Diss. ETH Nr. 17397

A State-Based Programming Model
for Wireless Sensor Networks

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH
(ETH ZURICH)

for the degree of
Doctor of Sciences

presented by
OLIVER KASTEN
Dipl.-Informatiker, TU Darmstadt
born July 10, 1969
citizen of Germany

accepted on the recommendation of
Prof. Dr. F. Mattern, examiner
Prof. Dr. L. Thiele, co-examiner

2007

Abstract

Sensor nodes are small, inexpensive, and programmable devices that combine
an autonomous power supply with computing, sensing, and wireless commu-
nication capabilities. Networks of sensor nodes can be deployed in the envi-
ronment at a large scale to unobtrusively monitor phenomena of the real world.
Wireless sensor networks are an emerging field of research with many potential
applications. So far, however, only few applications have actually been real-
ized. This is in part due to the lack of appropriate programming support, which
makes the development of sensor-network applications tedious and error prone.
This dissertation contributes a novel programming model and development en-
vironment for the efficient, modular, and well structured programming of wire-
less sensor nodes.

Today there are two principal programming models used for sensor nodes,
the multi-threaded model and the event-driven model. The multi-threaded model
requires system support that is often considered too heavy for sensor nodes that
operate at the low end of the resource spectrum. To cope with this issue, the
event-driven model has been proposed. It requires very little runtime support
by the system software and can thus be implemented even on the most con-
strained sensor nodes.

The simple and lightweight approach to system software, however, tends to
make event-driven applications in turn quite memory inefficient: Since the event-
driven model limits the use of local variables, programmers need to store tempo-
rary data in global variables. The memory of global variables, however, cannot
easily and automatically be reused, hence the memory inefficiency. To counter
this effect, programmers can resort to manual memory management, though
this significantly affects program correctness and code modularity. In addition
to its drawback of memory inefficiency, event-driven programming requires de-
velopers to manually keep track of the current program-state, which makes code
modularization and debugging difficult, and leads to unstructured code.

The key contribution of this dissertation is to show that the inadequacies of
the event-driven model can be remedied without impairing its positive aspects,
particularly its memory-efficient realization in sensor-node system software.

Concretely, we present the Object State Model (OSM), a programming model
that extends the event-driven programming paradigm with a notion of hierar-
chical and concurrent program states. Our thesis is that such a state-based model
allows to specify well-structured, modular, and memory-efficient programs, yet requires
as few runtime-resources as the event-driven model. To support this claim, we also
present a programming environment based on the OSM model (including a pro-
gramming language and compiler), as well as a sensor-node operating system
capable of executing OSM programs.

i

The main idea behind OSM is to explicitly model sensor-node programs as
state machines, where variables are associated with states and computational
operations are associated with state transitions. In OSM, states serve three pur-
poses. Firstly, states are used as scoping mechanism for variables. The scope and
lifetime of variables attached to a state is confined to that state and all of its sub-
states. The memory for storing a state’s variables is automatically reclaimed by
the runtime system as the program leaves the corresponding state. State vari-
ables can be thought of as the local variables of OSM. As such they represent
a great advancement over event-driven programming, where the majority of
variables effectively have global scope and lifetime. By modeling temporary
data with state variables, the use of OSM can significantly increase a program’s
memory efficiency.

Secondly, the explicit notion of program states allows to model the structure
and control flow of a program on a high abstraction level. Specifically, pro-
grams can be initially specified in terms of coarse modules (i.e., states), which
can be subsequently refined (with substates), leading to modular and readable
program code. The third purpose of states is to provide a context for computa-
tional operations. States clearly define which variables are visible, and at what
point in the control flow the program resides when an operation is executed.
In the event-driven model, in contrast, the program’s context has to be main-
tained manually, which typically constitutes a significant fraction of the code,
thus making the program hard to read and error prone.

The OSM programming language captures the three concepts described above
in order to foster memory efficient, modular, and well-structured programs. A
compiler for the proposed language transforms state-based OSM programs back
into an event-driven program notation, adding code for automatic memory-
management of state variables and code for automatic control-flow manage-
ment. The compiler-generated code is very lean and does not impose additional
requirements on the system software, such as dynamic memory management.
Rather, the transformed programs are directly executable on our event-driven
system software for resource-constrained sensor nodes. Our language, compiler,
and sensor-node system software form the basis of our thesis and constitute a

complete state-based programming environment for resource-constrained sen-
sor nodes based on OSM.

Kurzfassung

Drahtlose Sensorknoten sind kostengiinstige, programmierbare und vernetzte
Kleinstcomputer, die Sensorik, drahtlose Kommunikation sowie Energieversor-
gung in sich vereinen. Im grossen Massstab eingesetzt konnen drahtlose Netze
aus solchen Sensorknoten Phanomene der realen Welt unauffillig beobachten.
Drahtlose Sensornetze sind ein relativ neues Forschungsfeld mit vielen potenti-
ellen Anwendungen. Unter anderem auf Grund des Fehlens geeigneter Unter-
stiitzung bei der Programmierung von Sensorknoten sind von diesen Anwen-
dungen jedoch erst die wenigsten realisiert worden. Diese Dissertation liefert
ein neuartiges Programmiermodell mit dazugehoriger Entwicklungsumgebung
als Beitrag zur effizienten, modularen und wohlstrukturierten Programmierung
von Sensorknoten.

Heutzutage werden zur Programmierung von Drahtlosen Sensorknoten im
Wesentlichen zwei Modelle verwendet: das Multi-Threading Modell und das er-
eignisbasierte Modell. Das Multi-Threading Modell erfordert Systemunterstiit-
zung, die hdufig als zu schwergewichtig empfunden wird, insbesondere fiir
Sensorknoten die am unteren Ende des Ressourcenspektrums betrieben werden.
Um solchen Ressourcenbeschrankungen gerecht zu werden, wurde das ereignis-
basierte Programmiermodell vorgeschlagen. Dieses Modell erfordert sehr gerin-
ge Systemunterstiitzung und kann deshalb auch auf sehr beschrankten Sensoren
eingesetzt werden.

Wahrenddessen jedoch die Systemunterstiitzung fiir ereignisbasierte Pro-
gramme nur wenige Ressourcen erfordert, sind ereignisbasierte Programme
selbst sehr speicherineffizient. Das ereignisbasierte Modell verhindert namlich
die effiziente Nutzung von lokalen Variablen. Als Konsequenz daraus miissen
Programmierer tempordre Daten in globalen Variablen speichern, wodurch die
effiziente und automatische Wiederverwendung von Variablenspeicher verhin-
dert wird. Fiir temporédre Daten konnte zwar der Variablenspeicher auch ma-
nuell wiederverwendet werden. Das schwort jedoch Probleme mit der Modu-
laritdt und der Fehleranfalligkeit herauf. Zusatzlich zum Nachteil der Speiche-
rineffizienz erzwingt das ereignisbasierte Modell ein Programmierparadigma,
das Modularisierung und Fehlersuche signifikant erschwert und des Weiteren
zu unstrukturiertem Code fiihrt.

Der wesentliche Beitrag dieser Dissertation ist zu zeigen, dass die genannten
Unzuldnglichkeiten des ereignisbasierten Modells behoben werden kénnen, oh-
ne seine positiven Eigenschaften (also die speichereffiziente Implementierbar-
keit auf Sensorknoten) massgeblich zu beeintrachtigen.

Konkret stellen wir das Object State Model (OSM) vor, ein Programmiermo-
dell das das ereignisbasierte Modell um die Abstraktion von hierarchisch- und
nebenldufig-strukturierbaren Programmzustdnden erweitert. Wir vertreten die

iv

These, dass ein solches zustandsbasiertes Modell die Spezifikation von klar struk-
turierten, modularen und speichereffizienten Programmen erlaubt und dennoch nicht
mehr Ressourcen zu seiner Unterstiitzung auf Systemebene benotigt als das ereignis-
basierte Modell. Zur Abstiitzung unserer These prasentieren wir eine Entwick-
lungsumgebung basierend auf diesem zustandsbasierten Programmiermodell
(bestehend aus Programmiersprache und Compiler) sowie ein Betriebssystem
zur Ausfithrung von OSM Programmen.

Die wesentliche Idee hinter OSM ist es Sensorknoten-Programme explizit als
Zustandsmaschinen zu modellieren, wobei Variablen mit Zustianden assoziiert
werden und Berechnungen mit Zustandsiibergdngen. Zustdnde in OSM erfiil-
len dann drei Aufgaben. Zum einen dienen sie als Geltungsbereich fiir Varia-
blen. Der Geltungsbereich, und damit die Lebensdauer, jeder Variable ist an ge-
nau einen Zustand und dessen Unterzustidnde gebunden. Wenn das Programm
diesen Zustand verldsst, wird der Speicher aller mit dem Zustand assoziier-
ten Variablen freigegeben und kann wiederverwendet werden. Solche an Zu-
stinde gebundene Variablen konnen deshalb als lokale Variablen von OSM be-
trachtet werden. Sie stellen eine grosse Errungenschaft gegeniiber dem ereignis-
basierten Modell dar, in dem die Mehrzahl der Variablen einen globalen Gel-
tungsbereich haben und ihr Speicher deshalb nicht wiederverwertet werden
kann. Die Spezifikation von temporaren Daten mit Zustandsvariablen von OSM
kann die Speichereffizienz einer Anwendung signifikant steigern. Als Zweites
erlauben es explizite Zustdnde die Struktur und den Kontrollfluss eines Pro-
grammes auf hohem Abstraktionsniveau zu beschreiben. Insbesondere kénnen
Programme zuerst grob und mit wenigen Zustdnden beschrieben werden, die
im Weiteren durch Einfiigen von Unterzustdnden schrittweise verfeinert wer-
den. Dieses Vorgehen fiihrt zu einem modularem Programmaufbau und gut
lesbarem Programm-Code. Zuguterletzt definieren explizite Programmzustén-
de einen Kontext fiir Berechnungen. Zustdnde definieren klar an welcher Stelle
im Kontrollfluss sich ein Programm befindet, welche Variablen sichtbar sind,
welche Zustdnde bereits durchlaufen und welche Funktion bereits ausgefiihrt
wurden. Im ereignisbasierten Modell dagegen miissen Informationen zum Pro-
grammkontext manuell vom Programmierer verwaltet werden. Typischerwei-
se macht diese manuelle Zustandsverwaltung einen grossen Teil des gesamten
Programm-Codes aus, was sich in schlechter Lesbarkeit und hoher Fehleranfal-
ligkeit niederschlagt.

Durch die oben beschriebenen Konzepte erleichtert OSM die Beschreibung
von speichereffizienten, modularen, wohlstrukturierten und lesbaren Program-
men. Der Compiler fiir die vorgeschlagene Sprache {iiberfiihrt zustandsbasier-
te OSM-Programme zuriick in eine ereignisbasierte Reprasentation. Dabei wird
Code zur automatischen Speicherverwaltung von Variablen und zur Verwal-
tung des Kontrollflusses hinzugefiigt. Der vom Compiler erzeugte Code ist
leichtgewichtig und erfordert keine weitere Unterstiitzung auf Systemebene,
wie z.B. dynamisch Speicherverwaltung. Vielmehr sind die erzeugten Pro-
gramme direkt auf unserem ereignisbasiertem Betriebssystem fiir ressourcen-
beschrankte Sensorknoten ausfiithrbar. Die von uns entwickelte vollstindige
Programmierumgebung fiir Sensorknoten, bestehend aus Programmiersprache,
Compiler, und Betriebssystem, zeigt dies exemplarisch und bildet somit die
Grundlage fiir diese Dissertation.

Contents

1

Introduction 1
1.1 Background L. 1
1.2 Motivation and Problem Statement 2
1.3 ThesisStatement 3
1.4 Contributions 3
141 Modular and Well-Structured Design 4
142 Automated State Management 4
143 Memory-Efficient State Variables 4
144 Light-Weight Execution Environment 5
145 Evaluation 5
1.5 Thesis Organization 5
Wireless Sensor Networks 7
21 WSN Applications oo 8
2.1.1 Environmental Observation 8
2.1.2 Wildlife and Farm-Animal Monitoring 9
2.1.3 Intelligent Environments 10
214 PFacility Management 10
215 Logistics and Asset Tracking 11
216 Military L 11
2.2 WSN Characteristics e 12
221 Deployment and Environmental Integration 12
222 Size, Weight,andCost 12
223 Limited Energy Budget 12
224 Lifetime 13
225 Limited Computing Resources 13
226 Collaboration 14
2.2.7 Back-End Connectivity 14
2.2.8 Mobility and Network Dynamics 15
229 Bursty Traffic 15
2.2.10 Dynamic Role Assignment 15
2211 Node Heterogeneity 16
23 SensorNodes 16
231 DeviceClasses, 16
232 Sensor-Node Components 19
2.3.3 Selected Sensor-Node Hardware Platforms 23
24 EmbeddedSystems oo L. 27
241 Characteristics of Embedded Systems 27

242 Diversity of Embedded Systems 28

Contents

243 WirelessSensorNodes
25 Summaryand Outlook

Programming and Runtime Environments
3.1 SystemRequirements
3.1.1 Resource Efficiency
312 Reliabilityo o0 L
313 Reactivity oo
3.2 Programming Models
321 Overviewo
322 TheControlLoop
3.2.3 Event-driven Programming
3.24 Multi-Threaded Programming
3.3 Memory Management
33.1 Resourcelssues
3.3.2 Reliability Concerns
3.3.3 Dynamic Memory Management for Sensor Nodes
34 ProcessModels
341 Overview oo
3.4.2 Combinations of Processes Models
3.43 Over-the-Air Reprogramming
344 ProcessConcurrency
3.4.5 Analysis of Process Models
3.5 Overview and Examples of State-of-the-Art Operating Systems .
3.5.1 The BTnode System Software
352 TinyOSandNesC.
3.6 Summary

Event-driven Programming in Practice

41 Limitations of Event-Driven Programming
411 Manual Stack Management
412 Manual State Management
413 Summary

42 The Anatomy of Sensor-Node Programs
421 CharacteristicsofaPhase
422 Sequential Phase Structures
423 Concurrencyttt
424 Sequential vs. Phase-Based Programming

43 Extending the Event Model: a State-Based Approach
43.1 Automatic State Management.
43.2 Automatic Stack Management

The Object-State Model

5.1 Basic Statechart Concepts

5.2 Flat OSM State Machines
52.1 StateVariables.
522 Transitions oL
523 Actions.

5.3 Progress of Time: Machine Steps

Contents vii

53.1 Non-determinism 87

5.3.2 Processing State Changes 89

53.3 NoReal-Time Semantics 89

5.4 Parallel Composition 90
541 ConcurrentEvents 90

5.4.2 Progressin Parallel Machines 91

5.5 Hierarchical Composition 91
55.1 SuperstateEntry 0L, 92

5.5.2 Initial State Selection0 .. 93

5.5.3 Substate Preemption 94

5.5.4 Progressin State Hierarchies 95

5.6 State Variables 0 o oL 96
57 Summary 97
6 Implementation 99
6.1 OSM Specification Language 100
6.1.1 States and Flat State Machines 100

6.1.2 Grouping and Hierarchy 103

6.1.3 Parallel Composition 105

6.14 Modularity and Code Reuse through Machine Incarnation 105

6.2 OSM Language Mapping 107
6.2.1 VariableMapping L 0L, 109

6.2.2 Control Structures 109

6.2.3 Mapping OSM Control-Flow to Esterel 112

6.3 OSMCompiler 115
6.4 OSM System Software 117
6.5 Summary 118
7 State-based Programming in Practice 119
7.1 AnlIntuitive Motivation 119
7.2 Modular and Well-Structured Program Design 121
721 EnviroTrackCaseStudy 121

7.2.2 Manual versus Automated State Management 123

7.2.3 Resource Initializationin Context 126

724 Avoiding Accidental Concurrency 131

7.3 Memory-Efficient Programs 133
731 Example 134

7.3.2 General Applicability and Efficiency 136

74 Summary 138
8 Related Work 139
8.1 Programming Embedded Systems 139
8.1.1 Conventional Programming Methods 139

8.1.2 Domain-specific Programming Approaches 140

8.1.3 Embedded-Systems Programming and Sensor Nodes . . . 143

8.2 State-Based Models of Computation 143
821 Statecharts 143

82.2 UML Statecharts 144

8.2.3 Finite State Machines with Datapath (FSMD) 144

viii Contents
8.24 Program State Machines (PSM), SpecCharts. 144

8.2.5 Communicating FSMs: CRSMand CFSM 145

826 Esterel o o 145

8.2.7 Functions driven by state machines (FunState) 146

8.3 Sensor-Node Programming Frameworks 146
831 TnyOS 146

832 Contiki L 148

83.3 Protothreads. 148

834 SenOS 149

9 Conclusions and Future Work 151
91 Conclusions 151
9.2 Contributions o 151
9.21 Problem Analysis: Shortcomings of Events 152

9.2.2 Solution Approach: State-based Programming 152

9.2.3 Prototypical Implementation 153

924 Evaluation 153

9.3 Limitations and Future Work 153
9.3.1 Language and Program Representation 154

9.3.2 Real-Time Aspectsof OSM 155

933 Memorylssues L, 155

94 ConcludingRemarks 156

A OSM Code Generation 157
Al OSMExample 157
A.2 Variable Mapping (Cincludefile) 159
A.3 Control Flow Mapping-Stage One (Esterel) 161
A4 Control Flow Mapping-Stage Two (C) 164
A.41 Output of the Esterel Compiler 164

A.42 Esterel-Compiler Output Optimized for Memory Efficiency 169

A5 Compilation L oo 173
A.5.1 Example CompilationRun 173

Ab52 Makefile o 173

B Implementations of the EnviroTrack Group Management 175
B.1 NesC Implementation 175
B.2 OSMImplementation. 180
Bibliography 181

1 Introduction

1.1 Background

Over the past decades, advances in sensor technology, miniaturization and low-
cost, low-power chip design have led to the development of wireless sensor
nodes: small, inexpensive, and programmable devices that combine comput-
ing, sensing, short-range wireless communication, and an autonomous power
supply. This development has inspired the vision of wireless sensor networks—
wireless networks of sensor nodes that can be deployed in the environment at
the large scale to unobtrusively monitor phenomena of the real world. There
is a wide range of applications envisioned for such wireless sensor networks,
including precision agriculture, monitoring of fragile goods and building struc-
tures, monitoring the habitat of endangered species and the animals themselves,
emergency response, environmental and micro-climate monitoring, logistics,
and military surveillance.

The most popular programming model for developing sensor-network ap-
plications today is the event-driven model. Several programming frameworks
based on that model exist, for example, the BTnode system software [21], Con-
tiki [37], the TinyOS system software [59] and nesC programming language [45],
SOS [52] and Maté [79]. The event-driven model is based on two main abstrac-
tions: events and actions. Events in the context of event-driven programming
can be considered abstractions of real-world events. Events are typically typed
to distinguish different event classes and may contain parameters, for example,
to carry associated event data. At runtime, the occurrence of an event can trigger
the execution of a computational action. Typically, there is a one-to-one associ-
ation between event types and actions. Then, an event-driven program consists
of as many actions as there are event types. Actions are typically implemented
as functions of a sequential programming language. They always run to com-
pletion without being interrupted by other actions. In order not to monopolize
the CPU for any significant time, actions need to be non-blocking. Therefore, at
any point in the control flow where an operation needs to wait for some event
to occur (e.g., a reply message or acknowledgment), the operation must be split
into two parts: a non-blocking operation request and an asynchronous comple-
tion event. The completion event then triggers another action, which continues
the operation.

One of the main strengths of the event-driven model is that its support in the
underlying system software incurs very little memory and runtime overhead.
Also, the event-driven model is simple, yet intuitively captures the reactive na-
ture of sensor-network applications. In contrast, the multi-threaded program-
ming model, another programming approach that has been applied to wireless
sensor networks, is typically considered to incur too much memory and compu-
tational overhead (mainly because of per-thread stacks and context switches).

2 Chapter 1. Introduction

This makes the multi-threaded model generally less suitable for programming
sensor nodes, which are typically limited in resources, and unsuitable for sensor
nodes operating at the low end of the resource spectrum (cf. [37, 59]). As a con-
sequence, in the context of sensor networks, event-based systems are very pop-
ular with several programming frameworks in existence. These frameworks,
particularly TinyOS and nesC, are supported by a large user base. Hence, many
sensor-node programmers find it natural to structure their programs according
to this paradigm.

1.2 Motivation and Problem Statement

While event-driven programming is both simple and efficient, we have found
that it suffers from a very important limitation: it lacks an abstraction of state.
Very often, the behavior of a sensor-node program not only depends on a par-
ticular event—as the event model suggests—but also on the event history and
on computational results of previous actions; in other words: program state.
We use an example to illustrate this point. In the EnviroTrack [6] middleware
for tracking mobile objects with wireless sensor networks, nodes collaboratively
track a mobile target by forming a group of spatially co-located nodes around
the target. If a node initially detects a target, its reaction to this target-detection
event depends on previous events: If the node has previously received a notifi-
cation (i.e., an event) that a nearby node is already a member in a tracking group,
then the node joins that group. If the node has not received such a notification,
it forms a new group. In this example, the behavior of a node in reaction to the
target-detection event (i.e., creating a new tracking group or joining an existing
one) depends on both the detection event itself and the node’s current state (i.e.,
whether a group has already been formed in the vicinity of the node or not).
Since there is no dedicated abstraction to model program state in the event-
driven model, programmers typically save the program state in variables. How-
ever, keeping state in variables has two important implications that obscure the
structure of program code, severely hamper its modularity, and lead to issues
with resource efficiency and correctness. Firstly, to share state across multiple
actions, the state-keeping variables must persist over the duration of all those
actions. Automatic (i.e., local) variables of procedural programming languages
do not meet this requirement, since variable lifetime is bound to functions. Thus
the local variable stack is unrolled after the execution of the function that im-
plements an action. Instead, programmers have the choice to use either global
variables or to manually store a state structure on the heap. The latter ap-
proach is often inapplicable as it requires dynamic memory management, which
is rarely found in memory-constrained embedded systems because it is consid-
ered error-prone and because it incurs significant memory overhead. The former
and by far more typical approach, however, also incurs significant memory over-
head. Since global variables also have “global” lifetime, this approach perma-
nently locks up memory—even if the state is used only temporarily, for example,
during network initialization. As a result, manual state-keeping makes event-
driven programs memory inefficient since they cannot easily reuse memory for
temporary data. This is ironic, since one of the main reasons for introducing the

1.3. Thesis Statement 3

event-driven model has been that its support in the underlying system software
can be implementred resource efficiently.

Secondly, the association of events to actions is static—there is no explicit sup-
port for adopting this association depending on the program state. As a conse-
quence, in actions, programmers must manually dispatch the control flow to the
appropriate function based on the current state. The additional code for state
management and state-based function demultiplexing can obscure the logical
structure of the application and is an additional source of error. Also, it ham-
pers modularity since even minor changes in the state space of a program may
require modifying multiple actions and may thus affect much of the program’s
code base.

While the identified issues are not particularly troublesome in relatively small
programs, such as application prototypes and test cases, they pose significant
problems in larger programs. But as the field of wireless sensor networks ma-
tures, its applications are getting more complex—projects grow and so does the
code base and the number of programmers involved. Leaving these issues un-
solved may severely hamper the field of wireless sensor networks to mature.

1.3 Thesis Statement

Because of the limitations outlined in the previous section, we argue that the
simple event/action-abstraction of the event-driven programming model is in-
adequate for large or complex sensor network programs. The natural question
then is, can the inadequacies of the event-driven programming model be re-
paired without impairing its positive aspects? In this dissertation we answer this
question affirmatively. Concretely, we present the Object State Model (OSM),
a programming model that extends the event-driven programming paradigm
with an explicit abstraction and notion of hierarchical and concurrent program
states. Our thesis is that such a state-based model allows to specify well-structured,
modular, and memory-efficient sensor-node programs, yet requires as little runtime-
resources as the event-driven model.

1.4 Contributions

The main contribution of this work then is to show

* that OSM provides adequate abstractions for the specification of well struc-
tured and highly modular programs,

* how OSM supports memory-efficient programming, and, finally,

¢ that OSM does not incur significant overhead in the underlying system
software and can thus indeed be implemented on resource-constrained
sensor nodes.

In this dissertation we present four elements to support our claim: (1) OSM,
an abstract, state-based programming model, which is a state-extension to the
conventional event-based programming model, (2) an implementation language

4 Chapter 1. Introduction

for sensor nodes that is based on the OSM model, (3) a compiler for the pro-
posed language that generates event-driven program code, and (4) an execution
environment for the generated code on BTNODE sensor-node prototypes. The
following paragraphs present the key concepts of our solution, namely using an
explicit notion of state for structuring programs, automated state management,
efficient memory management based on the use of state as a lifetime qualifier for
variables, and the automatic transformation of OSM programs into conventional
event-driven programs.

1.4.1 Modular and Well-Structured Design

In the state-based model of OSM, the main structuring element of program code
is an explicit notion of program state. For every explicit program state the pro-
grammer can specify any number of actions together with their trigger condi-
tions (over events). At runtime, actions are only invoked when their associated
program state is assumed and when their trigger condition evaluates to true.
As a consequence, the association of events to actions in OSM depends on the
current state (unlike in the event-driven model), that is, invocations of actions
become a function of both the event and the current program machine state. This
concept greatly enhances modularity, since every state and its associated actions
can be specified separately, independent of other states and their actions. Thus,
modifying the state space of a program requires only local changes to the code
base, namely to the implementations of the affected states. In contrast, in the
event-driven model, such modifications typically affect several actions through-
out much of the entire code.

1.4.2 Automated State Management

Generally, OSM moves program-state management to a higher abstraction layer
and makes it an explicit part of the programming model. Introducing state into
the programming model allows to largely automate the management of state
and state transitions—tasks which had to be performed manually before. The
elimination of manually written code for the management of state-keeping vari-
ables and state-based function demultiplexing allows programmers to focus on
the logical structure of the application and removes a typical source of error.

1.4.3 Memory-Efficient State Variables

Even in state-based models, variables can be a convenient means for keeping
program state, for example, to model a very large state space that would be im-
practical to specify explicitly or to store state that does not directly affect the
node’s behavior. Instead of having to revert to wasteful global variables (as in
the event-driven model), OSM supports variables that can be attributed to an
explicitly modeled state. This state can then be utilized to provide a novel scope
and lifetime qualifier for these variables, which we call state variables. State vari-
ables exist and can share information—even over multiple action invocations—
when their associated state is assumed at runtime. During compilation, state
variables of mutually exclusive states are automatically mapped to overlapping

1.5. Thesis Organization 5

memory regions. The memory used to store state variables can be managed au-
tomatically by the compiler, very much like automatic variables in procedural
languages. However, this mapping is purely static and thus requires neither a
runtime stack nor dynamic memory management.

State variables can reduce or even eliminate the need to use global variables or
manually memory-managed variables for modeling temporary program state.
Since state variables provide automatic memory management, they are not only
more convenient to use but also more memory efficient and less error-prone.
Because of state variables OSM programs are generally more memory efficient
compared to event-driven programs.

1.4.4 Light-Weight Execution Environment

The state-based control structure of OSM programs can be automatically com-
piled into conventional event-driven programs. Generally, the automatic trans-
formation, which is implemented by the OSM compiler, works like manu-
ally coding state in event-driven systems. In the transformation, however,
the program-state space is automatically reduced and then converted into a
memory-efficient representation as variables of the event program. State-specific
actions of OSM are transformed into functions of a host language. Then, code
for dispatching the control flow to the generated functions is added to the ac-
tions of the event program. After the transformation into event-driven code,
OSM programs can run in the same efficient execution environments as conven-
tional event-driven systems. Thus, the state-based model does not incur more
overhead than the (very efficient) event-driven model and requires only mini-
mal operating system support.

1.4.5 Evaluation

We use the state-based OSM language to show that a first class abstraction of
state can indeed support well-structured and modular program specifications.
We also show that an explicit abstraction of state can support memory-efficient
programming. To do so, we present an implementation of state variables for
the OSM compiler. More concretely, we present an algorithm deployed by our
OSM compiler that automatically reclaims unused memory of state variables.
Finally, we show that code generated from OSM specifications can run in the
very light-weight event-driven execution environment on BTnodes.

1.5 Thesis Organization

The remainder of this dissertation is structured as follows. In Chapter 2 we dis-
cuss general aspects of wireless sensor networks. First we characterize wireless
sensor networks and present envisioned as well as existing applications. Then
we discuss state-of-the-art sensor-node hardware, ranging from early research
prototypes to commercialized devices.

In Chapter 3 we present a general background on programming individual
sensor nodes. We start by discussing some general requirements of sensor-node

6 Chapter 1. Introduction

programming. Then we present the three dominant programming models in
use today. We will particularly focus on the runtime support necessitated by
those models and evaluate their suitability with respect to the requirements es-
tablished previously. Finally, we present selected state-of-the-art sensor-node
programming frameworks. Chapter 4 is devoted to the detailed examination of
the event-driven programming model. Based on our experience with the event-
driven BTnode system software and other programming frameworks described
in the current literature, we analyze the model’s limitations and drawbacks. We
lay down why the convential event-driven model is not well-suited to describe
sensor-node applications and we stress how a first-class abstraction of program
states could indeed solve some of the most pressing issues.

The next three chapters are devoted to our state-based programming frame-
work OSM. Chapter 5 presents the OSM model in detail. In particular, the se-
mantics of the model are discussed. The OSM language and implementation
aspects of the OSM compiler are examined in Chapter 6. We present the OSM
specification language and its mapping to the event-driven execution environ-
ment on BTnodes. The execution environment of OSM programs on BTnodes
is a slightly modified version of our event-driven system software presented in
Sect. 3.5.1. In Chapter 7 we evaluate the practical value of OSM. First we discuss
how OSM meets the requirements for programming individual sensor nodes as
set out in previous chapters. Then we discuss how OSM alleviates the identified
limitations of the event-based model. Finally, we show how OSM can be used
to implement concrete applications from the sensor network literature.

In Chapter 8 we present related work. Chapter 9 concludes this dissertation,
discusses the limitations of our work, and ends with directions for future work.

2 Wireless Sensor Networks

The goal of this dissertation is to develop a software-development framework
appropriate for programming wireless sensor network (WSN) applications. To
achieve this goal, we first need to understand what makes one programming
technique appropriate and another one inadequate. Software, as well as the
techniques for programming this software, are always shaped by its applica-
tions and by the computing hardware. So in order to develop an understanding
for the characteristics, requirements, and constraints of WSNs, we will present
and analyze a range of current and envisioned WSN applications and their com-
putational platforms, the sensor nodes.

WSNs have a wide range of applications. The exact characteristics of a partic-
ular sensor network depend largely on its application. However, some charac-
teristics are shared by most, if not all WSNs. The most important characteristics
are: (1) WSNs monitor physical phenomena by sampling sensors of individ-
ual nodes. (2) They are deployed close to the phenomenon and (3), once de-
ployed, operate without human intervention. And finally (4), the individual
sensor nodes communicate wirelessly. These general characteristics together
with the application-specific characteristics translate more or less directly into
technical requirements of the employed hardware and software and thus shape
(or at least should shape) their design. Indeed, the technical requirements of
many of the more visionary WSN applications go far beyond what is technically
teasible today. To advance the field of WSNs, innovative hardware and software
solutions need to be found.

Regarding WSN software, classical application architectures and algorithm
designs need to be adapted to the requirements of WSNs. However, this is not
enough. Today’s programming models and operating systems also do not match
WSN requirements and are thus equally ill-suited to support such new software
designs. Programming models must be revised in order to facilitate the design
of WSN applications with expressive abstractions. And operating systems need
to be adapted to support these new programming models on innovative sensor-
node hardware designs.

Before looking at the software development tools and process in the next chap-
ter, we present the characteristics of WSN applications and their computational
platforms in this chapter. We start by presenting a number of application scenar-
ios in Sect. 2.1. From these applications we derive common application charac-
teristics in Sect. 2.2. Some of the software requirements can be derived directly
from those characteristics, while others are imposed by the characteristics of sen-
sor nodes. Therefore we present classes of sensor-node designs, their hardware
components, and selected sensor-node hardware platforms in Sect. 2.3. We ex-
plain how these hardware designs try to meet the WSN requirements and which
constraints they impose on the software themselves. Before summarizing this
chapter in Sect. 2.5 we briefly relate wireless sensor nodes to embedded systems

8 Chapter 2. Wireless Sensor Networks

in Sect. 2.4.

2.1 WSN Applications

WSN share a few common characteristics, which make them recognizable as
such. However, sensor networks have such a broad range of existing and po-
tential applications, that these few common characteristics are not sufficient to
describe the field comprehensively. In this section we present concrete WSN
applications to exemplify their diversity. Based on this presentation we derive
WSN characteristics in the next section. Similar surveys on the characteristics of
WSNis can be found in [70, 101].

2.1.1 Environmental Observation

One application domain of WSN is the observation of physical phenomena and
processes in a confined geographical region, which is covered by the WSN. Sev-
eral WSNs have already been deployed in this domain. For example, a WSN has
been used to monitor the behavior of rocks beneath a glacier in Norway [88]. The
goal of the deployment is to gain an understanding for the sub-glacier dynam-
ics and to estimate glacier motion. Sensor nodes are placed in drill holes in and
beneath the glacier. The holes are cut with a high-pressure hot water drill. The
sensor nodes are not recoverable; their width is constrained by the size of the
drill hole, which is 68 mm. Communication between the nodes in, and the base
station on top of the glacier follows a pre-determined schedule. To penetrate
the up to 100 meters of ice, the nodes boost the radio signal with an integrated
100 mW power amplifier. The network is expected to operate for at least one
year.

To monitor the impact of wind farms on the sedimentation process on the
ocean floor and its influence on tidal activity [87] a WSN is being used off the
coast of England. The sensor nodes are dropped from ships at selected positions
and are held in position by an anchor. Each of the submerged sensors is con-
nected to a floating buoy, which contains the radio transceiver and GPS receiver.
The nodes measure pressure, temperature, conductivity, current, and turbidity.

Another maritime WSN deployment called ARGO is used to observe the up-
per ocean [63]. ARGO provides a quantitative description of the changing state
of the upper ocean and the patterns of ocean climate variability over long time
periods, including heat and freshwater storage and transport. ARGO uses free-
drifting nodes that operate at depths up to 2000 m below sea-level but surface
every 10 days to communicate their measurements via satellite. Each node is
about 1.3 m long, about 20 cm in diameter, and weigh about 40 kg. Much of the
node’s volume is taken up by the pressure case and the mechanism for submerg-
ing and surfacing. The per-node cost is about $ 15.000 US; it’s yearly operation
(i.e., deployment, data analysis, project management, etc.) accounts for about
the same amount. The nodes are designed for about 140 submerge / resurface
cycles and are expected to last almost 4 years. After that time most nodes will
sink to the ocean floor and are thus not recoverable. Currently almost 3000 nodes
are deployed.

2.1. WSN Applications 9

WSNis are also used in precision agriculture to monitor the environmental fac-
tors that influence plant growth, such as temperature, humidity light, and soil
moisture. A WSN has been deployed in a vineyard [15] to allow precise irriga-
tion, fertilization, and pest control of individual plants. Other examples for en-
vironmental observations are the detection and tracking of wildfires, oil spills,
and pollutants in the ground, in water, and in the air.

2.1.2 Wildlife and Farm-Animal Monitoring

Monitoring the behavior and health of animals is another application domain of
WSNs. Some wild animals are easily disturbed by human observers, such as the
Leach’s Storm Petrel. To unobtrusively monitor the breeding behavior of these
birds in their natural habitat, a WSN has been deployed on Great Duck Island,
Maine, USA [85, 112]. Before the start of the breeding season, sensor nodes
are placed in the birds’ nesting burrows and on the ground. They monitor the
burrows” micro climate and occupancy state. About one hundred nodes have
been deployed. They are expected to last for an entire breeding period (about
seven months), after which they can be recollected. Another WSN described in
[117, 118] aims to recognize a specific type of animal based on its call and then
to locate the calling animal in real-time. The heterogeneous, two-tired sensor
network is composed of so-called micro nodes and macro nodes. The smaller,
less expensive, but also less capable micro nodes are deployed in great numbers
to exploit spatial diversity. The fewer but more powerful macro nodes combine
and process the micro node sensing data. The target recognition and location
task is divided into two steps. All nodes first independently determine whether
their acoustic signals are of the specified type of animal. Then, macro nodes
fuse all individual decisions into a more reliable system-level decision using
distributed detection algorithms. In a similar approach, [64, 105] investigates
monitoring of amphibian populations in the monsoonal woodlands of northern
Australia.

WSNs have also been used or are planned to be used to monitor and track
wild species and farm animals, such as cows, deer, zebras, fishes, sharks, or
whales. In these scenarios, sensor nodes are attached to individual animals in
order to determine their health, location, and interaction patterns. In these ap-
plications, WSNs are superior to human observers because often humans cannot
easily follow the targeted animals and because human observation is too cost in-
tensive. The ZebraNet [67, 81] WSN is used to observe wild zebras in a spacious
habitat at the Mpala Research Center in Kenya. A main research goal is to un-
derstand the impact of human development on the species. The WSN monitors
the behavior of individual animals (e.g., their activity and movement patterns)
and interactions within a species. The nodes, which are worn as a collar, log
the sensory data and exchange them with other nodes, as soon as they get into
communication range. The data is then retrieved by researchers who regularly
pass through the observation area with a mobile base stations mounted on a car
or plane.

A restoration project after an oil spill in the Gulf of Alaska identified critical
habitats of the Pacific halibut by determining its life-history patterns [102]. The
knowledge of the fishes’ critical habitat aids fisheries managers in making de-

10 Chapter 2. Wireless Sensor Networks

cisions regarding commercial and sport fishing regulations. The sensor nodes
are attached to a number of individual fishes in the form of so-called pop-up
tags. The tags collect relevant sensory data and store them. After the observa-
tion period a mechanism releases the tags, which then “pop up” to the surface
and communicate their data by satellite. Typically tags are lost unless washed
ashore and returned by an incidental finder.

WSNs are also used in agriculture, for example in livestock breeding and cat-
tle herding. The Hogthrob project [24], for example, aims at detecting the heat
periods of sows in order to determine the right moment of artificial fertilization.
The intended area of operation are farms with a high volume of animals (2000
individuals and more). To be economically sensible, sensor nodes must last for
2 years at a cost of about one Euro.

To reduce the overhead of installing fences and improving the usage of feed-
ing lots in cattle herding, a WSN implements virtual fences [28]. An acoustic
stimulus scares the cows away from the virtual fence lines. The movement pat-
tern of the animals in the herd is analyzed and used to control the virtual fences.
The sensor nodes are embedded into a collar worn by the cow.

2.1.3 Intelligent Environments

Applications for WSN cannot only be found in the outdoors. Instead of attach-
ing sensor nodes to animals, they may also be embedded within (or attached
to) objects of the daily life. Together with a typically fixed infrastructure within
buildings, such WSNs create so-called intelligent environments. In such envi-
ronments, augmented everyday objects monitor their usage pattern and support
their users in their task through the background infrastructure.

The Mediacup [16], a coffee cup augmented with a sensor node, detects the
cup’s current usage pattern, for example, if it is sitting in the cupboard, filled
with hot coffee, drunken from, carried around, or played with. The cup knows
when the coffee in the cup is too hot to drink and warns the user. A network of
Mediacups can detect whether there is a meeting taking place and automatically
adjust the label of an electronic doorplate. Similarly, to support the assembly
of complex kits of all kinds, for example, machinery, the individual parts and
tools could be augmented with sensor nodes. In a prototypical project described
in [12], a WSN assists in assembling do-it-yourself furniture to save the users
from having to study complex assembly instructions.

2.1.4 Facility Management

To get indications for potential power savings, a WSN monitors the power con-
sumption in office buildings and in private households [69]. Data is measured
by the power-adapter like sensors that are located either in electrical outlets or
at sub-distribution nodes, such as fuseboxes. Measurements are collected by a
central server and can be accessed and interpreted in real-time. Sensor nodes
are powered through the power grid in the order of tens to hundreds. Their life-
time should be equivalent to the lifetime of the building. Obviously, their com-
bined power consumption should be very low, that is, well below the savings
gained through its employment. Another possible application in the living and

2.1. WSN Applications 11

working space are micro-climate monitoring to implement fine-grained control
of Humidity, Ventilation and Air Conditioning (HVAC).

2.1.5 Logistics and Asset Tracking

Another large application domain is tracking of products and assets, such as
cargo containers, rail cars, and trailers. Again, sensor nodes in this domain are
attached to the items to be monitored and typically log the items” position and
state and notify users of critical conditions.

For example, the AXtracker [82] is a commercial wireless sensor node for as-
set tracking and fleet management which can report conditions such as a door
being open, a decrease or increase in temperature or moisture, and it can detect
smoke. SECURIfood [96] is a commercial WSN for cold-chain management. The
networks detects inadequate storage conditions of frozen or refrigerated prod-
ucts early in order to issue warnings. In a research project [106] a WSN has been
used to augment products as small as an egg carton in a supermarket in order to
facilitate the early removal of damaged or spoiled food items. If the product is
damaged (e.g., because it has been dropped) or has passed its best-before date, it
connects to the PDA or mobile phone of an employee on the sales floor to report
its condition. Such a solution is superior to RFID or manual barcode scanning,
because sensor nodes can take the individual product and storage history into
account. Obviously, sensor nodes need to be very inexpensive, that is, in the
range of noticeably less than a few percent of the tagged product, which is the
profit margin for food items. The node’s life must span the period from produc-
tion to sale. After consumption of the product the sensor node is disposed with
its packaging.

2.1.6 Military

Many of the early, mostly US-based WSN research projects were in the military
domain. For example, WSNs are used for tracking enemy vehicles [6]. Sen-
sor nodes could be deployed from unmanned aerial vehicles in order to detect
the proximity of enemy tanks with magnetometers. In such an application sen-
sor nodes need to be unnoticeably small in order to prevent their detection and
removal or the nodes must be too numerous to be removed effectively. In ei-
ther case, the nodes are lost after deployment. A WSN integrated into anti-tank
mines ensures that a particular area is covered with mines [90]. The mines esti-
mate their orientation and position. Should they detect a breach in the coverage,
a single mine is selected to fill in the gap. The mine can hop into its new po-
sition by firing one of its eight integrated rocket thrusters. Obviously, sensor
nodes on mines are disposable. WSNs can also be used in urban areas to locate
a shooter. A system has been implemented that locates the shooter by detecting
and analyzing the the muzzle blast and shock wave using acoustic sensors [109].

12 Chapter 2. Wireless Sensor Networks

2.2 WSN Characteristics

2.2.1 Deployment and Environmental Integration

A common characteristic of wireless sensor networks is their deployment in the
physical environment. In order to monitor real-world phenomena in situ, sen-
sor nodes are deployed locally, close to where the phenomena is expected. The
sensory range and accuracy of individual nodes is typically limited. If applica-
tions require more accurate data (e.g., in the shooter localization application) or
a complete coverage of an extensive area (e.g., vehicle tracking), nodes must be
deployed in larger numbers. Current deployments typically consist of a few to
several tenths of sensor nodes, though deployments of several thousand devices
are envisioned by researchers.

The way sensor nodes are deployed in the environment differs significantly
depending on the application. Nodes may be carefully placed and arranged at
selected locations as to yield best sensing results. Or they may be deployed by
air-drop resulting in a locally concentrated but random arrangement. Sensor
nodes may also be attached directly to possibly mobile objects that are to be
monitored, for example, to animals, vehicles, or containers.

For outdoor applications, sensor nodes need to be sealed from environmental
influences (such as moisture, fungus, dust, and corrosion) to protect the sensitive
electronics. Sealing can be done with conformal coating or packaging. Both
strategies may have influences on the quality of sensor readings and wireless
communications. Packaging may also contribute significantly to the weight and
size of sensor nodes.

2.2.2 Size, Weight, and Cost

The allowable size, weight, and cost of a sensor node largely depends on appli-
cation requirements, for example, the intended size of deployment. Particularly
in large scale, disposable (i.e., non recoverable) sensor node deployments, indi-
vidual nodes must be as cheap as possible. In the military domain, for example,
Smart Dust sensor nodes [120] aim at a very large scale deployment of nodes
the size of one cubic millimeter and very low cost. For commercial applications
(such as logistics, product monitoring, agriculture and animal farming, facility
management, etc.), cost will always be a prime issue. On the other extreme,
nodes can be as big as suitcases and cost up to several hundred Euros, for ex-
ample, for weather and ocean monitoring. Application scenarios in which the
sensor network is to float in the air pose stringent weight restrictions on nodes.
We expect that future sensor-node technology will typically meet the weight
and size requirements, but that stringent requirements for low cost will signifi-
cantly limit the nodes’ energy budget and available resources (see below).

2.2.3 Limited Energy Budget

Wireless sensor nodes typically have to rely on the finite energy reserves from a
battery. Remote, untethered, unattended, and unobtrusive operation of sensor
networks as well as the sheer number of nodes in a network typically precludes

2.2. WSN Characteristics 13

the replacement of depleted batteries. Harvesting energy from the environment
is a promising approach to power sensor nodes currently under research. First
results suggest that under optimal environmental conditions, energy harvesting
can significantly contribute to a node’s energy budget, but may not suffice as
sole energy resource [99].

Each WSN application has specific constraints regarding size, weight, and cost
of individual sensor nodes. These factors directly constrain what can be reason-
ably integrated into sensor nodes. Particularly, power supplies contribute sig-
nificantly to the size, weight, and cost of sensor nodes. In the majority of WSN
applications, energy is a highly limited resource.

2.2.4 Lifetime

The application requirements regarding sensor network lifetime can vary
greatly from a few hours (e.g., furniture assembly) to many years (e.g., ocean
monitoring). But also the notion of WSN lifetime can vary from application to
application. While some WSN applications can tolerate a large number of node
failures and still produce acceptable results with only a few nodes running, other
applications may require dense arrangements. But the network lifetime will al-
ways depend to a large degree on the lifetime of individual sensor nodes.

Sensor-node lifetime mainly depends on the node’s power supply and its
power consumption. But as the available energy budget is often tightly con-
strained by application requirements on the node’s size, wight and cost and,
at the same time, lifetime requirements are high, low-power hardware designs
and energy aware software algorithms are imperative. Today, sensor network
lifetime is one of the major challenges of WSN research.

2.2.5 Limited Computing Resources

Sensor nodes designs often trade off computing resources for one of the fun-
damental characteristics of sensor nodes, size, monetary cost, and lifetime (i.e.,
energy consumption). Computing resources, such as sensors, wireless commu-
nication subsystems, processors, and memories, significantly contribute to all
three of them. Sensor-node designs often try to strike a balance between sen-
sor resolution, wireless communication bandwidth and range, CPU speeds, and
memory sizes on the one hand, and cost, size, and power consumption on the
other hand.

For many WSN applications, cost is a crucial factor. Assuming mass produc-
tion, the price of integrated electronics and thus the price per sensor node is
mainly a function of the die size, that is, the number of transistors integrated.
The size of the node on the die determines the how many devices can be pro-
duced from a single wafer while wafers induce about constant costs regardless
of what is produced from them. That is the main reason why complex 32-bit
microcontroller architectures are much more expensive then comparatively sim-
ple 8-bit architectures. As we will detail in the next section, where we will look
at selected sensor-node components, an increase of the address-bus size from 8
to 32-bit of typical sensor-node processors today leads to a ten-fold increase in
processor price. Moore’s law (see [91]) predicts that more and more transistors

14 Chapter 2. Wireless Sensor Networks

can be integrated, and thus integrated electronics get smaller and less expensive
in the future. While this means that sensor-network applications with more and
more (possibly disposable) nodes can be deployed, it does not necessarily im-
ply that the resources of individual nodes will be less constrained. Memories in
general, and SRAM in particular, require high transistor densities, and thus are
also a significant cost factor.

Also, the energy consumption of sensor nodes mainly depends on the de-
ployed hardware resources (and their duty cycle). More powerful devices quite
literally consume more power. Most of the power consumption of integrated de-
vices stems from switching transistors (a CPU cycle, refreshing memories, etc).
Again, less powerful processor architectures with less gates have an advantage.

As a consequence, computing resources are often severely constrained, even
when compared to traditional embedded systems, which have similar cost con-
straints but are typically mains powered. We expect that these limitations of
sensor networks will not generally change in the future. Though we can expect
advances in chip technology and low-power design, which will lift the most
stringent restrictions of current applications. But the attained reductions in per-
node price, size, and energy consumption also open up new applications with
yet tighter requirements. Less powerful devices will remain to have the edge in
terms of price and power consumption.

2.2.6 Collaboration

The collective behavior of a wireless sensor network as a whole emerges from
the cooperation and collaboration of the many individual nodes. Collaboration
in the network can overcome and compensate for the limitations of individual
nodes. The wireless sensor network as a whole is able to perform tasks that
individual nodes cannot and that would be difficult to realize with traditional
sensing systems, such as satellite systems or wired infrastructures.

2.2.7 Back-End Connectivity

To make the monitoring results of WSN available to human observers or control
applications, they may be connected to a fixed communication infrastructure,
such as Wireless LAN, satellite networks, or GSM networks. The WSN may
be connected to this communication infrastructure via one or several gateways.
Connectivity to a communication infrastructure requires that either nodes from
the WSN operate as gateways, or that fixed gateways are installed. Such gate-
way typically posses two network interfaces. Acting as a gateway between the
WSN and the communication infrastructure (which is typically not optimized
for low power consumption) places additional burdens on sensor nodes. On the
other hand, installing fixed gateways is often too expensive.

Rather than relaying data from the WSN into a fixed infrastructure, monitor-
ing results may also be retrieved by mobile terminals. In ZebraNet, for exam-
ple, sensing results are collected by humans with laptop computers [67]. Since
permanent connectivity from the WSN to the mobile terminals cannot be guar-
anteed, sensor nodes are required to temporarily store their observations.

2.2. WSN Characteristics 15

2.2.8 Mobility and Network Dynamics

Sensor nodes may change their location after deployment. They may have auto-
motive capabilities, as described in the military application above or they may
be attached to mobile entities, like animals. Finally, nodes may be carried away
by air and water currents.

If nodes are mobile, the communication topology may change as nodes move
out of communication range of their former communication partners. However,
the network topology may change even if nodes are stationary, because nodes
fail or more nodes are deployed. Additionally, communication links may be
temporarily disrupted as mobile objects, such as animals or vehicles, or weather
phenomena obstruct RF propagation. Finally, some nodes may choose to turn
their radio off in order to save power. If the sensor network is sparsely con-
nected, individual node or link failures may also result in network partitions.

As a consequence of their integration into the environment sensor nodes may
be destroyed by environmental influences, for example, corroded by sea water
or crushed by a glacier. If batteries cannot be replaced, they may run out of
power. Increasing the node population (and hence the quality and quantity or
data readings) may be desirable at places that have been found to be interesting
after the initial deployment. After an initial deployment, a (possibly repeated)
re-deployment of sensor nodes may become necessary in order to replace failed
nodes or to increase the node population at a specific location. All these factors
may lead to a dynamic network, with changing topologies, intermittent parti-
tions, and variable quality of service.

2.2.9 Bursty Traffic

Wireless sensor networks may alternate between phases of low-datarate traffic
and phases of very bursty, high-datarate traffic. This may be the case, for exam-
ple, if the wireless sensor network is tasked to monitor the occurrence of certain
phenomena (as opposed to continuous sampling), and that phenomenon is de-
tected by a number of nodes simultaneously.

2.2.10 Dynamic Role Assignment

To optimize certain features of the sensor network, such as network perfor-
mance, lifetime, and sensing quality, the nodes of a sensor network may be
dynamically configured to perform specific functions in the network. This so-
called role assignment [42, 98] is based on static as well as dynamic parameters of
the nodes, such as hardware configuration, network neighbors, physical location
within the network (e.g., edge node or distance to the infrastructure gateway),
or remaining battery levels. For example, in dense networks, where all areas of
interest are covered by multiple nodes (both in terms of network and sensor cov-
erage), some of the nodes may be switched off temporarily to conserve energy.
These nodes can then later replace the nodes that have run out of battery power
in the meantime, thus increasing the overall lifetime of the sensor network [122].
As it is often difficult to anticipate the node parameters before deployment, role
assignment is typically performed in situ by the sensor network itself. Typically,

16 Chapter 2. Wireless Sensor Networks

it is first performed right after deployment, in the network initialization phase.
Then, changing parameters of a node and its environment may regularly prompt
reassignment of the node’s role.

2.2.11 Node Heterogeneity

While many sensor networks consist of identical nodes, for some applications it
can be advantageous to deploy multiple hardware configurations. For example,
nodes may be equipped with different sensors; some nodes may be equipped
with actuators, while others may be equipped with more computing power
and memory. Nodes with a powerful hardware configuration typically con-
sume more energy, but in turn can run more complex software and perform
special functions in the network, such as communication backbone, gateway to
the background infrastructure, or host for sophisticated computations. Low ca-
pability nodes typically perform simpler tasks but have higher lifetimes at lower
cost. These setups can lead to clustered and multi-tiered architectures, where the
cluster-heads are equipped with more computing and memory resources.

2.3 Sensor Nodes

As we have seen in the previous sections, different applications have differ-
ent requirements regarding lifetime, size, cost, etc. While functional prototypes
have been realized for most the applications described above, many of the em-
ployed sensor-nodes do not meet all their requirements. Concretely, most de-
vices are either too big, too expensive for the application at hand, or they fall
short of lifetime requirements. Therefore miniaturization, low-power and low-
cost designs are possibly the most pressing technical issues for sensor nodes.
Most sensor nodes have been built as research prototypes or proof-of-concept
implementations used to investigate certain aspects of future sensor nodes, net-
works, algorithms, and applications. Indeed, even the designs which have been
commercialized are targeted at research institutions and very early adopters.

2.3.1 Device Classes

In today’s WSN deployments and research installations we see three classes of
sensor nodes of different degrees of maturity. The first class are commodity de-
vices that are being used as sensor nodes, though they are not actually built for
that purpose. Devices in that class are laptop computers, PDAs, mobile phones,
cameras, etc. Commodity devices are often used for rapid application prototyp-
ing, where the actual device characteristics are less relevant. The second class
of sensor nodes are custom built from commercially-available electronics com-
ponents. These nodes are closer to the actual requirements of WSN and often
perform better than commodity devices. However, they still do not meet most
of the envisioned characteristics, such as “mote” size, years of lifetime, and a
price in the order of cents. Typically these nodes target at a broad applicabil-
ity. Some nodes designs are available commercially, such as the latest version
of the BTnode. Because of their availability and relatively low cost, these nodes

2.3. Sensor Nodes 17

dominate current WSN deployments. The last class of sensor nodes, finally, are
highly integrated designs that combine all the functional parts of a sensor node
(CPU, memories, wireless communication, etc.) into a single chip or package.
These devices are the best “performers” but still remain to be research proto-
types produced in very few numbers only. Below we will discuss these classes
of sensor node in more detail.

Commodity Devices

Rather than building custom sensor nodes, some researchers have utilized com-
mercially available commodity devices to build prototypical sensor network
algorithms and applications. Commodity devices, such as laptop computers,
PDAs, mobile phones, cameras, etc., can be used to perform special functions in
the network. In some research projects they even have been operated as sensor
node replacements.

There are a number of benefits to this approach: commodity devices are read-
ily available and provide a variety of sensors and resources. Many commod-
ity devices provide standardized wired and wireless interfaces (such as RS-232
serial ports, USB, Bluetooth, and Infrared) and application protocols (e.g, RF-
COM and OBEX), which allow to use the device’s functionality without a major
programming effort. For laptop computers, for example, there is an immense
variety of peripherals available. Custom-made peripherals can be connected
to the computer via its general-purpose 10O interface. When programming is
required, software development on commodity devices is typically more con-
venient compared to custom-made sensor nodes because these devices offer es-
tablished software-development environments and operating-system support.
Furthermore, no knowledge of embedded-system design and chip design is
required, thereby opening up the possibility of work in WSNS even for non-
experts in embedded-systems design.

There are several examples where commodity devices are used in WSN. In
[117,118], for example, PDAs and embedded PCs, respectively, are used as clus-
ter heads. For wirelessly interfacing the sensor nodes, the cluster heads are
equipped with proprietary hardware extensions. In [116], PDAs are used as
wireless sensor nodes in a setup for the analysis of beamforming algorithms.
Further examples for the use of commodity devices in WSNs can be found
in [21, 107].

However, there are a number of drawbacks, which preclude the utilization of
commodity devices in wireless sensor networks. Apart from few niche appli-
cations, commodity devices do not meet WSN requirements, particularly low-
cost, long lifetime, and unattended operation. The computational characteris-
tics (like memory and CPU) of commodity devices are typically well beyond the
constraints set by WSN applications. Prototypes implemented with commod-
ity devices typically leave the question unanswered whether the same imple-
mentation could indeed be realized given more realistic cost, size, and lifetime
constraints. Also, commodity devices are often too fragile for prolonged use
in the physical environment and typically require extensive configuration and
maintenance.

18 Chapter 2. Wireless Sensor Networks

COTS Sensor Nodes

A large class of the custom-built sensor nodes are what is referred to as COTS
sensor nodes. COTS nodes are manufactured from several commercially of-the-
shelf (COTS) electronic components. The aim of some COTS node developments
is the provision of a versatile, broadly applicable sensor node (e.g., [21, 31, 58]),
while other developments are custom-built with a particular application in mind
(e.g., [61, 67]. Some of the general-purpose designs are commercially available or
are made available for academic research at cost price. A typical setup consists
of an RF transceiver and antenna, one or more sensors (or interfaces for connect-
ing external sensor boards), as well as a battery and power regulating circuitry
grouped around a general-purpose processor. While these processors—often
8-bit microcontrollers—typically feature some internal memory, many COTS
sensor-node designs incorporate some additional external memory. The elec-
tronic components are mounted on a printed circuit board (PCB). Some COTS
sensor nodes are composed of multiple PCBs, for examples, a main board and
separate daughter boards for sensing and RF communication.

The computational resources provided by of most COTS-node designs are
typically within reasonable limits for a number of WSN applications. Currently,
the per-node cost is about 80-180 Euro (see, for example, [14, 34, 123]). Nodes
built from SMD components can be as small as a one Euro coin, such as the
MICA2DOT node [34]. However antennas, batteries, battery housings, the gen-
eral wiring overhead of multiple components, and packaging (if required), pre-
clude smaller sizes and form factors. The lifetime of COTS nodes ranges from
days to years, depending on the dutycycle.

For many applications COTS nodes may still be too expensive to be deployed
at the large scale, may be too power consuming to achieve the required network
lifetime, or may be too big for unobtrusive operation. However, because of their
relatively low price and availability, COTS sensor nodes allow to quickly realize
prototypes, even at a larger scale. Representatives of COTS sensor nodes are the
entire Berkeley Mote family (including the Rene, Mica2, MicaDot, and Mica-Z
nodes [34, 57]), the iMote [31], the three generations of BTnodes [22, 73, 123],
Smart-Its [124], Particle nodes [35], and many others. A survey of sensor nodes
can be found in [14]. Later in this chapter we present some COTS sensor-node
designs in greater detail, such as the BInode, which has been co-developed by
the author.

Sensor-Node Systems-on-a-Chip

Research groups have recently pursued the development of entire sensor-node
systems-on-a-chip (SOC). Such designs integrate most (if not all) sensor-node
subsystems on a single die or multiple dies in one package. This includes mi-
crocontrollers and memories but also novel sensor designs as well as wireless
receivers and transmitters. Also, chip designs have been theorized that include
their own power supply, such as micro fuel cells or batteries deposited onto the
actual chip. A summary of current and potential power sources and technolo-
gies for sensor nodes can be found in [99].

With their high integration levels, SOC designs usually consume less power,
cost less, and are more reliable compared to multi-chip systems. With fewer

2.3. Sensor Nodes 19

chips in the system, assembly cost as well as size are cut with the reduction in
wiring overhead.

Sensor-node SOC developments are still in their early stages and have yet
to be tested in field experiments. Only very few prototypes exist today. The
integration level of sensor-nodes SOCs promise very-low power consumption,
and very small size. The single chip design could also facilitate the easy and
effective packaging. Examples of sensor-node SOCs are Smart Dust [68, 119,
120], the Spec Mote [60], and SNAP [39, 66].

2.3.2 Sensor-Node Components
Processors

Sensor node designs (both, COTS and SOC) typically feature a reprogrammable
low-power 8-bit RISC microcontroller as their main processor. Operating at
speeds of a few MIPS, it typically controls the sensors and actuators, monitors
system resources, such as the remaining battery power as well as running a cus-
tom application. The microcontroller may also have to control a simplistic RF
radio, however, more sophisticated radio transceivers include their own embed-
ded processor for signal processing. Some applications depend on near real-time
signal processing or complex cryptographic operations. Since the computational
power of 8-bit microcontrollers is often too limited to perform such tasks, some
sensor nodes designs use 16 or even 32-bit microcontroller, or they include ad-
ditional ASICs, DSPs, or FPGAs.

However, more processing power only comes at a significant monetary price.
While today 8-bit microcontrollers are about 50 US cents in very high volume
(millions of parts), low-end 32-bit microcontrollers are already $ 5-7 US [103].
Pricing is particularly important for applications where the nodes are dispos-
able and/or are deployed in high volumes. Though is can be safely expected
that prices will decrease further driven by Moore’s Law (to as low as $ 1 US
for low-end 32-bit microcontrollers [33] in 2007), less powerful processor archi-
tectures will always be cheaper because they require to integrate less gates (i.e.,
transistors).

Memories

Sensor nodes are typically based on microcontrollers, which typically have a
Harvard architecture, that is, they have separate memories for data and instruc-
tions. Most modern microcontroller designs feature integrated data and instruc-
tion memories, but do not have a memory management unit (MMU) and thus
cannot enforce memory protection. Some sensor-node designs add external data
memory or non-volatile memory, such as FLASH-ROM.

Microcontrollers used in COTS sensor nodes include between 8 and
512 Kbytes of non-volatile program memory (typically FLASH memory) and
up to 4 Kbytes of volatile SRAM. Some additionally provide up to 4 Kbytes of
non-volatile general-purpose memory, such as EEPROM. To perform memory-
intensive algorithms, some designs add external data memories. The address
bus of 8-bit microcontrollers is typically only 16-bit wide, allowing to address
only 64 Kbytes. Therefore the entire data memory (including heap, static data

20 Chapter 2. Wireless Sensor Networks

segment, and runtime stack) is constrained to this amount. The few designs
with a larger memories space, organize their data memory into multiple pages
of 64 Kbytes. Then one page serves as runtime memory (which holds the run-
time stack and program variables) while the others can be used as unstructured
data buffers. Current SOC designs typically feature RAM in the order of a few
Kbytes.

Memory occupies a significant fraction of the chip real-estate. Since the die
area is a dominating cost factor in chip design, memories contribute signifi-
cantly to sensor-node costs. This is true for COTS microcontroller designs as
well as custom-designed sensor-node SOCs. For example, 3 Kbytes of RAM of
the Spec sensor-node SOC occupy 20-30% of the total die area of Imm?, not in-
cluding the memory controller [60]. For comparison: the analog RF transmitter
circuitry in the Spec mote requires approximately the same area as one Kbyte of
SRAM, as can bee seen in Fig. 2.1 (a). In general, FLASH memory has a signifi-
cant density advantage over SRAM. Modern FLASH technology produces stor-
age densities higher than 150 Kbytes per square millimeter against the record of
60 Kbytes per square millimeter for optimized SRAM dedicated to performing
specific functions [60]. Fig. 2.1 (b) shows a comparison of the occupied die sizes
for 60 Kbytes of FLASH memory against 4 byte of SRAM in a commercial 8-bit
microcontroller design.

Unpaged RAM beyond 64 Kbytes also requires an address bus larger than the
standard 16-bit (and potentionally memory-management units), which results
in a disproportional increase in system complexity. Because of the aforemen-
tioned reasons we expect that even in the future a significant amount of all cost
and size constrained sensor nodes (which we belive will be a significant amount
of all sensor nodes) will not posses data memories exceeding 64 Kbytes.

Wireless Communication Subsystems

Common to all wireless sensor networks is that they communicate wirelessly.
For wireless communication among the nodes of the network, most sensor net-
works employ radio frequency (RF) communication, although light and sound
have also been utilized as physical communication medium.

Radio Frequency Communication. RF communication has some desirable prop-
erties for wireless sensor networks. For example, RF communication does not
require a line of sight between communication partners. The omnidirectional
propagation of radio waves from the sender’s antenna is frequently used to im-
plement a local broadcast communication scheme, where nodes communicate
with other nodes in their vicinity. The downside of omnidirectional propaga-
tion is, however, that the signal is diminished as its energy spreads geometrically
(known as free space loss).

Various wireless transceivers have been used in sensor-node designs. Some
transceivers provide an interface for adjusting the transmit power, which gives
coarse-grained control over the transmission radius, if the radio propagation
characteristics are known. Very simple RF transceivers, such as the TR 1000
from RF Monolithics, Inc merely provide modulation and demodulation of bits
on the physical medium (the “Ether”). Bit-level timing while sending bit strings
as well as timing recovery when receiving has to be performed by a host proces-

2.3. Sensor Nodes

21

e I’ RAM | |
-
s T iy
i 1 I = -
4 CPU | e .
| i . - || Radio
i I_ = B
| 5 c
: ===I=& :g :
—-< Imm >

(a) Die layout of the Spec sensor-node
SOC (8-bit RISC microcontroller core)
with 3 Kbytes of memory (6 banks of
512 byte each) and a 900 MHz RF trans-
mitter [60].

STANDARD EELL AREA |17 -
- I+ HES08 CORE

A TIMER/PII 1 (5.CH)
TIMER/PWWIA'2 (3 CH)

(b) Die layout of a commercial 8-bit
microcontroller (HCS08 core from

Freescale Semiconductors) with
4 Kbytes of RAM and 60 Kbytes of
FLASH memory [103].

Figure 2.1: Die layouts of 8-bit microcontrollers. Memory occupies a significant
fraction of the chip real-estate.

sor. Since the Ether is shared between multiple nodes and the radio has a fixed
transmission frequency, it effectively provides a single broadcast channel. Such
radios allow to implement the entire network stack (excluding the physical layer
but including framing, flow control, error detection, medium access, etc.) ac-
cording to application needs. However, the required bit-level signal processing
can be quite complex and occupy a significant part of the available computing
resources of the central processor. Such a radio was used in the early Berkeley
Mote designs [57, 59].

More sophisticated radios, such as the CC1000 from Chipcon AS used in more
recent Berkeley Mote designs, provide modulation schemes that are more re-
silient to transmission errors in noisy environments. Additionally, they provide
a software controllable frequency selection during operation.

Finally, the most sophisticated radio transceivers used in sensor nodes, such
as radio modules compliant to the Bluetooth and IEEE 802.15.4 standards, can
be characterized as RF data modems. These radio modules implement the MAC
layer and provide its functionality through a standardized interface to the node’s
main processor. In Bluetooth, for example, the physical transport layer for inter-
face between radio and host CPU (the so-called Host Controller Interface, HCI)
is defined for UART, RS-232, and USB. This allows to operate the Bluetooth mod-
ule as an add-on peripheral to the node’s main CPU. The BTnode, iMote, and
Mica-Z sensor nodes, for example, use such RF data modem:s.

Some node designs provide multiple radio interfaces, typically with different
characteristics. An example is the BTnode [123], which provides two short-range
radios. One is a low-power, low-bandwidth radio, while the other one is a high-

22 Chapter 2. Wireless Sensor Networks

power but also high-bandwidth Bluetooth radio. The ZebraNet [67] sensor node
deploys a short-range and a long-range radio.

Optical Communication. Light as a communication medium has radically dif-
ferent characteristics. One significant drawback is that because of the mostly
directional propagation of light, optical communication requires a line of sight.
Also, ambient light can interfere with the signal and may lead to poor link qual-
ity. Therefore optical communication may be suitable only for specific appli-
cations. However, it has several benefits over RF communication. Because of
lower path loss it is more suitable for long-range communications. Also, light
signals do not require sophisticated modulation and demodulation, thus opti-
cal transceivers can be realized with less chip complexity and are more energy
efficient compared to radio transceivers. Also, they can be built very small.

At the University of California at Berkeley, the Smart Dust [68, 120] project
examines the use of laser light for communication in their Smart Dust sensor
nodes. The project aims to explore the limits of sensor-node miniaturization by
packing all required subsystems (including sensors, power supply, and wireless
communication) into a 1 mm?® node (see Fig. 2.2 for a conceptual diagram). Op-
tical communication has been chosen to avoid the comparatively large dimen-
sions for antennas. A receiver for optical signals basically consists of a simple
photodiode. It allows the reception of data modulated onto a laser beam emit-
ted by another node or a base station transceiver (BST). For data transmissions,
two schemes are being explored in Smart Dust: active and passive transmission.
For active transmission, the sensor node generatesr a lase beam with a laser
diode. The beam is then modulated using a MEMS steerable mirror. For passive
transmission, the node modulates an unmodulated laser beam with a so-called
corner-cube retroreflector (CCR). The CCR is a MEMS structure of perpendic-
ular mirrors, one of which is deflectable. Incident light is reflected back to the
light source, unless deflected. Several prototypes of the optical transceiver sys-
tem and entire Smart Dust sensor nodes have been built. We will present one of
them in the following section.

Sensors, Sensor Boards and Sensor Interface

Application-specific sensor-node designs typically include all or most sensors.
General-purpose nodes, on the other hand, include only few or no sensors at
all, but provide a versatile external interface instead. This approach is beneficial
since the required sensor configurations strongly depend on the target applica-
tion. The external interface allows to attach various sensors or actuators directly
or to attach a preconfigured sensor board. The sensors most commonly found in
sensor node and sensor board designs are for visible light, infrared, audio, pres-
sure, temperature, acceleration, position (e.g., GPS). Less typical sensor types
include hygrometers, barometers, magnetometers, oxygen saturation sensors,
and heart-rate sensors. Simple analog sensors are sampled by the processor via
an analog-to-digital converter (ADC). More sophisticated sensors have digital
interfaces, such as serial ports (e.g., USARTs) or bus systems (e.g., 12C). Over
this digital interface a proprietary application protocol is run for sensor config-
uration, calibration and sampling. The processor of the sensor node typically
implements these protocols in software. Actuators found in WSN include LEDs,

2.3. Sensor Nodes 23

Interrogating
Laser Beam

Laser Lens Mirror

Mirrors

Active Transmitter
Passive Transmitter with with Beam Steering
Corner-Cube Retroreflector

Incoming Laser
Communication

Sensors Photodetector and Receiver

Analog 1/0, DSP, Control
Power Capacitor

Solar Cell

Thick-Film Battery

Figure 2.2: Smart Dust conceptual diagram (from [119]).

buzzers, and small speakers.

2.3.3 Selected Sensor-Node Hardware Platforms

Today there are a number of sensor nodes available for use in WSN research and
development. Some designs have been commercialized and are available even
in large numbers. Others designs have been used in limited numbers only in re-
search projects. Still other designs are alpha versions with just a few prototypes
built or which exist only in hardware simulators.

Depending on their intended application scenarios, sensor nodes have to meet
vastly different (physical) application requirements, like sensor configurations
and durability. However, we focus mainly on the characteristics that are rel-
evant for developing and running software. In the following we present a few
selected sensor nodes which represent various design points and different stages
of maturity. An overview of available sensor node platforms can be found in [58]
and in [111].

BTnodes

The BTnode is an autonomous wireless communication and computing plat-
form based on a Bluetooth radio module and a microcontroller. The design has
undergone two major revisions from the initial prototype. The latest generation
uses a new Bluetooth subsystem and adds a second low-power radio, which is
identical to those used in Berkeley Motes (see below). For a detailed description
of all generations of BTnodes refer to [20].

24 Chapter 2. Wireless Sensor Networks

\E Bluetooth |«

GPIO Analog Serial IO

= » ATmegal28L [« SRAM

Module Microcontroller
e Power
Supply

J Clock/Timer LED's |

Figure 2.3: The BTnode rev2 system overview shows the sensor node’s four
main components: radio, microcontroller, external memory, and
power supply. Peripherals, such as sensors, can be attached through
the versatile general-purpose interfaces.

BTnodes have no integrated sensors, since individual sensor configurations
are typically required depending on the application (see Fig. 2.3). Instead, with
its many general-purpose interfaces, the BITnode can be used with various pe-
ripherals, such as sensors, but also actuators, DSPs, serial devices (like GPS re-
ceivers, RFID readers, etc.), and user interface components. An interesting prop-
erty of this platform is its small form factor of 6x4 cm while still maintaining a
standard wireless interface.

zo0z/90 (2) 27Zabd wpoy L@

=
wl
=]
bt
s
we
ca
1=}
(70
NS
Wt
<o

ATMEGA128L
8Al 0215

SRR

Figure 2.4: The BTnode rev2 hardware features a Bluetooth module, antenna,
LEDs, and power as well as interface connectors on the front (left),
and an 8-bit microcontroller and external memory on the back (right).

The second revision of the BInode hardware (see Fig. 2.4) is built around an
Atmel ATmegal28L microcontroller with on-chip memory and peripherals. The

2.3. Sensor Nodes 25

microcontroller features an 8-bit RISC core delivering up to 8 MIPS at a maxi-
mum of 8 MHz. The on-chip memory consists of 128 kbytes of in-system pro-
grammable Flash memory, 4 kbytes of SRAM, and 4 kbytes of EEPROM. There
are several integrated peripherals: a JTAG interface for debugging, timers, coun-
ters, pulse-width modulation, 10-bit analog-digital converter, I2C bus, and two
hardware UARTs. An external low-power SRAM adds an additional 240 kbytes
of data memory to the BTnode system. A real-time clock is driven by an exter-
nal quartz oscillator to support timing updates while the device is in low-power
sleep mode. The system clock is generated from an external 7.3728 MHz crystal
oscillator.

An Ericsson Bluetooth module is connected to one of the serial ports of the
microcontroller using a detachable module carrier, and to a planar inverted F
antenna (PIFA) that is integrated into the circuit board.

Four LEDs are integrated, mostly for the convenience of debugging and mon-
itoring. One analog line is connected to the battery input and allows to monitor
the battery status. Connectors that carry both power and signal lines are pro-
vided and can be used to add external peripherals, such as sensors and actua-
tors.

Berkeley Motes

An entire family of sensor nodes, commonly referred to as Berkeley Motes or
motes for short, has been developed out of a research project at the University
of California at Berkeley [61]. Berkeley Motes run the very popular TinyOS op-
erating system. These were the first sensor nodes to be successfully marketed
commercially. They are manufactured and marketed by a third-party manu-
facturer, Crossbow [34]. Crossbow also offers development kits and training
services beyond the mere sensor devices. Because of the early availability of the
hardware and because of the well maintained and documented TinyOS oper-
ating system, many applications have been realized on Berkeley Motes. They
have a very active user base and are often referred to as the de facto standard
platform for sensor networks.

The various members of the Berkeley Mote family (known as Mica, Mica2,
Mica2Dot, Micaz, and Cricket) offer varying radio and sensor configurations at
different sizes. Like the BTnode, they all feature an Atmel ATmegal28L 8-bit mi-
crocontroller and allow to connect different sensor boards. Unlike the BTnode,
however, they have no external SRAM but instead offer 512 Kbyte of nonvolatile
memory. All Berkeley motes posses simple wireless radios with synchronous bit
or packet interfaces, which require intensive real-time processing on the node’s
CPU.

Smart Dust

The Smart Dust project [120] aims to explore the limits of sensor-node minia-
turization by packing all required subsystems (including sensors, power supply,
and wireless communication) into a 1 mm?® node. The applications of such nodes
are massively distributed sensor networks, such as military defense networks
that could be rapidly deployed by unmanned aerial vehicles, and networks for
environmental monitoring.

26 Chapter 2. Wireless Sensor Networks

In 2002, a 16 mm? solar-powered prototype with bidirectional optical commu-
nication has been demonstrated in [119] (see Fig. 2.2). The system consists of
three dice, which can be integrated into a single package of 16 mm?. A 2.6 mm?
die contains the solar-cell array, which allows the node to function at light levels
of approximately one sun. The second die contains a four-quadrant corner-cube
retroreflector (CCR), allowing it to be used in a one-to-many network config-
uration, as discussed previously. The core of the system is a 0.25 mm? CMOS
ASIC containing the controller, optical receiver, ADC, photo sensor, and oscilla-
tor. This die is depicted in Fig. 2.6.

The prototype node is not programmable, but is instead operated with a 13-
state finite state machine in hardware. The demonstrated node performs a fixed
schedule of operations. First it toggles between sensors and initiates ADC con-
version. When the conversion is complete the result is passed serially to the
CCR for optical transmission. Next, the most recent byte received by the op-
tical transceiver is echoed. Upon the completion of the transmission the cycle
repeats.

The presented Smart Dust node is a prototype with many features of an ac-
tual sensor node still missing or none-functional in a realistic environment. The
solar cells do not provide enough energy to run the node in less then optimal cir-
cumstances. The light required for powering the node interferes with the optical
communication. It has no packaging, so the actual node would be significantly
bigger. An acceleration sensor was initially intended to be included into the de-
sign but could not due to problems with the final processing steps. Finally, the
node is not programmable and thus lacks the flexibility for customization. A
programmable node would occupy significantly more die space to host the pro-
grammable controller as well as data and program memories (which it currently
lacks).

On the other hand, the presented node has shown to some degree what can be
expected in the not-too-far future. Future motes are expected to be yet smaller
through higher levels of integration, have more functionality by means of fully
programmable controllers, and incorporate more types of sensors. A new devel-
opment process has already been theorized (and partially tested successfully)
which will yield a 6.6 mm?® node with only two dice.

SNAP

The sensor network asynchronous processor (SNAP) [39, 66] is a novel processor
architecture designed specifically for use in low-power wireless sensor-network
nodes. The design goals are low power consumption and hardware support for
the predominant event-driven programming model, which is used in TinyOS
and the BTnode system software.

The processor has not yet been built but low-level simulation results of the
processor core exist. SNAP is based on 16-bit RISC core with an extremely
low-power idle state and very low wakeup response latency. The processor in-
struction set is optimized to support event scheduling, pseudo-random num-
ber generation, bit-field operations, and radio/sensor interfaces. SNAP has a
hardware event queue and event coprocessors, which allow the processor to
avoid the overhead of event buffering in the operating system software (such as

2.4. Embedded Systems 27

(a) Actual size of the sensor node in (b) Scanning electron micrograph of the node
comparison to a coin. to the left.

Figure 2.5: A partially functional Smart Dust prototype-node with a circum-
scribed volume of 16 mm?® as presented in [119].

Figure 2.6: Die layout of the Smart Dust prototype presented in [119]. The detail
shown is Imm x 330um.

task schedulers and external interrupt servicing). The SNAP processor runs of a
0.6V power supply consuming about 24p] per instruction at 28 MIPS. It features
4 Kbyte of program memory and another 4 Kbyte of data memory.

2.4 Embedded Systems

Wireless sensor nodes have been considered to be a subclass of embedded sys-
tems, namely networked embedded systems (see, for example, [4, 20, 32, 45, 57,
89]). In this section we will present general embedded-systems characteristics
and relate them to those of wireless sensor nodes.

2.4.1 Characteristics of Embedded Systems

Unlike general-purpose computers, embedded systems are special-purpose
computers engineered to perform one or a few predefined tasks. They are typ-
ically embedded into a larger device or machine, hence the name. Typical pur-

28 Chapter 2. Wireless Sensor Networks

poses of embedded systems are monitoring or controlling the devices they are
embedded in, performing computational operations on behalf of them, as well
as providing interfaces to other systems, the environment (through sensors and
actuators), and users. Often multiple embedded systems are networked, such as
in automobiles and aircrafts.

2.4.2 Diversity of Embedded Systems

Embedded systems are very diverse, both in their application domains as
well as in their requirements. Examples of embedded-system applications are
industrial-machine controllers, cruise-controls and airbag controllers in automo-
biles, medical equipment, digital video and still cameras, controllers in washing-
machines and other household appliances, fly-by-wire systems, vending ma-
chines, toys, and sensing (typically wired) monitoring systems. Depending on
the application domain, embedded systems can have very diverse requirements,
such as high reliability (e.g., in medical systems), high-performance data pro-
cessing (e.g., image processing in cameras), low cost (e.g., in commodity devices
such as remote controls), and real-time behavior (e.g., in fly-by-wire systems and
airbag controllers). In fact, there does not seem to be a single set of requirements
applicable to all variants of embedded systems. For example, a digital-camera
controller typically requires high performance at a very low cost and low power
consumption. In contrast, medical systems require high reliability and real-time
behavior while performance, low cost, and low power consumption may not be
an issue.

2.4.3 Wireless Sensor Nodes

Sensor nodes have also been considered embedded systems. Though there are
some differences to traditional embedded systems, they also share many char-
acteristics and use very similar technology. The two most obvious differences
are that firstly, sensor nodes are typically not embedded into other machines
or devices but are autonomous and self contained. And secondly, traditional
distributed embedded systems typically use wired communication as it is more
reliable.

Apart from that, sensor nodes perform tasks similar to embedded systems and
have similar characteristics. Just like embedded systems, sensor nodes perform
various monitoring and control tasks and often perform significant data pro-
cessing. Sensor nodes also provide interfaces (to other nodes and the backend
for tasking), typically through the air interface. As we have argued in Sect. 3.1,
most applications of wireless sensor nodes do share a common set of require-
ments, probably the most important of which are resource-efficiency, reliability,
and reactivity.

2.5 Summary and Outlook

In this chapter we have presented various applications of WSNs and their re-
quirements on a technical hard and software solution. Often the size and cost

2.5. Summary and Outlook 29

constrains of sensor nodes preclude the use of powerful energy supplies. To en-
sure adequate sensor-network lifetimes it is often necessary to strictly confine
the nodes” energy consumption. As a consequence of these three restrictions
(cost, size, and energy consumption), most modern sensor nodes are highly in-
tegrated and posses very little resources. Typical configurations feature 8-bit mi-
crocontrollers running at speeds of a few MIPS, tenths of kilobytes of program
memory, and a few kilobytes of data memory. Though not all WSN applications
necessitate such highly resource-constrained nodes, many indeed do.

The resources provisions of such integrated devices are very different com-
pared to traditional computing systems. Also, they are used in a fundamentally
different manner. WSNs are in close interaction with the environment, they are
self-organized and operate without human intervention rather than relying on
a fixed background infrastructure configured by system administrators. These
characteristics pose new challenges on all levels of the traditional software stack.

New resource-efficient and fault-tolerant algorithms and protocols need to
be developed. Classical middleware concepts need to be reconsidered in or-
der to allow the utilization of application knowledge. New operating systems
are required to economically manage the limited sensor-node resources while
incurring as little resource overhead as possible themselves. Traditional oper-
ating system abstractions (such as processor sharing and dynamic and virtual
memory management), which rely on hardware components of classical ma-
chine architectures (like memory management units and secondary storage) can
not be easily used in sensor networks. This also requires revisiting the basic
application-programming models and abstractions, such as tasks and inter-task
communication. In the next chapter we will present the state-of-the-art in pro-
gramming models and runtime environments for wireless sensor networks.

30

Chapter 2. Wireless Sensor Networks

3 Programming and Runtime
Environments

Developing a sensor network application typically requires to program individ-
ual sensor nodes. Today, programming of individual sensor nodes is mostly
performed by programmers directly. Even though research has made much
progress in distributed middleware and high-level configuration languages for
sensor nodes, typically most of the application code still has to be specified by
the hand of a programmer.

To support application programming, several programming frameworks ex-
ist for sensor nodes. Programming frameworks provide a standard structure
to develop application programs, typically for a specific application domain,
for example, Graphical User Interface programming, or, in our case, sensor-
node programming. Programming frameworks for sensor nodes consist of a
runtime environment with reusable code and software components, program-
ming languages, and software tools to create and debug executable programs
(see Fig. 3.1). The conceptual foundation of a programming framework is a pro-
gramming model. The programming model defines the conceptual elements in
which programmers think and structure their programs. These elements are
operating-system abstractions (such as threads, processes, dynamic memory,
etc.) and language abstractions (such as functions, variables, arguments and
return parameters of procedural programming languages). Other elements are
abstractions for frequently used (data) objects (such as files, network connec-
tions, tracking targets, etc.), as well as convenient operations and algorithms on
those objects.

Programs specified based on high-level programming models, however, do
not directly execute on the sensor-nodes hardware. Rather, they require a soft-
ware layer to provide them with a runtime environment. That runtime environ-
ment bridges the gap between the high-level programming model and the low-
level execution model of the processor. It typically consists of middleware com-
ponents, code libraries, OS system calls, and compiler-generated code, which
together provide the implementations of the model’s abstractions. Naturally, a
programming model with more and more expressive abstractions will require
more support from the runtime environment.

The explicit goal of traditional computing systems is to accommodate a wide va-
riety of applications from different domains. Therefore, they typically provide a
“thick” and powerful system software that supports rich programming models
and many abstractions. From this variety, application designers can (and must)
choose a model that suits their applications needs best. Sensor-node platforms,
however, are often subjected to severe resource constraints. Therefore they can
afford only a thin system software layer and can thus offer only a limited pro-
gramming model. The designers of programming frameworks for sensor-node

32 Chapter 3. Programming and Runtime Environments

Programming Framewor k

Programming Tools Compiler, Linker, Debugger
Programming M odel Language abstractions
Programming Languages C,C++,nesC
Runtime Environment OS and data abstractions

System Software
— Middleware RPC, EnviroTrack, TinyDB
— Libraries libC, Berkeley sockets
— Operating System Kernel Linux, TinyOS

Hardware PCs, BTnodes

Figure 3.1: Programming frameworks for sensor nodes consist of reusable code
and software components, programming languages, software tools
to create and debug executable programs.

platforms must make an a priori decision which models, abstractions, and sys-
tem services to support. They are faced with the dilemma to provide an expres-
sive enough programming model without imposing too heavy a burden on the
scarce system resources. Resources spent for the system software are no longer
available to application programmers.

In this chapter we will review state-of-the-art programming models and the
programming abstractions supported in current system software for sensor
nodes. We start by presenting basic requirements that must be met by the sys-
tem software and application programs alike in Sect. 3.1. Then, in Sect. 3.2,
we present the three basic programming models that have been proposed for
sensor-node programming, that is, the event-driven model, the multi-threaded
model, and the control loop. We continue our discussion with Sections 3.3
and 3.4 on dynamic memory management and on process models, respectively.
Based on our initial requirements (from Sect. 3.1) we analyze these programming
models and abstractions with respect to the runtime support they necessitate.
Finally, in Sect. 3.4, we summarize state-of-the-art programming frameworks
(most of which we have introduced in the previous sections already in order to
highlight certain aspects) and present in greater detail two programming frame-
works, which represent variations of the basic event-driven model.

3.1 System Requirements

In the last chapter we have discussed the unique characteristics of sensor net-
works. These characteristics result in a unique combination of constraints and
requirements that significantly influence the software running on sensor nodes.
But this influence is not limited to the choice of application algorithms and data
structures. The nodes’ system software, that is, the operating system and other

3.1. System Requirements 33

software to support the operation of the sensor node, is affected as well. In this
section we present three main requirements of WSN software. While this is not
a comprehensive list of topics, it does identify the most important topics with
regard to sensor-node programming.

3.1.1 Resource Efficiency

A crucial requirement for all WSN programs is the efficient utilization of the
available resources, for example, energy, computing power, and data storage.
Since all sensor nodes are untethered by definition, they typically rely on the
finite energy reserves from a battery. This energy reserve is the limiting factor of
the lifetime of a sensor node. Also, many sensor-node designs are severely con-
strained in fundamental computing resources, such as data memory and proces-
sor speeds. Sensor nodes typically lack some of the system resources typically
found in traditional computing systems, such as secondary storage or arithmetic
co-processors. This is particularly the case for nodes used in applications that
require mass deployments of unobtrusive sensor nodes, as these applications
prompt small and low-cost sensor-node designs.

In addition to energy-aware hardware design, the node’s system software
must use the available memory efficiently and must avoid CPU-cycle intense
operations, such as copying large amounts of memory or using floating-point
arithmetic. Various software-design principles to save energy have been pro-
posed [41]. On the algorithmic level, localized algorithms are distributed algo-
rithms that achieve a global goal by communicating with nodes in a close neigh-
borhood only. Such algorithms can conserve energy by reducing the number
and range of radio messages sent. Adaptive fidelity algorithms allow to trade
the quality of the sensing result against resource usage. For example, energy can
be saved by reducing the sampling rate of a sensor and therefore increasing the
periods where it can be switched off.

Resource constraints clearly limit the tasks that can be performed on a node.
For example, the computing and memory resources of sensor nodes are often too
limited to perform typical signal processing tasks like FFT and signal correlation.
Hence, clustered architectures were suggested (e.g., [117]), where the cluster-
heads are equipped with more computing and memory resources leading to
heterogeneous sensor networks.

Resource constraints also greatly affect operating system and language fea-
tures for sensor nodes. The lack of secondary storage systems precludes virtual-
memory architectures. Also, instead of deploying strictly layered software ar-
chitectures, designers of system software often choose cross-layer designs to op-
timize resource efficiency. Programming frameworks for sensor nodes should
support application designers to specify resource efficient and power-aware pro-
grams.

3.1.2 Reliability

Wireless sensor networks are typically deployed in remote locations. As soft-
ware failures are expensive or impossible to fix, high reliability is critical. There-
fore, algorithms have been proposed that are tolerant to single node and net-

34 Chapter 3. Programming and Runtime Environments

work failures. However, immanent bugs in the nodes’ system software may
lead to system crashes that may render an entire WSN useless. Particularly if
many or all nodes of the network run identical software or if cluster heads are
affected, the network may not recover.

Programming frameworks for sensor nodes should support application de-
signers in the specification of reliable and, if possible, verifiable programs. Some
of the standard programming mechanisms, like dynamic memory management
and multi-threading, are known to be hard to handle and error prone. Therefore
some programming frameworks deliberately choose not to offer these services
to the application programmer.

3.1.3 Reactivity

The main application of WSNs is monitoring the real world. Therefore sensor
nodes need to be able to detect events in the physical environment and to re-
act to them appropriately. Also, due to the tight collaboration of the multiple
nodes of a WSN, nodes need to react to network messages from other nodes.
Finally, sensor nodes need to be able to react to a variety of internal events, such
as timeouts from the real-time clock, interrupts generated by sensors, or low
battery indications.

In many respects sensor nodes are reactive systems. Reactive systems are com-
puter systems that are mainly driven by events. Their progress as a computer
system depends on external and internal events, which may occur unpredictably
and unexpectedly at any time, in almost any order, and at any rate. Indeed, the
philosophy of sensor-node programming frameworks mandates that computa-
tions are only performed in reaction to events and that the node remains in sleep
mode otherwise in order to conserve power.

On the occurrence of events, wireless sensor nodes react by performing com-
putations or by sending back stimuli, for example, through actuators or by send-
ing radio messages. Sensor nodes need to be able to react to all events, no mat-
ter when and in which order they occur. Typically reactions to events must be
prompt, that is, they must not be delayed arbitrarily. The reactions to events
may also have real-time requirements. Since the handling of events is one of
the main tasks of a sensor node, programming frameworks for sensor nodes
should provide expressive abstractions for the specification of events and their
reactions.

3.2 Programming Models

Sensor nodes are reactive systems. Programs follow a seemingly simple pat-
tern: they remain in sleep mode until some event occurs, on which they weak
up to react by performing a short computation, only to return to sleep mode
again. Three programming models have been proposed to support this pat-
tern while meeting the requirements specified previously. These models are
the event-driven model, the multi-threaded model, and the control-loop model.
The event-driven model is based on the event-action paradigm, while the multi-
threaded model and the control loop are based on polling for events (in a block-

3.2. Programming Models 35

ing and non-blocking fashion, respectively).

3.2.1 Overview

In the control-loop model there is only a single flow of control, namely the control
loop. In this loop, application programmers must repeatedly poll for the events
that they are interested in and handle them on their detection. Polling has to be
non-bocking in order not to bring the entire program to a halt while waiting for
a specific event to occur. Then, the computational reaction to an event must be
short in order not to excessively delay the handling of next events.

In the multi-threaded model, programmers also poll for events and handle them
on detection. However, polling can be blocking since programs have several
threads with individual flows of control. For the same reason the duration of
a computational reaction is not bounded. When one thread is blocking or per-
forming long computations, the operating system takes care of scheduling other
threads concurrently, that is, by sharing the processor in time multiplex.

In the event-driven model the system software remains the program’s control
flow and only passes it shortly to applications to handle events. The system
software is responsible to detect the occurrence of an event and then to “call
back” a specific event-handling function in the application code. These func-
tions are called actions (or event handlers). They are the basic elements of which
applications are composed of. Only within these actions do applications have
a sequential flow. The scheduling of actions, however, is dictated by the occur-
rence of events.

These models differ significantly in their expressiveness, that is, the support
they provide to a programmer. They also require different levels of support
from the runtime environment and thus the amount of system resources that are
allocated for the system software. In the following we will analyze these three
models regarding their expressiveness and inherent resource consumption.

3.2.2 The Control Loop

Some sensor-node platforms (such as the Embedded Wireless Module nodes de-
scribed in [97] and early versions of Smart-Its nodes [124]) provide program-
ming support only as a thin software layer of drivers between the hardware
and the application code. Particularly, these systems typically do not provide a
programming abstraction for event-handling or concurrency, such as actions or
threads. Rather they only provide a single flow of control.

In order to guarantee that a single-threaded program can handle and re-
mains reactive to all events, the program must not block to wait for any sin-
gle event. Instead, programmers typically poll for the occurrence of events in
a non-blocking fashion. Among experienced programmers it is an established
programming pattern to group all polling operations in a single loop, the so-
called control loop. (In this respect the control-loop model is much more a pro-
gramming pattern or approach for sensor nodes—or, more generally, for reactive
systems-rather than a programming model with explicitly supported abstrac-
tions.) The control loop is an endless loop, which continuously polls for the
occurrence of events in a non-blocking fashion. If the occurrence of an event

36 Chapter 3. Programming and Runtime Environments

has been detected, the control loop invokes a function handling the event. For
optimizations actual programs often depart from this pattern. The pseudo-code
in Prog. 3.1 depicts the principle of a control loop.

Program 3.1: A simple control loop.

1 while(true) { // control loop, runs forever

> 1f(status_event_1) then event_handler_1(Q);
s 1f(status_event_2) then event_handler_2(Q);
« ...

5 1f(status_event_n) then event_handler_n();
6

}

Programming frameworks supporting a control loop as their main approach
to reactive programming have several benefits. Firstly, they require no concur-
rency and event-handling support from an underlying runtime system, such as
context switches or event queuing and dispatching. The only support required
are drivers that allow to check the status of a device in a non-blocking fashion.
Therefore, their runtime environments are very lean. Secondly, programmers
have full control over how and when events are handled. The entire control
flow of the program is exclusively managed by application programmers and
can thus be highly optimized.

On the other hand, the control-loop approach does not enforce a particular pro-
gramming style. Programmers carry the burden to implement event detection
(i.e., polling operations), queuing and dispatching without being guided along a
well approved and established path. This burden can be hard to master even for
expert programmers. Particularly when event detection and event handling are
not clearly separated in a control loop, the model’s high flexibility can lead to
code that is very unstructured and therefore hard to maintain and extend. Such
code typically depends on timing assumptions and is non-portable. Also, pro-
grammers are responsible for implementing sleep modes to avoid busy-waiting
when no events occur and need to be processed. Implementing sleep modes
is particularly troublesome when event detection and handling are not clearly
separated.

3.2.3 Event-driven Programming

The event-driven programming model can be seen as a conceptualization of the
control-loop approach. It does enforce the separation of event detection and
event dispatching by making the control loop an integral part of its runtime
environment. The event-driven model is the most popular programming model
for developing sensor-network applications today. Several programming frame-
works based on this model exist, for example, our BInode system software [21],
but also the popular TinyOS and nesC [45], Contiki [37], SOS [52] and Maté [79].

3.2. Programming Models 37

The Basic Programming Model

The event-driven model is based on two main abstractions: events and actions.
Events represent critical system conditions, such as expired timers, the reception
of a radio message, or sensor readouts. Events are typically typed to distinguish
different event classes and may contain parameters, for example, to carry associ-
ated event data. At runtime, the occurrence of an event can trigger the execution
of a computational action. Typically, there is a one-to-one association between
event types and actions. Then, an event-driven program consists of as many
actions as there are event types (see pseudo code in Prog. 3.2).

Actions are typically implemented as functions of a sequential programming
language. Actions always run to completion without being interrupted by other
actions. A so-called dispatcher manages the invocation of actions. Dispatchers
often use an event queue to hold unprocessed events. The internal implementa-
tion of dispatchers typically follows the control-loop approach.

Event-driven systems are typically implemented in a single flow of control.
(Indeed, in sensor networks they are often deployed just to avoid the overhead
of concurrent systems.) In order not to monopolize the CPU for any signifi-
cant time and thus allow other parts of the system to progress, actions need to
be non-blocking. Actions are expected to terminate in bounded time—typically
less than a few milliseconds, depending on the application’s real-time require-
ments and the system’s event-queue size. Therefore, at any point in the control
flow where an operation needs to wait for some event to occur (e.g., a reply
message or acknowledgment in a network protocol), the operation must be split
into two parts: a non-blocking operation request and an asynchronous comple-
tion event. The completion event then triggers another action, which continues
the operation.

Event-driven programs consist of actions, each of which is associated to an
event and which is invoked in response to the occurrence of that event. To
specify a program, programmers implement actions (typically as functions of
a sequential language). At system start time, control is passed to the dispatcher.
The control then remains with the system’s dispatcher and is only passed to
application-defined actions upon the occurrence of events. After the execution
of an action, control returns to the dispatcher again. Therefore, from the pro-
grammer’s point of view, applications consist of a number of distinct program
fragments (i.e., the actions). These fragments are not executed in a given sequen-
tial order, as functions of procedural languages would. Rather, these actions are
invoked in the order in which their associated events occur.

Discussion

The main strength of the event-based model is the enforcement of a well de-
fined and intuitive programming style which incurs only little overhead. The
event model is simple, yet nicely captures the reactive nature of sensor-network
applications. It enforces the by sensor-network experts commonly promoted
programming pattern, in which short computations should only be triggered by
events. Compared to the control-loop approach, programs in the event-driven
model are clearly structured into a few well-defined actions. Furthermore, pro-
grammers must not concern themselves with sleep modes, as they are typically

38 Chapter 3. Programming and Runtime Environments

Program 3.2: The general structure of an event-driven program.

1 void main(Q) {
// initialize dispatcher, runs forever
start_dispatcher();
/I not reached
}
void event_handler_1(EventData data) { // associated with event 1
/I initialize local variables
process(data); I/l process event data
}
void event_handler 2() { ... } /I associated with event 2

N-TC E G I N}

=
S

—_
jas

provided as basic service of the system software’s dispatcher.

Supporting events in the underlying system software incurs only very little
overhead. The system software must only provide basic services for event de-
tection, queuing, and dispatching. It has been shown in several prototypes that
these elements can be implemented very resource efficiently in software (see, for
example, [37, 52, 59, 73]). To further reduce resource and energy consumption,
much of the model’s runtime system can be implemented in hardware, as has
been shown in the SNAP processor architecture [39, 66]. Event-driven applica-
tion programs can thus run in very lightweight execution environments.

As a consequence, in the context of sensor networks, event-based systems are
very popular with several programming frameworks in existence. Today, these
frameworks are supported by a large user base, most notably TinyOS. Hence,
many programmers are used to think in terms of events and actions and find it
natural to structure their programs according to this paradigm.

3.2.4 Multi-Threaded Programming

The multi-tasking model embodies another view on application programming.
The multi-threading programming model focuses on describing application pro-
grams as a set of concurrent program fragments (called threads), each of which
has its own context and control flow. Each thread executes a sequential program,
which may be interrupted by other threads. Since wireless sensor nodes are typ-
ically single-processor systems, concurrency is only a descriptive facility. On the
node’s processor, concurrent threads are scheduled sequentially. All threads of
a program share resources, such as memory. Shared memory is typically used
for inter-thread communication.

The Basic Programming Model

The multi-threaded programming model is convenient for programming reac-
tive sensor-node applications. Threads may block to await the occurrence of
certain events, for example, the reception of a radio message. A thread wait-
ing for a particular event becomes active again only after the occurrence of the

3.2. Programming Models 39

event. Therefore, programmers can simply wait for the occurrence of particu-
lar events in a wait statement and handle the reaction to that event (in the same
computational context) when the statement returns (see Prog. 3.3). To handle
the different events that are of interest to an application, programmers typically
use several threads, one per event or group of related events. While a thread is
blocking, the operating system schedules other threads, which are not waiting.

Programmers need not worry about the reactivity of the program when a
thread blocks or when it performs long-running operations, as the rest of the ap-
plication remains reactive and continues to run. For this reason, graphical user
interfaces (GUIs) of PC applications are often implemented in their own thread.
In wireless sensor networks, threads are typically used to specify the subsystems
of a sensor node, such as network management, environmental monitoring, and
monitoring the node’s local resources. Programming loosely coupled parts of an
application as separate threads can increase the structure and modularity of the
program code.

In preemptive multi-threading systems, a thread of execution can be inter-
rupted and the control transferred to another thread at any time. Multiple
threads usually share data, thus requiring synchronization to manage their in-
teraction. Synchronization between threads must ensure deterministic access
to shared data, regardless how threads are actually scheduled, that is, how
their threads of execution are interleaved. Proper synchronization prevents
data inconsistencies when concurrent threads simultaneously modify and ac-
cess shared data. Synchronization is often implemented using semaphores or
by enforcing atomic execution (by disabling context switches).

Program 3.3: The structure of multi-threaded sensor-node program.

1 void main() {
/I initialization of two threads
start(thread_1);
start(thread_2);
}
void thread_1(0) {
/I initialization of local variables

2
3
4
5
6
7
s event_data_t ev;
9

while(true) { I/l do forever
10 waitfor(EV_1, ev); //waitfor event of type EV_1
1 process(ev.data); // process event data
12 waitfor(EV_2, ev); // waitfor event of type EV_2
13 process(ev.data); /] process event data
14 ...
15 }

16 }
17 void thread_2(0) { ... }

40 Chapter 3. Programming and Runtime Environments

System Requirements for Multi-Threading

Multi-threading requires operating-system level support for switching between
the contexts of different tasks at runtime. In a context switch, the currently run-
ning thread is suspended by the system software and another thread is selected
for execution. Then the context of the suspended thread must be saved to mem-
ory, so that it can be restored later. The context contains the program state as
well as the processor state, particularly any registers that the thread may be us-
ing (e.g., the program counter). The data-structure for holding the context of a
thread is called a switchframe. The system software must then load the switch-
frame of the thread to run next and resume its execution.

Multi-threading requires significant amounts of memory to store the switch-
frames of suspended threads. Also, in every context switch, data worth of two
switchframes is copied, from the registers to data memory and vice versa. For
slow and resource-constrained sensor nodes this means a significant investment
in memory as well as CPU cycles [36, 59].

For example, the Atmel ATmega 128 microcontroller, a microcontroller used in
several COTS sensor-node designs (e.g., Berkeley Motes, BTnodes, and others),
has 25 registers of 16 bit each. Therefore each context switch requires to copy
100 bytes of data only for saving and restoring the processor state. Experiments
on this microcontroller in [36] confirm that the context switching overhead of
multi-threaded programs is significant, particularly under high system load. A
test application run under high load (i.e., under a duty cycle of about only 30%)
on the multi-threaded Mantis operating system exhibited 6.9% less idle time
compared to a functionally equivalent application on the event-driven TinyOS.
(Before both operating systems had been ported to the same hardware platform).
The reduction in idle time and the associated increase in power consumption are
attributed to the switching overhead.

Additionally, each thread has its own state, which is stored by the runtime
stack. The runtime stack stores information about the hierarchy of functions
that are currently being executed. Particularly it contains the parameters of
functions, their local variables, and their return addresses. The complete per-
thread stack memory must be allocated when the thread is created. It cannot
be shared between concurrent threads. Because it is hard to analyze how much
stack space a thread needs exactly, runtime per-thread stacks are generally over-
provisioned. The consequence of under-dimensioned stacks are system crashes
at runtime.

The overhead of per-thread data-structures, that is, runtime stacks and switch-
frames, is often forgotten in evaluations of memory footprints of multi-threaded
sensor-node operating systems. However, this inevitable memory overhead can
consume large parts of the memory resources of constrained nodes (cf. [37]).

Reliability, Debugging, and Modularity Issues

Besides of its memory overhead, multi-threading has issues with reliability and
modularity. Programmers are responsible for synchronizing threads manually
using special synchronization primitives, which materializes as additional pro-
gram code. Proper synchronization requires a comprehensive understanding
of the data and timing dependencies of all interacting threads within a pro-

3.2. Programming Models 41

gram. Gaining this understanding becomes increasingly difficult in programs
with many and complex dependencies, particularly when multiple program-
mers are involved.

It is generally acknowledged that thread-synchronization is difficult, because
threads may interact with each other in unpredictable ways [30, 94]. Common
errors are data races and deadlocks. Data races occur because of missing thread
synchronization. However, also the overuse of synchronization primitives can
lead to errors, namely deadlocks, and execution delays. Particularly atomic sec-
tions in application programs can delay time critical operations within drivers
and lead to data loss. Such errors may break the application program as well as
even the most carefully crafted error-recovery mechanisms, rendering affected
sensor nodes useless in the field. Choi et al. [30] have found that programmers
that are new to multi-threading often overuse locking primitives.

On top of being error-prone, multi-threaded programs are also very hard to
debug. Often synchronization errors depend on the concrete timing character-
istics of a program [30]. Local modifications to the program code can expose
a previously undetected error in a different part of the code. In the case of an
error typically the exact timing history cannot be reproduced to aid in debug-
ging. These characteristics make tracking down and fixing errors painful and
time consuming.

Finally, multi-threading may also hinder program modularity. Threads typi-
cally communicate with shared data. Because of the synchronization required
for the protection of shared data, interacting threads are no longer independent
of each other. To reuse threads in a different program context or on a differ-
ent hardware platform programmers must understand their internals, such as
data dependencies and timings, and carefully integrate them into the new pro-
gram context. Therefore threads cannot be designed as independent modules
and have no well defined interfaces.

Discussion

Though threads are a powerful programming abstraction (and particularly more
powerful than the event/action abstraction of the event-driven model), its
power is rarely needed. Because of its reliability and modularity issues, it has
been suggested [94] that multi-threaded programming in general (i.e., even for
general purpose computing platforms) should only be used in the rare cases
when event-driven programming does not suffice. Particularly for programs
that have complex data dependencies, thread synchronization becomes too dif-
ficult to master for most programmers. On the contrary, due to the run-to-
completion semantics, synchronization is rarely an issue in event-driven pro-
gramming. Additionally, the event-driven model incurs less overhead.

As we will discuss in the next chapter, WSN applications typically have many
and complex data dependencies throughout all parts of the program. Because
of the severe reliability and modularity issues that are thus to be expected and
the high resource overhead, we believe that the multi-threaded programming
model is not suitable as the main programming model for particularly resource-
constrained sensor nodes. This belief concurs with the view of many sensor-
network system experts (cf. [59, 60] and others). Most notably the designers of

42 Chapter 3. Programming and Runtime Environments

the Contiki programming framework [37], which combines the multi-threaded
and event-driven programming model, suggest that threads should be used
only as a programmer’s last resort.

3.3 Memory Management

In general-purpose programming frameworks there are two basic mechanisms
to memory management, which are typically used both. Dynamic memory man-
agement provides programmers with a mechanism to allocate and release chunks
of memory at any point in the program during runtime. In the absence of dy-
namic memory management (i.e., with static memory management), chunks of
memory can only be allocated at compile time. These chunks can neither be re-
leased nor can their size be changed at runtime. Dynamic memory management
does not depend on a particular programming or process model (as discussed
in the next section)—it can be used in combination with any model.

The second mechanism for the allocation of (typed) data is automatic variables
(typically also called local variables). Automatic variables are tied to the scope of
a function in sequential languages and are typically allocated on the stack. When
the function ends, automatic variables are automatically released (i.e., without
the manual intervention of a programmer). Automatic variables are considered
an integral part of sequential (i.e., procedural) programming languages. They
are provided by all sensor-node programming frameworks based on procedural
languages known to us. On the other hand, dynamic memory management has
several implementation and reliability issues, which has lead to its exclusion in
many sensor-node software designs. In this section we will briefly discuss these
issues.

3.3.1 Resource Issues

Today, dynamic memory management (as provided, for example, by the tradi-
tional C-language API malloc() and free()), is taken for granted by most
programmers. However, dynamic memory management is a major operating-
system service and requires thoughtful implementation. The memory allocation
algorithm must minimize the fragmentation of allocated memory chunks over
time but must also minimize the computational effort for maintaining the free-
memory list. Implementations of memory-allocation algorithms can constitute a
significant amount of the code of a sensor node’s system software. Also, the data
structures for managing dynamic memory can consume significant amounts of
memory by themselves, particularly if arbitrary allocation sizes are supported.

3.3.2 Reliability Concerns

In addition to the high cost of implementing dynamic memory management,
there are several reliability concerns. Typically coupled with virtual memory
and memory protection, dynamic memory management in traditional systems
relies on the support of a dedicated piece of hardware, the Memory Management
Unit (MMU). Since resource-constrained sensor nodes do not have a MMU, they

3.3. Memory Management 43

do not support memory protection. Thus the private data of user applications
and the operating system cannot be protected mutually from erroneous write
access.

Besides a general susceptibility to memory leaks, null-pointer exceptions, and
dangling pointers, there is an increased concern to run out of memory. Due to
the lack of cheap, stable, fast, and power efficient secondary storage, non of the
sensor-node operating systems known to us provide virtual memory. Instead,
sensor-node programs have to rely on the limited physical memory available on
the node.

An application’s memory requirements need to be carefully crafted to under
no circumstances exceed the available memory (or to provide out-of-memory
error handlers with every memory allocation). However, crafting an applica-
tion’s memory requirements is considered impractical or at least very hard for
systems supporting concurrency and for large applications that grow over time
and which involve multiple developers. Concurrent programs and threads com-
pete for the available memory. It is hard to reason about the maximum memory
requirements of a program as that would require to test every single control path
through the application for memory allocations.

While memory leaks, null-pointer exceptions, and dangling pointers could be
possibly debugged with the help of specialized development tools, it should be
noted that there are no practical techniques to reason about the entire memory
requirements (including stack size and dynamic memory) of an application. In
order to avoid out-of-memory errors, either the physical memory installed on
a node must be greatly over-provisioned (in terms of the program’s expected
maximum memory usage) or the developer relies entirely on static memory al-
location (plus other safety measures to prevent unlimited stack growth, like pro-
hibiting recursion).

3.3.3 Dynamic Memory Management for Sensor Nodes

Many sensor-node programmers have been hesitant to use dynamic mem-
ory due to the mentioned implementation and reliability issues [48]. There-
fore, many operating systems for sensor nodes do not provide support for dy-
namic memory management, for example, TinyOS [45], the BTnode system soft-
ware [21], and BTnut [123]. Currently MANTIS [8] does not provide dynamic
memory management but it is scheduled for inclusion in future versions.

Other operating systems for sensor nodes, like SOS [52], Impala [81], and
SNACK [48], provide dynamic memory management, but, in order to avoid
fragmentation of the heap, use fixed block sizes. Fixed-size memory allocation
typically results in the allocation of blocks that are larger than needed and there-
fore wastes a precious resource. In SNACK [48] only buffers for network mes-
sages are dynamically allocated from a managed buffer pool. Variables have to
by allocated statically.

44 Chapter 3. Programming and Runtime Environments

3.4 Process Models

Besides a basic programming model, the system software also provides other
features to support normal operation, such as process management. Processes
can be thought of as programs in execution. Two important features found in
most traditional system software related to process management are the ability
to run several processes concurrently and the ability to create processes dynam-
ically. It has been argued that these features would also be useful for sensor
networks, particularly in combination. For example, software maintenance and
changing application needs may require updates to a node’s software at run-
time [52], that is, after the node has been deployed and has started program
execution. It may also be useful to start and run applications in parallel [25],
for example, to run short-term tests or to perform sensor recalibration without
disrupting long-running monitoring applications.

Dynamically loadable programs and process concurrency are independent of
each other and require different support mechanisms in the system software.
Here again, for reasons of resource-efficiency and reliability, system designers
have to make design tradeoffs. In this section we will first present the runtime
support required for each feature before analyzing them together.

3.4.1 Overview

Operating systems supporting a dynamic process model can load a program’s ex-
ecutable (e.g., from the network or from secondary storage) at runtime to create
a new process. They can also terminate a process at runtime and remove its ex-
ecutable from the system’s memories. In contrast to this, in a static process model,
the system has to be shut down and reconfigured before a new application can
be run or removed from the system. Since physical contact with the node is often
infeasible after deployment of the WSN, several sensor-node platforms provide
a mechanism for delivering executables over-the-air through the wireless inter-
face. A dynamic process model is most useful and therefore often combined
with a concurrent process model, where several programs can run “at the same
time” by sharing the processor in time-multiplex.

3.4.2 Combinations of Processes Models

Modern general-purpose operating systems combine dynamic and concurrent
process models. In contrast, several sensor-node platforms, like TinyOS, BTnut,
and the BTnode system software, only provide a static, non-concurrent process
model. All existing sensor-node platforms that do provide dynamic processes
loading, however, also provide an environment for their concurrent execution.

Dynamic and Concurrent Process Models

In a dynamic process model, individual processes can be created at runtime.
To support dynamic loading of a process at runtime the program’s binary im-
age must be loaded (e.g., from secondary storage or over the network) into the

3.4. Process Models 45

node’s different memories. Process creation involves loading the program’s exe-
cutable code (known as the text section) into the node’s program memory, while
statically allocated and initialized data (known as the data section, which con-
tains, for example, global and static variables) are copied to data memory. At
compile time the exact memory locations where the program will reside after
loading is unknown. Therefore, the compiler generates so-called relocatable
code, where variables and functions are addressed by relative memory loca-
tions only. The system software then replaces the relative memory locations
with absolute addresses when the program is loaded at runtime. This process
is called relocation. In a combined, dynamic and concurrent program model, the
newly created process is added to the list of currently running processes. The
system software often is a separate process). For example, system services in
Contiki [37] are implemented as processes that can be replaced at runtime.

Static and Non-Concurrent Process Model

On the other hand, in a static process model in combination with a non-concurrent
process model only a single program can be installed and running at any time.
In such systems, the application code is linked to the system software at com-
pile time, resulting in a monolithic executable image. The executable image is
then uploaded to the memories of the node, effectively overwriting any previ-
ous software (application code as well as system-software code). A relocation
step is not required.

To be able to change the node’s software despite a static process model, sev-
eral runtime environments allow to reload the entire monolithic system image.
To do so, the currently running software stops its normal operation to receive
the new software image from the network and then saves it to data memory.
Then it reboots the processor in a special bootloader mode. The bootloader fi-
nally copies the image from data memory to program memory and reboots the
processor again in normal mode to start the newly installed image.

Other Combinations

Other combinations (concurrent but static; dynamic but non-concurrent) are also
possible, but have not seen much use in sensor-node operating systems. Only
the Maté virtual machine [79] allows to run a single, non-concurrent process,
which can be dynamically replaced during runtime.

3.4.3 Over-the-Air Reprogramming

To allow software updates of nodes deployed in the field, several systems im-
plement over-the-air reprogramming, where a new program image can be down-
loaded over the wireless interface. Over-the-air reprogramming should not be
confused with a dynamic process model. Over-the-air reprogramming merely
denotes the systems capability to receive a program image over the air and to
initiate its loading. The actual loading of the executable image to the system’s
memories then still requires one of the loading procedure as described above.

46 Chapter 3. Programming and Runtime Environments

Actual implementations of over-the-air programming often require the co-
operation of user-written application code. Over-the-air reprogramming is of-
ten provided as a substitute for dynamic process loading by several resource-
constrained sensor-node architectures. It has been deployed, for example, in
BTnode system software [21], BTnut [123], TinyOS [45]), Maté [79], and oth-
ers. A detailed survey of software update management techniques can be found
in [51].

3.4.4 Process Concurrency

In a concurrent process model, several processes can run at the same time. Since
wireless sensor nodes are typically single-processor systems, concurrent pro-
cesses need to be interleaved, with the processor multiplexed among them. Pro-
cessor multiplexing is called scheduling and is typically performed by the sys-
tem software as it is considered a fundamental system service. The points in
the programs where switching is best performed depends on the programs’ in-
ternal structure. Therefore, scheduling mechanisms are closely related to pro-
gramming models and their corresponding execution environments. For sensor
nodes two basic scheduling strategies exist. Architectures with an event-driven
execution environment typically provide a concurrency model that is also based
on events. Systems with a multi-threaded execution environment provide a con-
currency model based on context switches.

Context-Switching Processes

The design of process concurrency based on context switches for sensor nodes
can be best understood by comparing it to designs in general-purpose operating
systems.

Multi-tasking in general-purpose operating systems. Modern general-purpose
operating systems have two levels of concurrency—the first level among pro-
cesses, and the second level among the threads within a process. Both lev-
els have their own scheduling mechanism, which are both based on context
switches. Context-switching processes is referred to as multi-tasking. (The terms
task and process are often used synonymously.)

Multi-threading and multi-tasking are similar in many respects but differ in
the way they share resources. They both provide concurrency, the former among
the threads of a process, the latter among the processes running on a system.
Just like threads, tasks have their own sequential control flow and their own
context. And just like multi-threading, multi-tasking requires context switches
and individual stacks (one per task) to store context information. Therefore, the
system support required for multi-tasking is also very similar to that of multi-
threading, which we discussed previously in Sect. 3.2.4 on page 38.

The main difference to threads is that tasks typically do not share resources,
such as files handles and network connections. In particular, tasks have their
own memory regions that are protected against accidental access from other
tasks. This is desirable to protect correct programs from buggy ones. To provide
communication and synchronization amongst processes despite those protec-

3.4. Process Models 47

tive measures, special mechanisms for inter-process communication exist, like
shared memory, message passing, and semaphores.

The main objectives of process concurrency in general-purpose operating sys-
tems is to optimize processor utilization and usability (cf. [108]). While one
process is waiting for an input or output operation to commence (e.g., writing
a file to secondary storage or waiting for user input), another process can con-
tinue its execution. Therefore some process is always running. From a user per-
spective, process concurrency can increase the systems usefulness and reactivity.
Running several programs in parallel allows to share the processing power of a
single computer among multiple users. To each of the users it appears as if they
had their own (albeit slower) computer exclusively to them. Also, a single user
running several applications can switch back and forth between them without
having to terminate them.

Context-switching sensor-node processes. In order to avoid the resource over-
head induced by two layers of scheduling, context-switsched sensor-node oper-
ating systems typically only provide a single level of scheduling on the basis of
threads. That is, threads are the only scheduled entity. This does not mean,
however, that multi-threaded sensor-node operating systems cannot provide
process concurrency. If they do, the threads of distinct processes are context-
switched, thereby also switching processes. Processes then consist of a collec-
tions of threads, which are indistinguishable from the threads of other processes.
The notion of a process is entirely logical, denoting all threads belonging to a
program. In simple implementations a fine-grained control mechanism over the
CPU time assigned to processes is missing; a process with more threads may re-
ceive more CPU time. To dynamically create a new process, the binary image of
the program (consisting of a collection of threads) is loaded and all of its threads
are instantiated.

Threads or tasks? In the face of a single level of context switching, the ques-
tion my arise, why we consider the context-switched entities of sensor-node
system software to be threads rather then processes. This seems to be a rather
arbitrary, if not an unusual view, because in the history of modern operating-
system development, support for concurrent processes (e.g., multi-tasking) was
introduced well before concurrency within individual processes, as provided by
multi-threading (cf. [27]). In fact, multi-threading was long missing in general-
purpose operating systems.

Though threads and tasks are similar in several respects, they have been de-
veloped for different reasons and serve different objectives. While multi-tasking
aims more at the user of the computer system, multi-threading is mainly an ab-
straction to aid programmers. In sensor networks, concurrency is mainly consid-
ered a tool for specifying reactive programs while supporting multiple processes
or even multiple users is considered less important. Also, the context-switched
entities in wireless sensor networks have much more in common with threads
than processes, because of the way they share resources. Most of the measures
to protect distinct processes found in traditional multi-tasking systems are not
(and cannot be) implemented in sensor networks. Because of these reasons, the
term task has become widely accepted in sensor-network literature to denote
context-switched entities.

48 Chapter 3. Programming and Runtime Environments

Event-based Process Concurrency

In programming frameworks based on the event-driven programming model,
programs are composed of several actions. A property of the event-driven pro-
gramming model is that the actions of a program are scheduled strictly in the or-
der of the occurrence of their associated events. Scheduling mechanisms for the
concurrent execution of event-driven programs must not violate this property.
A possible implementation would be to context-switch concurrent event-driven
processes. Then, all the actions of a single program would still have run-to-
completion semantics, while actions of separate processes could interrupt each
other. However, because of the associated context-switching overhead of such a
approach, system designers prefer to also schedule the actions of separate pro-
cesses sequentially. For each event, the system software invokes the associated
action of every process. Actions then always run to completion. This approach
to scheduling actions of multiple, concurrent processes is depicted in Fig. 3.2.

Application 1 - 1 ationl1l - Jaction 1 2 f—— === -
Application 2 i B bbb qaction 2 1 [~ == " action 2 2 -~
Scheduler e 1 | — 1

I A :

(vl ev2
Event occurence 1 1 : : L

t1: 12 ty 2 [t
Event queue {} 3 {ev1} 3 {evl, ev2} 3 {ev2} 3 {}
4 A . .

Key: ' eventoccurance _.. delayed event handling passing of control flow

Figure 3.2: Scheduling concurrent, event-driven processes. For each event, the
system software invokes the associated action of every process. Ac-
tions always run to completion; their execution order is arbitrary.

In Fig. 3.2 there are two event-driven programs running concurrently. Both
of them react to events ev; and ev, (in act,; and act,,, respectively), where z
denotes the application number. On the occurrence of ev; the system software
first invokes acty; (of application 1) then acty; (of application 2). At time ¢} all
actions triggered by ev; have run to completion. Event ev, occurs before ¢; and
is stored in the event queue. Therefore, reactions to ev, are delayed until time ¢},
when it is dequeued.

Two questions become particularly apparent when studying Fig. 3.2. Firstly,
in which order should the event handlers be invoked? And secondly, how long
can the invocation of an action be delayed? The answer to the first question may
be of interest when both programs modify a shared state, such as the state of
system resources. Then, race conditions and possibly deadlocks may occur. Un-
less explicitly specified in the system documentation, application programmers

3.4. Process Models 49

can not rely on any particular order as it depends on the actual implementation
of the event-scheduling mechanism. In actual systems, the execution order of
actions of separate processes is typically arbitrary.

The answer to the second question—how long can actions be delayed?— may
be important when applications have real-time constraints. The answer depends
on the execution times of actions from the different programs running concur-
rently and can therefore not be answered easily by any single application de-
veloper. From our experience with the event-driven model it is already hard
to analyze the timing dependencies in a single application without appropriate
real-time mechanisms. In a concurrent execution environment, where no single
application programmer has the entire timing information, timing estimates are
even harder to get by. Therefore, concurrent process models based on events can
decrease the systems reliability. Since almost all application have at least some
moderate real-time constraints, we believe that process concurrency should be
avoided on event-driven sensor nodes.

Note that a question similar to the second (i.e., how long can the invocation
of an action be delayed?) also arises in multi-treading environments. For such
environments the reformulated question is: how much slower can the program
become with multiple threads running concurrently. In multi-treading environ-
ments the execution delay of operations only depend on the own application
code and the number of programs running concurrently, not the contents (i.e.,
the code) of other programs. For example, in the simple round-robin scheduling,
the CPU time is equally divided among threads. If n threads are running, each
thread is allocated to the CPU for the length of a time slice before having to wait
for another n — 1 time slices. Therefore the execution speed is only 1/(n)-th of
a system with only a single program executing. Actual implementations would
be slower since context-switching consumes non-negligible time.

3.4.5 Analysis of Process Models

Mainly because of potentially unresolvable resource conflicts there are several
reliability issues with process concurrency in sensor networks, regardless if its
implementation is based on context-switches or events.

When appropriate mechanisms for inter-process protection are missing,
which is the rule rather than the exception, a single deficient process can jeop-
ardize the reliability of the entire system. Even without software bugs it is prac-
tically impossible to analyze in advance whether two concurrent processes will
execute correctly. One problem is, that programs compete for resources in ways
that cannot be anticipated by programmers. If one process requires access to
exclusive resources, such as the radio or sensors, they may be locked by an-
other process. Limited resources, such as memory and CPU time, may be un-
available in the required quantities. Identifying potential resource conflicts is
very hard and fixing them with alternate control flows is practically infeasible.
To make things worse, programmers of different applications typically cannot
make arrangements on the timing of CPU intense computations and high re-
source usage. Therefore there are typically innumerable ways how two pro-
cesses can ruin each others assumptions, particularly in the face of slow and
resource-constrained sensor nodes.

50 Chapter 3. Programming and Runtime Environments

Particularly the memory subsystem poses serious threads to concurrent pro-
gramming. Sensor nodes do not provide virtual memory and therefore applica-
tions have to make do with the limited physical memory provided on a node.
We expect that most non-trivial sensor-node programs occupy most of the sys-
tems’ physical memory. It is generally hard to reach a good estimate of even
a single program’s memory requirements, particularly with dynamic memory
allocation. Multiple competing programs certainly increase the uncertainty of
such estimates. If processes require more than the available memory, system
crashes or undefined behavior may result. As a consequence, the affected node
or even an entire network region connected through that node may be unusable.

In sensor networks, concurrency on the process level does not play the same
role as in general-purpose systems. Its purpose in traditional operating systems
to increase processor utilization is contradictory to the design philosophy of sen-
sor networks. In fact, as we pointed out earlier, most program architectures
strive to maximize idle times in order to save power. Also, it is not expected
that sensor nodes are used by multiple users to the same degree as traditional
computing systems.

Though process concurrency may be a useful feature for sensor-network op-
erators and users, we suggest its implementation only in sensor-node design
with appropriate protection mechanism and resource provisions. In constrained
nodes, however, the are severe reliability issues, which make its support pro-
hibitive.

3.5 Overview and Examples of State-of-the-Art
Operating Systems

In the previous sections we have discussed the principle programming and
process models, as well as dynamic memory-management support of current
sensor-node operating systems. The discussion represents the state-of-the-art of
sensor-node programming and is based on current literature. The discussion
focuses on resource-constrained sensor node platforms.

Before presenting two concrete examples of event-driven operating systems in
greater detail, we will first summarize the previously discussed state-of-the-art
sensor-node operating systems in Tab. 3.1. For each of the eight discussed op-
erating systems, the table lists the system’s programming language, the process
and programming model, and the target-device features. The concurrency col-
umn under the heading process model denotes if the OS supports running multi-
ple processes concurrently. The dynamic loading column under the same heading
denotes if new processes can be loaded and started at runtime without also hav-
ing to reload and restart the OS itself. Systems supporting dynamic loading of
processes typically also support running multiple processes concurrently. The
only exception is the Maté virtual machine, which supports dynamic loading of
user applications but can only run one of them at a time.

Actual operating systems often implement variations of the basic program-
ming models and often differ significantly in the system services provided. We
will now present two representatives of current event-based operating systems;
our BTnode system software, and the system that is sometimes referred to as the

3.5. Overview and Examples of State-of-the-Art Operating Systems 51

Programming Framework Process Model Programming Model Target Device

Operating Progr. Con- Dy- Scheduling | Dyn. processor core, clock, RAM,

System Language cur- namic Mem. ROM, secondary storage

rency Loading

TinyOS nesC no no events no Berkeley Motes

[45] 8-bit, 8 MHz, 4 Kb, 128 Kb, -

Maté VM Maté no yes events no Berkeley Motes

[79] bytecode 8-bit, 8 MHz, 4 Kb, 128 Kb, -

BTnode C no no events no? BTnode (ver. 1 and 2)

[21] 8-bit, 8 MHz, 4 Kb, 128 Kb

BTnut C no no threads? no® BTnode (ver. 3)

[123] 8-bit, 8 MHz, 64 Kb, 128 Kb,
192 Kb RAM

SOS C yes yes events yes® Berkeley Motes and others

[52] 8-bit, 8 MHz, 4 Kb, 128 Kb, -

Contiki C yes yes events and no* ESB node [47]

[37] threads? 16-bit, 1 MHz, 2 Kb, 60 Kb, -

Impala n/a n/a n/a prioritized yes® ZebraNet node

[81] events 16-bit, 8 Mhz, 2 Kb, 60 Kb,
512 Kb Flash RAM

MANTIS C yes yes threads? no Mantis node

[8] 8-bit, 8 MHz, 4 Kb, 128 Kb, -

Dynamic memory allocation is provided by the standard C library libc for Atmel microcon-
trollers but is neither used in the OS implementation nor recommended for application pro-
gramming.

Cooperative multi-threading.

Fixed (i.e., predefined) block sizes only.

4Preemptive multi-threading.

Table 3.1: Current programming frameworks for resource-constrained sensor
nodes. The frameworks” runtime environment (as provided by the
system software) supports different process models and programming
models as discussed in sections 3.2 and 3.4. (n/a: feature not specified
in the available literature.)

de facto standard of sensor-node operating systems, TinyOS. We will discuss
their features and their deviations to the basic model in more detail.

3.5.1 The BTnode System Software

The BTnode system software (see Fig. 3.3) is a lightweight OS written in C and
assembly language that has been initially developed for the first version of the
BTnode. The system provides an event-based programming model.

It does not provide dynamic loading of processes and has a non-concurrent
process model. Though dynamic memory allocation is available, the system
software is only using static memory allocation to avoid reliability issues. Ap-
plication programmers are also strongly discouraged to used dynamic memory
allocation. The drivers, which are available for many hardware subsystems and
extensions (e.g, the Bluetooth radio and several sensors subsystems), provide
convenient, event-driven APIs for application development.

The BTnode system is composed of four principal components (see Fig. 3.3):
the sensor-node hardware, the drivers, the dispatcher, and an application (which

52 Chapter 3. Programming and Runtime Environments

register
Application Action 1 Action 2 Action 3 Actionn <
invoke
: read(), write(), control() 5 3
Y Y S o
— — — — g 2
| | [[Sensor | [| [And 2
Bluetooth Board Sersors 0
Drivers : : § | . >
Y Y Y y Y insert
RTC UART 12C GPIO ADC
A A A A A
L] y y y y
Hardware BTnode
: Interrupts and register access , Function call I:I Application Programming Interface

Figure 3.3: The BTnode system software and programming framework for WSN
applications.

is composed of one or multiple actions). The components have clearly defined
interfaces through which they are accessed. A central component is the dis-
patcher.

Drivers and Dispatcher

The drivers have two interfaces, a lower interface to the hardware and an upper
interface to the application code. Through the lower interface they receive and
send IO data in a hardware-specific manner through interrupt service routines
and hardware registers. Through their upper interface they provide a conve-
nient user-programming API for controlling the hardware and IO. Drivers never
call any application code directly. Instead, to notify the application of hardware
state changes, they use the dispatcher’s interface to insert an event into its event-
queue. This dispatcher then invokes the appropriate application code (i.e., an
action).

In the BTnode system software there is a hierarchy of drivers. Low-level
drivers interact with the hardware directly (such the real-time clock driver).
Higher-level drivers only interact with the hardware indirectly and require other
lower-level drivers. For example, the Bluetooth driver relies on the real-time
clock and the UART driver.

The drivers are designed with fixed buffer lengths that can be adjusted at
compile time to meet the stringent memory requirements. Available drivers
include nonvolatile memory, real-time clock, UART, I?C, general purpose 10O,
LEDs, power modes, and AD converter. The driver for the Bluetooth radio pro-
vides a subset of the networking functionality according to the Bluetooth speci-
fication. It accesses the Bluetooth module through an UART at a speed of up to
230400 baud. Bluetooth link management is performed on Bluetooth’s L2CAP
layer. RFCOM, a serial port emulation, provides connectivity to computer ter-
minals and consumer devices, such as cameras and mobile phones. Dial-up con-

3.5. Overview and Examples of State-of-the-Art Operating Systems 53

nections to modem servers through a mobile GSM phone are easily established
with a special-purpose function. All other GSM services (such as file sharing,
phone book and calendar) can be utilized through lower-level interfaces.

Programming Model

The system is geared towards the processing of (typically externally triggered)
events, such as sensor readings or the reception of data packets on the Bluetooth
radio. To this end, BTnode applications follow an event-based programming
model, where the system schedules user-specified actions on the occurrence of
events. A set of predefined event types is used by the drivers to indicate critical
system conditions.

Upon detecting such a critical a condition, a driver inserts the corresponding
event into the FIFO event-queue, which is maintained by the dispatcher. While
the event-queue is not empty, the dispatcher removes the first event from the
queue and invokes its associated user-defined action. Programmers implement
actions as C functions. In actions, the programmer can use the (non-blocking)
driver APIs to access IO data buffered in the drivers or to control their behavior.
Programmers can also define their own event types and can insert instances
of those events into the event queue from actions (not shown in Fig. 3.3). The
different types of events are internally represented by 8-bit integer values (see
Prog. 3.4 for examples).

Unlike several other event-based systems the association of events and actions
is not fixed. Rather, applications can dynamically associate actions with event
types. For this purpose, the dispatcher offerers a dedicated registration function,
which takes the an event and an action as parameter (see btn_disp_ev_reg()
in Prog. 3.4). Despite these dynamics, the association between events and ac-
tions typically remains relatively stable throughout the execution of a program.
Often it is established only once during program initialization. After the dis-
patcher has been started, it accepts events from drivers and applications. It re-
mains in control until an event is inserted into the queue. Then it invokes the
corresponding action. Once the action is completed, the dispatcher checks for
the next unprocessed event and invokes the corresponding action. Actions have
a predefined signature as defined in Prog. 3.4, lines 11-13.

Actions have two arguments, called call data and the callback data. Both ar-
guments are of an untyped field of fixed length (32 bit); they are passed to the
action when it is invoked by the dispatcher. The callback data argument can be
specified by programmers in the dispatcher’s registration function. The argu-
ment is stored in the dispatcher and passed to actions when they are invoked.
That is, the callback data is event-type specific. The call data argument is invo-
cation specific. For user-defined event types the call-data values can be passed
when inserting individual event instance into the queue. For system specified
event types the call-data argument has a type-specific meaning. Its value is set
by the driver generating the event. The predefined event types and their associ-
ated call-data arguments are:

e TIMEOUT_EV: a timeout has expired. The call-data parameter carries a
timestamp to indicate when the timer was set to expire (as there may be
scheduling delay).

54

Chapter 3. Programming and Runtime Environments

Program 3.4: API of the dispatcher. Lines 1-4 show examples of predefined
event definitions; in line 7-13 the signature of actions are defined;
the dispatcher’s registration function is shown in lines 16-19; the
insert function is shown in lines 21-24.

© e N G ke W N e

e - T e T
W N = O

_
'S

15

16

17

18

19

20

21

22

23

24

#define UART®_RCV_EV 2
#define BT_CONNECTION_EV 8
#define BT_DISCONNECT_EV 9
#define BT_DATA_RCV_EV 10

-~
~

typedef uint32_t call_data_t;
typedef uint32_t cb_data_t;

/l signature of an action
typedef void (*callback_t) (

// data available for reading on UARTO
[/l Bluetooth connection occurred
// Bluetooth disconnect occurred
// Bluetooth data packet received

call_data_t call_data,
cb_data_t cb_data);

// the dispatcher’s registration function

void btn_disp_ev_reg(
uint8_t ev,
callback_t «cb,
cb_data_t cb_data);

I/l the dispatcher’s insert function
void btn_disp_put_event(
uint8_t ev,

/I event ‘ev’ triggers action ‘cb’
// with the parameter specified
/l'in ‘cb_data’

/l insert ‘ev’ to the event queue
// ‘call_data’ is passed as argument

call_data_t call_data); //to the action invoked by this event

¢ ADC_READY_EV: a data sample is available from the ADC converter and

it is ready for the next conversion. The call-data carries the conversion
value.

[2C_RCV_EV: data has been received on the system’s I?*C-bus and is now
available for reading from the incoming buffer. The number of bytes avail-
able for reading at event-generation time is passed as call-data parameter.

[2C_WRT_EV: the I*C-bus is ready for transmitting data. The call-data
parameter carries the current size of the outgoing buffer.

UART_RCV_EV: data has been received on the system’s UART and is now
available for reading from the incoming buffer. The number of bytes avail-
able for reading at the event-generation time is passed as call-data param-
eter.

UART_WRT_EV: the UART is ready for transmitting data. The call-data
parameter carries the current size of the outgoing buffer.

3.5. Overview and Examples of State-of-the-Art Operating Systems 55

e BT_CONNECTION_EV: a Bluetooth connection-establishment attempt
has ended. The connections status (i.e., whether the attempt was success-
ful or has failed, as well as the reason for its failure) and the connection
handle are passed as call data.

* BT_DATA_RCV_EV: a Bluetooth data packet has been received and is
ready for reading. The index to the packet buffer is passed as call data.

The code in Prog. 3.5 shows a typical BTnode program. The program waits until

a Bluetooth connection is established remotely and then sends a locally sampled
temperature value to the remote unit. During initialization (lines 5-11) the pro-
gram registers the action conn_action() to be called on BT_CONNECTION_EV
events (line 8) and sensor_action() to be called on BT_ADC_READY_EV
events (line 10). It then passes control to the dispatcher (line 11), which enters
sleep mode until events occur that need processing.

Once a remote connection is established, the Bluetooth driver generates the
BT_CONNECTION_EWvent and thus conn_action() (line 14) is invoked. In
conn_action() the program first extracts the connection identifier from the
call-data argument and saves to a global variable for later use (line 16). Then it
starts the conversion of the analogue temperature value (line 18). On its com-
pletion, the BT_ADC_READY_EW¥vent is generated and sensor_action() is
invoked. Now the temperature value is extracted from the call-data argument
(line 24) and sent back to the initiator (line 24), using the previously saved con-
nection identifier. The same sequence of actions repeats on the next connection
establishment. Until then, the dispatcher enters sleep mode.

Process Model

Like most operating systems for sensor nodes, the BTnode system software does
not support a dynamic process model. Only a single application is present on
the system at a time. At compile time, applications are linked to the system
software, which comes as a library. The resulting executable is then uploaded
to the BTnode’s Flash memory, effectively overwriting any previous application
code. After uploading, the new application starts immediately.

However, the BTnode system can also be reprogrammed over-the-air using
Bluetooth. To do so, the application currently running on the system needs to
receive the new executable, save it to SRAM, and then reboot the system in boot-
loader mode. The bootloader finally transfers the received executable to Flash
memory and starts it. Over-the-air programming is largely automated; it is a
function of the system software but needs to be triggered by the user applica-
tion.

Portability

The whole system software is designed for portability and is available for dif-
ferent operation environments (x86 and iPAQ Linux, Cygwin, and Mac OS X)
apart from the BTnode platform itself. These emulations simplifies application
building and speed up debugging since developers can rely on the sophisticated
debugging tools available on desktop systems. Also, the time for uploading the

56 Chapter 3. Programming and Runtime Environments

Program 3.5: A simple BTnode program handling two events in two actions.
The action conn_action() handles (remotely) established con-
nections while sensor_action() handles (local) sensor values
after they become available.

1 #include <btnode.h>
> static uintl6_t connection_id = 0;
3
int main(int argc, char* argv[]) {
btn_system_init(argc, argv, /* ... */);
btn_bt_psm_add(101); /* accept remote connections */
/ register conn_action() to be invoked when a connection is established
btn_disp_ev_reg(BT_CONNECTION_EV, conn_action, 0);
I register sensor_action() to be invoked when conversion is done
10 btn_disp_ev_reg(BT_ADC_READY_EV, sensor_action, 0);
11 btn_disp_run();
12 return 0; /* not reached */
13 }
12 void conn_action(call_data_t call_data, cb_data_t cb_data) {
15 /I remember connection id for reply
16 connection_id = (uintl6_t)(call_data & OxFFFF);
17 /I read temperature value from ADC converter
18 bt_adc_start();
19 }
20 void sensor_action(call_data_t call_data, cb_data_t cb_data) {
21 /] extract the converted value from the call-data argument
2 uint8_t temperature = (uint8_t)(call_data & OxFF);
P I reply with a packet containing only the temperature value (1 byte)
24 btn_bt_data_send(connection_id, &temperature, 1);

© e N o U

sensor-node application to the embedded target can be saved for testing. Fur-
thermore, various device platforms (such as PCs or iPAQs running Linux) can be
seamlessly integrated into BTnode networks (e.g., to be used as cluster heads),
reusing much of the software written for the actual BTnode. These devices can
then make use of the resources of the larger host platforms, for example, for
interfacing with other wireless or wired networks, or for providing extended
computation and storage services.

3.5.2 TinyOS and NesC

Another representative of an event-driven programming framework is the one
provided by the TinyOS operating system and its incorporated programming
language nesC [45, 59]. (Since operating system and programming language in-
herently belong together, we use the term TinyOS to denote both. Only where
not clear from the context, we use TinyOS to denote the execution environment
and operating system, and nesC to denote the programming framework and
language.) TinyOS is often considered the de facto standard in WSN oper-

3.5. Overview and Examples of State-of-the-Art Operating Systems 57

ating systems and programming frameworks today. Since its introduction in
2000, TinyOS has gained significant impact, possibly because of the success in
the commercialization of its standard hardware platform, the Berkeley Motes.
The early availability of the complementary combination of the freely avail-
able and well-supported programming framework and sensor-node hardware
has made experimentation accessible to researchers without embedded systems
background and without capabilities to develop and manufacture their own
hardware.

TinyOS targets resource-constrained sensor nodes and has been implemented
on the Berkeley Mote family as well as other sensor nodes, such as the
BTnode [78]. Its goal is to provide standard sensor-node services in a modu-
lar and reusable fashion. TinyOS has a component-oriented architecture based
on an event-driven kernel. System services (such as multi-hop routing, sensor
access, and sensor aggregation) are implemented as a set of components with
well-defined interfaces. Application programs are also implemented as a set
of components. TinyOS components are programmed in a custom C dialect
(called nesC), requiring a special compiler for development. A simple declar-
ative language is used to connect these components in order to construct more
complex components or entire applications. The designers of TinyOS consider it
a static language, as it supports neither dynamic-memory allocation, nor process
concurrency or dynamic loading. (It does, however, provide static over-the-air
reprogramming).

TinyOS has an event-driven programming model. However, it has two lev-
els of scheduling, rather than just one, as all other event-driven programming
frameworks for sensor nodes. The scheduled entities are called tasks and events.
This terminology is highly confusing: TinyOS tasks have no similarities to tasks
in multi-tasking systems. Rather, a TinyOS task is what in event-driven systems
is commonly known as an action or event handler. TinyOS tasks are scheduled
sequentially by the scheduler and run to completion only with respect to other
TinyOS tasks. They may be interrupted, however, by TinyOS events.

A TinyOS event is not what is commonly considered an event in the event-
driven systems (i.e., a condition triggering an action). Rather, it is a time-
critical computational function that may interrupt the regular control flow
within TinyOS tasks as well as other TinyOS events. TinyOS events have been
introduced so that a small amount of processing associated with hardware in-
terrupts can be performed as fast as possible, without scheduling overhead but
instead interrupting long-running tasks. TinyOS events are required to complete
as fast as possible, in order not to delay any other time-critical TinyOS events.
As such, TinyOS events are programming abstractions for interrupt service rou-
tines. Apart from being triggered by hardware interrupts, TinyOS events can
also be invoked by regular code. Then they behave like regular functions.

Besides, TinyOS tasks and TinyOS events, TinyOS has a third programmatic
entity, called commands. TinyOS commands resemble functions of sequential
programming languages but have certain restrictions (e.g., they may not invoke
TinyOS events).

TinyOS applications can have a graph-like structure of components but are
often hierarchical. Each component has a well-defined interface that can be used
to interconnect multiple components to construct more complex components

58 Chapter 3. Programming and Runtime Environments

or to form an application. Each component interface defines the tasks, events,
and commands it exports for use by other components. Each component has a
component frame, which constitutes the component’s context, in which all tasks,
events, and commands execute and which stores its state. Components may
be considered objects of a static object-oriented language. Components always
exist for the entire duration of a process and cannot be instantiated or deleted
at runtime. The variables within a component frame are static (i.e., they have
global lifetime) and have component scope (i.e., are visible only from with in
the component). However, multiple static instances of a component may exist as
parameterized interfaces. Parameterized interfaces are statically declared as array
of components and are accessed by index or name. The elements of a component
array provide identical interfaces but have individual states. They are used to
model identical resources, such as individual channels of a multi-channel ADC
or individual network buffers in an array of buffers.

TinyOS is inherently event-driven and thus it shares the benefits of event-
driven systems. As an event-driven system it has only a single context in which
all program code executes. Therefore the implementation of TinyOS avoids
context-switching overhead. All components share a single runtime stack while
component frames are statically allocated, like global variables. As a deviation
from the basic event-driven model, TinyOS has a two-level scheduling hierar-
chy which allows programmers to program interrupt service routines similar to
event handlers using the TinyOS event abstraction. In most other event-driven
systems, interrupts are typically hidden from the programmer and are handled
within the drivers. IO data is typically buffered in the drivers and asynchronous
events are used to communicate their availability to user code. In TinyOS, on
the contrary, interrupts are not hidden from the programmer. This has been a
conscious design decision. It allows to implement time critical operations within
user code and provides greater flexibility for IO-data handling.

However, this approach has a severe drawback. TinyOS events may interrupt
tasks and other events at any time. Thus TinyOS requires programmers to ex-
plicitly synchronize access to variables that are shared within tasks and events
(or within multiple events) in order to avoid data races. TinyOS has many of
the synchronization issues of preemptive multi-tasking, which we consider one
of the main drawback of TinyOS. In oder to support the programmer with syn-
chronization, more recent versions of nesC have an atomic statement to enforce
atomic operation by disabling interrupt handling. Also, the nesC compiler has
some logic to warn about potential data races. However, it cannot detect all
race conditions and produces a high number of false positives. A code analysis
of TinyOS (see [45]) and its applications has revealed that the code had many
data races before race detection was implemented. In one example with race
detection in place, 156 variables were found to have (possibly multiple) race
conditions, 53 of which were false positives (i.e., about 30%).

The high number of actual race conditions in the TinyOS show that interrupt-
ible code is very hard to understand and manage and thus highly error prone.
Even though the compiler in the recent version now warns about potential data
races, it does not provide hints on how to resolve the conflicts. Conflict resolu-
tion is still left to programmers. The high rate of false positives (about 30%) may
leave programmers in doubt whether they deal with an actual conflict or a false

3.6. Summary 59

positive. Chances are that actual races remain unfixed because they are taken
for false alerts.

Also, as [30] has shown, programmers who are insecure with concurrent pro-
gramming tend to overuse atomic sections in the hope to avoid conflicts. How-
ever, atomic sections (in user-written TinyOS tasks) delay the execution of in-
terrupts and thus TinyOS events. As a consequence, user code affects—and may
break!-the system’s timing assumptions. Allowing atomic sections in user-code
is contrary to the initial goal of being able to handle interrupts without schedul-
ing delay. From our experience of implementing drivers for the BTnode system
software we know that interrupt timing is highly delicate and should not be left
to (possibly inexperienced) programmers but to expert system architects only.

3.6 Summary

In this chapter we have presented programming and runtime environments of
sensor nodes. We have presented the three most important requirements for
sensor-node system software: resource efficiency, reliability, and programming
support for reactivity. We have also presented the three main programming
models provided by state-of-the-art system software to support application pro-
gramming. And we have presented common process models of sensor-node
system software, which support normal operation of sensor nodes, that is, once
they are deployed. Finally, we have presented selected state-of-the-art runtime
environments for sensor nodes.

We have concluded that the control-loop programming model is overly simple
and does not provide enough support even for experienced programmers. On
the other hand, multi-threading is a powerful programming model. However,
it has two main drawbacks. Firstly, multi-threading requires extensive system
support for context switches. The per-thread data-structures (i.e., runtime stacks
and switchframes), already consume large parts of a node’s memory resources.
Also, copying large amounts of context information requires many CPU cycles.
Other authors before us have reached at the same conclusions (cf. [36, 37, 59, 60]).
Also, multi-threading is considered too hard for most programmers because of
the extensive synchronization required for accessing data shared among mul-
tiple threads. In [94] Ousterhout claims that multi-threading should be used
only when the concurrent program parts are mostly independent of each other
and thus require little synchronization. In sensor-node programming, however,
threads are mainly used to specify the reactions to events that influence a com-
mon program state.

To provide a programming model without the need for processor sharing, per-
thread stacks, and locking mechanisms, the event-driven programming model
has been proposed for sensor-node programming. We and other authors have
shown (both analytically and with prototype systems) that the event-driven pro-
gramming model requires little runtime support by the underlying system soft-
ware and can thus run on even the most constrained nodes. Yet it promises to
be an intuitive model for the specification of sensor-node applications as it vir-
tually embodies the event-action programming philosophy of wireless sensor
networks.

60 Chapter 3. Programming and Runtime Environments

Both of these models have their advantages and drawbacks, their followers
and adversaries. In the context of sensor networks there is a bias towards event-
based systems, mainly due to the existence of popular event-based program-
ming toolkits such as TinyOS and nesC, which have a large user base. Hence,
many sensor-network programmers are already used to think in terms of events
and actions and find it natural to structure their programs according to this
paradigm.

In the next chapter we will take a closer look at the event-driven model. We will
analyze its expressiveness and resource requirements based on our own experi-
ence as well as on current literature. We will show that the event-driven model
is also not without problems. There are also issues with reliability, program
structure, and, ironically, with the memory efficiency of application programs
(as opposed to operating systems, as is case with operating systems supporting
multi-threading). We will show that these issues arise because the event-driven
programming model is lacking a mechanism to clearly specify and memory-
efficiently store temporary program states. But we will also sketch an approach
to solve these problems. This approach will become the foundation of our OSM
programming model and execution environment which we will present in chap-
ter 5.

4 Event-driven Programming in
Practice

The event-driven model is the favorite programming model among many
sensor-network application programmers. In the last chapter we have shown
several potential reasons for this preference: the model’s event-action paradigm
is intuitive and captures the reactive nature of sensor-node programs well,
event-driven system software requires little of the node’s constrained resources
for its implementation, thus leaving most resources available for application
programming, and finally, the early availability of the well-maintained event-
driven TinyOS platform combined with a commercial sensor-node, the Berkeley
Motes.

We have gained extensive experiences with the event-driven programming
model ourselves. We have designed and implemented the BTnode system soft-
ware, an event-driven runtime environment and programming framework for
BTnodes (as presented in Sect. 3.5.1). Some of the system’s more sophisti-
cated drivers, such as the Bluetooth radio driver, are based on the event-driven
model [21]. Also, we have developed many applications based on the event-
driven model [21], mainly in the Smart-Its [62] and Terminodes [65] research
projects.

However, in working with the BTnode system we have found two issues with
the event-driven programming model. Firstly, the model is hard to manage, par-
ticularly as application complexity grows. Dunkles et al. [37] arrive at the same
conclusion and [79] reports that programming TinyOS is “somewhat tricky” be-
cause of its event-driven programming model. And secondly, the event-driven
programming imposes a programming style that results in memory inefficient
application programs. Then, of course, two questions arise: What are the rea-
sons for the model’s drawbacks? And: Is there a fix? In this chapter we will give
an answer to the first question and we will outline an answer for the second.

The baseline for both issues is that the event-driven model, though easy and
intuitive, does not describe typical sensor-node applications very well. The
model is sufficient for small sensor-network demonstrators and application pro-
totypes. However, the model simply does not provide expressive enough ab-
stractions to structure large and complex real-world sensor-network applica-
tions. Particularly, we believe that the model is lacking an abstraction to struc-
ture the program code along the time domain to describe program states or
phases. The lack of such an abstraction is the fundamental reason for the above
mentioned problems and is the starting point for developing our solution.

Phases are distinct periods of time during which the program (or part of it)
performs a single logical operation. A phase may include several events, which
are handled within the context of the logical operation. Sensor nodes need to
perform a variety of ongoing operations that include several events. Examples

62 Chapter 4. Event-driven Programming in Practice

are as gathering and aggregating sensory data, setting up and maintaining the
network, forwarding network packets, and so on. Typical sensor-node programs
are structured in distinct and discrete phases, that is, the program’s operations are
clearly separable and execute mostly sequentially.

“Phase” is just one term that appears over and over in the WSN literature
to describe the program structure of sensor-node applications and algorithms.
Other frequently used terms with the same intention are “state”, “role”, “mode”,
or “part”. Some authors even articulate that sensor-node programs in general
are constructed as state machines [25, 37, 45, 80] because of their reactive nature.
Notably, even multi-threaded programs are submitted to this view. Curiously,
despite that fact that phases seem to be the prime concept in which application
architects and programmers think, the predominant programming models for
sensor nodes have no explicit abstraction to specify such phases. Only the au-
thors of NesC have identified the lack of state support in [45] and have put their
support on the agenda for future work.

We believe that the state abstraction of finite state machines is an adequate ab-
straction to model sensor-node program phases and that a programming model
based on finite state machines can eventually solve the problems of the event-
driven model. Particularly, we propose a programming model based on con-
current and hierarchical state machines, as proposed in the seminal work on
Statecharts [53] by Harel.

In this chapter we will first examine the problem symptoms of the event-
driven model in Sect. 4.1. Then, in Sect. 4.2, we will present what we call the
anatomy of sensor-node programs, that is, typical and recurring structures of
phases in sensor-node programs and their interaction. We will explain these
structural elements step-by-step based on a small example program, which is
commonly found within the WSN literature. To illustrate this program’s struc-
ture we will use a small subset of the graphical Statechart notation. Alongside
the presentation of the anatomy, we will show the difficulties in expressing its
structural elements in the event-driven model. And we will point out how these
difficulties lead to the symptoms laid out in the first section of this chapter. In
the last section of this chapter, Sect. 4.3, we will sketch the basic idea of how to
solve the problems of the event-driven programming model for the specification
of sensor-node programs. We propose an extended programming model, which
combines elements of the event-driven programming model with those of finite
state machines. A concrete solution will be presented in the next chapter.

4.1 Limitations of Event-Driven Programming

In our work we have identified two issues with the otherwise very intuitive
event-based programming model. These issues, which we call manual stack man-
agement and manual state management, arise because in the event-driven model
many conceptual operations need to be split among multiple actions. In the
following we will detail these issues and their causes.

Since actions must not monopolize the CPU for any significant time, opera-
tions need to be non-blocking. Therefore, at any point in the control flow where
an operation needs to wait for some event to occur, the operation must be split

4.1. Limitations of Event-Driven Programming 63

into two parts: a non-blocking operation request and an asynchronous com-
pletion event. The completion event then triggers an action that continues the
operation. As a consequence, even a seemingly simple operation can lead to
event cascades — an action calls a non-blocking operation, which causes an event
to occur, which, in turn, triggers another action. Breaking a single conceptual
operation across several actions also breaks the operation’s control flow and its
local variable stack.

Breaking conceptual operations among multiple functions has two implica-
tions for the programmer. Firstly, as the stack is unrolled after every action
the programming language’s variable-scoping features are effectively discarded.
Programmers cannot make use of local, automatically managed variables but
instead need to manually manage the operation’s variable stack. This is called
manual stack management [9]. Secondly, programmers must guarantee that any
order of events is handled appropriately in the corresponding actions. This re-
quires the manual intervention of the programmer by writing extra code. We
call this manual state management. We use Program 4.1 as an example to clarify
these issues.

Program 4.1: Event-driven code fragment to compute the temperature average
of sensor nodes in the one-hop vicinity.

1 int sum = 0;

2 int num = O;

s bool sampling_active=FALSE;
4

5 void init_remote_average() {
6 sampling_active=TRUE;

7 sum = num = 0;

8 request_remote_temp();

9 register_timeout(5);

10 }

1n void message_hdl(MSG msg) {

12 if(sampling_active == FALSE) return;

13 sum = sum + msg.value;
14 num++;
15 }

16 void timeout_hdl() {
17 sampling_active=FALSE;

18 int average = sum / num;
19 [*..0*
20 }

Program 4.1 calculates the average temperature of sensor nodes in a one-hop
distance. To do so, the sensor node running the program sends a broadcast
message to request the temperature value from all neighboring sensor nodes
(line 8). It then collects the remote samples in the event-handler for incoming
radio messages (lines 11-15). A timeout is used to ensure the temporal contiguity
of remote sensor readings. Finally, when the timeout expires, the average remote

64 Chapter 4. Event-driven Programming in Practice

temperature is calculated (line 18). As shown in the code above, this relatively
simple operation needs to be split into three parts: 1) sending the request, 2)
receiving the replies, and 3) processing the result after the timeout.

4.1.1 Manual Stack Management

In the above example, the data variables sum and numare accessed within two
actions. Therefore sum and num cannot be local variables of either function.
Instead they are declared as global variables, which have global scope and global
lifetime.

In a traditional, purely procedural program, local variables serve the purpose
of keeping an operation’s local data. They are automatically allocated on the lo-
cal runtime stack upon entering a function and are released on its exit. However,
automatic variables cannot be used for event cascades since the local stack is un-
rolled after the execution of every action. Therefore, the state does not persist
over the duration of the whole operation. Instead, programmers must manually
program how to retain the operation’s state. They can do so either using global
variables (as in the example above) or by programming a state structure stored
on the heap.

Both approaches have drawbacks. The global variables have global lifetime,
that is, they permanently lock up memory, also when the operation is not run-
ning. For example, a global variable used for a short phase during system ini-
tialization resides in memory for the rest of the program’s execution. Manually
reusing this memory in different program phases is possible but highly error-
prone. The (possibly multiple) programmers would have to keep track of the
use of every variable’s memory in each program phase. Besides their global life-
time, global variables also have global scope. That is, their visibility extends to
the entire program. As a consequence, global variables can be read and modified
throughout the entire program. To avoid naming conflicts and accidental access,
strict naming conventions have to be introduced and followed by programmers.
For these reasons, it is generally considered good programming practice to avoid
global variables and use local variables instead. Local variables have been one
of the achievements of structured programming.

The second approach, managing the operation’s state on the heap, requires
manual memory management (e.g., by using malloc() and free()), whichis
generally considered error-prone. It also requires system support for dynamic
memory management, which has a significant resource penalty and is therefore
sometimes missing for resource-constrained sensor nodes. We have discussed
dynamic memory management for sensor nodes in the previous Sect. 3.3.

4.1.2 Manual State Management

Depending on the node’s state and history of events, a program may need to
(and typically does) behave quite differently in reaction to a certain event. In
other words, the actual reaction to an event not only depends on the event but
also on its context. This multiplexing between behaviors must be implemented
explicitly by the programmer. As a result, programmers must include additional

4.1. Limitations of Event-Driven Programming 65

management code, which obscures the program logic and is an additional source
of error.

In the previous Program 4.1, for example, replies from remote sensors should
only be regarded until the timeout expires and thus the timeout action is in-
voked. After the timeout event, no more changes to sum and num should be
made (even though this is not critical in the concrete example). To achieve this
behavior, the timeout action needs to communicate with the radio-message ac-
tion so that no more replies should be regarded. Manual state management is
highlighted in the program code. The desired behavior is enforced by introduc-
ing a (global) boolean flag sampling_active (line 3), which is set to indicate
the state of the aggregation operation. The flag is used in all three functions
(lines 6, 12, and 17). In the message action, the program checks whether the
timeout has occurred already and thus remote temperature values should no
longer regarded (line 12).

In general, programmers using the event-driven programming model must
manually manage the program state in order to be able to decide in which con-
text an action has been invoked. Based on that state information programmers
must multiplex the program’s control flow to the appropriate part of the action.
We call this manual state management. Coding the flow control manually re-
quires operating on state that is shared between multiple functions (such as the
tflag sampling_active in our example). Again, this state needs to be managed
manually by the programmers. A general pattern for a well-structured imple-
mentation of context-sensitive event handling is shown in Program 4.2.

Accidental Concurrency

Manually managing the program state may lead to accidentally (re)starting
an event cascade, which we call accidental concurrency. In our example,
the initialization function init_remote_average() and the two actions
(message _hdl() and timeout_hdlI()) implement a single logical operation
that runs for some period of time (i.e., the aggregation phase). The parts of that
operation belong inherently together and it is implicitly expected that the en-
tire phase has been completed before it is started anew. However, our example
is prone to accidental concurrency. The event cascade implementing the aggre-
gation phase could be started anew with a call to init_remote_average()
(perhaps from an action handling incoming network packets for re-tasking the
node). Restarting the aggregation phase while a previously started aggregation
phase is still running will lead to unexpected behavior and thus impair the re-
liability of the program. In our example, the global variables sum and num will
be reset to zero, yielding an incorrect result for the previous instantiation of the
remote-average operation. The topic of accidential concurrency is closly related
to reentrant functions in multithreaded systems. Just like functions, most event
cascades are not reentrant when they rely on global variables to store “private”
state. In event-driven programming, however, global variables need to be used
often, as explained in the previous section.

Accidential concurrency is not limited to multiple instances of the same cas-
cade of events. Some locical operations (i.e., event cascades) may be mutually
exclusive or may need to be executed in a particular order. Events that occur

66 Chapter 4. Event-driven Programming in Practice

Program 4.2: General pattern to implement context sensitive actions.

1 typedef enum {INIT, A, B, ... } state_t;

» state_t state = INIT; [/ initial state
3

1+ void event_handler_x {

switch(state) {

5

6 case INIT:

7 // handle event_x in state INIT

8 state = ...; /] set new state
9 break;

10 case A:

1 // handle event_x in state A

12 state = ...; /I set new state
13 break;

14 case B:

15 // handle event_x in state B

16 state = ...; /I set new state
17 break;

18 default:

19 ...

20 }

21 }

2 void event_handler_y {

» ...

24 }

when the programmer was not expecting them (e.g., duplicated network mes-
sages or events generated by another action), however, will trigger their associ-
ated operation regardless. To enforce the correct behavior, programmers need to
manage contex information and need to code the program’s flow control explic-
itly.

In the event-driven model the reaction to an event cannot be specified with
respect to such context information. Instead an event always triggers its single
associated action. The event model does not provide any means against restart-
ing of such phases anew. (In fact, there is not even an abstraction to indicate
which parts of the code implement a single logical operation.) Special care must
be taken by programmers not to accidentally restart a cascade of actions. In oder
to be able to detect such errors, a defensive programmer would set a flag at the
beginning of the logical operation and check it in every action to trigger excep-
tion handling. For the example Program 4.1, this could be achieved by checking
whether every invocation of init_remote_average()) has been followed by
a call to timeout_hdI() or otherwise ignore the invocation. The following ad-
ditional code implements a possible solution when inserted after line 5 of the
example:

if(sampling_active == TRUE) {
return; // error, ignore

}

4.1. Limitations of Event-Driven Programming 67

Impaired Modularity and Extensibility

Now consider adding a new feature to the system, for example, for re-tasking
the node. Say, the new subsystem interprets a special network-message event,
which allows to configure which type of sensor to sample. Thus, the new sub-
system requires a message handler, such as the one in line 11 of Program 4.1.
Since each type of event always triggers the same action, both the sensing sub-
system and the new re-tasking subsystem need to share the single action for
handling network messages (message_hdl() in the example). The code frag-
ment in Program 4.3 shows a possible implementation. Generally, extending the
functionality of a system requires modifying existing and perfectly good code
in actions that are shared among subsystems. Having to share actions between
subsystems clearly impairs program modularity and extensibility.

Program 4.3: An action shared between two subsystems of a node (for aggre-
gating remote sensor values and re-tasking).

void message_hdl(MSG msg) {

1

2 if(msg.type == RETASKING)

3 /I re-tasking the node

4 ...

5 else {

6 I/l aggregating remote values

7 if(sampling_active == FALSE) return;
8 sum = sum + msg.value;

9 num-++;

10 }

4.1.3 Summary

In the small toy example we have just presented, manual state and manual stack
management seems to be a minor annoyance rather than a hard problem. How-
ever, even in such a simple program as Prog. 3.5, a significant part of the code
(4 lines plus one to avoid accidental concurrency) is dedicated to manual flow
control. Even minor extensions cause a drastic increase in the required man-
agement code. As application complexity grows, these issues become more and
more difficult to handle. In fact, in our applications that implement complex
networking protocols (e.g., our Bluetooth stack), significant parts of the code are
dedicated to manual state and stack management. The code is characterized by
a multitude of global variables, and by additional code in actions to manage the
program flow. This code obscures the program logic, hampers the program’s
readability, and is an additional source of error.

In general, the event-driven programming model implies to structure the pro-
gram code into actions. Actions typically crosscut several logical operations (i.e.,
phases or subsystems), which hampers program modularity and extensibility.
If functionality is added to or removed from the software, several actions and

68 Chapter 4. Event-driven Programming in Practice

thus subsystems are affected. Also, the event-driven programming model lacks
methods to hide the private data of program phases from other phases, which
also negatively effects the program structure and modularity. Finally, because
local variables cannot be used across multiple actions, the model makes it hard
to reuse memory, which results in memory inefficient programs. These symp-
toms of event-driven programs are by no means restricted to our event-based
programming framework for BTnodes. Similar issues can be found in program
examples for the popular TinyOS / NesC framework in [45] or for SOS in [52].

4.2 The Anatomy of Sensor-Node Programs

Most sensor-network programs and algorithms are structured along discrete
phases. An example where the composition of sensor-node programs into dis-
tinct, sequentially scheduled phases becomes particularly apparent is role as-
signment: The node only performs the single currently assigned role out of sev-
eral possible roles (see for example [42, 56, 98]. When a new role needs to be
assigned, the previous role is first terminated before the newly assigned role is
started.

In fact, a prime application of sensor networks is to detect certain states of
the real world, that is, phases during which a certain environmental condition is
met. In applications where the state detection is performed partly or entirely on
the sensor nodes (as opposed to in the background infrastructure based on the
information collected by sensor nodes) these real-world states are often mod-
eled discretely for the sake of simplicity. Detecting a change in the real-world
state then typically triggers a new phase in the sensor-node program in order
to react to the change in a state-specific manner. A typical reaction is to col-
lect additional information specific to the detected state and to notify the rest of
the sensor network of the detection. This phase continues until the real-world
state changes again, which is reflected by yet another phase change of the pro-
gram. Examples are a health monitor, which determines the stress state of a
human user to be high, normal, or low [55], an augmented mobile phone, which
automatically adapts it ring-tone-profile based on the detected phone context
(in-hand, on-table, in-pocket, and outdoors) [46], several tracking applications
(tracking target is detected or absent) [6, 100, 118], product monitoring (prod-
uct damaged or intact) [107], and cattle herding (animal is inside or outside of a
virtually fenced in region) [28].

4.2.1 Characteristics of a Phase

We have analyzed the source code of numerous programs and program frag-
ments (both from the literature as well as our own) if and how program phases
are reflected in the code. We have found that phases can indeed be identified in
program sources. The phases of programs and algorithms do share four com-
mon characteristics by which they can be recognized: (1) they run for a certain
period of time, during which they may need to handle several events, (2) their
beginning and end are typically marked by (one or several) specific events, (3)
they are strongly coupled, that is, the computational operations within a phase

4.2. The Anatomy of Sensor-Node Programs 69

utilize a common and clearly defined set of resources, and (4) they start with
an initialization function where the (temporary) resources for the phase are al-
located and they end with a deinitialization function where the resources are
released again.

Individual phases have a strong internal coupling with respect to other
phases. Typically this means two things: Firstly, the computations belonging
to a phase operate on a common data structure that is private with respect to
other phases (though phases do typically communicate via small amounts of
shared data). And secondly, during a phase the program utilizes a well defined
set of resources, which may differ significantly from other phases. For example,
phases differ in the amount of computation taking place (CPU cycles), the size
of the data structures being used (memory), which sensors are being sampled
and at what rates, and whether the radio is actively sending, in receive mode, or
switched of entirely.

In the program code, the start of a phase is typically marked with an initializa-
tion function and ends with a deinitialization function (cf. [52]). In initialization,
the resources required by the phase are allocated and its data structures are set to
their initial values. Resource allocation can mean that memory for holding pri-
vate data structures is allocated, that timers are set up, and that sensors or the
radio are switched on. At the end of a phase, information computed during the
phase may be made available for use by other (i.e., concurrent or subsequent)
phases, for example, by saving it into a shared data structure. Then the phase’s
resources are released.

4.2.2 Sequential Phase Structures

In the previous section we have described the characteristics of an individual
phase. We will now describe the phase structure of sensor-node programs,
that is, typical and recurring patterns of how programs are constructed of in-
dividual phases. This description is based on the following running exam-
ple. Consider a monitoring application that samples an environmental param-
eter (e.g., the light intensity) at regular intervals and then immediately sends
the data sample to a dedicated sensor node. This simple application (some-
times named “Surge”, “sense and forward” or “sample and send”) is used with
minor modifications throughout the sensor-network literature to demonstrate
programming-framework features [8, 21, 45, 48, 52, 79] or to do performance
evaluations [36, 48, 79]. We will use this example and modifications of it to de-
scribe the phase structure of sensor-node programs. As a matter of fact, this
application is so simple that the code fragments found in the literature typically
treat the whole program as a single entity with a single data structure and all
initialization performed at the start of the program. Yet, we will gradually add
features and treat it like a full featured sensor-node program to explain program
structures with multiple phases and their interactions.

Surge Example 1

A simple version of Surge consists of four phases, which we will call
INIT, SAMPLE, SEND, and IDLE, as depicted in Fig. 4.1. The program
starts with the INIT phase, which performs the general system ini-
tialization. When the INIT phase is complete, the program enters the

70 Chapter 4. Event-driven Programming in Practice

SAMPLE phase in order to start sampling. In order to save power the
sensor is generally switched off unless actually sampling. Therefore
the SAMPLE phase is initialized by switching on the sensor. When
the data sample is available, which may considerable time (e.g., for
GPS sensors), the sensor is switched off again. Then the SEND phase
is started. Similar to the SAMPLE phase the SEND phase first switches
on the radio, waits until a connection to the dedicated sink node is
established and then sends the data sample acquired in the previous
SAMPLE phase. When the reception of the data has been acknowl-
edged by the sink node, the radio is switched off again and the pro-
gram moves to the IDLE phase. In this initial version of the program
we ignore a failed send attempt (e.g, due to collisions or packet loss
on a noisy channel) and move to IDLE anyway. The IDLE phase does
nothing but wait for the start of the next interval, when the next cycle
of sampling and sending is restarted, that is, the program moves to
the SAMPLE phase again. In order to sleep for the specified time, a
timer is initialized upon entering the IDLE phase and then the CPU is
put into sleep mode. The node wakes up again when the timer fires
and the program moves to the SAMPLE mode again. In our exam-
ple, the sampling of the sensor in the SAMPLE state may need to be
scheduled regularly. Since both the sample and the send operation
may take varying amounts of time, the program needs to adjust the
dwell period in the IDLE phase. O

init_done sample_done (n)ack timeout

Figure 4.1: A simple version of Surge with four program phases. In this version
a failure while sending the data sample is ignored.

Though this program is rather simple, it has many features of the complex
algorithms used in current sensor-node programs.

Sequential Composition

The four phases of the Surge program are all scheduled strictly sequentially.
From our analysis of sensor-node programs we conclude that typically the ma-
jority of logical operations (i.e., phases) are performed sequentially (though
there is a certain amount of concurrency, as we will discuss in Sect. 4.2.3).
Whenever the application at hand permits, architects of sensor-node pro-
grams seem to be inclined to schedule these phases sequentially rather then
concurrently. This holds true even for many fundamental system services, such
as network management, routing, device management, etc. This is in contrast to
traditional networks, where most of such services are performed permanently in
the background, often by dedicated programs or even on dedicated hardware.

4.2. The Anatomy of Sensor-Node Programs 71

We think that the composition of sensor-node programs predominantly into
distinct, sequential phases has two main reasons: Firstly, sequential programs
are typically easier to master than concurrent programs, as they require little
explicit synchronization. And secondly, and even more importantly, the phases
of a sequential program do not require coordination of resources and can thus
utilize the node’s limited resources to the full, rather than having to share (and
synchronize) between concurrent program parts.

One difficulty of distinct, sequential program phases in the event-driven
model lies in the specification and the memory efficient storage of variables used
only within a phase. As we discussed earlier, such temporary variables must
typically be stored as global variables, with global scopes and lifetimes. From
the program code it is not clearly recognizable when a phase ends and thus the
variables” memory can be reused.

Starting and Completing Phases

In sensor-network programs a phase often ends with the occurrence of a particu-
lar event, which then also starts the next phase. Often this event is an indication
that a previously triggered operation has completed, such as a timeout event
triggered by a timer set previously, an acknowledgment for a network message,
or the result of a sensing operation. So it can often be anticipated that a particular
event will occur, is often hard or impossible to predict when.

A phase may also end simply because its computation has terminated, like the
INIT phase in the previous example. Then the next operation starts immediately
after the computation. It may still be useful to view both phases as distinct
entities, particularly if one of them can be (re-)entered along a different event
path, as in the above example.

The specification of phase transitions in the event-driven programming model
poses the aforementioned modularity issue. Since the transition is typically trig-
gered by a single event, both the initialization and deinitialization functions
need to be performed within the single associated event handler. Therefore,
modifications to the program’s phase structure causes modifications to all event
handlers that lead in and out of added and removed phases.

Also, phase transitions incur manual state management if different phases are
triggered by the same event. Then the associated event handler must be able
to determine which phase’s initialization to perform. This can only be done
by manually keeping the current program state in a variable and checking the
previous state at the beginning of each action.

Repeated Rounds of Phases

Often phases of sensor-node programs are structured in repeated rounds. A
typical example is the cyclic “sample, send and sleep” pattern found in our ex-
ample application, as well as in many sensor-node programs described in the
literature. Examples where repeated rounds of distinct, sequentially scheduled
program phases are used are LEACH [55, 56], TinyDB and TAG [83, 84], and
many more.

72 Chapter 4. Event-driven Programming in Practice

Choosing the next phase: Branching

Often there are several potential next phases in sensor-network programs. The
choice of the actual next phase then depends on an input event, the state of a
previous computation, or a combination of both. Also, a single phase may be
reachable through multiple paths, as in the following example.

Surge Example 2

Until now our Surge application ignored a failed sending attempt.
If sending fails, however, the program may decide to store the data
sample in a local buffer (rather then ignoring the failure). The mod-
ified program could then, for example, send the stored data sample
in the next round together with the new sample. An updated ver-
sion of the program is depicted in Fig. 4.2. In the new version, the
choice of the next phase from SEND depends on the event generated
by the send operation (nack or ack). Likewise, the IDLE phase may
be reached from two phases, namely SEND and STORE. 0

ack
st | INIT SAMPLE |——=| SEND
init_done sample_done timeottt
nack store_done
STORE

Figure 4.2: A more sophisticated version of Surge with five program phases. In
this program version a failure while sending the data sample is han-
dled by buffering the data locally. Note that the control flow branches
from the SEND phase depending on the events nack and ack.

Preemption

In sensor-node programs the occurrence of a certain event often interrupts (we
say it preempts) a sequence of multiple phases in order to start a new phase. That
is, if the event occurs in any phase of a sequence of phases, the control flow of
the program is transfered to the new phase.

Surge Example 3

Let us now consider yet another variation of the basic Surge pro-
gram, which is inspired by the modification of Surge as distributed
with TinyOS [125]. In this version we introduce a network-command
interface that allows a remote user to put the node in sleep mode by
sending a sleep message to it. The node then preempts all current
activities and sleeps until it receives a subsequent wakeup message.
This version of Surge is depicted in Fig. 4.3. O

The dashed lines in Fig. 4.3 denote the preemption caused by the sleep event.
That is, the control is passed to the SLEEP phase from any of the phases SAMPLE,
SEND, and IDLE on the occurrence of the sleep event.

4.2. The Anatomy of Sensor-Node Programs 73

NORMAL_OPERATION

A

sample_done (nyack) timeout
IDLE

INIT > SAMPLE

init_done

v
/ i
12
O
v

Figure 4.3: The three program phases SAMPLE, SEND, and IDLE are preempted
by the sleep event.

The execution of the target phase of a preemption takes priority over the pre-
empted phases. Preemption is basically the same as what we have previously
called branching, only that preemption has a number of source phases (rather
then just one). Preemption is can be considered as handling of exceptions. The
phase to which control is transferred to may then be considered the exception
handler.

Specifying preemption in the event-model requires extensive state manage-
ment. The difficulty is two-fold: Firstly, on the occurrence of a preempting event,
the programmer must first deinitialize the phases that are to be preempted. Spe-
cial care must be taken if preemption is added during the redesign of a sensor-
node program. From our experience, proper deinitialization can be easily for-
gotten. And secondly, (future) events that are caused by computational opera-
tions performed before the preemption occurred must be actively ignored. For
example, in our example program the (n)ack event is caused by sending a data
sample. If the send operation has completed, but a sleep event is received next
(i-e., before the (n)ack event), the (n)ack event is nevertheless generated by the
OS and thus triggers the associated action. In this action, however, it needs to be
ignored. The code fragment in Prog. 4.4 shows a possible implementation of the
preemption in the event-driven model. The handler of the sleep event (lines 1-
14) implements the preemption. The preempted phases are deinitialized within
the switch statement (lines 3-11). The handler of the nack event first checks the
exceptional case when the program is in the SLEEP state (lines 16). Then the
nack event is ignored. If the program was coming from the SEND phase (which
is the regular case), it behaves as without preemption. Clearly, the complexity of
manual state management in the case of preemption is hard to handle for pro-
grammers. Even this short program is hard to write and even harder to read. To
deduce a programmers intention from the code is next to impossible.

Structuring Program Phases: Phase Hierarchies

In some cases, it is convenient to think of a set of sequentially composed phases
as a single, higher-level program phase. This implies that there is a hierarchy of
phases, where phases higher in the hierarchy (which we call super-phases) are
composed of one or more sub-phases. Our previous example, Fig. 4.3, is such a
case.

74 Chapter 4. Event-driven Programming in Practice

Program 4.4: A code fragment showing the full deinitialization procedure that
needs to be performed on a preemption.

1 void sleep_hdl() {
I/l deinitialize previous phases
switch(sate) {
case SAMPLE: ... //deinitialize SAMPLE phase: switch off sensor
break;
case SEND: ... Il deinitialize SEND phase: switch off radio
break;
case IDLE: ... Il deinitialize IDLE phase: reset timer
break;
default: ... lerror handling
3
state = SLEEP;
// do sleep ...

© o N o Ul e W N

== =
N = o

—
w

14}
15 void nack_hdl() {
16 1f(state == SLEEP) {

17 // ignore the nack event while in SLEEP
18 return;
19 }

» [/ deinitialize the SEND phase: switch off radio
21 state = IDLE;
» /I perform initialization and operations for IDLE

The complete cycle of sampling, sending, and idling can be considered a phase
by itself, representing the period where the node performs its normal operation.
The new situation is depicted in Fig. 4.4, where we have indicated the super-
phase by surrounding the contained phases with a solid box. The new high-level
phase NORMAL_OPERATION is initially entered by the init_done event coming
from INIT phase. It may be re-started by the wakeup event after residing tem-
porarily in the SLEEP phase. NORMAL_OPERATION ends on the occurrence of
the sleep event. Then the high-level phase as well as all contained phases are
preempted and control is passed to the SLEEP phase.

Super-phases are a convenient mind model that allows to subsume a complex
subsystem into a single, less-refined subsystem. Hierarchical phase structures
help program architects to develop a clear and easy to understand model of
the program. These structures also foster communication about the model on
different levels of detail. It is easy to “abstract away” the details of a super-
phase (top-down view, see Fig. 4.5) or, on the contrary, to first focus only on the
details and building the system from the ground up (bottom-up view).

Super-phases typically have the same characteristics as uncomposed phases.
That is, the entire super-phase may have its own initialization and deinitial-
ization function, as well as data structures. Then, all sub-phases (i.e., all com-
posed phases) share that common data structure. The super-phases start when
a contained phase starts and ends when the last of the contained phases is left.

4.2. The Anatomy of Sensor-Node Programs 75

NORMAL_OPERATION

-
-

init_done

sample_done timeout

wakeup dseep

SLEEP

Figure 4.4: A refinement of Fig. 4.3. The three phases SAMPLE, SEND, and IDLE
have been combined into the super-phase NORMAL_OPERATION.
The super-phase is preempted by the sleep event.

init_done
INIT >

NORMAL_OPERATION

A
wakeup deep
Y

SLEEP

Figure 4.5: An abstraction of NORMAL_OPERATION from Fig. 4.4.

There may be a dedicated initial phase when starting the composed phase, as
the SAMPLE phase in our example (indicated by the arrow origination from a
circle). However, there may be several initial states, where the actual initial
state depends on the result of a previous computation, the event that caused
the start of the composed phase, or the phase from which control was passed
to the composed phase. The problem of implementing hierarchical phases in
the event-driven model is to correctly perform the (de)initialization functions
correctly and to track resource usage within sub-phases.

In the sensor-network literature there are several examples where authors de-
scribe their algorithms as hierarchical phases. The LEACH algorithm [56] (a
clustering-based communication protocol to evenly distribute the energy load
among the sensors in the network), for example, is described as being “broken
into rounds, where each round begins with a set-up phase [...] followed by a
steady-state phase”. The set-up phase is further composed of three sub-phases
called advertisement, cluster set-up, and schedule creation.

Phase-Bound Lifetime and Scope of Data Structures

Sensor-node programs often operate on data structures that are temporary in
nature. That is, the use of such data structures (just like other resources) is typi-
cally closely tied to a phase or a sequence of multiple phases; the structures are
accessed only during certain phases of the program. Typically, programs use
several data structures in different phases, that is, they have different lifetimes.
A challenge in programming sensor nodes is the efficient management of data
structures, since memory is one of the highly-constraint resources. That means

76 Chapter 4. Event-driven Programming in Practice

that programmers typically strive to constrain the lifetime of data structures to
those program phases in which they are actually needed. To summarize, the
lifetime of temporary data structures must extend to all phases that share the
data, but should not extend beyond those phases. That is, after the data struc-
tures are no longer needed, the memory should be released in order to recycle
the memory in distinct phases.

In our example, the SAMPLE and SEND phases both need access to the sam-
pled data, which may have an arbitrary complex in-memory representation de-
pending on the sensor and application. Therefore, the lifetime of the data sample
must extend to both the SAMPLE and SEND phases. After sending the value the
data becomes obsolete. The memory for the data could be reused in subsequent
phases. Since in our example the IDLE phase does not have extensive memory
requirements, there would be not much point. In real-world sensor-node pro-
grams, however, memory reuse is imperative.

Again, in LEACH [56], for example, individual phases with seizable mem-
ory requirements alternate. The operation of each sensor node participating
in the LEACH algorithm is broken up into rounds, where each round begins
with a cluster-organization phase, followed by a data-aggregation, and data-
forwarding phase. In the cluster-organization phase each node collects a list
of all network neighbors annotated with various information, such as received-
signal strength. In a dense network, this list can be of considerable size. During
the phase, each node chooses a cluster head and may become one itself. After
completion of the phase, only the identity of the cluster head is required, the
neighbor list however has become obsolete and can be freed. The outcome of
the cluster-organization phase is shared with the rest of the program by means of
shared memory. Every node that has become a cluster head then starts collecting
data samples from their slaves, aggregates the received data, and finally sends
the aggregate to its own cluster head, whose identity has been kept from the
cluster-organization phase. Here, releasing the temporary data structure (i.e.,
the neighbor list) frees up memory that might be required during data collec-
tion and aggregation.

In the event-driven programming model programmers have two alternatives
to store such temporary data: global variables and dynamic memory. As we
have previously shown in Sect. 4.1, both approaches have severe drawbacks.

4.2.3 Concurrency

While sensor-node programs are often geared towards sequential operation, it
may still be necessary or convenient to run some operations concurrently. Proba-
bly the most common concurrent activities performed by sensor-node programs
are sampling and maintenance tasks, such as network management. For ex-
ample, in EnviroTrack [6], a group-based protocol for tracking mobile targets,
sensing runs concurrently to group management.

As we pointed out in a previous chapter, in sensor-node programming, con-
currency is typically a purely logical concept because sensor nodes are single-
processor systems. Concurrency is a descriptive facility for the programmer to
describe self-contained and concurrently executing parts of the system in indi-
vidual programmatic entities, without having to care about their actual execu-

4.2. The Anatomy of Sensor-Node Programs 77

tion. The system software takes care of scheduling these entities so that they
appear to run concurrently, while they are actually scheduled sequentially on
the single processor in time multiplex.

The event-driven programming model has no notion of concurrency, such as
the thread abstraction in multi-threaded programming. Indeed, it does not even
have a programming abstraction to group together the logical operations and
self-contained system parts. As we have discussed in the previous sections, de-
spite the lack of a dedicated programming abstraction, sensor-node program-
mers tend to think and structure their programs in terms of hierarchical phases.
The phase model lends itself well to modeling concurrent program parts.

Example Surge 4

Let us consider a final addition to our Surge program, which is in-
spired by the ZebraNet application [81]. Every node in ZebraNet
runs of a battery that is recharged using solar cells. Since normal op-
eration draws more power than the solar cells can supply, just before
the battery is empty the node goes into sleep mode and recharges
the battery. In ZebraNet this behavior is implemented by regularly
checking the remaining battery level. Should it drop below a certain
threshold, the node initiates charging, during which normal opera-
tion is suspended.

Checking the battery status and charging can be considered two
distinct program phases, as depicted in Fig. 4.6. These phases,
CHECK and CHARGE, may have multiple sub-phases each. Com-
bined into the BATTERY_OPERATION super-phase) they run concur-
rently with the ENVIRONMENT_MONITORING super-phase (i.e., the
rest of the system with the exclusion of the IDLE phase). O

ENVIRONMENT_MONITORING

NORMAL_OPERATION

O sample_done (n)ack timeout
O SAMPLE SEND IDLE

init_done \

wakeup Seep

Y

SLEEP

BATTERY_OPERATION

batt_empty

O+ CHECK CHARGE
batt_full

Figure 4.6: A version of Surge with two concurrent phases ENVIRON-
MENT_MONITORING and BATTERY_OPERATION.

78 Chapter 4. Event-driven Programming in Practice

Interaction Between Phases: Local Communication

Typically the various concurrent phases of sensor-node programs do need to
communicate. They run mostly independently of each other (after all, that was
the reason why to model them as concurrent phases), but from time to time,
they may still require some synchronization. In sensor node programs two prin-
cipal methods of communication between concurrent phases are used: commu-
nication with generated events and transmitting information in data structures
residing shared memory. The latter form is associated with polling while the for-
mer is associated with handling event notifications, the basic concept of event-
driven programming.

Synchronization with Events. In our example as depicted in Fig. 4.6, when-
ever the battery needs recharging the program enters the CHARGE state. To
suspend normal operation when recharging, the battery subsystem needs to
communicate with the concurrent monitoring subsystem. There are two pos-
sibilities of how to synchronize the two concurrent subsystems with events:
Firstly, the monitoring subsystem is programmed to react to batt_empty events
by preempting normal operation and by going to sleep. The second possibility
is to generate a sleep event when making the transition from checking to charg-
ing in the battery subsystem. Likewise, whenever a remote user instructs the
node to enter sleep mode through the network-command interface, the node
could (and should) start charging the battery. In this example, the phases ENVI-
RONMENT_MONITORING and BATTERY_OPERATION are synchronized directly
through events, their sub-phases (NORMAL_OPERATION and SLEEP as well as
CHECK and CHARGE) progress in lock step.

Synchronization with Shared Memory and Events. Concurrent phases can com-
municate using shared memory. To avoid polling, shared-memory communica-
tion is often initiated by an event notification. Only after receiving a notification
the program reads a shared memory location. In our BTnode system software,
for example, the Bluetooth driver can be considered as running concurrently to
the user application. The user application relies on notifications by the Bluetooth
driver to indicate network-state changes, such as remote connection establish-
ment or link failure. The driver does so by generating an event specific to the
state change. In the user program the generated event then triggers a reaction.
The user program typically requires more information about the event (such as
the identity of the connecting node or the identity of the failed link destina-
tion). This information can be be accessed through shared memory, concretely,
through a shared connection table, a data structure which is maintained by the
Bluetooth driver but can be accessed by the application as well.

The Absence of Dynamic Task Creation

In our study of existing sensor-node programs we have found several examples
where program phases run concurrently. But we have not found programs that
require the dynamic creation of (a previously unknown number of) tasks. Multi-
threading environments are often motivated with a Web-server example, where
individual HTTP-requests are serviced by a separate and possible dynamically

4.3. Extending the Event Model: a State-Based Approach 79

created threads. (cf. [108, 115]). In such situations, the number of active tasks at
any point during runtime is not known at compile time.

In sensor networks, however, programs are modeled with a clear conception
how of many concurrent subsystems (i.e., program phases) there are and when
they are active during the runtime of the program. The only circumstances
where we did find a form of dynamic creation of concurrent program phases
where errors in the program specification, such as those described as accidental
concurrency in Sect. 4.1.

4.2.4 Sequential vs. Phase-Based Programming

Most algorithms are described as hierarchical and concurrent phases in the WSN
literature. However, since there are no adequate programming abstractions and
language elements to specify phases in actual programs, it is typically very hard
to recognize even a known phase structure of a given program.

In many respects the phases of sensor-node programs are comparable to func-
tions of a sequential, single threaded program. Sequential programs are com-
posed of function hierarchies, whereas sensor node programs are composed of
phase hierarchies. Functions may have private data structures (typically speci-
tied as local variables) but may also operate on shared data (the local variables
of a common higher function hierarchy or global variables). Program phases of
sensor-node program also have these private and shared data structures, how-
ever, programming abstractions to specify them are missing.

The main difference of functions and phases is that the duration of a func-
tion is typically determined by the speed of the CPU, whereas the duration of a
phase mostly depends on the occurrence of events, which may happen unpre-
dictably. Preemption in sensor-node programs can best be compared to excep-
tion handling of object-oriented languages. In object-oriented programming, an
exception may unroll a hierarchy of nested methods calls to trigger an exception
handler on a higher hierarchy level. Likewise, in phase-based sensor-node pro-
grams, an event may preempt a hierarchy of nested phases (i.e., sub-phases) and
trigger a phase on a higher hierarchy level.

4.3 Extending the Event Model. a State-Based
Approach

In this chapter we have laid down why the event-driven model is inadequate
to model and specify real-world sensor-node applications. The fundamental
reasons for this inability are manual state and manual stack management, that
is, the need for programmers to meticulously specify the program’s control flow
and memory management. However, to be suitable for real-world application
programming, a sensor-node programming model must be expressive enough
to easily and concisely specify the anatomy of sensor-node programs, requiring
neither manual state management, nor manual stack management.

80 Chapter 4. Event-driven Programming in Practice

4.3.1 Automatic State Management

First off all, to avoid manual state management, a sensor-node programming
model requires an explicit abstraction of what we have presented as phases: a
common context in which multiple actions can perform. Furthermore it requires
mechanisms to compose phases sequentially, hierarchically, and concurrently.

A natural abstraction of program phases are states of finite state machines
(FSM). Finite state machines—in their various representations—have been ex-
tensively used for modeling and programming reactive embedded systems. Re-
active embedded systems share many of the characteristics and requirements of
sensor nodes, such as resource efficiency and complex program anatomies.

Particularly the Statecharts model and its many descendants have seen
widespread use. The Statecharts model combines elements form the event-
driven programming model (events and associated actions) as well as from fi-
nite state machines (states and transitions among states). To these elements it
adds state hierarchy and concurrency. As such, the Statecharts model is well
suited to describe sensor-node programs. Statecharts can help to solve the man-
ual state-management issues. Particularly, it allows to specify the program’s
control flow in terms of the model’s abstractions (namely transitions between
possibly nested and concurrent states), rather then requiring the programmer to
specify the control flow programmatically. Indeed, we have already used the
graphical Statechart notation to illustrate the flow of control through phases in
the examples throughout this chapter. The Statechart model builds the founda-
tion for our sensor-node programming model, which we will present in the next
chapter.

4.3.2 Automatic Stack Management

However, neither the Statecharts model nor any of its descendants do solve the
issue of manual stack management. As we have detailed previously, phases of
sensor-node programs have associated data state. Statecharts and Statechart-
like models typically do not provide an abstraction for such data state. The few
models which do, however, lack a mechanism to manage such state automati-
cally, that is, to initialize the data state upon state entry (e.g., by allocating and
initializing a state specific variable) and to release it upon exit. The same holds
for all (de)initializations related to phases, such as setting up or shutting down
timers, switching on or off radios and sensors, etc. In general, Statechart and
descendant programming models do not support the (de)initialization of states.

To fix these issues, we propose to make two important additions to the basic
Statechart model: Firstly, states have dedicated initialization and deinitialization
functions. These functions are modeled as regular actions. They are associated
with both a state and a transition, and are executed within the context of the
associated state. Secondly, states can have associated data state. This state can
be considered as the local variables of states. The lifetime and scope of state
variables are bound to their state. State variables are an application of general
(de)initialization functions: data state is allocated and initialized in the state’s
initialization function and released upon the state’s exit in its deinitialization
function. (In our proposed model however, initialization and release of state
variables is transparent to the programmer.) However, state variables are more

4.3. Extending the Event Model: a State-Based Approach 81

than semantic sugar: modeling data state with the explicit state-variable abstrac-
tion allows compile-time analysis of the program’s memory requirements and
only requires static memory management for their implementation in the system
software—two invaluable features for sensor-node programing.

82

Chapter 4. Event-driven Programming in Practice

5 The Object-State Model

In the previous chapter we have described the issues of the event-driven pro-
gramming model, namely manual state management and manual stack manage-
ment. These issues often lead to memory inefficient, unstructured, and unmod-
ular programs. Also, we have argued that the way programmers think about
their applications (what we might call the mind model of an application) does
not translate very well into the event-driven programming model. Concretely,
we have diagnosed the lack of a programming abstraction for program phases,
which allows to structure the program’s behavior and data state along the time
domain.

In this chapter we will present the OSM state-based model, which we have
designed in order to attack these problems. OSM allows to specify sensor-node
programs as state machines, where program phases are modeled as machine
states. OSM is not a complete departure from the event-driven programming
model. Rather, OSM shares many features of the event-driven model. Just as
in the event-driven model, in the OSM model progress is made only on the oc-
currences of events. Likewise, computational actions in OSM are specified as
actions in a sequential programming language, such as C. And just as in the
event-driven model, OSM actions run to completion.

We like to see OSM as an extension of the event-driven model with state-
machine concepts. The first of the two main advancements of OSM over the
event-driven model is that it allows to specify the control flow of an applica-
tion on a higher abstraction level, saving the programmer from manual state
management. Through the explicit notion of states, the association of events
to actions is no longer static. Rather, the program’s current machine state de-
fines the context in which an action is executed. As a result, OSM programs can
be specified in a more modular and well-structured manner. The second ad-
vancement of OSM are state variables, which save programmers from manually
managing temporary data state (i.e., manual stack management). State variables
allow to attach data state to explicitly-modeled program states. As the scope and
lifetime of state variables is limited to a state (and its substates), the OSM run-
time environment is able to automatically reclaim the variable’s memory upon
leaving the state. As a result, OSM programs are generally more memory ef-
ticient than conventional event-driven programs. In the following subsections
we will introduce OSM and informally define its execution model. We have al-
ready presented a preliminary version of OSM in [74]. The version presented
here has undergone some refinements and minor extensions. In Sect. 5.1 we will
present well-known state machine concepts on which OSM is built. In Sect. 5.2
we present the basic form of OSM state machines. We explain how the real-time
requirements of sensor-node programs map to the discrete time model of state
machines in Sect. 5.3. In Sect. 5.4 and Sect. 5.5, respectively, we will present
hierarchy and concurrency as a more advanced means to structure OSM state

84 Chapter 5. The Object-State Model

machines. State variables are explained in Sect. 5.6. Finally, in Sect. 5.7 we
summarize the chapter.

5.1 Basic Statechart Concepts

The semantics and representation (i.e., language) of OSM are based on finite
state machines (FSMs) as well as concepts introduced by Statecharts [53] and its
descendants. Hence, before discussing OSM in the next sections of this chapter,
we briefly review these concepts this section.

Finite state machines are based on the concepts of states, events, and transitions.
A FSM consists of a set of states and a set of transitions, each of which is a
directed edge between two states, originating form the source state and directed
towards the target state. A machine can only be in one state at a time. Transitions
specify how the machine can proceed form one state to another. Each transition
has an associated event. The transition is taken (it “fires”) when the machine
is in the transition’s source state and its associated event occurs. FSMs can be
thought of as directed, possibly cyclic graphs, with nodes denoting states and
edges denoting transitions.

Statecharts enhance basic FSMs with abstractions in order to model and spec-
ify reactive computer programs. As in event-based programming, Statecharts
introduce actions to finite state machines in order to specify computational
(re)actions. Conceptually, actions are associated either with transitions or with
states. For the definition (i.e., implementation) of actions, most programming
frameworks based on Statechart models rely on a host language, such as C. Even
though a program could be fully specified with those four concepts explained
above, [53] argues that the representation of complex programs specified in this
naive fashion suffers from state explosion. To alleviate this problem, Statecharts
introduce hierarchy and concurrency to finite state machines. A state can subsume
an entire state machine, whose states are called substates of the composing state.
The composing state is called superstate. This mechanism can be applied recur-
sively: superstates may themselves be substates of a higher-level superstate. The
superstate can be seen as an abstraction of the contained state machine (bottom-
up view). The state machine contained in the superstate can also be seen as a
refinement of the superstate (top-down view). Though a superstate may contain
an entire hierarchy of state machines, it can be used like a regular (i.e., uncom-
posed) state in any state machine. Finally, two or more state machines can be
run in parallel, yet communicate through events. State machines that contain
neither hierarchy nor concurrency are called flat.

A concept which has received little attention so far are state variables, which
hold data that is local to a state or state hierarchy. Most state-based models do
not provide an abstraction for data state but instead rely entirely on variables
of their programming framework’s host language. In the few other models that
encompass variables, the variable scope and lifetime is global to an entire state
machine.

OSM is based on the conceptual elements presented in the previous section,
namely states, events, actions, and state variables. However, OSM differs sig-
nificantly from Statecharts and its derivates in the semantic of state variables as

5.2. Flat OSM State Machines 85

well as actions. These semantics are fundamental for mitigating the problems
of the event-driven model for sensor-node programming. Therefore, applying
existing state-based models to the domain of sensor networks would not be suf-
ficient.

5.2 Flat OSM State Machines

Fig. 5.1 illustrates a flat state machine in OSM. In practice, OSM state machines
are specified using a textual language, which we will present in Chap. 6. Here
we will use a graphical notation based on the graphical Statechart notation for

clarity.

inAQ) | A ouwtA() inB() |B outB() inc(|
O int varA e “|intvarB f ~|intvarC

Figure 5.1: A flat state machine.

The sample OSM state machine depicted in Fig. 5.1 consists of three states A,
B, and C. In the graphical notation, states are denoted by rounded rectangles.
The initial state—the state in which the execution of the state machine begins—
is denoted by an arrow sourced in a small circle. In the example, A is the initial
state.

5.2.1 State Variables

To each of these states, an integer variable varA, varB, and varC' is attached,
respectively. These so-called state variables are a distinct feature in OSM. The
scope of state variables is confined to their associated state (and all its substates,
if any, see Sect. 5.6). OSM supports both primitive data types (e.g., integer types,
characters) as well as structured data types (e.g., arrays, strings, records) in the
style of existing typed programming languages, such as C.

5.2.2 Transitions

In the example, transitions exist between states A and B (triggered by the oc-
currence of event e¢) and between states B and C' (triggered by the occurrence
of event f). In OSM, events may also carry additional parameters, for example,
sensor values (not depicted here). Each event parameter is assigned a type and
a name by the programmer. Actions can refer to the value of an event parameter
by its name. Typically, a transition is triggered by the event that the transition is
labeled with. Additionally OSM allows to guard transitions by a predicate over
event parameters as well as over the variables in the scope of the source state.
The transition then only fires if the predicate holds (i.e., evaluates to true) on the
occurrence of the trigger event.

86 Chapter 5. The Object-State Model

5.2.3 Actions

In the sample state machine each transition between two states has two associ-
ated actions. The transition between A and B, for example, is tagged with two
actions outA() and inB(). In OSM, each action is not only associated with a tran-
sition or a state (as in regular Statechart models) but with both, a transition and
with either the source or the target state of that transition. Actions can access the
variables in the scope of their associated state. Actions associated with a tran-
sition’s source state are called exit actions (such as outA() in the example) while
actions associated with the target state are called entry actions. Entry actions can
be used to initialize the data state (i.e., state variables) and other (hardware) re-
sources of the program phase that is modeled by the target state. Entry, exit, or
both actions, as well as their parameters could also be omitted.

Let us now consider the transition between A and B in more detail, which is
tagged with two actions outA() and inB(). When the transition fires, first out A()
is executed and can access e and variables in the scope of state A. Then, after
outA() has completed, inB() is executed and can access e and variables in the
scope of state B (i.e., varB). If source and target states of a transition share a
common superstate, its variables can be accessed in both actions.

Initial states can also declare entry actions, such as inA() of state A in the
example. Such actions are executed as soon as the machine starts. Since there is
no event associated with the entrance of the initial state, inA() can only access
the state variable of A, that is, varA.

5.3 Progress of Time: Machine Steps

Finite state machines imply a discrete time model, where time progresses from
t to t + 1 when a state machine makes a transition from one state to another.
Consider Fig. 5.2 for an example execution of the state machine from Fig. 5.1. At
time ¢ = 0, the state machine is in state A and the variable varA exists. Then,
the occurrence of event e triggers a state transition. The action outA() is still
performed at ¢t = 0, then time progresses to t = 1. The state machine has then
moved to state B, variable var B exists and the action inB() is executed. When
event f occurs, outB() is performed in state B, before time progresses to ¢ = 2.
The state machine has then moved to state C, variable varC' exists and the action
inC() is executed. The discrete time of OSM state machines is associated with
the occupancy of states.

in state A instate B instate C
varA exists varB exists varC exists
execute inA() execute inB() execute inC()
execute outA() execute outB()
| | | g
0 1 2 discretetime

Figure 5.2: Discrete time.

Approaching time from the perspective of a sensor network that is embed-
ded into the physical world, a real-time model seems more appropriate. For

5.3. Progress of Time: Machine Steps 87

state A state B state C
-
lifetime varA lifetime varB lifetimevarC
start e f)
real time
inA() OutA() inB() —1 outB() incC) [———
-
0 1 2 discrete time

Figure 5.3: Mapping real-time to discrete time.

example, sensor events can occur at virtually any point in time, and actions and
transitions require a finite amount of real-time to execute. Hence, it becomes
also important in which order actions are executed. Essentially, we are faced
with the issue of interfacing the discrete time model of state machines with the
real-time model of sensor networks. We will discuss this interface in this and
the subsequent sections.

Inspired by traditional event-based programming models, actions are consid-
ered atomic entities that run to completion without being interrupted by the
execution of any other action. Fig. 5.3 illustrates the mapping of real-time to dis-
crete time, the respective states and variable lifetimes. Since the execution of ac-
tions consumes a non-zero amount of real time, events may arrive in the system
while some action is currently being executed. Those events cannot be handled
immediately and must be stored temporarily. Therefore, arriving events are al-
ways inserted into a FIFO queue using the queue’s enqueue operation. Whenever
the system is ready to make the next transitions, that is, when all exit and entry
actions have been completed, the system retrieves the next event from the queue
(using the dequeue operation) in order to determine the next transition.

While state transitions are instantaneous in the discrete time model, they con-
sume a non-zero amount of real time. The entire process of making a state tran-
sition is called a state-machine step. A step involves dequeuing the next event,
determining the resulting transition(s), executing the exit action(s) of the cur-
rent state(s), and executing the entry action(s) of the subsequent state(s). Also,
in actions, events may be emitted programmatically, which are inserted into the
event queue. A step always results in the progression of discrete time. Except
for self-transitions, steps always lead to state changes. If the event queue still
holds events after completing a step, the next step starts immediately. If, how-
ever, the event queue is empty after competing a step, the system enters sleep
mode until the occurrence of the next event.

5.3.1 Non-determinism

OSM state machines may exhibit non-deterministic behavior, a characteristic is
shares with other event-based systems. The reason for this non-determinism
is that the exact sequence of steps performed not only depends on the reception
order of input events but also on their timings and on the duration of performing
a step. The amount of real-time consumed by a step depends on three factors:

88 Chapter 5. The Object-State Model

the implementation of the underlying system software (for event handling and
determining transitions), the actions involved in the step (which may require
more or less computation), and the speed of the executing processor.

C

A inB() [B

t1 D
t2

Figure 5.4: State machines that programmatically emit events may exhibit non-
deterministic behavior. The event e, which is emitted by inB(), may
be inserted before or after an event ¢2 depending on the execution
speed of the action.

state A state B state C
. e i S —
start tl e 12
} inB() } *> real time

|

—f—— discrete time

‘ inB() — real time
I
Start t1 2 e
- -
state A state B state D

Figure 5.5: Non-determinism in OSM: the order of state transitions (and thus
the invocation order of actions) may depend on the execution speed
of (previous) actions. The top part of the figure depicts a possible run
of the OSM state machine in Fig. 5.4 on a fast processor, the bottom
part on a fast processor.

Consider, for example, two runs of the state machine depicted in Fig. 5.4. The
machine has a single computational action in3(), which programmatically emits
an event e. Let us now consider two runs of that state machine on sensor nodes
having processors with different speeds. In both runs two input events (1 and
t2) are triggered externally, exactly ¢1 and ¢2 time units from the start of the ma-
chine. The top part of Fig. 5.5 depicts a possible result on the faster processor,
while the bottom part of the figure depicts a possible result on the slower pro-
cessor. On the faster processor, inB() terminates earlier and e is inserted into the
queue before the occurrence of ¢2, whereas on the slower processor in53() only
terminates after the occurrence of ¢2 and thus ¢2 is inserted first. Thus, both runs
end up in different states. State C' is reached on the fast processor and state D is
reached on the slow processor.

5.3. Progress of Time: Machine Steps 89

Note that OSM’s nondeterminism does not stem from its transitions seman-
tics, which are unambiguous. Rather, nondeterminism is introduced by race
conditions when programmatically emitting events. Such events may be in-
serted into the event queue before or after a externally-triggered event, depend-
ing on the processor’s execution speed. Also note that event-driven programs
exhibit non-deterministic behavior for the same reason.

A possible solution to this kind of non-determinism would be to always insert
programmatically-emitted events at the beginning rather than the end of the
event queue. This way there would be no race conditions between internally
and externally emitted events. However, this behavior is in conflict not only
with the event-driven model, where events are often use to trigger some low-
priority action at a later time. It may also be in conflict with the synchronous
execution model. In the synchronous model, where the output from the system
is always synchronous to its input, the programmatically-emitted event as well
as the original input event (events e and ¢1 in the example, respectively) would
have to be concurrent. This could to a situation where the original transition
would have not been triggered, namely if the source state had a higher-priority
transition triggered by the programmatically emitted event.

5.3.2 Processing State Changes

A principal problem of all programs dealing with external inputs is that the
internal program state may not represent the state of the environment correctly
at all times. That is because real-world events require some time until they are
propagated through the system and are reflected in the system’s internal state.
This is particularly true when events are propagated through network messages
or are being generated from sensor input through multiple stages of processing.
This is a principle problem and applies to the event-driven, the state-based, and
the multi-threaded programming model alike.

Consider the case where the program is writing to an already closed network
connection because the disconnect event has not been processed (for example,
the network packet containing the disconnect request has not completely re-
ceived or the disconnect event is lingering in the queue). In this case the program
would still consider the connection to be open and may try to send the data over
already closed connection.

The actual problem is that programmers must handle those cases, which typ-
ically result in errors. As these cases typically occur only rarely, they are hard to
test systematically and may be forgotten entirely during program design. From
our experience, error handling of these cases can become very complex. How-
ever, if they occur and error handling fails, the node may crash or enter some
undefined state.

5.3.3 No Real-Time Semantics

The OSM model is not a real-time model—it does not allow to specify deadlines
or analyze execution times. It neither has means to quantify execution times nor
can they be specified by the programmer of OSM state machines.

90 Chapter 5. The Object-State Model

5.4 Parallel Composition

An important element of OSM is the support for parallel state machines. In a
parallel composition of multiple flat state machines, multiple states are active at
the same time, exactly one for every parallel machine. Let us consider an exam-
ple of two parallel state machines, as depicted in Fig. 5.6. (This parallel machine
is the flat state machine from Fig. 5.1 composed in parallel with a copy of the
same machine where state and variable names are primed.) At every discrete
time, this state machine can assume one out of 9 possible state constellations
with two active states each—one for each parallel machine. These constellations
are A|A’, A|B', A|C’, B|A’, B|B and so forth, where A|A’ is the initial state con-
stellation. For simplicity we sometimes say A|A’ is the initial state.

Parallel state machines can handle events originating from independent
sources. For example, independently tracked targets could be handled by paral-
lel state machines. While events are typically triggered by real-world phenom-
ena (e.g., a tracked object appears or disappears), events may also be emitted by
the actions of a state machine to support loosely-coupled cooperation of parallel
state machines.

Besides this loose coupling, parallel state machines can be synchronized in the
sense that state transitions of concurrent machines can occur concurrently in the
discrete time model. In the real-time model, however, the state transitions and
associated actions are performed sequentially.

A outA() inB() | B outB) incO | ©

O int varA e “|intvarB f ~|intvarC
A outA’() inB'() | B outB'() inc'() | €

O int varA’ e "~ int varB’ f "~ |int varC’

Figure 5.6: A parallel composition of two flat state machines.

The parallel state machines of Fig. 5.6 are synchronized through events e and
[, which trigger transitions in both concurrent machines. Fig. 5.7 shows the
mapping of real-time to discrete time at discrete time ¢ = 1. After discrete time
has progressed to t = 1 on the occurrence of ¢, all entry actions are executed in
any order. When event f arrives, all exit actions are performed in any order.

5.4.1 Concurrent Events

Up to now, each event has been considered independently. However, in the
discrete time model, events can occur concurrently when concurrent machines
programmatically emit events in a synchronized step. For example, when paral-
lel state machines emit events in exit actions when simultaneously progressing
from time t = 1 to t = 2 (see Fig. 5.7), the emitted events have no canonical or-
der. The event queue should preserve such unordered sets of concurrent events,
rather than imposing an artificial total ordering on concurrent events by insert-
ing them one after another into the queue. For this purpose, the event queue

5.5. Hierarchical Composition 91

state B, lifetime varB

state B, lifetime varB’
f

\J

H H 1 1 < -
inB inB —1 outB outB >
S| 8o 0 0 o g
.“..-}'»(-\">__.}.“."—. ‘.-‘}...' :
0 1 2 discretetime

Figure 5.7: Possible mapping of real-time to discrete time for parallel machines.

of OSM operates on sets of concurrent events rather than on individual events.
All elements of a set are handled in the same discrete state-machine step. The
enqueue operation takes a set of concurrent events as a parameter and appends
this set as a whole to the end of the queue. The dequeue operation removes the
set of concurrent events from the queue that has been inserted earliest. When-
ever the system is ready to make a transition, it uses the dequeue operation to
determine the one or more events to trigger transitions.

All events emitted programmatically in exit and entry actions, respectively,
are enqueued as separate sets of events, even though they are emitted during
the same state machine step. That is, each state-machine step consumes one set
of events, and may generate up to two new sets: one for events emitted in exit
actions and another set for events emitted in entry actions. Clearly, the arrival
rate of event sets must not be larger than the actual service rate, which is the
responsibility of the programmer.

5.4.2 Progress in Parallel Machines

The execution semantics of a set of parallel state machines can now be described
as follows. At the beginning of each state-machine step, the earliest set of con-
current events is dequeued unless the queue is empty. Each of the parallel state
machines considers the set of dequeued (concurrent) events separately to de-
rive a set of possible transitions. Individual events may also trigger transitions
in multiple state machines. Similarly, if multiple concurrent events are avail-
able, multiple transitions could fire in a single state machine. To resolve such
ambiguous cases, priorities must be assigned to transitions. Only the transition
with the highest priority is triggered in each state machine. Actions are executed
as described in Sect. 5.3. The dequeued set of concurrent events is then dropped.

5.5 Hierarchical Composition

Another important abstraction supported by OSM are state hierarchies, where
a single state (i.e., a superstate) is further refined by embedding another state,
state machine (as depicted in Fig. 5.8 (a)) or multiple, concurrent state machines
(as depicted in Fig. 5.8 (b)). Just as uncomposed states, superstates can have
state variables, can be source or target of a transition, and can have entry and

92 Chapter 5. The Object-State Model

exit actions defined. Note, however, that unlike Statecharts, in OSM transitions
may not cross hierarchy levels. (Although transitions across hierarchy levels
may give the programmer more freedom in the specification of actual programs,
we believe that this feature impairs modularity.)

The lifetime of embedded state machines starts in their initial state when their
superstate is entered. The lifetime of embedded state machines ends when their
superstate is left through a transition.

The lifetime of state variables attached to a superstate is bound to the life-
time of that superstate. The scope of those variables recursively extends to
all substates. In other words, an action defined in a state can access the vari-
ables defined in that state plus the variables defined in all of its superstates.
State variables in hierarchically-composed state machines are further discussed
in Sect. 5.6.

As in parallel state machines, in hierarchical state-machines multiple states
are active at the same time. The constellation of active states contains the hierar-
chy’s superstate plus a single state or state constellation (in the case of parallel
machines) on every hierarchy level. The active constellation of a state machine
can be represented as a tree, either graphically or textually. For example, start-
ing from the initial state A, the state machine depicted in Fig. 5.8 (a) assumes the
state constellation B(D) after receiving event e. In B(D), both states B and D
are active and D is the substate of B. The state machine depicted in Fig. 5.8 (b)
assumes the state constellation B(D|F') in the same situation.

B
A A
e L e L
C C
f f
(a) A flat state machine em- (b) A parallel state machine embedded
bedded into state B into state B

Figure 5.8: Hierarchies of state machines

5.5.1 Superstate Entry

When a superstate is entered (either through a transition or at the start of the
machine), also the initial state of the embedded state machine is entered in the
same atomic step. If the initial state of the embedded state machine is refined
turther, this applies recursively. Fig. 5.9 illustrates the mapping of real-time to
discrete time of the state machine depicted in Fig. 5.8 (b) while progressing from

5.5. Hierarchical Composition 93

the initial state A to the state constellation B(D|F). For this example, assume
that each transition has both an exit and entry action named outS() and inT'(),
respectively, where S is a placeholder for the transition’s source state and 7"is a
placeholder for the transition’s target state. On the occurrence of event ¢, the exit
action of state A is executed, still at discrete time ¢ = 0. Then the discrete time
advances to ¢t = 1 and the state constellation B(D|F) is entered. With becoming
active, the entry action of each state of the active constellation is executed. Entry
actions of states higher in the hierarchy are invoked before those of states lower
in the hierarchy. Entry actions of states on the same hierarchy level (that is, entry
actions of states of parallel machines) are executed in any order, as described in
Sect. 5.4.2.

-~ A

\
A
vy]
I
I
I
I
I

— [— ===
start e | | | real time
inA() outA()| inB() | inD() | inF)
0 1 discrete time

Figure 5.9: Mapping of real-time to discrete time when entering the constellation
B(D|F) of the state machine depicted in Fig. 5.8 (b) from state A.

5.5.2 Initial State Selection

Up to now we have only considered state machines with a single initial state on
each hierarchy level. However, OSM state machines may have multiple poten-
tial initial states per level, of which exactly one must be selected upon superstate
entry. Which of the potential initial state is actually selected depends on a con-
dition that can be specified by the programmer. In OSM, these conditions are
modeled as guards. In the graphical version of OSM, these guards have an in-
tuitive representation: they are placed on the transitions from the small circle to
the initial states. Fig. 5.10 illustrates the conditional entry to one of the substates
D and E of superstate B. Which of B’s substates is actually entered depends
on the value of a. If a = 1, substate D is entered, F otherwise. Note that it is
not possible to prevent or delay substate entry. If a superstate is entered, exactly
one of its substates must be entered. Therefore the guard conditions must be
discrete.

As regular guards are initial state conditions, they may be composed of ex-
pressions over state variables in scope, (side-effect free) computational func-
tions, or both. However, they may not refer to any information regarding the
transition that lead to the entry of the superstate (such as source state, event
type, and event parameter). This may seem awkward. However, conditional
state entry based on such information can be easily implemented by setting state
variables in entry actions. When B is entered, the state variable a can be set in

94 Chapter 5. The Object-State Model

the entry actions of B and then be evaluated in the guard, selecting the actual
initial state. This is possible since the entry actions of a superstate are always
executed before the initial-state condition is evaluated.

B
A e |nBlQ varint a
)t inB2Q)
g
N _
C e mBsQ E
_J f inB4 .
L

Figure 5.10: Conditional entrance to the substates D and E of B, depending on
guards over the state variable a. The state variable a can be set in
the entry actions of B, for example, depending on which transition
was taken.

5.5.3 Substate Preemption

When a transition fires, it ends the lifetime of its source state. We say the tran-
sition terminates the source state normally. If the source state of a transition is
a superstate, the transition also preempts its substates (i.e., the embedded state
machine). Then we say the transition preempts the source state’s substates. States
can only be left either through normal termination or through preemption. Sub-
states are preempted level-by-level, starting from the bottom-most state in the
hierarchy. A substate cannot prevent its superstate from being left (and thus
itself from being preempted).

If a state is preempted, its exit actions do not fire as during normal termina-
tion. In order to allow the preempted state to react to the termination or pre-
emption of its superstate (and thus its own preemption), preemption actions are
introduced. Preemption actions are useful, for example, to release resources that
where initialized in the preempted states” entry actions. Each state can have a
single preemption action. This preemption action is invoked as the state is pre-
empted. Preemption actions are invoked in the order in which their states are
preempted, that is, from the bottom of the hierarchy to its top. The substates’
preemption actions are invoked before the exit action of their superstate. Pre-
emption actions of parallel states are executed in any order.

The scope of the preemption action is the to-be-preempted substate. That is, a
preemption action can access all state variables its state before it is actually be-
ing preempted plus all state variables of (direct and indirect) superstates. Note
however, that a transition terminating a state directly does not trigger that state’s
preemption action—any required operations can be performed in the regular
exit action. In a preemption action, there is no means to determine any informa-
tion of the actual transition causing the preemption, such as its trigger and its
source state.

5.5. Hierarchical Composition 95

Let us again consider the state machine depicted in Fig. 5.8 (b), assuming ev-
ery transition has both an exit and entry action named outS() and inT'(), re-
spectively, where S is a placeholder for the transition’s source state and 7 is a
placeholder for the transition’s target state. Let us also consider that each state
P has a preemption actions preP(). Fig. 5.11 illustrates the preemption of the
constellation B(D|G) through the transition from B to C' triggered by f.

- - B =;< cC—----

I
I
O
\

f | | | real time
s prG() | prDQ |outB() | inc)
t t+1 discrete time

Figure 5.11: Mapping of real-time to discrete time when leaving the constellation
B(D|G) of the state machine depicted in Fig. 5.8 (b) to state C'

5.5.4 Progress in State Hierarchies

We can now describe the full execution semantics of a step in hierarchical and
concurrent OSM state machines. Note however, that the algorithm presented
here is not actually used in the implementation of OSM. It is only presented
for the understanding of the reader. The actual implementation of OSM state
machines is described in Sect. 6.2 of the next chapter.

At the beginning of each state-machine step, the earliest set of concurrent
events is dequeued. Then the set of dequeued events is considered to derive
possible transitions by performing a preorder search on the tree representing
the active constellation, beginning from the root of the tree. If a matching tran-
sition is found in a state, the transition is marked for later execution and the
search of the state’s sub-trees (if any) are skipped. If multiple transitions could
tire in a single state, only the transition with the highest priority is marked, as
described in Sect. 5.4.2. Skipping subtrees after finding a match means that tran-
sitions higher in the state hierarchy take precedence over transitions lower in
the hierarchy. The search continues until the entire tree has been traversed (or
skipped) and all matching transitions have been marked.

Then the following steps are performed while the state machine still is in the
source constellation. For each transition selected for execution, the preemption
actions of states preempted by that transition are invoked in the correct order
(from bottom to top). This is achieved by performing a postorder traversal on
each of the subtree of the transition’s source state, executing preemption actions
as states are visited. The order in which entire subtrees are processed can be
chosen arbitrarily, since each subtree represents a parallel machine. While still
being in the source constellation, the exit actions of all marked transitions are

96 Chapter 5. The Object-State Model

executed. Again, because all marked transitions are always sourced in parallel
states, they have no natural order and may be executed in any order.

Next, the state machine assumes a new active constellation, that is, discrete
time advances from ¢ to ¢t + 1. Now, the entry actions of the target states of the
marked transitions are executed. Again, they can be executed in any order. If
the entered target state, however, is a superstate, the entry actions of its sub-
states are invoked according to their level in the hierarchy from top to bottom,
as previously described in Sect. 5.5.1. This is achieved by performing a preorder
traversal of the subtrees sourced in transition targets, executing initial entry ac-
tions as states are visited.

Finally, the dequeued set of events is dropped. If no matching transition was
found, the dequeued set of events is dropped anyhow and the machine remains
in the actual constellation. Events emitted by actions during the state machine
step are enqueued in analogy to Sect. 5.4.2.

Fig.5.12 (a) depicts a state machine with transitions triggered by a single event
e on multiple levels. Fig. 5.12 (b) depicts the machine’s initial constellation and
the constellation active after performing the step triggered by event e. The initial
constellation is shown together with the result of the in-order search for tran-
sitions triggered by e. States marked with either check marks or crosses are
sources of matching transitions, while a missing mark denotes that there is no
transition matching event e. Transitions actually selected for the upcoming ma-
chine step are checked. A cross denotes a state with a matching transition that
is not selected (i.e., it does not fire) because a transition on a higher hierarchy
level takes precedence. (In the example, this is always the case for the transi-
tion from D to E, so the transition is redundant. However, such a situation may
make sense, if one or both transitions had guards.) Before executing the transi-
tions and their associated actions, first preemption actions are invoked. In the
example, only state D is preempted by the transition from A to B. Thus D’s
preemption action is invoked. Then the exit actions of all checked states are ex-
ecuted and the target constellation is assumed, as depicted in Fig. 5.12 (b). Note
that all target states (i.e., states entered directly, here B, G, and J) are from par-
allel compositions. By entering state .J, however, also its substate K is entered.
Entry actions of implicitly entered states are always invoked after their direct
superstate.

5.6 State Variables

State variables hold information that is local to a state and its substates. The
scope of the variables of a state S extends to entry, exit, and preemption ac-
tions that are associated with S and to all actions of states that are recursively
embedded into S via hierarchical composition. In particular, state variables are
intended to store information common to all substates and share it among them.

The lifetime of state variables start when their state is entered just before
invoking the state’s entry actions. Their lifetime ends when the state is left
(through a transition or through preemption) right after the invocation of the
last exit action. With respect to variable lifetimes, there is a special case for self
transitions that enter and leave the same state. Here, the variables of the affected

5.7. Summary 97

source constellation target consteallation
(initial state) (after occurrence of €)

Root(A(D)|C(FIH)) Root(B|C(G|J(K)))

(a) (b)

Figure 5.12: Determining the transitions to fire in a state machine step. The state
machine depicted in (a) starts in its the initial constellation and e is
the next event from the queue. Transitions originating in A, F, and
H are selected for firing. The transition from D is skipped as transi-
tions higher in the hierarchy take precedence. In a non-concurrent
state machine at most one transition can fire. If multiple transitions
fire, they can do so in any order.

state and their values are retained during the transition, rather then deleting the
variables and creating new instances.

Note that on a particular hierarchy level, a non-concurrent state machine can
only assume one state at a time. Hence, only the variables of this current state
are active. Variables of mutually exclusive states on the same level can then
be allocated to overlapping memory regions in order to optimize memory con-
sumption (see Sect. 6.1.1).

By embedding a set of parallel machines into a superstate, actions in differ-
ent parallel state machines may access a variable of the superstate concurrently
during the same state machine step at the same discrete time. This is no prob-
lem as long as there is at most one concurrent write access. If there are multiple
concurrent write accesses, these accesses may have to be synchronized in some
way. Due to the run-to-completion semantics of actions, a single write access
will always completely execute before the next write access can occur. How-
ever, the order in which write accesses are executed (in the real-time model) is
arbitrary and may lead to race conditions. Write synchronization is up to the
programmer.

5.7 Summary

In this chapter we have informally presented OSM, a programming model for
resource constrained sensor-nodes. OSM is an extension of the event-driven
programming model, adding two main features to the popular programming
model: firstly, an explicit abstraction of program state as well as mechanisms to

98 Chapter 5. The Object-State Model

compose states hierarchically and in parallel. Therefore, in OSM, programs are
specified as hierarchical and concurrent state machines. OSM allows to spec-
ify a program’s control flow in terms of program states and transitions between
them. The addition of these abstractions in OSM allow to specify sensor-node
programs more modular and structured compared to the conventional event-
driven model. The second feature builds on the first: OSM uses the explicit
notion of state as scoping and lifetime qualifier for variables, as well as context
for computational actions. The main achievement of state variables is the auto-
mated reuse of memory for storing temporary data by mapping data of mutually
exclusive states to overlapping memory regions.

Despite these additions, OSM shares several features of the event-driven pro-
gramming model. As in the event-driven programming model, progress is made
only in reaction to events by the invocation of actions, which also run to comple-
tion. Furthermore, OSM also stores events in an event queue while a previous
event is being processed.

6 Implementation

In the previous chapter we have presented the fundamental concepts and ab-
stractions behind the Object State Model. In this chapter we will examine the
four missing pieces that are needed to turn these concepts into a concrete pro-
gramming framework, which allows to produce executable sensor-node pro-
grams from OSM specifications. In Sect. 6.1 we will present our programming
language for OSM. This language provides the syntactic elements to make use
of the concepts and abstractions found in the OSM programming model (such as
state variables, state transitions, and actions) thus allowing to specify concrete
programs. The OSM language is used only to specify the program’s variables,
structure, and control flow. Computational operations (i.e., the implementation
of actions) are specified as functions of a procedural host language, such as C.
These functions are called from within the OSM-language code. As such, the
OSM language is not a classical programming language.

Before an executable can be created, an OSM compiler first translates the
OSM-language code into the host language as well. A language mapping spec-
ifies how OSM specifications are translated into the host language. It specifies,
for example, how OSM actions are translated into function signatures of the host
language. The language mapping and implementation details of the compiler
are presented in Sect. 6.2 and 6.3, respectively. In the final compilation step an
executable is created form the host-language files by a platform-specific host-
language compiler. The steps to create an executable from an OSM specification
is depicted in Fig. 6.1.

specified by ;
programmer OSM program structure \T actions \T

language mapping

by OSM compiler
generated variable control
code mapping structure

J] host-language compiler Key:
<7 v D OSM language file

generated _ i .
executable target-specific object code D host-language file

Figure 6.1: The OSM language is used to specify a program’s structure and con-
trol flow as state machines, and to associate variables to states. Com-
putational operations are specified in a host language. An OSM com-
piler then maps the OSM program specification to this host language
as well, from which the executable is created by a target-specific host-
language compiler.

100 Chapter 6. Implementation

When run on an actual sensor node, the generated executable then relies on
support by the runtime environment. This environment must be provided by
the target platform’s system software. For OSM-generated executables, the only
runtime support required is a basic event-driven system software capable of
handling sets of events. In Sect. 6.4 we present such a system software. Its
implementation is largely based on our original event-driven BTnode system
software, which we have already presented in Sect. 3.5.1. Therefore we only
highlight the changes to the original system.

6.1 OSM Specification Language

As opposed to most state machine notations, which are graphical, OSM speci-
tications use a textual language. The following subsections present important
elements of this language.

6.1.1 States and Flat State Machines

The prime construct of the OSM language is a state. The definition of a state in-
cludes the definition of its variables, its entry actions, its substates, its transitions
(which include exit actions), and its preemption actions. Many of those elements
are optional or are useful in hierarchical compositions only. We will explain the
elements of state definitions as well as their use in this and the following sub-
sections. State definitions have the following form (where S is the name of the
state):

state S {
state-variables
entry-actions
substates
transitions
preemption-actions

}

A flat state machine is composed of one or multiple states, of which at least
one must be an initial state. Multiple states of a flat machine must be connected
through transitions, so that every state of the machine is reachable from its initial
state. In the OSM textual language, a state machine composed of multiple states
must be hierarchically contained in a superstate. We will present hierarchy in
Sect. 6.1.2 below. For now we will focus on flat state machines. Prog. 6.1 is an
example of a simple, yet complete OSM program implementing a flat OSM state
machine (lines 3-20). The state machine consists of three states, A, B, and C,
where A is the initial state (denoted by the initial keyword).

Outgoing Transitions and Exit Actions

Definitions of transitions have the following form (where 7" is the target state, e
is the trigger event, g is the guard, and a.,;() is the entry action to be triggered):

[g]e / aem‘t() => T;

6.1. OSM Specification Language 101

Program 6.1: A flat state machine with variables, as well as entry and exit actions
in the OSM textual language.

PROG 1 state PROG_1 {

initial state A {
var int a;
onEntry: start/ inAQ);
e / outA() -> B;
f / outAQ) -> A;
} // end state A

© e N o Ul e W N e

10 state B {
Y 1 var int b;
B 12 f / outBQ) -> C;
; 13 e / -> C;
int b " } /l end state B
outB() 15
f e 16 state C {
inC1() inC2() 17 var int c;
vy 18 onEntry: B -> £/ inC1(Q);
C 19 onEntry: B -> e/ inC2(Q);

} // end state C

=
—
(@]
SR

N
N
(]

Transitions must be defined in their source state. The definition of a transition
must contain a trigger and, except for self-transitions, contains a target state.
The source state of a transition does not need to be specified explicitly. The spec-
ification of a guard and an exit action is optional. Actions are defined outside
of OSM in a host language. In line 6 of Prog. 6.1 a transition is defined leading
from A to B. It is triggered by event e. It has an exit action outA() and has no
guard.

State B is source of two transitions declared in lines 12 and 13. Transitions
have priorities according to their order of definition, with the first transition
having the highest priority. For example, if two concurrent events e and f occur
in state B, both transitions could fire. However, only the transition triggered by
[is taken, since it is declared before the transition triggered by e. In OSM, the
selection of transitions is always deterministic.

Self-transitions are transitions with identical source and target states. In OSM
there are two different ways to specify self-transitions, which have different se-
mantics. If the target state is given in the specification of a self-transition (as
in “f / outA() -> A; ” in line 7), the transition leaves the source state and
immediately re-enters it. That is, all state variables go out of scope and new in-
stances are created. Also, the state’s exit and entry actions are executed as well
as preemption actions of substates. If, however, the target state is omitted, as in
“f | outA(); ”, the state variables and their values are retained and only the

102 Chapter 6. Implementation

specified action is executed. If the target state is missing, the specification of an
action is mandatory.

Incoming Transitions and Entry Actions

As stated previously, transitions are defined in the scope of the transition’s
source state together with the transition’s exit action. In order to specify en-
try actions, part of the transition must be again declared in the transition’s tar-
get state. That is, if a transition is to trigger both an exit and an entry action,
the transition appears twice in the OSM code: It must be defined in the transi-
tion’s source state, together with the exit action. And it must be declared again
as incoming transition in the target state (together with the entry action). Both
declarations denote the same transition, if source state, target state, trigger and
guard are equal. If only the exit action of a transition is required, its declaration
as incoming transition is obsolete.

The reason for this seeming redundancy is the intent to reflect OSM’s scoping
of actions in the programming language. In OSM, exit actions are executed in
the context of a transition’s source state, whereas entry actions are executed in
the context of a transition’s target state. This separation is reflected in the syntax
and clearly fosters modularity, as changes to the incoming action do not require
changes in the transition’s source state (and vice versa) at the price of slightly
more code.

The general form of entry actions is (Where S is the source state, ¢ is the trigger
event, g is the guard, and acpt,() is the entry action to be triggered):

onEntry: S -> [gle / acnry0;

In Prog. 6.1, a transition from B to C triggered by f has an entry action inC'1().
The actual transition is defined in line 12. The corresponding entry action is
declared in transition’s target state C' in line 18. The declaration of the entry
action includes the transition’s source state B and its trigger f. However, the
declaration of the transition’s exact source state as well as its trigger event and
guard are optional and only required to identify the exact incoming transition
should there be multiple incoming transitions. This information can be left out
where this information is not required to identify the transition, for example if
there is only one incoming transition. In our example, state C' has two incoming
actions, both invoked on transitions from the same source state B. Therefore
the specification of the source state is not strictly required in the declaration and
line 18 could be replaced with “onEntry: f / inC1(); ” without changing
the program’s semantic. Missing source states, trigger events, and guards, in
entry-action declarations are considered to match all possibilities. Therefore, in
the declaration “onEntry: /[a(); ” in the definition of a state .S, action a()
would be executed each time S was entered. When multiple declarations match,
all matching entry actions are executed.

Entry Actions on Initial State Entry

In order to trigger computational actions when entering the initial state of a
state machine (either at the start of the entire program or because a superstate

6.1. OSM Specification Language 103

has been entered), OSM uses incoming transitions as specified by the onEntry
keyword. To distinguish initial state entry from the reentry of the same state
(e.g., through a self transition), the pseudo event start is introduced. The start
pseudo event is not a regular event. Particularly, it is never inserted into the
event queue. For hierarchical state entry, it can be considered a placeholder for
the actual event that triggered the entry of the superstate, though non of the
event’s parameters can be accessed. An entry action triggered by start should
never have a source state specified. In the example program PROG_1, the start
pseudo event is used to distinguish between the entry of state A as an initial
state and its reentry through the self transition specified in line 7.

Variable Definitions

State variables can only be defined in the scope of a state. They are visible only
in that state and its substates, if any. Variables are typed and have a name, by
which they can be referenced in actions anywhere in their scope. In the code of
the previous example, each state defines an integer variable a, b, and ¢ (in lines 4,
11, and 17), respectively (though they are never used).

Actions Parameters

Actions may have numerical constants and any visible state variables as param-
eters. Action parameters must be declared explicitly in the declaration of an
action. For example, in the code fragment below, outA() has two parameters:
the state variables index and buffer.

e | out A(index, buffer) ->T ;

Actions map to functions of the same name in the host language. For each host
language, there is a language mapping, which defines how actions and their pa-
rameters map to function signatures. Programmers must then implement those
functions. An example of the mapping of an action with parameters into the C
language is shown in Sect. 6.2.1 below.

6.1.2 Grouping and Hierarchy

An entire state machine (composed of a single state or several states) can be
embedded into a single state (which then becomes a superstate). In OSM, states
can be embedded into a state simply by adding their definitions to the body
of that state. States can be nested to any level, that is, substates can embed state
machines themselves. In Prog. 6.2 a state machine composed of two states, A and
D, is embedded into the top-level state PROG_2, while B and C are embedded
into PROG_2’s substate A (lines 5-15).

The states of the embedded state machine must only contain transitions to
states on the same hierarchy level. At least one of the states must be marked as
the initial state. Each state of a flat state machine must be reachable through
a transition from the machine’s initial state.

All states of the embedded state machine may refer to variables that are de-
fined in any of their superstates. These variables are said to be external of that

104 Chapter 6. Implementation

Program 6.2: A hierarchical state machine and its representation in the OSM tex-
tual language.

1 state PROG_2 {
2 initial state A {
PROG_2 3 var int a;
4
? 5 initial state B {
A 6 var int b;
inta 7 ;n?ntry:(f / inB(a, b);
8 outBQ) -> C;
O _ 9 onPreemption: prB(Q);
intb 10 } // end state B
prB() e 1 state C {
outB() AinB(a,b) 12 extern var int a;
f f 13 var int c;
e 14 f / outC(a, ¢) -> B;
y | outC(ac) 15 } // end state C

e / -> D;

int
it e } //l end state A

.0
= =
® 3

2 state D { e / > A; }

state. If desired, the external variable interface may be declared explicitly, but if
it is declared, external variables must be marked with the extern keyword. In
the example, the integer variable a, defined in state A (line 3), is visible in A’s
substates B and C. Therefore a can be used in their actions, such as inB() and
outC() in lines 7 and 14 of the example Prog. 6.2, respectively. In state C' the
external variable a is declared explicitly.

Preemption Actions

Substates may declare preemption actions that are executed at runtime when
the substate is left because its superstate is left through a transition. Preemption
actions are declared in the context of states—they are not explicitly associated
with particular transitions. Definitions of preemption actions have the following
form (where ayreemption() is the preemption action):

onPreemption: / a, cemption);

In the example Prog. 6.2, state B declares a preemption action prB() in line 9. It
could be used to release resources previously allocated in the entry action inB()
when B is left implicitly by preemption, that is, when leaving B’s superstate A
through a transition to D.

6.1. OSM Specification Language 105

6.1.3 Parallel Composition

Parallel compositions of states can be defined by concatenating two or more
states with “|| ”. In the OSM textual language, parallel state compositions must
be contained in a superstate. On the next lower level, a superstate can either
contain a parallel composition of states or a sequential state machine, but never
both. That means, if a superstate is to contain two parallel state machines of
two or more states each, an additional hierarchy level is required. This case is
shown in Prog. 6.3, which is the textual OSM representation of the state machine
depicted in Fig. 5.8 (b) (the original figure is reprinted here for convenience).
In the example, state B contains two state machines of states D, £ and F, G,
respectively. In the given OSM program, each of those machines is embedded
into an anonymous state (lines 5-8 and lines 10-13; not shown in the figure),
which is a direct substate of 5. States that need not be referenced by transitions
may be anonymous, that is, they need not have a name. Such states are initial
states with no incoming transitions and states grouping parallel machines (as in
the example).

Program 6.3: Representation of the parallel state machine depicted in Fig. 5.8 (b)
(reprinted here for convenience) in the OSM textual language.

state PROG_3 {
initial state A { e / -> B; }

1
2
4 R 3
PROG 3
= | « state B {
B 5 state {
6 initial state D { g /-> E; }
7 state E { g /-> D; }
8 }
e . I

1 initial state F { h /-> G; }
C 12 state G { h /> F; }
- -

f 14 f/ > C;
L J 15} I/l end state B
16 state C {} //end state C
17 } I/ end state PROG

F
10 state {
h h
G

6.1.4 Modularity and Code Reuse through Machine
Incarnation

To foster modularity and the reuse of program code, OSM supports the instan-
tiation of states. A programmer may instantiate a state that is defined elsewhere
in the program (or in another file implemented by another developer) in order to
substitute a state definition anywhere in the program. There are no restrictions
on the state to be incarnated except that recursive instantiation is not allowed. A

106 Chapter 6. Implementation

state definition may be substituted using the incarnate keyword followed by
the name of the actual state declaration. In order to adapt the actual state defi-
nition to the program context of its incarnation, a number of name-substitutions
and additions can be made to the original declaration in the incarnation state-
ment. The full declaration of a state incarnation has the following form (where
S is the name of the state incarnation, and I is the state to be incarnated):

state S incarnate [(name substitutions) {
additional entry actions
additional transitions
additional preemption actions

}

Additionally, state definitions may be marked with the template keyword
in order to denote that the definition is not a complete program but instead is a
template definition meant for incarnation elsewhere in the program. Though not
strictly required, state templates should specify their complete interface includ-
ing variables, events, and actions. The example Prog. 6.4 shows the definition
of a template state / (lines 1-9) and its incarnation as a direct substate of the
top-level state PROG_4 (lines 14-19). Additionally, PROG_2 (which we have
defined previously in Prog 6.2) is also inserted as a direct substate of PROG_4
(lines 21-26). We will use this example to explain the various elements of the
above incarnation statement in the following subsections.

Name Substitution

A state can be incarnated as a substate of a regularly defined (i.e., non-
incarnated) state. The incarnation has the same name as the incarnated state
unless given a new name in the incarnation statement. If the a state definition is
incarnated more than once, the incarnation should be given a new name in or-
der to distinguish it from other incarnations. Lines 14 and 21 of Prog. 6.4 shows
how to rename incarnations.

Just like regular states, incarnated states may access the variables of their su-
perstates. The external variables of the incarnation (i.e., the ones used but not
defined in the incarnation, see lines 2 and 3) are bound to the variables of the
embedding superstates at compile time. External variables must have the same
name and type as their actual definitions. However, since the incarnated state
and the superstate may be specified by different developers, a naming conven-
tion for events and variables would be needed. In order to relieve programmers
from such conventions, OSM supports name substitutions for events and exter-
nal variables in the incarnation of states. This allows to integrate states that were
developed independently. Line 15 of Prog. 6.4 shows how the external variable =
of the original definition (line 2) is renamed to u in the incarnation. Renaming of
events is done analogously. Lines 16, 22, and 23 show how events are renamed.
Note that in the incarnation of PROG_2 the event names e and f are exchanged
with respect to the original definition.

6.2. OSM Language Mapping 107

Adding Entry Actions and Transitions

When incarnating a state, transitions, entry actions, exit actions, and preemption
actions can be added to the original state definition. Adding transitions and ac-
tions to the original state definition is typically used when the program context
of the incarnation is not known at implementation time. In Prog. 6.4, A is the
incarnation of template /. In I there are no outgoing transitions defined. In I’s
incarnation A, however, a transition is added leading from A to B (line 18). Also,
an incoming action inA(u) is added to the transition from B back to A (line 17).

Adding Preemption Actions

When incarnating a state, preemption actions can be added to the original state
definition. Preemption actions can be added to react to the termination of the
incarnation’s superstate. Adding preemption actions is useful, for example, to
include an existing stand-alone program as a sub-phase of a new, more complex
program. In our example Prog. 6.4 there are no preemption actions added to the
incarnations of either states, since their common superstate PROG_4 is never
left.

6.2 OSM Language Mapping

An OSM language mapping defines how OSM specifications are translated into
a host language. The host language is also used for specifying actions. Such a
mapping is implemented by an OSM compiler. For every host language, there
must be at least one language mapping. Yet, there may be multiple mappings
focusing on different aspects, such as optimizations of code size, RAM require-
ments, execution speed, and the like. We have developed a prototypical version
of an OSM compiler that uses C as a host language. Hence, we discuss how
OSM can be mapped to C in the following sections. The main goal of our com-
piler prototype is to create executable OSM programs that

* have low and predictable memory requirements and
* are executable on memory-efficient sensor-node operating systems.

In general, OSM programmers do not need to know the details of how OSM
programs are mapped to executable code. What they do need to know, however,
is how actions in OSM are mapped to functions of the host language. Program-
mers need to provide implementations of all actions declared in OSM, and thus
need to know their exact signature.

Internally, and typically transparently to the developer, our compiler proto-
type maps the control structure and state variables of OSM programs sepa-
rately. State variables are mapped to a static in-memory representation using
C-language structs and unions . This mapping requires no dynamic mem-
ory management and is independent of the mapping of the control structure.
Yet it is memory efficient, as state variables with non-overlapping lifetimes are
mapped to overlapping memory regions. Also, the size of the in-memory repre-
sentation of all state variables is determined at compile time.

108 Chapter 6. Implementation

Program 6.4: Example for the incarnation of states. PROG_4 incarnats two
states. The fully specified state template / (defined in lines 1-9)
is incarnated in line 14 as state A. And the self-contained OSM
program with top-level state PROG_2 from Fig. 6.2 is incarnated in
line 21 as state B.

template |
extern char x 1 template state I {

2 extern var char X,
oofi

extern event g;
outl2(x)

action outIl(char);

initial state I1 {
g / outIl(x) -> I2; }
state I2 {}

Y

@

© ® N o U e W

10 state PROG_4 {

PROG_4 1 var char u;
char u “templatel assA 12 extern events e,f,g;
extern char u 13
O ol 14 initial state A incarnate I (
15 char u as x,
‘;—;&m(u) 16 event e as g) {
17 onEntry: B -> g / inA(u);
E}“ 18 f / -> B;
19 } // end state A
20

inA(u) 4 21 state B incarnate PROG_2 (
g f inB(u) » event e as f,
(statePRoe Z‘LsB W 23 event f as e) {
— 24 onEntry: A -> £ / inB(u);
25 g/ > A;
2% } // end state B
27 }

The program’s control structure is mapped to executable code that manages the
internal program state (as opposed to state modeled as state variables) and trig-
gers the execution of actions. Because actions access state variables, the control-
structure mapping depends on the mapping of state variables. The generated
code closely resembles conventional event-driven program code. It is executable
on (slightly modified, yet) memory-efficient system software for event-driven
programs.

6.2. OSM Language Mapping 109

6.2.1 Variable Mapping

A language mapping must define how state variables are allocated in memory;,
yielding an in-memory representation R of all state variables of an OSM specifi-
cation. Our main goal is to minimize the memory footprint. The allocation can
be defined recursively as follows, where every state of an OSM program has a
representation in the C memory mapping.

A single variable is mapped to a memory region R,,, that is just big enough to
hold the variable. A state results in a representation R4, which is defined as a
sequential record (i.e., a C struct) of the representations R, of all variables 7
and the representation of embedded states, if there are any.

The representation of embedded states differs for sequential and parallel com-
positions. Since a sequential machine can be in only one state at a time, the
state variables of different states of the sequential composition can be mapped
to overlapping memory regions. Hence, the representation R,., for a sequential
state machine is defined as the union (i.e., a C union) of the representations
Rgiate, of all states i. The states of parallel compositions, however, are always ac-
tive at the same time, and so are their state variables. Hence, the representation
R, of a set of parallel states is defined as a sequential record of the representa-
tions R, of all contained states 7.

In the example shown in Program 6.5, the state machine to the left results in
the memory layout in the C language shown to the right. If an int consists
of 2 bytes, then the structure requires 8 bytes. If all variables were global, 12
bytes would be needed. Note that the size of the required memory as well as
the memory locations of variables are already known at compile time. With
this mapping, no memory management is required at all. Particularly, no dy-
namic allocations are performed at runtime. Instead, the resulting in-memory
representation is statically allocated once (in the code generated from the OSM
control structure) and does not change during runtime.

Now we can already define our mapping from OSM actions to function sig-
natures in C. OSM action names translate to C functions of the same name. In
the C mapping, state variables can be accessed by their name after dereferencing
the variable’s associated state in the memory mapping. For example, the state
variable c of state C' (line 4) maps to _statePROG_5._par_C_D._stateC.c
In order to allow their modification in actions, state variables are passed by ref-
erence in the invocation. For example, the action outA(c) used in line 8 of the
OSM program has the following signature in C:

OutA(*int);

Its invocation from the executable code that is generated from OSM control
structures is mapped to the following C function call (which is not visible to
the programmer):

OoutA(& statePROG_5. par C D. stateC.c);

6.2.2 Control Structures

Fig. 6.1 suggests that OSM specifications are translated directly into program
code of the host language. In our current prototype of the OSM compiler, this

110 Chapter 6. Implementation

Program 6.5: Example of an OSM program containing several state variables
side-by-side with the its variable mapping in the host language C.
Every state mapps into a corresponding union , containing both
the variables of that state plus a representation of the state’s sub-
states. Sequential and parallel compositions of substates are rep-
resented as a union and a struct of substate representations, re-
spectively.

1 state PROG_5 { 1 struct statePROG_5 {

2 2 struct par_C_D {

3 state C { 3 struct stateC {

4 var int c; 4 int c;

5 5 union seq_A_B {

6 state A { 6 struct stateA {
7 var int al, a2; 7 int al, a2;
8 e / outA(c) -> B; 8

9 } // end state A 9 } _stateA;

10 state B { 10 struct stateB {
1 var int bl, b2; 1 int bl, b2;
12 f/ -> A; 12

13 } // end state B 13 } _stateB;

14 14 } _seq_A_B;

15 } // end state C 15 } _stateC;

16 | 16

17 state D { 17 struct stateD {

18 var int d; 18 int d;

19 } 19 } _stateD;

20 20 } _par_C_D;

2z } // end state PROG_5 21 } _statePROG_5;

is only true for the variable mapping. Control structures are first mapped to an
intermediate representation in the imperative language Esterel [19, 18, 26]. From
this representation, C code is generated by an Esterel compiler.

The Esterel Synchronous Language

Esterel is a synchronous language (see, for example, [17, 50, 95]) for the specifi-
cation of reactive systems. Synchronous languages are reactive in that they react
to input stimuli (i.e., events) in order to compute output events, typically also
changing the internal program state. Synchronous languages are typically used
to implement control systems, such as, industry process control, airplane and
automobile control, embedded systems, bus interfaces, etc. They are built on
the hypothesis that operations take no (real) time, that is, operations are atomic
and the output of an operation is synchronous with its input (hence the name
synchronous language). Synchronous languages have a discrete model of time
where time progresses only on the occurrence of events.

The Esterel language allows to specify concurrent processes, where individ-

6.2. OSM Language Mapping 111

ual processes advance on the occurrence of specified events only. In each step,
the system considers one or more input events. According to the input, possi-
bly multiple Esterel processes are invoked simultaneously. When invoked, Es-
terel processes can emit (possibly multiple) external events. They can also in-
voke procedures. External events and procedures are implemented in Esterel’s
host-language C. External events are typically used to drive external controller
systems while procedures are used to implement complex calculations in the
host language C. Programs specified in the Esterel language can be compiled
to C and hardware circuits. For the C-code generation there are three different
modes, optimized for execution speed, compilation speed, and code size. Pure
Esterel programs, that is, programs that do not call any procedures, can also be
compiled to hardware-circuit netlists in the Berkeley Logic Interchange Format.
Because OSM relies heavily on Esterel’s external procedures for the implemen-
tation of actions, hardware-circuit generation is not an option.

Building Programs with Esterel

Esterel programs do not compile to self-contained programs. Rather, they com-
pile to a number of C functions: one principal function and one input function
for each possible input event. Additionally, a function stub is generated for each
output event and each procedure, which then have to be implement by pro-
grammers to complete the program.

The principal C function performs a discrete time step of the Esterel program
based on the input events. Input events are passed to the program by calling
the corresponding event-input functions before the principal function performs
the next discrete step. In the principal function the program’s internal state is
updated and all procedures are invoked (as well as output events “emitted”)
by calling the corresponding function stubs. (It should be noted that for pro-
grammatically emitting events, OSM does not use Esterel’s synchronous event
output. Instead, output events are feed into OSM’s event queue.) In order to
build a full program, programmers also have to supply a main program body
that collects event inputs, injects them into the system (via input functions), and
then calls Esterel’s principal function. This main body resembles the control
loop of event-driven systems.

When implementing programs on real systems, the synchronous time model
of synchronous languages conflicts with real execution semantics, where oper-
ations always require some amount of real time to execute. Therefore, to im-
plement actual programs, programmers must guarantee that input events are
only injected into the system after the processing of the previous step has com-
pleted. This is typically achieved by buffering input events during the execution
of Esterel’s principal function, that is, while performing a synchronous step in
Esterel. Another approach is to guarantee that at runtime the time interval be-
tween any two consecutive input events is longer than the execution time of the
principal function. Since the arrival time of external events is typically beyond
the control of the programmer, however, this is infeasible for many systems.

The system resulting from the former approach (i.e., queuing) can be seen
as an event-driven system, where Esterel’s principal function takes the role of
a unified event handler for all events. Such a system relies on an underlying

112 Chapter 6. Implementation

runtime environment to provide an event queue that can hold event sets, and
drivers that generate events. The difference between such a system and a tradi-
tional event-driven system is that that latter only processes one event at a time
while in the former several events can be processed concurrently.

Reasons for Building OSM with Esterel

We have chosen to implement the OSM-to-C mapping with Esterel as interme-
diate language for several reasons. As a synchronous and reactive language,
Esterel is well suited for the implementation of state machines. Esterel’s pro-
gramming model and code structure is much closer to OSM as sequential pro-
gramming languages, such as C. Indeed, Esterel has been used to implement a
graphical state-based implementation language called SyncCharts [10, 11]. Our
mapping from state-based OSM to imperative Esterel is inspired by this imple-
mentation. Also Esterel produces lightweight and system-independent C-code
that scales well with the number of states and events and requires no support
for multi-tasking. Instead, code generated from Esterel can be integrated well
with a modified version of our BTnode system software, which only required
moderate effort to support concurrent event sets.

On the practical side, Esterel is immediately available and well documented.
Also, the Esterel compiler performs sophisticated analysis of the input sources,
thereby detecting logical errors in the intermediate Esterel representation that re-
sult from erroneous OSM specifications. This approach relieved us from imple-
menting strict error-detection mechanisms in the prototype compiler ourselves
and allowed to focus on the development of the OSM programming model.

6.2.3 Mapping OSM Control-Flow to Esterel

In our mapping of OSM, Esterel’s principal function performs a discrete time
step of the OSM state machine. In each OSM machine step the state transition
function accepts the set of concurrent events from OSM’s event queue (see Sec-
tion 5.4.1). In that machine step, the state transition function first invokes all
preemption and exit actions of the current state and its substates. Then it per-
forms the state transitions triggered by the set of input events. Finally it invokes
all entry actions of the newly assumed states.

Effectively, state-based OSM programs are compiled back into an event-
driven program representation where all event types invoke a single action im-
plemented by Esterel’s principal function. As a matter of fact, the C code gener-
ated from the Esterel representation of OSM programs runs on BTnodes with a
slightly modified version of the event-driven BTnode system software. Demon-
strating the duality between OSM programs and event-driven programs is the
prime goal of the language mapping and an important piece in supporting our
thesis. This duality is the basis for showing that state-based programs, such as
OSM, do not require more system support than regular event-driven programs.
We still need to show, however, that the state-transition function generated from
Esterel (i.e., the function that implements an OSM program as event-handler)
does not introduce unacceptable overhead. We will do so below.

6.2. OSM Language Mapping 113

Esterel-Code Generation from OSM

The exact details of mapping OSM to Esterel are only of secondary importance.
Therefore, and due to space constraints, we will present the mapping by ex-
ample only. Appendix A.1 shows the OSM program PROG_PAR depicted in
Fig. 6.2, its mapping to Esterel, and the C code generated by the Esterel com-
piler. The program is a parallel composition of the OSM state machines pre-
sented in Programs 6.1 and 6.2. It has 10 states and contains most features of
OSM. Table 6.1 compares the sizes (in terms of lines of code) of the original OSM
implementation and the generated C and Esterel mapping code.

Compilation # Lines Comment

Unit

test.osm 49 original OSM implementation
test.h 80 variable mapping (C)

test.strl 307 control structure mapping (Esterel)
test.c 616 control structure mapping (C)

Table 6.1: Number of lines of code for an OSM program and its mappings in C
and Esterel.

In this section we demonstrate that the event-driven code generated by OSM
does not introduce unacceptable overhead. To this end, we analyze the variable
memory and code size of OSM programs. As described previously, the OSM
code is first translated into Esterel code, from which C code is generated. There-
fore we analyze the object code generated from C code by a C compiler. Since
our target platform is the BTnode, we compile for the Atmel AVR 128 microcon-
troller, the BTnode’s CPU. The compiler used is GCC for AVR (avr-gcc), version
3.4.3.

We start by analyzing the Programs 6.1 and 6.2 from the last section. Using
these programs as base modules, we the build more complex programs by se-
quential and parallel composition.

C-Code Generation from Esterel

The Esterel compiler has several code generation modes and target languages.
We use ANSI C in the sorted equations mode. The original C output of the
Esterel compiler for program PROG_PAR depicted in Fig. 6.2 is shown in Ap-
pendix A.4.1. The state transition function basically compiles into a long list of
boolean equations that operate on a large amount of boolean variables. These
variables store the machine’s internal program state as well as temporary state
during the function’s execution in two large array of chars. The representation
of boolean values as chars is inherently memory inefficient. Therefore we mod-
ify the Esterel-generated C code to use bitfields instead, as exemplified below.
Bitfields are a C mechanism for addressing individual bits of a struct. The neces-
sary modifications are made by a Perl script but currently require some human
intervention, though the task could be fully automated. Note that these modi-
tications are required only when compiling for the BTnode. Development and
initial program testing is typically performed in the BTnode emulation environ-
ment on a PC, where size is not an issue.

114 Chapter 6. Implementation

(PROG_PAR

p
PROG_1

inA()

inth
prE()

oute() | 4inE(ab)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
B | £ |f
. |
intb 3 v | outF(ac)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

outB() F
il
inC1() inC2() intc
Yy
C
N\ J
N J
g N
PROG_SEQ
g M
PROG_1

inAQ PROG_2

B int b
intb g PrEQ
oute() | ¥inE(ab)

outB() fl|f
y | outF(ac)

Figure 6.2: Two OSM programs PROG_PAR and PROG_SEQ composed of the
state machines PROG_1 and PROG_2 previously presented as Pro-
grams 6.1 and 6.2, respectively . In PROG_PAR, the two state ma-
chines are composed in parallel, while in PROG_SEQ they are com-
posed sequentially, introducing a new event g to transition between
them.

6.3. OSM Compiler 115

// original representation // optimized representation
char E4; struct {
unsigned int EQ:1;
unsigned int El1:1;
unsigned int E2:1;
unsigned int E3:1;
} E;

The obvious advantage of using bitfiels instead of chars for the storage of
boolean values is a reduction of data-memory requirements by a factor of eight.
The disadvantage is an increase of program memory by a factor of about 1.8.
The size increase stems from the necessity to mask individual bits in the struct.
In the disassembly of the modified state-transition function, bit masking shows
as additional machine operations in the object code, mainly immediate AND op-
erations (i.e., AND with a constant) and register loads. The program-memory
size of variable-memory optimized code is shown in Table 6.2.

Program Code Size in bytes Memory Size in bytes
Transition Function | Program State | State Variables
PROG_PAR 9240 17 8
PROG_SEQ 12472 20 6
PROG_1 3170 8 2
PROG_2 5434 10 6
D n/a 6 6

Table 6.2: Memory sizes for the states from Fig. 6.2. The programs PROG_PAR
and PROG_SE() are concurrently and sequentially composed of pro-
gram parts PROG_1 and PROG_2, respectively. D is a part of pro-
gram PROG_2. The first row contains the size of the object code gen-
erated for the listed programs. The second row contains the memory
requires to internally store their optimized state machine. The third
row denotes the size of the state variables in memory.

6.3 OSM Compiler

Our OSM-compiler prototype is a three-pass compiler implemented in the Java
programming language. In the first pass, the compiler parses the OSM input
file and generates an intermediate representation of the program’s syntax tree in
memory. The parser for the OSM-language is generated by the parser generator
CUP from a description of the OSM grammar. (CUP is an acronym for Construc-
tor of Useful Parsers.) CUP serves the same role for Java as the widely known
program YACC does for C. CUP takes a grammar with embedded Java code as
input (in our case the grammar of OSM), and produces a set of Java classes that
implement the actual parser. The parser generated for the OSM language gener-
ates an in-memory representation of the OSM syntax tree, that is, it implements
the compiler’s first pass on an OSM input file. The parser generated by CUP
relies on a scanner to tokenize the input of the parser. For our OSM compiler,

116 Chapter 6. Implementation

the scanner is generated by a lexical analyzer generator called JFLEX (Fast Lex-
ical Analyzer Generator for Java). JFLEX is the Java counterpart of FLEX, a tool
generating scanners in the C programming language.

The second pass of the OSM compiler operates on the in-memory syntax tree
(created during the first pass) of the OSM input. Concretely, it extends the in-
memory representation of interfaces that are only implicitly defined in the input
tile (such as a complete list of variables visible for each state). It also performs
some input verification beyond mere syntactical checks, for example, if all tran-
sition targets exist and if all variables used in actions and guards have been
defined. However, error checking is mostly delegated to the Esterel compiler on
the intermediate Esterel representation of the OSM program. This approach is
convenient as we did not need to implement the functionality ourselves, yet can
provide some error notifications. On the other hand it is very inconvenient for
OSM programmers as they must be able to interpret the somewhat cryptic error
messages of the Esterel compiler, which in turn requires to be familiar with the
Esterel language.

In the third pass, the Esterel representation of the OSM input is generated
according to the language mapping, as described in the previous section. This
representation is then compiled to plain C code with the Esterel compiler. The
final executable is produced from a C compiler by a generic makefile (see
Appendix A.5.2). It compiles and links the three elements that make up an
OSM program in the host-language C: (1) the C-language output of the Esterel
compiler, representing the program’s control flow and structure, (2) the state-
variable mappings, which are directly produced as a C header file by the OSM
compiler, and (3) the definitions of actions written in C by the programmer.

In the current version the OSM-compiler prototype, some features desirable
for routine program development have not been implemented, mostly due to
time constraints. For example, the OSM compiler does not support compilation
units. Only complete OSM specifications can be processed by the compiler. Note
however, that as far as compilation units are concerned, the implementation of
actions is independent of the program. Actions are specified in (one or several)
C files, which may be compiled separately from the OSM program (see Fig. 6.1).

Also, some OSM features not supported in the current version of the compiler.
These features are:

* Incoming transitions with the declaration of a source state (as in
onEntry: A -> e / inA();): Incoming transitions without the dec-
laration of a source state (such as onEntry: e / inA();) work fine.
This feature is currently missing, as its implementation in Esterel is rather
complex.

e State incarnations and thus adding and renaming actions, transitions and
preemption actions to incarnations: We have shown the feasibility and
usefulness of state incarnations in a previous implementation of the OSM
compiler (presented in [74]). In the re-implementation, this feature was
dropped due to time constraints.

* Preemption actions: The realization of preemption actions in the Esterel
language is straightforward, yet, would require additional analysis in the

6.4. OSM System Software 117

of the second compiler stage. We have dropped this feature due to time
constraints.

The entire OSM compiler currently consists of a total of 7750 lines of code,
including handwritten and generated Java code (4087 and 2572 lines, respec-
tively), as well as the specifications files for the OSM parser and scanner (707 and
184 lines, respectively). The compiler runs on any Java platform, yet, requires an
Esterel compiler [113] for the generation of C code. The Esterel compiler is freely
available for the Linux and Solaris operating systems, as well as for Windows
with the Cygwin environment installed.

6.4 OSM System Software

The OSM system software provides a runtime environment for OSM programs.
Because OSM programs are compiled into a basically event-driven program no-
tation, the runtime environment for OSM programs is very similar to regular
event-driven programs. In fact, OSM programs run on a slightly modified ver-
sion of the BTnode system software, our previous, purely event-driven operat-
ing system, which we have already described in Sect. 3.5.1. Only small modifi-
cations to the control loop, the event queue, and the event representation were
necessary in order to support concurrent events. As we pointed out in Sect. 5.4.1,
OSM considers the set of events emitted during a single step as concurrent.

In the original BTnode system software, events are implemented as 8-bit val-
ues, being able to represent 255 different types of events (event number 0 is re-
served). The event queue is implemented as a ringbuffer of individual events. In
the revised implementation, events are implemented as 7-bit values, effectively
reducing the number of event types that the system can distinguish to 127. The
8th bit is used as a flag to encode the event’s assignment to a particular set of
concurrent events. Consecutive events in the ringbuffer with the same flag value
belong to the same set. Internally, the queue stores two 1-bit values, one for de-
noting the current flag value for events to be inserted, the other for denoting the
current flag value for events to be removed from the queue, respectively.

While the incoming flag value does not change, events inserted into the queue
are considered to belong to the same set of events (i.e., their flag is set to the
same value). To indicate that a set is complete and the next event to be inserted
belongs a different set, the new queue operation next_input_set is introduced.
Internally, next_input_set toggles the value of the flag for inserted events.

Likewise, the queue’s dequeue operation returns the next individual event
from the queue as indicated by the current output flag. The event number 0
is returned if there are no more events for the specified set. To switch to the next
set of events the queue operation next_output_set is introduced. Additionally,
the operation’s return value indicates whether there are any events in the queue
for the next set or the queue is empty. Both, the enqueune and dequeue operations
retain their signatures.

The control loop also needs to reflect the changes made to the event queue.
The fragment below shows the implementation of the new control loop. Instead
of dequeuing individual events and directly invoking the associated event han-
dlers, the new version dequeues all events of the current set (line 5) and invokes

118 Chapter 6. Implementation

the input functions generated by the Esterel compiler (line 6). When all events
of the current set have been dequeued, the principal event handler of the OSM
program is invoked (line 8). Then the next set of events to be dequeued is ac-
tivated (line 10). If there are no events pending, the node enters sleep mode
(line 11). The node automatically wakes up from sleep mode when a new event
is available. Then the process will be repeated.

event_t event;

while(true) {

input_to_next_step(event);

1
2
3
4
5 while((event = dequeue()) != 0)
6
7
8 perform_next_step();

9

10 if(next_output_set() == false) sleep();
11

2} /I end while

—_

Note that the next_input_set operation is not called from the main loop di-
rectly. It is instead called twice at the end of the function performing the next
OSM machine step: Once after inserting all events into the queue that have been
programmatically emitted by preemption and exit actions. And again after in-
serting all events that have been programmatically emitted by incoming actions.

6.5 Summary

In this chapter we have presented the pieces needed to implement programs
based on the concepts of OSM and to compile them into executable code on an
actual sensor node. We have presented OSM’s specification language that allows
to specity sensor-node programs, a compiler to translate OSM program specifi-
cations into portable C code, and we have shown how to modify an existing
event-driven sensor-node operating system in order to support OSM programs
at runtime.

[/ State-based Programming in
Practice

The thesis formulated in the introduction of this dissertation was that the state-
based programming model incurs as little overhead as the event-based model,
yet allows to program more memory efficiently and allows to specify programs
more structured and more modular compared to event-driven programs. In the
following sections we will support this thesis.

Before turning to concrete examples, we present an intuitive approach to mo-
tivate our claim in Sect. 7.1. We explain how event-driven programs can be
formulated as trivial OSM programs containing a single state only. Clearly, such
programs do not exhibit the benefits of state-based programming. However, the
initially trivial programs are easily refined, increasing their structure, modular-
ity, and memory efficiency. Such refined programs, on the other hand, cannot be
translated back in the event-driven model without loosing such benefits again.

In Sect. 7.2 we show how the structure and modularity of sensor-node pro-
grams benefits from OSM using a concrete example from the literature. We will
compare the reimplementation of a large part of the EnviroTrack middleware in
OSM and compare it to the original NesC implementation. We will compare the
two implementations with respect to state management, accidental concurrency;,
and state-bound resource initialization. We show that with OSM manual state
management can be removed entirely in favor of an explicit, high-level state no-
tation. As a result the programs are much more concise. In our example, we
show that the size of the OSM re-implementation is reduced by 31% (measured
in lines of code) with respect to the original nesC implementation.

In Sect. 7.3 we will illustrate how OSM can increase the memory efficiency of
programs compared to event-driven programs. Concretely, we will show how
state variables foster the reuse of memory for temporary data structures using
a small example. The memory savings achievable by using state variables very
much depend on the program structure. While very high memory savings can
be achieved in theory, we expect savings of 10 to 25% in real-world programs.
Sect. 7.4 summarizes this chapter.

7.1 An Intuitive Motivation

Traditional event-based programs can be formulated in OSM as depicted in
Fig. 7.1. There is a single state Sy, which has attached all global variables var;
of the event-based program. For each possible event e; there is a self transition
with an associated action out;(), which has access to e¢; and to all state variables
of Sp. Hence, OSM can be considered a natural extension of event-based pro-
gramming,.

120 Chapter 7. State-based Programming in Practice

outl()
E R

varl out2()
var2

Figure 7.1: A traditional event-based program specified in OSM.

One notable observation is that OSM supports two orthogonal ways to deal
with program state: explicit machine states and manual state management us-
ing variables. In traditional event-based programming, all program state is ex-
pressed via global variables. In pure finite state machines, all program state is
expressed as distinct states of the FSM. With OSM, programmers can select a
suitable point between those two extremes by using explicit machine states only
where this seems appropriate. In particular, a programmer can start with an ex-
isting event-based program, “translate” it into a trivial OSM program as shown
in Fig. 7.1, and gradually refine it with more states and levels of hierarchy. Nat-
urally, the refined program is more structured.

However, the refined program structure cannot be easily translated back into
the event-driven model. To express OSM programs in the event-driven model,
the state structure needs to be managed with variables. Manual management
has the implications described previously and is a heavy burden for program-
mers. In OSM, the translation from the state-based to the event-driven program
notation, and thus the state management, is automated by the OSM compiler, as
described in the previous chapter. Through the translation step we can ensure
that the underlying system software is basically the same and thus as efficient
as in event-driven systems, yet achive the structural benefits of state-based pro-
gramming.

Another notable implication of the mapping from the event-driven model to
the state-based model is that OSM programs are typically more memory efficient
than traditional event-based programs. In the trivial OSM program depicted in
Fig. 7.1, as well as in event-driven programs, all variables are active all of the
time. Hence, the memory consumption equals the sum of the memory footprints
of all these variables. In OSM specifications with multiple states, the same set
of variables is typically distributed over multiple distinct states. Since only one
state of a set of distinct states can be active at a time, the memory consumption of
state variables equals the maximum of the memory footprints among all distinct
states.

Note that in terms of memory consumption, TinyOS programs are like regular
event-driven programs and OSM’s concept of state variables cannot be applied.
Though TinyOS offers components to structure the code, they do so in the func-
tional domain rather than in the time domain. That means that components are
always active and thus their variables cannot be mapped to overlapping mem-
ory regions.

After this intuitive explanation of the benefits of OSM over pure event-driven
programming, we will now discuss the various benefits of OSM using concrete
examples in the following sections.

7.2. Modular and Well-Structured Program Design 121

7.2 Modular and Well-Structured Program Design

In Chapter 4 we have reviewed the limitations of the event-driven programming
model. We identified manual state management as an impediment to writing
modular and well-structured program code and as an additional source of er-
rors. In this section we now illustrate how event-driven programs can benefit
from a state-based program notation by reimplementing a major part of the En-
viroTrack middleware, namely its group management, in OSM. We show that
the OSM code is not only much more readable and structured and thus easier to
change, it is also significantly shorter then its original implementation in nesC.

We start by giving an overview of the EnviroTrack middleware and explain
the original design of its group-management protocol. Then we analyze its orig-
inal implementation in NesC and present a reimplementation in OSM. Finally
we compare both approaches with respect to the number of code lines needed
for their specification.

7.2.1 EnviroTrack Case Study

We have already briefly mentioned EnviroTrack in Chap. 1. Here we will present
a more detailed description. For an exhaustive description, please refer to
[6, 7, 23, 54]. EnviroTrack is a framework that supports tracking of mobile tar-
gets with a sensor network. In EnviroTrack, nodes collaboratively track a mobile
target (an object or phenomenon such as a car or fire) by forming groups of spa-
tially co-located nodes around targets. If a target is detected, the group members
collaboratively establish and maintain a so-called context label, one per target.
Context labels describe the location and other characteristics of targets and may
have user-specified computations associated with them, which operate on the
context label’s state at runtime. The state is aggregated in the group leader from
all group members’ sensor values. Context labels are typed to describe different
kind of mobile targets. A single node may be member of several groups, each
maintaining a its own context label. When the target moves, the context-label
group moves with it. Nodes no longer able to detect the target leave the group,
while nodes having recently detected the target join. During target movements,
EnviroTrack maintains the target’s context label, that is, its state.

EnviroTrack is implemented in TinyOS / NesC on Mica2 motes. Its source
code is available on the Internet [40]. EnviroTrack consists of 11 NesC compo-
nents implemented in 45 source files. As discussed in Sect. 3.5.2, NesC com-
ponents encapsulate state and implementation, and provide an interface for ac-
cessing them. The entire implementation consists of 2350 lines of actual source
code (i.e., after having removed all empty lines, comments, and debug output).

EnviroTrack Group Management

The group management protocol is implemented in the NesC component
GroupManagementM.nc. Its implementation accounts for 426 lines, that is, for
about 18% of the entire code. We have included a condensed version of Group-
ManagementM.nc in Appendix B.1. Because for this discussion we are mainly
interested in the program’s structure, we have removed all code not relevant for

122 Chapter 7. State-based Programming in Practice

control flow in order to improve its readability. Only statements that are rel-
evant for managing the program’s state (i.e., state-keeping, transitions as well
as guards in transitions, and state initializations) have been retained. All other
statements have been replaced by placeholders (opn() and[...] , for opera-

tions and for boolean expressions, respectively). A few comments have been
added.

To maintain context labels, EnviroTrack employs a distributed group manage-
ment protocol, which is described in [6]. Per context label, an EnviroTrack sensor
node can be in one of four states: FREE FOLLOWERVIEMBERind LEADER The
state changes only on the occurrence of events: the reception of typed radio mes-
sages, timeouts, and the detection as well as the loss of the target (which is com-
puted in a separate module and communicated via join and leave events). How-
ever, a review of the source code revealed that the actual group-management
implementation is much more complex. We have reverse engineered the code to
tind all relevant states, events, and the state transition graph. The result is shown
in Fig. 7.2. Compared to the description given in [6], the actual implementation
of the protocol has three more states (NEW_CANDIDATHEADER_CANDIDATE
and RESIGNING_LEADERand two more types of radio messages.

join_ev

NEW_CANDIDATE LEADER_CANDIDATE

A
leave ev candidate_msqg[...] timeout
B leave evelsg] resign_msgl..]
FREE recruit_
I candidate_msqgf[...]
timeout 5
recruit_msg é
resign
N recruit_msg =
L jonev Y m
| FOLLOWER B | MEMBER |
] 1 leaeev
recruit_msg ,
resign msg recruit_msgf[...]
recruit ;
candidate_msg C;%%F;Tglsgmg
join_ev m
RESIGNING_LEADER LEADER

leave_ev
timeout U

Figure 7.2: Distributed group management of EnviroTrack presented as state
machine.

7.2. Modular and Well-Structured Program Design 123

Group-Management State Machine

The main states of the group management protocol have the following meaning.
A MEMBER a network neighbor of a LEADERand is detecting the proximity of
the target with its sensors. (The decision whether a target has been detected
or lost is made in another component, which signals join and leave events, re-
spectively.) Members contribute their location estimates and other sensor read-
ings to the target’s context label, which is maintained by the group leader. A
FOLLOWERS a network neighbor of a LEADERthat does not detect the target
itself, that is, followers do not establish a new context label. Followers become
members when they start detecting the target. A FREEnode does not detect the
target and is not a FOLLOWERI(a free node detects a new target, it establishes
a new context label and can eventually become the leader of that group. Finally,
a LEADERis a MEMBERhat has been elected out of all members to manage and
represent a context label. All members send their location and other sensory
data to the LEADER where these locations are aggregated to derive a location
estimate of the target. The LEADERfrequently broadcasts recruit messages so
that free nodes can detect whether they should become followers, and members
know that the leader is still alive. A FOLLOWERets up a timeout to engage in
leader election when the leader has not been heard for some specified duration
of time, that is, if the timeout expires. Followers not detecting the target any
longer become free nodes again.

The actual implementation has tree more states (NEW_CANDIDATE
LEADER_CANDIDATEand RESIGNING_LEADER that are used for the co-
ordinated creation of a single leader should several nodes detect a target at
(almost) the same time, to handle spurious leaders, and to perform coordinated
leader handoff. Also, there are two more messages being sent. The resign
message is used to indicate that a LEADERIs no longer detecting the target
and is about to resign its role, so that members can start leader election in the
LEADER_CANDIDATEstate. Nodes that are candidates for the LEADERTrole
(that is, nodes observing the target without previously having heard from a
LEADER send a candidate message. The candidate message is used to prevent
the instantiation of several leaders if several nodes have detected the target at
almost the same time. In that case several candidate message are sent. If a leader
candidate receives another candidate message, the receiving node becomes a
MEMBERS the sender has a higher node identifier. We will discuss the NesC
implementation of this algorithm and its re-implementation in OSM in the
following section.

7.2.2 Manual versus Automated State Management
NesC Implementation

The implementation of EnviroTrack’s distributed group management protocol
manages program state manually. The NesC group-management component
has a dedicated private variable status for keeping the current state of the
group-management state machine. (The status variable is a field in a larger
structure GMStatus that holds information relevant to the group management
protocol, see Appendix B.1.) The seven states of the state machine are mod-

124 Chapter 7. State-based Programming in Practice

eled explicitly as a NesC-language enumeration. Transitions are modeled by
assigning one of the enumeration constants to the state-keeping variable. (We
use the term “state-keeping variable” as opposed to “state variable” in order to
distinguish them from OSM’s concept of state variables.) The code resembles
the general pattern of event-driven applications as shown in Program 4.2. As
such, it is very structured for an event-driven program.

Program 7.1 is an excerpt of the original NesC code representing a state tran-
sition (see also Appendix B.1, lines 159-164). The MEMBERtate is entered from
the FOLLOWERItate through a transition triggered by a join event (line 1). In
order to increase the readability of the code, op7() (line 5) serves as a place-
holder for the actual action to be performed on the occurrence of the join event
in state FOLLOWERThen the transition’s target state is assigned in line 6. Fi-
nally, the timer of the target state MEMBER initialized in line 7. We will discuss
initialization of state-bound resources, such as timers, in greater detail below.

Program 7.1: NesC code fragment implementing the transition from FOLLOWER
to MEMBERipon a join event. The code also includes the timer
initialization of the target state (line 7).

command result_t GroupManagement.join() {
switch(_GMStatus.status) {
case ...: // [...]
case FOLLOWER:
op7Q);
_GMStatus.status = MEMBER;
_generalTimer = wait_receive();

© e N o Ul e W N e

break;
case ...: // [...]
10 default: // [...]
1 }
12 }

OSM Implementation

We have reimplemented EnviroTrack’s group management state machine in
OSM, as shown in Appendix B.2. A small excerpt of the OSM code is shown
in Prog. 7.2, which is the OSM equivalent to the NesC fragment in Prog. 7.1.
Instead of using a state-keeping variable, states are specified explicitly using
OSM states (indicated by the state keyword). Transitions are specified ex-
plicitly within their source state, making switch/case statements obsolete. Un-
like in event-driven programs, control-flow information and implementation are
clearly separated in OSM programs. OSM code only contains the control flow
of the group management protocol. It does not contain any program logic. The
actual program is implemented in the C language in separate files.

7.2. Modular and Well-Structured Program Design 125

Program 7.2: OSM code fragment implementing the transition from FOLLOWER
to MEMBERipon a join event. The code also includes the timer
initialization of the target state (line 6).

state FOLLOWER {
join_ev / op7() -> MEMBER;
// L]
3
state MEMBER {
onEntry: / reset_timer(wait_receive());

// L...]

® N o G e W N =

}

Comparison

There are two main differences between the event-driven and the state-based
programming model regarding program structure. Firstly, the order of struc-
turing devices—states and events—is reversed. In the event-driven model, the
first-level structuring device is events, or rather event handlers. In the event
handlers, control flow is then manually multiplexed (with switch statements)
according to the (manually coded) program state. In the state-based model of
OSM, on the other hand, programs are essentially constructed from hierarchi-
cally structured states, in which the control flow is multiplexed according to
events. Allowing programmers to specify their programs in terms of freely ar-
rangeable hierarchical states offers more freedom and a better way of structur-
ing, rather than being confined to a few predetermined event handlers. OSM
program code can be divided into multiple functional units, each implemented
in a state or state hierarchy. Because of the clearly defined interfaces of states,
their implementation can be easily replaced by another implementation with
the same interface. In general, using state machines is a more natural way to
describe programs (see Sect. 4.2).

The second difference between both models is that program state in OSM is a
first-class abstraction and state management can thus be automated. The high-
level state notation is much more concise compared to the code in the event-
driven model, which is lacking such an abstraction and thus state has to be man-
aged manually. From the high-level description of the program’s state structure,
code for multiplexing the control flow is generated automatically and transpar-
ently for the programmer. The programmer is saved from having to manually
code the control flow. The amount of code that can be saved is significant, as we
will show for our EnviroTrack example.

The code structure of the EnviroTrack group-management implementation in
NesC (see Appendix B.1) is clearly dominated by manual stack management
necessitated by the event-driven programming model. As can be seen from
Tab. 7.1, out of the 426 code lines of the original NesC implementation, 187 lines
(i.e., about 44%) are dedicated to manual state management. The remaining
239 lines mainly contain the actual program logic (but also some declarations
and interface declarations). That is, out of 9 lines of code, 4 lines are required

126 Chapter 7. State-based Programming in Practice

EnviroTrack Group management Size in Lines of Code Size Reduction

NesC OSM with OSM
Flow control (state management) 187 (44%) 56 (19%) 70%
Program logic 239 (56%) | 239 (81%) n/a
Total ‘ 426 (100%) | 295 (100%) 31%

Table 7.1: Comparison of program sizes for the implementation of EnviroTrack’s
group-management protocol in NesC and OSM.

to explicitly specify the program’s control flow, the remaining 5 lines implement
the actual program logic.

On the other hand, an equivalent program in OSM requires only 56 lines of
code, that is, less than one third of the original NesC code size. In OSM, the frac-
tion of code for managing the control flow (56 lines) against the entire program
(56+239=295 lines) is down to less then 20%. That is, there is only a single line of
code required to express the programs control flow to every 4 lines of program
logic (which is implemented in separate files). The results of this comparison
are summarized in Tab. 7.1. Note that in NesC programs the implementation
of the actual program logic does not use any NesC-specific features; just like in
OSM the actual program code is specified using plain C statements and is thus
identical in both programming frameworks.

In this section we have looked at manual state management in general. In
the next section we look at special patterns of manual state management that
regularly appear in typical sensor-node programs, namely state-based resource
initialization and avoiding accidental concurrency.

7.2.3 Resource Initialization in Context

In our analysis of sensor-node programs in Sect. 4.2 we stated that the com-
putations within a program state often utilize a well defined set of resources.
Typically these resources are allocated as well as initialized when entering the
program state, and released again when leaving the state. To efficiently specify
this resource allocation and release, OSM offers incoming and outgoing actions
(respectively). Typical examples in sensor networks are the state-based initial-
ization and use of hardware resources, such as sensors and emitters, but also
transceivers, external memories, timers, and so on. A special case of a state-
bound resource is memory that is only used in the context of a state, that is, state
variables. We will discuss how state variables are used in practice in Sect. 7.3.
As resource initialization and release are bound to state changes, these opera-
tions are closely connected to state management. In the following we will show
how the state-based approach of OSM helps improving the code structure with
regard to resource initialization. To do so, we will again use the EnviroTrack
example.

Resource Initialization in EnviroTrack

In our EnviroTrack example, all states (except FREE use a timer. The timers in
the EnviroTrack group-management protocol always trigger actions specific to

7.2. Modular and Well-Structured Program Design 127

the current state. These actions are either state changes or recurring computa-
tional actions within the current state. Therefore, we like to think that concep-
tually every state uses an individual timer, though both the original NesC and
the OSM implementations only use a single hardware timer for all states. The
individual timers are always initialized in transitions, either when entering a
new state through a transition, or after triggering a recurring action within the
current state, that is, in a self transition. Table 7.2 lists the values that are used to
initialize the timer in the EnviroTrack example based on the transition parame-
ters, namely the target and source states as well as the trigger event. Using this
example, we will now explain how state-bound resources are initialized in both
the event-driven and the state-based programming models and then compare
both approaches.

Target State Source State Trigger Line No. Timeout Value
NesC | OSM

NEW_CANDIDATE FREE join 154 27 | wait_random()
NEW_CANDIDATE timeout|[else] 106 29 | wait_recruit()
NEW_CANDIDATE timeout]...] 111 36

LEADER_CANDIDATE | MEMBER timeout 100 36 | wait_random()
MEMBER resign]...] 269 36
FREE recruit OR resign 248 12
LEADER_CANDIDATE | leave[else] 200 12

FOLLOWER FOLLOWER recruit OR resign 256 12 | wait_threshold()
MEMBER leave 186 12
RESIGNING_LEADER recruit OR candidate 337 12
NEW_CANDIDATE recruit 279 19
NEW_CANDIDATE candidatf...] 284 19
LEADER_CANDIDATE | recruit]...] 295 19

MEMBER LEADER_CANDIDATE | candidate]...] 300 19 | wait_receive()
FOLLOWER join 161 19
MEMBER recruit 264 19
LEADER recruit]...] 313 19
LEADER_CANDIDATE | timeout 120 45 | wait_random()
RESIGNING_LEADER join 169 46 | wait_recruit()

LEADER LEADER timeout 126 47 | —"—
LEADER recruit[else] 317 47 | —" —
LEADER resign OR candidate 325 47 | —"—

RESIGNING_LEADER RESIGNING_LEADER timeout]...] 135 56 wait_recruit()
LEADER leave 209 56

Table 7.2: Timeouts in the EnviroTrack group-management protocol are initial-
ized as part of transitions and predominantly depend on the target
state only. The source states and triggers of self transitions are set in
italics. Line numbers refer to the source code given in Appendices B.1
and B.2 (for the NesC and OSM version, respectively). The actual time-
out value is expressed as the return value of a function.

Original NesC Implementation

In the NesC implementation of the EnviroTrack group-management protocol, a
single timer is used to implement timeouts in all states using a count-down ap-
proach. The timer is switched on when the program starts and is never switched
off. It fires at a regular interval that never changes. The corresponding timeout

128 Chapter 7. State-based Programming in Practice

handler fireHeartBeat() of the NesC implementation is shown in line 80
et seqq. in Appendix B.1. An excerpt of the timeout handler is shown below.
The timeout handler counts down a integer variable (line 5), except when in
the FREEstate (line 2). When the count-down variable reaches zero (line 7),
an action is invoked, a transition is triggered, or both. Additionally, the count-
down variable is reset. The code fragment below implements the transition from
FOLLOWERo FREEin the lines 9-13 (also see the state-transition diagram in
Fig. 7.2). This transition is triggered when neither the leader has been heard nor
the target has been detected until the timeout fires.

1 command result_t GroupManagement.fireHeartBeat() {
2 if(_GMStatus.status == FREE)

3 return SUCCESS;

4 if(_generalTimer > 0)

5 _generalTimer--;

6

7 if(_generalTimer <= 0) {

8

9 switch(_GMStatus.status) {

10 case FOLLOWER: {

1 initGMStatus(); // transition to FREE
12 break;

13 } // end case FOLLOWER

14

15 s

16 } // end switch

17 } /lendif

18 return SUCCESS;

19 } // end command

As we mentioned previously, timers are initialized in transitions. Concretely,
a timer of a particular state is initialized in transitions that have that state
as a target state. In our example, the timer of the FOLLOWERI!ate is initial-
ized in transitions from the states FREE LEADER_CANDIDATEMEMBERand
RESIGNING_LEADERas well as a self transition. As these transitions are trig-
gered by several events, the timer initializations occur in the several event han-
dlers. The code fragment below shows the initialization of the count-down timer
in the transition from the MEMBERtate (lines 3-8) as well as in the self transition
(lines 17-23). The line numbers of all timer initializations in the NesC code (see
Appendix B.1) is given in Table 7.2. (Please note that the line numbers given in
the code fragments do not correspond to the line numbers in the appendices.)

1 command result_t GroupManagement.leave() {
2 switch(_GMStatus.status) {

3 case MEMBER: {

4 op90;

5 _GMStatus.status = FOLLOWER;

6 _generalTimer = wait_threshold(Q);

7 break;

8 } // end case MEMBER

9 // ...

7.2. Modular and Well-Structured Program Design 129

10 } // end switch

1 } // end command

12

13 task void ProcessRecuritlMessage() {

14 GMPacket* RxBuffer;

15 // ...

16 switch(_GMStatus.status) {

17 case FOLLOWER: { // self transition

18 if((RxBuffer->type==RECRUIT) || (RxBuffer->type==RESIGN)) {
19 opld();

20 _generalTimer = wait_threshold(Q);
21 }

2 break;

3 } /l end case FOLLOWER

2 // ...

2 } /I end switch

2 } // end task

OSM Re-Implementation

In our OSM re-implementation (see Appendix B.1), we also use a single hard-
ware timer. However, instead of using a fixed-rate timer and a count-down vari-
able, we directly initialize the timer to the desired timeout value. This reflects
the state-centric view in that an individual timer exists for every program state
and saves us from having a global event handler to count down the variable.
So instead of resetting a global count-down variable (as _generalTimer in the
NesC code), we initialize a state-specific timer. In OSM, the timers are initialized
upon state entry in the incoming transition using the reset_timer() function,
as shown in the code fragment below. However, for the simplicity and efficiency
of the implementation, we sill use a single timer. This approach is more natu-
ral to the state-based approach of OSM and yields the same results as the NesC
implementation.

The code fragment below shows the timer initializations for the FOLLOWER
state in the OSM initialization. The incoming transition denoted by the onEntry
keyword neither specify the transition’s source state nor its trigger. Therefore,
the action is always performed when the state is entered.

state FOLLOWER {

onEntry: / reset_timer(wait_threshold());
join / op7() -> MEMBER;
timeout / opll() -> FREE;

recruit_msg OR resign_msg / opld() -> self; //invokes onEntry actions
}

G e W N e

Comparison

When analyzing the code of both implementations with respect to the num-
ber of initializations required, as summarized in Table 7.2, we find that in the
NesC code there are 24 lines in which a timeout initialized compared to 9 in-
dividual lines in OMS. That is, multiple initializations in a particular state in

130 Chapter 7. State-based Programming in Practice

NesC can be condensed to a single line in OSM, if the initialization procedure is
identical. For example, when entering the FOLLOWERtate (from another state
or a self transition) the timer is always initialized to a value returned by the
wait_threshold() function. This can be written in a single line, as in the
code fragment above (line 2).

But even when initializations cannot be condensed because initializations dif-
fer (e.g., the timeout value varies with the transition through which the target
state is entered instead of being strictly state-specific)) OSM has a clear bene-
fit. While in this case NesC initializations for a single target state are scattered
throughout much of the program, they are neatly co-located in OSM. For exam-
ple, the initializations for the LEADERstate are performed in lines 120, 126, 168,
316, and 324 in the NesC code, while in OSM they are performed in lines 45, 46,
and 47.

In real-world sensor-node programs, the actual initialization procedures (and
values, as in our timer example) very often depend exclusively on the target state
of the transition. In OSM, these initializations can be easily modeled as incoming
transitions. If the initialization code is equal for all transitions to a certain state,
they can be condensed to a single line as in FOLLOWERtate already mentioned
above, like this:

onEntry: / reset_timer(wait_threshold());

Incoming transitions are specified in the scope of a state description (using the
onEntry keyword). Therefore, all initialization code is co-located, even if the
concrete initialization depends on transition parameters such as source state,
trigger events, and guards. For example, the timer initializations in the leader
state are performed as shown in the code fragment below in OSM. In event-
driven programs, however, the initializations of a resource belonging to a partic-
ular state are scattered throughout the program together with the event handlers
that implements transitions to that state.

1 state LEADER {

/l incoming transitions:

onEntry: LEADERCANDIDATE -> / reset_timer(wait_random());
onEntry: RESIGNINGLEADER -> / reset_timer(wait_recruit());

onEntry: self -> / reset_timer(wait_recruit(Q));
/I self transitions:

timeout / send_recruit_msg() -> self;

/I more transitions follow...

o N U e W N

}

In sensor-node programs timers are also often used to implement recurring
operations without state changes, such as finding network neighbors, sampling,
etc. In our example, the recruit message is send regularly in the LEADERstate.
In OSM, this can be modeled with an explicit self transition as shown in line 7
of the previous code fragment. The self transition then automatically triggers
the appropriate onEntry action, that is, line 5 in the above code. Where a self
transition does not seem adequate, a regular action without transition can be
used instead, as shown below. Though this requires multiple lines of code even
for identical initializations, the code is still part of the definition of a single state.

timeout / reset_timer(wait_threshold());

7.2. Modular and Well-Structured Program Design 131

7.2.4 Avoiding Accidental Concurrency

Another special case of manual state management is program code to avoid acci-
dental concurrency. In Sect. 4.1 we stated that accidental concurrency is a source
of error and may lead to corrupted data and deadlock. Accidental concurrency
may occur when a non-reentrant cascade of events is triggered again before the
previous cascade has completed.

Most event-driven programs may suffer from accidental concurrency and spe-
cial measures must be taken by programmers to avoid it. A common pattern
used throughout the many event-driven programs that we have analyzed is to
simply ignore events that would restart a non-reentrant cascade of events. How-
ever, from our own experience we know that potentially harmful situations in
the code are not easily identified or that programmers quite often simply forget
to implement countermeasures.

On the other hand, most OSM programs are “by design” not susceptible to
accidental concurrency. In the following we will provide two examples of event-
driven programs where measures against accidental concurrency have been
taken. The first of the two examples is the Surge application, which we have
already discussed in Section 4.2.1. We will use this small example to explain the
measures typically taken by programmers to avoid accidental concurrency and
why typically no measures are needed in OSM. The second example is again
EnviroTrack. We will analyze the entire EnviroTrack code in order to quantify
the overhead of countermeasures against accidental concurrency.

Our first example is the Surge application taken form the publication present-
ing the NesC language [45]. Triggered by a regular timeout, the Surge program
(as shown in Prog. 7.3) samples a sensor and sends the sample off to a predeter-
mined node.

The order of actions (i.e., NesC tasks and events) in the code of Prog. 7.3 sug-
gest a linear order of execution that does not exist. Particularly, the timeout
(line 6) may fire again before sending actually succeeded with an sendDone event
(line 22). Therefore, the programmer of Surge choose to introduce the busy flag
(line 3) to indicate that the cascade has not been completed (line 9) and that
subsequent timeouts need to be ignored until the flag is reset (line 23).

In OSM state machines, all events that are to trigger a transition or an action
within a particular state need to be specified explicitly. As OSM programmers
would typically explicitly model sequences of events as a state machine, un-
expected events cannot accidentally trigger a cascade of events. Program. 7.4
shows the implementation of Surge in OSM, which does not require an explicit
busy flag. The OSM state machine only reacts to a timeout event while in the
IDLE state (line 3). The program can only be restarted after again entering the
IDLE state, that is, after the sendDone event has occurred (line 19). Intermittent
timeout events are ignored. Alternatively, an error handler could be added to the
BUSYstate after line 19, like this:

timeout / error_handler();

In the previous example, there was only one potential case of accidential con-
currency, which was countered by a single flag that was accessed twice. In
real-world programs, however, more effort is required to guard against acci-
dental concurrency. For example, in the EnviroTrack group-management code

132 Chapter 7. State-based Programming in Practice

Program 7.3: NesC code of the Surge program from [45] (slightly simplified ver-
sion).

1 module SurgeM { ... }
2 implementation {
3 bool busy;

4 uintl6_t sample;

5

¢ event result_t Timer.fired() {

7 if(busy) return FAIL;

8 call ADC.getData(Q);

9 busy = TRUE;

10 return SUCCESS;

11 }

12 event result_t ADC.dataReady(uintl6_t data) {
13 sample = data;

14 post sendData();

15 return SUCCESS;

6}

17 task void sendData() {

18 adcPacket.data = sample;

19 call Send.send(&adcPacket, sizeof adcPacket.data);
20 return SUCCESS;

21 }

» event result_t Send.sendDone(TOS_Msg *msg, result_t success) {
23 busy = false;

2 return SUCCESS;

25 }

2% }

2 boolean flags are used, which are accessed in 16 of the 426 lines, that is, almost
4% of the group-management code. In the entire EnviroTrack implementation
there are 9 boolean flags, which are accessed in 58 lines of code. That is, mea-
sures against accidental concurrency cost 9 bytes of memory and account for 3%
of the entire code.

In the previous example, most of the flags are introduced in the processing of
radio messages. Several components that process radio messages have a single
buffer for incoming messages only. Thus, a received message has to be processed
completely before a new one can be accepted into the buffer. Particularly, the
previous message must not be overwritten while being processed. Similar to
the previous Surge example, EnviroTrack simply drops radio messages that are
received while still processing a previous message. The same also applies to
outgoing messages.

7.3. Memory-Efficient Programs 133

Program 7.4: Reimplementation of SURGE in OSM. A graphical representation
of the OSM state machine is depicted to the left.

e N
SURGE 1 state SURGE {
; 2> initial state IDLE {
3 timeout/ ADC_getData() -> BUSY;
[IDLE }\ L
timeout 5 state BUSY {
Y 6 uintl6_t sample;
BUSY ,
8 initial state W4_DATA {
9 dataReady/
W4 DATA 10 sample=dataReady.data,
dataReady 1 post(sendData) -> W4_SEND;
Y 12 }
W4 _SEND 13 state W4_SEND {
14 sendData/ send(sample)->W4_ACK;
' sendData 15 }
@ 16 state W4_ACK {
- 17 // do nothing
N\ Y, 18 ¥
19 sendDone/ -> IDLE;
W » 3} /lend BUSY
2 } /I end SURGE
\ Y,

7.3 Memory-Efficient Programs

In the previous section we have shown that partitioning sensor-node programs
in the time domain through explicitly modeled states notation benefits modu-
larity and structure of the program code. In this section we show that OSM’s
concept of state variables—variables the lifetime of which are associated with
states—can also benefit memory efficiency.

The basic idea of saving memory is to allocate memory only for those vari-
ables, that are required in the currently active state of the program. When the
program state changes, the memory used by variables of the old program state
is automatically reused for the variables of the new state. In our state-based ap-
proach, states not only serve as a structuring mechanism for the program, they
also serve as a scoping and lifetime qualifier for variables. Regular event-driven
programming models lack this abstraction and thus force programmers to use
global variables with global lifetime, as described in Sect. 4.1.

Using an example based on the program to calculate the average of remote
temperature sensors from Sect. 4.1, we now show how the state-based program-
ming model can be used in practice to save memory by storing temporary data
in state variables. Then we answer the question how this technique is generally
applicable to sensor-node programming and how much memory can be saved
in real-world programs.

134 Chapter 7. State-based Programming in Practice

7.3.1 Example

In the previous sections of this chapter we have always referred to the Envi-
roTrack group-management protocol for comparing the event-driven and the
state-based programming approaches. This example, however, is not suitable to
demonstrate OSM’s memory efficiency. While the protocol can be nicely spec-
ified as a set of distinct states, individual states do not have temporary data
attached exclusively to them. (However, they have another resource associated
to them, namely timers, which we have discussed in the section about accidental
concurrency.)

Therefore, we take up the small toy example from Sect. 4.1 again, which we
used to explain the shortcomings of event-driven programming. The original,
event-driven program (see Prog. 4.1) calculates the average of temperature val-
ues from remote sensors in the vicinity. Program 7.5 depicts the equivalent pro-
gram in OSM as the superstate REMOTE_AVERAGHust as the original version
of the program, the OSM code of REMOTE_AVERAG#zs two variables numand
sum, which store the number of remote samples received and the sum of all tem-
perature values, respectively. These variables are temporary in nature, as they
are only required until the average is computed when the timeout occurs. In
the original, event-driven program, these variables are global, thus taking up
memory even when they are no longer needed. In OSM, on the other hand, the
variables are modeled as state variables. The variables memory are automati-
cally reused by the OSM compiler for state variables of subsequent states.

Program 7.5: OSM equivalent to the event-driven Program 4.1. In this version,
the variables numand sum are modeled as state variables instead
of global variables.

1 state REMOTE_AVERAGE {
2 var int num = 0, sum = 0;
s extern var int avg;
4+ onEntry:/init_remote_average();
finit_remote_average() 5 initial state RECEIVING {
6
7
8
9

(REMOTE_AVERAGE

int num =0, sum=0;
extern int avg;

message_ev /

message_hdl (num, sum);
timeout_ev /
timeout_ev timeout_hdl (num, sum, avg)

/ timeout_hdl(num, sum, avg) 10 ~> DONE:

v
DONE n o}
12 state DONE {}

- J

message_ev /
message_hdl(num, sum)

RECEIVING

Program 7.6 shows an example where REMOTE_AVERAGIE used in con-
juncton with two other states. In this program, the node’s local sensor is
calibrated based on the average of remote temperatures (as calculated by
REMOTE_AVERAGENd the average of a series of local temperature readings.
The local average is computed in the LOCAL_AVERAGEtate. Its implementa-
tion (not shown here) is very similar to that of REMOTE_AVERAGEarticularly,

7.3. Memory-Efficient Programs 135

it also has two state variables numand sumwith the same meaning. Only instead
of collecting temperature values from remote message events, the temperature
values are collected from local sensor events. The actual calibration is performed
in ADJUST We make no assumption about the implementation of this state.

Program 7.6: OSM program for calibrating a local sensor using the averages of
remote and local sensors.

CALIBRATION 14 state LOCAL_AVERAGE { /*...*/ }

. 15

int ravg=0, lavg=0; : 1o state CALIBRATION {

17 var int ravg = 0, lavg = 0;
18 initial state

REMOTE_AVERAGE

int num=0, sum=0; 19 incarnate REMOTE_AVERAGE (
20 int ravg as avg) {
Y el 21 el / -> LOCAL_AVERAGE;
2 }
LOCAL_AVERAGE 23 initial state
int num=0, sum=0; 2 incarnate LOCAL_AVERAGE (
25 int lavg as avg) {
vez 26 e2 / -> ADJUST;
7}
[ADJUST } » state ADJUST { /*...%/ }
29 }

In this simple yet realistic example, the two subsequent states
REMOTE_AVERAGEnd LOCAL_AVERAGBoth have local data stored in
state variables. Because the states are composed sequentially, their state
variables are mapped to an overlapping memory region, effectively saving
memory. In this particular case the state variables of both states are of the
exact same types and sizes. Thus the state variables of the subsequent state
would be mapped to the exact memory locations of those of the previous state.
Therefore, the memory saved (with respect to the event-driven approach, where
all variables are global) is half of the total memory, that is, the size of two
integers, typically 4 bytes on 8-bit microcontrollers.

On the other hand, the given OSM implementation introduces two additional
variables, namely ravg and lavg . They are used to store the remote and local
averages until the actual calibration has completed. Indeed, using state vari-
ables to share data among substates is a common pattern in OSM. The shared
data typically represents results of computations that are performed in one state
and need to be accessed in subsequent states, as in the previous example. The
requirement of additional variables is a direct consequence of the limited scope
and limited lifetime of state variables. They would not be required if all vari-
ables where global. Therefore, one could object that those additional variables
would cancel out the memory savings gained by state variables with respect to
the event-driven approach. In general, however, the temporary data required to
compute a result is larger than the result itself. Therefore, the saving typically

136 Chapter 7. State-based Programming in Practice

only reduced by a small amount. Furthermore, CALIBRATION may be an only
transient state itself. Then its (as well as its substate’s) memory resources would
also reused once the state is left. Since CALIBRATION does not compute a result
required in a subsequent state, no additional variables are needed.

Since the OSM compiler compiles OSM program specifications back to reg-
ular event-driven code, one could also object that the mechanism of mapping
variables to overlapping memory regions could also be used manually in the
plain event-driven model. Though possible in principle, programmers would
not only have to manage the program’s state machine manually. They would
also have to manually map the states” variables to the complex memory repre-
sentation, such as the one shown in Prog. 6.5. Even minor changes to states high
in the hierarchy, such as the addition or removal of a layer in the hierarchy, lead
to major modifications of the memory layout. Consequentially, access to ele-
ments of the structure would also change with the structure, requiring changes
throughout the program. Therefore we think that our state-variable approach is
only manageable with the help of a compiler.

7.3.2 General Applicability and Efficiency

Now two question arises: are state variables applicable to real-world sensor-
node programs? And, how much memory savings can we expect? We cannot
answer these questions conclusively, as extensive application experience is miss-
ing. However, we have several indications from our own work with sensor-node
programming as well as from descriptions of sensor-node algorithms in the lit-
erature that state variables are indeed useful.

General Applicability of State Variables

Probably the most-generally applicable example where sensor-node programs
are structured into discrete phases of operation is initialization and setup ver-
sus regular operation of a sensor node. Typically sensor nodes need some form
of setup phase before they can engage in their regular operation mode. Often
longer phases of regular operation regularly alternate with short setup phase.
Both phases typically require some amount of temporary data that can be re-
leased once the phase is complete. Setup may involve assigning roles to indi-
vidual nodes of the network [56, 98], setting up a network topology (such as
spanning trees [84]), performing sensor calibration, and so on. Once setup is
complete, the node engages in regular operation, which typically involves tasks
like sampling local sensors, aggregating data, and forwarding messages. Reg-
ular operation can also mean to perform one out of several roles that has been
assigned during setup. For the setup phase, temporary data may contain a list
of neighboring nodes with an associated measure of link quality, node features,
as well as other properties of the node for role assignment and topology setup.
Or they may contain a series of local and remote sensor measurements for cali-
bration (as in our previous example). For regular operation, such variables may
contain aggregation data, messages to be forwarded, and so on.

7.3. Memory-Efficient Programs 137

Effective Memory Savings

In theory, state variables can lead to very high memory savings. As we explained
earlier, the memory consumption of state variables equals the maximum of the
memory of variable footprints among all distinct states. The memory consump-
tion of the same data stored in global variables equals the sum of the memory
footprints. For example, in a program with 5 sequential states each using the
same amount of temporary data, state variables only occupy 1/5-th of the mem-
ory of global variables, yielding savings of 80%.

However, the effective savings that can be achieved in real-world programs
will be significantly lower because of three main reasons. Firstly, often at least
some fraction of a program’s data is not of temporary nature but is indeed re-
quired throughout the entire runtime of the software. In OSM, such data would
be modeled as state variables associated to the top-level state, making them ef-
tectively global. With the state-variable approach, no memory can be saved on
global data.

Secondly, we found that sometimes the most memory efficient state-machine
representation of a given algorithm may not be the most practical or the most
elegant. For the purpose of saving memory, a state machine with several levels
of hierarchy is desirable. On the other hand, additional levels of hierarchy can
complicate the OSM code, particularly when it leads to transitions crossing hi-
erarchy levels. As a consequence, programmers may not always want to exploit
the full savings possible with state variables.

The final and perhaps most important reason is that in typical programs a
few states exceed others in terms of memory consumption by far. It is these
dominant states that determine the total memory consumption of an OSM state-
machine program. Examples are phases during which high-bandwidth sensor
data (such as audio and acceleration) is buffered and processed (e.g., [12, 117])
or phases during which multiple network messages are aggregated (e.g., [84]).
State variables do not help reducing the memory requirements of memory-
intensive states. For these states, programmers still have the responsibility to
use the available resources economically and to fine tune the program accord-
ingly.

The data state (i.e., memory) used by each of the non-dominant states, how-
ever, “falls into” the large chunk of memory assigned to the dominant state and
is thus effectively saved. A positive side effect of this mechanism is that in most
states (i.e., the ones that are less memory intensive) programmers can use vari-
ables much more liberally, as long as the total per-state memory is less than the
memory of the dominant state. Since the per-state memory requirements are
calculated at compile time, programmers get an early warning when they have
been using memory too liberally.

Due to the reasons explained above we consider savings in the range of 10%
to 25% to be realistic for most programs, even without fine tuning for mem-
ory efficiency. The savings that can be effectively achieved by switching from
an event-driven programming framework to state-based OSM, however, largely
depends on the deployed algorithms as well as the individual programming
style.

138 Chapter 7. State-based Programming in Practice

7.4 Summary

In this chapter we have illustrated how the state-based programming approach
of OSM compares to the “traditional” event-driven approach. In particular, we
have shown how largely automating state and stack management in OSM ben-
efits programmers of real-world sensor-node programs.

We have started with an abstract yet intuitive motivation of OSM’s main ben-
efits. We have illustrated that event-driven programs have an equivalent OSM
representation, which is trivial in the sense that it only consists of a single state.
The trivial state machine can then be refined with multiple states and state hi-
erarchies, directly improving its structure and modularity. The resulting state-
machine representation can also increase the program’s memory efficiency by
using state variables, which provide memory reuse without programmer in-
tervention. The reverse transformation cannot be done without loosing those
benefits again.

In the second section of this chapter we have taken an experimental approach
in showing the positive effects of OSM’s automated state management. We have
re-implemented a significant part of a large program that was originally im-
plemented in the event-driven NesC programming framework. Then we have
compared both approaches. In the example, we have shown that the tedious and
error-prone code for state management could be reduced by 70% (from 187 to
56 lines of code), leading to an overall program-size reduction of 31%. A special
case of manual state management is extra program code needed to avoid acci-
dental concurrency in event-driven programs. In the example, this extra code
accounts for 3% of the entire program. We could show that in OSM typically no
countermeasures are required at all.

Finally, we have shown that the state-based approach of OSM has two ma-
jor benefits over the event-driven code when it comes to initializing resources.
The fist benefit is that all initializations of the same state-based resource are co-
located (within the scope of an OSM state), rather then being scattered through-
out the program code. The second benefit is that equal initializations (e.g., to the
same value) need to be written only once. As a result, the code is more concise,
more readable and less error prone.

The chapter ends with a section on how memory efficiency can be achieved
through state variables. Though quantitative measurements with respect to
memory savings are currently still missing, we have illustrated that savings of
10 to 25% are realistic for typical sensor-node programs.

8 Related Work

In this chapter we survey approaches and techniques related to sensor-node pro-
gramming in general, as well as to OSM and its implementation in particular. In
the introduction of this dissertation we have described wireless sensor nodes as
networked embedded systems. In Section 8.1 we present a brief overview on
the state of the art in embedded-systems programming. We also try to answer
the question why these approaches have been largely neglected in the wireless
sensor-network community. Many of the approaches to embedded-systems pro-
gramming are based on finite state machines. These approaches are particularly
relevant to our work. We will discuss them in Section 8.2 and contrast them
with our work. In Chapter 3 we have already presented a number of program-
ming models and frameworks targeted particularly towards sensor nodes. In
Section 8.3 we will revisit some of them in order to compare their goals and so-
lution approaches to OSM. Though many of them share the same goals as OSM,
the approaches to achieving those goals typically differ significantly.

8.1 Programming Embedded Systems

The diversity of embedded systems is reflected in the number and diversity of
models and frameworks available for programming them. The majority of them
is, however, programmed using conventional methods also found in program-
ming of general-purpose computers. In this section we will first discuss the con-
ventional programming methods for embedded systems before turning to the
large number of domain-specific programming frameworks addressing particu-
lar requirements of a domain. Sensor nodes are subject to some of the addressed
requirements. Therefore such programming frameworks and models are very
relevant for wireless sensor-node programming and OSM is based heavily on
the concepts found in them. However, besides OSM we are not aware of any
other programming frameworks for wireless sensor nodes that draw from such
approaches.

8.1.1 Conventional Programming Methods
Programming Language

The available programming support for a systems crucially depends on its avail-
able system resources. So does the supported programming language. The ma-
jority of embedded systems today is programmed in the general-purpose pro-
gramming language C. C is very close to the computational model implemented
in today’s microcontrollers. Thus there only needs to be a thin adaptation layer
resulting in very resource-efficient implementations of C applicable to very re-
source constrained systems. Often C is used in combination with assembly lan-

140 Chapter 8. Related Work

guage. A point often made in favor of using assembly language is the full access
to the processor’s registers and instruction set, thus allowing to optimize for
speed. On the other hand, C is considered easy and fast to program as well
as more portable between different processors. The portability of C also fosters
code reuse and companies often have a large code base which they share among
several systems and projects. While C compilers are available for almost all em-
bedded systems, programming languages like C++ and Java are only available
for systems with ample resources. The reason is that those languages require a
thicker adaptation layer and thus occupy more system resources.

System and Programming Support

Today, embedded systems on the high end of the resource spectrum use pro-
gramming methods very similar to those used for general-purpose comput-
ing platforms. Particularly devices such as mobile phones and PDAs have
turned into general-purpose computing platforms much more resembling desk-
top computers than embedded systems. Indeed, some of today’s embedded
systems posses resources that are similar to those of high-end desktop systems
less than a decade ago. At that time, general-purpose operating systems had
already pretty much evolved into what they are now. Therefore, it is not sur-
prising that the operating systems found in high-end embedded systems today
also support features of state-of-the-art operating systems, including dynami-
cally loadable processes, multi-threading, and dynamic memory management
with memory protection. There are several such operating systems available
from the open-source domain as well as commercially. The most popular of
such systems may be Windows CE, Embedded Linux, PalmOS, VxWorks, and
Symbian OS. However, the programming techniques supported by these oper-
ating systems are not applicable to the majority of embedded systems and are
particularly ill-suited for very resource-constrained sensor nodes.

Systems with resources on the medium to low end of the spectrum typically
only have limited system support from a light-weight operating environment
or use no operating system at all. Light-weight embedded operating systems
are very similar to those found in wireless sensor networks and may have been
their archetypes. They typically do not provide system support such as dynamic
memory, loadable processes, etc. Many of them, however, provide a multi-
threaded execution environment.

As in WSNs, embedded systems at the very low end of the resource spec-
trum use no operating systems or one providing event-based run-to-completion
semantics. With no operating system support, the software is typically imple-
mented as a control loop, which we have already discussed in the context of
sensor nodes in Sect. 3.2. As we have discussed extensively in Chapter 4, event-
based approaches are not sufficient to program complex yet reliable sensor-node
applications with a high degree of concurrency and reactivity.

8.1.2 Domain-specific Programming Approaches

Due to their stringent requirements some specific embedded-systems applica-
tions and domains require other than the conventional programming meth-

8.1. Programming Embedded Systems 141

ods. In particular, high demands regarding the reliability of inherently com-
plex and highly concurrent programs call for design methodologies that allow
to use high-level design tools, automated testing, simulation, formal verifica-
tion, and/or code synthesis (i.e., automated code generation). Conventional
programming models fail in these domains as they are highly indeterministic
and make large-scale concurrency hard to control for the programmer. Addi-
tionally, they make reasoning about the memory requirements of a program very
hard, particularly if combined with dynamic memory management. As conven-
tional programming approaches do not lend themselves easily to the procedures
described above, new models of computation have been suggested and incorpo-
rated into design tools. However, the available frameworks and tools support-
ing such models have been very small in number compared with the more ad
hoc designs [77].

Originally, embedded systems have been classified according to their appli-
cation characteristics into control-oriented systems on the one hand and data-
oriented systems on the other hand. However, in recent years there have been
several efforts to combine the approaches as embedded systems often expose
characteristics of both categories. Today a few powerful tools exist supporting
both approaches in a unified model. To explain the principal approaches, we
retain the original classification.

Data-Oriented Systems

Data-oriented systems concentrate on the manipulation of data. They are of-
ten called transformative as they transform blocks or streams of data. Examples
for transformative systems are digital signal processors for image filtering as
well as video and audio encoding, which can be found in medical systems, mo-
bile phones, cameras and so on. Since data-processing typically takes a non-
negligible time, data-oriented programming frameworks typically need to ad-
dress real-time requirements.

A common meta model for describing data-oriented systems are dataflow
graphs and related descriptions. Such systems are composed of functional units
that execute only when input data is available. Data items (also called tokens)
are considered atomic units; their flow is represented by directed graphs where
each node represents a computational operation and every edge represents a
datapath. Nodes connected by a directed edge can communicate by sending
data items. Nodes consume the data items received as input and produce new
data as output. That is, nodes perform transformational functions on the data
items received. Edges may serve as buffers of fixed or (conceptually) unlimited
sizes, such as unbounded FIFO queues. Dataflow descriptions are a natural rep-
resentation of concurrent signal processing applications. There are a number
of concrete models based on the dataflow meta model. They differ, for exam-
ple, in the number of tokens an edge may buffer, whether communication is
asynchronous or rendezvous, and whether the number of tokens consumed and
produced in an execution is specified a priori.

142 Chapter 8. Related Work

Control-Oriented Systems

Instead of computing outputs data from input data, control-oriented embed-
ded systems typically control the device they are embedded into. Often control-
oriented systems constantly react to their environment by computing output
events from input events (i.e., stimuli from outside of the embedded system).
Such systems are called reactive. Examples of reactive systems are protocol pro-
cessors in fax machines as well as mobile phones, control units in automobiles
(such as airbag release and cruise control), and fly-by-wire systems.

A subcategory of reactive systems are interactive systems, which also react to
stimuli from the environment. However, in interactive systems the computer
is the leader of the interaction, stipulating its pace, its allowable input alphabet
and order, etc. Therefore, the design of a purely interactive system is generally
considered easier than the design of an environmentally-driven reactive system.

Many of the recent applications of embedded systems consist of both, control-
oriented and data-oriented parts. In general, the reactive part of the system
controls the computationally intense transformative operations. In turn, results
of the such operations are often feed back into the control-oriented part. Thus,
actual embedded systems often expose both characteristics.

Control and Data-oriented Wireless Sensor Networks

Wireless sensor nodes, too, include transformational as well as reactive parts.
For example, transformational parts in sensor nodes compute from streams of
data whether a product has been damaged [106] (acceleration data), the location
where a gun has been fired [86] (audio data), the specific type of animal based on
its call [64, 105, 117, 118] (again, audio data), and so on. The same sensor nodes
also have control-oriented parts, for example, for processing network-level and
application-level protocols (such as the Bluetooth protocol stack used in [106]
and the EnviroTrack group-management application protocol discussed in the
previous chapter). In WSNs, the feedback loop between the reactive and trans-
formative parts is of particular importance. Due to the constrained nature of
the nodes, resource-intense operations are often controlled by criteria that are
themselves computed by a much less intense processing stage. In [118], for ex-
ample, recorded audio samples are first rated how well they match calls of spe-
cific birds using a relatively simple algorithm. Only if there is a high confidence
that a sample represents a desired birdcall, the samples are compressed and sent
to the clusterhead in order to apply beamforming for target localization, which
are very resource-intense operations. Other criteria for controlling the behavior
of sensor nodes may reflect the importance of a detection, the proximity (and
thus expected sensing quality) of a target, the number of other nodes detect-
ing the same target, and so on. In the extreme case, so called adaptive-fidelity
algorithms allow to dynamically trade the quality of a sensing result against re-
source usage by controlling the amount of sampling and processing performed
by a node.

8.2. State-Based Models of Computation 143

8.1.3 Embedded-Systems Programming and Sensor Nodes

The work by the embedded systems community on techniques such as real-time
systems, model driven design, hardware-software co-design, formal verifica-
tion, code synthesis, and others share many goals with WSN research and has
led to a variety of novel programming models and frameworks. Despite their
apparent relevance, alternatives to these approaches from the embedded sys-
tems community seem to have attracted little attention in the wireless sensor
network community. The most popular programming frameworks for WSNs
adopt the prevalent programming paradigm: a sequential computational model
combined with a thread-based or event-based concurrency model.

We have no comprehensive answer why this is so. We can only speculate that
the sequential execution model inherent to the most popular general-purpose
programming languages (such as C, C++, Java) has so thoroughly pervaded the
computer-science culture that we tend to ignore other approaches (cf. [77]). De-
spite the potential alternatives, even the majority of traditional embedded sys-
tems is still programmed using the classical embedded programming language
C, and recently also C++ and Java. One reason may be that there seems to be
little choice in the commercial market. The most popular embedded operat-
ing systems fall in this domain. Another reason may be that the vast majority of
programmers has at least some experiences in those languages whereas domain-
specific embedded frameworks are mastered only by a selected few. Conse-
quently, many embedded software courses toughed at universities also focus
on those systems (see, for example, [92]). In the next section we will discuss
concrete programming models for embedded systems that are most relevant to
OSM.

8.2 State-Based Models of Computation

OSM draws directly from the concepts found in specification techniques
for control-oriented embedded systems, such as finite state machines, State-
charts [53], its synchronous descendant SyncCharts [10, 11], and other exten-
sions. From Statecharts, OSM borrows the concept of hierarchical and parallel
composition of state machines as well as the concept of broadcast communi-
cation of events within the state machine. From SyncCharts we adopted the
concept of concurrent events.

Variables are typically not a fundamental entity in control-oriented state-
machine models. Rather, these models rely entirely on their host languages for
handling data. Models that focus both on the transformative domain and the
control-oriented domain typically include variables. However, we are not aware
of that any of these models uses machines states as a qualifier for the scope and
lifetime of variables.

8.2.1 Statecharts

The Statecharts model lacks state variables in general and thus does not define
an execution context for actions in terms of data state. Also, the association
of entry and exit actions with states and transitions, that is, distinct incoming

144 Chapter 8. Related Work

and outgoing actions, is a distinctive feature of OSM. These associations clearly
define the execution context of each computational action to be exactly one pro-
gram state and the set of state variables in the scope of that state. While the
Statecharts model, too, has entry and exit actions, they are only associated with
a state and are invoked whenever that state is entered or left, respectively.

8.2.2 UML Statecharts

The Unified Modeling Language (UML) [49] is a graphical language for specify-
ing, visualizing, and documenting various aspects of object-oriented software.
UML is composed of several behavioral models as well as notation guides and
UML Statecharts is one of them. UML Statecharts are a combination of the origi-
nal Statecharts model and some object-oriented additions. They are intended for
modeling and specifying the discrete behavior of classes. UML is standardized
and maintained by the Object Management Group (OMG). A number of addi-
tions to UML Statecharts have been proposed for various application domains.
UML Statecharts are supported by several commercial tools, for example, Visu-
alSTATE [121]. VisualSTATE has introduced typed variables as an extension to
UML Statecharts, however, all variables are effectively global. Another commer-
cial tool supporting UML Statecharts is Borland Together.

8.2.3 Finite State Machines with Datapath (FSMD)

Finite State Machines with Datapath (FSMD) [44] are similar to FSM (neither hi-
erarchical nor parallel). Variables have been introduced in order to reduce the
number of states that have to be declared explicitly. Like OSM, this model al-
lows programmers to choose to specify program state explicitly (with machine
states) or implicitly with variables. As in OSM, transitions in FSMD may also
depend on a set of internal variables. FSMD are flat, that is, they do not sup-
port hierarchy and concurrency, and variables have global scope and lifetime.
On the Contrary, variables in OSM are bound to a state hierarchy. The FSMD
model is used for hardware synthesis (generating hardware from a functional
description).

8.2.4 Program State Machines (PSM), SpecCharts

The Program-State Machine (PSM) meta model [114] is a combination of hierar-
chical and concurrent FSMs and the sequential programming language model
where leave states may be described as an arbitrarily complex program. Instan-
tiations of the model are SpecCharts [114] and SpecC [43].

In PSM a program state P basically consists of program declarations and a
behavior. Program declarations are variables and procedures, whose scope is P
and any descendants. A behavior is either a sequence of program statements
(i.e., a regular program) without any substates, or a set of program concurrently
executing substates (each having its own behavior), or a set of sequentially-
composed substates and a set of transitions. Transitions have a type and a
condition. Transitions are triggered by a condition represented by a boolean
expression. The transition type is either transition-on-completion (TOC) or

8.2. State-Based Models of Computation 145

transition-immediately (TI). TOC transitions are taken if and only if the source
program state has finished its computation and condition evaluates to true. TI
transitions are taken when the condition evaluates to true, that is, they terminate
the source state immediately, regardless of whether the source state has finished
its computations. TI transitions can be thought of as exceptions.

Similar to OSM, variables are declared within states; the scope of a variable
then is the state it has been declared in and any descendants. The lifetime of
variables, however, is not defined. The main difference to OSM is, that compu-
tations in SpecCharts are not attached to transitions but rather to leaf states (i.e.,
uncomposed states) only. In analogy to Moore and Mealy machines, we believe
that reactive systems can be specified more concisely in OSM. Though both mod-
els are computationally equivalent, converting a Mealy machine (where output
functions are associated with transitions) to a Moore machine (output associ-
ated with states) generally increases the size of the machine, that is, the number
of states and transitions. The reverse process leads to fewer states. Finally, in
contrast to PSMs, OSM allows to access the values of events in computational
actions. A valued event is visible in the scope of both the source and the target
state of a transition (in “out” and “in” actions, respectively). This is an important
aspect of OSM.

SpecCharts [114] are based on the Program-State Machine (PSM) meta model
using VHDL as programming language. It can be considered as a textual state-
machine extension to VHDL. SpecCharts programs are translated into plain
VHDL using an algorithm described in [93]. The resulting programs can then
be subjected to simulation, verification, and hardware synthesis using VHDL
tools.

8.2.5 Communicating FSMs: CRSM and CFSM

A model for the design of mixed control and data-oriented embedded systems
are communicating FSMs, which conceptually separate data and control flow. In
this model, a system is specified as a finite set of FSMs and data channels be-
tween pairs of machines. FSM execute independently and concurrently but com-
municate over typed channels. Variables are local to a single machine, but global
to the states of that machine. Values communicated can be assigned to variables
of the receiving machine. There are several variations of that basic model. For
example, in Communicating Real-Time State Machines (CRSM) [104] communi-
cation is synchronous and unidirectional. Individual FSMs are flat. Co-design
Finite State Machines (CFSM) [13] communicate asynchronously via single ele-
ment buffers, but FSM may be composed hierarchically. In contrast to commu-
nicating FSMs, concurrent state machines in OSM communicate through events
or shared variables.

8.2.6 Esterel

OSM, like SyncCharts, is implemented on top of Esterel [26]. We considered
using Esterel directly for the specification of control flow in OSM. However, as
an imperative language, Esterel does not support the semantics of FSM directly.
We believe that FSM are a very natural and powerful means to model WSN

146 Chapter 8. Related Work

applications. Moreover, specifications in Esterel are generally larger (up to 5
times) compared to OSM.

8.2.7 Functions driven by state machines (FunState)

FunState [110] (functions driven by state machines) is a design meta model for
mixed control and data flow. FunState was designed to be used as an internal
representation model used for verification and scheduling and has no specific
host language.

FunState unifies several well-known models of computation, such as commu-
nicating FSMs, dataflow graphs, and their various incarnations. The model is
partitioned in a purely reactive part (state machine) without computations and
a passive functional part (a “network” resembling PetriNets). Transitions in the
state-machine part trigger functions in the network. The network consists of a
set of storage units, a set of functions and a set of directed edges. Edges connect
functions with storage units and storage units with functions. Edges represent
the flow of valued data tokens.

FunState has a synchronous model of time where in an atomic step tokens
are removed from storage units, computations are executed, and new tokens
are added to storage units. Real time properties of a system can be described
with timed transitions and time constraints. Functions have run-to-completion
semantics; they are executed in non-determinate order.

8.3 Sensor-Node Programming Frameworks

We have presented the state-of-the-art system software in Chapter. 3. In this
section we will revisit some of them focusing on systems that share the same
goals as OSM or use a programming model related to state machines.

8.3.1 TinyOS

The design of TinyOS shares two main common goals with OSM, namely to
provide efficient modularity as well as to provide a light-weight execution envi-
ronment, particularly in terms of memory consumption.

Modularity

Just as OSM, TinyOS has been designed with a high degree of modularity in
mind. The designers argue that sensor-node hardware will tend to be applica-
tion specific rather than general purpose because of the wide range of potential
applications. Thus, on a particular device the software should be easily synthe-
sizable from a number of existing and custom components. TinyOS addresses
modularity by the concept of components. NesC components expose a well-
defined interface, encapsulating a self-confined piece of software (such a timer
and access to a particular sensor). Each of the pieces can be implemented using
the event-driven model of NesC.

NesC components foster program modularity, as components with different
implementations yet a common interface can be exchanged easily. They also

8.3. Sensor-Node Programming Frameworks 147

provide a means to structure complex programs or components into a number
of less-complex components. NesC components partition a program in logically
disjunct pieces, each of which is more easily manageable as the entire program.
Each component is active during the entire runtime of the program. NesC com-
ponents are a major improvement over basic event-driven systems (such as the
BTnode system software [21]) that only provide the concept of actions to struc-
ture a program.

To address modularity, OSM relies on the concept of program states. OSM
programs can be composed from a number of less-complex states. The composi-
tion is either strictly hierarchical or concurrent. Unlike NesC components, states
in OSM do not only partition the program logically but also in the time domain.
Since programs typically exhibit time-dependent behavior, OSM provides more
flexibility in modeling a program or logical component thus resulting in more-
structured program code.

The implementation of NesC components has one major drawback. NesC
components define the scope for variables declared within them, that is, vari-
ables of a particular component cannot be accessed from other components. As
a consequence, the communication among NesC components has to rely on the
passing of (one of the two types of) events with arguments. For performance
reasons and to limit the number of events passed, programmers often dupli-
cate variables in several modules. For example, in the EnviroTrack middleware,
group-management messages are sent from a number of components whereas
the functionality to actually send the message is performed in a dedicated com-
ponent. This component can process a single message at a time (i.e., there are
no message buffers) and has a boolean variable indicating whether the previ-
ous message has already been sent completely. However, in order to avoid the
overhead of composing a group-management message while the network stack
is not ready to send the next message, the boolean variable is replicated in four
modules. This drawback has been one of the reasons for the development of
TinyGALS [29].

Light-weight Execution Environment

A primary goal that TinyOS shares with OSM is the provision of a very light-
weight execution environment. In order to handle concurrency in a small
amount of stack space and to avoid per-thread stacks of multi-threaded sys-
tems, the event-driven model has been chosen. Similar to our approach, NesC
provides asynchronously scheduled actions as a basic programming abstraction.
As in OSM, events are stored in a queue and processed in first-in-first-out order
by invoking the associated action. However, NesC also provides programmers
access to interrupt service routines (ISRs) so that a small amount of process-
ing associated with hardware events can be performed immediately while long
running tasks are interrupted. Such hardware events can be propagated to a
stack of NesC components. In contrast, interrupts in OSM are hidden from the
programmer. The reason for these differences are contrasting assumptions on
the separation of application and execution environment: while in TinyOS pro-
grammers are expected to program their own low-level drivers, for example,
for sensors and radio transceivers, OSM is based on the assumption that such

148 Chapter 8. Related Work

low-level interfaces are provided by the node’s operating system.

While in OSM actions are never interrupted, ISRs in the NesC can interrupt
actions as well as other ISRs. Actions run to completion only with respect to
other actions. = Therefore, a NesC application may be interrupted anywhere
in an action or ISR. This model can lead to subtle race conditions, which are
typical for multi-threaded systems but are not found in typical atomic event-
based systems. To protect against race conditions, programmers of TinyOS need
to enforce atomic execution of critical sections using the atomic statement.

Though TinyOS does not require per-thread stacks of regular multi-threading
systems, they share some of the undesirable characteristics. As discussed in
Sect. 3.2.4, interruptible (i.e., non-atomic) code is hard to understand and debug
and therefore potentially less reliable. Also, there a may be issues with modu-
larity.

8.3.2 Contiki

Contiki [37] has been designed as a light-weight sensor-node operating system.
In order to work efficiently within the constrained resources, the Contiki oper-
ating system is built around an event-driven kernel. Contiki is particularly in-
teresting as it also supports preemptive multi-threading through loadable mod-
ules. In Contiki, a single program can be built using a combination of the event-
driven model as well as the multi-threaded model. The authors suggest to build
applications only based on events whenever possible. However, individual,
long-running operations, such as cryptographic operations, can be specified in
separate threads. OSM on the contrary does not support multiple threads and
only allows to specify actions of bounded time.

Building OSM on the Contiki operating system would open up the possibility
to implement activities as proposed by [53]. Activities can be viewed as actions
that are created on the occurrence of an event and which may run concurrently
with the rest of the state machine. They terminate by emitting an event, which
may carry a result as parameter.

8.3.3 Protothreads

Protothreads [38] attack the stack-memory issues of multi-threading from an-
other perspective. Protothreads provide a multi-threaded model of computation
that do not require individual stacks. Therefore, Protothreads eliminate what is
probably the dominant reason why sensor-node operating systems are based on
the event-based model. This comes, however, at the cost of local variables. That
is, stackless Protothreads do not support automatically memory-managed local
variables that are commonplace in modern procedural languages. Removing the
per-thread stack also effectively removes the main mechanism to save memory
on temporary variables.

As a consequence, the same issues as in event-driven programming arise: ei-
ther data state has to be stored in global variables, which is wasteful on the
memory and has to be manually memory managed. Or dynamic memory man-
agement is required, which has the drawbacks explained in Sect. 3.3 and still
requires significant manual intervention from a programmer. Effectively, the

8.3. Sensor-Node Programming Frameworks 149

memory issues have been shifted from the operating system to the application
program, which now has to take care of managing temporary variables. As a
consequence, applications written with Protothreads may require more mem-
ory compared to regular threads, leading to a negative grand total.

8.3.4 SenOS

Like OSM, SenOS [75] is a state-based operating system for sensor nodes. It
focuses on dynamic reconfigurability of applications programs. Unlike OSM,
programs are specified as flat and sequential state machines, each of which is
represented by a separate state-transition table. As in OSM, actions are asso-
ciated with state transitions. All available actions are stored in a static library
that is transferred to the sensor node at the time of programming together with
the operating system kernel. Applications are implemented as state-transition
tables. These tables define all possible machine states and transitions. They also
associate actions from the action library to particular transitions.

SenOS state machines can run concurrently, where each machine runs in its
own thread. Applications programs (as specified by state transition tables) can
be dynamically added to and removed from the system at runtime. However,
the static library of actions cannot be changed unless reprogramming the entire
sensor node.

SenOS relies on task switches for concurrency. Its concurrency permits dy-
namic scheduling of tasks. In contrast, OSM features a static concurrency model.
The static concurrency model allows very memory efficient implementations
without the need to provide a separate runtime stack for each concurrent task.
Furthermore, the static concurrency model makes OSM programs amenable to
formal verification techniques found in state-machine approaches. The flat state
machines approach precludes the use of automatic scoping and lifetime mech-
anisms for variables, which is a major design point in OSM. It is questionable
if the desired re-configurability and re-programmability can be achieved with
this approach, since programs have to be built exclusively on the preconfigured
actions library without any glue code.

150 Chapter 8. Related Work

9 Conclusions and Future Work

In this final chapter, we conclude by summarizing the contributions of our work
and by discussing its limitations. We also propose future work addressing con-
crete limitations of our approach.

9.1 Conclusions

Event-driven programming is a popular paradigm in the domain of sensor net-
works in general. For sensor networks that are operating at the very low end
of the resource spectrum it is in fact the predominant programming model. Un-
like the multi-threaded programming model, system support for event-driven
programming requires very little of a system’s resources. The event-driven pro-
gramming model has been adopted by a large number of programming frame-
works for sensor networks, among them TinyOS / NesC, which currently may
be the most popular of all.

Despite its popularity, the event-driven programming model has significant
shortcomings. Particularly in large and complex programs these shortcomings
lead to issues with the readability and structure of the program code, its mod-
ularity and correctness, and, ironically, also the memory efficiency of the devel-
oped programs. Concretely, an event-driven program typically uses more RAM
as a functionally equivalent sequential program because in the event-driven
model a lot of temporary data has to be stored in global variables. A sequential
program would use local variables instead, which are automatically memory
managed and thus their memory is reused.

With respect to these problems, the main contribution of this dissertation is to
show how the event-based model can be extended so that it allows to specify
well-structured, modular, and memory-efficient programs, yet requires as little
runtime support as the original model. We have significantly improved sensor-
node programming by extending the event-driven model to a state-based model
with a explicit notion of hierarchical and concurrent program states. We have
also introduced a novel technique to use states as a scoping and lifetime qualifier
for variables, so they can be automatically memory managed. This can lead to
significant memory savings in temporary data structures. In the following we
will list our contributions towards our solution in more detail.

9.2 Contributions

Below we will summarize our contributions towards the problem analysis, the
solution approach and its implementation, as well as the evaluation. Some con-
tributions have also been published in [21, 72, 74].

152 Chapter 9. Conclusions and Future Work

9.2.1 Problem Analysis: Shortcomings of Event-driven
Programming

In Chapter 4 we have contributed a thorough analysis of the original event-
driven model in the context of sensor networks. Firstly, we have analyzed
the two main problems of the existing event-driven programming paradigm.
While the basic problem leading to unstructured and un-modular program code,
namely manual state management, has already been identified and documented
in previous work, the memory inefficiency of event-driven sensor-node pro-
grams incurred by manual state management has not been analyzed before.

Secondly we have contributed by analyzing the anatomy of sensor node ap-
plications. We have found that, though easy and intuitive for small and simple
programs, event-driven programs do not describe typical sensor-node applica-
tions very well. That is, the conceptual models that programmers create in their
minds before implementing a particular program or algorithm does not map
easily to the event-driven programming model. In particular, we have identified
the lack of an abstraction that allows programmers to structure their programs
along the time domain into discrete program phases. We have shown that sev-
eral algorithms from the literature are indeed described as systems partitioned
into discrete phases, each having distinctive data state and behavior. The find-
ings of our problem analysis now allows to better evaluate current and future
programming models for sensor networks.

9.2.2 Solution Approach: State-based Programming with
OSM

To alleviate the problems described above, we have proposed a sensor-node pro-
gramming model that is extending the event-driven model with well-known
state-machine abstractions. In Chapter 5 we contribute by presenting such a
model, which we call the OBJECT STATE MODEL (OSM). OSM is based on ab-
stractions of hierarchically and concurrent state machines. Though they have
been used successfully in embedded-systems programming for several years,
they have not yet been applied to the field of sensor networks.

Besides relying on proven programing abstractions, our OSM model also in-
troduces the concept of state variables. State variables supports the memory-
efficient storage and use of temporary data. State variables resemble local vari-
ables of sequential programs; both are automatically memory managed and thus
their memory is automatically reused when no longer needed. State variables
can help overcome the inherent memory inefficiency of event-driven program-
ming for storing temporary data. Besides that, the maximum memory require-
ments of all parts of even highly-concurrent programs can be calculated at com-
pile time. This allows to check whether a particular program can run on a given
sensor node and to easily identify program parts susceptible for optimizations.

Finally, OSM introduces the concept of entry and exit actions (also referred to
as incoming and outgoing actions) to traditional state-machine programming
models. They allow to elegantly and efficiently specify the initialization and
release of state-specific resources, which are common tasks in real-world sensor-
node programs.

9.3. Limitations and Future Work 153

9.2.3 Prototypical Implementation

We have implemented a prototypical OSM compiler which generates C-
language code, which we have presented in Chapter 6. The compiler translates
state-based OSM programs into event-driven program representations. OSM
programs only require the same minimal runtime support as programs initially
written with event-driven frameworks. Particularly, we show that the code
generated from OSM specifications runs on a only slightly modified version of
our light-weight and event-driven system software for the BTnode sensor node.
Though the compilation introduces some memory overhead into the binary, this
overhead can be attributed to the inefficiencies introduced by using an addi-
tional intermediate language (namely Esterel) in the prototypical compiler. The
prototypical implementation of an OSM compiler shows that compiling OSM
programs to efficient event-driven programs is generally feasible.

9.2.4 Evaluation

In Chapter 7 we have shown how automating state and stack management ben-
efits programmers of real-world sensor-node programs. We have shown the
practical feasibility by presenting an OSM-based re-implementation of part of
EnviroTrack, a system for tracking mobile objects with sensor networks, and
other algorithms.

We have re-implemented a significant part of the EnviroTrack sensor-network
middleware, which was originally implemented in the event-driven NesC pro-
gramming framework. Using that re-implementation we demonstrate the use-
fulness of state-based representations. We have shown that the tedious and
error-prone code for state management could be reduced significantly. In the
example, 187 lines of manual state-management code were reduced to an ex-
plicit state representation of only 56 lines, representing a reduction of 70%. The
overall program-size reduction was 31%. An additional 16 lines of the original
EnviroTrack code are used to guard against the unwanted execution of actions in
certain contexts, which is also a form of manual state-management. In OSM, no
extra code is required because the model explicitly specifies which actions can
be called in which context. Finally, we have shown that the OSM code is more
structured. We have shown that logically-related code in OSM is also co-located
in the implementation whereas it is typically scattered throughout much of the
implementation in event-driven code. For example, in OSM there is typically a
single place for initializing particular timers, which is also adjacent to the actual
action triggered by the timer. In NesC, however, there are several isolated places
in the code where the timer is initialized, which are also disconnected from the
triggered action.

9.3 Limitations and Future Work

There are a number of limitations and potential improvements with respect to
our approach and methodology, which we will discuss in this section. We also
discuss future work in the broader context of our work.

154 Chapter 9. Conclusions and Future Work

9.3.1 Language and Program Representation

Although the we have shown that the state-based program representation of
OMS can lead to more modular and structured code, there is still much to im-
prove.

The OSM compiler is currently only implemented for our textual input
language, though we have also sketched a possible graphical representation
throughout this dissertation. We found that a graphical representation is better
suited to present the big picture of a program (i.e., its coarse-grained structure),
particularly for reviewing the design, for which the textual representation is less
intuitive. Therefore we have generally provided both program representations,
the graphical as well as the textual, in examples of this dissertation. On the other
hand, the textual notation is very efficient for specifying implementation detail,
such as action names, parameter names, etc. In our experience with graphi-
cal tools for UML Statecharts (namely VisualSTATE and Borland Together, both
commercial tools) and for SyncCharts (the freely available syncCharts edi-
tor [76]) the specification of implementation details was unsatisfactory. There-
fore it would be beneficial to support both representations, allowing to freely
switch between and to use the one which is more suitable for the task at hand.

New Model

As in the event-driven programming model, actions in OSM must be non-
blocking. We have found that programmers who had used only sequential pro-
gramming languages before, have difficulties in understanding this. For exam-
ple, students programming with our event-driven BTnode system software reg-
ularly used while -loops in one action polling a variable that is set in another
action, wondering why the program would block forever. In general, OSM re-
quires most programmers to get used to new concepts and to the OSM specifica-
tion language in particular. Though this is not a limitation of the programming
model as such, it may hamper its widespread use. OSM does provide semantics
that are compatible with existing event-based systems, however, thus easing the
transition for programmers that are already familiar with event-based program-
ming.

Representing Sequential Program Parts

Purely sequential parts of the program flow (i.e., linear sequences of events and
actions without any branches) are tedious to program in OSM because they have
to be explicitly modeled as sequences of states, pairwise connected by a single
transition (see the BUSYstate of Prog. 7.4 on page 133 as an example). In such
cases wait-operations, as typically provided by multi-threaded programming
models, might be more natural. To solve this issue, it may be worth investigating
how Protothreads [38] could be used to implement sequential program parts.

Representing Composite Events

Likewise, reactions to composite events (i.e., meta-events made up of multiple
events, for example, “events el, €2, and e3 in any order”) cannot be specified

9.3. Limitations and Future Work 155

concisely. Instead, all intermediate states and transitions have to be modeled
explicitly even though only the reaction to the event completing the composite
event may be relevant. Introducing more elaborate triggers of transitions and a
concise notation could solve this problem. Such a trigger mechanism could be
implemented as semantic sugar using the existing concepts of states and transi-
tions but hiding them from the user.

9.3.2 Real-Time Aspects of OSM

OSM does not address real-time behavior. It does not provide any mechanisms
to specify deadlines and to determine how much time transitions and their as-
sociated actions take. There is, however, a large body of work on state-machine
based real-time systems. Future work could investigate how these approaches
can be integrated into OSM.

Also, if actions generate events, the order of events in the queue (and hence
the system behavior) may depend on the execution speed of actions.

9.3.3 Memory Issues
Queue Size and Runtime-stack Size Estimations

One of the reasons why OSM has been developed is to resolve the memory is-
sues of temporary-data management, which is prevalent in event-driven pro-
gramming. While OSM can calculate the program’s memory usage at compile
time, the maximum queue-size (required for storing events that cannot be pro-
cessed immediately) remains unknown. As a consequence, the event queue may
be oversized, thus wasting memory, or undersized, resulting in lost data at best
but more likely in a program crash. Future work could estimate the maximum
queue size required.

The other unknown memory factor besides the queue size is the system’s run-
time stack-size. The runtime stack is used for holding information of function
calls (i.e., its parameters and the return address) as well as the local variables
of OSM actions and regular functions of the host language. (State variables
are stored statically and do not use the stack.) Being able to precisely estimate
the stack size would be beneficial for the reasons described above. There has
been some work on estimating stack sizes, particularly in the context of multi-
threaded programs. In future work the OSM compiler could be extended to
perform such an estimate.

Applicability of State Variables

State variables can be tied to entire state hierarchies only. However, a more
flexible scoping mechanism of state variables may be desirable. Consider the
state hierarchy depicted below where a variable v, is being used in the states A
and C' butnotin D. In OSM such a variable would be modeled as a state variable
of root R. Its scope and lifetime would extend to all substates of R including
D. In the given case, OSM is not able to reuse the memory holding v, in D,
for example, for D’s own private variable v,. Flexible scoping mechanism that
allows to include selected states only (as opposed to being bound to the state

156 Chapter 9. Conclusions and Future Work

hierarchy) could further increase the memory efficiency but are left for future
work.

9.4 Concluding Remarks

There are still features and tools missing to make OSM an easy and intuitive to
use programming framework for resource constrained sensor nodes. Particu-
larly more experience is required to evaluate the value of OSM for large projects
and to determine what needs to be included in future versions. However, we be-
lieve that OSM is a big step towards extending the application domain of event-
based programming to larger and more complex systems.

A OSM Code Generation

This Appendix demonstrates the stages of the code generation process em-
ployed by our OSM compiler prototype for a small, yet complex OSM program
example. In Sect. A.1 we present this program, both in graphical as well as
in textual representation. Sect. A.2 presents the C-language include file that is
generated from the OSM example program. It includes the mapping of the OSM
program’s variables to a C-language struct as well as the prototypes of all actions
defined in the OSM program. Sect. A.3 present the control flow mapping of the
OSM program to the Esterel language. The generated Esterel code is translated
to the C language by an Esterel compiler. The compiler’s output is presented
in Sect. A.4. A functionally equivalent version optimized for memory efficiency
is also presented. Finally in Sections A.5.1 and A.5.2 we present the Makefile
for compiling the OSM example program and the output of an OSM compiler
during a compilation run.

A.1 OSM Example

g N
PROG
g N
PROG_1 PROG 2

D

inta

o
inth
prE()

YinE(ab)

flf
y | outF(ac)

F
inta
intc

| OUtE()

. J/

Figure A.1: Graphical representation of test.osm , a program for testing the
OSM compiler.

158 Appendix A. OSM Code Generation

1 /) === mm e -
2 // test.osm -- A program for testing the OSM compiler
3 /) mmm e
4

5 state PROG {

¢ state PROG_1 {

7

8 initial state A {

9 var int a;

10 onEntry: start/ inAQ;

11 e / outA() -> B;

12 f / outAQ) -> A;

13 } // end state A

14

15 state B {

16 var int b;

17 f / outBQ) -> C;

18 e / -> C;

19 } // end state B

20

21 state C {

2 var int c;

23 onEntry: B -> £/ inC1(Q);

24 onEntry: B -> e/ inC2(Q);

25 } // end state C

26
} // end PROG_1

N
N}

% ||
29 state PROG_2 {

30 initial state D {

31 var int a;

32

33 initial state E {

34 var int b;

35 onEntry: £ / inE(a, b);
36 f / outE() -> F;

37 // onPreemption: prEQ);
38 } // end state E

39 state F {

40 var int a;

41 var int c;

2 f / outF(a, c) -> E;

43 } // end state F

44

45 e / outDQ) -> G;

46 } // end state D

47

48 state G { e / -> D; }

49 } // end PROG_2
s0 } // end PROG

A.2. Variable Mapping (C include file) 159

A.2 Variable Mapping (C include file)

1 /* This include file was generated by OSM on

2 * Samstag, Juni 24, 2006 at 09:31:50.

3 * OSM compiler written by Oliver Kasten <oliver.kasten(at)inf.ethz.ch> */
4

5

6 /* prevent the esterel compiler from declaring functions extern */
7 #define _NO_EXTERN_DEFINITIONS

8

9 // function for making a discrete step in the state automaton
10 int STATE_PROG(Q);

11 // function for resetting all inputs of the state automaton
12 int STATE_PROG_reset();

13

14 /* no outputs events from state PROG */

15

16 /* exit actions prototypes */

17 void outAQ);

18 void outBQ);

19 void outD(Q);

20 void outE(Q);

21 void outF(int*, int*);

22 #define outF_PROG_PROG_2_D_F_a_PROG_PROG_2_D_F_c() outF(\

23 &_statePROG._par_PROG_1_PROG_2._statePROG_2._seq_D_G._stateD._seq_E_F._stateF.a, \
24 &_statePROG._par_PROG_1_PROG_2._statePROG_2._seq_D_G._stateD._seq_E_F._stateF.c)
25

26 /* entry actions prototypes */

27 void inAQ);

28 void inC1(Q);

29 void inC2(Q);

30 void inE(int*, int*);

31 #define inE_PROG_PROG_2_D_a_PROG_PROG_2_D_E_b() inE(\

32 &_statePROG._par_PROG_1_PROG_2._statePROG_2._seq_D_G._stateD.a, \
33 &_statePROG._par_PROG_1_PROG_2._statePROG_2._seq_D_G._stateD._seq_E_F._stateE.b)
34

35 /* preemption actions */

36 void prEQ);

37

38 struct statePROG {

39 /* parallel machine */

40 union par_PROG_1_PROG_2 {

41 /* contained states */

42 struct statePROG_1 {

43 /* sequential machine */

44 union seq_A_B_C {

45 /* contained states */

46 struct stateA {

47 int a;

48 } _stateA;

49 struct stateB {

50 int b;

51 } _stateB;

52 struct stateC {

53 int a;

54 } _stateC;

55 } _seq_A_B_C;

56 } _statePROG_1;

57 struct statePROG_2 {

58 /% sequential machine */

59 union seq_D_G {

60 /* contained states */

61 struct stateD {

62 int a;

63 /* sequential machine */

64 union seq_E_F {

65 /* contained states */

66 struct stateE {

67 int b;

68 } _stateE;

69 struct stateF {

70 int a;

71 int c;

Appendix A. OSM Code Generation

160

72 } _stateF;
73 } _seq_E_F;

74 } _stateD;

75 struct stateG {
76 } _stateG;

77 } _seq_D_G;

78 } _statePROG_2;

79 } _par_PROG_1_PROG_2;
80 } _statePROG;

161

A.3. Control Flow Mapping-Stage One (Esterel)

f{qussaad pue
*OQOvuT 1T1ed Op 17H0Yd IIEIS ISED
1uesaad
SUOT1De AIlUjuo %
fQO0OvIno ‘O Qvur aanpadoad
fZ1x ‘11X 1ndino
f{I790d4d"1ae1s ‘F ‘e indut
'YVTILVYLS oTnpow

D79V NOILVTTAZLSNOD % STnpow pus
Teubts pus
dooT pus
dex1l pus
paydeaI JoAdU % 1TeY
f1uesaad pus
TeubIs pus
1ussaad pus T 1TX9 9sTo eydle 1ussaad
$DTALVIS unx
feydre 1Twe
ut eydie Teubis
ueyl ceumreb ussaxd
D ILVIS %
f1ussaad pus
Teub1s pus
1uasaad pus T 1Tx9 9sTe eydre 1ussaad
‘[gTx /geumreb ‘TTX /ceumref TeubTs] g dIVLIS unt
feydre 11w
ut eydre TeubIs
uoyl zeumreb jussaad
g ALVIS %
{1uesaad pus
TeubIs pus
1ussaad pus T 1TX9 9sTe eydle 1ussaad
f[grx /geumreb ‘TTx /Teumeb TeuBts] Yy HLVIS uni
feydre 1Twe
ut eydre Teubis
uoyl Teumreb jusssad
V ALVIS %
utr 1 deml
dooT
dooTutewm %
91e1S TBTI1TUT 1Jels % :Teumreb 1Two
FITUT %
ut ceumreb ‘zeumreb ‘Teumreb TeubTs

€8
8

08
6L
172
LL
9L

ov

6€
ndino ou % 8¢
179044 1Ie1s ‘F ‘e indur L€

*D 4V NOILVTTALSNOD STnpowr 9¢

g

17504d 41VIS % °Inpow pus ¥e

1Tey €€

‘{TeubTs pus €

sdleisqns Teriusnbas % D747V NOILVTTILSNOD ung 1€

1750¥d 91el1siadns J0F 1JIe1S 1USAD opnasd 1TUR % ‘1 HOYd 1IeIS 1TIWS 0
Ut 1790Yd 1Iel1s TeubTs 67

SUOT1BJIRTDIP UOTIDUNF OU % 8T
sindino ou % LT

fF ‘® indurt 92

$T7D0¥d ILVLS @Tnpow St

Ie1S-0 9% ¥C

€T

Z7508d 17D0dd 04DV % °T[npow pus cc
dexl pus 1C

Z7O0¥d dLVLS unx (4

| 61

1750dd dLV1IS uni 8L

ut [dexl L1

ndino ou % 91
‘F ‘e andurt ST
1Z7750¥d T D50dd OYOVH STnpowt ¥i

H0¥d ALVIS % @Tnpow pus cI

1Tey 11

se1eisqns TaTTeted 9% :Z7H0Yd T~ D0 ODVW unt o1
SUOTIBJETI9P UOTIOUNF Ou %
sindino ou %
‘¥ ‘9 1ndut

1D0¥d ALVLS @Tnhpour

Ie1s-0 %

<UD°Zyld ' FUTI(IB)UDISEY ISATTO> UD1ISEY IDATITQ AQ USIITIM ISTTAWOD WSO %
"PRiI¥:90 1@ 9007 ‘vz Tun(‘Beisues %
uo WSO Aq poiersush sem 9pod [aI91SH STYL %

— N D O N W0 O

(1919153)
auQ abeis—Huidde\y mo|4 |oqu0D £V

Appendix A. OSM Code Generation

162

1ussaad pus T 1TX9 @sTe eydre 1ussaad
‘[1Tx /Teumel TeubTs] HTALVIS unt
‘feydie 1tue
ut eydre Teub1s
usyl zeumreb 1usssad
57ALVIS %
f1ussaad pus
TeubTs pus
1uasaad pus T 1IX9 9sTo eydlie 1ussaad
{[1tx /zeumeb TeubTs] @ ALVLIS ung
feydre 11w
ut eydre TeubIs
uoyl Teumreb jussaad
a ALVIS %
ut 7 dexl
dootT
dooTutew %
91e1S TRTI1TUT 1JelS % ‘Teumrebf 1Tuw
PATUT %
ut zeumreb ‘jeumreb Teubts

ndino ou %
{F ‘® Indurt
‘D @ NOILVTTILSNOD °Tnpoum

Z790dd dI1VIS % @Tnpow pus
1Tey
s91elsqns TeTiusnbas % 5™ q NOILVITALSNOD ung
SuoTleJeTd9p uoIIdUny ou %
sindino ou %
‘¥ ‘e andut
177904d"ILVIS STnpou
JIe1s-0 %

DTALVIS % STnpou pus
1Tey
f1ussaad pus
O Qzout 11ED> Op B °¥SED
£OQOTDUT TTED Op F 9sed
1uesaad
O QUT ‘QOOTDUT danpadoad
sindino ou %
‘¥ ‘@ Indur
1DTILVLS °Tnpou

1.1
0s1
691
891
91
991
91
91
€91
91
191
091
661
891
£91
951
Gt
PS1
€St
st
161
0ST
6v1
i48
Lyl
9L
Syl
4"
€l
ol
1548
U8
6€1
8€1
LET
9€1
ger
el
€€l
¢l
1€l
0oct
6C1L
8Tl

Ie1S-0 %

g7ILVLS % STnpow pus

de1l pus
TeubIs pus
AI9A9 pus

juosaad pus
1 1TX® {ZIX 1Tu® {e10T 1TWS Op ® ¥Sed
L 1txe () (gano Tred {IIX 1Twa {e10T 1ITWD Op F °Sed

1uesaxd

op IOT1 AIDAd

B10T DILTPIUMT USYM
<@b> usyMm %

ut ebauwo ‘elor

iTey
puadsns %
puadsns
feydre 11w
‘eydre TeubTs
ut [dexl

SUOT1de AI1UJUO Ou %
fO (Ogano sanpsdoad

fZ1x ‘11X 1ndino
‘3 ‘s indurt
*gTALVLS dTnpou

V ALVIS % @Tnpow pud

dexl pus
Teub1s pus
AI9n9 pud

1uesaad pus
L 1txo {(QQvaino Tred {ZIX 1Twe {e10T 1TWD Op ° °9SEd
I 31x2 () QVino JTed ITIX 1TwS :elOT 1TWS Op F °9Sed

Juasaad

op YOT1 AIoAd

©10T 91BIPOUMT USUM
<@b> uaym %

ut ebosuwo ‘elot

1Tey
puadsns %
puadsns
‘eydre 11w
‘eydre Teubts
ut [dexl

yaqs
9L
ras
¥l
€L
wl
1<t
0ct
611
ST
LI1
911
SIL
1418
(188
[418
1381
01T
601
801
01
901
<01
01
€01
01
101
00T
66
86
L6
96
6
¥6
€6
6
16
06
68
88
L8
98
<8
78

163

A.3. Control Flow Mapping-Stage One (Esterel)

degl pus
TeubIs pus
AI9Ad pus
1uesaad pus
I 119 (O (QdIino Tred {IIX 1TuWe :{el10T 1TUW® Op F °9Sed
Juasaxd
op D11 AI3As
[
©10T 91ETPIUMT UM
<@b> ueym %
iTey
pusdsns %
puadsns
‘feydre 11we
ut ebowo ‘eror ‘eydre Teubrs
ut I dexl
{qussaad pue
009737 Z7H09d H0¥d T2 H04d D0Yd JUT TTeD Op F 3sed
Juasaad
SUOT1De AIlUjuo %
0030 ‘OOqTaa 7 H0dd H0Yd A Z H0¥d H0Yd duT Sanpsdoxd
{11 1ndino
‘¥ andut
{dTHLVIS °Tnpou

A A NOILVTTALSNOD % STnpow pus
Teubts pua
dooT pus
dexl pus
paydeaI J9AdU % 1TeY
{1uesaad pus
TeubIs pus
1ussaad pus T 1TX9 9sTe eydle 1ussaad
‘[11x /reumeb Teubrs] J4TALVLS ung
feydre 11we
ut eydie Teubis
uoyl zeuwreb jusssad
A7ALVIS %
f1uesaad pus
Teub1s pus
1uesaad pus T 1TIX® 9sTo eydre 1ussaad
‘(11X /zeuwref TeubTs] I ALVLS una
feydre 11w
ut eydre TeubIs

65¢C
86¢
L5C
95¢
o1
1 4°1
€9¢
°se
15¢
0S¢
6vC
87T
L¥C
9vC
Sve
e
74
e
1874
0¥¢
6€C
8¢€T
A4
9¢€¢
geC
PeT
€€T
€T
554
0ee
6CC
8¢t
LTC
9cc
144
e
€CC
[444
1cC
0ce
61¢C
81¢
L1T
91¢

uayl Teumreb lussaad
dALVIS %
ut 7 dexl
doot
dooTutew %
91e1S [ETITUT 1JIe1S % :Teumreb 1TwD
F1TUT %
ut zeumeb ‘jeumreb Teubts
ndino ou %
‘¥ indut
$ATITNOILVTTALSNOD STnpouw
@ ALVLS % STnpow pus
dexy pus
TeubIs pus
AI9A9 pus

1uesaad pus
1 131txe {QO@no T1ed O OFxd [Ted {ITX 1Twe {e10T 1TWS Op @ dSEdD
1uesaad
op 3OT1 AIsaAd
[
©10T 91BTPAUMT USYM
<@b> usym %
1Tey
s91elisqns Teriusnbas 9% 14 A NOILVITALSNOD unt
puadsns %
pusdsns
feydre 11w
ut eboauwo ‘eror ‘eydre TeubTs
ut [dexl
SUOT1de AI1UJUO OU %
fO0O@no ‘O Odad sanpesdoad
‘11X 1ndino
‘F ‘e andur
*@TALVLS dTnpow

DTA"NOILVTTALSNOD % dTnpou pus
Teub1s pus
dooT pus

dexl pus
peyDeaI JI9AdU % 1TeY
f1uesaad pus
TeubTs pus

SIe
j4%4
€1C
[4%4
112
01¢
60C
80T
0T
90T
<0z
¥0T
€0T
[4\r4
10T
00T
661
861
261
961
g6l
¥61
€61
6l
161
061
681
881
/81
981
81
781
€81
81
181
081
641
8.1

9L1
<L
VL1
€L
[7A8

Appendix A. OSM Code Generation

164

FTpuS#

f()Vino proA uIslxe

Vino yopuyT#

QINIAEQ VINO™ FOPUFT#

FTpus#

FTpus#

fOVUur proA WIL1Xe

VUt FopuyT#

QANIJEQ VUT™ FOPUFT#
SNOILINIAAA dINAID0dd ON~ FopuFT#
SNOILINIAAQ NJILIXH ON~ FOPuyT#

/» SNOILVIVIDIA NJILXT /

WU 3S93,, pnIouT#

_”..

FIpuo#

(0(xTeU2)) TINN SUTFOpP#

TION FOPUFT#

FIpud#

<Y*OTIpiIS> opnidut#

NOILOV HDVIL FOPFT#

(Q):@ea(v)) (O9‘V)ANOD™ durFap#
FIpud#

18 NATILS dUTIFop#

NATILS FOpuFt#

/x SNOILVYVTIDAA AYVITIXOV -/

/% HAON ANIINI - 50¥d d1VLS SNOILVNDE @AI¥OS 40 AA0D D : 2I3SS /

29
19
09
65
8¢S
L8
98
qs
i)
€S
s}

0s

6V
id

6
8
L
9
S
i
€
<
1

J9ldwo) [2191s3 ayy Jo INdINO TV

(D) om| abeis—buidde\ moj4 |[onU0D 'V

DTALVIS % STnpow pud
dexl pus
Teub1s pus
AI9A0 pud

£0€
90€
S0¢
P0¢

1uesaad pus
I 1TX9 {ITIX 1Tue® (10T 1TIWS Op ® dSed
1ussaad
op D11 AI9Ad
[
©10T 91BTPAUMIT USYM
<@b> uoym %
TRy
puadsns %
puadsns
feydre 11w
ut eboauwo ‘eror ‘eydre TeubTS
ut [dexl
SUOT1De AIUjuo ou %
SUOT1BJIETD9P UOTIDUNF OU %
{11x 1ndino
‘{9 Indut

*DTALYLS @Tnpow

ATALYIS % dTnpow pud

dexl pus
TeubTs pus
AI9n9 pud
1uesaad pus
L 11¥9 () (0274 @ Z7H0¥d H0dd e 4 @ ¢7H0Yd H0O¥d”dIno TTed
TTX 1TWO (B1OT 1TWS Op F 9Sed
1uesaad
op IDOT1 AI9A®
[
©10T 91ETPLUMIT USYM
<@b> uaym %
1Tey
puadsns %
puadsns
‘eydre 1Twe
ut ebouwo ‘eiror ‘eydre Teubts
ut [dexl
SUOT1De AI1UJUO OU %
0O 0>747aZ7H0¥d H0dd B A~ @ ¢ H0¥d DO¥d 4Ino aanpadoxd
‘11X 1ndino
‘¥ Indut

*ATALVLS STnpow

dTALVILS % STnpow pud

€0¢€
e
10€
00€
66C
86C
L6T
96C
S6¢
(4
€6C
¢6C
16T
06C
68C
88¢
/8¢
98¢
q8¢
¥8¢
€8¢
[4:14
18C
08¢
64T
8/¢C
LLT
9LT
SLT
774
€LT
(774
142
042
69T
89¢
£9T
99¢
99T
¥9¢
€9¢
29¢
19¢
09T

165

A.4. Control Flow Mapping-Stage Two (C)

Q3ad
\ TIV D0dd ILVIS ~ SuIFop#

Qzour
\ 0TV D0dd ALVIS Duryap#
QOT1our
\ 6V D04d ALVIS ~ SurFep#
QOgano
\ 8V D04d ALVIS ™~ SurFap#
Qvano
\ ZV7D0dd dLVLIS ~ dUTIFap#
Qvano
\ 9V D0dd ALVIS UurFop#
Qvur

\ SV D04d ALVIS ~ SUuTFap#
/+ STIVD TINAII0Ad =/

9sTeF” = TA™O0Yd ALVIS
\ ¥V D0dd ILVLIS ~ SUTFap#
9sTeF” = QATH0Yd ALVIS
\ €V D04d ALVIS SUuTFop#

/% SINIWNOISSV i/

TA™504d ILVIS
\ 2V D04d ALVIS ~ ourFop#
OA™D0dd ALVIS
\ TV D0d4d ALVIS UurFap#

+ SISEZL TVNDIS INIASHYd =/

{
‘eNI1T = TATHO¥d ALVIS
} O ¥ I7504d73LViS proa
{
19NI1T = QATHOVd ALVIS
} O ®7I™D04d ILVIS pTOA

/+ SNOILONNA INdNI =/

‘TATH04d ILVIS™ Uueafooq DTiels

‘9ATO0Yd HIVIS™~ ueaooq JTielS

/+ NOILVOOTIV X¥OWEW =/

0ST
6v1
8¥1
Lyl
9L
e148
iy
€vl
ol

[Ui8
6¢€1
8€1
pAA
9€1
qer
el
€€l
€l

0ct
6C1L
8¢l
LTL
9C1
o4
el
€cl
L
1t
48
611
811
11
911l
St
vil
€l
(418
1499
011
601
801
201

FTpus#

FIpus#

FIpuS#

FIpus#

(0274 a77H09dH0Yd BT AT A 2 H0dd H0Ud 4IN0 PTOA UIDIXD
0747 Z°50dd D0dd ® 4 @ 7 H0¥d H0dd 4INO FIPUFT#
FTpus#

FIpus#

£()J1n0 PTOA UIDIXD

JINO JOPUFT#

JINIJIA IN0~ FOPUFT#

FTpus#

FIpus#
Qq7da77908d H09d B @ ¢7H0Yd HOYd AUT PTOA UISIXD
q737d Z27509d D0¥d B A Z7H0¥d H0dd HUT FOpuyT#
@ANIAIA 93 @ 2 O0d8d D0¥d ® A Z 50¥d H0dd JUT FOPUFT#
FIpuS#

FIpuS#

‘(O@ino pIoA uILlx?

dino JyopujyT#

@QINIJEQ qINO~ FOpuFT#

FIpus#

FTpus#

fQdad proA uI91Xa3

qId FOpuyTH

QANIJAQ FId™ FOPUFT#

FIpuS#

FTpus#

£()ZOUT pIOA UIIXD

ZOUT JFOPUFT#

QANTIAEQ ZOUT™ FOpuFT#

FIpuS#

FIpus#

fO1DUT pIOA UIS1IXd

TOUT JFOpUuFT#

QENTIAEQ TOUT™ FOpUuFT#

FTpus#

FIpus#

f()gano proAa uIsl1x?

gINno JopuyT#

QINIAIQ 9IN0~ FOPUFT#

FIpus#

901
S0t
01
€01
01
101
00t
66
86
L6
96
S6
¥6
€6
6
16
06
68
88
L8
98
<8
¥8
€8
a8
18
08
6L
8L
LL
9L
SL
174
€L
(24
|/
0
69
89
L9
99
9
¥9
€9

Appendix A. OSM Code Generation

166

$([014™0¥d ILVIS) iw®[2]14 D0dd ALVIS™ = [8Z]d
t[z1la = [z2]3

t[sezld = [92]4

{

YTV O0dd ILVIS

} ([szld) 3T
t[v2]awe(Zy D0dd ALVIS

) = [szla

$[ST1Y D0dd A1vIS™ ®el0oz]d = [vzld
‘[zzld = [€2]4

{

{STV H04d ILVIS

} ([zzld) 3t

$(Z¥™O04d ILVIS

dyeelizld = [zzla
t[8114™H0dd ALVIS wp[oz]d = [12]d
(et iweletla = [0z]d
$([01¥™odd™aIvIS D iwe[81]1d = [61]d

$Lz1lal 1 0stlal [[2T]y D0dd ALviS— = [81]d
tfotlal | [ST]1Y D0dd ALVIS™ = [Z1]d
fLET]d™D0dd ALVLIS | | [FT]1¥ D0dd ALVIS = [91]d
[pTlal | [8T]14 D0dd ALVIS™ = [ST]d
$[9114™D0dd ALVLIS | | [Z1]147904d ALVIS™ = [¥1]d
‘[z1ld = [€1]4

{

{ZIVO0dd ILVIS

} ([z1lDd) 3t

{

f1TVO04d ILVIS

} (fztld 3t
LTT]1a99 (1Y D0dd dIVLIS

) = [z1]3

$([01¥ 50¥d dALVLS) i®?[11]1d4 50¥d d1ViS™ = [11]d
‘[6]a = [01]2

‘[01d4 o0¥d aL1visS™ || [£]13 = [6]3

‘[z13 = [8]13

$(IV™O04d ILVIS

deplold = [214
$([014™H0dd ILVLIS) imp[12]¥4 D0dd ALVLIS = [9]d
‘[v1a = [s]4

‘[014™D0dd ALVLIS ™ | I [€1d = [¥1d

$(Z¥™O04d ILVIS

deelzla = [€]a
$([014™D0dd ALVLIS) imR[F]1¥ D0dd ALVLIS = [Z]d

8¢C
yA%
9¢eC
§€C
Pee
€€C
€T

0€e
6CC
8¢¢
yxeq
9¢¢
144
e
€Ce
e

0ce
61¢C
81¢
L1T
91¢
%4
j4%4
€le
(4%
11¢
01¢
60C
80T
£0T
90T
S0C
(4
€0C
e

002
661
861
61
961
g6l

$[014™H0¥d ALVIS T = [1]d
t(Zv O0dd ALVIS
) = [0]d

£[901]d AJALTLIZDSS™~ DT3ieis

» STTIVINYA AIVITIXOV =/
} O 5044 31IVIS uT

/» ANIONI NOLVHOLOY /

{{ o9sTey” ‘osTey” ‘®sTey” ‘®s[ey” ‘@sTej” ‘asTeF ‘asTey”
‘9STeJ~ ‘9STeJ” ‘©STeJ ‘SSTeF ‘SSTeF” ‘osTey” ‘osTey”
‘9sSTeJ” ‘®sTe” ‘@sTeJ ‘asTeJ ‘oSTeJ” ‘osSTey” ‘osTey”

‘oana1™} = [zz]¥H0¥d ALVIS™ HAdALLIG DSS™~ DOT1els

/» STTIVIAVA YIISIDAY =/
FIpuS#

‘4dALTLISDSS™ Jeyd FapadAl
QINI4Q IdAL LIS DSS ™ FOPUFT#

/% ddAL LI9 ATIYNIIAQTY +/

{

{9sTey” = TA™D04d dIVIS

19sTeF” = QA D0 ALVIS

} O Indur™319s217H0¥d ILVLIS ~ PTIOA DTIR1S

/» (STTIL-NOILDV ALVIS) NOLVHOLAY s/

{

(9) urniax
} O sosxe~Fo Joqunu HOYd AIVIS Ut

/x DJIXd A0 YAGWAN SNININIAA SNOILIDNNA =/
(0274 @ 77904d H0¥d ©~ 4~ a Z D0dd H0Yd 4Ino
\ STV D04d ALVIS™~ SUTFop#

Odano

\ $IV D0dd ALVIS Suryap#

Oq737a 27504d H0dd " ®~a 2 H0¥d H0dd Ut

\ €1V DO4d dALVIS Suryop#

QOaino

\ ZIV D04d dLVIS ~ Suryop#

761
€61
61
161
061
681
881
/81
981
a8t
¥81
€81
8L
181
08T
6L1
841
LL1
9LT
SLL
jZA8
€L
[7A8
121
041
691
891
£L91
991
91
91
€91
91
191
091
651
861
LS1
981
qst
¥a1
€ql
(438
161

167

A.4. Control Flow Mapping-Stage Two (C)

fles]awe(lesIdi
*[09]3l1[99]3

[zs13
[99]13

$((Zv 504d ALVIS
D iwe[esld = [991d
f[2]awpleolawe(z]al I [S9]d) = [£]4

$[91a| | (CL12]¥ D0dd ALVIS) i®®[$911)

t[r9ldl I [z9lal | (CLe9ld) iwe[¥91d)
t[12]¥H0dd 41vIS™ | [[€9]1d

f[61]14 D0dd ALVLIS | | [02]¥ D04d ALVIS
1[02]¥H0ddALVLS T R [2]a9®[29]d

$([6T]1Y D0dd ALVLS o[2]1a®®9[19]11)

[1C[6T1d ™ D0dd dLVLS™ ®®([2]1A) iwel19]a) | | (C[2]1T) iww[z9]d)
S([01¥™D0¥d™dIVLS™) i®?[02]14 D0¥d AIVIS
$([0]4™D0dd ALVLIS) i??[6T]Y D0dd ALVIS

[s91d
[€913
[¥914
[£9]4
[29]13

[19]13
[2914
[1913

IV O0dd ALYIS
))iwe[9ld = [9]d

{

'€TV D0dd ALVIS
} ([o9]d) 3T
ALYIS

£ (Z¥™H04d
)pRlesld
t[zslaweles]d
t[ezslall[8sld
‘[zzlal | [8s]a
t([zrla) iwelss]d
$([014™D0dd ALVLIS) i?[0T]Y DOAd ALYIS
‘[z1]a
“wm._”mu..._.l
c[szla
‘[esla
‘[ovlal | [ev]d
flzz]awelvilawe(Lzzlal | [sT1E)
[12lal | (C[8T1147950dd dLVLIS) imR[ST1d)
$[12ddl 1 (8114 D04 d1VLS™ #9611
$((Zv™04d ™
Niwelrezld
tLrslal i teslal | (vl iwelsTld
S([9119™®0dd a1vis™ ®e([61]a| | ([Zz]lawe[151)))
[1CI9T1d™0dd dLvLS™ ®9([zz]D) iwe[1s1) | | (([zzlD) iwelev1d)
$[9T]1¥ H0dd AIVIS T ®R[0z]d
(L2119 D0dd ALVLS wplzz]awelev]d) | | ([21147504d dLVIS™ ®9[61]11)
(211 H0ddAIVIS T R [0z]d
t[szlawelotlawe(lszlal [[£113)
[p2]al | (CLSTIYD0dd ALVLIS) ine[Z1]1d)

[09]13
[851d
[zs]14
[6513
[851d
[28]3
[9514
[ss]a
[¥s1d
[es]a
[zs14
[6¥1d
[s1]13
[12]4

HIVLIS

[12]a
[v114

[1514
[1s]3
[05]14
[6¥]a
[9v1d
[21]3

9ce
6ze
e
€Ce
e

(43
61¢
81¢
L1E
91E
S1e
1453
€1e
cle
11€
01e
60€
80¢
£0€
90€
S0€
P0¢
€0¢
e

00€
66¢
86C
L6C
96C
S6¢C
v6C
€6C
6C

06C
68¢C
88C
L8C
98¢
S8¢C
8¢
€8¢

[p2lal | ([ST1Y D0dd a1vIS™ ®ol61]d) = [vzld

vl a9 ((ZV D0dd dIVIS

i = [y2la

c[8vlal | [zvlal | CClotla)iwelzT]a) = [91]F
S(LET]™™0dd 41VLS™ R (([szlawe[8v]a) | [[6113))

[1CL€T14™D0dd™ ILVLIS™ ®R([sz1D) iwp[8¥]1a) | | (C[sZID ive[9v]a) = [8¥1d

t[e1]d D0dd ALVLIS wplez]d = [8¥]d

S([v114™D08d ALVLIS ®®[S2]1a®9[9%13) | | ([¥11¥ D04d 41VIS™ ®®[6113) = [Zv13

‘[zrlaweletld = [61]d

P11 O0dd IIVLIS T 9 [0z]d = [9¥]d

t[szla = [syla

‘esTey” = [¥¥]d

t[zzla = [ev]a

‘osTey” = [zvld

*[213 = [1%]9

‘esTey” = [o¥]d

‘osTey” = [6€]d

IV H04d ALVIS

) = [8¢€la
t[pela = [z€]3
t[selq = [9€]a

c[pelal | [e]a = [s€1d
{

$/V7D04d IIVIS T

} ([peld) It

IV ™O04d ALVIS
deelzla = [vela
$((Zv™O04d ALVIS
D)ivelzla = [2]a

{

{9V D0 ILVIS

} ([e]D) 3T

‘[1ela = [g€]a
tf1ela = [zela
‘[oclal I [ez]a = [1€]d
S(IV7904d ALVIS
deeleeld = [0€]d
t((ZVvO0dd AIVIS
))iwelgeld = [8zld
{

{8V O0Md ALVIS

} ([ez]d) It
f(ZV7H0dd ALVIS
dwelezla = [6z2]d

8¢
18¢
08¢
64T
744
LLT
9/T
SLT
774
€LT
(714
142
042
69¢C
89¢
29T
99¢
99T
¥9¢
€9¢
29¢
19¢
09¢
65C
86T
LST
95¢
ei°r4
LT
€5¢
ST
19C
0S¢
6¥C
8¥¢C
Lve
9¥¢
S¥e
44
€¥C
[4i¢4
1544
0¥¢
6£C

Appendix A. OSM Code Generation

168

))iwe[96]d

t[oelawel1eld
$([014™D0dd ALVLS) in?[T1]¥ D0dd dALVLIS
‘foelaee([1e]D) i

([peld) ivelo6]d

‘[¥6ld

[1€]13
[9614

[zo1]3
(1113

[96]14
[v61d

‘[66]3 = [00T13
[plal | (CLo]y D0dd ALVIS) ive[s6ld) = [66]1d

{

1SV TD0¥d HLVLIS
} (vlD 3T
*[0]4 90¥d ILVIS™ ®®[s6]d = [¥1d

‘[selanev]d

*[z614

t[velawelo6ld

c[selawe (vl i
t[014H0dd ALVIS | | [¥6]1d
‘[selal I [ogla
c[telawe(lyelal | [eldl | [eela)RRIsc]d
f[21al | (C[y]dD0dd ALVIS) iwe[z6]d)

[s61d
[8614
[£613
[9614
[s61d
[v61d
[seld
[€613

IV H0dd ALVIS
Miwelzla = [Z]a

‘[681dl 1 [061d] | (([T6]a) iw®[26]d)
f[¥19D0dd ALVIS | | [16]1d

*[2]¥ D0¥d ALVIS ™ | | [€1947D0¥d d1VIS
t[e1¥ D0dd ALVLIST ®Rlo6]avelscld

(L2194 ™D0dd I1VLS ™ 9 l68]amR[Se]d)

|1 ([2]¥™»0d9d a1vLs™ #®le8]awe([se]ld) i) || ([o6]awe([Se]d) i)
$([014™D08d ILVLIS) imp[£]1d 504d ALVIS
$([014™H08d ALVLIS) im®[2]d 90dd ALVLIS
t[oglawe([oclal | [62]al | [88]d)wpl1e]a
$[8213| | (C[21¥4™D08d AIVIS) iwe[/8]11)
t[¥8lal I [s8ldl | (CL98]a) iww[28]d)
t[214D0dd ALVIS™ | | [98]4
$[S194™O08d ILVLIS ™ | | [9]1d4 7 D0dd JIVIS
t[91¥ H0dd ALVIS T R[selawRl1c]d
$([S14™D0dd ALVLIS we[¥elawe[1£]1d)
[1C[STa™0dd d1VLS™ e [velawe([T€1a) i) | | (Ls8law®([TE1A) i)
$([014™508d ALVLS) im®[91¥ 50dd ALVLIS
P([01Y™D0Yd ALVIS) i®e[S]1¥ D0dd ALVIS
$((1Y™904d

))iwegzld

f[sela

"wm._”mmnl

a4l

[1614
[z613
[1614
[0613

[6814
[0613
[6814
[o€]a
[881d
[9814
[£813
[98]4
[s81d

[v81d
[s81d
[v81d

VIS

[8z]d
[€81d
[z8ld

iy
€y
iy
11y
Uk
60%
807
L0V
90%
S0¥
0¥
€07
oy

007
66€
86€
L6€
96€
S6¢
P6e
€6
c6e

06€
68¢
88¢
£8€
98¢
G8¢
8¢
€8¢
8¢

08¢
6LE
8LE
LLE
9LE
SLE
viE
€LE
e

‘[1ela = [1813

‘asTey” = [08]d

‘[891a = [6/]4

‘0213 = [8/]a

$([014™D0dd ALVLIS) ime[6]1d D0dd ALVLIS = [//]4

t(lzrlD iwwle9la = [69]1d

‘[oz]la = [ez]a

{[891a = [9/]a

‘[6S1411[8913 = [651d

‘[8s1all[89]a = [8s]d

£[9913|1[sz1a = [991d

tfezlal|[sz]a = [s214

t((2V O0dd AIVIS

))iwe[89]d = [s14

t[oo]awe (211D i = [¥2]14

tfovlal | [ovlal | [9v1al | [21]a = [9¥]1d

{

CEIVTO0dd ALVIS T

} ([g2]D) 3T

t(Zv O0dd ALVIS

dep[89]d = [€2]d

1[2913 = [£913

t[29]13 = [z/]3

[29lawe(lzT]d)i = [6]d

‘levlal | levlal | [ev1al | [21]1a = [6¥]1d

‘[89]aweleld = [89]d

‘0213 = [12]a

‘[zrlawele9]a = [02]14

‘[89laww(l6la)i = [6914

f[0]4D0dd ALVLIS | | [02]d = [89]d

“[z1131 10212 = [02]13

tlzrlaweletlase(lzrlal I [91]1a) = [Z1]13

STty ®0dd ALviS) inelsTtlD | 1 [11]1d = [91]4

SLTT]aRe (1Y 904d ILVLIS

)i = [11]4

s[ptlal i fzslal i ccietlayivelstla) = [811F

L1114 D0dd ALvLIS— || [81]d = [S1]d

t[811a| | [0T]Y DO¥d ALVIS™ = [8T1]d

t[0T14 D0dd ALVLIS welzTlawe[2s]d = [2514
‘[99lall[z91alI[zs]al I [etlal | ([¥T]1a®®ISTIA

peClrslal i fos1al | [tzla)) [I ClotlawelztlaneCl8vlal | 21l | [¥2]1a)) = [¥114

$([z119»0dd ALVLIS w2611 | | ([Z114 D04d ALVIS™ #p[ez]d) = [61]1d

“([szlDimplzsla = [zsla

t[szlawelzsla = [£9]14

04g
69¢
89¢
L9¢
99¢
S9€
¥9¢
£€9¢
9¢
19¢
09¢
64€
8GE
L5¢
98¢
et
yae
€4¢
se
1s€
0sg
6¥€
Eig)
L¥E
Eig)
sve
e
€ve
e
1¥e
ove
6€€
8€E
LEE
9ee
see
yee
€ee
(433
1ee
0ee
62¢
8¢
£Te

169

A.4. Control Flow Mapping-Stage Two (C)

$¥ITATOH0Yd ALVIS T {
{1:129 1ut paubIsun

f1:29 uT paubrsun
f1:7Y¥ Ut paubrsun
f1:0¥ T paubrsun

} SYALSIDHAY 1donI1S

/x SATIVIIVA JALSIOAA =/

Aouaiol3 Alows iy

661
861
61

-]

841
LLT
9.1
SLL
VL1
€L1

10} paziwndo ndinQ Jajidwod-|pI8is3 Zv'V

{

{9 uaInioa
fQandurT1esaa T H0Yd ALVIS
t9sTey” = [12]1¥47D0dd dIVIS

H..

‘9sTey” = [Z]¥ D0¥d ALVIS
‘9sTey” = [1]¥ D0¥d ALVIS
nIyT = [9]¥ H0Yd ALVIST

} O 18sex HOYd ALVLIS ur

/» LASTI NOLVHOLNY s/

{

H _”mwu_ J uinloax

fQandurT1esea H0Yd ALVIS

(Lolawe (1@ i) |1 [0]13 = [12]¥ DO¥d ALVIS
‘[zolawe([213)i = [0Z1¥ D0¥d dIVIS
SCL9lawe (1T i) 1100213 = [61147D0¥d dIVIS
SClrzdawe(ler]a) id |1 [6]d = [8114 D0¥d ALYIS
c[eslame(lev]a)i = [£1147D0dd dIVIS
SCLrslawe(levld) i) | 1614 = [9T1¥ DOYd ALVIS
([vedawe([9v]D) i) | 1 [¥21al 105213 = [ST1¥ DO¥d AIVIS
[2p]awe([9v]d) i = [P114D08d ALVLIS
S([8v]awe([9v1D i) | |1 [¥21al 105213 = [€11¥ D0¥d AIVIS
SCLzslase izt i) I Cletlawe([211d) i) = [2114 D04d ALVLIS
SCLTTlase(C[z11D) i) 1108913 = [TT]1¥ D0 ALVIS

108
00s
66¥
867

6LY
8%
LLY
9L¥
Ly
VLY
€Ly
Uy
|¥414
0¥
697
89¥%
L9%
99%
9%
iicid
€97
97
197
09%
65

Lzs1ae (11D =
t[69]1dl1[2213 =
‘[relalI[so1la =
t([8zlame(LocldM i |1 [6]a =
t[eglawe(loc]Di =
C([yelawe(loc]D i) || [26]1a =
S(LZdase(Lseldid |1 [661d =
‘[oe]awR(lselDi =
t([e8lame(Lseld i) || [66]a =
‘[tetlal|[zetla =

‘ wm._”mwl =

c(Leolal I [og]a)®e(Lealal | CCLSTIA im®[¥9la))®R([98]1a] 1 (([z61d)
‘s

[0T]¥ D0dd AIVIS
[6]47504d ALVIS
[8]1¥4 ™ D0dd ALVIS
[2147904d ALVLIS
[9]¥ ™ D0dd ALVIS
[S1¥4™D0dd ALVIS
[¥#147504d ALVLIS
[€1¥4™D0dd ALVIS
[2]47504d ALVIS
[1]¥4 ™ 504d ALVIS
[0147504d ALVIS

‘esTey” = [s1]3
‘[s61d = [S61d
‘[z6]a = [98]4
‘[9613 = [9614

i?e[v9]d)) = [€9]a

114l 1[z6la = [¥9]4

f[stlal | #9114l | [6]4 Dodd dLVIS— = [S1]1d
‘[zelal | [z813] I [81¥ D0dd ALVIS | | [T]¥ DOdd ALVIS™ = [26]1d

S([89lawelszlawe([89lal [[s21a) |1 [0213] 1 [691a] 122141 1CLE
®9([19]al [[zolal [l || ([8T1aweloTlEeR([¥T1dl | [£5]
s[relalleelal | [ze61al I [1ot]al | [sotlal | [zetlal | ([9

w9 ([pelal [[s8lal[[82]a)) || ([16laveleelane(L681d] | [06

9] [S9ld
ZlIt11a)) = [€9]1F
8]aw[88]1d
1911 [219)) = [9814

S([01¥™0¥d AIVIS™) i®R[8]1¥ DO¥d AIVIS™ = [S0T1]F

t[eotlal | [v0

114l [teld = [1€]a
HQQA J0x: F c AR AR
iwelield = [1€]1d
{

16V O0dd ALVIS

} (8st1e¥) IT

{

fOTV O0dd ALVIS
} (@st1e¥T) FT

{

{6V DOdd ILVIS

} ([ve1]d) 3T

£ (ZvO0dd ALVIS
dweloela = [vo1]d
{

fOTY O04d ALVIS
} ([eot]d) FT
f(IV7904d ALVIS
deplield = [€01]F
$((Zv™H04d ALVIS

857
LS¥
9s¥
oo 4
i
€S
[4°i4
9%
0st
6¥¥
Rind
LYy
Eiud
iid
444
344
f4ad
1wy
(U4
(S99
8¢€¥
LEY
9e¥
Sev
1494
394
(494
1554
€y
62
8Tr
Ly
9Ty
era4
g4
a4
fed4
1%
(44
617
81Y
LY
91Y
a1y

Appendix A. OSM Code Generation

170

$(PTY7 9T D0Ed ALVIS
PRGZAAITARROYA " AITA) | | (PTY YITY DOUd ALVIS™ ®96TE IITq) = yA d11Iq
TZTATAITYRRETA AT = 6TA"FLTIq
PTY AT O0Ud ALVLIST ®R0Zd d3Tq = 9%d"II1Iq
16zd°91Tq = SPATHITq
‘9sTey” = YA AITq
1Zzd7d1Tq = €pATAITq
‘9sTey” = Zyd d1Tq
A e e B e N ac e R ¢
‘9sTey” = QvA IITq
‘9sTey” = 6€d°411q
$(IVO04d IIVIS™) = 8€d d3Tq
pEATAIT = L€A7AATq
1GEATAIT = 9€A"HITq
{peTTIITq| | €T°TITq = SETTHITY
{
£/V7O0d4d ILVIS
} (pea-dITq) IT
$(IVO04d ILVIS™)®9zd d31Tq = $ed d31Tq
$((ZV™H04d ALVIS) ivezd d11q = ZA"d11q
{
f9YVTO0d ALVIS
} (g3 A11q) FT
'T€47IIT = €€4791Tq
‘T€A°IITq = ZEA AT
t0€d7A1Tq| |62d7A2Tq = T€A AT
S(IV™904d ALVIS)®98ZA dA1Tq = Q€A dI1Iq
$((ZvO0dd ALVIS)) i®®8Zd d31q = 8z I11q
{
{8V O0dd ALVIS
} (6za 41T IT
$(ZV7H0dd ALVIS T)®®8ZA dA1Tq = 624 d1I1Iq
$(OU IITAO0Ud ALVLIS) iR/ YT D0 ILVIS™~ = 8zd d3Tq
121479319 = £Zd7AATq
16zd°91Tq = 97d"dITq
{
'PIVO0dd ALVIS
} (sza A1) IT

THZa T AITORR(ZY T HONd AIVIST) = SZd"dITIq
1STY"¥ITq DO ALVIS™ 9024 d1Tq = $ZA"d1Tq
1gTAIITq = €2ATALIq

{

1GIVTO0dd ALVIS
} (zza gt 3T

98¢
G8¢
8¢
€8¢
8¢

08¢
6L
8LE
LLE
9LE
GLE
vie
€LE
e
1€
0L€
69¢
89¢
£9¢
99¢
$9¢
9¢
€9¢
9¢
19¢
09¢
64€
85¢
L8€
98¢
6ae
Pee
€4
se
16€
0s€
6v¢
8¢
L¥e
Ive
Sve
e
€ve

$(ZV7O0Md ALVLIS)®RIZA d3Tq = ZZd HITq

{QTY YITq OOUd ALVLIS™ »R0Zd d3Tq = T2 I31q
(21T AT iwR6TA IITq = QZA I

$(OU YITq O0Ad ALYIS™) iwe8Td d31Tq = 614 IITq

YTA7A3T9] [STA AT | 2T 43 Tq D0Ed ALVIS™ = 8TA"dI1Iq
19T AITq| |STY YT HOEd AIVIS™ = Z1d°d1Tq

LETYYITA DO ALVIS | [$TY ¥3ITq™O0Md ILVIS™~ = 913 d31Iq
PTATIIT| | 8TY YT HOEd dIVIS™ = STA"IITq

f9TY YITY DO ALVIS | [ZT¥ ¥3Td™O0Md ILVIS™ = $1d 3319
1Z1d°31Tq = €147 dITq

{

£ZIVTO04d ALVIS

} (zra-drtq) gt

{

STV O04d ALVIS

} (zratditq) It

STTIAITORR(IY D04 ALVIS™) = ZId°d311q

$(OU ¥ITA O0Ud ALVLIS) i®PT T ¥3ITq H0¥d ILVIS™ = T1d°d11q
'64°d1Tq = QIA AITIq

LU TYITq T O0Ad ALYIS T | 237 d31q = 63" dITq

12479119 = 84°A11Iq

$(IV D0 dLVIS™)®99d d11q = /4 d311q

$(OU YITq O0Ad ALYIS) iR ¥ITq H0Yd ALVIS — = 91°d31q
'pATAITq = GHTALIq

LU TYITq O0Ad ALYIS T | [€3°d31q = $A"II1q
$(Z¥7O04d IIVIS™)®PZd d1Tq = €4 411q

£(OU YT DO ALVIS) iwRPd ¥ITqTO0Nd ALVIS™~ = zd d1Iq
(U YITTOOUd ALYIS T = Td°d31q

$(ZVO0dd dIVIST) = 0d°I11q

‘11q {
{1:60Td uT paubrsun
‘1:907d 2UT paubTsun

f1:2d UT paubIsun
f1:7d utr paubrsun
f1:94 UT paubIsun

} 310nI31s d11ElS

/% STTEVINVA AMVITIXOV +/
} O50dd dLVIS T

/» HANIONZ NOLVWOLOV =/

e
e
ove
6€€
8€¢
LEE
9ee
gee
yee
€ee
(433
1ee
oee
6¢
8¢
£T€
9e
6e
¥ee
€T¢
(443
1ce
0ze
61¢
81¢
L1E
91€
Sle
yie
€le
[453
11¢
01e

80T
20T
90T
S0C
¥0C
€0C
0T
10
00T

171

A.4. Control Flow Mapping-Stage Two (C)

(92479119 =

$(OU ¥ITATO0Ud ALVLS) i®®6d " YITq D0 ALVIS™ =
$(Z1479119) 99694 "HITq =

f9za d1Iq =

£899°431q =

16S4°d1Tq] |894°A1Tq =

186H HITq| (894" HITq =

1997 H31q| | §24°H3Tq =

fg/d7d1Tq| | §2d7d1Tq =
$((ZV™H04d ALVIS™) im®89d d11q =

1997 AITQRR(LTA AT i =

‘9pd-d1Tq| |9%A ATq| [9FA AITq| [£1H HITq =

LTV D04
} (g3
£ (ZV7O0dd ALVLIS)®9891 d11q =
££99°93119 =
££99°9119 =

T29F T AATYRR(LTA AT |
‘6vd dITq| |6¥d AITq| |6¥E AITq| |LTH HITq =
1897 AITPRET AITY =
f923°931q =
fZ1AAITQRR69d T ATq =
1897 MITYRR(6A AT | =
10U YITqO0Ud ALVIST | |0Zd dITq =
121373319 2373319 =
1ZTAAITQRRS T AA TR (2T AT [9Td " dATq) =
SCAITE YT O0Yd ALVIS™) i®eSTa d3TQ) | [T13°d31q =
STTAAITORR((TV D0dd ALVIS D)i =
praArTql 2837 d11q] | ((8TA AITA) iRSTH HITQ) =
{1TY°¥3TQ7O0Yd ALVIS | |81d°d31q =
18TA°43Tq| |OTY YITq HOAd ALVIS =
fOTY YITq H0Yd ALVLIS™ ®9ZTd AITAPR/SH " HITq =

199474319 [2944319 | ZSA AITq]| |6TH HITq

[(PTE I3TQRRSTT A3TQRR(1ST 319] |95 I3Tq| | 12" T3T))
[1CoTa " AIToRRLTA A TARR(8FA "AA1Tq| | LPT"AITq| [P2T TITY)) =
$(ZTY 9ITq O0Ud ALVLIS™ #R6TA I3T) | | (ZTY ¥ITq™O0Yd ILVIS #9071 d31q) =
$(SZI AT RS TIITq =
{GZATAITQRRZSA AL =
1ZSE T AITYRR(6SA AT i =
1993°d31q]| |994°d11q =
$((ZV7904d ALVLIS) i998sd d1ITq =

$/A7AITQRREQT T AITQRR (LA AT [S9T " HITQ)
19774319 | ((1Z4°93Tq D0Ad ALVIS) i®®H9d d31q) =

8/417d131q
£/37331q
691741319
0Z1°331q
9/474931q
653179319
8GI"dITq
993171319
G/d7931q
GZ37d31q
y/3°331q
9¥317431q
{

d ALVIS
"IITQ) FT
€247931q
293174319
Z2/d47931q
= 6474119
6¥d"d31q
891" Hd311q
T/374931q
0373319
691731319
891" 331q
0231739319
1373319
914749319
TT3°4931q
8TI d3Tq
STI d3Tq
8TI"d31Tq
£S37431q

P1d°331q
6TI"d31q
ZSd7d3Tq
/9173319
ZSd 43 Tq
991" 331q
993174319
= /373119
G917 d3Tq

Vi
€Ly
Uy

0Ly
697
89¥%
L9%
99%
9%
9%
€97
9%
197
09%
657
85
LSY
95¥
o4
vy
€Sy
[ecig

0S¥
6v¥
iad
VAuid
Elad
g
Ty
544
ra44
1haid
Va4
67
8¢cY
LEY
9¢¥
SeEv
ey
394
a4

119373119 |29 A1 1q| | ((£9"FATQ) i®®Y9d"TITq)

{1247 9ITq O0dd ALYIST | €93 d31q

16T YT DOAd ALVIS™ | |02 Y11 D0Yd ILVIS

£0Z4 ¥ITqTO0Md ALVLS ™ 9®/d A3 TGRRZ9d 1 1q

$(6TY YT D0Yd ALVLS ™ ®9/d AITAPRTOA " A1Tq) | | (6TY YITq DOYd ALVLIS
®R(LA7A1TQ) iRRT9A AT | | ((LT"FITQ) i99Z9T HITq)

$(OU ¥ITA H0Ud ALVLIS) i®R02y Y31 Tq D0dd ILVIS

$(OY AT TH0Ud ALVLS) i®®6TY Y11 H0Yd ILVLIS

€91°431q
y91° 3319
€917431q
¢94°931q

19373319
291749119
193173319

((IV™H0¥d ALVIS™))i®R9d d3Tq = 93" HI1Iq

{

fETV O0Md ALVIS
} (0937 d31q) IT

$(Z¥7H04d ILVLS ™)®98SHa HITq

1254 A1 TqRR6SA A1 Tq

A% M e N R REI8c R R <]

{Zzd 4119 |8sd A1 1Iq

S(ZTA AT iRLSH HATq

10" YATqTH0Yd ALVLIS) iR0Td d1Tq D0dd ALYIS
fZ19°9119

fosTey”

f6zd-d11q

fzsatIrIq

'9pd-d11q] |6¥A dTIq
1ZZATAATQRRYTA A TQRR(Z2A A1 Tq] | ST ITq)
$1zd79319] | ((8TY YITq D0Ad ALVLIS) i®®STd I11q)
112474319 | (8T YITq D0 ALVLS 961 d1Tq)
$((Z¥™904d ILVIS) iwRIzd d11q

11644119 [0S AT | ((PTA FITA) iRSTH AITq)
$(9TY YITY OH0Ed ALVIS

R (6Td 319 | | (22" TITPRRTSA AITA))) | | (9TY dITq D0Yd ALVIS
BR(Z2a 311q) RIS FIT) | | ((Z2T"IITQ) i996YE " IITq)
191U YITq OOAd ALYLIS™ #R0Zd " d31q

(LTY T TO0Ed AIVIS T

PRZTA AITQRR6YE " AITQ) | | (LT YT D0 ALVIS™ 96T T11q)
$LTY YITqTH0Yd ALVLIS T ®R0Zd d11q
$GZATAITQRROTA " AATQRR(SZA AT] | LT A1)

$pzd d3Tq] | (ST YITq D0 ALVIS) i®/Td I31q)
1pza ATq] | (ST YT D0Ad ALYIS™ #96Td I11q)
$pzd-A3TqeR((ZVO0dd IIVIS)i

18y AITq| | 2T A2Tq| | (9T FITA) iRLIA"TITq)
S(ETY AT HOEd AIVIS

PR ((SZA AITARPRYA " TITA) | |6TT AITA)) | | (€TY YT HOUd ALVIS
99(S2d°A1TQ) i998%A " A1TA) | | ((SZA A1) iDRIPH " IIT)
LTI YITq O0Ud ALVIST ®R0Zd I3 1q

094733119
89d I3Tq
¢Sdd3Tq
65373319
8617 431q
£ST7H3Tq
96473319
GG I3ITq
ySdTI31q
€6474931q
¢S I3tq
6vd 3319
STA 9319
121749319
12473319
Y1d7331q

164749319
19d733Tq

0S3° 3319
6vd 3319
9%a" 33119
LT3793Tq
ycd I31q
yZd I31q
914 3319

8Yd d3Tq
8¥17d311q

0€y
6CF
8¢r
LTy
9y
eray
g4
€y
[ed4
12y
(44
61F%
81¥
L1¥
91Y
S1v
1454
3184
[4574
1y
(U4
607
80¥%
L0¥
90%
S0v
0¥
0¥
v
107
00%
66€
86€
L6€
96¢€
S6€
¥6€
€6€
°6¢
16€
06€
68€
88¢
/8¢

Appendix A. OSM Code Generation

172

ST HVIQRR(LTAAITQ) i = 0T YITqO0dd ALVIS

169473119 | £237A1Tq = 64"YITQ D0 ALVIS

{1€4°93T9] | SOTA AT = QY YT DO ALVIS

$(8ZA IITQRR(OET AITA) i) | | £64°T3Tq = /Y ¥ITq™O0Yd ALVIS

168A AITARR(OET " AITQ) i = QY YITY DO ALVIS

(P8 AITORR(OEA AITA) i) | [263°dITq = SY"UITY HOYd ALVIS

(A A TR (SEdTAITA) i) | |66 HITq = HY YITATOHOYd ALVIS

1063 AITYRR(SET AITQ) i = €4 YITq D0 ALVIS

168 AITARR(SET TITA) i) | 1663 TITq = ZY ¥ITq OOYd ALVIS

f1OTA ATq] | 20T 3T = T "YITq DOId ALVIS

{9STeF” = QY ¥ITq DOUd ALVIS

{9sTey” = STA"HITq

1664°d1Tq = S6d AITq

1264°91Tq = 984 dITq

1964°d1Tq = 964°d1Tq
$(€94°411q] | 984 A1 TQ)R(£9d " HITq

[1C(STA"ITQ) iWPF9d " AITA))R (984 " A11q| | ((Z6d HITQ) i®PHP9d " A1TQ)) = €947 A1Tq

fGTA IITq| | Z6T TITq = $9T HITq

{GTA AT 99T dITq| |6¥ ITA DOYd ALVLIS = STA FITIq

£263°9319] |£83°d31q| |84 YITq D0 ALYIS | | TY"YITq™O0Yd IIVIS™~ = 64 I3ITq
$(89d HITQRRS /A AITq®R(894 A1Tq| | S2A HITA)) | |02F"AI1q| |69 HITq
[1223°3319] | (€93 "AITQ®RS9T " AT (194 AT | | Z9d " AITq| |9d " AIT))

[1(8Ta AATAPRITA " AITRR(YTA AATq| |2ST IATq| [TTA"A2TQ)) = €9d°A1Tq
‘T€4°9379] |663°d3Tq| | 26d°d3Tq| | TOTA ITq| |SOTA IITq| 20T TITq
[1983 9319988 " AITQ®R(¥8a " 431q| | S8F " 3Tq| 823" IITQ))

[1 (163 A1TaPRE6H A1TARR (68 d11q| |06 H1Tq| [2d°d2Tq)) = 984 A1Tq

£(OY YITTO0Ud ALYIS) iw®8y " ¥ITq O0Nd ALVIS T~ = SOTI dI1Iq

L€OTA AITq] [HOTA AIT| | TE€A TIT = TE€A TITq

SC(IVTH04d ALVIS)) iRTed " d31q = €A I11q

{

{6V O0d ALVIS

} (@s1BF7) IT

{

fOTY O0dd ILVIS

} (3s1BF7) 3IT

{

{6V O0dd ALVIS

} (3013°d3TQ) IT

$(Z¥7O04d ILYLIS ™)®%9964 " d1Tq = $OTA ITIq

{

tOTV D0dd AIVIS™

} (e01d"d3ITQ) FT

$(IV™O04d ILVLIS)®RIEA " AITq = €01 dI1Iq

£((ZV™904d ALVLIS 7)) i996d d31Tq = T€d dI1q

299

099
655
864
L85
989
6as
Pes
€89
s
166
0ss
6vS
8¥S
L¥S
9¥s
Svs
e
€S
s
7S
ovs
6€S
8¢9
£€S
9¢€s
Ges
ves
€€9
€S

0es
6CS
8¢S
L3S
9¢s
4]
s
forée)
s
1cs
0gs
615

$96d IITAPRIEA 3T = 964 HITq
$(OU YT OO0 ALVLIS) i®RTY ¥IT DOUd IIVIS™~ = ZOTH d1Tq
196 AITQRR(IEA " AITA) i = TOTI IITq
f(PET IITA) i9996d°TITq = 967 TITq
'p6d dITq = $6H AIIq
1663°d1Tq = Q0TI IITIq
pa-A1Tq] | ((OF YT D0 ALVIS) i®®S6d dIT) = 664 d1Iq
{
1SV O0dd ALVIS T
} (pEEIIQ) IT
{0 YITqTHOMd ALVLIS T #9564 d1Tq = FA HITq
1G6HAITQRRYA - AITq = S6H AIIq
1/64°d1Tq = 864°d11Iq
$ped AITQRR96d 3T = /637 HITq
(66T TITARR(PI AITQ) i = 967 IIIq
1Y ¥ITq T OH0Md ALVLIS | |¥6d 4119 = S6d"HITq
16ed°A1Tq] |9€A AT = $6H HITq
ST6EAITYRR(YEA AITq| | €7 A1Tq| | €63 AITQ)RRSEA AITY = SEAHITq
fzd 3319 | (P YT D0 ALVIS) i®9Z6d d1Tq) = €647 d11q
IV D0dd ALVLIS™) i®ezd d311q = Z4"d311q
168474119 [062°32Tq| | ((T63°F1TA) i®PZ6d AITA) = 164 HITq
P4 YITqTO0Yd ALVLIS T | [1637 H1Tq = 76 HITq
f24TIITqTO0Ud TALYIS T | | €4 YT TO0d ALVIS T = 163 d1Tq
LEdTYITY O0Ud ALVLIS T 061 AITARRSEA AITq = 067 I31q
$(24 1TqTO0Yd ALVIS ™ P68 " AITARRS €A HITA) | | (24 41T HOEd dIVIS
9968 1TQPR(SEA AITA) i) | | (061 AITAPR(SET TITQ i) = 684" d1Tq
£(0Y YITqTO0Ud ALYLIS) iwPed " ¥ITA O0Nd ILVIS™~ = 063 d31q
£(04 43T TO0Ud ALYIS) iPRZy " ¥ITq O0Nd ILVIS™~ = 684 d1Iq
1984 AITqRR(OET AT | |62 AT | |88F AITQ)RRIEA AT = Q€I " IITq
18zd A3Tq| | ((L4° Y319 D0dd ALVIS™) i®®9/84 dITq) = 884 d1Iq
98 FITq| | S8 HITq| | ((984°TITQ) iw®/8T " HITQ) = 98F HITq
124793 1qO0dd ALVIST | 198 d1Tq = /8T HIIq
fQITYITY O0Ud ALVIS T | |9 YT HOId ALVIS — = 984 I3ITq
£9¥ ¥ITA O0Ud ALVLIS RS8T AITARRICA " IITq = 87 I3I1q
(ST TO0Ud ALVIS™ P8 HITARRTEA " I31Td) | | (SY dITq D0dd ALVIS
RYT AITARR(TEA TITA) i) | | (S8T TITYRR(TEA " AITA) i) = ¥8A"IITq
£(OY 4ITq7O0Ud ALYIS) i®P9d " ¥ITq O0Nd ILVIS™~ = S84°d1Iq
£(0Y YITqTO0Yd ALVIS) i¥9Sd 43Tq O0dd ILVIS~ = $84 HI31q
$C(IVTO04d ALVLIS 7)) i®R8zd d3Tq = 874 d31q
fGEETAITq = €897HITIq
t9sTey” = 784 d1Iq
f1€d°d3Tq = 184°d11q
t9sTey” = @84 d1Iq
1897°d3ITq = 6/4°d1Iq

81S
L1S
918
Sis
¥18
€1s
[45°)
119
01s
605
805
£0S
90S
<0S
$0S
€08
08
108
00S
667
867
L6¥
96¥
S6v
y6v
24
v
16%
06¥
687
887
L8
98%
S87
787
€87
414
18%
087
6LY
8LY
LLY
9Ly
SLY

173

A.5. Compilation

oyd® = OHDI
d = 4
AU = AR
FE- WI = ¥

HSO (VAVOD)S = WSO

HLVASSVTD UT 9q 1snuw SSeTd NSO #

eael = VAVC

HIVd UT 9q 3isnu eael #

99 [9191S9/utq/ (TIYALSA)$ = DTAYALSH

j1sTX® 01 dwel\:D> saJtnbal IaTTdWOD [9I91S® 9Yl #

"' = HILVdA

(0°=2":SD¥S)$ = Sr90

(SOYS™D)$ (SDYSTONIDI§ = SDAS

(o°=wso" :SDYSTHSO)§ = SDUSTONAD

(T3S =wsS0" :SDYS WSO § = SOYSTANID

S9D2.Jnos Uwum.Hwam #

D" OTuLI9} TedTuoueduou d-Hoxd = SIS D

wso°1s91 = SDASTHSO

Boxd = 1IDYVL
... #
SOTJI01D3ITIP pue SITTIF #
... #

= N ;L ON®OO = NN FH 0N 0D
B B R e B o i A B < BN U ot B o Y o Y SN Y o B SV A S B <)

— N O F DO N WO

S|y EN GV

< 1S91/ZdoWs0/uwso/d1s /uslsey/s1dafoxd/~ doiderpuaisey

foxd o- o-oTwIel TEdTUOUEDUOU 0°1sd1 0 BHoxd 256 peasn 1ou 1nq

pautFep ,ABRIIYUOTIOYd DOYd ALVIS —, :PUTUIEM :9H:D°1Sd] D 1S9 0°1Sd1
0- D- TTeM- °"I- 226 D>'OTwIa1 TedTuoueduou/'* O'OTULI91 TBDTUOURDUOU

0- D>- TTeM- ""I- 226 ,F I7D04d ALVIS, UOTIdUNJ JO UOTIEIETIIP
1TOTTdwt :futurem :zg:d>-bBoxd ,9 I HOYd ILVIS, UOT1IDUNF FO UOTIRILTIDP
1TOTITdwr :Buturem :g/:d>°Hoxd ,1TX9, UOTIDUNF JO UOTIBRIRTDIIP

1IOTTdwr :futurem :§/:d>-Hoxd : urtew, uoriduny u :d-Hoad d>-bHoxd
o-foxd o- o>- [Tem- "°"I- 226 ,Dss-9gezdss\dwel\:D, ,3IS91, g- Isue-

St
s
€l
<L
11
o1
6
8
L

22ss- 220<@T\1sa1\zowso\wso\das\uaisey\si1da[oxd\uaisey\awoy\urmb4Ao\:)
TI1S°1S91 Tesned- TSUB-:DT- 9X9'[9I91S9/UTq/TaI91SA\I~VID0Ad\:D

TI1S'1S91 WOIF SOTTF-D Buriesausb # # -9uop "' ,Y-1s91,,

pue ,TI1S°1S91, 01 ©TIF °pnN[dOUTl) pue 9pod TaI91sy BuriTam ‘duop " *
BUTHO9Y) WSO 1S91 NSO eAe[# WSO°1S9]1 WOIF SOTIF-[oI91sd Buriersusb

O)ew < 1S91/zdWso/wso/dIs/uaisey/s1deloxd/~ doideTpusisey

uone|nwg

9
S
14
€
4
1

Iopou]d 9yl i0j CO_Hm__QEOU w_Qmem T48Y

uoie|idwod §'v

{

@ urniax
fQandur19sax HOYd ILVIS
‘0 = 1Z¥"¥3Tq H0d ALVIS™

‘0 = Z¥ ¥ITqTH0¥d ALVIST
TI Y3ITq D0dd ALVIS™
0¥ YITq D0dd ALVIS
19S3I7H0Yd dLVLS IuT

W oem oam
—

~

~ 0

/% 1ASTd NOLVHOLOV /

{

1€947d1Tq uIniag

fQandutrT1esax H0Yd IIVIS

oF AITYRR(LATAITA) i) | [024°HITq = TZY ¥ITq HOYd ALVIS

129 MITYRR(LATAITA) i = OZY " YITA DOYd IIVIS

S(ToT MITORR (LA AITA) i) | 023711 = 6TY AT HOEd ALVIS

1z TR (6hd 3T i) | [64°I3Tq = 8TY ¥ITq HOMd ALVIS

F0ST IITQRR(6VA " AITA) i = LTY"YIT DO ILVIS

IS AITYRR(6FA AITA) i) | |64 TITq = 9TY ¥ITq HOYd ALVIS
(pzaIITORR (9P IITA) i) | P27 311G | | S2T7FAT = STA YT DO ILVIS
Y2pATAITQRR(9PA T AITQ) i = HTYTYIT OO0 AIVIS

C(8YA IITARR (VA HITA) i) | P23 4ATq| | S2T°FATq = €TA"YIT DO ILVIS

(ST ATQRR (LT AITA) i) | | (6T FITARR(LIA IITA) i) = ZTY ¥ITQ DOYd ALVIS

AT IITQRR(LTATAITA) i) | 189 HITq = TTY ¥ITA D0Yd ALVIS

<09
09
€09
09

€89
8¢
185
089
6.8
8.8
LS
9LS
SLS
vis
€LS
s
148
048
695
899
£9S
999
G99
99
€99

Appendix A. OSM Code Generation

174

TI3S' WSo" = SIXIAANS I8
08
(3" TI1s" 0" *((SDYSTHSO)$ suweusseq)§ xTFoxdppe)§ :XAVANODIAS® 6L

OSTW ‘si1abael AIBPUOISS # /L

(74

=+ SOVTAQ1
=+ S4Ia1
TTeM- ""I- =+ SOVTID
utmbA) pue xnur] #
SASNIET- ¥NUTT/(JIQ TIVISNI HAONIE) $1- =+ SAITdT #
TTeM- “"I- (JIQ TIVISNI AAONLE)$I- =+ SOVTID #
spoulqd #
o1etxdoidde se jusumiod(un) #
|| *.
sbetd #
|| #
(U =wso-:SDYS"HS0)§ (WD$
(o =wso" :SYSTHSO)$ (WD$
99" (LIDYVYL)$ (1I9¥VI)$ (ND$
(SDUSTANED)$ (D$
(SASTONED)$ (WIS
0", SSBTD "y ~» (WIS
IueaTd
>§ Tesned- Tsue-:d>T- (OTIYAISES
#
>¢ WOIF SOTTF-D bBurieasusb #
#
1I1S°% :2°%
>$ (HSO)$
#
>¢ WOJIF SOTIF-ToI91So Burieasusb #
#
WS0'% :TIIS"%
D>°1s91 :0°boxd
0 OTWI91 TedTuoueduou 0-1sa1 o-boxd :Hoxd
foxd :1Te #
uesTd TT®e : ANOHd"
... #
SOINI #
||| %

17
€L
(24
14
0
69
89
£9
99
<9
¥9
€9
9
19
09
65
8S
LS
94
SS
¥
€S
4
19
0S
6¥
8¥
Ly
9%
i
44
g
w
A4
(U4
6€
8€
LE
9¢
°3)
¥e
€€
(49
1€

f(9dAr PdAIBSHND ‘/«[*""] %/)PUSSKD 171[NSSI SUITUT
/» so®dAroiroad uotiouny ./

17/

fIPWTITeIduUab™ 179TIUIN
£SN1e1SHn” Sn1eISKED

/% SOTOeTIeA ./

} uoTieluswRTAWT

/s

/» WiusweBeuepdnoin srnpow pus ./ {

{
{JUTT 9deFILIUT
{TeD07 Se UOT1eZITedO0T 9deJI9lut
{SpeT @deFILIUT
{wopuey sdeFI9lUT
{SpoTpauwWT] 9dBFILIUT

{BSHOUTINOYIATOI9Y S IATDIYPUTINOY 9deFI9IUT
£10gAgbsipuss se 1sedpeoagAgpusShurinoy 9deFI9lut
} sesn
{
{10I1U0DP1S DDBFILUT
{1usuebeuednoln 9deFILIUT
} septaoad

} Wiuswebeueldnoin sTnpow

/%

onT uetbt] ‘SH uerl ‘um[g uetag :sJoyiny //

"SNOILVOIAIQON ¥0 ‘SINIWAONVHNH ‘SELVAdN ‘140d4dNS ‘IONVNALNIVW IAIAO¥Yd

0l NOILVOITHO ON SVH VINIDVIA A0 ALISYIAINN FHL ANV ‘SISVE ,SI SY. NV NO
ST YIANNIIIH TIAIAO¥d FIVMLAOS HHI ~dISOddNd IVINOILIVd V ¥JO4 SSANLIA ANV
ALTTIGVINVHOYAN 40 SHIINVINVM QIITdWI FHL ‘OL QALIKIT ION 1Nd ‘SNIANTONI
‘SHIINVYYVM ANV SWIVTOSIQ ATIVOIAIDAAS VINIDYIA 40 ALISYIAINN FHL

"HOVRVA HONS A0 ALITIIISSOd HHL A0 TASIAQY NAZd SVH ALISYIAINN

LTISYIANVA FHI 41 NAAZ ‘NOILVINAWNDOQ SII ANV FIVMIAOS SIHL 40 ISN FHL 40 -

)
¥
€9
s

0S
6%
87
VA
9
°14
4
194
rai4
¥
[i%
6€
8¢
L8
9¢
q€
e
€€
€

0¢
6C
8¢
LC

—
—

100 SNISIYV SIOVWVA TVILNINDASNOD 4O ‘TVINIAIONI ‘TVIDEAAS ‘IDFJIANI ‘IDFIIA «
404 AL¥Vd ANV OL ATIVIT d9 VINIDIIA A0 ALISYIAINN FHL TIVHS INIAT ON NI =

o
—

*9JeM1JO0S STYl Fo sotdod [Te ur Jeadde Joyine oyl pue sydexbered omi .
pUTMOTTOF 9Yl ‘®dT10u 1YBTIAdOD dA0qe 93Ul 1eyl papraoad ‘poilueab Agaasy

ST 1usweaIbe Us11TJM 1NOYITM pue ‘93F 1noyltm ‘ssodand Aue JOF UOTILIUSUNIOD
S1T pue 9IeM1JOS STUY1 9INQIIISIP pue ‘AFyIpow ‘Adod> ‘9sn 01 UOTSSTULId]

*poAIdSaI SIYBTI TTV
RTUTBITA FO AITSIPATUN ‘900Z-7007 () IYBTIAdO)

— N M D O N O O

-.V\

uoneluswsa|dw| DsaN T'9

‘suonyeyuawa[dwir yjoq ut renba are Asy) ‘umoys jou are
suomnoe jo suoneyuawddwrayy © [] Aq paoserdar usaq sey apod
1930 939 “gdo “ ()Tdo smoproysoerd Aq paoerdar usaq sey suonoe
Sumyuasaidar opo)) P01 DHSON S} UI UMOYS ST 9POd MOJJ-[OIUOD
ATuo ‘srqeredwod suonejuawa[dwir yjoq axewr 03 I9pIo Ul ‘A[PAD
-oadsar “z'g pue 1°g suornoag ur juswadeue]y dnoio s yoeiforra
-uq jo suoneuRwRdwr NGO pue DsaN 9y} smoys xrpuaddy sy,

Juswabeue|\
dnouo Moelijolnug
ay) Jo suoneyuswadw| g

Appendix B. Implementations of the EnviroTrack Group Management

176

{yeaxq :1Tneysp

YAQVAINDISAY 9sed pus // {
{yeaaq
{
T4 03 UoTITSueal // I()SNIBISHOITUT
f()o9do
} es1e {
uoTlIsuerl FI9s // {()ITNIddI 1TeM = ISWILTeIdusb—
f()gdo
YO/« 701 o/)3T
*(NOISTE /s« ["°°]1 x/)PUISKD
} TMAQVATONINDISHY @Sed

YAQYAT 9sed pus // {
iyeaaq
*Qypdo
fO1TnId9I 1TeM = JDWTIJTeJousb™
CLINDAY /w [T77] «/)PUSSKHD
} :19Iqva1 ased

ALVATIANYDYAQYAT @sed pus // {
iyeaaq
fQuopueIT1TeM = JIWTJTeIauab—
{4IAVIAT = Snieis‘snieiSyo”
Y HLVAIANYD /s« [°°°] %/)PUSSWO
f¢do

} :ILVAIANYDYAQVAT 9Sed

ALVAIANYOMAN @sed pus // {
f3eaaq
{
fQwopueI 1TeM = JSWTITeJIousb—
'AIVAIANYDYAAVIT = Sni1eis- snieiSpo—
f()zdo
YO/« 00001 /03T

$()1TNIDAI 1TEM = JSWTIJTeIausb~
*(LVAIANYD /s ["°°1 %/)PusSpd
} ‘H1VAIaNVOMAN @sed

YAGHAN °sed pus // {
‘yeaaq
fQuopueI 1TeM = JIWTTeIsausb—

548
ol
1548
[Uig8
6€1
8€1
LET
9¢t
gel
el
€el
€l
1el
0€T
6CL
8C1
/Tl
9C1L
148
el
(48
L
1t
oct
611
811l
L11
911
SIL
vil
188
(415
111
[UAS
60T
801
01
901
S0t
01
€01
01
101
00T

{ILVAIANYDYIAVAT = SNIe1S SNIeISHO ™~
*Q1do
} YIIWIR dsed
YAMOT104 ¥sed pud // {
yeaaq
t(Osmeisyo1ITUT
} ¥AMOTIOA dSed
} (snieis- snieiSEH”)YDIIMS

} (® => JawrlTeIdusb~)IT

f-— JoWTLTeIdUSb—
(@ < JowTLTeIauab~)FT

'$SAIDNS uInIax
(g2¥d == Sn1e1S'SNILISED~)FT

} ()1eogl1aesHa Ty JuswabeuednoIn 171TNSII PUBWWOD
{ /+ ['""] »/ } (Odo3s’T0I1U0DPIS 173ITNSIT PUBLMOD

{ /s

[*"°]1 %/ } (Q1Iels T0I1UODPIS 17 1TNSSI PUBUMIOD

1SSEIDNS uInlax
L1177
{9 = JoWTLTeIausab—
*(OsnaeisyoITuI
} (O1TuT’ T0I1UODPIS 1TITNSSI PUBUMIOD

¢ ()obesSa|ITINDIYSSID0Id PIOA NSkl
/% SASBY 4/

f{()1TnIdsIT1TEM 1UT SUITUT
f{()9AT®D9IT1TEM JUT SUITUT
fQuopuexTlTeM 1UT SUITUT
9pod> TeulhTIO 9Y1 WOIF SauIFap HuoT °defdea suoriduny BurMOTTOF =Yl //

£ ()SNIPISHDITUT PTOA SUTTUT

66
86
L6
96
S6
¥6
€6
6
16
06
68
88
L8
98
<8
8
€8
8
18
08
6L
8L
LL
9L
SL
17
€L
(24
1L
0
69
89
£9
99
<9
¥9
€9
9
19
09
65
8G
LS
94

177

B.1. NesC Implementation

‘gETYd = SN1e1S SN1eiSHo”

} (OSMIEISHDITUT PTOA BUTTUT

\...\. III ...n\
01 //

{ /s ["""] »/ } OITAID2I71TEM UT BuUTTUT

{ /5 ["""]1 »/ } ()9AT@D2I 1TeM UT auTTUT

{ /s ['""] »/ } (Owopues—iTem jur aurfur

\u.n III *
suotIdUN .

¥ T T T TS TS T u.n\
L1 //

()oaea1 " 1usuebeueydnoay // {

£SSADONS uaniax

(sniels-snleiSyd)Yd21TMs pud // {
YAAVATONINDISHY || ¥AMOTTIOA || II44 // ‘¥edaq :iIneFap

AQVAT dsed pus // {
iyeaaq
fOQ31InId9IT1TeM = JSWTLTeJauab—
TYIQVATONINDISTY = Sniels snieiSyo—
*Qotdo
1 «/)pusSKd
} 19dqvdT1 °sed

YC NOISTE ‘/x [

ALVAIANYDYAQYAT 9sed pus // {
‘jeaaq
{
fOPTOYSAIYI~1TEM = JSWTLTeISUsb™
{YIMOTIOA = SNIeIS SNIRISHO ™
} este {
{94 = Sniels'snieisyo”
} O/« 01 «/ 037
} ALVAIANYDYIQvdAT 9sed

ALVAIANYOMAN osed pus // {
yeaxq
‘gAYd = SN1e1s sn1eiSHy”
} ALVAIANVYOMAN ®sed

YAIWAN 9sed pus // {

1€
0€T
6CC
8¢C
2T
9C¢
144
(44
(44
[444
1cc
0ce
61¢C
81¢
L1T
91¢
Sic
vic
€1¢
cle
11¢
01c
60C
80¢
£0T
90¢
S0C
0T
€0¢
20T
10T
00z
661
861
61
961
g6l
P61
€61
61
161
061
681
881

‘yeaaq
$OpToyYsaIYI"ITeM = JSWTLTRIdUSH™
{YIMOTIOL = SN3IBIS SNIRISHO ™
f)edo

} YAANAN 9Sed

} (sn1eis-sn1eiSHD~)YD1IIMS
} (O@aeaT 1usuebeuednoIn 171TNSII PUBULIOD

Qurtol " jusuebeueydnorn pus // {
£SSIIDNS uIniag
(snieils sni1eiSEO”)YdIIMS pud // {
{jyesaq :i1Tnejep

{yeaaq

{¥AQAYAT = Sn1els snieiSHo

f()31TnId9I 1TEM = JSWTLTeJIausb™

f()gdo

CLINDFY /% [F77] »/)PUSSKHD
} SMIAVATONINOISHY osed

‘yesaq
£()9ATOD9I 1TEM = JISWTLTeIaush™
SMAGHAR = SN1e1S SISy~
f()do

} :¥AMOTIOA ¥sed

‘yeaaq
fQuopuesT1TeM = JIWTJTeIdUab™
‘IVAIANVOMAN = Snieis- snieisyo~
} 19994 9sed
} (snieis- snieiSEod”)YDIIMS
} Qurtol -juswsbeueldnoasn 1 ITNSDI PUBWWOD

() 1e9g1IeoHa IS * yuswaheueydnoxy pus // {
1SSAIDNS uIn1ag
(0 => JdwrlTeIaUS6™)FT pus // {

(smels snieISED” HYSIIMS pud // {

£81
981
<81
¥81
€81
81
181
081
641
841
LLT
941
SLL
VL1
€L
[7A8
141
041
691
891
91
991
991
791
€91
91
191
091
651
861
LS1
981
s
¥S1
€ql
(4538
161
0ST
671
8¥1
L1

Eigs
448

Appendix B. Implementations of the EnviroTrack Group Management

178

{
$()1TNIDAI"1TEM = JOWTL]TRIdUSH ™
*QOzedo
SCLINDAY /x [F77] «/)PUSSKHD
} este {

f{()dATID9IT1TEM = JoWTILTeIDUab™
IAGHAN = SN1e1s’SN1eISHD™
:Q1zdo
YO/« [077] &/)3T
YO/« 00001 /03T
} (LINYDAY == 9dA1<-I9FFngxy)IT
} y¥davd1 ased

ALYAIANYDYAQYAT 9sed pus // {

iyeaaq
{
{
£()9ATII9I 1TEM = JSWTITeJIousb—
SAIWAN = Sn1eis- snieisyo-
*Oozdo
YO/« [000] /03T
} (JIVAIANYD == 9dA1<-I9Fyngxy)FT 9STd {
{
£()PATOIRI 1TEM = JSWTLITeJIousb™
SYAIHAN = Sni1eis- snieiSpon”
*Qe1do
YO/« 071 &/)3T
} C 1INYDAY == °dAi<-a9FFngxy)JFT

} :ELVAIANYDYAQVIT 9Sed

ALVQIANVOMEN 3sed pu // {
{3eaaq

{

£ ()9ATED9I1TEM = JSWTLTeIsusb™
SMAGHAR = SN1e1S SNI1eISHD ™
t()g1do
YO/« 0001 /03T
} (ALVAIANYD == °dA1<-I9FFngxy)FT 9sTd {
{()PATD9I 1TEM = JDWTIJTeIousb™
{YAGWAN = SN1e1S SNIeISHD ™
HOYAL
} C LIMIDIY == °dAI<-I93Ingxy)FT

61¢
81¢
L1€
91e
S1e
1483
€le
cle
Lie
01e
60¢
80¢
L0€
90¢€
S0¢
P0¢
€0¢
0¢
10€
00€
66¢
86C
L6C
96C
S6¢C
P6C
€6
6C
16T
06C
68¢
88C
£8C
98¢
G8¢
8¢
€8¢
[4:14
18¢
08¢
6Lt
8/C
LLT
9/¢

} C (NoIST

} C (No1IST

} :ILVAIANYOMAN °sed

YIGHAN °sed pus // {
{3yeaxq

{

fQuopueIT1TeM = JOWTJTeIauab™
fHIVAIANYDYIAVAT = Sn1eis snieisyo~
tQ9rdo
YO/« [070] &/ 03T
} (NOISTY == 2dA1<-I9FFngxy)FT 9sTd {
umuw>._”wuwhlu...mm3 = HwE._”.H.Hm.Hwﬁwml
HoI
} (1In¥DAY == °dA1<-I9Fyngxy)JT
} tYAdNIN 9sed

YIMOT104 °sed pus // {

{eaaq
{
fOpIoysaIyr~1TeM = JoWTI]eIausb—
fQvp1do
== adAi<-Ja7Ingxy) || (LINYDAY == 2dA1<-13FFngxy))FT

} 19IMOTIO0L 3sed

qqYd dsed pus // {
‘yeaaq
{
tQpToysaIyl 1TeM = JIdWTLTeIduab™
{IMOTIOA = SNIBAS SNILISHD™
*Q¢grdo
== 2dA3<-TFyngxy) || (LINYDAY == 3dAI<-I33Fngxy))FT
} :3d9d esed

} (snieis‘snieiSEo”)YDIIMS

tQzrdo
1I9FFNGXY 1OeJHD

} ()°Bessa|1TINDYSSD0Id PTOA JSel

tQr11do

LT
¥L2
€LT
(744

042
69C
89¢
£9T
99¢
S9¢
¥9¢
€9¢
9T
19¢
09¢
65C
86¢
LST
95¢
oo
¥s¢
€5¢
[é°r4
16¢
05¢
6¥C
8¥C
L¥T
9¥%¢
s¥e
14144
€¥e
e
1574

6€C
8€C
LET
9€C
oo
yee
34
(44

179

B.1. NesC Implementation

uoTieIuswRTdwT aTnpow pus // { o0s¢

6¥€

()obesso|ITINDYSSad01d ysel pus // { 8ve

L¥E

[~1// 9re

feizo

(snieis-snieiSyo~)YdIIMS pud // { e

{jyeaaq :1TneFep £ve

e

YAAVATONINOISHYE @sed pus // { 1we

fyeaaq (0129

{ 6£€

{ 8€€

fOproyseIylT1TeMm = JSWTI]TeJIausb~ £€€
fYIMOTTI0L = Snieis snleiSyo~ 9¢e
fQOpezdo Gee

} O/« [070] /03T pee

} ((ALVaIanyD == @dA1<-I3FFngxy) 333
[l (1In¥DTY == 2dA1<-I9FFngxy))FT (£33

} “YIQVATONINDISTY 9sed 1ee

o€

¥AQVAT dsed pud // { 6c¢

{eaaq 8c¢

{ Lz€

{ 9z

f(O)3ITNId9I ITEM = JDWTILTeJausab— gze
f()¢zdo yee

CLINDAY /w [F77] &/)PUSSKHD x4
O /e D001 /)3T we

} ((J1VaIanyd == 2dA1<-I9FFngxy) 243
|| (NDISTY == 9dA1<-I9FFngxy))FT 9STd { 0ze

Appendix B. Implementations of the EnviroTrack Group Management

180

YgIMoTI0 <- Owezdo *(Ozido
AAVAT <- Qbswitnadea puss ‘()gdo
fF19s <- (Obswubtsaxpuss ‘()9do
‘qadd <- (Qbswubtseapuss ‘()gdo

£ O1TNId9IT1TeM)JISWTILT19SDI

‘F1e9s <- (Qbswaitnadax puss ‘()ggdo ‘()zido
{F19s <- (bswitnadaxpuss ‘()zzdo ‘()zido
SYIINEN <- Qtzdo ‘()zrdo
SYIAVATONINDISHY <- (OBswubisaapuss ‘()grdo
fF19s <- (Obswitnadexpuss ‘()ypdo

£ O1TnIdea"1TeEM)JIDWI1 T 19SAI

£ O1TnIdea"1TEM)JISWI119SDI

{(QuopuexT1TeM)JIaWTI1 19SaJI

RN NIES

LNIWIDOVNVH dNOo¥d °@31eis pus // { ¥9

{ () TawWT1 T9OURD :u0T1dUSDIJUO

[**-]Bsw @1epIpued
¥0 [r]BfswiTnidaa
utol
[sT3]
[***]1inoswrl
1 A1uguo
} YAQVATONINDISAY 91els

{
/ Bsuraleprpued yo HsuubIsax
/ [""i GNv " -]fsw1TnIdax
/ [*** aNV - °]Bsw 3TnIdax
/ aAeaT
/ Inosuta
/ <= JT9s :A1iujuo

/ <- YAAQVATONINOISHY :Ax3uguo
/ <- JLVAIANYDYIAYIT :AI3uguo
} ¥dAava1 91reis

{
SYIIWAN <- Qozdo ‘(Ozrdo / [-]16sua1epTpued
SYIENAN <- Qe61do / [-]16swinTadax
f9AavaT <- (Obswereprpued puss ‘()gdo / 1no’aWTl
A <- /s =/ / [es13]
‘YAMOTTIOA <- [« x/ / [*-r]enesT
{(QuopuexTiTeMm)JIawrl~18saa / : A13UgUO

} FILVAIANYDYIQVAT °3e3s

€9
29
19
09
65
85
Vi)
9
=)
¥s
€S
)
s
0s
4
i
Ly
9%
S
44
o4
iz
8%
Ui
6€
8¢
LE
9¢
Se
Pe
€€
€

AGHAN <- Ostdo ‘()zido /

SYIINAN <- QOz1do /

AN <- /2 2/ /

fC O1tnadea"1TeM)JILWI1"19Sax /

{ALVAIANYDYAAVAT <- (QBswaleprpued—puss ‘()zdo /
{(QuopuesT1TeM)JISWTI1"19SaI /

tF1es <- (srdo ‘(grdo /
'ALVATIANYDYAAYIT <- Q1do /
{4LVAIANYOYAAVAT <- (Q9rtdo /
$YAMOTTIOA <- QOedo /

HA Avw>ﬂwuwhluﬂm3 uhmEﬂulpwme \
‘F19s <- Qw1do ‘(Qgrdo /

fAAYA <- Qttdo /

SYIGNAN <- (Ordo /

MA muﬁHOQW@HSHIHﬂMB uhwﬁﬂulpwmwh \

1YAMOTT0A <- (QQ¢rdo ‘()zido /
'ILVATIANVOMAN <- [xx/ /
f(Qxswrt1"TadURD /

fOQwburdnoabTiTutr ¢ ()JISWIITRZITRIITUT /

} INAWADVNVH dNo¥d 91els 91erdusl

[-]16sw a1epTIpULRD

fswintadax

CYN-EX §

[esT10]

[*]inosurl

utol <- F4¥q :AI1uguo
} ILVAIANVYOMIAN 1els

fswiTnIdaa
1N0dWTY
[---]6swubtsax
9ABDT
: A1uguo

} YAIWAKR d3eis

BswubTSax Yo Bsw 1TNIdDI
1NosWTl
utol
: A13uguo
} ¥AMOTI04 @3eis

{

BswubTSax Yo Bsw 1TNIdDI
utol
: A11uqguo

} IT4d °1els TeTITuT

: A13uguo

6
8
L
9
S
14
€
4
1

uoireluswajdw] NSO ¢'9

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Proceedings of the First International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys 2003), San Francisco, CA, USA, 2003. USENIX.

SenSys '03: Proceedings of the 1st International Conference on Embedded Net-
worked Sensor Systems, New York, NY, USA, 2003. ACM Press.

Proceedings of the 2nd International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys 2004), Boston, MA, USA, 2004. ACM Press.

SenSys '04: Proceedings of the 2nd International Conference on Embedded Net-
worked Sensor Systems, New York, NY, USA, 2004. ACM Press.

IPSN ’05: Proceedings of the Fourth International Symposium on Information
Processing in Sensor Networks, Piscataway, NJ, USA, April 25-27 2005. IEEE
Press.

T. Abdelzaher, B. Blum, D. Evans, J. George, S. George, L. Gu, T. He,
C. Huang, P. Nagaraddi, S. Son, P. Sorokin,]J. Stankovic, and A. Wood.
EnviroTrack: Towards an environmental computing paradigm for dis-
tributed sensor networks. In Proc. of 24th International Conference on Dis-
tributed Computing Systems (ICDCS), Tokyo, Japan, March 2004.

Tarek Abdelzaher, John Stankovic, Sang Son, Brian Blum, Tian He, An-
thony Wood, and Chanyang Lu. A Communication Architecture and Pro-
gramming Abstractions for Real-Time Embedded Sensor Networks. In
Workshop on Data Distribution for Real-Time Systems (in conjunction with
ICDCS 2003), Providence, Rhode Island, 2003. Invited Paper.

H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker,
J. Deng, and R. Han. Mantis: system support for multimodal networks
of in-situ sensors. In Proceedings of the 2nd ACM International Conference on
Wireless Sensor Networks and Applications (WSNA'03), pages 50-59. ACM
Press, 2003.

Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R.
Douceur. Cooperative task management without manual stack manage-
ment. In Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, pages 289-302. USENIX Association, 2002.

Charles André. Synccharts: a visual representation of reactive behaviors.
Technical report, I3S, Sophia-Antipolis, France, October 1995.

182 Bibliography

[11] Charles André. Representation and analysis of reactive behaviors: A syn-
chronous approach. In Proc. CESA '96, Lille, France, July 1996.

[12] Stavros Antifakos, Florian Michahelles, and Bernt Schiele. Proactive in-
structions for furniture assembly. In UbiComp '02: Proceedings of the 4th
international conference on Ubiquitous Computing, pages 351-360, London,
UK, 2002. Springer-Verlag.

[13] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, At-
tila Jurecska, Luciano Lavagno, Claudio Passerone, Alberto Sangiovanni-
Vincentelli, Ellen Sentovich, Kei Suzuki, and Bassam Tabbara. Hardware-
software co-design of embedded systems: the POLIS approach. Kluwer Aca-
demic Publishers, 1997.

[14] Can Basaran, Sebnem Baydere, Giancarlo Bongiovanni, Adam Dunkels,
M. Onur Ergin, Laura Marie Feeney, Isa Hacioglu, Vlado Handziski,
Andreas Kopke, Maria Lijding, Gaia Maselli, Nirvana Meratnia, Chiara
Petrioli, Silvia Santini, Lodewijk van Hoesel, Thiemo Voigt, and An-
drea Zanella. Research integration: Platform survey—critical evalu-
ation of research platforms for wireless sensor networks, June 2006.
Available from: http://www.embedded-wisents.org/studies/
survey_wp2.html

[15] R. Beckwith, D. Teibel, and P. Bowen. Pervasive computing and proactive
agriculture. In Adjunct Proc. PERVASIVE 2004, Vienna, Austria, April 2004.

[16] Michael Beigl, Hans-Werner Gellersen, and Albrecht Schmidt. Media
cups: Experiences with design and use of computer-augmented everyday
objects. Computer Networks, Special Issue on Pervasive Computing, Elsevier,
2000.

[17] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. The synchronous languages 12
years later. Proceedings of the IEEE, 91(1):64-83, 2003.

[18] Gérard Berry. The Esterel v5 Language Primer, Version v5 91. Centre de
Mathématiques Appliquées Ecole des Mines and INRIA, 2004 Route des
Lucioles, 06565 Sophia-Antipolis, July 2000.

[19] Gérard Berry and the Esterel Team. The Esterel v5.91 System Manual. IN-
RIA, 2004 Route des Lucioles, 06565 Sophia-Antipolis, June 2000.

[20] Jan Beutel. Networked Wireless Embedded Systems: Design and Deploy-
ment. PhD thesis, Eidgendssische Technische Hochschule Ziirich, Zurich,
Switzerland, 2005.

[21] Jan Beutel, Oliver Kasten, Friedemann Mattern, Kay Romer, Frank Siege-
mund, and Lothar Thiele. Prototyping Wireless Sensor Network Applica-
tions with BTnodes. In Karl et al. [71], pages 323-338.

[22] Jan Beutel, Oliver Kasten, and Matthias Ringwald. Poster Abstract:
BTnodes — a distributed platform for sensor nodes. In SenSys ‘03 [2], pages
292-293.

http://www.embedded-wisents.org/studies/survey_wp2.html
http://www.embedded-wisents.org/studies/survey_wp2.html

Bibliography 183

[23] Brian M. Blum, Prashant Nagaraddi, Anthony D. Wood, Tarek F. Abdelza-
her, Sang Hyuk Son, and Jack Stankovic. An entity maintenance and con-
nection service for sensor networks. In MobiSys [1].

[24] Philippe Bonet. The Hogthrob Project. ESF Exploratory Workshop on
Wireless Sensor Networks, ETH Zurich, Zurich, Switzerland, April 1-2,
2004. Available from: http://www.hogthrob.dk/index.htm

[25] A. Boulis and M. B. Srivastava. Design and implementation of a frame-
work for efficient and programmable sensor networks. In MobiSys [1].

[26] Frédéric Boussinot and Robert de Simone. The ESTEREL language. Proc.
of the IEEE, 79(9):1293-1304, September 1991.

[27] Ed Bryan O’Sullivan. The history of threads, in comp.os.research:
Frequently answered questions. Online. Visited 2007-08-03. Avail-
able from: http://www.fags.org/fags/os-research/partl/
preamble.html

[28] Z. Butler, P. Corke, R. Peterson, and D. Rus. Networked cows: Virtual
fences for controlling cows. In WAMES 2004, Boston, USA, June 2004.

[29] Elaine Cheong, Judy Liebman, Jie Liu, and Feng Zhao. Tinygals: A pro-
gramming model for event-driven embedded systems. In SAC "03: Pro-
ceedings of the 2003 ACM symposium on Applied computing, pages 698-704,
New York, NY, USA, 2003. ACM Press.

[30] Sung-Eun Choi and E. Christopher Lewis. A study of common pitfalls in
simple multi-threaded programs. In SIGCSE "00: Proceedings of the thirty-
first SIGCSE technical symposium on Computer science education, pages 325—
329, New York, NY, USA, 2000. ACM Press.

[31] Intel Corporation. Intel mote. Visited 2007-08-03. Available from: http:
Ilwww.intel.com/research/exploratory/motes.htm .

[32] National Research Council. Embedded Everywhere: A Research Agenda for
Networked Systems of Embedded Computers. National Academy Press, Wash-
ington, DC, USA, 2001. Available from: http://www.nap.edu/html/
embedded_everywhere/

[33] Robert Cravotta. Reaching down: 32-bit processors aim for 8 bits. EDN
Website (www.edn.com), February 2005. Available from: http://www.
edn.com/contents/images/502421.pdf

[34] Inc. Crossbow Technology. Berkeley motes. Visited 2007-08-03. Available
from: http://www.xbow.com/Products/wproductsoverview.
aspx .

[35] Christian Decker, Albert Krohn, Michael Beigl, and Tobias Zimmer. The
particle computer system. In IPSN 05 [5], pages 443—448.

http://www.hogthrob.dk/index.htm
http://www.faqs.org/faqs/os-research/part1/preamble.html
http://www.faqs.org/faqs/os-research/part1/preamble.html
http://www.intel.com/research/exploratory/motes.htm
http://www.intel.com/research/exploratory/motes.htm
http://www.nap.edu/html/embedded_everywhere/
http://www.nap.edu/html/embedded_everywhere/
http://www.edn.com/contents/images/502421.pdf
http://www.edn.com/contents/images/502421.pdf
http://www.xbow.com/Products/wproductsoverview.aspx
http://www.xbow.com/Products/wproductsoverview.aspx

184

Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Cormac Dufty, Utz Roedig, John Herbert, and Cormac Sreenan. An ex-
perimental comparison of event driven and multi-threaded sensor node
operating systems. In PERCOMW ’07: Proceedings of the Fifth IEEE Inter-
national Conference on Pervasive Computing and Communications Workshops,
pages 267-271, Washington, DC, USA, 2007. IEEE Computer Society.

Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In Proceedings of
the First IEEE Workshop on Embedded Networked Sensors 2004 (IEEE EmNetS-
I), Tampa, Florida, USA, November 2004.

Adam Dunkels, Oliver Schmidt, and Thiemo Voigt. = Using Pro-
tothreads for Sensor Node Programming. In Proceedings of the RE-
ALWSN’05 Workshop on Real-World Wireless Sensor Networks, Stockholm,
Sweden, June 2005. Available from: http://www.sics.se/~adam/
dunkelsO5using.pdf

Virantha Ekanayake, Clinton Kelly IV, and Rajit Manohar. An ultra low-
power processor for sensor networks. In Eleventh International Conference
on Architectural Support for Programming Languages and Operating Systems,
volume 32, pages 27-36, Boston, USA, December 2004. ACM Press.

EnviroTrack. Web page. Visited 2007-08-03. Available from: http:/
www.cs.uiuc.edu/homes/lluo2/EnviroTrack/

Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar.
Next century challenges: scalable coordination in sensor networks. In Mo-
biCom ’99: Proceedings of the 5th annual ACM/IEEE international conference
on Mobile computing and networking, pages 263-270, New York, NY, USA,
1999. ACM Press.

Christian Frank. Role-based Configuration of Wireless Sensor Networks.
PhD thesis, Eidgenossische Technische Hochschule Ziirich, Department
of Computer Science, Institute for Pervasive Computing, Ziirich, Switzer-
land, June 2007.

D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SpecC: Speci-
fication Language and Methodology. Kluwer Academic Publishers, January
2000.

Daniel D. Gajski and Loganath Ramachandran. Introduction to high-level
synthesis. IEEE Des. Test, 11(4):44-54, October 1994.

David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David E. Culler. The nesc language: A holistic approach to networked
embedded systems. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages 1-11. ACM Press,
2003.

Hans-Werner Gellersen, Albrecht Schmidt, and Michael Beigl. Multi-
sensor context-awareness in mobile devices and smart artifacts. Mobile
Networks and Applications (MONET), 7(5):341-351, October 2002.

http://www.sics.se/~adam/dunkels05using.pdf
http://www.sics.se/~adam/dunkels05using.pdf
http://www.cs.uiuc.edu/homes/lluo2/EnviroTrack/
http://www.cs.uiuc.edu/homes/lluo2/EnviroTrack/

Bibliography 185

[47] ScatterWeb GmbH. Scatterweb. Web page. Visited 2007-08-03. Available
from: http://www.scatterweb.com/

[48] Ben Greenstein, Eddie Kohler, and Deborah Estrin. A sensor network ap-
plication construction kit (SNACK). In SenSys ‘04 [4], pages 69-80.

[49] The OMG Object Management Group. OMG Unified Modeling Language
Specification. Mar 2003. Version 1.5.

[50] Nicolas Halbwachs. Synchronous programming of reactive systems. In
CAV ’98: Proceedings of the 10th International Conference on Computer Aided
Verification, pages 1-16, London, UK, 1998. Springer-Verlag.

[61] Chih-Chieh Han, Ram Kumar, Roy Shea, and Mani Srivastava. Sensor
network software update management: A survey. International Journal of
Network Management, 15(4):283-294, July 2005.

[52] Chih-Chieh Han, Ram Kumar Rengaswamy, Roy Shea, Eddie Kohler, and
Mani Srivastava. SOS: A Dynamic Operating System for Sensor Nodes. In
MobiSys 2005, pages 163-176, Seattle, WA, USA, 2005. ACM Press.

[63] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231-274, June 1987.

[54] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher,
Ligian Luo, Radu Stoleru, Ting Yan, Lin Gu, Jonathan Hui, and Bruce
Krogh. Energy-efficient surveillance system using wireless sensor net-
works. In MobiSys [3], pages 270-283.

[65] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and
Mark A. Perillo. Middleware to support sensor network applications.
IEEE Network, 18(1):6-14, 2004.

[56] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrish-
nan. Energy-efficient communication protocol for wireless microsensor
networks. In HICSS "00: Proceedings of the 33rd Hawaii International Confer-
ence on System Sciences-Volume 8, page 8020, Washington, DC, USA, 2000.
IEEE Computer Society.

[57] Jason L. Hill and David E. Culler. Mica: A wireless platform for deeply
embedded networks. IEEE Micro, 22(6):12-24, November 2002.

[58] Jason L. Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy.
The platforms enabling wireless sensor networks. Communications of the
ACM, 47(6):41-46, June 2004.

[59] Jason L. Hill, Robert Szewczyk, A. Woo, S. Hollar, David E. Culler, and
Kristofer S. J. Pister. System architecture directions for networked sensors.
In Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems ASPLOS-IX, pages 93-104,
Cambridge MA, USA, November 2000.

http://www.scatterweb.com/

186 Bibliography

[60] Jason Lester Hill. System architecture for wireless sensor networks. PhD thesis,
University of California, Berkeley, 2003.

[61] Seth Edward-Austin Hollar. Cots dust, large scale models for smart dust.
Master’s thesis, University of California, Berkeley, 2000.

[62] Lars Erik Holmquist, Friedemann Mattern, Bernt Schiele, Petteri
Alahuhta, Michael Beigl, and Hans-W. Gellersen. Smart-its friends: A
technique for users to easily establish connections between smart arte-
facts. In Proc. Ubicomp 2001, pages 116-122, Atlanta, USA, September 2001.
Springer-Verlag.

[63] ARGO Homepage. Web page. Visited 2007-08-03. Available from: http:
/lwww.argo.ucsd.edu/

[64] Wen Hu, Van Nghia Tran, Nirupama Bulusu, Chun Tung Chou, Sanjay
Jha, and Andrew Taylor. The design and evaluation of a hybrid sensor
network for Cane-toad monitoring. In IPSN "05 [5], page 71.

[65] J. P. Hubaux, Th. Gross, J. Y. Le Boudec, and M. Vetterli. Towards self-
organized mobile ad hoc networks: the Terminodes project. IEEE Commu-
nications Magazine, 31(1):118-124, 2001.

[66] Clinton Kelly IV, Virantha Ekanayake, and Rajit Manohar. Snap: A sensor-
network asynchronous processor. In ASYNC '03: Proceedings of the 9th In-
ternational Symposium on Asynchronous Circuits and Systems, page 24. IEEE
Computer Society, 2003.

[67] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan
Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife track-
ing: design tradeoffs and early experiences with ZebraNet. In ASPLOS-
X: Proceedings of the 10th international conference on Architectural support for
programming languages and operating systems, pages 96-107, San Jose, Cali-
fornia, USA, October 2002. ACM Press.

[68] J. M. Kahn, R. H. Katz, and Kristofer S. J. Pister. Emerging challenges:
Mobile networking for smart dust. Journal of Communications and Networks,
2(3):188-196, September 2000.

[69] Cornelia Kappler and Georg Riegel. A real-world, simple wireless sensor
network for monitoring electrical energy consumption. In Karl et al. [71],
pages 339-352.

[70] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless
Sensor Networks. John Wiley & Sons, April 2005.

[71] Holger Karl, Andreas Willig, and Adam Wolisz, editors. Wireless Sensor
Networks, First European Workshop, EWSN 2004, Berlin, Germany, January
19-21, 2004, Proceedings, volume 2920 of Lecture Notes in Computer Science
(LNCS), Berlin, Germany, January 2004. Springer-Verlag.

http://www.argo.ucsd.edu/
http://www.argo.ucsd.edu/

Bibliography 187

[72] Oliver Kasten. Programming wireless sensor nodes—a state-based model
for complex applications. GI/ITG KuVS Fachgesprach Systemsoftware
tiir Pervasive Computing, Universidt Stuttgart, Germany, October, 14-15
2004.

[73] Oliver Kasten and Marc Langheinrich. First Experiences with Bluetooth
in the Smart-Its Distributed Sensor Network. In Workshop on Ubigitous
Computing and Communication, PACT 2001, October 2001.

[74] Oliver Kasten and Kay Romer. Beyond Event Handlers: Programming
Wireless Sensors with Attributed State Machines. In IPSN “05 [5], pages
45-52.

[75] Tae-Hyung Kim and Seongsoo Hong. State machine based operating sys-
tem architecture for wireless sensor networks. In Parallel and Distributed
Computing: Applications and Technologies : 5th International Conference, PD-
CAT, LNCS 3320, pages 803-806, Singapore, December 2004. Springer-
Verlag.

[76] I3S Laboratory. Syncchart. Web page. Visited 2007-03-10. Available from:
http://www.i3s.unice.fr/sports/SyncCharts/

[77] Edward A. Lee. What’s ahead for embedded software? Computer,
33(9):18-26, 2000.

[78] Martin Leopold, Mads Bondo Dydensborg, and Philippe Bonnet. Blue-
tooth and sensor networks: a reality check. In SenSys ‘03 [2], pages 103—
113.

[79] Philip Levis and David E. Culler. Maté: A tiny virtual machine for sensor
networks. ACM SIGOPS Operating Systems Review, 36(5):85-95, December
2002.

[80] J.Liu, M. Chu, J. Reich, and F. Zhao. State-centric programming for sensor-
actuator network systems. Pervasive Computing, IEEE, 2(4):50-62, 2003.

[81] Ting Liu, Christopher M. Sadler, Pei Zhang, and Margaret Martonosi. Im-
& P & &
plementing software on resource-constrained mobile sensors: experiences
with Impala and ZebraNet. In MobiSys 2004 [3], pages 256—269.

[82] AXONN LLC. AXTracker. Web page. Visited 2005-10-01. Available from:
http://lwww.axtracker.com/

[83] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny
aggregation service for ad-hoc sensor networks. In OSDI 2002, Boston,
USA, December 2002.

[84] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. The design of an acquisitional query processor for sensor networks.
In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international confer-
ence on Management of data, pages 491-502, New York, NY, USA, June 2003.
ACM Press.

http://www.i3s.unice.fr/sports/SyncCharts/
http://www.axtracker.com/

188 Bibliography

[85] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and
John Anderson. Wireless sensor networks for habitat monitoring. In
WSNA ’02: Proceedings of the 1st ACM international workshop on Wireless
sensor networks and applications, pages 88-97, New York, NY, USA, 2002.
ACM Press.

[86] M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits. Shooter localization
in urban terrain. Computer, 37(8):60-61, August 2004.

[87] Ian W. Marshall, Christopher Roadknight, Ibiso Wokoma, and Lionel
Sacks. Self-organising sensor networks. In UbiNet 2003, London, UK,
September 2003.

[88] Kirk Martinez, Royan Ong, and Jane Hart. Glacsweb: a sensor network for
hostile environments. In Proceedings of The First IEEE Communications So-
ciety Conference on Sensor and Ad Hoc Communications and Networks, pages
81-87, Santa Clara, CA, USA, October 2004.

[89] William P. McCartney and Nigamanth Sridhar. Abstractions for safe con-
current programming in networked embedded systems. In SenSys ‘06:
Proceedings of the 4th international conference on Embedded networked sensor
systems, pages 167-180, New York, NY, USA, 2006. ACM Press.

[90] WM. Merrill, F. Newberg, K. Sohrabi, W. Kaiser, and G. Pottie. Collabora-
tive networking requirements for unattended ground sensor systems. In
Aerospace Conference, March 2003.

[91] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[92] Jogesh K. Muppala. Experience with an embedded systems software
course. SIGBED Rev., 2(4):29-33, 2005.

[93] Sanjiv Narayan, Frank Vahid, and Daniel D. Gajski. Translating system
specifications to VHDL. In EURO-DAC 91: Proceedings of the conference on
European design automation, pages 390-394. IEEE Computer Society Press,
1991.

[94] John Ousterhout. Why threads are a bad idea (for most purposes). In
USENIX Winter Technical Conference, January 1996. Available from: http:
/lhome.pacbell.net/ouster/threads.ppt .

[95] Axel Poigne, Matthew Morley, Olivier Maffeis, Leszek Holenderski, and
Reinhard Budde. The Synchronous Approach to Designing Reactive Sys-
tems. Formal Methods in System Design, 12(2):163-187, 1998.

[96] R. Riem-Vis. Cold chain management using an ultra low power wireless
sensor network. In WAMES 2004, Boston, USA, June 2004.

[97] Hartmut Ritter, Min Tian, Thiemo Voigt, and Jochen H. Schiller. A highly
flexible testbed for studies of ad-hoc network behaviour. In LCN, pages
746-752. IEEE Computer Society, 2003.

http://home.pacbell.net/ouster/threads.ppt
http://home.pacbell.net/ouster/threads.ppt

Bibliography 189

[98] Kay Romer, Christian Frank, Pedro José Marrén, and Christian Becker.
Generic role assignment for wireless sensor networks. In Proceedings of
the 11th ACM SIGOPS European Workshop, pages 7-12, Leuven, Belgium,
September 2004.

[99] Shad Roundy, Dan Steingart, Luc Frechette, Paul K. Wright, and Jan M.
Rabaey. Power sources for wireless sensor networks. In Karl et al. [71],
pages 1-17.

[100] Kay Romer. Tracking real-world phenomena with smart dust. In Karl et al.
[71], pages 28—43.

[101] Kay Romer. Time Synchronization and Localization in Sensor Networks.
PhD thesis, Eidgenossische Technische Hochschule Ziirich, Department
of Computer Science, Institute for Pervasive Computing, Ziirich, Switzer-
land, May 2005.

[102] Andrew Seitz, Derek Wilson, and Jennifer L. Nielsen. Testing pop-up
satellite tags as a tool for identifying critical habitat for Pacific halibut
(Hippoglossus stenolepis) in the Gulf of Alaska. Exxon Valdez Oil Spill
Restoration Project Final Report (Restoration Project 01478), U.S. Geologi-
cal Survey, Alaska Biological Science Center, Anchorage, Alaska, Septem-
ber 2002.

[103] Jack Shandle. More for less: Stable future for 8-bit microcontrollers.
TechOnLine Website, August 2004. Visited 2007-08-03. Awvailable
from: http://www.techonline.com/community/ed_resource/
feature_article/36930

[104] Alan C. Shaw. Communicating real-time state machines. IEEE Trans. Softw.
Eng., 18(9):805-816, September 1992.

[105] Saurabh Shukla, Nirupama Bulusu, and Sanjay Jha. Cane-toad Monitoring
in Kakadu National Park Using Wireless Sensor Networks. In Network
Research Workshop 2004 (18th APAN Meetings), Cairns, Australia, July 2004.

[106] Frank Siegemund. Smart-its on the internet — integrating smart
objects into the everyday communication infrastructure, September
2002. Available from: http://www.vs.inf.ethz.ch/publ/papers/
smartits-demo-note-siegemund.pdf

[107] Frank Siegemund, Christian Floerkemeier, and Harald Vogt. The value of
handhelds in smart environments. In Personal and Ubiquitous Computing
Journal. Springer-Verlag, October 2004.

[108] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-
tem Concepts. John Wiley & Sons, Inc., New York, NY, USA, 6th edition,
2001.

[109] Gyula Simon, Miklés Marét, Akos Lédeczi, Gyorgy Balogh, Branislav
Kusy, Andras Nadas, Gébor Pap, Janos Sallai, and Ken Frampton. Sen-
sor network-based countersniper system. In SenSys "04 [4], pages 1-12.

http://www.techonline.com/community/ed_resource/feature_article/36930
http://www.techonline.com/community/ed_resource/feature_article/36930
http://www.vs.inf.ethz.ch/ publ/ papers/ smartits-demo-note-siegemund.pdf
http://www.vs.inf.ethz.ch/ publ/ papers/ smartits-demo-note-siegemund.pdf

190

Bibliography

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Karsten Strehl, Lothar Thiele, Matthias Gries, Dirk Ziegenbein, Rolf Ernst,
and Jirgen Teich. Funstate—an internal design representation for co-
design. IEEE Transactions on Very Large Scale Integration (VSLI) Systems,
9(4):524-544, 2001.

John Suh and Mike Horton. Powering sensor networks - current technol-
ogy overview. IEEE Potentials, 23(3):35-38, August 2004.

Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan
Mainwaring, and Deborah Estrin. Habitat monitoring with sensor net-
works. Commun. ACM, 47(6):34—40, 2004.

Esterel Technologies. Esterel Compiler (INRIA Ecoles des Mines Aca-
demic Compiler). Web page. Visited 2006-06-22. Available from:
http://www.esterel-technologies.com/technology/demos/

demos.html

F. Vahid, S. Narayan, and D. D. Gajski. SpecCharts: A VHDL Front-End
for Embedded Systems. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 14(6):694-706, June 1995.

Robert von Behren, Jeremy Condit, and Eric Brewer. Why events are a bad
idea (for high-concurrency servers). In Proceedings of HotOS IX: The 9th
Workshop on Hot Topics in Operating Systems, pages 19-24, Lihue, Hawalii,
USA, May 2003. The USENIX Association.

H. Wang, L. Yip, D. Maniezzo,]J. C. Chen, R. E. Hudson, J. Elson, and
K. Yao. A Wireless Time-Synchronized COTS Sensor Platform: Applica-
tions to Beamforming. In In Proceedings of IEEE CAS Workshop on Wireless
Communications and Networking, Pasadena, CA, September 2002.

Hanbiao Wang, Jeremy Elson, Lewis Girod, Deborah Estrin, and Kung
Yao. Target classification and localization in habitat monitoring. In Pro-
ceedings of IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP 2003), Hong Kong, China, April 2003.

Hanbiao Wang, Deborah Estrin, and Lewis Girod. Preprocessing in a
tiered sensor network for habitat monitoring. EURASIP Journal of Applied
Signal Processing (EURASIP JASP), (4):392-401, March 2003.

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Che-
diak, J. M. Kahn, B. E. Boser, and Kristofer S. J. Pister. An autonomous 16

cubic mm solar-powered node for distributed wireless sensor networks.
In IEEE Sensors, Orlando, USA, June 2002.

Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S. J. Pister. Smart
dust: Communicating with a cubic-millimeter computer. IEEE Computer,
45(1):44-51, January 2001.

Andrzej Wasowski and Peter Sestoft. On the formal semantics of visual-
STATE statecharts. Technical Report TR-2002-19, IT University of Copen-
hagen, Denmark, September 2002.

http://www.esterel-technologies.com/technology/demos/demos.html
http://www.esterel-technologies.com/technology/demos/demos.html

Bibliography 191

[122] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed en-
ergy conservation for ad hoc routing. In MobiCom '01: Proceedings of the
7th annual international conference on Mobile computing and networking, pages
70-84. ACM Press, 2001.

[123] ETH Zurich. BTnodes - A Distributed Environment for Prototyping Ad
Hoc Networks. Web page. Visited 2007-08-03. Available from: http:
[lwww.btnode.ethz.ch/

[124] The Smart-Its Project. Web page. Visited 2007-08-03. Available from:
http://www.smart-its.org

[125] TinyOS. Web page. Visited 2007-08-03. Available from: http://webs.
cs.berkeley.edu/tos/

http://www.btnode.ethz.ch/
http://www.btnode.ethz.ch/
http://www.smart-its.org
http://webs.cs.berkeley.edu/tos/
http://webs.cs.berkeley.edu/tos/

192 Bibliography

Curriculum Vitae

Oliver Kasten

Personal Data
Date of Birth
Birthplace
Citizenship

Education
1976-1981
1981-1987
1987-1989
June 1989
1991-1999
1998

April 1999
2000-2007
Civil Service

1989-1990
1990-1991

Employment
1999-2005

2005-2006
since 2006

July 10, 1969
Balingen, Germany
German

Erich-Kistner-Schule, Pfungstadt, Germany
Holbein-Gymnasium, Augsburg, Germany

Schuldorf Bergstrasse, Seeheim-Jugenheim, Germany
Abitur

Study of Computer Science at

Technische Universitit Darmstadt, Germany

Visiting student at

International Computer Science Institute (ICSI), Berkeley, USA
Diplom Informatiker

Ph.D. Student at the Department of Computer Science,
ETH Zurich, Switzerland

Malteser Hilfsdienst, Augsburg, Germany
Alten- und Pflegeheim Tannenberg, Seeheim-Jugenheim,
Germany

Research Assistant at the Department of Computer Science,
ETH Zurich, Switzerland

Software Engineer, Swissphoto AG, Regensdorf, Switzerland
Senior Researcher, SAP Research (Schweiz), Zurich, Switzer-
land

	1 Introduction
	1.1 Background
	1.2 Motivation and Problem Statement
	1.3 Thesis Statement
	1.4 Contributions
	1.4.1 Modular and Well-Structured Design
	1.4.2 Automated State Management
	1.4.3 Memory-Efficient State Variables
	1.4.4 Light-Weight Execution Environment
	1.4.5 Evaluation

	1.5 Thesis Organization

	2 Wireless Sensor Networks
	2.1 WSN Applications
	2.1.1 Environmental Observation
	2.1.2 Wildlife and Farm-Animal Monitoring
	2.1.3 Intelligent Environments
	2.1.4 Facility Management
	2.1.5 Logistics and Asset Tracking
	2.1.6 Military

	2.2 WSN Characteristics
	2.2.1 Deployment and Environmental Integration
	2.2.2 Size, Weight, and Cost
	2.2.3 Limited Energy Budget
	2.2.4 Lifetime
	2.2.5 Limited Computing Resources
	2.2.6 Collaboration
	2.2.7 Back-End Connectivity
	2.2.8 Mobility and Network Dynamics
	2.2.9 Bursty Traffic
	2.2.10 Dynamic Role Assignment
	2.2.11 Node Heterogeneity

	2.3 Sensor Nodes
	2.3.1 Device Classes
	2.3.2 Sensor-Node Components
	2.3.3 Selected Sensor-Node Hardware Platforms

	2.4 Embedded Systems
	2.4.1 Characteristics of Embedded Systems
	2.4.2 Diversity of Embedded Systems
	2.4.3 Wireless Sensor Nodes

	2.5 Summary and Outlook

	3 Programming and Runtime Environments
	3.1 System Requirements
	3.1.1 Resource Efficiency
	3.1.2 Reliability
	3.1.3 Reactivity

	3.2 Programming Models
	3.2.1 Overview
	3.2.2 The Control Loop
	3.2.3 Event-driven Programming
	3.2.4 Multi-Threaded Programming

	3.3 Memory Management
	3.3.1 Resource Issues
	3.3.2 Reliability Concerns
	3.3.3 Dynamic Memory Management for Sensor Nodes

	3.4 Process Models
	3.4.1 Overview
	3.4.2 Combinations of Processes Models
	3.4.3 Over-the-Air Reprogramming
	3.4.4 Process Concurrency
	3.4.5 Analysis of Process Models

	3.5 Overview and Examples of State-of-the-Art Operating Systems
	3.5.1 The BTnode System Software
	3.5.2 TinyOS and NesC

	3.6 Summary

	4 Event-driven Programming in Practice
	4.1 Limitations of Event-Driven Programming
	4.1.1 Manual Stack Management
	4.1.2 Manual State Management
	4.1.3 Summary

	4.2 The Anatomy of Sensor-Node Programs
	4.2.1 Characteristics of a Phase
	4.2.2 Sequential Phase Structures
	4.2.3 Concurrency
	4.2.4 Sequential vs. Phase-Based Programming

	4.3 Extending the Event Model: a State-Based Approach
	4.3.1 Automatic State Management
	4.3.2 Automatic Stack Management

	5 The Object-State Model
	5.1 Basic Statechart Concepts
	5.2 Flat OSM State Machines
	5.2.1 State Variables
	5.2.2 Transitions
	5.2.3 Actions

	5.3 Progress of Time: Machine Steps
	5.3.1 Non-determinism
	5.3.2 Processing State Changes
	5.3.3 No Real-Time Semantics

	5.4 Parallel Composition
	5.4.1 Concurrent Events
	5.4.2 Progress in Parallel Machines

	5.5 Hierarchical Composition
	5.5.1 Superstate Entry
	5.5.2 Initial State Selection
	5.5.3 Substate Preemption
	5.5.4 Progress in State Hierarchies

	5.6 State Variables
	5.7 Summary

	6 Implementation
	6.1 OSM Specification Language
	6.1.1 States and Flat State Machines
	6.1.2 Grouping and Hierarchy
	6.1.3 Parallel Composition
	6.1.4 Modularity and Code Reuse through Machine Incarnation

	6.2 OSM Language Mapping
	6.2.1 Variable Mapping
	6.2.2 Control Structures
	6.2.3 Mapping OSM Control-Flow to Esterel

	6.3 OSM Compiler
	6.4 OSM System Software
	6.5 Summary

	7 State-based Programming in Practice
	7.1 An Intuitive Motivation
	7.2 Modular and Well-Structured Program Design
	7.2.1 EnviroTrack Case Study
	7.2.2 Manual versus Automated State Management
	7.2.3 Resource Initialization in Context
	7.2.4 Avoiding Accidental Concurrency

	7.3 Memory-Efficient Programs
	7.3.1 Example
	7.3.2 General Applicability and Efficiency

	7.4 Summary

	8 Related Work
	8.1 Programming Embedded Systems
	8.1.1 Conventional Programming Methods
	8.1.2 Domain-specific Programming Approaches
	8.1.3 Embedded-Systems Programming and Sensor Nodes

	8.2 State-Based Models of Computation
	8.2.1 Statecharts
	8.2.2 UML Statecharts
	8.2.3 Finite State Machines with Datapath (FSMD)
	8.2.4 Program State Machines (PSM), SpecCharts
	8.2.5 Communicating FSMs: CRSM and CFSM
	8.2.6 Esterel
	8.2.7 Functions driven by state machines (FunState)

	8.3 Sensor-Node Programming Frameworks
	8.3.1 TinyOS
	8.3.2 Contiki
	8.3.3 Protothreads
	8.3.4 SenOS

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Contributions
	9.2.1 Problem Analysis: Shortcomings of Events
	9.2.2 Solution Approach: State-based Programming
	9.2.3 Prototypical Implementation
	9.2.4 Evaluation

	9.3 Limitations and Future Work
	9.3.1 Language and Program Representation
	9.3.2 Real-Time Aspects of OSM
	9.3.3 Memory Issues

	9.4 Concluding Remarks

	A OSM Code Generation
	A.1 OSM Example
	A.2 Variable Mapping (C include file)
	A.3 Control Flow Mapping--Stage One (Esterel)
	A.4 Control Flow Mapping--Stage Two (C)
	A.4.1 Output of the Esterel Compiler
	A.4.2 Esterel-Compiler Output Optimized for Memory Efficiency

	A.5 Compilation
	A.5.1 Example Compilation Run
	A.5.2 Makefile

	B Implementations of the EnviroTrack Group Management
	B.1 NesC Implementation
	B.2 OSM Implementation

	Bibliography

