Mobile Agents as an Architectural Concept for
Internet-based Distributed Applications
— The WASP Project Approach —

Stefan kihfrocken, Friedemann Mattern

Department of Computer Science, Darmstadt University of Technology
Email: {fuenf,matterf @informatik.tu-darmstadt.de

Abstract. After introducing the concept of mobile agents and potential applica-
tion domains, we motivate why mobile agent technology is an interesting concept
for large Internet-based system structures. We then describe the Java-based WASP
agent environment which integrates agent execution platforms into WWW servers
and thus promotes a world wide infrastructure for mobile agents. We sketch first
prototype applications, and we mention some unique aspects of the WASP project
such as fully transparent migration of Java objects. Finally we report on some ex-
periences we gained when realizing our mobile agent system.

1 Mobile Agents

Mobile agents are software processes which can autonomously migrate from one host to
another during their execution. While roaming the Internet or a proprietary intranet and
visiting other machines, they do some useful work on behalf of their owners or originators.

By transmitting executable programs between (possibly heterogeneous) machines,
agent-based computing introduces an important new paradigm for the implementation of
distributed applications in an open and dynamically changing environment. This paradigm
can even be understood asanhitectural conceptor the realization of distributed sys-
tems. It is particularly well-suited if adaptability and flexibility are among the main appli-
cation requirements.

From the point of view of classical client-server computing, which nowadays is the
prevalent architectural model for distributed systems, mobile agents can be seen as an
extension or generalization of the well-known remote procedure call (RPC) principal. But
whereas in the RPC case merely data is moved from the client to a procedure that already
resides on the server (and the client usually remains idle while the remote procedure is
executed), in an agent-based framework the client dispatches an agent which travels to the
server and performs its task there by interacting locally with the server’s resources.

Hence, mobile agents (which can be understood as an elaborated form of mobile code
[4]) are able to emulate remote procedure calls, but more importantly, they also allow for
much more flexible and dynamic structures than traditional systems based on the client-
server paradigm. Compared to lower level mechanisms such as RPC or simple message
passing, the use of mobile agents for distributed applications has several potential benefits:

— Asynchronous task executidifhile the agent acts on behalf of the client on a remote
site, the client may perform other tasks.

— More dynamicslt is not necessary to install a specific procedure at a server before-
hand and to anticipate specific service request types; a client or a service provider
may send different types of agents (e.g., realizing new service handlers) to a server
without the need to reconfigure the server.

— Reduced communication bandwidthvast amounts of server data have to be pro-
cessed (e.g., weather data) and if only a few relevant pieces of information have to be
filtered out, it is more economical to transfer the computation (i.e., the agent) to the
data than to ship the data to the computation.

— Improved real time abilitiesAgents acting locally on a remote site may react faster
to remote events than if these events and reactions to them have to be communicated
between the remote machine and a central entity.

— Higher degree of robustnesA dispatched agent may be instructed how to deal with
potential problems such as unavailable servers (e.g., go to alternate sources or retry
at some later time). Although mobility introduces new failure cases, in general fault
tolerance is promoted because a mobile agent has the potential to react dynamically
to adverse situations.

— Improved support of nomadic computing and intermittently connected delces
stead of being online for a longer period, a mobile user may develop an agent request
while being disconnected, launch the agent during a brief connection session, and
receive back the agent with the result at some later time.

Several academic research projects (e.g., [1, 8, 12]) explore the mobile agent paradigm,
and several commercial systems (e.g., Aglets [9], Voyager [13], Concordia [14]) have
been introduced recently. Most of these systems are based on Java for the programming
of agents, but they largely differ in their migration and security models and most im-
portantly in the support and services they provide for the agents. Some aspects of our
own mobile agent project WASP (“Web Agent-based Service Providing”) [5, 6] will be
presented further down in Section 5.

2 Applications with Mobile Agents

Compared to traditional distributed computing schemes, mobile agents promise (at least
in many cases) to cope more efficiently and elegantly with a dynamic, heterogeneous, and
open environment which is characteristic for today’s Internet. Hence, mobile agents can
be useful in many applications.

Certainly, electronic commerces one of the most attractive areas in that respect: a
mobile agent may act (on behalf of a user or owner) as a seller, buyer, or trader of goods,
services, and information. Accordingly, mobile agents may go on a shopping tour in the
Internet: they may locate the best or cheapest offerings on WWW servers, and when
equipped with a negotiation strategy, they may even do business transactions on behalf of
their owners.

Another general application domainssarching for informatiorin the Internet or in-
formation retrieval in large remote databases when queries cannot be anticipated: Agents
may incorporate an implementation of a specific search query (i.e., a retrieval procedure)
and thus allow for semantic information compression by remote filtering of data. In partic-
ular, collecting information spread across many sites and performing some kind of trans-
actions when appropriate information is encountered, is a useful application for mobile
agents.

Monitoring is also a typical application domain: Agents can be sent out to wait for
certain events or certain kinds of information to become available and then react appro-
priately (e.g., by buying shares on a stock market host). Similarly, mobile agents may
also be used for the automation of many tasksatwork configuration and management
(e.g., for remote diagnosis). Agents may install software on remote machines, or they may
personalize remote devices and services.

Other uses of agent technology inclugderkflow management systeargdgroupware
applications Active documents that contain semantic routines to process their content
may be realized by agents which travel to appropriate places in an organization. One
last example of a potential application are@igertainmentMobile agents may enable
distributed multi-user games, they may locate persons with a similar interest, and they
may represent a player on a game host.

In general, mobile agents seem to be a promising technology for the emerging open
Internet-based service market. They are well-suited for the personalization of services,
and dynamic code installation by agents is an elegant means to extend the functionality of
existing devices and systems. Agent technology therefore enables the rapid deployment
of new and value-added services.

However, in order to become a widely accepted technology in practice, some prob-
lems remain to be resolved. The most important aspects are probably security concerns
(protecting hosts from malicious agents, but more crucially also protecting agents and
agent-based applications from malicious hosts) [3]; but interoperability with other sys-
tems, coordination and communication aspects, and the management of large societies of
mobile agents also pose interesting challenges.

3 Mobile Agents for Internet-based System Structures

The emerging Internet-based electronic commerce infrastructure is several orders of mag-
nitude larger than most traditional distributed systems [2]. Furthermore, these systems
have to be highly flexible and have to cope with a number of challenging properties: Con-
nectivity between nodes in the Internet s highly variable, mobility (which entails frequent
and prolonged disconnections) plays an ever increasing role, and embedded systems and
devices with limited resources and dynamic behavior (such as smartcards) are being inte-
grated into these systems.

Conventional system architectures like remote procedure calls which were designed
several years ago (i.e., before the WWW phenomenon) with a more static and reliable
system structure in mind, may not be well suited for large Internet-based applications.
Mobile agent technology, when combined with more traditional mechanisms in an ap-
propriate way, enables architectural concepts (such as function shipping, 'call by visit’,
or code on demand) that deal much better with these conditions. Furthermore, mobile
agents are a higher-level abstraction than messages or procedure calls, their inherently
distributed nature often provides a natural view of a distributed system, and they seem to
enable structures in a networked environment that fit more naturally with the real world.

It should also be noted that software agents, which bring together the two concepts
“process” and “object”, are interesting building blocks for flexible system architectures,
even if they are not always mobile. In fastationaryor permanently resident agents
are probably as important as mobile agents: They encapsulate autonomous activities in a
stronger way than classical objects, they communicate with other (mobile) agents via the

same protocols and interfaces, and together with mobile agents they provide a uniform
way to structure large distributed systems.

Since the dynamic creation of agents is a basic functionality of typical agent sys-
tems, agents are also an ideal mechanism to enable parallel processing. A typical example
would be a search agent that sends out child agents to visit multiple machines in parallel.
Of course, mechanisms to control the high degree of dynamism of such agent-enabled
parallel computations then become a necessity.

In order to make use of existing distributed system functionality, it would be desirable
to have interoperability mechanisms that connect agent platforms to middleware concepts
like CORBA or emerging Internet infrastructures like Jini. In fact, the OMG recently
proposed MASIF (Mobile Agent Systems Interoperability Facilities), a standard that deals
with interoperability issues between different agent systems and CORBA services [11].

The ubiquitous availability of agent environments is a necessity for any successful
usage of the mobile agent paradigm. The deployment of the mobile agent infrastructure,
however, should not impose much overhead (such as the installation of a whole CORBA
system). In our opinion, the only way to promote fast dissemination of mobile agent
platforms is the usage of a well established and widely used technology: the World Wide
Web.

However, in contrast to just using Web technology, a more interesting idea seems to be
the integration of mobile agents and the WWW by enabling WWW servers to host mobile
agents. WWW servers are ideal places for mobile agents, since most of the accessible data
and electronic commerce shops in the Internet reside on WWW servers. Furthermore,
almost every user has a WWW browser which can be used to communicate and control
mobile agents running on WWW servers, and which could even serve as a home base for
personal mobile agents. Our WASP project (see Section 5) builds upon this idea of using
agent technology in conjunction with the WWW — by extending (and not just using) the
WWW we aim at providing a ubiquitous mobile agent platform.

4 Infrastructure for Mobile Agents

In an agent-based computing scenario, hosts must provide a kind of a “docking station”
for mobile agents which acts as a local environmeragent platformSuch a platformis
responsible for launching, receiving, and providing residence to agents, and it has to pro-
vide the necessary services, resources, and runtime support. It may also act as a meeting
point for agents or even provide a trusted computing base (e.g., a hardware-based secure
execution environment). The main tasks of a local agent platform can be summarized as
follows:

— Mobility support Arriving agents have to be installed and registered, and the code
together with the state of agents that want to migrate to other hosts has to be packed
together and sent over the network.

— Resource managememigents have to express their resource requirements (e.g.,
memory, cpu share, communication bandwidth) and the agent platform has to check
authorizations, quotas, and also act as a firebreak against monopolization or excessive
use of resources.

— Execution supportAgents must have access to runtime libraries and services. The
agent platform should also support the creation of new agents.

— Communication supparAgents should be able to communicate with other locally
residing agents, but also with remote agents and with their owner or creator. For
that, the agent environment should support standard communication mechanisms and
protocols.

— Directory and information serviceAgents must be able to check the availability of
services and they should also be able to learn about the local presence of other agents.
They might also expect help in localizing remote agents.

— Security supportAn agent platform must ensure the privacy and integrity of agents
and its own infrastructure. For that, it needs means for encryption and decryption
of agent code, and it must provide authentication, authorization, and access control
mechanisms.

— Event delivery servicelhe information about pertinent events has to be conveyed to
agents which have expressed an interest.

— Support for fault toleranceCorrect and reliable execution of agents should be guaran-
teed even when partial failures (e.g., missing resources, unreachable migration goal)
occur.

Besides these mainly local tasks of an agent environment, there are tasks which require
cooperation among several distributed agent platforms and hence necessitate standard
protocols and interfaces. Examples of such generic global services are the localization
of agents, forwarding of messages, and brokering facilities. Management of whole agent
societies (e.g., finding lost agents or termination of agents that went astray) is also a global
(and non-trivial) task of an agent infrastructure.

Certain application classes may require that agent platforms provide further, more
specific services. An example of such services is support of application frameworks (e.g.,
for electronic cash). To support such frameworks, agent platforms should allow an easy
integration of application specific resources and services.

One additional feature of a mobile agent platform not directly associated with its
core functionality is the provision of agent programming functionality. Experienced agent
programmers but also casual users might want support to tailor the behavior of an agent
to their special needs or habits.

5 The WASP Mobile Agent Platform

To study the effects, benefits, and challenges of the mobile agent paradigm, and to ex-
periment with some novel features, we designed and implemented our own mobile agent
platform. The WASP platform (Web Agent-based Service Providing) provides most of
the services and tasks described in the previous section, in particular support for resource
management, mobility, agent execution, communication, and security. It is unique in the
way it achieves theses tasks by relying on established Java distributed computing con-
cepts and, more importantly, by integrating agent environments into WWW servers with
the help of server extension modules. As an additional benefit of relying on the well-
established WWW infrastructure, the WASP platform may easily be deployed in the In-
ternet. In contrast to other mobile agent projects that make use of the WWW (e.g., [10]),
we are not just using the HTTP protocol for agent transfer or control, but we integrate the
new technology into the WWW by offering a module that can be combined with existing
WWW severs, and by giving agents access to the local data of a host through a web-like
interface.

Our primary intention was not to realize a complete general purpose agent platform,
but to develop the platform, application scenarios, and concrete applications (starting with
some modest prototypes) in parallel. Using this evolutionary approach we want to gain
experience and learn about essential features of an agent environment. In contrast to other
projects[1, 9, 12] which aim at providing a general mobile agent environment, we decided
to develop a platform tailored to an application domain which in our opinion should of-
fer the best chances for a wide range of mobile agent enhanced applications: electronic
commerce on the WWW.

With respect to electronic commerce as our primary application domain, and in order
to promote a seamless WWW integration, we emphasized the following points in the
WASP project:

— Provision of identical access mechanisms to local WWW resources for users (e.g.,
via a WWW browser) and agents that act on behalf of a user.

— Support of payment mechanisms that allow electronic commerce transactions be-
tween agents as well as between an agent and a WWW based service.

— Easy interoperability of agent-based applications with existing services and legacy
applications.

— Simple communication means for interactions between agents on the one hand and
between users and agents on the other hand.

— Tools to support agent application developers (e.g., creation of new agents from pat-
terns of similar agents, support of an adequate programming style).

5.1 WWW Integration

Serious applications based on mobile agents need ubiquitous availability of an agent en-
vironment. We think that the WWW is ideal in that respect since it can serve as a world
wide platform for distributed, mobile agent-based applications. Therefore, we gave our
platform the ability to get easily integrated into existing WWW servers. This is supported
by using standard server extension interfaces (CGI and servlets) and by using the classical
HTTP protocol for agent transfer.

Figure 1 shows the overall architecture of the WASP mobile agent platform: we de-
veloped a WWW server together with an agent-specific part called Server Agent Envi-
ronment (SAE). We used Java as the implementation language since most WWW servers
support Java’s servlet interface (which we need to attach our SAE) and because of Java’s
ubiquitous availability — especially in Web browsers, which agents use to communicate
with the user. The WWW server redirects all agent related request (e.g., agent start, agent
migration) to its attached SAE (see [5] for further details). Agents may be started by an
HTTP request to a URL designating a particular agent type on some server. The actual
start of the agent is done by the server's SAE. After being loaded and initialized by the
SAE, the agent may send its Java-based GUI to the user’'s browser. The transfer of mi-
grating agents is realized with an HTTP post request to a SAE specific URL at the target
WWW server.

5.2 Communication Concepts

Communication is a necessity for mobile agents. A mobile agent platform should not re-
strain the availability of classical network communication schemes. Instead it should pro-
vide a set of standard mechanisms and an open internal architecture which allows an easy

User’s Web Browser Web Server

HTTP File
- - |

Agent
D Request Redirect SAE

Agent T~
Response

Fig. 1. The general architecture of the WASP platform

integration of new communication mechanisms. Therefore we designed our remote com-
munication infrastructure such that it is easily extensible by using a modular approach.
Our platform currently offers the following communication mechanisms to agents:

— Message-based communication, where agents can send messages to any other agent,
whether the agent is local or resides in another SAE. The message can be sent asyn-
chronously or synchronously.

— Stream-based communication, where agents can exchange Java streams. The streams
are automatically reconnected when an agent migrates.

— Remote object communication, where agents can make use of CORBA, RMI (Remote
Method Invocation), or other communication architectures that offer remote objects
(e.g., DCOM). Agents can export such objects or can connect to remote objects that
are exported by standard applications.

— Local object communication, where agents can export and import references to Java
objects which are accessible at the local SAE.

5.3 Agent Localization

When realizing an agent platform, one would ideally like to import existing functionality
from traditional middleware platforms. Unfortunately, this is not always possible, as the
example of name services shows. A name service is basically used to find the location of
an object. Unfortunately, a traditional name service such as DNS, NIS, or WINS is not
designed to cope with mobile objects which move very dynamically. Any sensible name
service for mobile agents has to use efficient mechanisms to keep track of the agents to
reliably return the current location of an agent. Such a service could use, for example,
mechanisms similar to those in mobile telecommunication systems as for example GSM.

Our platform does currently not include an agent name service to locate the agents,
but uses URL-style naming conventions to name (and locate) agents and objects exported
by agents. Since our agents move from WWW server to WWW server only, this is the
most natural way for names in our system. We make use of the naming mechanism of the
underlying system to locate a host offering a mobile agent enhanced WWW server. To
find and communicate with a specific agent, the agent programmer currently has to make
the agent to export a proxy object which is left behind on the original server and to which
the agent has to connect regularly when underway in order to drop its new host address.
This is not an ideal solution, of course, and should be replaced by a better mechanism in
the future.

6 Agent Programming Support

As mentioned earlier, support for agent construction should be provided by the agent en-
vironment. Because of that, one part of the WASP project deals with support for agent

programmers. On the one hand these might be agent users who want to program sim-
ple agents without requiring in-depth knowledge about agent programming and the agent
platform. On the other hand service providers should be supported by a tool that enables
the realization of more complex service agents. Language aspects and simplicity of mi-

gration at the language level are of course also an issue concerning usability.

6.1 Agent Construction Tool

To support programmers, we developed a tool that allows the graphical construction of
agents from so-called agent templates. Basically, the tool is designed as a management
tool for code templates and code fragments, and offers two kinds of functionality: high
level construction and low level construction.

In high level construction mode, one can graphically insert so-called agent compo-
nents into agent templates. Agent templates define and implement an agent’s basic func-
tionality. They require the presence of some particular subfunctionality, as for example
a database query component, a payment component, a data carrier component, or a mi-
gration component. The agent programmer can then fill in the code for these components
from a list of components that provide the required functionality but differ in their imple-
mentation.

We also considered to incorporate Java’s component architecture Java Beans into our
agent construction method. We found, however, that the design patterns, and in particular
the asynchronous, event-based communication mechanism that is used by Java Beans, is
not well suited for agent components. The reason is that from the viewpoint of an agent
programmer the agent components should interact through method invocation, passing
parameters over a known interface. Java Beans, however, do not rely on interface knowl-
edge. Instead, they communicate over events in an anonymous way. Of course, one could
simulate method invocation and parameter passing using the event model, but this is rather
involved.

6.2 Transparent Migration

Migration is a key concept of mobile agents, which from the programmer’s point of view
comes in two different programming styles that reflect different capabilities of the under-
lying system:

— non-transparent migratiomvhich assumes that after migration an agent is restarted
from the beginning or at a predefined code entry point, and

— transparent migratiorwhich assumes that an agent execution continues on the new
target host directly after the instruction that initiated migration.

Transparent migration requires automatic capturing of the entire execution state of an
agent, but poses much less burden on the agent programmer: there is no need to explic-
itly code the agent’'s suspend and restart procedures (which specify where to continue
execution after migration and which variables have to be saved).

Unfortunately, Java does only support non-transparent migration. Because we con-
sider transparent migration to be more convenient for the agent programmer, we devel-
oped a preprocessor which automatically converts Java code written in transparent migra-
tion programming style (i.e., including a “go totarget>" operation) into basic Java. To
capture the necessary state information (i.e., the method call stack, the relevant variables,
and the current value of the program counter), the preprocessor inserts code that saves
(and later restores) this information. In this way we achieve, with modest overhead, trans-
parent migration on the language level, without modifying the Java virtual machine ([7]
describes the mechanism in detail).

7 WASP — Status and Current Work

Main parts and the basic functionality of the WASP platform have been implemented.
Current work in the WASP project concentrates on prototype applications, support for
security and electronic commerce services, and some general enhancements of the agent
platform.

7.1 Prototype Applications
We have already realized several small applications with the WASP platform:

— A WWW newspapeaas a simple electronic commerce application (see Figure 2). A
user starts a newspaper agent and personalizes it. This user agent then creates one or
more search agents that search the WWW for information corresponding to the profile
of the user. This is done by migrating to information servers, communicating with the
local information agent, and ordering the desired information. The local information
agent then sends a data carrier agent to the user’s machine. The data carrier agent has
full control over the information it carries, and releases (i.e., decrypts) it under certain
conditions only (e.g., when it is paid for).

— A login traceapplication, which traces user logins across a cluster of machines. A so-
called walker agent is created at some machine and searches the system log to learn
from which machines a specific user logged on to the current machine. The walker
agent builds the transitive closure by recurrently migrating to machines from which
remote logins originate. The collected login graph information is eventually carried
back to the system administrator.

— An application managemerstcenario. We are currently developing an agent-based
system to manage a whole cluster of WASP-servers and their SAEs. This system
is used to gain deeper insight in how mobile agents fit into traditional management
tasks.

7.2 Security and the Java Card

Electronic commerce applications impose strong requirements on mobile agent security:
since commerce agents act on behalf of users and may carry electronic money, agents have
to be protected from malicious attacks, and users have to be securely identified before they
can authorize agents to act on their behalf.

Besides the basic security mechanisms to protect a host from malicious agents [6],
we are currently experimenting with the integration of the Java Card (a smartcard that

Migration

\3
\

Information Server

+ InfoAgent
4 5
' InfoAgent s (DataAgent
- N s /
(DataAgent '
N - g /)‘-6 -

= — - — _ _Migration —

InfoAgent

Fig. 2. WWW newspaper scenario

contains a Java bytecode interpreter) into our system. In a first step the Java Card is used
to authorize mobile agents to act on behalf of the user starting the agent. Here the Java
Card simply identifies the user who signs the rights he or she grants to the agent.

In a second step we want to integrate the Java Card in a more appropriate manner:
Since the card is able to run Java code, we plan to use it as a trusted computing base
[15] for mobile agents. For that, the Java Card is attached to the host running our SAE.
All such cards own a private key. Then an agent can carry code which is encrypted with
the public key of a smartcard. Only the card itself can decrypt and execute this code. An
encrypted agent moves its code (or parts of its code) from the SAE to the Java Card and
executes it while running in this highly secure environment.

7.3 Electronic Commerce Framework

As mentioned earlier, we think that electronic commerce is one of the major application
domains for mobile agents. Sun is currently working on the development of an electronic
commerce framework based on Java (JECF), which offers an open payment platform for
Web commerce. We are currently integrating JECF into the WASP system. During this
integration we will examine what kind of payment mechanisms are reasonable for mobile
agents, and what implications the dynamic generation of agents imposes on electronic
commerce scenarios.

8 Experiences

Realizing a mobile agent infrastructure and implementing prototype applications on top
of it is a major task: Support of mobility and implementation of security mechanisms
for mobile code are among the main challenges, and even when building on established
Internet technology (such as JavaWwWW) and when relying on functionality from
existing middleware platforms, much remains to be done.

One example is Java’s built-in possibility to save and restore an object’s state (i.e.,
object serialization and deserialization). As we have seen, this does not capture the exe-
cution state (i.e., the run time stack and the program counter). Also, it is unclear what the
canonical environment of a mobile agent realized by a Java object should be: Is the class
code of dynamically instantiated objects of an agent to be loaded from the local platform
or does it have to be fetched remotely from the original server that created the agent (as it
is done in our system)?

Besides such conceptual questions there are also numerous technical problems. For
example, the Java virtual machine currently does not allow to unload class code (only
object instances can be garbage collected) after all objects of the class are destroyed.
Because of this, the code of all agents that once run in a virtual machine wastes memory.
These and many other problems have to be solved when realizing a usable mobile agent
environment.

Another important point are support services. Some services such as directory ser-
vices or communication services are mandatory, others such as message forwarding or
agent control would greatly simplify application development, but could be left out in a
first step. Unfortunately, object mobility adds a new flavor also to those issues for which
solutions exist in traditional middleware systems. This often renders existing solutions
inappropriate (as we explained for the name service or Java’s component model) and ne-
cessitates the implementation of services adapted to the mobile agent paradigm. This is
unfortunate since it increases the size and complexity of agent platforms and thus hampers
their widespread deployment.

We do not yet have much experience with the realization of mobile agent-based ap-
plications. We found it rather easy to program sets of communicating and cooperating
agents, but design rules are still missing — often the best way to structure an application
and to decompose the functionality into several agents is not clear.

9 Conclusions

The WASP project started in 1996 in order to explore the use of mobile agents in electronic
commerce scenarios. In the beginning we were somewhat skeptical about the general
applicability of this paradigm. Although we have learned that the realization of a general
and widely deployable agent platform is non-trivial, we are now convinced that mobile
agent technology, when appropriately combined with traditional middleware mechanisms,
is ideally suited for large Internet-based applications. Some issues, such as security, fault
tolerance, and interoperability remain to be solved in a satisfactory way, however. We
believe that integration into the WWW infrastructure, as it is done in the WASP project,

is almost mandatory for successful deployment and use of mobile agent technology.

References

1. Baumann J., Hohl F., Rothermel K., Stral3er Mqgle - Concepts of a Mobile Agent System
WWW Journal, Special Issue on Applications and Techniques of Web Agents 1 (3), 123-137,
1998

2. Berbers Y., De Decker B., Joosen Mhfrastructure for Mobile AgentsProc. 7th ACM
SIGOPS European Workshop, 1996, pp 173-180

10.

11.

12.

13.
14.

15.

. Farmer W.M., Guttmann J.D., Swarup &ecurity for Mobile Agents: Issues and Require-

ments Proc. NISSC96, 1996

. Fugetta A., Picco G.P., Vigna QJnderstanding Code MobilityEEE Trans. Softw. Eng. 24(5),

342-361, 1998

. Rinfrocken S.How to Integrate Mobile Agents into Web ServePsoc. WETICE'97 Work-

shop on Collaborative Agents in Distributed Web Applications, Boston, MA, June 18-20, 1997,
pp 94-99

. Rinfrocken S./ntegrating Java-based Mobile Agents into Web Servers under Security Con-

cerns Proc. 31st Hawaii International Conference on System Sciences (HICSS 31), Kona,
Hawaii, January 6-9, 1998, pp 34-43

. Rinfrocken S.Migration of Java-based Mobile Agents — Capturing and Reestablishing the

State of Java Programs Rothermel K., Hohl F. (eds), Mobile Agents (Proc. 2nd Int. Work-
shop), Springer-Verlag, LNCS 1477, 1998, pp 26-37

. Gray R.S.Agent Tcl: A Flexible and Secure Mobile-Agent SystdPmoc. 4th Annual Tcl/Tk

Workshop, Monterey, CA, 1996, pp 9-23

. Lange D., Chang D.TIBM Aglets Workbench — Programming Mobile Agents in Jawéite

paper, IBM Corporation, Japan, August 1996

Lingnau A., Drobnik O., Binel P.,An HTTP-based Infrastructure for Mobile Agentd§f WW
Journal 1, pp 461-471, 4th Int. WWW Conference, MA, Dec 1995

MASIF: http://www.camb.opengroup.org/RI/MAF/ ;
http://www.osf.orgi-dejan/papers/ma2.fr.ps.gz

Peine H., Stolpmann Trhe Architecture of the Ara Platform for Mobile Agenitis Rothermel

K., Popescu-Zeletin R. (eds), Mobile Agents (Proc. 1st Int. Workshop), Springer-Verlag, LNCS
1219, 1997, pp 50-61

Voyager: http://www.objectspace.com/voyager/

Wong D., Paciorek N., Walsh Toncordia: An Infrastructure for Collaborating Mobile Agents

in Rothermel K., Popescu-Zeletin R. (eds), Mobile Agents (Proc. 1st Int. Workshop), Springer-
Verlag, LNCS 1219, 1997, pp 86-97

Yee B.,A Sanctuary for Mobile Agentdroc. DARPA Workshop on Foundations for Secure
Mobile Code, Monterey, CA, 1997

