnapStore, SUN [145], and Places [156] datasets. Effectively, we have 4 datasets, each

divided into training and validation sets. Concretely, the following classes were con-

sidered: bookstore, coffee shop, clothing store, florist, restaurant, pharmacy, shoe shop,

supermarket, and toystore. In Table 3.3, we show the number of training images and

testing images for each of SUN, Places, and SnapStore datasets. For SnapStore phone test

set, we used 264 test images that cover the 9 classes.

Baselines

We compared two variants of our method:

• OOM on RCNN (OOM) and

• OOM on RCNN + semantic clustering (OOM-SC)

with 6 baselines:

• DeCaF,

• DeCaF + k-means clustering (DeCaF-C),

• Undo-Bias [71] (U-B),

• the DICA [98] descriptor,

• ObjectBank on RCNN (OB), and

• ObjectBank on RCNN + our proposed semantic clustering (OB-SC).

For DeCaF-C, we set k = 2, which yielded the best results for this method. Note that we

cannot compare with Places CNN in this experiment as it was trained using millions of

images from Places dataset, thus violating the conditions of domain generalization on

unseen datasets.

Results

To show the dataset bias and evaluate the ground truth performance, we first measured the

cross-recognition performance of a linear SVM on DeCaF fc7 features when using the

training set of one dataset and the test set of another dataset. We summarize the results in

Table 3.4. Results show a significant bias in datasets gathered from the web (SnapWeb,

72



3.6 Experimental Evaluation

SUN, Places). This is shown by the significant drop in performance by > 12% when using

SnapPhone dataset, which is gathered in real settings using a smartphone, as the testing

set. In contrast, the cross-recognition performance when using SUN and Places datasets as

train/test sets is much better, with only 3% drop in performance when compared to ground

truth (same-domain) recognition. This emphasizes the benefits of using the proposed

SnapStore dataset in evaluating scene transfer methods.

We then evaluated the cross-recognition performance of the different variants of our

method and the baseline methods, as summarized in Table 3.5. Our method outperforms

other methods on five out of seven cross-domain scenarios and on average. Our semantic

clustering approach consistently improves the scene transfer results through learning

more discriminant classifiers for each domain, and improving generalization by averaging

decisions at test time. One interesting observation is the inferior performance of domain

generalization methods, namely Undo-Bias and DICA, compared to the baseline of using

DeCaF fc7 features directly. While such methods yield impressive performance for object

datasets, they are unsuitable for modelling fine-grained scenes; Undo-Bias associates a

source domain to each source dataset, which does not capture the semantic domains across

the scene classes themselves. For DICA, we hypothesize that the small dimensionality of

its descriptor makes it not discriminant enough to capture the subtle differences between

fine-grained scene classes.

We also experimented with clustering DeCaF features with the method in [52], which

yielded similar results to the DeCaF-C baseline when clustering with k-means. This shows

that our semantic descriptors better exploit the underlying structure of fine-grained scene

classes, yielding more discriminative clusters.

The improvement of our proposed approach over the DeCaF baseline is more significant

in the experiment in Section 6.2 when using 18 store classes that are more confusing, as

opposed to the experiment in Section 6.3 when using 9 store scene classes. This shows

the benefits of the proposed SnapStore dataset and also the advantages of our method

in more challenging settings of having a large number of confusing fine-grained classes.

Furthermore, the similar data distributions between SUN and Places datasets benefits the

performance of DeCaF on the experiment in Section 6.3 as opposed to the pure cross-

dataset settings in Section 6.2. Nevertheless, our method still outperforms DeCaF in both

experiments showing the effectiveness of our approach.
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Dataset Places SUN SnapStore

number of training images 5363 2548 3590

number of test images 350 300 338

Table 3.3: Training/Testing configuration for cross-recognition experiment on multiple datasets

Training/Test SUN SnapWeb Places SnapPhone

SUN 68.7 57.1 65.7 56.5

SnapWeb 62.7 71.9 60.9 58.2

Places 64.2 59.2 67.6 53.8

Table 3.4: Ground truth and cross-recognition accuracy (%) of DeCaF+SVM baseline on multiple

fine-grained scene datasets

3.6.6 Scene Recognition on Coarse-grained and Same Domain

Dataset

We compared the performance to state-of-the-art scene recognition methods on the coarse-

grained, same domain MIT Scene 67 dataset in Table 3.6. On MIT Scene 67, soft

detections achieved the best performance. The performance of hard-detections was rather

weak, due to the limited vocabulary of the RCNN. We achieve comparable performance to

state-of-the-art scene recognition algorithms, which shows that the effectiveness of our

method is more pronounced in cross-domain settings.

Finally, we studied the complementarity of object-based and holistic representations

for scene classification on both SnapStore and MIT Scene 67 datasets. Table 3.7 shows

the accuracy of fusing the proposed object based representations with the holistic features

derived from layer fc7 of the Places CNN. Combining the two representations produced the

best results on both datasets, enabling gains of 3% on SnapStore and around 10% on MIT

Scene 67 datasets. This shows that the two representations indeed contain complementary

information.
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Train Test DeCaF DeCaF-C U-B DICA OB OB-SC OOM OOM-SC

SnW SnP 58.2 56.3 N/A 42.1 30.0 37.4 61.1 62.0

SUN SnP 56.5 53.9 N/A 45.5 39.2 35.9 54.4 56.9

Pla SnP 53.8 49.1 N/A 37.7 27.6 28.3 54.8 54.6

SnW,SnP Pla,SUN 59.1 59.9 52.3 49.2 22.7 25.7 57.3 60.6

SnW,SUN SnP,Pla 60.6 58.5 50.3 52.2 37.4 37.7 61.0 63.2

SUN,Pla,SnW SnP 59.7 57.2 47.8 53.5 36.3 39.1 61.6 62.5

SUN,SnP,SnW Pla 63.8 62.2 33.8 50.8 27.4 30.2 59.8 63.3

Average 58.8 56.7 46.0 47.2 32.9 33.4 58.5 60.4

Table 3.5: Cross-recognition accuracy (%) on SnapStore training set (SnW), SnapStore test set

(SnP), SUN, and Places (Pla) datasets

Method Accuracy (%)

ROI + GIST [112] 26.1

DPM [105] 30.4

RBoW [106] 37.9

CENTRIST [144] 36.9

ObjectBank [86] 37.6

DiscrimPatches [125] 38.1

miSVM [87] 46.4

LPR [118] 44.84

D-Parts [130] 51.4

IFV [86] 60.7

MLrep [29] 64.0

DeCaF [30] 58.4

ImageNET finetune 63.9

OverFeat + SVM [116] 69

fc6 + SC [92] 68.2

fc7-VLAD [54] [4 scales/1 scale*] 68.8 / 65.1

ObjectBank [RCNN] 41.5

ObjectBank [CNN] 48.5

fc8-FV [28] [ 4 scales/1 scale*] 72.8 / 68.5

OOM [RCNN] (Ours) 49.4

OOM [CNN]* (Ours) 68.2

OOM-semClusters (Ours) 68.6

Table 3.6: Comparison of classification accuracies on MIT Scene 67. *-Indicates results for a

single scale of 128×128 patches.
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Dataset/Method Places fc7 OOM[RCNN] (Ours) OOM[CNN] (Ours) Combined

SnapStore 44.2 47.9 45.4 51.0

MIT Scene 67 68.2 49.4 68.6 79.1

Table 3.7: Classification accuracy for the combination of object-based and holistic classification

(Places fc7 features)
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Chapter 4
Image Parsing with a Wide Range of

Classes and Scene-Level Context

The ubiquity of imaging devices and the resulting proliferation of digital images create

the need for vision systems to achieve large-scale image understanding. Accordingly,

computer vision algorithms are required, first, to scale to large numbers of objects and

scenes, and, second, to discriminate between closely related fine-grained scenes. In

chapters 2 and 3, we addressed the second problem through proposing approaches for

fine-grained image understanding that capture the expressive power of objects and their

semantic relationships in a given image. In this chapter, we address the first problem of

designing scalable image understanding algorithms. Such algorithms should be able to

exploit the semantic and visual knowledge embedded in a continuously increasing number

of scenes and objects in an efficient and effective manner.

An effective approach to achieve a holistic understanding of a given image is to label

each pixel in the image with its corresponding semantic class. This way, we jointly perform

recognition and localization of all the scene components in a framework that reasons about

the scene environment, the visual appearance of its objects, their spatial context, and

co-occurrence patterns. We refer to this problem as scene parsing, i.e. breaking the scene

into meaningful semantic parts. While there have been numerous approaches that target

parsing of outdoor and indoor scene images [79, 80, 100, 120, 128, 149], retrieval-based

approaches [90,132] are especially appealing due to their ability to scale to a large number

of scenes and objects. Such methods rely on transferring semantic labels from a retrieved

set of training images to the query image in a non-parametric k-nn scheme through visual
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feature matching. The retrieval set consists of images that are most visually similar to

the query image on a global level. The number of candidate labels for a query image

is restricted to the labels present in the retrieval set only. A common challenge which

faces non-parametric parsing methods is in the image retrieval step. While image retrieval

is useful in limiting the number of labels to consider, it is regarded as a very critical

step in the pipeline [124, 147]. If the true labels are not included in the retrieved images,

there is no chance to recover from this error. Furthermore, these approaches suffer from

being biased towards background regions in images. Such regions, e.g. sky, ceiling, or

floor, occupy the majority of the image’s pixels. While such regions are less salient than

foreground regions, e.g. person, sign, or book, they are recognized with a much higher

accuracy than foreground regions, which are typically less represented in the dataset.

Motivated by the importance of foreground regions (objects) in achieving profound

image understanding, as has been explored in the previous parts of this thesis, we propose

an image parsing algorithm that accurately recognizes the semantic labels of such salient

regions, while maintaining an overall coherent interpretation of the scene. In the first part

of our approach, we exploit the visual appearance of the regions and their frequency in

training scene images to boost the recognition accuracy of less-represented regions. Next,

in the second part of the approach, we exploit global scene context by reasoning about

which region labels often co-occur in one scene to discover outlier labels and recover

missing labels in the parsing results. Thus, we target a deeper semantic understanding of

the scene, reasoning about its different components. Specifically, we make the following

contributions:

1. We improve the likelihood scores of labels at superpixels through combining classi-

fiers with adaptive weight estimation. Our system combines the output probabilities

of multiple classification models to produce a more balanced score for each label

at each superpixel. We learn the weights for combining the scores by applying

likelihood normalization method on the training set. The weights are computed au-

tomatically without introducing additional parameters, achieving better performance

than other fusion techniques.

2. We incorporate semantic context in a probabilistic framework. To avoid the elimina-

tion of relevant labels that cannot be recovered at later steps, we do not construct

a retrieval set. We, instead, use label costs learned from the global contextual

correlation of labels in similar scenes to achieve better parsing results.

Our system improves over previous state-of-the-art methods in per-pixel recognition
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rates on two large-scale datasets: SIFTflow [90], which contains 2688 images with 33

labels, and LMSun [132] dataset, which contains 45576 images with 232 labels.

4.1 Related Work

Several parametric and nonparametric scene parsing techniques have been proposed.

Closely related to our method are the nonparametric systems which aim to achieve a wide

coverage of semantic classes. The systems in [34, 131, 147] adopt different techniques for

boosting the overall performance of nonparametric parsing. In [131], the authors combine

region-parsing with per-exemplar SVM detector outputs. Per-exemplar detectors are used

to transfer object masks into the test image for segmentation. Their system achieves

impressive improvements in overall accuracy, but at the cost of expensive computational

requirements. Calibrating the data terms requires batch offline training in a leave-one-out

fashion, which is challenging to scale. [34] and [147] explicitly add superpixels of rare

classes into the retrieval set to improve their representation. The authors of [147] filter the

list of labels for a test image through an image retrieval step, and rare classes are enriched

with more samples at query time. Our system differs in the superpixel classification

technique, how we improve the recognition of rare classes, and how we apply semantic

context. We promote the representation of foreground classes by merging classification

costs of different contextual models, which produces more balanced label costs. We

also avoid the bottleneck of image retrieval, and instead rely on global label costs in the

inference step.

The usefulness of semantic context has been thoroughly explored in several visual recog-

nition algorithms [34,58,59,90,113,124,147]. In the nonparametric scene parsing systems

of [34, 124, 147], context has been used to improve the overall labeling performance in a

feedback mechanism. In [34], initial labeling of superpixels of a query image is used to

adapt the training set by conditioning on recognized background classes to improve the

representation of rare classes. The goal is to improve the image retrieval set by adding

back segments of rare classes. The system in [124] constructs a semantic global descriptor.

Image retrieval is improved through combining the semantic descriptor with the visual

descriptors. In [147], context is incorporated through building global and local context

descriptors based on classification likelihood maps similar to [86]. Our method is different

from these methods in that we do not use context at each superpixel in computing a global

context descriptor, but instead we consider contextual knowledge over the image as a
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whole. We achieve contextually meaningful results through inferring label correlations in

similar scene images. We also do not have a retrieval set which we aim to enrich. Instead,

we formulate our global context in a probabilistic framework, where we compute label

costs over the whole image. Also, our global context is performed online without any

offline training. Another image parsing approach which does not rely on retrieval sets

is [58], where image labeling is performed by transferring annotations from a graph of

patch correspondences across image sets. This approach, however, requires large memory

which is difficult to scale for large datasets like SIFTflow and LMSun.

Our approach is inspired from combining classifiers techniques [73] in machine learn-

ing, which have been shown to boost the strengths of single classifiers. Several fusion

techniques have been successfully used in different areas of computer vision, like face

detection [138], multi-label image annotation [111], object tracking [150], and character

recognition [60]. However, the constituent classifiers and the mechanisms for combining

them are quite different from our framework and the other techniques are only demon-

strated on small datasets.

4.2 Baseline Parsing Pipeline

In this section, we present an overview of our baseline image parsing system, which

consists of three steps: feature extraction (Section 4.2.1), label likelihood estimation at

superpixels (Section 4.2.2), and inference (Section 4.2.3).

Following that, we present our contributions of improving likelihoods at superpixels and

computing label costs for scene-level global context in sections 4.3 and 4.4 respectively.

4.2.1 Segmentation and Feature Extraction

To reduce the problem space, we divide the image into superpixels. We start by extract-

ing superpixels from images using the efficient graph-based method of [39]. For each

superpixel, we extract 20 types of local features to describe its shape, appearance, texture,

color, and location, following the method of [132]. In addition to these features, we extract

Fisher Vector (FV) [109] descriptors at each superpixel using the VLFeat library [137].

We compute 128-dimensional dense SIFT feature descriptors on 5 patch sizes (8, 12, 16,

24, 30). We build a dictionary of size 1024 words. We then extract the FV descriptors
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and apply PCA to reduce their size to 512 dimensions. Each superpixel is described by a

2202-dimensional feature vector.

4.2.2 Label Likelihood Estimation

We use the extracted features at the previous step to compute label likelihoods at each

superpixel. Different from traditional methods, we do not restrict the potential labels for

a test image. We instead compute the likelihood data term for each class label c ∈ C,

where C is the total number of classes in the dataset. The normalized cost D(lsi
= c|si) of

assigning label c to superpixel si is given by:

D(lsi
= c|si) = 1−

1

1+ e−Lunbal(si,c)
, (4.1)

where Lunbal(si,c) is the log-likelihood ratio score of label c, given by

Lunbal(si,c) =
1

2
log(P(si|c)/P(si|c̄)), (4.2)

where c̄ =C\c is the set of all labels except c, and P(si|c) is the likelihood of superpixel si

given c. We learn a boosted decision tree (BDT) [18] model to obtain the label likelihoods

Lunbal(si,c). For implementation, we use the publicly available boostDT 1 library. At this

stage, we train the BDT model using all superpixels in the training set, which represent an

unbalanced distribution of class labels C.

4.2.3 Smoothing and Inference

We formulate our optimization problem as that of maximum a posteriori (MAP) estimation

of the final labeling L using Markov Random Field (MRF) inference. Using only the

estimated likelihoods in the previous section to classify superpixels yields noisy classi-

fications. Adding a smoothing term V (lsi
, ls j

) to the MRF energy function attempts to

overcome that issue by punishing neighboring superpixels having semantically irrelevant

labels. Our baseline attempts to minimize the following energy function:

E(L) = ∑
si∈S

D(lsi
= c|si)+λ ∑

(i, j)∈A

V (lsi
, ls j

). (4.3)

1http://web.engr.illinois.edu/ dhoiem/software/
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Figure 4.1: Overview of the fusing classifiers approach. Likelihood scores from multiple models

(3a) and (3b) are combined to produce the final likelihoods at superpixels. Likelihood

scores of foreground classes (e.g. person) are boosted via our combination technique.

The unbalanced (skewed) model in (3a) produces biased likelihoods towards back-

ground classes (e.g. road). This is reflected in the much larger score (bigger circle) for

the road class when compared to the person class and other less-represented classes.

For the balanced classifier in (3b), the scores are more balanced and less-represented

classes get a higher chance (bigger circle) of being recognized.

where A is the set of adjacent superpixel indices and V (lsi
, ls j

) is the penalty of assigning

labels lsi
and ls j

to two neighboring pixels, computed from counts in the training set

combined with the constant Potts model following the approach of [132]. λ is the

smoothing constant. We perform inference using the α-expansion method with the code

of [11, 12, 74].

In the next two sections, we present our main contributions of how we improve the

superpixel classification step (section 4.3) and how we incorporate scene-level context to

achieve better results (section 4.4).

4.3 Improving Superpixel Label Costs

While foreground objects are usually the most noticeable regions in a scene image, they

are often misclassified by parsing algorithms. For example, in a city street scene, a

human viewer would typically first notice the people, signs and cars before noticing the

buildings and road. However, for scene parsing algorithms, foreground regions are often

misclassified as being part of the surrounding background due to two main reasons. First,

in the superpixel classification step, any classifier would naturally favor more dominant

classes to minimize the overall training error. Second, in the MRF smoothing step, many

of the superpixels which were correctly classified as foreground objects, are smoothed out
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by neighboring background pixels.

We propose to improve the label likelihood score at each superpixel to achieve a

more accurate parsing output. We design different classifiers that offer complementary

information about the data. All the designed models are then combined to derive a

consensus decision. The overview of our fusing classifiers approach is shown in Figure

4.1. At test time, the label likelihood scores of all the BDT models are merged to produce

the final scores at superpixels.
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Figure 4.2: Classification rates (%) of individual classes for the different classificationn models

trained on SIFTflow. Classes are ordered in descending order by the mean number of

pixels they occupy (frequency) in scene images. Our goal is to decrease the correlation

between the trained models.

4.3.1 Fusing Classifiers

Our method is inspired from ensemble classifier techniques that train multiple classifiers

and combine them to reach a better decision. Such techniques are specifically useful

if the classifiers are different [73]. In other words, the error reduction is related to the

uncorrelation between the trained models [135], i.e. the overall error is reduced if the

classifiers misclassify different data points. Also, it has been shown that partitioning the

training set performs better than partitioning the feature space for large datasets [135].

We have observed that the classification error of a given class is related to the mean

number of pixels it occupies in the scene images, as shown by the blue line in Figure 4.2.

This agrees with the findings of previous methods [131, 147] that the classification error

rate is related to the frequency of classes in the training set. However, we go beyond that

by considering the frequency of the classes on the image level, which targets the problem

of smoothing out the less-represented classes by a neighbouring background class.
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To this end, we train three BDT models with the following training data criteria: (1) a

balanced subsample of all classes C in the dataset, (2) a balanced subsample of classes

occupying an average of less than x% of their images, and (3) a balanced subsample of

classes occupying an average of less than ⌈x/2⌉% of their images.

The motivation beyond these choices is to reduce the correlation between the trained

BDT models as shown in Figure 4.2. While the unbalanced classifier mainly misclassifies

the less-represented classes, the balanced classifiers recover some of these classes while

making more mistakes on the more represented classes. By combining the likelihoods

from all the classifiers, a better overall decision is reached that improves the overall

coverage of classes (Figure 4.1). We observed that the addition of more classifiers did not

improve the performance for any of our datasets.

The final cost of assigning a label c to a superpixel si can then be represented as the

combination of the likelihood scores of all classifiers:

D(lsi
= c|si) = 1−

1

1+ e−Lcomb(si,c)
(4.4)

where Lcomb(si,c) is the combined likelihood score obtained by the weighted sum of the

scores from all classifiers:

Lcomb(si,c) = ∑
j=1,2,3,4

w j(c)L j(si,c), (4.5)

where L j(si,c) is the score from the jth classifier, and w j(c) is the normalized weight of

the likelihood score of class c in the jth classifier.

4.3.2 Normalized Weight Learning

We learn the weights w ≡ [w j(c)] of all classes C in offline settings using the training set.

We compute the weights separately for each classifier. The weight w̃ j(c) of class c for the

jth classifier is computed as the average ratio of the sum of all likelihoods of class c, to

the sum of all likelihoods of all classes ci ∈C\c of all superpixels si ∈ S:

w̃ j(c) =
|C j|

C

∑si∈S L j(si,c)

∑si∈S ∑ci∈C\c L j(si,ci)
(4.6)
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where |C j| is the number of classes covered by the jth classifier and not covered by any

other classifier with a smaller number of classes.

The normalized weight w j(c) of class c can then be computed as:

w j(c) =
w̃ j(c)

∑ j=1,2,3,4 w̃ j(c)
(4.7)

Normalizing the output likelihoods in this manner gives a better chance for all classifiers

to be considered in the result with an emphasis on less-represented classes. In Section

3.6.1, we show the superior performance of our fusion scheme to other traditional fusion

mechanisms: averaging and median rule.

4.4 Scene-Level Global Context

When exploiting scene parsing problems, it is useful to incorporate the semantics of the

scene in the labeling pipeline. For example, if we know that a given scene is a beach scene,

we will expect to find labels like sea, sand, and sky with a much higher probability than

expecting to find labels like car, building, or fence. We use the initial labeling results of a

test image in estimating the likelihoods of all labels c ∈C (Section 4.4.1). The likelihoods

are estimated globally over an image, i.e. there is a unique cost per label per image. We

then plug the global label costs into a second MRF inference step to produce better results

(Section 4.4.2).

Our approach, unlike previous methods, does not limit the number of labels to those

present in the retrieval set but instead uses the set to compute the likelihood of class labels

in a k-nn fashion. The likelihoods are normalized by counts over the whole dataset and

smoothed to give a chance to labels not in the retrieval set. We also employ the likelihoods

in an MRF optimization step, not for filtering the number of labels.

4.4.1 Context-Aware Global Label Costs

We propose to incorporate semantic context through using label statistics instead of

global visual features. The intuition behind such choice is that ranking by global visual

features often fails to retrieve similar images on the scene level [132, 147]. For example,

a highway scene could be confused with a beach scene with road pixels misclassified as
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Figure 4.3: Scene-level global context. (a) The initial labeling of a query image is used to (b) assign

weights to the unique classes in the image. A class with a bigger weight is represented

by a larger circle. (c) Training images are ranked by the weighted size of intersection

of their class labels with the query. (d) Global label likelihoods are computed through

label counts in the top-ranked images.

sand. However, ranking by label statistics, given a relatively good initial labeling, retrieves

more semantically similar images that aim to remove outlier labels (e.g., sea pixels in

street scene) and recover missing labels in a scene.

For a given test image I, minimizing the energy function in equation 4.3 produces an

initial labeling L of the superpixels in the image. If C is the total number of classes in the

dataset, let T ⊂C be the set of unique labels which appear in L, i.e. T = {t |∃si : lsi
= t},

where si is a superpixel with index i in the test image, and lsi
is the label of si. We exploit

semantic context in a probabilistic framework, where we model the conditional distribution

P(c|T ) over class labeling C given the initial global labeling of an image T . We compute

P(c|T )∀c ∈C in a k-nn fashion:

P(c|T ) =
(1+n(c,kT ))/n(c,S)

(1+n(c̄,kT ))/|S|
, (4.8)

where kT is the k-neighborhood of initial labeling T , n(c,X) is the number of superpixels
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with label c in X , n(c̄,X) is the number of superpixels with all labels except c in X , and

|S| is the total number of superpixels in the training set. We normalize the likelihoods and

add a smoothing constant of value 1 to avoid zero likelihoods and give a chance to labels

not in the retrieval set to be considered.

To get the neighborhood kT , we rank the training images by their distance to the query

image. The distance between two images is computed as the weighted size of intersection

of their class labels, intuitively reflecting that the neighbors of T are images with many

shared labels with those in T . We assign a different weight to each class in T in such a

way to favor less-represented classes.

As shown in Figure 4.3, our algorithm works in three steps. It starts by (1) assigning a

weight ωt to each class t ∈ T , which is inversely proportional to the number of superpixels

in the test image with label t:

ωt = 1−
n(t, I)

|I|
, (4.9)

where n(t, I) is the number of superpixels in the test image with label lsi
= t, and |I| is

the total number of superpixels in the image. Then, (2) training images are ranked by

the weighted size of intersection of their class labels with the test image. Finally, (3) the

global label likelihood Lglobal(c) = P(c|T ) of each label c ∈C is computed using equation

4.8. Computing the label costs is done online for a query image without any batch offline

training. Our method improves the overall accuracy by using only the ground truth labels

of training images without any global visual features.

4.4.2 Inference with Label Costs

Once we obtained the likelihoods Lglobal(c) of each class c ∈C, we can define the global

label cost for each class as:

H(c) =−log(Lglobal(c)). (4.10)

Our final energy function becomes:

E(L) = ∑
si∈S

D(lsi
= c|si)+λ ∑

(i, j)∈A

V (lsi
, ls j

)+ ∑
c∈C

H(c).δ (c), (4.11)
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where δ (c) is the indicator function of label c:

δ (c) =

{

1 ∃si : lsi
= c

0 otherwise

We solve equation 4.11 using α-expansion with the extension method of [23] to optimize

label costs. Optimizing the energy function in equation 4.11 effectively minimizes the

number of unique labels in a test image to those which have low label costs, i.e. which are

most relevant to the scene.

4.5 Experimental Evaluation

4.5.1 Experimental Design

We ran our experiments on two large-scale datasets: SIFTflow [90] and LMSun [132].

SIFTflow has 2,488 training images and 200 test images. All images are of outdoor scenes

of size 256x256 with 33 labels. LMSun contains both indoor and outdoor scenes, with a

total of 45,676 training images and 500 test images. Image sizes vary from 256x256 to

800x600 pixels with 232 labels.

We use the same evaluation metrics and train/test splits as previous methods. We

report the per-pixel accuracy (the percentage of pixels of test images that were correctly

labeled), and per-class recognition rate (the average of per-pixel accuracies of all classes).

We evaluate the following variants of our system: (i) baseline, as described in Section

4.2, (ii) baseline (with balanced BDT), which is the baseline approach using a balanced

classifier, (iii) baseline + FC (NL fusion), which is the baseline in addition to the fusing

classifiers with normalized-likelihood (NL) weights in Section 4.3, and (iv) full, which

is baseline + fusing classifiers + global costs. To show the effectiveness of our fusion

method (Section 4.3.2), we report the results of (v) baseline + FC (average fusion), which

is fusing classifiers by averaging their likelihoods, and (vi) baseline + FC (median fusion),

which is fusing classifiers by taking the median of their likelihoods. We also report results

of (vii) full (without FV), which is full system without using the Fisher Vector features.

We fix x = 5 (Section 4.3.1), a value that was obtained through empirical evaluation on

a small subset of the training set.
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4.5.2 Scene Parsing Results

We compare our results with state-of-the-art methods on SIFTflow in Table 4.1. We

have set k = 64 top-ranked training images for computing the global context likelihoods

(Section 4.4.1). Our full system achieves 81.7% per-pixel accuracy, and 50.1% per-class

accuracy, which outperforms the state-of-the-art method of [147] (79.8% / 48.7%). Results

show that our fusing classifiers step significantly boosts the coverage of foreground

classes, where the per-class accuracy increases by around 15% over the baseline method.

Our semantic context (Section 4.4) improves both the per-pixel and per-class accuracies

through optimizing for fewer labels which are more semantically meaningful. Fisher

Vectors improved the recognition by around 3%. In Figure 4.6, we show examples of

parsing results on the SIFTflow dataset.

Table 4.2 compares the performance of the same variants of our system with the state-

of-the-art methods on the large-scale LMSun dataset. LMSun is more challenging than

SIFTflow in terms of the number of images, the number of classes, and the presence of

both indoor and outdoor scenes. Accordingly, we use a larger value of k = 200 in equation

4.8. Our method achieves near record performance in per-pixel accuracy (61.2%), while

placing second in per-class accuracy. The effectiveness of the fusing classifiers technique

Method Per-pixel Per-class

Liu et al. [90] 76.7 N/A

Farabet et al. [36] 78.5 29.5

Farabet et al. [36] balanced 74.2 46.0

Eigen and Fergus [34] 77.1 32.5

Singh and Kosecka [124] 79.2 33.8

Tighe and Lazebnick [132] 77.0 30.1

Tighe and Lazebnick [131] 78.6 39.2

Yang et al. [147] 79.8 48.7

Baseline 78.3 33.2

Baseline (with balanced BDT) 76.2 45.5

Baseline + FC (NL fusion) 80.5 48.2

Baseline + FC (average fusion) 78.6 46.3

Baseline + FC (median fusion) 77.3 46.8

Full without Fisher Vectors 77.5 47.0

Full 81.7 50.1

Table 4.1: Comparison with state-of-the-art per-pixel and per-class accuracies (%) on the SIFTflow

dataset.
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Method Per-pixel Per-class

Tighe and Lazebnick [132] 54.9 7.1

Tighe and Lazebnick [131] 61.4 15.2

Yang et al. [147] 60.6 18.0

Baseline 57.3 9.5

Baseline (with balanced BDT) 45.4 13.8

Baseline + FC (NL fusion) 60.0 14.2

Baseline + FC (average fusion) 60.5 11.4

Baseline + FC (median fusion) 59.2 14.7

Full without Fisher Vectors 58.2 13.6

Full 61.2 16.0

Table 4.2: Comparison with state-of-the-art per-pixel and per-class accuracies (%) on the LMSun

dataset.

is shown in the improvement of both per-pixel (by 3%) and per-class (by 4.5%) accuracies

over the baseline system. The global context step improves the class coverage by around

2%. Figure 4.8 shows the output of our scene parsing system on some images from

LMSun.

We next analyze the performance of our system when varying the number of trees T for
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Figure 4.4: Analysis of the performance when varying the number of trees for training the BDT

model, at different values of top k images for the global context step on the SIFTflow

dataset. The y-axis shows the per-pixel accuracies (%) and the x-axis show the per-class

accuracies (%) for different numbers of trees.
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Figure 4.5: Classification rates (%) of individual classes for the baseline, fused classifiers, and

the full system on SIFTflow. Classes are sorted from the most frequent to the least

frequent.

training the BDT model (Section 4.3.1), and the number of top training images k in the

global label costs (Section 4.4.1). Figure 4.4 shows the per-pixel accuracy (on the y-axis)

and the per-class accuracy (on the x-axis) as a function of T for a variety of k’s. Increasing

the value of T generally produces better classification models that better describe the

training data. At T ≥ 400, performance levels off. As shown, our global label costs

consistently improve the performance over the baseline method with no global context.

Using more training images (higher k) improves the performance through considering

more semantically-relevant scene images. However, performance starts to decrease for

very high values of k (e.g., k = 1000) as more noisy images start to be added.

Figure 4.5 shows the per-class recognition rate for the baseline, combined classifiers,

and the full system on SIFTflow. Our fusing classifiers technique produces more balanced

likelihood scores which cover a wider range of classes. The semantic context step removes

outlier labels and recovers missing labels, which improves the recognition rates of both

common and rare classes. Recovered classes include field, grass, bridge, and sign. Failure

cases include extremely rare classes, e.g. cow, bird, desert, and moon.

4.5.3 Runtime Analysis

We analyzed the runtime performance for both SIFTflow and LMSun (without feature

extraction) on a four-core 2.84 GHz CPU with 32 GB of RAM without code optimization.
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For the SIFTflow dataset, training the classifier takes an average of 15 minutes per class.

We run the training process in parallel. The training time highly depends on the feature

dimensionality. At test time, superpixel classification is efficient, with an average of 1

second per image. Computing global label costs takes 3 seconds. Finally, MRF inference

takes less than one second. We run MRF inference twice for the full pipeline. LMSun is

much larger than SIFTflow. It takes 3 hours for training the classifier, less than a minute

for superpixel classification per image, less than 1 minute for MRF inference, and ∼2

minutes for global label cost computation.

4.5.4 Discussion

Our scene parsing method is generally scalable as it does not require any offline training in

a batch fashion. However, the time required for training a BDT classifier increases linearly

with increasing the number of data points. This is challenging with large datasets like

LMSun. Randomly subsampling the dataset has a negative impact on the overall precision

of the classification results. Our system still faces challenges in trying to recognize very

less-represented classes in the dataset (e.g., bird, cow, and moon). This could be handled

via better contextual models per query image.
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Figure 4.6: Examples of parsing results on the SIFTflow dataset. Top left is the original image, on

its right is the ground truth labeling, bottom left is the output from the baseline, and on

its right is the output of the balanced classifier. Finally, the output of the full system is

on the far right (third column). The unbalanced classifier often misses the foreground

classes by oversmoothing the results. The balanced classifier performs better with

foreground classes, but yields more noisy classification. The full system combines the

benefits of both classifiers, improving both the overall accuracy and the coverage of

foreground classes (e.g., building, bridge, window, and person) (best viewed in color).
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Figure 4.7: More examples of parsing results on the SIFTflow dataset (best viewed in color). Top

left is the original image, on its right is the ground truth labeling, bottom left is the

output from the baseline, and on its right is the output of the balanced classifier. Finally,

the output of the full system is on the far right (third column). The unbalanced classifier

often misses the foreground classes by oversmoothing the results. The balanced

classifier performs better with foreground classes, but yields more noisy classification.

The full system combines the benefits of both classifiers, improving both the overall

accuracy and the coverage of foreground classes (e.g., building, bridge, window, and

person)
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Figure 4.8: Examples of parsing results on the LMSun dataset (best viewed in color). The layout

of the results is the same as in Fig. 4.6. Foreground classes (e.g. screen, sidewalk,

person, torso, pole, cloud, table, light, and elephant) are successfully recognized by our

system (best viewed in color).
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Figure 4.9: More examples of parsing results on the LMSun dataset (best viewed in color). The

layout of the results is the same as in Fig. 4.6. Foreground classes (e.g. screen, sidewalk,

person, torso, pole, cloud, table, light, and elephant) are successfully recognized by our

system (best viewed in color).

96



Chapter 5
Conclusions and Outlook

In this thesis, we explored how high-level semantic knowledge in terms of scene-object

and object-object relationships can be integrated with visual learning to provide a rich

form of image understanding. We proposed novel approaches, which exploit the benefits

of contextual knowledge in improving scene understanding from three perspectives: (a)

fine-grained scene interpretation, (b) robust scene recognition, and (c) scalable and ac-

curate scene parsing. In Chapters 2 and 3, we showed that contextual information helps

disambiguate visually similar scenes, as well as provides an invariant representation of

images which is more reliable across significantly varying imaging conditions. Unlike

most current approaches that learn models for coarse-grained scene understanding using

millions of images gathered from the web, our work improves the understanding of closely

related, fine-grained, scenes with limited availability of training images. In Chapter 2,

we proposed a novel approach to describe images of well-structured scene environments,

e.g. grocery stores, using their fine-grained constituent objects. Specifically, we reasoned

about the visual appearance of objects, their co-occurrences, and their spatial configura-

tions in scene images to perform instance-level retrieval in context. We simultaneously

recognized and localized all specific object instances in a scene image in a single opti-

mization step, in an efficient and scalable manner. Through utilizing semantic knowledge,

we improved the generalization performance of the system when applied in real-world

settings, which are significantly different from those of the training images. We proceeded

to more challenging fine-grained scenes in Chapter 3, where we exploited the underlying

semantic organization of less structured scene environments suffering from clutter and

varying spatial configurations of objects. We devised a method that models the occurrence

patterns of objects in scenes, capturing the informativeness and discriminability of each
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object for each scene. We showed that these patterns provide contextual information

that can be used to discover semantic groupings of scene images, and learn more robust

scene recognition models. Finally in Chapter 4, we addressed the problem of designing

image understanding algorithms that are both scalable and accurate. We presented a novel

scene parsing approach that exploits the semantic and visual knowledge embedded in a

continuously increasing number of scenes and objects in an efficient and effective manner.

We reasoned about the frequency of appearance of different objects in scenes, and how

different scene environments relate to each other in terms of their constituent objects to

improve the accuracy of the parsing output yielding a more coherent and informative scene

interpretation.

5.1 Future Work

In this section, I sketch potential directions based on the presented work that I would like

to explore in the future via collaborations with fellow researchers.

5.1.1 Integrating Other Forms of Contextual Knowledge

The work presented in this dissertation has relied mostly on visual appearance and co-

occurrence patterns, specifically object-object and scene-object co-occurrence statistics.

It would be beneficial to explore other forms of semantic knowledge to achieve a richer

form of image understanding. Text associated with images provides us with interaction

statistics among the scene elements. Accordingly, scene environments can be described by

both their object co-occurrences as well as the interaction patterns among these objects.

For example, a dining scene has several people sitting on a table, eating food on plates

and drinking water from glasses.

Exploiting instance-level knowledge about the image, such as how many people, chairs,

or flowers are in the image, allows us to leverage these statistics to learn more robust scene

models; for example, an image with one flower maybe a living room or an office, an image

with tens of flowers is more likely to be a flower shop, and an image with hundreds of

flowers is more typical of a public park or a botanical garden. Also, through exploiting 3D

scene information [62, 119], such as depth [80] and occlusion, reliable spatial patterns can

be learnt. This would enable a very deep understanding of scenes.
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5.1.2 Jointly Exploring Fine-Grained and Large-Scale Scene

Understanding

The work presented in Chapters 2 and 3 has focused on robust fine-grained scene under-

standing, while Chapter 4 was concerned with large-scale scene parsing of coarse-grained

indoor and outdoor scenes. While each of these problems is essential in achieving better

image understanding, further improvements can be achieved by jointly considering both

problems. An ideal method that targets both goals would need to be scalable, accurate,

generalizable, and discriminative. While most recent work has focused on one or two of

these criteria, proposing approaches that target most or all of these criteria simultaneously

is challenging, giving rise to interesting research questions. For example, can we learn

contextual hierarchical models which would enable us to efficiently and effectively explore

this large-scale fine-grained scene space? How can we transfer the knowledge learnt

from one domain of scene environments to new unrelated domains in an unsupervised

manner? How can we fully leverage the appearance and spatial knowledge embedded

in large web-based datasets without sacrificing the generalizability of the learnt model

when applied in the real world? Proposing and learning contextual models that extend our

current work to effectively explore such scene space would potentially enable the machine

to learn better scene and object descriptions in unsupervised settings, than those learnt

when relying solely on visual appearance.

5.1.3 Building an Assistive Vision System

Developing and building vision systems that are able to describe an image similar to

a person would be very useful in a wide range of applications. I would like to build

usable systems that utilize the proposed approaches in improving the quality of life of

individuals. For example, an assistive vision system would enable a blind person to better

interpret his scene environment, the people he is interacting with, and the objects present

in his vicinity. Thus, the user would potentially have better interactions with his friends

and colleagues and more independence in performing daily activities. Developing such

systems would lead to interesting research questions: which scene characteristics are

more salient from the user’s perspective? How to quantify the overall performance of the

system in providing a satisfactory scene interpretation to the user? How can the system

continuously evolve to learn better models based on the user’s feedback? Incorporating

other sources of information like audio could provide hints to certain events that captured
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the user’s attention at a given time, thus enabling the system to provide better analysis of

the scene.

5.2 Concluding Remarks

The ultimate goal of image understanding is to interpret images similar to humans. Relying

solely on visual appearance of objects and scenes falls short of reaching this goal. The

need for exploring high-level semantic information has been recognized in the vision

community, where several approaches encode spatial patterns of objects to improve image

understanding. The main novelty of our work is in leveraging an even higher-level of

contextual knowledge embedded in scenes and objects, in a promising step to bridge the

well known ‘semantic gap’ between low-level image representation and high-level visual

recognition. Our proposed approach provides an intuitive semantic description of an image

capturing relationships between objects and scenes, as well as objects and other objects

on a global level. Such high-level semantic embedding provides a significantly invariant

yet discriminative image representation, which constitutes a practical solution towards

unsupervised visual learning.
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[156] Bolei Zhou, Àgata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.

Learning deep features for scene recognition using places database. In Annual

Conference on Neural Information Processing Systems (NIPS), 2014.

115



List of Tables

2.1 Multi-label image classification performance for baseline labeling, differ-

ent versions of our system, and state-of-the-art classification and instance-

level image retrieval techniques. . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Performance on the Grozi-120 dataset. System parameters are optimized

to maximize average precision rate. . . . . . . . . . . . . . . . . . . . . . 26

2.3 Multi-class ranking performance. Baseline is the binary classification of

test images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Average classification accuracy of different variants of our method and the

baseline method on the GroceryProducts dataset. . . . . . . . . . . . . . 41

3.1 Classification accuracy as a function of the number of discriminant objects

for SnapStore and MIT Scene 67 . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Comparison of classification accuracies on SnapStore. *-Indicates results

for a single scale of 128×128 patches . . . . . . . . . . . . . . . . . . . . . 71

3.3 Training/Testing configuration for cross-recognition experiment on multi-

ple datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Ground truth and cross-recognition accuracy (%) of DeCaF+SVM baseline

on multiple fine-grained scene datasets . . . . . . . . . . . . . . . . . . . 74

3.5 Cross-recognition accuracy (%) on SnapStore training set (SnW), Snap-

Store test set (SnP), SUN, and Places (Pla) datasets . . . . . . . . . . . . 75

3.6 Comparison of classification accuracies on MIT Scene 67. *-Indicates

results for a single scale of 128×128 patches. . . . . . . . . . . . . . . . . . 75

3.7 Classification accuracy for the combination of object-based and holistic

classification (Places fc7 features) . . . . . . . . . . . . . . . . . . . . . 76

4.1 Comparison with state-of-the-art per-pixel and per-class accuracies (%)

on the SIFTflow dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Comparison with state-of-the-art per-pixel and per-class accuracies (%)

on the LMSun dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

116



List of Figures

1.1 Objects give hints about scene environment. If the presence of a car in a

given scene suggests that the environment maybe a highway, a city street,

or a garage, then the simultaneous recognition of a pedestrian crossing in

the same scene suggests that the scene environment is more likely to be a

city street rather than a highway or a garage. . . . . . . . . . . . . . . . . 3

1.2 Objects provide contextual knowledge on local and global levels. On the

local level, the presence of a building in an image suggests the presence

of sky in adjacent pixels in the upper part of the image, and side walk or

road in adjacent pixels in the lower part of the image. While on a more

global level, the presence of the building suggests the presence of a car or

a person somewhere in the image, not necessarily adjacent to the building.

The presence of the building also provides hints about unlikely objects in

the scene, e.g. water or sand. . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Semantic clustering of fine-grained scenes. It is common in fine-grained

scenes that some scene images share more common objects with each

other than with other images, thus are more semantically related to each

other. For example in the domain of store scenes, some images of both

shoe shops and sports stores contain shoes. Similarly, some images of

furniture stores, coffee shops, and waiting areas in shoe shops contain

chairs or sofas. Exploiting such underlying semantic structure of scene

images improves our understanding of the scenes and allows us to develop

more discriminative systems. . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Retrieval-based parsing systems. These systems rely on retrieving similar

images to a given scene image and then computing label likelihoods for

each region in the given image. These likelihoods are obtained through

matching the regions with those of the set of retrieved images in a non-

parametric scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

117



List of Figures

1.5 Our scene parsing approach boosts the recognition of foreground objects

in scene images. Likelihood scores of foreground classes (e.g. person)

are boosted via our combination technique. The unbalanced (skewed)

model in (a) produces biased likelihoods towards background classes (e.g.

road). This is reflected in the much larger score (bigger circle) for the

road class when compared to the person class and other less-represented

classes. For the balanced classifier in (b), the scores are more balanced

and less-represented classes get a higher chance (bigger circle) of being

recognized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Sample training images from our collected dataset. Each training images

is downloaded from the web in ideal studio conditions. Each product

instance is represented by a single image in the dataset. . . . . . . . . . . 17

2.2 Sample testing images from our collected dataset. Testing images are

taken in real stores with a smartphone. Each image consists of multiple

products which are occluded, rotated, and sometimes deformed. Testing

images suffer from blur and specularities. . . . . . . . . . . . . . . . . . 18

2.3 Sample test images with ground truth annotations from our proposed dataset. 20

2.4 System overview: (a) Given a test image, (b) we first filter the categories

which the test image may belong to, (c) then we match the test image

against all images in the filtered categories. (d) An energy function is then

optimized given the top-ranked matches to obtain the final list, along with

inferred locations, of detected products. . . . . . . . . . . . . . . . . . . 21

2.5 Sample (a) training and (b) testing images from the Grozi-120 dataset. . . 27

2.6 Examples of two multi-label image classification results. Left column

shows the test image, then the retrieved product instances, and finally their

inferred locations in the test image. . . . . . . . . . . . . . . . . . . . . 29

2.7 Examples of two multi-label image classification results on the Grozi-120

dataset. Left column shows the test image, then the retrieved product

instances, and finally their inferred locations. . . . . . . . . . . . . . . . 29

2.8 (a) Mean average precision as a function of the total number of matches (n)

for different values of the number of filtered classes (K). (b) Mean average

precision as a function of the total number of top matches (n) when turning

on the GA optimization and when turning off the GA optimization. Our

GA step significantly yields better performance. . . . . . . . . . . . . . . 30

118



List of Figures

2.9 Overview of our system. It consists of three main components: (a) text

recognition on product packaging, (b) visual recognition of fine-grained

product classes, and (c) recognition improvement by user feedback. . . . . 34

2.10 Histogram of word occurrences on the product packaging in the “Coffee”

category in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Our shopping assistant. The user enters a textual string which is matched

against the pre-computed keyword database, and a filtered list of classes is

shown to the user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Top 10 discovered discriminative patches for the top 10 correctly classified

product classes in the GroceryProducts dataset. . . . . . . . . . . . . . . 37

2.13 Confusion matrix of the classification results for the 26 fine-grained classes

of the GroceryProducts dataset. . . . . . . . . . . . . . . . . . . . . . . . 42

2.14 Precision-recall curve for thresholding the SVM classification score. Our

method yields high precision of over 90% for recall values up to 50%, as

shown by the flatness out our curve. . . . . . . . . . . . . . . . . . . . . 43

2.15 Average classification accuracy for increasing number of images used for

learning in the active learning procedure. Testing set size is fixed at 500

images, maximum learning set size is 180 images, and the iteration step

size is 20 images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Overview of our semantic clustering approach. (a) scene images from all

scene classes are first projected into (b) a common space, namely object

space. (c) Object occurrence models are computed to describe conditional

scene probabilities given each object. The maximal vertical distance

between two neighboring curves at a threshold θ is the discriminability

of the object at θ . (d) Scene images are represented by semantic scene

descriptors (bottom), and clustering these descriptors exploit the hidden

semantic domains in fine-grained scene classes (top). . . . . . . . . . . . 50

3.2 Challenges of fine-grained scene classification of store classes. (a) Some

categories are significantly visually similar with very confusing spatial

layout and objects (e.g., drug store, grocery store, and do-it-yourself store).

(b) Other store classes have widely varying visual features from one store

to the other, which is difficult to model (e.g., clothes store). . . . . . . . . 54

3.3 An overview of our proposed fine-grained scene classification SnapStore

dataset. The dataset contains 18 store categories that are closely related to

each other. For each category, 3 training images are shown. . . . . . . . . 55

119



List of Figures

3.4 Discriminative power of an object detector. The threshold bandwidth

is shown on the x-axis and occurrence probability on the y-axis. The

maximal vertical distance between two neighboring curves at a threshold

θ is the discriminative power of the object at θ . . . . . . . . . . . . . . . 59

3.5 An example of (a) a discriminative object (book) and (b) a non-discriminative

object (bottle) on the SnapStore dataset. In each case, the left plot is iden-

tical to the plot of Figure 3.4. Note that the discriminative object (book)

occurs frequently in few categories at a given confidence level. However,

for the same confidence level, the bottle object, occurs in many categories

(grocery store, drug store, and household store). To further illustrate the

discriminative power of an object, the plot on the right of (a) and (b) shows

the occurrence normalized in 1-norm for each θ over the whole range.

The region above the maximal θ for any occurrence is interpreted as 1 for

the category with the highest probability. . . . . . . . . . . . . . . . . . . 60

3.6 Semantic scene descriptor. Each scene image is represented by how likely

it belongs to each scene class. These likelihoods are obtained from the

object occurrence models (OOMs) of each detected or recognized object

in the scene image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Scene likelihoods for all scene classes for (a) the top 10 discriminative ob-

jects and (b) the least discriminative objects using RCNN-200 on SnapStore 65

3.8 Scene likelihoods for all scene classes for (a) the top 10 discriminative

objects and (b) the least discriminative objects using soft detections (CNN)

on the MIT Scene 67 dataset. ∗-scene names corresponding to relevant

IDs: 1: airport inside, 7: bedroom, 9: bowling, 13: church inside, 15:

cloister, 19: concert hall, 20: corridor, 22: dentaloffice, 24: elevator, 34:

inside bus, 40: laundromat, 50: office, 51: operating room. . . . . . . . . 66

3.9 Scene categories of higher recognition rate for hard detections on Snap-

Store. Each row shows test images from one scene class along with the

most frequent objects in that class. . . . . . . . . . . . . . . . . . . . . . 67

3.10 Scene categories of higher recognition rate for soft detections on MIT

Scene 67. Each row shows test images from one scene class along with

the most frequent objects in that class. . . . . . . . . . . . . . . . . . . . 68

120



List of Figures

3.11 Sample images from each discovered cluster in SnapStore when using

k = 5 clusters. Each row shows images from one cluster, specifically 2

images from 3 classes of the cluster. Each cluster represents semantically

related classes, e.g. cluster 1 contains images of flowers and vegitables

shared between florist, grocery store, and restaurant classes. In a similar

manner, cluster 2 contains images of shelves shared between bookstore,

clothes shop, coffee shop, and pharmacy classes. Cluster 3 contains close-

up images of books, notebooks, and CDs in bookstore, office supplies, and

music store. Also, cluster 4 shows images of seating areas in furniture

store, clothing store, coffee shop, restaurant, shoe shop, and sports store.

Finally, cluster 5 represents images where people are salient in the scene. 70

4.1 Overview of the fusing classifiers approach. Likelihood scores from

multiple models (3a) and (3b) are combined to produce the final likelihoods

at superpixels. Likelihood scores of foreground classes (e.g. person) are

boosted via our combination technique. The unbalanced (skewed) model

in (3a) produces biased likelihoods towards background classes (e.g. road).

This is reflected in the much larger score (bigger circle) for the road class

when compared to the person class and other less-represented classes.

For the balanced classifier in (3b), the scores are more balanced and less-

represented classes get a higher chance (bigger circle) of being recognized. 82

4.2 Classification rates (%) of individual classes for the different classifica-

tionn models trained on SIFTflow. Classes are ordered in descending order

by the mean number of pixels they occupy (frequency) in scene images.

Our goal is to decrease the correlation between the trained models. . . . . 83

4.3 Scene-level global context. (a) The initial labeling of a query image is

used to (b) assign weights to the unique classes in the image. A class with

a bigger weight is represented by a larger circle. (c) Training images are

ranked by the weighted size of intersection of their class labels with the

query. (d) Global label likelihoods are computed through label counts in

the top-ranked images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Analysis of the performance when varying the number of trees for training

the BDT model, at different values of top k images for the global context

step on the SIFTflow dataset. The y-axis shows the per-pixel accuracies

(%) and the x-axis show the per-class accuracies (%) for different numbers

of trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

121



List of Figures

4.5 Classification rates (%) of individual classes for the baseline, fused classi-

fiers, and the full system on SIFTflow. Classes are sorted from the most

frequent to the least frequent. . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Examples of parsing results on the SIFTflow dataset. Top left is the

original image, on its right is the ground truth labeling, bottom left is the

output from the baseline, and on its right is the output of the balanced

classifier. Finally, the output of the full system is on the far right (third

column). The unbalanced classifier often misses the foreground classes

by oversmoothing the results. The balanced classifier performs better

with foreground classes, but yields more noisy classification. The full

system combines the benefits of both classifiers, improving both the overall

accuracy and the coverage of foreground classes (e.g., building, bridge,

window, and person) (best viewed in color). . . . . . . . . . . . . . . . . 93

4.7 More examples of parsing results on the SIFTflow dataset (best viewed

in color). Top left is the original image, on its right is the ground truth

labeling, bottom left is the output from the baseline, and on its right

is the output of the balanced classifier. Finally, the output of the full

system is on the far right (third column). The unbalanced classifier often

misses the foreground classes by oversmoothing the results. The balanced

classifier performs better with foreground classes, but yields more noisy

classification. The full system combines the benefits of both classifiers,

improving both the overall accuracy and the coverage of foreground classes

(e.g., building, bridge, window, and person) . . . . . . . . . . . . . . . . 94

4.8 Examples of parsing results on the LMSun dataset (best viewed in color).

The layout of the results is the same as in Fig. 4.6. Foreground classes (e.g.

screen, sidewalk, person, torso, pole, cloud, table, light, and elephant) are

successfully recognized by our system (best viewed in color). . . . . . . . 95

4.9 More examples of parsing results on the LMSun dataset (best viewed in

color). The layout of the results is the same as in Fig. 4.6. Foreground

classes (e.g. screen, sidewalk, person, torso, pole, cloud, table, light, and

elephant) are successfully recognized by our system (best viewed in color). 96

122



Short Curriculum Vitae

Marian Nasr Amin George

Personal Data

Date of Birth 12 June 1986

Place of Birth Alexandria, Egypt

Citizenship Egyptian

Education

2012 – 2016 Dr. sc. ETH Zurich

Department of Computer Science, ETH Zurich, Switzerland

Thesis: Objects in Relation for Scene Understanding

2009 – 2012 MSc., Computer and Systems Engineering

Faculty of Engineering, Alexandria University, Egypt

Thesis: Learning-based Incremental Creation of Web Image Databases

2004 – 2009 BSc., Computer and Systems Engineering

Faculty of Engineering, Alexandria University, Egypt

Professional Experience

2012 – 2016 ETH Zurich, Switzerland (research assistant)

2012 – 2016 ETH Zurich, Switzerland (teaching assistant)

2011 Google Inc., CA, USA (software engineer intern)

2010 Google GmbH, Zurich, Switzerland (software engineer intern)

2009 – 2012 Alexandria University, Egypt (teaching assistant)

Scientific Publications

• Marian George

Image Parsing with a Wide Range of Classes and Scene-Level Context

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.



Short Curriculum Vitae
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