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Abstract
The convergence of networked embedded devices, wearables, and
sensing technologies has expedited the emergence of an array of
innovative services and applications that are radically changing the
way we perceive and interact with the physical world. Wireless
communication is the natural substrate connectivity means for a wide
variety of these applications. For these applications to perform
correctly, they require the underlying wireless communication to be
reliable and energy-e�cient. Meeting these requirements is, however,
challenging. Particularly, as we witness an unprecedented demand for
wireless access, more wireless technologies and devices need to share
the scarcely available radio spectrum. This is especially a growing
problem for devices operating in the unlicensed spectrum, where the
density and heterogeneity of radios operating in this spectrum are
surging. Consequently, interference between the heterogeneous radio
systems is growing in unpredictable ways. The emerging spectrum
crunch necessitates the design and development of innovative wireless
systems that enhance spectrum utilization and are apprehensive of the
uncoordinated wireless coexistence problem.

In this dissertation, we take an alternative approach to deal with
Cross-Technology Interference (CTI). Instead of avoiding interference,
we adopt an interdisciplinary approach combining a cross-layer design
and machine learning techniques to build cognitive low-power wireless
systems that can cope with Cross-Technology Interference. We begin
this dissertation by acquiring a good understanding of how various
interfering wireless signals interact, and we harness this understanding
in our designs. We then introduce a family of algorithms and system
architectures that improve the robustness of low-power wireless networks
operating in interference-rich environments. The introduced systems
embody a cross-layer design and a cognitive engine that radios can exploit
to intelligently share the spectrum and implement CTI-aware mitigation
schemes. In particular, we present three novel systems contributing to
low-power wireless systems coexistence:

i) Technology-Independent Interference Mitigation (TIIM): Interfering
radio technologies di↵er widely in the way they a↵ect wireless links.
Cross-Technology Interference has a complex impact on wireless links,
which needs to be taken into account when treating interference.
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To address this challenge, we present TIIM, a system that identifies,
quantifies, and reacts to CTI in real-time. In the design of TIIM,
we follow an unconventional approach, where we employ lightweight
machine learning techniques to assist wireless nodes in recovering from
interference. Within TIIM, we develop a lightweight classifier which is
trained to select a coexistence solution that works most e↵ectively for the
current channel fingerprint.

ii) CrossZig: Current wireless designs still largely impose layer isolation.
Thereby, conventional approaches to tackle wireless performance have
focused on separately optimizing di↵erent layers of the networking
stack. This rigid design fails to harness the rich ambient information
embedded in the physical signals. Hence, reliability solutions targeting
layers in isolation are typically suboptimal. In recent years, cross-layer
optimizations were profoundly advocated in the wireless community. In
this work, we pursue this research direction. We show how physical
layer information and primitives can be coupled with the link layer to
enhance low-power wireless systems coexistence and performance under
interference. Notably, we present CrossZig, a cross-layer wireless design,
that enables low-power wireless networks to exploit fine-grained physical
layer information to make informed decisions that can help them recover
from varying sources of interference. CrossZig utilizes physical layer
information to detect the presence of external interference in corrupted
packets and to apply an adaptive packet recovery which incorporates a
novel cross-layer based packet merging scheme and an adaptive channel
coding.

iii) Controlled Interference Generator (CIG): Wireless research testbed
infrastructures often lack proper tools for enabling repeatable replay
of realistic radio interference commonly found in real-world deploy-
ments. Hence, benchmarking wireless coexistence solutions is often
cumbersome, time-consuming, and even infeasible in remote testbeds.
To facilitate Cross-Technology Interference and wireless coexistence
experimentations, we develop CIG, a framework that extends wireless
testbed infrastructures with the capability of reproducing heterogeneous
external interference. In the design of CIG, we consider a unified
approach that incorporates a careful selection of interferer technologies
(implemented in software), to expose networks to realistic interference
patterns.

The systems presented in this dissertation demonstrate that incorpo-
rating cognitive and cross-layer wireless designs is adequate to mitigate
the problem of uncoordinated wireless coexistence.



Zusammenfassung
Die Konvergenz vernetzter eingebetteter Geräte, Wearables sowie Sen-
sortechnologien hat eine Reihe innovativer Dienste und Anwendungen
ermöglicht, welche die Art und Weise, wie wir mit der physischen Welt
interagieren und diese wahrnehmen, radikal verändert haben. Für die
Mehrzahl dieser Anwendungen stellt dabei die Funktechnologie das
natürliche Kommunikationsmedium dar. Damit derartige Anwendun-
gen einwandfrei funktionieren, muss die zugrunderliegende drahtlose
Kommunikationstechnologie daher zuverlässig und energiee�zient sein.
Dies stellt eine Herausforderung dar, da der Bedarf an drahtloser
Kommunikationsmöglichkeit ständig steigt, neue Funktechnologien
etabliert werden und sich immer mehr Geräte das ohnehin spärlich
verfügbare Frequenzband teilen müssen. Dies stellt insbesondere ein
zunehmendes Problem für solche Systeme dar, die in den lizenzfreien
Frequenzbändern operieren, wo die Dichte und Heterogenität der
Geräte schnell anwächst. Als Folge davon steigt das Interferenzpotential
zwischen heterogenen drahtlosen Systemen stark an. Die zunehmende
Ressourcenknappheit erfordert daher innovative Konzepte, welche eine
verbesserte Frequenzbandnutzung ermöglichen und sich dediziert des
Problems der unkoordinierten drahtlosen Koexistenz annehmen.

In diesem Sinne verfolgen wir in der vorliegenden Dissertation
einen neuartigen Ansatz zur Behandlung der sogenannten techno-
logieübergreifenden Interferenz (Cross-Technology Interference, CTI).
Anstatt auf Interferenzvermeidung zu setzen, kombinieren wir ein
schichtübergreifendes Konzept mit Ansätzen des maschinellen Lernens,
um energiee�ziente kognitive Funksysteme realisieren zu können, die
mit CTI gut zurechtkommen. Zu Beginn der Dissertation wird unser
erzieltes Verständnis dazu, wie interferenzverursachende Signale wirken,
ausführlich dargelegt. Die gewonnenen Erkenntnisse machen wir uns
sodann in unseren Systementwürfen zunutze. Wir stellen dazu eine
Familie von Algorithmen und Systemarchitekturen vor, welche die
Robustheit energiee�zienter Funkkommunikation in interferenzreichen
Umgebungen steigert. Die vorgestellten Systeme realisieren ein schicht-
übergreifendes Konzept und verkörpern eine „cognitive engine“, die von
funkbasierten Geräten auf intelligente Weise genutzt werden kann, um
Frequenzbänder untereinander zu teilen und Massnahmen gegen CTI
zu tre↵en. Insbesondere stellen wir drei neue Konzepte vor, welche zur
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Koexistenz von energiee�zienten drahtlosen Systemen beitragen:

i) Technologieunabhängige Interferenz-Gegenmassnahmen (Techno-
logy Independent Interference Mitigation, TIIM): Interferenzverur-
sachende Drahtlostechnologien unterscheiden sich deutlich in der
Art und Weise, wie sie funkbasierte Kommunikationsverbindungen
beeinflussen. Technologieübergreifende Interferenz wirkt in komplexer
Weise auf drahtlose Verbindungen ein, was bei Behandlung von
Interferenz berücksichtigt werden muss. Um dieser Herausforderung
zu begegnen, entwickelten wir TIIM, ein System, welches CTI in
Echtzeit identifiziert, quantifiziert und darauf reagiert. Beim Entwurf
von TIIM verfolgen wir einen unkonventionellen Ansatz, indem wir
leichtgewichtige Mechanismen des maschinellen Lernens einsetzen, um
die jeweiligen Knoten beim Beherrschen von Interferenz zu unterstützen.
Hierfür entwickelten wir einen leichtgewichtigen Klassifikator, welcher
daraufhin trainiert ist, Kanalzustände zu erkennen, bei denen eine
bestimmte Koexistenzmassnahme am e↵ektivsten wirkt.

ii) CrossZig: Existierende Konzepte der Drahtloskommunikation un-
terliegen weitgehend dem Prinzip der Schichtenisolation. Daher haben
herkömmliche Ansätze zur E�zienzsteigerung den Fokus auf die
getrennte Optimierung der jeweiligen Schicht des Netzwerkstacks
gelegt. Diese starre Vorgehensweise kann jedoch nicht das reichhaltige
Kontextwissen, welches in den Funksignalen enthalten ist, nutzen.
Daher sind die nach diesem Entwurfsmodell entwickelten Lösungen
zur Steigerung der Zuverlässigkeit in der Regel suboptimal. In den
vergangenen Jahren sind jedoch schichtübergreifende Optimierungen
bei der Drahtloskommunikation stark propagiert worden. In der
vorliegenden Dissertation greifen wir diesen Ansatz auf. Wir zeigen, wie
die Informationen und Grundelemente aus der Bitübertragungsschicht,
wenn sie mit der Sicherungsschicht geeignet verbunden werden, zu
einer verbesserten Koexistenz und höheren Leistung energiee�zienter
drahtloser Systeme bei Vorliegen von Interferenz führen können. Dazu
diskutieren wir CrossZig, ein schichtübergreifendes Entwurfskonzept,
das es energiee�zienten drahtlosen Netzen ermöglicht, feingranulare
Informationen aus der Bitübertragungsschicht zu nutzen, um fundierte
Entscheidungen zur Beherrschung von Interferenz unterschiedlicher
Provenienz zu tre↵en. CrossZig nutzt bei fehlerbehafteten Paketen
Information aus der Bitübertragungsschicht, um das Vorhandensein
externer Interferenz zu erkennen und um einen adaptiven Paketwie-
derherstellungsmechanismus anzuwenden, welcher einen neuartigen
schichtübergreifenden Paketverschmelzungsansatz und eine adaptive
Kanalkodierung umfasst.



v

iii) Steuerbarer Interferenzgenerator (Controlled Interference Gene-
rator, CIG): Bei den Testinfrastrukturen im Rahmen der Forschung
an drahtlosen Systemen fehlen meistens geeignete Werkzeuge, die
Interferenzen so realistisch reproduzieren können, wie sie in der realen
Welt anzutre↵en sind. Daher ist das Benchmarking von Lösungen zur
Koexistenz drahtloser Systeme oft mühsam, zeitaufwendig und auch
nicht in abgesetzten Testumgebungen durchführbar. Um Experimente
zur Koexistenz bei CTI zu ermöglichen, entwickelten wir daher
das CIG-Framework, welches Testumgebungen für drahtlose Systeme
um die Möglichkeit der Reproduktion heterogener externer Interferenz
erweitert. Bei der Ausgestaltung von CIG wurde ein einheitlicher Ansatz
verfolgt, der eine sorgsame Auswahl (softwaremässig implementierter)
interferenzverursachender Technologien umfasst, damit drahtlose Netze
realistischen Interferenzen ausgesetzt werden können.

Die in dieser Dissertation vorgestellten Systeme zeigen, dass die
Kombination von kognitiven und schichtübergreifenden Konzepten
geeignet ist, das Problem der unkoordinierten drahtlosen Koexistenz
wesentlich zu entschärfen.
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1
Introduction

The field of wireless communication has been established over more
than a hundred years ago, dating back to around 1897 with Marconi’s
successful demonstration of the first commercial wireless telegraphy
system based on radio waves. The topic has been extensively
studied since then. In the last decade, however, radio-based wireless
communication has experienced an unprecedented surge in research
activities and phenomenal growth. This is attributed to a confluence of
several factors. (i) The substantial increase in demand for ubiquitous
wireless connectivity, driven by a↵ordable wireless-enabled mobile
computers, and wireless handheld devices. (ii) The pronounced
progress in chip design and software radios which has enabled e�cient
implementation of complex signal processing algorithms and realization
of theoretical work that was not feasible before. (iii) The concomitant
maturation of mobile ecosystems such as Windows Mobile, Apple’s
iOS and Google’s Android systems leading to increased interest in high
throughput wireless. (iv) Finally, the increasingly growing interest in
the Internet of Things has boosted the development of ultra-low-power
wireless technologies. However, there is a fundamental factor that is
throttling this growth; wireless transmissions are inherently broadcast
by nature and the radio spectrum is fundamentally a shared and scarce
resource. If the wireless growth continues at this pace, wireless demand
soon will exceed the capacity of allocated radio spectrum. This can lead
to serious consequences on the dependently and performance of wireless
networks.

In this dissertation, we primarily focus on the low-power wireless
systems coexistence in the unlicensed spectrum. Low-power wireless



2 Chapter 1. Introduction

Figure 1.1: Averaged channel occupancy in the 2.4 GHz band over one week (26.-
31. August 2013). Data from Microsoft Spectrum Observatory in an enterprise
building in Brussels, Belgium.

communication has been a key enabling technology for a class of
innovative applications in the last decade. It is the primary choice
of connectivity for embedded low-power devices. These devices are
increasingly integrated into objects and environments surrounding us,
paving the way for the Internet of Thing’s vision of digitizing the physical
world. These devices are utilized in a range of performance-sensitive
applications, such as health systems, general monitoring and tracking,
home automation, etc. While it is not expected that exchanged data
will be at high volume in these applications, a myriad of devices will be
connected at the same time which will create a set of new challenges. Low-
power wireless technologies (e.g., Bluetooth Low Energy, IEEE 802.15.4,
and backscatter communication) employed by these applications are
expected to endure interference from other radio technologies. The Cross-
Technology Interference (CTI) problem is exacerbated for these low-
power networks, where energy and complexity constraints prohibit the
use of sophisticated interference suppression and cancellation techniques
that are finding their ways into unconstrained wireless systems. To date,
much of the devised radio frequency interference solutions focused on
resolving interference between devices of the same technology. As a
consequence, current wireless systems are short of mechanisms to identify
and adapt to dynamic sources of external interference. Utilizing non-
overlapping segments of the spectrum has been the natural solution to
avoid/tackle interference between di↵erent technologies. However, as the
density of radio devices continue to increase, this solution will no longer
su�ce (see Figure 1.1).

This dissertation presents novel system designs and mechanisms that
enable low-power wireless systems to gracefully coexist in the crowded
spectrum and mitigate the e↵ects of CTI. The introduced systems embody
a cross-layer design and a cognitive engine that radios can harness to
intelligently share the spectrum and implement CTI mitigation schemes.
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1.1 Challenges in Low-Power Wireless Coexis-
tence

How wireless devices can navigate their way through the dense
and diverse spectral environments and deal with interference is
fundamentally central to the design of wireless systems. The
coexistence of low-power wireless systems in the crowded radio
spectrum is particularly challenging. At the core of typical low-power
wireless systems are embedded devices with limited computation and
communication capabilities. The constrained resources available on these
systems poses several challenges to the design of dependable wireless
protocols and coexistence mechanisms. Furthermore, low-power wireless
systems are expected to compete for the shared spectrum with a wide
range of devices that are typically less constrained and often adopt greedy
practices in sharing the spectrum. In the following, we further highlight
these challenges.

1.1.1 Resource-Constrained Devices

Typical platforms for low-power wireless systems feature a low-power
Microcontroller (MCU), limited memory, tight energy budget, and a short-
range, low-rate wireless radio transceiver. To have a better understanding
of the extent of available resources in such systems, we discuss two
example of typical low-power platforms: (i) a TelosB device [119] (also
known as Tmote Sky) is a common platform in wireless sensor network
deployments. This platform features a 16-bit MSP430 microcontroller
operating at frequencies of up to 8 MHz and is equipped with a TI CC2420
wireless radio transceiver compliant with the IEEE 802.15.4 standard,
featuring 10 kB of RAM and 48 kB of ROM. (ii) OpenMotes are based on the
TI CC2538 microcontroller [113] (similar platforms are used in a range of
IoT applications, such as health-tracking wristbands). They feature a 32-
bit ARM Cortex-M3 SoC at 32 MHz. They are equipped with IEEE 802.15.4
standard compliant radio transceivers, 32 kB of RAM, and 512 kB of
ROM. The resources available in these systems are several orders of
magnitude lower than what is the norm on modern mobile and computing
devices. Such scarcity of resources limits the ability of wireless protocols
to perform computationally intensive and memory hungry operations on
these devices (i.e., bu↵ering and sophisticated signal processing). Hence,
the constrained nature of these devices poses serious challenges to the
design of wireless communication protocols, ultimately hampering their
ability to withstand CTI. Moreover, energy e�ciency is a crucial factor for
these systems; such systems are anticipated to operate continuously and
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unattended for long periods that can range from a few weeks to several
years [114, 28, 16] with a limited energy budget. This constraint largely
influences the design of wireless protocols, where radios should operate
in a low-power sleep mode for most of the time and transmit at a low
power to maximize their lifespan.

Researchers and industry players are pushing for microscopic low-
power platform designs [86, 94] (i.e., cubic-millimeter) so sensing and
computation capabilities can be fabricated and concealed in all objects
(i.e., smart objects). This will fuel an array of innovative services
and applications that will change the way we perceive and interact
with the physical world. The constant push towards miniaturization
of technology implies that these devices are likely to remain extremely
resource-constrained to confine with the space requirements.

1.1.2 Spectrum Crunch
Radio spectrum is a globally finite resource, that needs to be e↵ectively
allocated and shared. Despite the notable recent advances in radio
spectrum e�ciency, it is anticipated that demand for wireless services is
likely to outstrip radio spectrum capacity in the near future [47, 11]. This
high demand trend is present for both the unlicensed and licensed bands
but is more pressing for the unlicensed bands. Failing to address this
spectrum crunch will lead to serious consequences on wireless service
quality. Meeting this high demand necessitates new technologies that
intensify frequency use and for the government to reallocate and open
new spectrum bands.

In 1985 the Federal Communications Commission (FCC) devised to
open up the 900, 2400, and 5800 MHz bands for the unlicensed use in
data communications industry. Since then these bands have been home
for a wide range of standardized and propriety wireless technologies
and devices. The IEEE 802.11 (also referred to as WiFi) is a prime
example of a high throughput pervasive technology that exists in these
bands. These bands are typically much less regulated and wireless
networks coexist without any form of coordination. Hence, interference
is inevitable in these bands. The coexistence of heterogeneous co-located
wireless systems is a technically challenging issue both for medium access
control (MAC) and physical (PHY) layer designs. The inherent problem
in radios today is that they do not know much about their neighboring
networks (unaware of the technology type, proximity, and spectrum
usage patterns of co-located networks) to act upon optimally. This is
mainly due to the absence of communication means between these diverse
technologies (i.e., speak di↵erent PHY protocols). Hence, coexistence
between radios of di↵erent types is anarchic.
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Low-power wireless systems have to compete for their share in these
anarchic settings. Some of the communication properties and aspects
that are adopted by radio technologies populating the unlicensed bands
make it particularly challenging for low-power wireless technologies
to coexist in the shared spectrum. For instance, (i) Wide-band: many
devices use wide-band channels that a↵ect a large segment of the available
spectrum. Moreover, wireless systems are in general increasingly moving
to wider frequency bands to cope with the high throughput demands.
For example, to cope with the immense demand for high throughput
over WiFi, the recent amendments of 802.11 allow the configuration of
40 MHz-wide channels in the 2.4 GHz band. Also, recent e↵orts in the
802.11 community are advocating to discard the notion of channelization
to allow nodes to access a wider spectrum in order to improve load
demand [79, 124]. Another case of wide-band occupancy are microwave
ovens; they typically a↵ect a large segment of the available spectrum in
the 2.4 GHz band. (ii) High-power: due to the inherent application
requirements, devices operating in the unlicensed bands transmit at
di↵erent power levels. Low-power radios typically transmit at less
than 1 mW for energy e�ciency requirements, others, such as analog
phones, can transmit at the maximum allowed power (i.e., 1000 mW). This
severe power asymmetry poses significant coexistence problems, where
high-power interferers can completely starve low-power technologies.
That is because a typical high-power interferer might fail to detect
the transmission of a nearby low-power transmitter, thus can interfere
with the low-power node’s transmission and monopolize the shared
channel. Although Electromagnetic Compatibility (EMC) regulators
lightly regulate this aspect by setting an upper limit of 30 dBm for
transmit-power in the unlicensed bands, energy leaks from microwave
ovens can reach up to 60 dBm. This is significantly higher than the typical
output power of low-power wireless systems which is 0 dBm. (iii) Mobile-
phone carriers presence in the unlicensed bands: Wireless carriers are
developing systems (i.e., LTE-Unlicensed (LTE-U) or Licensed Assisted
Access (LAA) [1, 3, 2]) that allow them to o✏oad large segment of mobile
data tra�c into the unlicensed spectrum. This would further exacerbate
congestion in the unlicensed bands.

1.2 State of the Art
In the following, we cover prominent related work on interference
mitigation, cognitive communication, and wireless experimentation. The
work in this dissertation contributes to and builds on ideas from these
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research areas. Additionally, each chapter exhibits a dedicated related
work section to cover more specific related work.

1.2.1 Interference Management and Mitigation
Wireless interference is (and has long been) an important topic in the
wireless communication research. Wireless is inherently a broadcast
medium and the unlicensed radio spectrum is fundamentally a scarce
resource that an increasing number of devices have to share, in an
uncoordinated manner. Consequently, exacerbating the interference
problem. Recent years have seen significant and fundamental
contributions to the state-of-the-art interference management. A large
body of work on radio interference mitigation is available in the literature
and there is a various set of strategies that can be employed to tackle
this challenge [49]. Many of these solutions have been successfully used
in the past or are being used in contemporary wireless systems. In the
following, we highlight prominent research directions to address wireless
interference.

Interference Avoidance. The most widely adopted approach to deal
with interference is to avoid it. Devices employ mechanisms that can
facilitate transmitting signals in segmented non-overlapping time slots,
spaces, or frequency bands to avoid interference. These mechanisms
can be part of the physical layer (PHY) or the media access control
(MAC) layer. Frequency-based isolation is the most common isolation
approach employed in wireless systems. This approach embodies
mechanisms such as employing spectrum sensing to identify interference-
free channels [126, 162, 31] and adaptive frequency fragmentation
techniques [29, 127, 163, 79, 124, 106]. While these mechanisms focus on
the careful tuning of signals to realize frequency isolation, others exploit
frequency diversity to increase resilience against interference [107, 9, 40,
105, 83, 60] where the radio signal is spread over multiple channels. Other
e↵orts focused on avoiding interference in time by exploiting channel
temporal diversity. Interferers generally exhibit some regularity that can
be learned and harnessed by nodes to schedule their transmissions in idle
periods [80, 21, 161, 30]. Finally, researchers harness opportunities arising
from space diversity, by exploiting directionality o↵ered by antenna beam
steering to avoid interfering with a co-located interferer [151, 88, 12].
Analogously, in networks with high node density, multiple paths exist,
that nodes can harness to send packets to alternative paths that are less
a↵ected by interference [58, 75].

To sum up, the core idea of interference avoidance is to bring
mechanisms that can allow communicating over interference-free links.
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These links can be pre-established via coordinated multiple access in time,
frequency, code, and space domains or temporally established based on
the interferer behavior. However, the lack of interference-free channels
(i.e., due to the rapidly surging number of wireless devices sharing the
scarce spectrum), and the fast and unpredictable changes in the occupancy
state of frequency bands make the overhead of these approaches high,
particularly for resource-constrained devices.

Recovering from Interference. There is a body of research that focuses
on recovering from interference by treating other transmitter’s signals
as noise, or decoding interfering signals (i.e., interference cancellation).
This direction instead of avoiding interference copes with it by increasing
communication resilience. In this approach, PHY and/or MAC layers
are braced with a set of recovery mechanisms that help to restore data
segments corrupted with interference. Examples of such mechanisms
include: (i) Adding redundancy by applying a resilience forward error
coding scheme to interference [96, 61, 133], (ii) partial packet recovery
mechanisms that identify packet segments that su↵ered corruption from
interference and selectively retransmit only the interfered segments [71,
66, 85, 115, 159, 63, 99], and (iii) interference cancellation schemes. Here
the receiver, with minimal or no coordination from the sender, attempts
to recover the signal of interest from interference. Typically, the receiver
decodes the interfering signal first, i.e., the signal with larger power.
Afterward, the interference signal is stripped away from the aggregately
received signal to get the target signal [54, 166, 62, 56, 36]. Typically, these
solutions are customized for a particular interference type or pattern.
Hence, they fall short in the presence of heterogeneous interference.

1.2.2 Cognitive Communication
The work in this dissertation builds on the core idea of cognitive
communication. The concept of cognitive radio was first introduced by
Mitola [104]. He presented a broad vision for wireless communication
that he described as: "The point in which wireless personal digital
assistants and the related networks are su�ciently computationally
intelligent about radio resources and related computer-to-computer
communications to detect user communications needs as a function of
use context, and to provide radio resources and wireless services most
appropriate to those needs". The emerging spectrum crunch raised
interest in cognitive radio. Cognitive radio generally refers to radio
devices that have the capability to sense their RF environments and adapt
their spectrum usage accordingly [67, 17]. This broad vision has been
followed by research e↵orts in signal detection and classification [67, 8],
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spectrum sharing models [24, 23], and centralized and distributed
spectrum sharing protocols [26, 168, 167]. The cognitive radio term now
is largely coined with unlicensed devices access to frequency bands that
are currently reserved for licensed usage. Therefore, prior work focused
on spectrum sensing in the licensed bands (detecting temporarily unused
bands), where it is critical for unlicensed secondary users not to interfere
with the licensed primary users.

The cognitive communication’s native vision is broader than what
is currently the norm in cognitive radio [104]. It enfolds incorporating
machine-learning techniques that can make radios trainable in a broad
sense. Cognitive radio research drifted from this vision and is now
primarily governed by complex decision-making processes. In the recent
years, we have witnessed the rise of interest in bringing cognitive radio
concepts to the unlicensed bands. This is driven by the need to cope with
high throughput demands. Few examples include work in Agile Radios,
Dynamic Frequency Selection (DFS), and Smart Antenna Array. The
work in this dissertation explores and builds on cognitive communication
concepts to enhance wireless systems coexistence.

1.2.3 Low-Power Wireless Experimentation
Researchers in wireless communication rely on two primary methodolo-
gies for performance analysis, namely network simulation and testbed
experiments. Network simulation is a widely used methodology
for the development and verification of new network protocols and
communication constructions. To run their experiments, researchers use
a network simulator, a software that allows modeling arbitrary computer
networks by specifying experiment settings such as the behavior of the
network nodes and the communication channels. Simulators can be either
in-house built that are developed and customized by researchers for their
experiments or publicly available such as ns-3 [110], OMNeT++ [112],
TOSSIM [95], and Cooja [41]. Publicly available simulators are often
based on the discrete event-based simulation paradigm [156, 48] and
are supported by complex models and, hence, are more credible.
The wireless research community is often critical of work that is
supported by only simulation results. Simulation-based experimentation
provides flexibility, control, and repeatability but lacks realism and
is plagued with inherent inaccuracies. To overcome this, researchers
have understandably adopted testbed experimentation as a standard
methodology for performance evaluation in wireless networks. They
enable evaluation with realistic testing grounds, channel propagation,
interference conditions, timing requirements, and hardware constraints.
However, evaluation with testbeds can be tedious. Researchers are
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throttled by high implementation and cost barriers, and complex and
time-consuming experiment set-ups. These barriers can preclude testing
in real systems. To facilitate a broader adoption of testbed-based
experimentation, the communication research community worked on
developing a large number of testbed facilities that have simulation
like usability experience (i.e., remote users upload the specifications of
their experiment and collect traces from a web interface), where setup
and maintenance are managed by the testbed hosting institutes. These
testbeds are heterogeneous in many dimensions: supported hardware
and software, the number of available nodes, resources, supported
wireless technologies, and accessibility. Some of the prominent publicly
available testbeds are Emulab [70] (University of Utah, U.S.), Orbit [131]
(Rutgers University, U.S.), PlanetLab [32] (University of California
Berkeley, U.S.), FlockLab [97] (ETH Zurich, Switzerland), Indriya [37]
(National University of Singapore), MoteLab [157] (Harvard University,
U.S.), IoT-Lab [6] (Inria, France), and TWIST [64] (TU Berlin, Germany).
Testbeds have constantly evolved in the last years to reflect accurately on
how various environmental e↵ects can be reproduced, such as extending
existing testbed infrastructures with the support of node mobility and
radio interference [20, 141]. Furthermore, several testbed facilities are
being augmented with hardware and software support for cognitive
systems [121]. Despite recent progress in testbed capabilities, their ability
to reproduce and reflect on heterogeneous radio interference conditions is
still limited. Throughout this dissertation, we opt to validate our systems
using customized testbeds we set up explicitly for this work. Publicly
available testbeds do not yet support tools for wireless coexistence
research. In Chapter 5, we elaborate more on this limitation, and present
a solution that can help to overcome this limitation by extending current
testbed infrastructures with the capability of reproducing heterogeneous
external interference to facilitate wireless coexistence research.

1.3 Dissertation Contributions and Roadmap
In this dissertation, we take an alternative approach to deal with CTI,
where instead of avoiding interference, we adopt an interdisciplinary
approach combining cross-layer designs and lightweight machine-
learning techniques to build cognitive low-power wireless systems that
can cope with CTI. We begin by acquiring a good understanding of how
interfering wireless signals interact and harness this understanding in
our designs. We then introduce a family of algorithms and system
architectures that improve the robustness of low-power wireless networks
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Figure 1.2: TIIM dynamically applies interference mitigation measures specific
to channel conditions (Chapter 3).

operating in interference rich environments. All systems presented in
this dissertation have been deployed and evaluated in testbeds. Our
evaluations reveal large performance gain achieved in each system. The
detailed results are described in the individual chapters. The specific
contributions of this dissertation are highlighted below.

1.3.1 Understanding the Impact of Cross-Technology
Interference on Low-power Wireless Networks
(Chapter 2)

Interfering radio technologies di↵er widely in the way they a↵ect wireless
links. Cross-Technology Interference has a strong and complex impact
on wireless links that need to be taken into account when treating
interference. To acquire a better understanding of the problem, we
conduct a comprehensive empirical study of CTI implications on low-
power wireless networks. The purpose of this study is twofold.
First, acquiring a good understanding of how interfering wireless
signals interact in the shared channel. Second, identify and highlight
vulnerabilities in existing communication protocols that hinder them to
withstand CTI. In a controlled environment, we expose a low-power
wireless network to a set of prevalent interferers. The set of considered
interferers is selected to represent common underlying properties
adopted by most of the nowadays used wireless devices. The study
analysis covers observations at multiple layers of the communication
stack, namely, physical layer, MAC layer, and application layer’s payload.
In this study, we show that the uncertainty that CTI induces on the
wireless channel is not completely stochastic; CTI exhibits distinct
patterns that can be exploited by interference-aware protocols.

Chapter 2 describes in details our study and presents a detailed
analysis of the CTI implications on low-power wireless networks.
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1.3.2 Adaptive Cross-Technology Interference Mitigation
(Chapter 3)

To date, much of the devised radio frequency interference solutions
focused on resolving interference between devices of the same technology.
There exists no systematic mechanism for radios to be aware of what
other radio types exist in their environments and make smart decisions to
adapt accordingly. Hence, coexistence between radios of di↵erent types
is anarchic. To address this challenge, we resort to machine learning;
we employ supervised learning to train radios to recognize interference
patterns at which a particular link-layer mitigation strategy would work
best, regardless of the interference type. To demonstrate the feasibility of
this approach, we construct TIIM, as illustrated in Figure 1.2, a lightweight
Technology Independent Interference Mitigation solution that detects,
quantifies, and reacts to CTI in real-time. TIIM selects interference
mitigation strategies directly based on measured medium properties. We
train our system to detect interference patterns and map these to a link-
layer interference mitigation strategy that works best for this particular
pattern. Our evaluation shows that TIIM, while exposed to extensive
and heterogeneous interference, can achieve a total packet reception rate
improvement of 30% with an additional transmission overhead of 5.6%.

Chapter 3 describes the detailed architecture of TIIM and provides
results of our testbed evaluation.

1.3.3 Exploiting PHY Layer Information to Combat Cross-
Technology Interference (Chapter 4)

In current radio transceiver designs, the accessible information about the
environment is limited. Therefore, radios coexistence policies are likely
to be suboptimal. Over the last few years, researchers advocated for
new wireless designs that allow better interfacing between the physical
layer and higher layers, particularly, to cope with interference. Typically,
information delivered from the physical layer to upper layers is restricted
to decoded bits. However, physical signals convey rich information
about the ambiance, which is particularly enlightening in the case of
interference. In this work, we explore how physical layer information
can be exploited towards wireless coexistence. We present a cross-layer
wireless design, named CrossZig, which enables radios to harness fine-
grained physical layer information to recover from varying sources of
interference. We implement a prototype of CrossZig for the IEEE 802.15.4
in programmable radios. We show the performance gain of CrossZig
through experimental evaluation considering both micro-benchmarking
and system performance under various interference patterns.
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Figure 1.3: Schematic of our Controlled Interference Generation (CIG)
framework, facilitating advanced wireless coexistence experimentation
(Chapter 5).

Chapter 4 expands on CrossZig architecture and components,
describes its implementation on programmable radios, and details results
of our CrossZig evaluation.

1.3.4 Wireless Coexistence Experimentation (Chapter 5)
As wireless networks and systems become omnipresent, there is a
strong need for testing, understanding, and debugging existing wireless
protocols against increasingly complex settings. Publicly available
research testbeds often lack the support for repeatable generation of
realistic interference patterns. Hence, studying coexistence problems
between wireless devices is often a cumbersome process. In this
dissertation, we address the lack of interference generation support
by proposing and developing CIG (see Figure 1.3), a software-
defined radio-based interference generator that generates customizable
and repeatable interference in real-time. We consider a unified
approach that incorporates a careful selection of interferer technologies
implemented in programmable radios (i.e., supporting a range of
digital modulation formats) and dedicated hardware that exposes the
networks to realistic interference patterns. CIG provides an interface
for generating interference from software implementations of devices
commonly operating in the 2.4 GHz ISM band, as well as a playback
interface that allows regenerating previously recorded interference
patterns. With CIG researchers can rerun experiments under almost
identical radio environmental conditions and, hence, CIG would largely
facilitate wireless coexistence research.

Chapter 5 describes the detailed architecture of each of CIG’s
components and provides results of the implementation and validation
of CIG on programmable radios.
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1.3.5 Roadmap
The main chapters of this dissertation are organized in a chronological
and didactic order and can be read as separate self-contained components.

We start this dissertation with an empirical study of Cross-Technology
Interference (CTI) implications on low-power wireless networks in
Chapter 2. The observations made in this chapter largely influenced the
approach we adopt to address low-power wireless systems coexistence in
this dissertation. Chapter 3 describes TIIM, a novel radio design which
marries concepts of cognitive radio, machine learning, and networking
into a complete system that enhances low-power wireless performance
in radio rich environments. CrossZig, described in Chapter 4, is a
cross-layer solution that enables low-power wireless nodes to make
informed decisions on their coexistence strategies based on richer physical
layer information. In Chapter 5, we present Controlled Interference
Generation (CIG), a software-defined radio based solution for controlled
interference generation, which can facilitate augmenting current testbeds
with repeatable and realistic interference pattern generation. We conclude
this dissertation in Chapter 6 with a summary of our contributions and a
discussion of open challenges and future research avenues in low-power
wireless systems coexistence.

All the results presented in this dissertation have been peer-reviewed,
published, and presented at international conferences and workshops.
The associated publications are listed at the end of the dissertation (List
of Publications) and referenced at the corresponding chapters.
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2
Cross-Technology Interference

Characterization
Over the last few decades, we have witnessed a notable progress
in wireless communication. This has led to a rapid emergence of
heterogeneous wireless technologies that share the radio spectrum in an
un-coordinated way [92]. Such a coexistence introduces uncertainty and
complexity to the medium, a↵ecting reliability and availability of wireless
networks. This problem aggravates for technologies operating in the
lightly regulated, yet crowded unlicensed bands. The unlicensed bands
proliferate with heterogeneous devices including WiFi (IEEE 802.11),
Bluetooth, 2.4 GHz cordless phones, microwave ovens, surveillance
cameras, game controllers1, and 2.4 GHz RFID. These technologies
di↵er widely in terms of emitted power levels, wireless medium access
modalities, used modulation and coding schemes, and in the width of
occupied sub-bands. To address the coexistence of di↵erent technologies
in the scarce radio spectrum, and to provide proper interference-
aware protocols and mitigation schemes, we need to develop a clear
understanding of how these technologies interact in the shared spectrum.

Contributions and Roadmap. We begin this dissertation with an
empirical study of the implications of Cross-Technology Interference
(CTI) on the particularly vulnerable low-power IEEE 802.15.4 wireless
networks. In this study, we identify the underlying vulnerabilities
that hamper 802.15.4 to withstand CTI. Furthermore, we show that the
uncertainty that CTI induces on the wireless channel is not entirely

1For example, the Xbox 360 S wireless controller.
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stochastic; CTI exhibits distinct patterns that can be exploited by
interference-aware protocols. The set of interferers we consider in this
study are selected to represent common underlying properties adopted
by most of the nowadays used wireless devices. Our considered set
consists of low/high power interferers, narrow/wideband interferers,
analog/digital interferers, channel hopping/fixed frequency interferers,
and CSMA and non-CSMA interferers.

The study analysis enfolds observations at multiple layers of the
802.15.4 communication stack: (a) Physical layer (PHY): investigation
of PHY characteristics captured from o↵-the-shelf 802.15.4 radio chips,
through fast sampling of the Received Signal Strength Indicator (RSSI)
register and other channel indicators; (b) MAC layer: exploring CTI
impact on the Clear Channel Assessment (CCA) and Carrier Sense
Multiple Access (CSMA) backo↵s; (c) Upper layers payload: analyzing
corruption features such as error patterns, error bursts, and interspaces
between consecutive errors. Our results show that di↵erent technologies
a↵ect 802.15.4 distinctly in aspects such as corruption rate, backo↵
mechanism, the location of corrupted symbols, etc. This knowledge can
be exploited by interference mitigation schemes for a better resilience
against CTI. Acquiring a clear understanding of CTI’s footprints on
low-power wireless systems is an essential step for designing reliable
low-power wireless protocols that can gracefully coexist in the shared
spectrum. The observations we make in this study have largely influenced
the approach we adopt to address the wireless coexistence challenge
throughout this dissertation.

The remainder of this chapter is structured as follows: Section 2.1
briefly reviews IEEE 802.15.4 PHY and MAC specifics. Section 2.2
describes our experiment setup and configurations. Section 2.3 discusses
the impact of the interaction between high/low-power interferers and
802.15.4 networks. Section 2.5 presents related work. We conclude this
study in Section 2.6. This chapter is based on the contributions made
in [76].

2.1 Background
In this chapter and throughout this dissertation, we build prototypes and
discuss systems that are compliant with the IEEE 802.15.4 standard. This
communication standard exemplifies a low-power wireless technology
which is the target of our work and is widely used in a variety of IoT
and WSN applications and deployments [118, 108, 148]. Here we briefly
review relevant aspects of the IEEE 802.15.4 standard to our work.
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RF Technology Abbr. TX Power (dBm) Bandwidth (MHz)

IEEE 802.15.4 – 0 2
Bluetooth (Class 2) BL 4 1 (FH)
Wireless Camera CAM 20 1.125 (FH)
Analog Phone AN-P n/a 0.1
FHSS Phone FH-P 21 0.8 (FH)
Microwave Oven MW 60 -
IEEE 802.11 WiFi 20 20

Table 2.1: Characteristics of the considered RF technologies in our study.

2.1.1 IEEE 802.15.4

The IEEE 802.15.4 standard defines both the physical (Layer 1) and data-
link (Layer 2) layers of the OSI model for low-rate wireless personal
area networks (LR-WPANs). The standard is maintained by the IEEE
802.15 working group and is part of the IEEE 802 standards committee
responsible for specifying wireless personal area network (WPAN)
standards. The focus of this working group is on defining standards
for wireless communication with low data rate, very long battery life,
and low complexity. The IEEE 802.15.4 standard is the basis for several
standardized and proprietary network protocols, including IEEE 802.15.5,
ZigBee, 6LoWPAN, Thread, WirelessHART, and ISA100.11a. Each of
these protocols further extends the standard by developing upper layers
protocols which are not part of the current standard.

IEEE 802.15.4 PHY. For devices operating in the 2.4 GHz band, the
IEEE 802.15.4 standard [81] mandates the use of O↵set Quadrature Phase-
Shift Keying (O-QPSK) modulation scheme with a half pulse shaping.
In order to increase the resistance against noise, Direct-Sequence Spread
Sequence (DSSS) is employed. The transmitter’s radio transforms binary
data to modulated analog signals by adapting spreading and modulation.
The data is first grouped in 4-bit symbols, which are mapped to one of
the 16 Pseudo-random Noise (PN) sequences that are 32-bit long. Each bit
in a PN sequence is referred to as a chip, which is then modulated onto
the carrier signal using O-QPSK. Transmissions on the 2.4 GHz band are
fixed at a rate of 250 kbps.

For demodulation, the receiver’s radio converts each half-sine pulse
signal into a chip. The radio performs soft decisions at the chip level,
providing PN sequences with non-binary values ranging from 0 to 1 [147].
The de-spreading is performed by mapping the PN sequence to the
symbol with the highest correlation. The redundancy induced by
spreading allows correct decoding of the received symbol, even if few
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Figure 2.1: IEEE 802.15.4 PHY frame structure.

chips were not correctly decoded which increases the immunity to noise.
The PHY Protocol Data Unit (PPDU) frame format is illustrated in

Figure 2.1. The PPDU consists of three fields, Synchronization header
(SHR), Physical header (PHR) and PHY Service Data Unit (PSDU). The
frame starts with SHR which consists of a preamble to allow clock
synchronization, followed by Start Frame Delimiter (SFD). The next byte
accommodates PHR which holds the frame length in bytes (coded on
7 bits) and one reserved bit. This is followed by PSDU of a maximum
length of 127 bytes. In order to support larger network layer packets,
adaptation layer protocols such as 6LoWPAN are typically needed to
provide fragmentation schemes.

IEEE 802.15.4 MAC. IEEE 802.15.4 has several MAC-layer protocols,
defined both in the original standard and its 2012 amendment 802.15.4e.
In its simplest form, 802.15.4 employs contention-based CSMA/CA
communication. Before a node starts transmission, it waits for a random
back-o↵ period to assure that the medium is idle. For this, it relies on
Clear Channel Assessment (CCA). The determination of CCA considers
Energy Detection (ED) or/and detection of 802.15.4 modulated signal in
the channel. If CCA declares the channel to be free, the transmission is
carried out, otherwise it defers the transmission for a random backo↵
time. For data verification, the receiver computes a 16-bit CRC check
over the payload of a received packet. It discards packets that do
not pass the check and accordingly withholds the ACK transmission.
More sophisticated 802.15.4e MAC layers such as TSCH, CSL, or RIT
also employ acknowledged transmissions, exponential backo↵, and
(optionally for TSCH) CCA.

IEEE 802.15.4 Channels. IEEE 802.15.4-conformant devices can use
any of the specified frequency bands for operation (868/915/2450 MHz).
802.15.4 transmission occurs in one of the 27 non-overlapping allocated
channels. Out of these, 16 (from 11 to 26) are allocated in the 2.4 GHz
band, each with 2 MHz bandwidth and 5 MHz channel spacing.
The Center Frequency (Fc) for the 2.4 GHz channels is defined as:
Fc = 2405+ 5(k� 11) MHz for k = 11, 12, ..., 26. The remaining 11 channels
are allocated in sub-GHz bands (915 MHz and 868 MHz).
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Figure 2.2: Experiment setup for the CTI impact study in an anechoic room.

2.2 Study Overview
In order to understand the implications of CTI on 802.15.4 links, we
conduct a comprehensive, in-depth measurement study, where we subject
802.15.4 links to various interference sources and collect statistics on
communication and channel measurements that are visible to nodes. We
use the collected measurements to make observations on the temporal
trends and channel e↵ects of interfered 802.15.4 links.

Experimental Setup. We run our experiments in an anechoic chamber,
with dimensions 7 m x 4 m x 4 m (length, width, height). The chamber
belongs to the Millimeter-Wave Electronics Laboratory at ETH Zurich.

An anechoic chamber is a shielded room that is designed to
absorb electromagnetic waves reflections. The chamber walls are
typically covered with pyramidal radiation absorbent material (RAM)
(see Figure 2.2(a)) that scatters and absorbs much of the incident
energy. The chamber is as well insulated from exterior sources of noise.
Anechoic chambers are typically used for conducting measurements of
electromagnetic compatibility and antenna radiation patterns. In this
study we focus our measurements in this highly controlled settings,
so to have full control on the source of errors, to isolate the impact of
surrounding interference sources, and to identify the mere impact of each
of these interfering technologies. We consider a simple network setup,
as depicted in Figure 2.2(b), which consists of one transmitter and one
receiver for both 802.15.4 and the considered interfering technology, i.e.,
a pair of 802.15.4 nodes and a pair of interferer nodes. We alternate the
transmission power of the 802.15.4 nodes to feature attenuation levels of
weak signals and emulate greater distances.

Wireless Low-power Platform. We use the Tmote Sky [119] nodes primar-
ily as our experimental platform for low-power 802.15.4 transmitters and
receivers. Tmote Sky nodes feature CC2420 radios [147] which are compli-
ant with the IEEE 802.15.4 standard and are widely used radio interfaces.
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Figure 2.3: RF channels of IEEE 802.15.4 and the selected set of prevalent RF
interferers in the 2.4 GHz ISM band studied in this chapter.

The CC2420 attaches two physical layer metadata to every received
packet, RSSI (received signal strength indicator) and LQI (link quality
indicator). These metrics are measured over eight symbols (32 bits,
125 µs) of received packets. The CC2420 calculates the LQI based on
the first eight symbols of received packets but continuously calculates
RSSI. Therefore, we can trigger the software to read RSSI register at any
time to measure ambient RF energy. The nodes have an integrated Omni-
directional inverted-F microstrip antenna.

Interfering Technologies. The set of interferers we consider in this study
is selected to represent common underlying properties adopted by most
of the nowadays used wireless devices. We consider technologies with
low and high emitting powers consisting of the following interference
sources: IEEE 802.11 (WiFi), Bluetooth, FHSS, and analog cordless phones,
microwave ovens, and surveillance cameras, e.g., baby monitors (see
Table 2.1). We analyze the spectral and temporal characteristics of non-
standard interferer technologies considered in this study. For this, we
use the software defined radio USRP N210 [44] to monitor a 25-MHz
bandwidth at a given time. We round the scan in 4 tuning steps to cover
80 MHz of the 2.4 GHz band starting from 2.40 to 2.48 GHz. Figures 2.5,
2.6, 2.7, and 2.8 show the spectrograms and power-profiles for a subset
of the considered RF technologies. The technologies and devices we use,
are described in more detail in Section 2.3.

Communication Scenarios. As we aim at exploring low-level
interference e↵ects as precisely as possible, we eliminate all network
protocol overheads by writing our receiver and sender applications to
directly interface the CC2420 radio driver in the Contiki OS [39]. We
use the three following communication scenarios: (a) CCA-enabled:
transmissions are sent at 100 ms interval, conditioned by a CCA
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(i.e., CSMA enabled) with exponential back-o↵, and followed by an
acknowledgment (ACK) frame; (b) CCA-disabled: transmissions are sent
at 100 ms interval, CSMA disabled and acknowledgments are enabled;
(c) Saturated: transmissions are sent at 8 ms interval, with CSMA and
acknowledgments disabled. In the first two scenarios, the transmission
interval is constrained to 100 ms because of the time needed to log fast
RSSI sampling information over the serial line. The third scenario disables
fast RSSI sampling to reduce this interval and allows us to study the
correlation among packets sent consecutively. The first two experiments
run for 1600 packets, the third for 3200 packets. We fill the packet’s
payload with one of the 802.15.4 symbols, and periodically iterate over all
16 existing symbols to eliminate the content’s influence on our results (i.e.,
coding can lead to some symbols being more stable than others [69, 134]).

In all three scenarios, we run a series of experiments where we vary the
packet sizes among 20, 40, 100 bytes, and the power level in the range of
high (0 dBm), medium (-3 dBm), and low (-10 dBm). We recognize three
types of packet reception: packets that are correctly received (passed CRC
check), packets that got corrupted, hence, have at least one corrupted
symbol (failed the CRC check), and packets that are lost: sent but never
received (corruption a↵ected the PHY header or synchronization header).
In all experiments, in case we have pre-knowledge information on the
exact used frequency ranges of the interferer, the transmitter and receiver
are configured to communicate over one or two channels that overlap
with that of the interferers. For the technologies that a↵ect a wide range
of channels, such as for microwave oven and FHSS interferers, we loop
over every second channel of 802.15.4 to broaden our scope of analysis
and not to miss hopping specific channel e↵ects.

Measurements. The transmitter logs the number of retransmission
attempts (if enabled) and the noise level for each sent packet. For each
received packet, the receiver logs the following information: noise level,
link quality indicator (LQI), checksum value, received packet content,
and the received signal strength during the packet reception associated
with each received packet. We modified the CC2420 driver in Contiki to:
(a) instruct the radio to pass packets with failed CRCs rather than discard
them, to enable us processing erroneous packets; (b) capture RSSI values
at a rate of one sample per symbol (one reading each 16 µs). Upon the
detection of an incoming packet, the start of frame delimiter (SFD) pin is
set to 1, which triggers an interrupt. In this interrupt, we capture the
variations of the RSSI during the reception of a packet. The sampling is
performed until the last symbol of the packet is received and the SFD pin
is set back to 0.
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(a) CCA-enabled

(b) CCA-disabled

Figure 2.4: Packet Reception Rate (PRR) for CCA-enabled and CCA-disabled
tra�c types for distances 3 and 6 m for packets with length 100 byte (L) and
20 byte (S). The saturated tra�c type follows the same trends as CCA-disabled,
hence, not shown here. Empty space in CCA-enabled tra�c indicates no tra�c
due to busy medium, i.e., backo↵. Bluetooth’s and non-saturated WiFi’s impact
on the communication are almost neglectable.

2.3 Cross-Technology Interference Implications

In the following subsections, we provide an overview of the characteristics
of each of the considered interferers, their overlapping spectral ranges
with 802.15.4, and their direct impact on the 802.15.4 performance. The
spectrum allocation of every technology considered is illustrated in
Figure 2.3.
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2.3.1 IEEE 802.11

Characteristics. IEEE 802.11 is the most pervasive wireless technology
in indoor environments. The 802.11 b/g/n transmission occurs in one
of the 14 overlapping channels spreading over the 2.4 GHz ISM band.
Each channel has a width of 20 MHz, where most of these channels are
overlapping with four of the 802.15.4 channels. At the physical layer,
802.11 supports a large set of modulation and coding schemes that trade
performance with interference and noise tolerance. The communication
signal is spread over the 20 MHz channel using DSSS or OFDM. Most
802.11 devices support power level ranges of -20 dBm to 20 dBm and
commonly communicate at the highest transmission power of 20 dBm.

Setup. We evaluate the interference caused by 802.11 using a Netgear
WNR3500L router and a laptop that supports IEEE 802.11 b/g/n in the
2.4 GHz ISM band. In our experiments, the router acts as an access point
forwarding TCP/UDP tra�c to the laptop which acts as a client. We use
the network tool iperf [82] to generate saturated TCP tra�c and non-
saturated UDP tra�c that resemble file download and VoIP, respectively.
We configure the router to use channel 11, and study the interference
impact on two 802.15.4 channels: Channel 22 as fully overlapped with
the WiFi channel 11 and channel 24 which is partially overlapped with
WiFi channel 11.

Observations. As shown in Figure 2.4, for all the considered
configuration scenarios, the exchanged saturated TCP (WiFi-s) caused
PRR to drop to below 20%. This can be attributed to the aggressive
way of WiFi transmitting at 100 times higher power than the 802.15.4
nodes. Although 802.11 employs CSMA, the amount and regularity
of the energy emitted by the 802.15.4 node are not su�cient to defer
802.11 communication. In the saturated TCP case the WiFi access point
transmits nearly continuously, and as a result, the 802.15.4 node backs
o↵ or experiences severe packet losses. It is notable to highlight that
the air time of 802.11 b/g/n packets is significantly shorter than the air
time of 802.15.4 packets (about 0.54 ms for 802.11 g maximum packet
length, 4.2 ms for 802.15.4 maximum packet length). The exchange of
non-saturated UDP tra�c, on the other hand, has a negligible impact on
the performance of 802.15.4 nodes. Therefore, we only show the saturated
TCP case in Figure 2.4.

2.3.2 Frequency Hopping Bluetooth

Characteristics. Bluetooth is a low-power wireless protocol standard for
exchanging data over short distances in single-hop networks at ranges
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(a) Spectrogram (b) Power-profile

Figure 2.5: Spectrum characteristics of high-power Wireless Camera.

of typically less than 10 meters but can range to 100 meters. At the
physical layer, Bluetooth uses the adaptive frequency hopping technique
across a 79 MHz bandwidth in the 2.4 GHz ISM band, with each channel
occupying a bandwidth of 1 MHz. The hopping occurs at a rate of
1600 hops/sec. Hence, it occupies a channel for 625 µs. Bluetooth
defines di↵erent communication classes, which specify the transmission
power, resulting into di↵erent communication ranges. However, the most
common Bluetooth devices are the battery-powered Class 2, transmitting
at 4 dBm which is higher than 802.15.4 devices (-25 dBm to 0 dBm) [81].

Setup. To evaluate the interference generated by Bluetooth on 802.15.4,
we use two HTC Desire phones transferring a large file.

Observations. At both considered distances, Bluetooth did not have
a notable impact on the performance of 802.15.4 nodes. Note, this
observation cannot be generalized to other Bluetooth classes, as in a
previous study [71], we observed a performance reduction of 20% caused
by Bluetooth Class 1 devices.

2.3.3 Wireless Camera

Characteristics. As for a wireless camera, we use the Philips SCD 603
digital video baby monitor. It comprises a 2.4 GHz wireless camera and
a wireless video receiver. The wireless camera communicates with the
wireless video receiver using frequency hopping over 61 channels, where
each channel has a width of 1.125 MHz.

Observations. The camera’s spectrogram, as depicted in Figure 2.5,
shows the frequency hopping nature of the wireless camera. Most
of the hopping occurs in the frequency range [2.42-2.45] GHz. This
matches our observations on the PRR, as 802.15.4 channels interleaved
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(a) Spectrogram (b) Power-profile

Figure 2.6: Spectrum characteristics of high-power Analog Phone.

in this range were a↵ected the most. This could be due to the underlying
spread sequence concentrating on this region of the spectrum. In case
the camera experiences degradation in the quality, it could switch to
another spread sequence that a↵ects another region of the spectrum.
In our analysis, we consider 802.15.4’s channel 16 which falls in the
above-mentioned frequency range. At both considered distances between
interferers and the 802.15.4 nodes, we measure the performance of the
802.15.4 nodes with the camera being ON and OFF. For the CCA-enabled
tra�c, as shown in Figure 2.4(a), we observe more than 20% corrupted
or lost packets for long data packets at distance 3 m, resulting into
retransmissions. The frequency hopping nature of the interfering signal
makes its e↵ect less pronounced, specifically due to the relatively narrow
band of 802.15.4, which makes it less impaired by frequency hopping.

2.3.4 Analog Cordless Phone

Characteristics. We use the Vtech GZ2456 cordless handset system in
our experiments. The phone base, according to the device manual [152],
transmits in the frequency range [2410.2 - 2418.9] MHz and receives in
the frequency range [912.75 - 917.10] MHz. However, our experiments
show that the phone base transmits in the 900 MHz band and receives
in the 2.4 GHz band, which contradicts the manual description. The
phone handset accordingly transmits and receives using the reverse
order of frequency ranges. The phone picks a default channel out of
30 supported channels in the specified frequency range. It does not
support automatic channel selection. However, channel switching can be
configured manually by the user.

Observations. The spectrogram and power-profile of the analog cordless
phone are illustrated in Figure 2.6. The frequency profile shows that the
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(a) Spectrogram (b) Power-profile

Figure 2.7: Spectrum characteristics of high-power FHSS Phone.

analog phone occupies a narrow channel (about 0.1 MHz) at a time. Based
on the phone frequency profile, we select the 802.15.4 channel 13 centered
at 2.415 GHz which overlaps with the analog phone’s communication.
As shown in Figure 2.4(a), 802.15.4 nodes while employing CCA could
not communicate when subjected to analog phone interference, for both
considered locations. This is due to the phone continuously transmitting,
as seen in the corresponding power profile, depicted in Figure 2.6(b). As
a result, the 802.15.4 transmitter backs o↵ continuously due to the channel
being occupied. In our experiment with CCA disabled, we force 802.15.4
transmission to occur regardless of ambient noise. Interestingly, at a
distance of 6 m, as shown in Figure 2.4(b), most of the packets are received
correctly. In this particular case, the default CCA-threshold based backo↵
cancels all transmissions, although communication is obviously still
possible. We elaborate more on this behavior and possible workarounds
in Section 2.4.

2.3.5 Digital FHSS Cordless Phone

Characteristics. We experiment with the Uniden DCT6485-3HS
cordless handset system. The phone base and handset communicate
using frequency hopping over 90 channels of 800 kHz width in the
range [2407.5 - 2472] MHz.

Observations. As shown in Figure 2.4, the FHSS phone a↵ects 802.15.4
similarly as the wireless camera, however, less destructive. This is
attributed to the fact that both technologies employ the same underlying
signal spreading scheme, i.e., frequency hopping, only with slight changes
in channel width (cf. Table 2.1) and hopping rates.
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(a) Spectrogram (b) Power-profile

Figure 2.8: Spectrum characteristics of high-power Microwave Oven.

2.3.6 Microwave Oven

Observations. We use a residential microwave oven, the Cla-
tronic MWG 758. As depicted in the spectrogram and power profile
in Figure 2.8, the oven radiation distinctly a↵ects the second half of the
2.4 GHz band, and the generated noise exhibits a temporal periodic ON-
OFF pattern (⇠ 5 ms ON, ⇠ 15 ms OFF). This confirms the observations
in [20, 54]. Note that there is still a level of emitted noise in the OFF period
that can cause harm to communication parties in close proximity.

In the CCA enabled case, as shown in Figure 2.4(a), short packets at
distance 6 m experience slightly fewer losses. This can be attributed to
the ON and OFF temporal characteristics of the microwave oven. For
distance 3 m, the communication is reduced down to below 20%. As
we move the microwave away from 802.15.4 nodes, the PRR improves
to reach 90%. For the CCA disabled case, we observe about 20% to 35%
corrupted or lost packets, as shown in Figure 2.4(b). More interestingly,
for distance 3 m a severe performance reduction is not observed, as with
CCA enabled.

2.4 Analysis and Observations
This section provides a detailed analysis of packet error patterns and the
temporal channel impairments induced by CTI at the level of symbol
granularity in our collected traces. In this analysis, we distinguish
between two forms of wireless medium access modalities adopted by
radio interferers:

(a) Persistent form: technologies adopting this form consistently emit
energy, thus monopolizing the medium completely. Analog cordless
phones, as considered in our study, but also analog wireless cameras,
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Figure 2.9: Portion of corrupted symbols in a packet, for the CCA-disabled
tra�c at distance 6 m for packets with length 100 byte (L) and 20 byte (S).

and DSSS cordless phones, adopt such behavior [54]. This form of
interference can cause a complete loss of connectivity to the a↵ected
nodes, as the medium is constantly detected as busy.

(b) Non-persistent form: the majority of wireless devices operating
in the unlicensed bands are non-persistent. They exhibit a time-variant
of ON and OFF patterns of energy emission. This is attributed to the
underlying adopted access mechanisms by these technologies, such as
frequency hopping, continual inter-frame spacing (e.g., SIFS, DIFS), and
back-o↵ slots, or periodic ON and OFF cycles of noise radiation, as for the
microwave oven. This implies that the occupied wireless channel is idle
recurrently. It translates into exchanged packets from active competing
transmission being either correctly received (the shorter the transmission
time, the higher the chances) or being partially corrupted, where the
interfering signal overlaps a segment of the target packet.

In the following, we analyze corrupted packets in our traces with
a focus on key features that can potentially aid link-layer recovery
mechanisms.

The Rate of Corruption in a Packet. To what extent do non-persistent
interferers corrupt a packet? The air time of an 802.15.4 packet is in the
order of a few milliseconds (max. 4.2 ms), which is often a su�cient
time interval to overlap non-persistent interfering signals. This results in
having portions of the packets being corrupted, in a way that varies with
the time characteristics of the interferer. This insight is potentially helpful
for error coding and packet recovery mechanisms.

We explore this aspect further by processing corrupted packets in
our traces. The box plot shown in Figure 2.9 depicts the portion of
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Figure 2.10: CDF of symbol error burst lengths considering all corrupted packets.

corrupted symbols in every packet for the wireless camera, the FHSS
phone, and microwave oven. As a result of the technologies being non-
persistent, many packets experience corruption over only a minority of
their symbols. This is particularly pronounced for long packets: For
100-byte packets, on average less than 25% of the received symbols
are corrupted. Such packets could potentially benefit from link-layer
mechanisms that rely on physical layer hints to support identifying and
recovering corrupted symbols.

Error Burstiness. To what extent do errors occur in groups, a↵ecting
consecutive symbols and consecutive packets? There is a common assumption
that interference errors occur in bursts, thus localized in short intervals,
while corrupted bits due to channel variation are nonuniformly scattered.
To identify the level of error burstiness due to CTI, we process our traces
and count the frequency of symbol error bursts of length n (n 2 [1 . . . 50])
with respect to each interferer technology across all packet lengths, power
levels, and distances. Note, we make our observation at the symbol
level, losing information on the error burstiness in the underlying 32-bit
sequence (PN) and making our notion of burst to correspond to a symbol
time of 16 µs.

Figure 2.10 shows the distribution of intra-packet burst lengths. The
majority of the error burst lengths we processed in our traces are of
length 1 for all considered technologies. This can be attributed to the fact
that we perform our analysis at the symbol level and burntness is more
pronounced at the bit level. We observe that 20-30% of error bursts range
in length from 2 to 10 symbols. The wireless camera and the FH phone
show a higher tendency of having error bursts of varied lengths.

Error Location. Where in the packet do most of the symbol errors occur?
For this, we look at the distribution of corrupted symbols over the
received 802.15.4 packets. We count for each symbol position how often
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(a) CCA-disabled

(b) CCA-enabled

Figure 2.11: Symbol error distribution for corrupted 802.15.4 packets
(aggregated for packet length 100 byte) interfering with wireless camera, analog
phone, FHSS phone, microwave oven, and saturated WiFi.

it was corrupted. We run this over aggregated data of both of the
considered distances and transmission powers for the packet size 100 byte.
Figures 2.11(a) and 2.11(b) show the probabilities of symbol corruption
at di↵erent positions in a packet for both communication scenarios with
CCA disabled and CCA enabled, respectively. For CCA enabled, we
observe fewer corruptions in the header information. For saturated WiFi,
we observe a higher chance of corruption in the beginning of a packet,
which aligns with the observations of Liang et al. [96]. For persistent
interferers such as the analog phone, all positions are a↵ected with similar
probability. This changes for channel hopping technologies, i.e., the FH
phone and wireless camera. There we observe that the later positions
have a higher chance to be corrupted. For microwave, we noticed that
the probability increases with the symbol index until index 150 where it
stabilizes. This can be attributed to the ON and OFF pattern of microwave
and the fact the later positions are a↵ected similarly by the ON state.
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Figure 2.12: RSSI analysis based on RSSI samples during packet reception for
two distances, 3 (d3) and 6 m (d6), aggregated for all technologies sending at
highest transmission power.

Intra-packet Channel Variations. How do RSSI readings vary within the
span of a packet reception time? We conduct an analysis to expose statistical
di↵erences in the level of RSSI readings during packet reception between
interfered, non-interfered, and for weak signal losses. In this context, we
check the level of the surge on the RSSI readings during packet reception.
Figure 2.12 shows the CDF of RSSI variations for interfered and non-
interfered packets. Our observations confirm that RSSI readings vary
within two dBm range for the time span of one 802.15.4 frame, considering
no interference during packet reception, as the coherence time is larger
than one 802.15.4 packet air time [144]. This is mainly why radio chips
restrict RSSI readings to few symbols (in the case of CC2420, over the eight
first symbols following the SFD field). This consequently leads to missing
to capture interference e↵ects. The implication of this is that per packet
RSSI and LQI readings do not reflect on the impact of interference. Indeed
both LQI and RSSI provide indications of a good and stable channel in
most of the interfered packets. Similar observations have been reported
for 802.11 in [129]. This can be exploited to detect RF activity, diagnose
packet losses, and trigger interference-aware protocols. In Chapter 3,
we explain how we harness this observation for interference detection
in our system. Other than detecting interference activity, the induced
power level on the channel is important for other considerations, such as
physical proximity to the interferer [75, 137].

CCA Deferrals and Energy Detection. To what extent can we rely
on static CCA thresholding given CTI presence? Using our traces from
the saturated experiments (CCA disabled), we investigate the relation
between the RSSI sampled by the sender before transmission and
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Figure 2.13: Ratio of successful or failed back-o↵ decisions with CCA-disabled
tra�c at distance 6 m with the highest transmission power for 100 byte (L) and
20 byte (S) packets. Distinction between channel free and transmission ok (true
positive), channel free but transmission either corrupted or lost (false positive),
channel busy but transmission successful (false negative), and channel busy with
either corrupted or lost transmission (true negative).

the actual success of packet transmissions. Doing so, we know, for every
transmission, whether a node using CCA would have backed o↵ or not
(assuming a threshold of -45 dBm) and whether such back o↵ would
have been helpful or not. Figure 2.13 summarizes all possible 4 cases: no
backo↵ followed by success (true positive) or failure (false positive), or
backo↵ followed by success (false negative) or failure (true negative).

In the case of the analog phone, as indicated in Section 2.3.4, the
backo↵ mechanism is extremely ine�cient, consistently leading to false
negatives (unnecessary backo↵). In the saturated WiFi case, on the other
hand, the backo↵ procedure is e�cient, avoiding more than 80% of
the transmissions that would have failed anyway. For the frequency
hopping technologies (Bluetooth, wireless camera, FHSS phone) as well
as for the non-saturated WiFi, the channel is sparsely occupied and the
backo↵ threshold operates as intended: few backo↵s, and successful
transmissions. The microwave oven, with its periodic ON-OFF pattern,
is more challenging and presents cases where the backo↵ is either too
conservative or too aggressive.

This analysis shows that (1) a single CCA threshold cannot suit all
setups and (2) even for a given setup, a threshold can trigger both false
negatives and false positives, e.g., in the case of microwave oven. This
indicates that careful CCA threshold tuning on a per-technology basis and
agile thresholding would allow better utilization of the radio spectrum.
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2.5 Related Work

Radio Interference has been the topic of a large body of wireless
communication research. Work in this area falls under two broad
categories: The first category deals with the impact of interference on
wireless networks, and the second deals with interference mitigation. We
focus this section on presenting recent related studies on understanding
and quantifying the performance of wireless networks under interference.
We further briefly survey work on interference mitigation. We
comprehensively cover related work on interference mitigation in the
next two chapters.

Interference Empirical Studies. Studying radio usage patterns and
interference implications on wireless networks have gained large interest
from the wireless research community and industry in recent years.
The scarcity of available spectrum and the surge in the number of
wirelessly connected devices necessitate a deeper understanding of
the characteristics of current spectrum utilization. Large number of
independent RF spectrum studies have been conducted by SSC [138],
Farpoint Group [46], BandSpeed [15], Miercom [103], Ofcom [7], Jupiter
Research [33], Cisco [18], Microsoft [102], and Google [59]. In the
following, we highlight two recent studies. Cisco Meraki [18] conducted
a large-scale measurement of wireless network’s behavior that aims at
studying how significant is the interference between 802.11 networks,
and to what extent does interference arise from non-802.11 devices.
Moreover, they study the occupancy patterns in the frequency bands
that 802.11 channels operate in. At a larger scale, Microsoft Spectrum
Observatory [102], provides a large-scale system for tracking radio
spectrum usage in locations throughout the world. This system was
designed to help regulators make more informed decisions on spectrum
allocation, push for opening up more frequencies, and help with
spectrum-sharing e↵orts.

With regards to Cross-Technology Interference impact, Srinivasan
et al. [143], Petrova et al. [116], Pollin et al. [120], and Sikora et
al. [140] have performed experimental studies to quantify the impact
of interference from 802.11, Bluetooth, and microwave oven on the
performance of 802.15.4 networks. These studies focused on reporting the
impact on performance metrics such as throughput and packet reception
ratios, however, without exploring low-level e↵ects of interference.
Liang et al. [96] studied the interplay between 802.11 and 802.15.4
networks and their patterns at bit-level granularity focusing on bit-
error positions. They recognize symmetric and asymmetric interference
regions. Boano et el. [20] studied interference patterns with the focus on
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the coarse samples of the RSSI for the purpose of emulating interference
patterns in testbeds. To the best of our knowledge, our work is the
first Cross-Technology Interference characterization study that aims at
providing a detailed understanding of the interaction between 802.15.4
devices and a set of prevalent RF interferers and recognizing key factors
to the harmful coexistence of these technologies.

Interference Mitigation. The recognizable impact of RF interference on
the performance of wireless networks has motivated researchers to look
at solutions to mitigate interference. The most widely adopted mitigation
solution is to avert interferer frequencies by employing spectrum sensing
to identify interference-free channels [126, 162, 34]. Such approaches
are resource hungry for 802.15.4 networks. Moreover, the spectrum is
crowded with wireless devices which makes it hard to find interference-
free channels. Another direction of research focuses on the recovery from
symbol corruption, by utilizing resilience coding schemes that are robust
to bursty errors. For instance, Reed-Solomon coding can be employed to
mitigate the 802.11 impact on 802.15.4 networks, as suggested by Liang
et al. [96]. Furthermore, partial packet recovery mechanisms are used
to exploit the temporal e↵ects of interference induced on the PHY hints,
such as variations in soft errors (softPHY) [85] or RSSI variations [71, 66] to
determine boundaries of the interfered fractions on the received corrupted
packets.

2.6 Summary
This chapter reports and discusses results of our empirical study of the
Cross-Technology Interference impacts on 802.15.4 links. We examine the
interaction patterns between 802.15.4 links and a set of prevalent high and
low-power radio interferers at symbol level granularity with the focus on
protocol aspects, error patterns of bits transmitted over the air, and the
wireless link variations as perceived by the transmitter and receiver. All
our observations in this chapter are based on metrics that are exposed to
o↵-the-shelf nodes and can easily measure network characteristics.

We show that radio interferer technologies di↵er widely in the way
they a↵ect 802.15.4 networks. They form a strong and complex impact on
the performance of wireless links that need to be addressed with novel
solutions that exploit channel information and physical layer hints. One
important conclusion of this study is that there is no one-fits-all solution to
mitigate the impact of Cross-Technology Interference. We need to address
this by designing novel measures that take into account the properties
of the interferers to adaptively select a proper mitigation mechanism.
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The observations made in this chapter largely influenced the work blocks
of this dissertation. In the rest of this dissertation, we harness the insights
and observations collected in this chapter to develop and design adaptive
lightweight systems that are apprehensive of the uncoordinated wireless
coexistence problem. Hence, overcome the limitations of the static
suboptimal mitigation solutions and interference source classification
approaches, that we can not yet utilize in a systematic manner for
mitigation.
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3
TIIM: Technology-Independent

Interference Mitigation
The ubiquitous and tetherless access to information enabled by the
wireless medium, and recent advances in wireless communication, have
led to a plethora of heterogeneous wireless devices congesting the
unlicensed bands. This raises a unique set of communication challenges,
notably coexistence, Cross-Technology Interference (CTI), and fairness
amidst high uncertainty and scarcity of interference-free channels (see
Figure 3.1).

The lack of interference-free channels led researchers to work on
developing novel classification approaches that provide information
about the interference source [130, 68, 78, 34]. It has been shown that
when the interference source is known, specialized mitigation approaches
can improve the network performance. Wireless technologies employ
di↵erent physical and MAC layer schemes leading to hidden, distinct,
and repeating patterns that form a signature for that particular wireless
protocol. Researchers explored these properties to build interference
classification tools that can report on the root source of the interference
problem. This approach yields interesting results but is bound to a
fixed set of interfering technologies that are known at design time.
Moreover, these approaches are anticipated to be integrated into spectrum
analysis tools that can help network administrators to visualize and
identify interference problems. However, they are inadequate if they
do not resolve interference instantaneously in a systematic manner.
These approaches provide a compelling evident that miniaturized
intelligence is necessary to address the complexity of the CTI problem.
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Figure 3.1: Averaged channel occupancy in the 2.4 GHz band over one week (26.-
31. August 2013). Data from Microsoft Spectrum Observatory in an enterprise
building in Brussels, Belgium.

However, the benefit of such solutions would be realized only if they
resolve CTI without manual tuning or human intervention. How to build
such smart radios remains an open research problem. In this chapter,
we investigate the feasibility of integrating miniaturized intelligence in
radios to combat CTI.

Looking at the design space of spectrum coexistence solutions, and
based on the observations we made in Chapter 2, where we empirically
studied the impact and the interaction patterns of CTI on low-power
wireless networks, we conclude that to address the high uncertainty of
CTI we need to design agile methods that assess the channel conditions
and apply actions maximizing communication success. To achieve
this one should consider the following aspects when addressing the
CTI problem: (i) PHY-aware protocols: physical signals do not only
encode bits, but also carry rich information about the ambiance, which is
particularly enlightening in the case of interference. (ii) The presence of
interference is not always harmful, metrics such as energy detection can
falsely trigger the communication to back o↵ and introduce unnecessary
deferrals (see Section 2.4 for a detailed discussion). Thus, it is important
to consider measures that can better quantify the harm of CTI. (iii) Given
the scarcity of the frequencies allocated to wireless networks, it is
desirable to allow concurrent transmissions that potentially can be
correctly recovered to realize a better utilization of the spectrum.
(iv) There is no one-size-fits-all solution. The high degree of diversity
in radio technologies results in di↵erent implications on the wireless
link that need to be addressed with di↵erent strategies. (v) The impact
of the same source of interference can quickly change due to mobility
(e.g., interferer moves away) or due to change in the configuration (e.g.,
WiFi bit-rate, or application tra�c pattern). Thus, frequent adaptation is
required.
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Figure 3.2: Low-power communication links su↵er from crowded ISM bands.
TIIM dynamically applies interference mitigation measures specific to channel
conditions.

Contributions and Roadmap. In this chapter, we present TIIM, as illus-
trated in Figure 3.2, an adaptive interference mitigation system, which
selects interference mitigation strategies directly based on measured
medium properties, skipping the interference type classification step.
Hence, TIIM is independent of the interference technology it is combating.
To this end, we train the system to detect interference patterns and map
these to a link-layer interference mitigation strategy that works best for
this particular pattern, regardless of the interference type. In TIIM’s
design, we consider: (i) exploring the feature space of Cross-Technology
Interference, (ii) constructing a lightweight decision tree classifier that
learns the conditions where particular countermeasures perform best
and uses this knowledge to select countermeasures for unseen channel
instances at runtime.

In the rest of the chapter, we elaborate on TIIM’s key intuition,
empirically characterize and analyze CTI patterns on 802.15.4 links, and
present TIIM’s design, followed by performance evaluation. We conclude
this chapter with a discussion of the limitations and opportunities of
designing CTI-aware and adaptive link-layer protocols. This chapter is
based on the contributions made in [77].

3.1 Background
In this section, we cover some background on wireless interference in the
unlicensed bands.

3.1.1 Cross-Technology Interference in a Nutshell
The broadcast nature of the wireless medium makes it inherently
vulnerable to interference from spatially close concurrent transmissions
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that overlap in time and frequency. This can consequently reduce or
even prevent completely the ability of receivers to decode information
from signals. Wireless communication can be subject to disturbance by
interference from intra-technology, cross-technology, or noise sources.
Wireless technologies strive to avoid interference and typically apply a
set of mechanisms to achieve fairness and reduce interference within the
same technology (e.g., reserve the medium, allocate channels, and probe
for idleness). However, most protocols are not designed with coexistence
in mind. This is mainly because of the infeasibility of interference
coordination due to the absence of communication means between these
diverse technologies (i.e., speak di↵erent PHY protocols). Consequently,
CTI is emerging as a major problem in the unlicensed bands [7, 76, 54, 103].

Unlicensed Spectrum. The unlicensed bands are small segments of
the radio spectrum that were reserved internationally for the use of
RF energy for Industrial, Scientific, and Medical (ISM) purposes and
have been widely utilized for unlicensed short-range wireless radios.
The Electromagnetic Compatibility (EMC) regulators, such as the Federal
Communications Commission (FCC) in the United States and the
European Conformity (CE), generally require a license for the use of
airwaves for communication, except for some frequency bands that they
leave open. Although there is no permission necessary for devices
to operate in the open frequency bands, they have to comply with
few technical requirements, including power limits. There are several
available unlicensed bands, but most devices primarily operate in the
2.4 GHz, the 900 Mhz, or the 5 GHz frequencies. Currently, the 2.4 GHz
band is the most crowded band within the unlicensed radio spectrum.

In the following, we spot the light on certain communication
properties that are adopted by many radios, and make it particularly
challenging for low-power technologies such as 802.15.4 to coexist in the
shared spectrum: (i) Wide-band: many devices transmit in frequency
bands significantly wider than 802.15.4. For example, to cope with the
high demand of high throughput over WiFi, the recent amendments of
802.11 allow the configuration of 40 MHz-wide channels in the 2.4 GHz
band. Wireless systems are in general increasingly moving to wider
frequency bands to cope with the high throughput demands. Another
case of wide-band occupancy is microwave ovens; they typically a↵ect
50% of the available 2.4 GHz band. (ii) High-power: today’s high-
power interferers in the unlicensed bands pose a serious threat to 802.15.4
networks, as they can cause 802.15.4 links to experience a complete loss
of connectivity. Although the EMC regulators lightly control this aspect
by setting an upper limit of 30 dBm for transmit-power in the unlicensed
bands, energy leaks from microwave ovens can reach up to 60 dBm.
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This is significantly higher than the typical output power of 802.15.4
radios which is 0 dBm.

Communication Primer. We briefly recall how signals are transmitted
and received over the wireless channel. The following assumes
Minimum-Shift Keying (MSK) signal. Note that we omitted unnecessary
details to simplify this communication primer. Radios convert binary
data into modulated signals. These signals are generally represented as a
discrete and complex function:

s[n] = Asei✓s[n] (3.1)

where As is the amplitude of the transmitted sample n, ✓s[n] is its phase.
Note since MSK embeds all the information in the phase, As is constant
for all samples. Hence, the signal carries constant energy.

After the signal traverses the channel, the receiver receives:

y[n] = Hs[n] + w[n] (3.2)

where H is a complex number that approximates the e↵ect of the wireless
channel (attenuation and phase) from the transmitter’s antenna to the
receiver’s antenna [149], w[n] is the channel noise. In the presence of
an unknown interferer, i.e., the desired signal interfered with unknown
signal, the signal at the receiver is represented as follows:

y[n] = Hs[n] + i[n] + w[n] (3.3)

where i[n] is the interfering signal.When these two signals interfere, their
energies add up (i.e., signals can add up constructively or destructively
based on their phase alignment), Hence, causing perceptible variations
in the received signal strength. This insight on the additive energy
of interfering signals highlights the ambient information the signal
carries along, and that can assist in detecting interference and localizing
interfered symbols within interfered packets.

3.2 TIIM Overview
We now present a high-level overview of our interference mitigation
system TIIM. The intuition underlying TIIM’s design is that each
interference mitigation approach works well under specific channel
assumptions of error patterns, such as error rate, signal to interference
ratio, or occupancy level. Each interference instance, independent of the
technology, leaves a particular signature in the channel that shapes the
channel properties in a unique way. The goal of TIIM is to automatically
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Figure 3.3: Controlled experiments setup for CTI characterization in an anechoic
chamber.

select at runtime the most e↵ective mitigation strategy for the current
interfered channel and get the best out of the interfered communication
link. The core component of TIIM is a lightweight decision tree classifier
that is trained to learn under which channel conditions (i.e., signatures)
a particular mitigation scheme empirically works the best. TIIM uses the
decision tree online to predict the best channel mitigation strategy for yet
unseen instances of an interfered channel. TIIM’s design consists of the
following steps:

CTI Characterization. The first step in the design of TIIM is to
characterize Cross-Technology Interference (CTI). We run experiments
where we expose an 802.15.4 communication link to various types of
interferers, both in an anechoic room and in an o�ce environment. We
collect channel properties and communication statistics at high frequency.
Section 3.3 presents the results of this characterization in details.

Learning Phase. We simulate every considered mitigation strategy
against the traces collected in the characterization step, and compute
both their gain and cost. In this phase of supervised learning, the decision
tree classifier learns for each channel feature which particular mitigation
strategy scores highest.

Runtime. At runtime, nodes monitor their current channel condition
mostly through signal strength sampling at high frequency during packet
reception. Whenever interference is detected, they feed the decision tree
with channel statistics as input and obtain a decision about the mitigation
strategy to employ.

TIIM is inspired by the core idea behind interference classification
approaches, such as SoNIC [68] and Airshark [130], which use
measurement samples drawn from commodity hardware to detect the
type of interference source. While these approaches can provide useful
information on how to potentially mitigate CTI, they are bound to a
fixed set of interfering technologies that are known at design time and
cannot combat CTI autonomously. They require either user intervention
or querying a central entity that maintains the mapping of an interference
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source to the corresponding countermeasure. It is yet not clear how such
approaches can be utilized in an automated way. TIIM departs from
the above in that it skips the interference classification step. Instead, it
infers the best mitigation strategy from channel properties directly and
independent of the technology causing the interference.

3.3 Characterizing Cross-Technology Interfer-
ence

In this section, we extend the analysis of characterizing how arbitrary
interfering signals interact with 802.15.4 communication, which we
presented in Chapter 2. We focus here on identifying distinct features
of interfered channels and packets that are relevant to the e↵ectiveness of
potential CTI countermeasures and, hence, could assist in: (i) detecting
and quantifying interference, (ii) pinpointing the viability of opportunistic
transmission in interfered channels, (iii) selecting the countermeasure that
works best for the current underlying interference patterns.

3.3.1 Controlled Experiments Setup
We run our experiments in an anechoic chamber, in order to have
full control on the sources of errors, type of channel distortions,
and to isolate the impact of surrounding interference sources. We
consider a simple network setup, as depicted in Figure 3.3, which
consists of one transmitter and one receiver for both 802.15.4 and the
considered interfering technology, i.e., a pair of 802.15.4 nodes and a
pair of interferer nodes. We base our sender and receiver applications
on Contiki OS [39] and directly interface them to the node’s radio driver.
We consider di↵erent tra�c patterns and di↵erent configurations of
packet length and transmission power.

Interfering Technologies. We focus on a set of interferer technologies
that are prevalent in today’s environments. Our considered set
consists of low/high power, narrow/wide band, analog/digital, channel
hopping/fixed frequency, and CSMA/non-CSMA interferers. This
represents common underlying properties adopted by most radio
technologies. Figure 2.3 summarizes the features of the considered RF
technologies in our study. In the following, we briefly highlight some of
their properties.
• IEEE 802.11. We create WiFi interference using a Netgear WNR3500L
router and a laptop that supports IEEE 802.11 b/g/n in the 2.4 GHz ISM
band. We use the network tool iperf [82] to generate saturated TCP
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tra�c and non-saturated UDP tra�c that resemble file download and
VoIP, respectively.
• Bluetooth. To evaluate the interference generated by Bluetooth on
802.15.4, we use two HTC Desire phones transferring a large file.
Bluetooth uses the adaptive frequency hopping technique across 79 MHz
of bandwidth in the 2.4 GHz ISM band. The hopping occurs at a rate of
1600 hops/s. Hence, it occupies a 1 MHz channel for 625 µs.
•Digital Cordless Phone (FHSS). We experiment with the Uniden DCT6485-
3HS cordless handset system. The phone base and handset communicate
using frequency hopping over 90 channels of 800 kHz width in the range
[2407.5 - 2472] MHz.
• Analog Cordless Phone. We experiment with the Vtech GZ2456 cordless
handset system. The phone base transmits in the 900 MHz band and
receives in the 2.4 GHz band. The phone handset accordingly transmits
and receives using the reverse order of frequency ranges.
•Wireless Camera. We use the Philips SCD 603 digital video baby monitor.
It comprises a 2.4 GHz wireless camera and a wireless video receiver. The
wireless camera uses frequency hopping over 61 channels, where each
channel has a width of 1.125 MHz.
• Microwave Oven. We use a residential microwave oven, the
Clatronic MWG 758. We heat a cup of water in the microwave to emulate
an interference typical to that emitted by these appliances.

3.3.2 Interference Detection
Interference detection is a key component for addressing interference.
Performance degradation in wireless systems can be due to interference
or insu�cient signal strength. Determining the cause of performance
degradation is an essential input for addressing the problem as this
defines the corresponding mitigation action to be considered. In the
following, we investigate how o↵-the-shelf 802.15.4 radios can detect
whether a received packet has been subject to interference or not by
exposing di↵erences in channel metrics between packets corrupted by
interference and packets corrupted due to insu�cient signal strength
(i.e., weak signal).

The 802.15.4 transmitted signal encodes information in phase rather
than amplitude. Therefore, its amplitude (i.e., energy) is constant within
the coherence time. When two signals interfere, their energies add up,
consequently impacting the energy level of the interfered segments in
the received signal. Confined with the PHY and link layers of the OSI
stack, the standard design of o↵-the-shelf radios treats the PHY layer as a
black box that provides decoded bits (i.e., MAC layer PDU) and a limited
PHY information and deprives the access to signal level information.
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(a) CDF of RSSI variations for correct and corrupted symbols due to
interference.

(b) CDF of per-packet Link Quality Indicator (LQI).

Figure 3.4: Observations from our traces on interference detection. (a) shows
that interfered packets often experience high RSSI variations. (b) shows the
clear distinction between LQI of corrupted packets due to interference and those
corrupted due to weak signal.

This leaves us to work with the limited available PHY information to
design an interference detection mechanism. Note that in Chapter 4,
we explore this direction further using software radios (i.e., richer PHY
information) to realize a better detection.

For detecting interference using o↵-the-shelf 802.15.4 radios, we
explore two di↵erent possibilities:

I. Capturing energy variations during packet reception by sampling
the radio’s RSSI register. We modified the CC2420 driver in
Contiki [39] to capture RSSI values at a rate of one sample per
symbol (i.e., one reading each 16 µs). The sampling is performed
from the Start of Frame Delimiter (SFD) to the last symbol of the
packet. Figure 3.4(a) depicts the CDF of the RSSI variations of
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Chunk 1 with length 6 Chunk 2 with length 7
Burst 1 with length 6 Burst 2 with length 7

Figure 3.5: An error burst consists of co-located corrupted symbols with less
than 5 correct symbols in between. Gray and white symbols represent corrupted
and correct symbols, respectively. The first error burst starts at symbol 1 and
ends at the 6th symbol and it has a length of 6. The second burst starts at the
12th symbol and ends at the 18th symbols.

interfered erroneous packets and correct packets as observed in our
traces. We see a clear correlation between RSSI variation and packet
corruption. For instance, 90% of the non-interfered packets have
a variation under 2 dBm, while more than 70% of the interfered
packets experienced variations higher than 2 dBm. In case the
variance of RSSI is greater than a threshold (default to 2 dBm),
our system recognizes the received packet as an interfered packet.

II. The second alternative is to exploit how per-packet channel metrics
are computed in o↵-the-shelf radios. The Link Quality Indicator
(LQI) is confined to average the readings of few symbols (in the
case of CC2420 [147], over the first eight symbols following the SFD
field). Consequently, it cannot capture the spike in the received
power due to interference, as long as the interference spike does not
fall within these few symbols. As a result, per packet LQI readings
do not reflect the impact of interference. In fact, LQI provides
indications of a good and stable channel in most of the interfered
packets. Similar observations have been reported for 802.11 in [129].
Figure 3.4(b) highlights this insight on LQI considering weak signals
and interfered signals. It shows that 85% of corrupted packets due
to weak signal have an LQI of about 90 or less, whereas only 10% of
packets su↵ering interference have an LQI of 85 or less. To detect
interference, the system can monitor the LQI of received corrupted
packets. Frequent erroneous packets with good link metric (LQI >
90) could be used to detect interfered packets.

Interference mitigation schemes come with an overhead that should
be avoided in the absence of interference. Hence, we exploit the LQI
approach of interference detection to trigger the recovery phase in TIIM,
since it comes at a lower overhead. In the recovery phase, we utilize the
more reliable RSSI variation mechanism to pinpoint the interfered packet.
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3.3.3 Exploring the Feature Space

We explore the feature space of potentially relevant attributes to the CTI
problem that we later use for constructing the classifier in TIIM. We
focus on features that can reflect on the occupancy and error patterns
in interfered channels. Table 3.1 presents the list of features we utilize
in TIIM’s classifier. In the following, we highlight the relevance of these
features to CTI.

Persistency. The primary spectrum usage modalities that exist in the
unlicensed bands are comprised of: (i) Persistent. Technologies adopting
this form operate in dedicated frequency bands and generate static energy,
thus monopolizing the medium completely. Legacy analog devices
adopt this modality. This form of interference causes a complete loss of
connectivity for the interfered low-power nodes [76], primarily because
the continual energy emission prevents the carrier sense from declaring
the channel to be free.

(ii) Non-persistent. Technologies adopting this form operate either in
dedicated frequency bands and generate tra�c with time varying load,
or exploit frequency diversity and hop across the spectrum. They exhibit
a time-variant ON and OFF pattern of energy emission due to underlying
communication patterns, such as frequency hopping, continual inter-
frame spacing (e.g., SIFS, DIFS), back-o↵ slots, and varying load, or
periodic ON and OFF cycles of noise radiation, as for the microwave
oven. This translates to exchanged packets being either correctly received
(i.e., the shorter the transmission time, the higher the chances) or partially
overlap with the interfering signal leading to packet loss or corruption.
It is clear that even at this level, realizing whether the interference is
persistent or non-persistent should be followed by adopting di↵erent
mitigation schemes.

Properties of Corrupted Packets. Features that can represent an estimate
of the error bit-rate and error patterns in packets can serve as an important
meta-information for error recovery mechanisms. We define a nominal
feature that can take four values representing di↵erent classes of error
patterns. C0: error rate > 33%, C1: few corrupted symbols, between 1
and 12 corrupted symbols, C2: one error burst not larger than 33% of
the payload; we define an error burst as co-located corrupted symbols
with less than five correct symbols in between (see Figure 3.5), and others.
Figure 3.6 depicts the ratio of each of these error classes aggregated over
the traces from the controlled experiment.

To compute this feature, we can either rely on retransmissions to
identify the corrupted parts of a packet or, as illustrated in Figure 3.7,
by analyzing energy surge bursts in the received sampled RSSI as these
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Figure 3.6: Error classes from CCA-enabled traces averaged over all sources of
interference at distance 3 m, and respectively at 6 m. C0: corrupted symbols
larger than 1/3 of the payload’s length, C1: few (1-12) corrupted symbols (suitable
for FEC), C2: single error burst not longer than 1/3 of the payload length (suitable
for packet merging).

surges correlate to corrupted parts of a packet in case of missing or
corrupted retransmissions.

Interference Quantification. The mere presence of interference is not
always harmful. Hence, finding metrics that can better quantify the
actual impact of interference can largely influence the way we address
interference and potentially increase spectral e�ciency. We define a
metric that considers the reception status of packets during an observation
window. Assuming a total number n of packets transmitted during the
observation window, ni is the number of interfered packets, ns is the num-
ber of corrupted packets due to other channel impairments (e.g., weak
signal), and nl is the number of lost packets. The estimated CTI impact is:
estimated_interference = (ni + nl)/n. As we cannot clarify the source
of lost packets, i.e., packets that the receiver failed to detect the preamble
of, we take a conservative approach and account them as impacted by
interference.

3.3.4 Countermeasures
In the following, we briefly cover a set of link-layer mitigation schemes
that we consider in the design of TIIM. These mitigation schemes have
been proposed and evaluated in the literature in the context of increasing
the resilience of 802.15.4 against interference. TIIM is not bound to this
set of countermeasures, and can be trained and extended with further
countermeasures. In the current prototype of TIIM, the classifier is trained
to select one of the following mechanisms or a combination of them:
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Figure 3.7: An example of the correlation of signal variations with the symbol
errors within a received frame. TIIM makes use of this knowledge to request the
retransmission of only the co-located corrupted symbols.

• Reed-Solomon Forward Error Correction (FEC): The Reed-Solomon
(RS) code is a block-based error correcting code that is particularly
e↵ective at correcting burst errors. RS code divides a message m
into n blocks of defined size and adds an extra redundant parity of
t blocks to the message. RS code can correct up to t/2 and detect
up to t block errors. The overhead cost of RS code is constant,
both correct and corrupted packets bear the redundancy overhead.
RS code works well for error patterns that fall under the recovery
capacity of the parity check. In TIIM, we use 12 Bytes of parity.

• RSSI-based Packet Merging (PM): In the presence of interference,
a sender often has to retransmit a packet several times until the
receiver decodes a correct copy. Partial packet recovery [85, 66, 63]
and packet merging [56, 71] aim at reducing the amount of
redundantly received data in such cases, by reconstructing packets
from already received corrupted instances. For instances, with
long error bursts (beyond RS recovery capability) or with sparse
erroneous packets, PM is a good countermeasure candidate. As
depicted in Figure 3.6, about 40% of the corrupted packets we
witnessed in the controlled study traces, are of class C2 (it varies
for di↵erent interferers). This class of errors stands for a single error
burst in the corrupted packet, where the rest of the packet is error-
free and would potentially gain from packet recovery mechanisms.

In PM, the receiver selectively requests the segments of a packet
where symbols are likely to be corrupted [66]. The segments are
identified based on the surges in RSSI readings. Figure 3.7 illustrates
an example of RSSI variations (from our controlled experiment)
during the reception of an 802.15.4 packet. It shows how the surge
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Figure 3.8: Error localization for CCA-disabled traces from the anechoic
chamber. TIIM uses fine-grained RSSI sampling to localize the area of corrupted
symbols in the payload. Sensitivity is a metric indicating the ratio of correctly
detected corrupted symbols, whereas the false discovery ratio shows the ratio of
correct symbols among the detected symbols. Di↵erent technologies experience
varying bit-error localization performance.

in RSSI corresponds to the error location due to interference by
Bluetooth. Figure 3.8 depicts the accuracy we achieved in localizing
corrupted symbols by utilizing sampled RSSI in our traces.

• Adaptive CCA Thresholding (no-CCA): 802.15.4 networks generally
use carrier sensing before transmission, to reduce collisions.
We evaluate the e�ciency of carrier sense in 802.15.4 radios
under CTI, from our saturated CCA disabled experiment traces.
We investigate the relation between the sampled energy at the
sender before transmission and the actual success or failure of
packet transmissions. Figure 3.9 summarizes the results of
carrier sense e�ciency experiments. The carrier sense works
well in many scenarios, but may lead to false positives (i.e.,
channel free but transmission either corrupted or lost) and false
negatives (i.e., channel busy but transmission successful). The
following scenarios are worth looking at: (i) Frequency Hopping
(FH) interferers: In the presence of frequency hopping interferers,
carrier sense is not e↵ective. FH interferers do not react to 802.15.4
transmissions. Accordingly, the chances a packet encounters
corruption given channel is sensed free or occupied is the same.
(ii) Analog interferers: In the case of the analog phone at distance
6 m, although the energy level in the channel is high, PRR
is barely a↵ected by interference. Hence, carrier sense causes
unnecessary deferrals. In Figure 3.9, we observe that for the analog
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Figure 3.9: Accuracy of di↵erent CCA thresholds for anechoic room traces
with interferers at distance 6 m. Accuracy is defined as TP+TN

#transmissions . True
Positives (TP) are the cases where the channel was free and the transmission
successful. True Negatives (TN) indicate cases where the channel was busy and
the transmission was lost or corrupted. A fixed CCA threshold does not serve
well under all channel conditions.

interferer (AN-P) which transmits with high power, any threshold
below -18 dBm results in 100% false negatives. Thus, an adaptive
CCA scheme that can assess and prevent harmful concurrent
transmissions, while allowing safe concurrent transmissions, could
largely enhance spectral e�ciency. TIIM follows rather a radical
strategy and recommends no-CCA when it detects that using CCA
is causing high false negatives.

• Channel Switching or No Action: TIIM can infer that the interference
in the channel is not harmful thus no action is required or that
the interference in the channel is severe thus communication over
this channel is not viable even with the assistance of link-layer
interference mitigation mechanisms. In such situations, it gives
the recommendation of channel switching.

3.4 TIIM Architecture
So far we have concentrated on describing TIIM at a high-level
and discussing our design decisions and some essential empirical
observations on the 802.15.4 interfered channels. We now provide
an overview of TIIM’s components and its operation modes before
detailing the classification algorithm and discussing TIIM’s integration
into the system. All aspects of TIIM have been carefully chosen and
designed with runtime and memory e�ciency in mind. We focus on



52 Chapter 3. TIIM: Technology-Independent Interference Mitigation

MAC Layer 

time samples 
signal 

TIIM 

PHY Layer 

INIT Feature 
Extraction  

CTI Detection 
TIIM = Passive 

TIIM = Active 

NO 

EXT Feature 
Extraction  YES 

DT Classifier 
 Countermeasure 

Figure 3.10: TIIM’s Design. TIIM remains passive while observing channel
conditions, i.e., initial (INIT) features. Upon detection of interference, it
turns active and collects further channel metrics, i.e., extended (EXT) features,
for a given time window and inquires the Decision Tree (DT) classifier for a
countermeasure.

realizing the following four primary goals: (i) Improving spectral e�ciency
and packet reception ratio in the presence of CTI. (ii) Compatibility: we
design TIIM such that it can be implemented as software modifications
on top of commodity hardware. (iii) IEEE 802.15.4 PHY compatibility:
compliance to the existing standards which allows seamless integration
into existing systems. (iv) Supporting heterogeneous CTI patterns, oblivious
to interference source type, distance, or configuration.

3.4.1 Modes of Operation
TIIM operates in two modes: passive and active. Having two
modes allows avoiding imposing additional computational overhead to
interference-free communication. The system runs mainly in the passive
mode which monitors a number of channel metrics, namely, the Link
Quality Indication (LQI) value of corrupted frames at the receiver side,
and packet losses and CSMA deferrals at the sender side. TIIM detects
harmful interference using a simple threshold mechanism (⌧active) (see
Section 3.3.2). Upon detecting harmful interference, TIIM switches to the
active mode. An overview of TIIM is shown in Figure 3.11.

TIIM’s active mode operates on a window of communication events
Wactive. In our experiments, we use a window length of 5 seconds. We
found this to be a good tradeo↵ between time to react to interference and
confidence of selection. Note that the time window length can be adapted
to the level of activity in the channel, and its optimization is out of the
scope of this work.
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During active mode, TIIM continuously processes time samples
collected during packet reception and communication statistics for the
time of the observation window and computes a set of channel features.
Then, the node feeds the decision tree classifier with the features and
triggers the mitigation strategy inferred by the classifier. Finally, TIIM
switches to the passive mode to monitor the performance of the activated
mitigation strategy.

3.4.2 Inferring Countermeasures
To infer the best (set of) countermeasure(s) for a given input feature set
(see Section 3.3.3 for the feature space discussion), we use a supervised
learning approach for classification. At runtime, the trained classifier
assigns unseen instances of interfered channel, i.e., observation window
Wactive, to one of the six output classes. The classes represent the
set of mitigation strategies we consider in this prototype of TIIM (see
Section 3.3.4): (i) no-CCA: disables the carrier sense. (ii) FEC: applies
forward error correction with fixed block of 12 Bytes of redundancy.
(iii) nC-FEC: applies forward error correction and disables the carrier sense
simultaneously. (iv) PM: applies RSSI-based packet merging. (v) nC-
PM: applies RSSI-based packet merging and disables the carrier sense
simultaneously. (vi) no-action: takes no action as the potential gain of
countermeasures is not significant or interference is not harmful.

3.4.2.1 Decision Tree Classifier

Our proposed algorithm for inferring CTI countermeasures is based on
a machine learning technique named decision tree learning (DT) [35,
38]. This learning technique is popular among the inductive inference
algorithms and has proven successful in a broad range of tasks.

3.4.2.2 Feature Selection

In Section 3.3.3, we empirically explored the feature space of the CTI
classification problem and highlighted the set of features that best describe
the problem. We consider packet specific features, spectrum specific
features, and communication link features.

The initial set of features consisted of 25 features derived from domain
specific knowledge. Training the classifier using all avalible features is
not a good practice as this can result in overfitting. To reduce the feature
set, we use the following selection techniques: First, we evaluate the level
of intercorrelation among features and exclude redundant features. We
identify a subset of five features that are uncorrelated with each other,
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A decision tree

Is the top part blue?

Is the bottom part 
green?

Is the bottom 
part blue?

Split function

Learned categories

Figure 3.11: A decision tree that illustrate how to find out if a given picture is
taken in indoor or outdoor. Each internal node in the tree stores a split function to
be applied to incoming data. Leaf nodes store the final answers. Figure adapted
from [35].

yet correlated in predicting the same class. Then, to increase the accuracy
of the initial subset, we apply exhaustive search to evaluate all possible
remaining subsets in combination with these five fixed selected features.
We benchmark all features that contribute to decision trees with high
accuracy and select those with the highest rank. Table 3.1 summarizes
the final set of features we use to train our classifier and which are used
by TIIM during runtime.

3.4.2.3 Data Labeling and Ground Truth

We develop an automatic annotating software for extracting the
countermeasure labels for our dataset.

We divide our dataset into training and test sets. The training set is
the set of data points for which the corresponding countermeasure we
seek is known. We use this set to compute the tree parameters. Each
sample in the dataset (xi, yi) represents the feature vector xi that describes
a window of communication events in an instance of interfered link, and
yi the corresponding label which indicates the best mitigation strategy for
this instance. Using the training set, the supervised learning algorithm
aims at constructing a good model that learns the complex pattern in the
training set to predict class y0 for an unseen feature vector x0.
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Figure 3.12: Illustration of a testing decision tree. Starting at the root, each split
node, evaluates its function Fi on the input data v. Input data is forwarded to
left or the right child node based on the output of Fi.

In Section 3.4.2.2, we elaborated on how to construct and calculate
the feature vectors {x1, . . . , xN} (see Table 3.1 for complete list of features).
Now we discuss how we automatically label the samples in our dataset.
To label our dataset for each window of observations, we simulate the
outcome of each of the considered mitigation strategies. This yields for
each instance a corresponding gain (i.e., PRR increase), and cost (i.e.,
communication overhead). The labeling algorithm quantifies the benefit
of each countermeasure and selects an optimal countermeasure A 2 {no-
CCA, FEC, nC-FEC, PM, nC-PM, no-action} that achieves the highest gain-
cost balance, as defined by application requirements.

The application expresses its requirement through a gain g()
maximization and cost c() minimization equation: f (A) = g(A)� c(A)⇥↵,
where the best countermeasure is the one with the highest f (A). The
configuration parameter ↵ defines the weight of the cost. Note that g(A)
and c(A) are normalized, and both are in the range [0, 1]. With ↵ = 0 the
cost is not at all considered, which results in the highest possible total
gain. The higher ↵, the more the algorithm emphasizes on minimizing
the total cost. In our experiments, we consider ↵ = 0.5 which is a good
tradeo↵ between total cost and total gain.
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Decision Tree (DT). DT classification model can be seen as sequential
binary decisions, corresponding to traversing binary trees. Trees here
consist of inner nodes (i.e., split nodes) and leaf nodes (i.e., classes).
The split functions embody questions that add incrementally to the
certainty of the correct class. The DT classification model estimates an
unknown property of a given object by consecutively querying about its
known properties (i.e., features). Each node evaluates a computationally
inexpensive function on one of the input features and as a result, forwards
the currently evaluated data recursively down in the tree until the data
reaches one of the leaf nodes. Determining which question to ask next
depends on the answer to the preceding question. The final decision
corresponds to the leaf (terminal) node reached by the input object.
Figure 3.11 presents an illustrative example of a decision tree algorithm
that checks if a given picture represents an indoor or outdoor scene.

Tree Training. This phase is in charge of the optimization of split functions
attributes. Each intermediate node in the decision tree has associated test
function F(v, ⌧i) with a binary output (T, F) and split attribute ⌧i associated
with the split node. These functions are vital to the classification
performance and their attributes are learned automatically from statistics
of the training data in the training phase. The tree is typically constructed
from top to bottom, where the attributes that maximize the information
gain about the classification are selected first. At each node in the tree,
the attribute that best splits (i.e., the attribute with the highest normalized
information gain) the incoming training set Ei into EL

i , ER
i is selected. The

symbols Ei, EL
i , ER

i represent the training point before and after the split.
Figure 3.12 illustrates a general learned decision tree for testing.

Albeit decision tree classifiers are not necessarily the best classifiers in
terms of accuracy, they are relatively e�cient regarding computational
and memory overheads; with careful optimization, they can run on
severely constrained devices. We use the C5.0 algorithm [132] to generate
our decision tree. Our tree consists of 200 leaves in case trained by
anechoic chamber traces and 300 in the case of o�ce traces.

3.5 Experimental Evaluation
In this section, we present the experimental evaluation of TIIM. We begin
in Section 3.5.1 by describing the experimental setup and briefly describe
the trace collection methodology. Then, in Section 3.5.2, we elaborate
on the accuracy of the decision tree classifier in inferring the correct
countermeasures. In Section 3.5.3, we perform a trace-driven simulation
to demonstrate the prospective gain of applying TIIM compared with the



58 Chapter 3. TIIM: Technology-Independent Interference Mitigation

gain of applying fixed mitigation strategies, followed by evaluating the
system gain online.

3.5.1 Experimental Settings
Up to this point, the analysis has been carried out in an anechoic chamber,
an environment that is shielded from external radio interference and
diminishes multipath propagation e↵ects. This allows us to recognize
patterns and identify the impact of each of the considered interfering
technologies in isolation. In the following, we address the evaluation of
TIIM in a typical environment that incorporates the impact of external
uncontrolled interferers, other channel impairments (e.g., multipath
e↵ect), and multiple sources of interference. We have performed all our
experiments in ETH Zurich’s computer science building. Figure 3.13
shows the layout of the experimental setup. There are two stationary
sensor nodes located in an o�ce room with a line-of-sight link of 4.5 m.

We consider two types of experiments: (i) Single active interferer: in
this run, we use each of the considered interferers to generate interference
individually. The interferers are located in this run first at location L1
(3.5 m), then L2 (6 m), and L3 (10 m). Both locations L2 and L3 are
in non-line-of-sight to the sensor nodes, while L1 is within the line-of-
sight. (ii) Multiple active interferers: in this run, we consider interference
generated from multiple sources running simultaneously. The positions
of the interferers are highlighted as circles. During the experiments, the
nodes were exposed to interference from various uncontrolled sources
existing in the building. To mention some, the university’s WiFi network
which is present on 802.11 channels 1, 6, and 11, Bluetooth mice and
keyboards, and a small 802.15.4 heating control system deployed in the
same floor.

Methodology. Our focus is to capture channel statistics over the 802.15.4
link between node A and node B. Node A sends short packets (20 byte)
and long packets (100 byte)1 at 100 ms intervals to node B.

We first perform experiments without controlled interference, then
with a single interferer activated at a time, and finally with activating
multiple interferers. For the single interferer run, we consider all of
the interferers mentioned in Section 3.3.1. For the multiple interferers
scenario, we consider a subset of these interferers, as highlighted in
Figure 3.13. In all o�ce environment experiments, the sender uses its
maximum transmission power (0 dBm).

We instruct the sender to disable carrier sense and log the CCA

1Note that, the experiments carried out in the anechoic chamber considered more
configurations of di↵erent packet lengths, transmission powers, and tra�c patterns.
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Figure 3.13: Layout of the o�ce experiment setup. A and B are TelosB motes
located in an o�ce with a line-of-sight link of 4.5 m. A is the sender and B the
receiver. The interferers are located at locations L1 (3.5 m), L2 (6 m), and L3
(10 m), where L1 is within line-of-sight to A and B and the other two locations
within non-line-of-sight. Circles indicate the location of our multiple interferer
scenario.

value at the time of transmission. This allows us to perform trace-
driven simulation for countermeasures involving carrier sense enabled
and disabled. We instruct the receiver’s radio to pass packets with failed
CRCs rather than discarding them to enable us processing erroneous
packets. Moreover, the modified radio driver samples RSSI at a rate of 62.5
kHz during packet reception along logging other relevant PHY and link-
layer metrics. Overall we capture 64 hours of extensive CTI experiments.
We collect fine-grained channel and communication measurements to
allow systematic evaluation and comparison of TIIM and the considered
countermeasures under the exact adverse link dynamics.

Rather than detailing on recovery results per technology, we focus
on discussing the adaptability of TIIM under dynamic and various
interference implications with the goal of maximizing the overall
performance gain and minimizing the overall overhead cost.

3.5.2 TIIM’s Classifier Accuracy
We first discuss the performance of TIIM’s core component, the decision
tree classifier, in inferring the correct countermeasure. As mentioned
earlier, we use half of the data points in the o�ce environment
for training the classifier. The data points include various types of
interference instances, as described above. The other half of the data
points are used to evaluate the prediction accuracy. Table 3.2 shows
the confusion matrix for DT classification. The decision tree achieves a
mean classification accuracy of 92.9%. The reason why TIIM’s classifier
achieves higher accuracy than traditional interference classification
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Predicted as (a) (b) (c) (d) (e) (f)
(a) no-action 95.0 3.9 0.0 0.2 0.5 0.4
(b) no-CCA 0.0 97.2 0.0 1.7 0.0 1.0
(c) FEC 11.4 4.5 68.2 11.4 2.3 2.3
(d) nC-FEC 0.1 16.8 0.2 80.8 0.0 2.2
(e) PM 31.1 12.2 1.1 0.0 41.1 14.4
(f) nC-PM 0.5 36.6 0.2 5.2 0.1 57.5

Table 3.2: Confusion matrix of the decision tree on the traces collected in o�ce
environment.

approaches [68], is that our classifier does not need to di↵erentiate
between radios causing similar channel signatures.

While TIIM achieves high accuracy in inferring the correct counter-
measure for most of the classes, it performs poorly for Packet Merging
(PM). This is mainly due to the low occurrence of incidents that were
labeled as PM in our dataset, e.g., only 0.18% are labeled as PM in our o�ce
environment traces. Since PM is under-represented in our dataset, the DT
could not learn well its characteristics. The low number of PM instances
in our traces is mainly due to some hardware-based inaccuracies a↵ecting
the localizing of corrupted symbols within a packet. Consequently, we
were limited from achieving the full potential of PM.

In general, achieving high accuracy in localizing the positions of
errors by solely relying on o↵-the-shelf radios is hard. For instance,
we encountered in some cases of RSSI sampling non-consistent delays
that are reflected in a slight drift between the RSSI surge position and
the actual location of the error burst which a↵ected the accuracy of our
scheme of error localization. We believe that designing radios that allow
better interfacing between PHY and upper communication layers can
yield better performance for RSSI-based packet recovery schemes.

The consequence of prediction inaccuracies in our system is not
necessarily high. TIIM has the chance to re-adjust its suggested
countermeasure after the time window of observing the channel. Hence,
the worst case scenario is that for the next window time, TIIM introduces
a cost that does not yield any gain. To verify whether the accuracy
achieved by the classifier is not tied to the training environment, we train
the classifier on our dataset from the anechoic chamber and evaluate it on
the dataset from the o�ce environment. The mean classification accuracy
of 94.1% is even slightly higher than the accuracy achieved when the DT
was trained and evaluated on data points from the same environment.
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3.5.3 Results
We discuss the evaluation results of TIIM from two aspects. First, we
discuss the potential benefits of leveraging the detection capability of
TIIM, as opposed to employing a fixed countermeasure through trace-
driven evaluation over 64 hours of CTI extensive runs. Second, we present
the overall system performance gain achieved while running TIIM.
Evaluation Metrics: We employ the following metrics to evaluate the
performance of TIIM.
• Packet Reception Ratio (PRR): This is the ratio of successfully received
packets over the total number of transmitted packets during a specific
time period.
• Gain: compares the achieved PRR to the baseline PRR (default 802.15.4
PRR under interference).
• Cost: the ratio of transmission overhead introduced by the coun-
termeasure to the base transmission. For instance, for FEC a fixed
transmission overhead of 12 Byte per packet is considered. For no-
CCA, the transmission of positive deferrals is considered as the cost.
Positive deferrals are those transmissions that were lost or corrupted, but
would have been deferred with CSMA. PM requires retransmission of the
localized corrupted symbols. Hence, we consider the overhead cost of
the new frame.
• Adaptability: to detail the ability of TIIM to adapt quickly to
unanticipated changes in the interfered channel, we illustrate the degree
of the system adaptability by showing its dynamic behavior in a timeline
plot.

3.5.3.1 Adaptive Interference Mitigation

We now evaluate the overall prospective performance gain for an adaptive
interference mitigation system as compared first to the performance of
standard 802.15.4 and then to the gain of applying a fixed interference
countermeasure. We perform a trace-based simulation using the 64
hours of CTI traces. We run each of the countermeasures and calculate
its corresponding cost and gain. As depicted in Table 3.3, the PRR
of our traces under interference lies around 56%. Applying a static
countermeasure could potentially be the best solution in case the
channel conditions remain static and best for that countermeasure.
However, due to changes of interference patterns in our traces, the static
countermeasures can cause high-cost overheads. For instance, FEC in
combination with noCCA causes about 30% additional transmission.
TIIM achieves almost the highest PRR gain with a cost of 5.6%.

The adaptability of TIIM enables it to perform best in a dynamic
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Countermeasure Gain (PRR) Cost
Base 0.566 0.000
no-CCA 0.863 0.106
FEC 0.572 0.198
nC-FEC 0.882 0.291
PM 0.567 0.005
nC-PM 0.723 0.037
TIIM 0.873 0.056

Table 3.3: The performance of TIIM as compared to static mitigation assignment.
The dynamic countermeasure selection of TIIM allows it to reach an interesting
trade-o↵ between PRR and cost.

channel. Figure 3.14 shows the timeline of selected 20 hours of our traces
and how TIIM adapts the selection of countermeasures according to its
assessment of the channel.

In the following, we spot some interesting observations. Starting from
hour 0 to hour 3, we notice that no-CCA is dominated with transitions
to nC-PM and nC-FEC. From hour 3.5 to hour 5, nC-FEC becomes the
dominating countermeasure. We notice the first use of PM at hour 7.
Particularly, the no action between hour 9 and 10 is interesting, it happens
while the high-power analog phone is active at distance 3 m, causing
severe interference. In this period, communication is not viable over
the interfered channel, and thus TIIM recommends channel switching.
Identifying such instance is essential for saving energy. We encounter the
first uses of FEC from hour 10.5 to hour 11.5. During the same period, PM
has become more active. It is worth noting that the microwave oven is the
dominant interferer during this period. Notice that starting from hour
17 (indicated by the vertical black line), we expose TIIM to condensed
corrupted traces. Consequently, TIIM’s countermeasures are dominated
by nC-FEC, FEC, and partly PM.

3.5.3.2 Online Performance

Now, we evaluate the online performance of TIIM. To this end, we
run TIIM on extracted features computed over the time window of 5 s.
Whenever TIIM recommends a countermeasure, our system applies it.

Figure 3.15(a) illustrates the base PRR of the traces in black and the
additional gain achieved by TIIM in gray. The accuracy of our system
in selecting the right countermeasure, at any given time, is plotted as a
line. To visualize TIIM’s dynamic behavior, we show the time share of
each countermeasure in Figure 3.15(b), time-synchronized with the PRR
in Figure 3.15(a). Within the first hour, TIIM achieves a gain of 100%,
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several times enabling PRR to go from 0% to almost 100%. At hour 2,
we observe a short drop in the accuracy, but the resulting gain remains
high. There are further sharp drops in the accuracy of the system that do
not lead to a PRR decrease. These are the cases where the recommended
countermeasure still could yield an acceptable gain, but possibly at a
higher cost. However, not all inaccuracies remain unpunished by the
PRR. For instance, around hours 7, 17, 28, 33, and 24 the PRR drops as a
consequence of temporarily decreased accuracy.

TIIM successfully detects the first occurrence of persistent harmful
interference (analog phone at location L1) between hours 9 to 10. It
detects persistent non-harmful interference (analog phone at location L2)
and consequently recommends no-CCA, PM, and nC-PM which yields
100% of gain. However, it fails from hour 10.5 to hour 11 to detect
another occurrence of persistent harmful interference, where the system
should have recommended channel switching. Starting from hour 19,
TIIM shows its potential in recovering severe performance degradation.
TIIM is stressed with a heavy load of concentrated corrupted packets
after hour 32. It applies dominantly nC-FEC, FEC, and partly nC-PM to
improve a close to 0% PRR to almost 95%.

Reaction Time. Traditional classification approaches need a few seconds
to detect the type of interference source, e.g., 18.14 s for WiFi [68]. This
is relatively a long time for highly dynamic channels. One advantage of
TIIM is that it reacts to interference shortly after detecting the degradation
caused by interference. Currently, TIIM provides a recommendation 5 s
after detecting interference. This allows TIIM to react timely to time-
variant interference patterns.

Coexistence with other Radios. We verified empirically that 802.15.4
does not cause harmful interference to high-power wireless devices such
as the wireless cameras. Even when disabling CCA, we did not observe
any e↵ect on wireless cameras’ operation. On the other hand, 802.15.4 can
cause harmful interference with coexisting low-power radios, resulting
in 802.11 deferrals and packets losses for Bluetooth. TIIM can potentially
be trained to make a tradeo↵ between its performance and the harmful
interference it may cause to the low-power networks or be trained to
apply no-CCA only for high-power interferers.

3.6 Discussion
This chapter provides a proof of concept on the potentials of a CTI-aware
and smart adaptive link-layer solutions. However, more research and
experimentation are needed to generalize and realize the full potential
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of TIIM. Here, we address some practical challenges and research points
that assist in evolving TIIM further.

(a) Porting TIIM to other Radios. Although this work focuses on
low-power networks, most of the observations can be projected to
analogous RF technologies, such as 802.11 radios. The core concept of
integrating reasoning to combat interference diversity in the unlicensed
bands has not been explored before. We believe that TIIM’s core concept
can be beneficial to analogous wireless technologies, and leave further
investigations for future work.

(b) Extending TIIM with New Countermeasures. In this work, we
explored the feasibility of addressing the CTI heterogeneity problem
by focusing on aspects that are relevant to the set of few mitigation
approaches considered in this prototype of TIIM. To extend the system
with new mitigation approaches, relevant features need to be redefined
and the classifier needs to be retrained. Possible examples of interesting
countermeasures that can benefit from a learning module are: Detecting
systematically the duration and interspace of interference pulses could
be a useful metadata for an adaptive FEC, to select the right level of
redundancy required by FEC, or capturing tendencies in duty cycles can
be exploited for a better MAC scheduling.

(c) TIIM’s Limitations. TIIM has a narrow view of the RF spectrum that is
limited to the 802.15.4 channel width. It focuses on increasing the spectral
e�ciency over interfered channels, with lack of cognition about the state
of the rest of the spectrum. Thus, it lacks a comprehensive view of the RF
spectrum to decide whether communication over an interfered channel
is preferred over channel switching.

(d) Interference and PHY Layer Information. Over the last few years,
researchers advocated a design of wireless systems that allows a better
interfacing of physical layer information for higher layers, particularly to
cope with interference. We developed this work with legacy systems
in mind, thus we were limited to the PHY space provided by these
systems. One PHY aspect that can be integrated into TIIM to overcome
its limitation of narrow spectrum perception, is the use of cyclostationary
analysis for bandwidth estimation of interfering signals as suggested by
DOF [78]. DOF estimates the bandwidth of interfering signals solely
based on the PHY information retrieved from the channel frequency
in use. This allows a better reaction in severe channel conditions,
where a less a↵ected channel outside the interferer’s bandwidth could
be selected. In Chapter 4, we continue in this direction; we harness
physical layer information to develop solutions that enhance wireless
systems coexistence.
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(e) Machine Learning in Wireless Communication. The concept of
bringing intelligence to radios is not new. Communication concepts
such as cognitive radio, promise integration of intelligence into radios,
such that they can sense, learn from, and adapt to their environment.
To date, most of the cognitive radio research focuses on licensed bands
and has been restricted to policy-based radios that are hard-coded with
rules on how to react in certain scenarios. Devising radios that utilize
machine learning techniques, i.e., a learning-based cognitive radio, is a
relatively unchartered research area. Ideally, the learning algorithm uses
past observations to form a hypothesis about the nature of the channel,
by exploring the relation between attributes and inferring patterns in
channel statistics. Then use this hypothesis for predicting measures of
interest in the future. In these settings, the learning engine is responsible
for augmenting the list of actions available to the radio that allows it to
adapt to a changing environment. Hence, radios can remember lessons
learned in the past and act upon in the future. This chapter shed the light
on the potential of using machine learning in one wireless communication
application, namely automating countermeasure selection in the presence
of interference. Interference in the unlicensed band is primarily from
communication systems that follow systematic protocols which can be
learned and exploited for better coexistence. This chapter is devoted to
exploring this direction. The scope of machine learning applications in
wireless communication is wide and needs further research exploration.
The need of learning components in radios is more evident now, as the
rise of active wireless devices implies that more RF optimizations and
tuning is needed.

3.7 Related Work
We distinguish three major directions adopted to combat
interference in the unlicensed bands and related to the work presented in
this chapter. The first direction aims at detecting and avoiding interfered
frequencies by employing spectrum sensing to identify interference-free
channels [126, 162]. Musaloiu et al. [107] propose a distributed algorithm
for channel selection and interference estimation using RSSI sampling
for 802.15.4 networks. The lack of interference-free channels, and the fast
and unpredictable changes in the occupancy state of frequency bands
make the sampling overhead of these approaches high, particularly for
resource-constrained devices.

The second direction aims at increasing resilience against inter-
ference, by bracing PHY and MAC layers with auxiliary mechanisms.
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For instance, Liang et al. [96] studied the interplay between 802.11
and 802.15.4 and applied a resilience forward error coding scheme to
interference [96]. Analogously, some solutions focused on exploiting
the temporal e↵ects of interference induced on the PHY hints, such as
variations in soft errors (softPHY) [85] or RSSI variations [71, 66] to recover
interfered packets. Others focused on increasing the robustness of existing
MAC protocols against interference [20, 21], or considered utilizing
multiple radio channels for communication [9, 60] to exploit frequency
diversity. Moreover, further PHY solutions have been considered, such as
utilizing advancements in MIMO for interference cancellation [54, 166].

The third direction aims at identifying the type of interference by
employing signal classification techniques [34, 93, 78] or featuring distinct
interferer’s patterns on corrupted packets [68]. It is, however, not yet
clear how the interference classifiers can be utilized in an automated way
to mitigate interference, given the diversity of interference technologies.
Our work aims at bridging the second and third directions, by featuring
classification to recognize interference patterns which can provide useful
meta-information about the applicability of a certain mitigation strategy.

3.8 Summary
Wireless interference has been a long sought but still a crucial problem in
wireless communication, notably for systems operating in the unlicensed
bands. While most existing solutions focus on the careful tuning of
signals to realize frequency isolation, less work has focused on thoroughly
utilizing the interfered links under heterogeneous interference patterns.

In this work we investigate how to enable wireless nodes to make
optimal decisions in situations involving high uncertainty, consequently,
dynamically adapt based on their surrounding wireless environment.
We have been inspired by the broad vision of cognitive communication
to design wireless systems that are computationally intelligent about
radio resources and the surrounding wireless environment. It is essential
to realize this comprehensive, intelligent system for managing wireless
resources before the wireless medium becomes so unreliable as to be
unusable.

More concretely in this chapter, we introduced TIIM, an interference
mitigation system that proposes countermeasures that work best
under the current interference patterns, independent of the particular
technology causing it. We leverage previously unconsidered channel
attributes and employ a lightweight machine learning classifier to
(i) decide whether the communication is viable over the interfered link,
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(ii) learn contending signal patterns, and (iii) find the best underlying
link-layer coexistence scheme. Doing so, TIIM realizes the full potential of
interfered wireless links and consequently enhances spectrum e�ciency.
Our evaluation shows that TIIM improves the packet reception ratio
under interference by about 30% with only 5.6% additional transmission
overhead.

In the following chapter, we further pursue research in adaptive
recovery but focus on cross-layer solutions. We move way from bringing
solutions for o↵-the-shelf radios and instead utilize software radios to
explore the space of richer physical layer information that can be used to
enhance wireless coexistence.
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4
Cross-Layer Optimization for

Wireless Coexistence
Wireless systems use a variety of physical layer techniques to combat
channel impairments. For instance, 802.15.4 employs spread-spectrum
modulation and error control coding. However, these techniques alone
fall short in mitigating the e↵ects of Cross-Technology Interference
(CTI). CTI severely reduces the Signal-to-Interference-plus-Noise Ratio
(SINR) of the intended transmission, which results in high bit-error
rates and limits the e↵ectiveness of these techniques. Energy and
complexity constraints in low-power networks prohibit the use of
complex interference suppression and cancellation techniques that are
finding their ways into unconstrained wireless systems [79, 54]. In
this chapter, we shift our focus to the physical layer. Particularly,
we investigate how to exploit physical layer properties of low-power
signals to address CTI better, while still maintaining a low complexity.
Consequently, we explore the space of physical layer information in the
802.15.4 radios that can be used to enhance low-power wireless systems
coexistence.

Contributions and Roadmap. To tackle the issues above, we present
CrossZig, a cross-layer solution that enables low-power wireless nodes
to make informed decisions on their coexistence strategies based on
richer physical layer information, thus adapt autonomously to the current
interference patterns in the channel. CrossZig achieves this by leveraging
novel building blocks and system designs.
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This chapter makes the following contributions:

• We introduce a Physical layer Hints Interface. This interface allows
higher layers to access richer physical layer information and
consequently use it in a variety of algorithms to boost performance
under CTI (Section 4.1).

• We develop a novel lightweight technique that allows low-power
nodes to recognize the type of interference in interfered packets
(Section 4.3). Our design achieves high accuracy in detecting CTI at
all SINR ranges where the target signal cannot be decoded correctly
and it does not require any prior synchronization between nodes
(unlike [135, 56]).

• We present CrossZig, an adaptive recovery mechanism that exploits
both block-based error correction and packet merging through
diversity combining at the signal level (Section 4.4). We show
that both of these schemes come at low complexity costs while -
if carefully performed - they can e↵ectively alleviate the damage
due to Cross-Technology Interference.

In light of our contributions, Section 4.5 and Section 4.6, cover the
implementation and evaluation of CrossZig. We implement and evaluate
a prototype of our system in SDR using GNURadio [53] with USRP-
N210 [44]. Section 4.7 surveys related work, and Section 4.8 provides
brief concluding remarks. This chapter is based on the contributions
made in [74, 73].

4.1 Physical Layer Hints Interface
In this section, we present the Physical layer Hints Interface (PHY-
hints). This interface is an extension of the standard physical layer.
It allows higher layers to access a richer physical layer information.
When physical layer signals are received, besides standard processing,
such as demodulation, chip-to-symbol mapping, and delivering decoded
symbols to the data-link layer, the physical layer also accommodates
further hints that can be exploited to boost the performance of wireless
systems [159, 85, 153, 115]. In this work, we exploit such hints to detect
Cross-Technology Interference and to estimate the confidence of received
symbols in interfered packets. We begin this section by giving an
overview of the PHY-hints interface design. Then we discuss the specific
details of the PHY-hints interface for the IEEE 802.15.4 physical layer.
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Figure 4.1: Simplified block diagram of the 802.15.4 transmitter.

4.1.1 Wireless Cross-Layer Design

Many communication systems still strictly confine with the conventional
network layering principle. In such systems the physical layer at most
output frame units consisting of streams of bits after demodulation and
decoding to upper layers. Layers on top compute the checksums for the
received frames and discard erroneous frames regardless of the level of
damage in received frames. There has been a compelling evident that
in wireless systems the conventional layering abstraction is limiting and
has led to suboptimal wireless operations [65, 139, 142, 145, 91]. This is
because such a design paradigm obscures upper layers from reasoning
about channel dynamics. Alternatively, a cross-layer design seeks to
enhance system performance as it allows upper layers to adapt better to
channel conditions by exposing more information at the physical layer.
This has led to a move towards designing wireless systems with a higher
level of physical layer flexibility. The resulting flexibility helps to enhance
the network performance but can increase the system complexity. To
bound this complexity, cross-layer designs should maintain the classical
digital abstraction between the physical layer and the upper layers. This
implies that the interface between the physical layer and the upper layers
should evolve to allow access to physical layer information. This would
facilitate interaction between layers without eliminating the layering
principle.

PHY-hints Interface. We design the PHY-hints Interface as an extension to
the physical layer. This extension will allow upper layers to access further
physical layer information without modifying the standard physical layer
interface, with this we maintain the digital abstraction. In our design, the
physical layer, similar to the conventional systems, assembles received
bits into frames and passes them up to the link layer. For each group of
bits b the physical layer additionally can pass a block of meta information.
Higher layers can retrieve and process the side information passed for
each block of bits b without further involvement of the physical layer.
In our design the flow of information can be triggered on demand and
upper layers can specify the type of information to be delivered as side
information. The granularity of the data delivered through the PHY-hints
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interface can be optimized to lower the complexity and overhead of the
interaction between layers.

A key challenge in such a cross-layer design resides in identifying the
essential information to be exchanged between layers. Communication
systems often add redundancy to cope with the noise in the channel. This
can be achieved by using a modulation with a large separation between
constellation points or by applying channel coding. This redundancy can
be utilized as a source of physical layer hints. We will highlight how
we can leverage this inherent redundancy in communication systems to
extract information that can be used by upper layers to boost performance.
Jamieson [91] has extensively researched the topic cross-layer abstractions
in his dissertation. Our PHY-hints interface is influenced by the findings
in this dissertation. However, our design is evolved to cater hints relevant
to the CTI problem and deliver an interface customized for the 802.15.4
technology.

4.1.1.1 Physical Layer Background

We briefly recall some background material on physical layer encod-
ing/decoding and modulation schemes. Note that we omit details
unrelated to the context of our discussion to simplify this communication
primer. Along this presentation, we discuss how signal distortions due
to channel impairments are reflected on decoders.

Symbol Constellations. In basic wireless communication systems, the
physical layer encodes bits in one of few M symbols si(t), ..., sm(t) that are
sent at singling intervals. The PHY symbols are typically represented
as complex valued signals in a 2D complex plane referred to as the
constellation diagram. Figure 4.2(a) illustrates the ideal constellation
diagram for an example modulation scheme, namely, the 4-ary quadrature
amplitude modulation (4-QAM). The receiver recovers the In-Phase (I)
and Quadrature (Q) values of received symbols and places them on the
constellation diagram. As the signal get distorts by channel impairments,
the received symbol positions get dispersed from the ideal position. This
is illustrated in Figure 4.2(b), where ↵ as physical layer hint reflects
on the distance in signal space between received constellation point
(received signal) and the decoded constellation points (expected symbol).
Communication systems typically use modulation schemes with the
separation between constellation points relative to the noise in the channel
to accommodate for symbol dispersions.

Coded Communication. Channel coding is typically utilized in
communication systems to control errors in noisy communication
channels. This is done by introducing redundancy in the channel encoder
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Figure 4.2: Representation of 4-QAM Constellation Diagram.

so as to enable the decoder to reconstruct the original source sequence
as accurately as possible. We confine this discussion to block coding, a
popular coding scheme used in communication systems. The core idea
of block coding is to use finite-lengths vectors (referred to as code-words)
to transmit blocks (of length k) of segmented incoming binary data. For
block code with a codeword of length n (where n > k), there are 2n

possible codewords. A subset of these codewords is used to make the
codebook C1, ...,CM, which the transmitter is restricted to send over the
channel. The encoding process maps the incoming sequence of source
data blocks to one of code blocks specified in the codebook. The resulting
code is referred to as an (n, k) binary block code of rate R = k/n. The
transmitter then groups the coded data into channel symbols, modulate
it and send it over the channel. At the receiver, the decoder computes the
Hamming distance between the received symbol ys and each codeword in
the codebook. Then decides on the codeword r with minimum Hamming
distance dH.

r = arg min
r

dH(ys,Cr) (4.1)

The Hamming distance dH(ys,Cr) between the decoded Cr and received
symbol ys, reflects on the decoding confidence.

4.1.2 IEEE 802.15.4 PHY-hints Interface
The discussion carried before provided a general overview. Now we
dive into the specifics of our cross-layer interface. The scope of physical
layer hints is typically tied to the details of the physical layer, namely
the modulation and coding schemes employed by the target wireless
technology. Therefore, we briefly review relevant aspects of the IEEE
802.15.4 physical layer and then elaborate on the subset of physical layer
hints we consider in our design.
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Figure 4.3: Block diagram of the receiver and corresponding PHY hints.

IEEE 802.15.4 Physical Layer. The IEEE 802.15.4 standard [81] for wireless
devices operating in the 2.4 GHz employs O↵set Quadrature Phase-
Shift Keying (O-QPSK) for modulation and Direct-Sequence Spread
Spectrum (DSSS) for spreading. Figure 4.1 shows a block diagram
of the physical layer components of an 802.15.4 transmitter. At the
physical layer, data is first grouped into 4-bit symbols and then spread
to a specified 32-bit long Pseudo-random Noise (PN) sequence (b0b1b2b3 !
c0c1c2 . . . c31). Each bit (ci) in a PN sequence is then modulated using O↵set
Quadrature Phase-Shift Keying (O-QPSK). As shown in Figure 4.4, the
even chips c0c2c4 . . . are modulated as In-phase (I) component of the carrier
and the odd indexed chips c1c3c5 . . . are modulated as Quadrature (Q)
component of the carrier. The time duration of each chip is 1 µs and
there exists a half chip time (Ts = 0.5 µs) o↵set between the Q-phase
chips and I-phase chips, which results in a continuous phase change and
constant envelope.

For demodulation, the receiver’s radio converts each half-sine pulse
signal into a chip. Then these chips are grouped to provide PN sequences.
The de-spreading is performed by mapping the PN sequence to the
symbol with the highest correlation. Unlike modulation schemes such
as QAM or ASK, which operate by varying the amplitude of the carrier
wave, 802.15.4 adopts O-QPSK modulation. Hence, the carrier wave
amplitude of all chips within one packet is constant and depends on
the selected transmission power (i.e., constant envelope). The 802.15.4
chips are shaped by half-sine pulses at the transmitter. While the signal’s
shape will be distorted by noise in the wireless channel, its basic shape
is maintained. The demodulator’s output provides an indicator of how
close the received signal shape is to the expected shape. We leverage these
two features (i.e., constant amplitude and signal shape) of the 802.15.4
PHY in the design of CrossZig. We now elaborate on the physical layer
hints we harness in CrossZig.

Signal Power. When two signals interfere, their energies add up
(i.e., signals can add up constructively or destructively based on their
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Figure 4.4: IEEE 802.15.4 modulation (O-QPSK).

phase alignment). Interfered segments of the received signal generally
experience larger power than the rest of the signal, assuming the signals
add up constructively. The interfered segment of the signal exhibits
lower SINR, thus experiences a higher error rate. This insight on the
additive energy of interfering signals highlights the ambient information
the signal carries along and can assist in detecting interference and
localizing interfered symbols within interfered packets. Figure 4.5(a)
plots the signal power of a partially interfered packet. Once exposed to
interference, the signal experiences a sudden sharp increase in the signal
power.

Hamming Distance. In the 802.15.4 PHY, symbols are spread to a 32-
chip codeword before transmission (one of 16 PN codewords). The de-
spreading is performed by mapping the received codeword to the symbol
with the highest correlation. For an erroneous mapping of a received
codeword, many chips have to be flipped. The distance between the
input and output codewords of the chip-to-symbol mapper can serve as
an indicator for the confidence of symbol decoding. Figure 4.5(b) plots the
Hamming distance within an interfered packet. Large and low Hamming
distance values provide a good indicator of corrupted or correct symbols,
respectively.

Demodulation Soft Values. Soft Values (SV) of demodulated bits are real
numbers output by the demodulator. These values are approximations
of the transmitted symbols. The receiver’s demodulator maps the SV to
the closest ideal symbol. For instance, in the case of Binary Phase-Shift
Keying, the binary demodulated bits are retrieved after passing the soft
values through a binary slicer. The bit is set to 1, if the SV is a positive
number, otherwise it is set to 0. However, besides the bit value, SV also
reflects on the demodulation confidence [159].

The confidence information of the SV can be interpreted based on
the type of the demodulator. In case the receiver adopts a matched
filter-based coherent demodulator, the soft demodulated values indicate
the similarity between the received signal and ideal signal shape. Thus
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Figure 4.5: Physical layer hints of a corrupted packet by Interference. The gray
area indicates erroneous symbols.

the larger SVs, the higher the confidence for the corresponding bit to
be correctly demodulated. However, if a non-coherent demodulator is
used, the SV carries di↵erent information. For example, in our case
the receiver uses a quadrature demodulator, which outputs the phase
di↵erences between two successive signal samples as SVs and can be
computed as:

SV(i) = ](s(i) ⇥ s⇤(i � 1)) = ±⇡
4
+ �, (4.2)

where ±⇡4 is the ideal value of SV and � is the error caused by interference
and noise. Each chip is modulated by a single half-sine pulse in the
transmitted signal and is represented by a sequence of four complex
samples at the receiver. This implies a total phase change of ⇡ for one
chip. Hence, the expected phase change between two signal samples
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is ±⇡4 . The demodulation confidence does not depend on the absolute
value of SV, but the di↵erence between |SV| and ⇡

4 . Chips (i.e., bits of a
codeword) with |SV| closer to ⇡

4 have a higher probability to be correctly
demodulated (see Figure 4.5(c)).

4.2 Symbol Error Localization (in interfered
packets)

As our recovery mechanisms involve processing of incomplete packets
(partially interfered), it requires the receiver to be able to discern with a
high accuracy and without additional feedback from the sender which
symbols in a packet are correct and which are not. The physical layer
hints described above expose statistical di↵erences between interfered
and non-interfered symbols, which render them suitable candidates to
detect erroneous symbols. However, designing practical error detection
algorithms based on these PHY hints with acceptable false positive and
false negative rates is challenging. As we are interested in per symbol
error estimation, we do not utilize SVs in error estimation (which would
introduce more overhead with one SV per chip, i.e., 32 per symbol).

A direct method to estimate the symbol error is setting a threshold
on the number of unmatched bits (reflected in Hamming distance) of the
decoding results. This indicates the disparity between the chip sequence
derived from the received signal and ideal symbol sequence. However,
finding a good threshold is not trivial, as discussed before and illustrated
in Figure 4.5(b). We propose an error estimation algorithm that jointly
uses the number of unmatched bits of decoding results and the received
signal power. Figure 4.6 shows the power mean, power variance, and
Hamming distance for correct and corrupted symbols for one of our
traces (we detail in Section 4.6 our experiment setup). This plot captures
the intuition behind our algorithm; for low and high Hamming distances,
we can classify a symbol with high confidence as successfully decoded or
corrupted, respectively. For intermediate values, the Hamming distance
alone is not enough (as dark and light gray dots indicating correct and
corrupted symbols, respectively, overlap in this Hamming distance range
in Figure 4.6). The input power though can assist to detect corruption for
these cases.

Our symbol error detection algorithm works as follow: A symbol is
classified as correct if its Hamming distance is lower than ⌧l, whereas
those with Hamming distance � ⌧h are classified as erroneous symbols.
For symbols with a Hamming distance between the decision boundaries
⌧l and ⌧h, we check the channel SINR. In case SINR is lower than ⌧s, we
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Figure 4.6: Physical layer hints for correct and corrupted symbols under wireless
camera interference. Dark grey dots indicate correct symbols and light grey dots
indicate corrupted symbols. The majority of received symbols with Hamming
distance under 4 were received correctly and above 10 were corrupted. Correct
and corrupted symbols overlap in the Hamming distance range in between.
Therefore, the Hamming distance alone is not su�cient for the determination of
the symbol fate. Hence, the power information can help for these symbols.

mark the symbol as erroneous. The SINR measures the channel noise and
interference. It, therefore, reflects to what extent the channel preserves the
correlation between transmitted and received symbols. We find this joint
estimation method to be slightly better and much stabler than just setting
a threshold on the number of unmatched bits. The threshold values (⌧l,
⌧h, ⌧s) are configurable system parameters which we derive empirically.

4.3 Cross-Technology Interference Detection
Performance degradation in wireless systems can be due to Intra-
Technology Interference, Cross-Technology Interference, or insu�cient signal
strength. Determining the cause of performance degradation is essential
for the coexistence problem as this defines the corresponding mitigation
action to be considered. Current receivers deliver only a binary feedback
on the reception status of received packets ( i.e., packet passed or failed the
checksum), consequently leaving receivers with suboptimal information
to perform adaptations.

In Chapter 3, we addressed the interference detection problem.
However, there we focused on di↵erentiating loss causes between weak
signal and interference without any consideration of the interference type.
Recent works [129, 56] tackled interference detection problem as well in
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Figure 4.7: Determining the cause of packet loss can help guide better link
parameter adaptations.

such binary settings.
Di↵erentiating Intra- and Cross-Technology Interference has not yet been

addressed with practical mechanisms. The inability to distinguish the
type of interference leads to rather conservative approaches that blindly
treat packet losses as collisions (i.e., overlapping transmissions of the same
technology). Thereby exponential backo↵s are invoked which can lead to
starvation of low-power radios competing with high-power interferers.
Moreover, interference cancellation based solutions (e.g., SIC [62]) would
impose undesired overhead and worsen the chances of decodability for
the target signal, if applied in the presence of CTI. Generally speaking,
bracing wireless nodes with mechanisms that increase their ability to
reason about the channel state will allow better adaptation and recovery
(Figure 4.7). Hence, beyond detecting the presence of interference,
we are interested in detecting the presence of CTI. We introduce two
complementary CTI detection mechanisms that are utilized in our system:
SV-based and correlation-based detections.

CTI Detection is fundamentally related to the wireless signal detection
and cognitive radios spectrum sensing. Signal detection focuses on
discerning signals that carry information (i.e., target signal) and random
signals (i.e., noise). In CTI detection, and unlike signal detection, we
are not interested in restoring the information carried by signals, but
rather interested in binary feedback on the type of signal buried in a
specific segment of the packet. This simplifies the detection process as we
do not need to recover the signal of interest but identify its type. On the
other hand, spectrum sensing in cognitive radios is focused on detecting a
primary transmitter (i.e., a known signal) that is locally present in a certain
spectrum. CTI detection is similar but focused on the detection of the
presence of a known signal in the interfered segment of the packet, hence,
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higher uncertainty in SINR. In the context of this dissertation, we present
two CTI detection mechanisms that we later utilize in CrossZig. With
this, we can have robust mechanisms in place that allow us to determine
the cause of a packet loss between intra-technology interference, cross-
technology interference and weak signal in real-time.

4.3.1 SV-based Detection

We explore the possibility of exploiting variations in demodulated soft
values for interference type detection. The core idea is to inspect the
modulation and signal shape of the interfered signal, which is reflected by
the soft values. While experiencing Intra-Technology Interference (interferer
is 802.15.4), the demodulator demodulates the stronger signal. Since the
interference signal is of the same type (i.e., shape), the variations in the
soft values remain small. In contrast, with Cross-Technology Interference
the signal shape di↵ers from the ideal signal. Thus, the variations in soft
values are higher. We take signal samples from the interfered part and
compute the variation metric V which we use to determine the received
signal type:

V =
1
N

NX

i=1

✓
|SV(i)| � ⇡

4

◆2
(4.3)

V measures the average distance between the received |SV| and the ideal
value ⇡4 . The smaller V, the higher the chance that the signal is 802.15.4
(i.e., Intra-Technology Interference).

This SV-based detection mechanism does not require to compute
complex compensation of channel distortions or signal decoding.
Moreover, the soft values are readily available which makes this detection
mechanism lightweight. Note that any interfering technology using O-
QPSK with half-sine pulse shape and similar baseband signal bandwidth
other than 802.15.4 is identified as Intra-Technology Interference using
this mechanism. This technique exploits the capture e↵ect phenomenon,
in which a strong interfering signal is successfully demodulated (i.e., of
the same technology). It, therefore, works well in the low SINR region,
where the target signal is much weaker than the interferer. Hence, the
interference signal dominates the signature shape in the received signal.
If this is not the case, we resort to a more costly technique: correlation-
based detection. Although we focus our discussion on 802.15.4 PHY, this
approach can be adapted to other wireless technologies that provide SVs.
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4.3.2 Correlation-based Detection
The receiver can exploit the fact that 802.15.4 packets start with a
predefined preamble and SFD symbols for synchronization, and search
for this known signal pattern within the interfered segment by computing
the temporal cross-correlation between received signal and the ideal
preamble plus the SFD. In case the pattern is present, the receiver can
conclude that the interference is of type Intra-Technology Interference.
Otherwise, it is a Cross-Technology Interference. In general, correlation
is a typical functionality in standard wireless receivers [101]. To detect
the interference type in the received signal, the receiver can perform the
cross-correlation between the 802.15.4 preamble (p) and the start of the
interfered segment. This approach yields a good performance in theory.

In practice, however, the transmitter and receiver are typically not
centered on the same frequency. Hence, there is a small frequency o↵set
(� f ) between the transmitter and the receiver that causes a linear shift
in the phase of the received signal. This frequency o↵set can distort the
correlation and needs to be compensated before the correlation process.
Standard receivers typically estimate the o↵set and compensate for it. In
the context of CTI, since we are agnostic of the transmission source and
do not have access to a decodable pilot or decodable preamble in the
interfered signal, it is not possible to compensate the frequency o↵set of
the interference signal, even in the case of Intra-Technology Interference.
This consequently limits the accuracy and usability of this approach.

An alternative approach is applying correlation in the frequency
domain. Since frequency o↵set in the time domain will translate into
sampling o↵set in the frequency domain, it does not a↵ect the value of
correlation, but only shift it. The frequency domain correlation with
consideration of the frequency o↵set can be formulated as follows:

c(y, ⌧, p) =
NX

n=1

P⇤(n)Y(n + ⌧) (4.4)

=
NX

n=1

P⇤(n)F
⇣
(s(k) + i(k) + w(k))ej2⇡(� f�⌧)kT

⌘
(4.5)

The ideal preamble is independent of transmitted data and the noise.
Therefore, the correlation between the ideal preamble and the noise w is
about zero.

c(y, ⌧, p) =
NX

n=1

P⇤(n)F
⇣
i(kT)ej2⇡(� f�⌧)kT

⌘
(4.6)
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=
NX

n=1

P⇤(n)I(n + ⌧ � � f ) (4.7)

where P(n) and Y(n) are the ideal preamble signal and the received
signal in the frequency domain, respectively. F (x) stands for the Fourier
transform of x. Moreover, s, i, and w represent the signal, interference,
and noise in the received signal, respectively. The correlation value is
maximized when ⌧ = � f , and the signal is the expected preamble signal
(I(n) = P(n)). Since � f is unknown and we cannot compensate it, we
compute the correlation for a certain range of ⌧ instead and consider its
maximal value as:

C(y, p) = max
⌧

c(y, ⌧, p) (4.8)

The range of ⌧ is not large, given that the frequency o↵set is typically
small.

Complexity. Applying correlation in the frequency domain involves
transforming a signal from its time representation to the frequency
domain ahead of applying the correlation, which can be an expensive
procedure for low-power receivers. CrossZig primarily runs the SV-based
mechanism for detection and utilizes the correlation-based technique just
for the SINR ranges where the SV-based technique does not yield a good
accuracy. The SV-based mechanism in its core examines variations in
the SVs which makes it a lightweight mechanism that is practical for
low-power radios.

4.4 CrossZig Architecture and Design
In this section, we present the detailed design of our approach that
extends the 802.15.4 stack to improve medium access e�ciency under
CTI and recover partially interfered packets. We start by presenting a
high-level overview of CrossZig, then present its core components, and
finally describe the system integration.

4.4.1 Overview
CrossZig is an extension to the standard 802.15.4 that allows low-power
wireless nodes to communicate better in interfered environments. Upon
the detection of CTI, CrossZig triggers an adaptive recovery scheme. Our
extension is accompanied by a CTI-aware medium access mechanism that
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Figure 4.8: Overview of CrossZig transitions.

opportunistically leverages the silence duration in interfered channels. In
particular, our extension consists of the following components:

PHY-hints Interface. This interface allows higher layers to access
richer physical layer information and consequently use it in a variety of
algorithms to boost performance under CTI. The details of this interface
are discussed in Section 4.1.

CTI Detection. This component resides in the physical layer. We show
(in Section 4.3) how we exploit variations in the PHY hints to detect
interference in incoming corrupted packets. More importantly, how we
can di↵erentiate the interference type between Intra- and Cross-Technology
Interference. The recovery mechanism presented next are enabled by
CrossZig only when CTI is detected; otherwise nodes operate in the
normal mode, as depicted in Figure 4.8.

CTI-aware Packet Recovery. Our system recovers from a variety of
interference patterns. The receiver estimates errors in interfered packets
by relying on physical layer hints. Error information is used to choose
a suitable recovery mechanism; currently selecting or combining two
recovery mechanisms: (a) Cross-layer based packet merging to recover
long error bursts, and (b) Adaptive error-correction coding to deal with
transient interference with low BER rates.

4.4.2 CTI-aware Packet Recovery
CrossZig mitigates CTI through an adaptive packet recovery scheme.
It observes error characteristics and adjusts the recovery mechanism
settings accordingly. The recovery scheme integrates two recovery
mechanisms, namely cross-layer based packet merging and adaptive
Reed-Solomon (RS) coding. Cross-layer packet merging tackles long
burst errors which are beyond coding recovery capabilities. Adaptive
RS coding targets packets that can be recovered with moderate code
redundancy, i.e., low bit error ratio. We first explain how these



86 Chapter 4. Cross-Layer Optimization for Wireless Coexistence

Lc

… 20 21 … 40 41 42 43 44 45 46 … …60 61

… 20 21 … 40 41 42 43 44 45 46 … …60 61

L2

L1

Figure 4.9: Two consecutive corrupted transmissions of the same packet. Lc

highlights the overlapped interfered segment in the two packets which cannot
be recovered with basic packet merging. We exploit MRC to recover Lc.

mechanisms work independently and later we describe how they are
integrated into CrossZig.

Cross-layer based Packet Merging (CPM). CPM is a packet recovery
mechanism that aims at improving retransmission e�ciency by exploiting
partially correctly received bits within the interfered frames, and
additionally, combine incorrect symbols from multiple transmissions to
construct correct ones.

Packet retransmission is a fundamental mechanism used in communi-
cation systems to recover lost packets, typically referred to as Automatic
Repeat reQuest (ARQ). Once a received packet is erroneous (i.e., failed
the CRC check), the receiver abstains from sending an ACK frame.
Transmitter retransmits the same packet until an ACK frame is received
for that particular packet. Note that even if the majority of bytes within
an interfered packet are correct, packets are discarded due to the bit-
by-bit correct transmission enforcement by CRC. In the presence of an
active interference source, an immediate retransmission is susceptible
to be disturbed by the same source of interference which can degrade
the performance of standard ARQ mechanism. Instead of repeatedly
retransmitting such packets, we investigate how nodes can accept and
bu↵er corrupted packets, and combine multiple, possibly erroneous,
copies of a given packet in an attempt to recover the original packet
from the corrupted copies.

Our CPM is realized at two stages; symbol level and signal level.
The symbol-level packet merging reconstructs the target packet by
combining correct symbols from two packet instances. CrossZig identifies
correct symbols using our error localization mechanism. As long as we
receive one correct instance of every symbol, this technique allows us
to reconstruct the original packet with high confidence (see Figure 4.9).
For symbols that are corrupted on all received instances, as depicted in
Figure. 4.9, we combine them at the signal level by employing Maximum
Ratio Combining (MRC).

In MRC [22], each signal branch is multiplied by a weight factor that
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Figure 4.10: Diversity combining of two identical signals under interference.

is proportional to the branch SINR. That is, branches with strong SINR
have a larger weighted factor and are further amplified. The signal and
noise power are computed over interference-free PHY header and SFD
symbols. Thus, interference signal power is derived as the di↵erence
between the approximated target signal and noise power from interfered
signal power. Signals of the first transmission and the corresponding
retransmission can be represented as:

y1(t) = s1(t) + i1(t) + n1(t) (4.9)

y2(t) = s2(t) + i2(t) + n2(t) (4.10)

The maximal combined signal can be represented as:

y(t) = w1y1(t) + w2y2(t) (4.11)

where the weighted coe�cients (w1, w2) are computed by the SINR over
the sum of signals of commonly corrupted symbols:

wj =
SINRjP

SINRi
(4.12)

Time diversity involves transmitting the same information at two
distinct times. In Equations 4.9 and 4.10, sj, ij, nj represent the signal,
interference, and noise components of the received signal at time instant
j. The noise in each time instance of the channel is independent of the
signal. The signals s1 and s2 are essentially identical. In contrast, i1 and i2

are not identical and most probably completely uncorrelated.
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After combining, target signal s components are amplified. This yields
an increase in the power of the target signal, thus increases its decodability
chances. Interference i and noise n components can be either canceled,
attenuated, or amplified. However, on average, the SINR is increased
(see Figure 4.10).

For the MRC-based combining, co-phasing of all signals is necessary to
avoid target signal cancellation. Instead of performing computationally
complex frequency and initial phase o↵set compensations for each signal,
we estimate the relative phase o↵set between two signals. Since they are
transmitted and received by the same sender and receiver, their frequency
o↵sets are the same. Thus, after compensating the relative phase o↵set
by utilizing the preamble signals in each packet, we can correctly align
them.

RS-Adaptive Coding. When the system observes a high ratio of
corrupted packets, FEC, which adds redundant information to the
payload, is used to potentially recover the errors and possibly avoid
retransmissions. Although FEC codes are widely used in communications
systems, selecting the right coding scheme and setting the right level of
redundancy for constrained devices is not trivial. We investigate how
to derive an adaptive encoding strategy for low-power devices under
various interference patterns, where transmitted redundancy is bounded
to the inferred error patterns.

We choose Reed-Solomon (RS) codes, which are practical for constrained
devices [96, 99]. RS codes are systematic codes, i.e., redundancy data is
appended to unaltered source data. This results in no decoding overhead
when no error is present. The RS codes are block-based error correcting.
The length of the redundant parity (t) defines the maximum number of
corrupted blocks a receiver can successfully recover within a partially
corrupted packet. RS coding can correct up to t/2 and detect up to t
block errors. It works well for error patterns that fall under the recovery
capacity of the parity check.

The primary goal of our adaptive strategy is to increase packet
recovery rates, yet minimize the redundancy overhead on the channel
to meet the energy constraints of low-power radios. To realize this, we
rely on physical layer hints to infer error information, namely, identify
and locate corrupted symbols as discussed in Section 4.2. With this in
hand, we can calculate further error meta data information such as per
packet error rate. This allows us to adaptively derive a redundancy level
for our adaptive RS-code based on the symbol error rate in the window
of received packets. In case the number of corrupted packets is low (i.e.,
reasonable Packet Reception Ratio (PRR)), CrossZig retain from activating
the RS-coding to avoid introducing redundancy overhead in good links.
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Figure 4.11: Cross-Layer architecture design of CrossZig. Dark gray shaded
boxes depict our components added to standard 802.15.4 stack.

Our adaptive algorithm can be described as follow: For the window
wi of observations, we calculate the redundancy level Ri based on the
observed degree of corruptions (i.e., Ri is derived from the average
number of erroneous symbols per corrupted packet in wi and is bounded
by an upper bound (Ri  1�PRRi

PRRi
⇥ packet_length)). CrossZig triggers

adaptive coding only if Ri is lower than the calculated upper bound. This
allows us to ensure that the introduced redundancy is not significantly
higher than potential symbol errors to be recovered. We assume that
the corruptions in the upcoming packets follow the trend of our current
observations. Hence, the window size should be selected carefully. In
our evaluation, we noticed that window sizes of 300 ms to 1 s result in a
good and stable performance.

4.4.3 System Integration
CrossZig extends the basic 802.15.4 PHY and MAC layers as illustrated
in Figure 4.11. It provides a single hop reliable delivery mechanism
that can counter the CTI e↵ects. The receiver performs packet detection
and decoding in a manner similar to the standard 802.15.4. In case
a jump in the signal strength is observed during packet reception and
the received packet fails the CRC, the receiver initiates the interference
detection algorithm discussed in Section 4.3. If CTI is detected, the
transmitter adapts the Channel Clear Assessment (CCA) threshold to allow
an opportunistic access to the channel. Upon the reception of few partially
interfered packets, the system adjusts the initial recovery settings for the
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next observation window w. Any notable changes in the observed error
characteristics trigger the system to adjust the recovery settings.

CrossZig performs the following logic while adjusting the recovery
settings. Packet retransmission always carries a fixed, low level of
redundancy code. This is used to boost the performance of our CPM:
the packets are merged, lowering the BER to a level recoverable with
FEC. In the case of high packet corruption levels (low PRR, in our
settings lower than 75%), RS-adaptive coding is triggered. Here, the
redundancy R is derived adaptively based on the observed degree of
corruptions. R is derived from the average number of erroneous symbols
per corrupted packet in the observation window. Hence, the coding is
adapted according to the dynamic interference patterns in the channel.
When a packet cannot be recovered with the current redundancy level,
CPM is applied.

4.5 Implementation
We build a prototype of CrossZig using SDR. For the SDR hardware,
we rely on the USRP-N210 [44], equipped with an SBX radio
daughterboard [43] as radio front-end. The SBX board incorporates a
wide band transceiver that operates from 400 MHz to 4400 MHz, i.e.,
covers the 2.4 GHz band. For development, we use the GNURadio [53],
an open source software toolkit for building software radios.

The transmitter and the non-coherent receiver nodes run 802.15.4 PHY
and MAC layers [81]. We modified the receiver PHY to incorporate
interference detection logic, error estimation, and channel estimation in
our codebase, as described in Section 4.4. Moreover, we implement an
RS-decoder and the CPM scheme at the receiver side. At the transmitter
side, we incorporate the RS-encoder. We implement a virtual feedback
channel at host software to carry the receiver feedback to the sender.
Note that in our SDR prototype implementation of CrossZig we do not use
carrier sense. USRP radios introduce inevitable delays into the processing
path of packets, which makes confining with carrier sense strict timing
requirements hard to realize [111]. This constraint, however, does not
hinder us, as the opportunistic access to the medium in interfered channels
is possible without carrier sense. While this is not an optimal solution, it
is su�cient to manifest empirically the concepts covered in this chapter.

Cross-layer Packet Merging. The standard MRC is carried out on
complex signal samples and requires coherent combining at the receiver.
In the micro-evaluation of CPM covered in Section 4.6.2, we perform the
signal alignment o✏ine ahead of the MRC step (trace-based evaluation).
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This is necessary as our prototype implementation is based on non-
coherent receivers. Thus the receiver does not require signals to be
synchronized in phase and frequency. To cope with the lack of phase o↵set
compensation in our prototype (i.e., non-coherent receiver), we carry out
MRC on the demodulated SVs instead of the complex signal samples.
This only applies for the system performance covered in Section 4.6.1.
Given that the quadrature demodulator measures the phase di↵erence
between two successive input signal samples, the initial phase o↵set is
no longer an issue. The demodulated soft values of the first transmission
and the corresponding retransmission can be represented as follow:

y1[n] = SVideal + �1[n] (4.13)

y2[n] = SVideal + �2[n] (4.14)

where y1[n] and y2[n] are the soft demodulated values for the n-th symbol
in two transmissions, SVideal = ±⇡4 is the ideal soft demodulated value for
our target signal and �1[n] and �2[n] are the errors caused by interference
and noise. Since interference and noise in di↵erent transmissions are
independent and identically distributed (i.i.d.) with zero means, by
weighted averaging of the soft value we increase the chances of successful
demodulation.

4.6 Experimental Evaluation
Now we present the experimental evaluation of our prototype imple-
mentation on the USRP-N210. In the following, we first define our
evaluation objectives and describe the experimental methodology, the
considered interferers, the evaluation setup, and the metrics. We continue
with a discussion on the system’s online performance, followed by a
detailed evaluation of the system components, namely CTI detection,
error localization algorithm, and the MRC-based packet merging.

Methodology. The ideal experiment setup would evaluate the end-to-
end performance of CrossZig using real tra�c models with di↵erent
prominent low-power MAC protocols. However, due to inevitable
processing latencies in current software radio platforms, the realization
of such an evaluation setup is hard or not feasible with regard to strict
time constraint components. Instead, we focus on link performance,
by measuring the packet reception rate for various communication
links that we subject to external interference sources. Note that the
performance degradation under CTI is primarily attributed to starvation



92 Chapter 4. Cross-Layer Optimization for Wireless Coexistence

33m 

Rx 
 

Tx 

L1  L2 L3 

!!
MW 

CAM 

WiFi 

Uncontrolled APs 

Figure 4.12: Layout of the online evaluation experiment setup. SDR 802.15.4
Rx-Tx located in an o�ce with a line-of-sight link of 5 m. The interferers are
located at locations L1 (1 m), L2 (4 m), and L3 (7 m), where L1 and L2 are in
line-of-sight to Rx-Tx and L3 is in non-line-of-sight. Green circles indicate the
location of our multiple interferer scenario. Gray squares indicate the location
of uncontrolled access points placed on the floor.

or/and discarded corrupted packets. Packet losses, where packets
are not successfully detected, account less to the overall performance
degradation, and are not directly addressed in this work [76]. Such losses
can be resolved by considering better packet detection mechanisms as
suggested by [96, 85]. In the second part of this section, we cover
the evaluation of individual components of CrossZig. Note that all
system components are evaluated empirically. Additionally, in the
micro-evaluation, we support part of the empirical results with Matlab
simulations, e.g., to show the algorithm’s behavior under SINR ranges
beyond the empirically-captured ranges.

Interferers. Our set of interference sources includes low/high power,
narrow/wide band, channel hopping/fixed frequency, and CSMA/non-
CSMA. This represents common underlying properties adopted by most
radio technologies. More specifically, as CTI we consider 802.11 (heavy
and light UDP tra�c), digital wireless camera, and microwave oven.
802.15.4 is considered as Intra-Technology Interference.

Evaluation Setup. The system evaluation is performed in ETH
Zurich’s computer science building. Figure 4.12 shows the layout of
the experimental setup. Experiments are carried out with controlled
single active interferers mentioned above and multiple active interferers.
Multiple active interferers are di↵erent combinations of single interferers
running simultaneously and defined as Multipe-1: microwave oven
and wireless camera running simultaneously, Multipe-2: microwave
oven, wireless camera, and 802.11 with light UDP tra�c, and Multipe-
3: microwave oven, wireless camera, and 802.11 with heavy UDP tra�c.
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The 802.15.4 transmitter-receiver pair was represented by our prototype
implementation on USRPs. During the experiments, the 802.15.4
communication link was also exposed to interference from various
uncontrolled sources existing in the building. In each experiment, we
transmit 6000 packets consecutively with 60 Byte payload, at a 10 ms
interval.

Metrics. Within our evaluation we use the following metrics: (a) Goodput
ratio: defines the ratio of useful received data over total received data.
It quantifies the system’s e�ciency as it reflects both the gain and the
transmission overhead together. This metric allows us to observe how
e�ciently transmitted bytes are utilized. (b) FEC overhead: indicates
the added transmission overhead which is directly related to energy
e�ciency, a vital factor in low-power networks. (c) Packet recovery ratio:
indicates how many of the corrupted packets our recovery mechanisms
could recover. The recovery ratio and redundancy overhead show the
performance of the considered schemes compared to the baseline where
no mitigation scheme took place. Note that in our definition, the basic
scheme has 0 recovery ratio and 0 cost. (d) Precision and Recall: values
are relevant for the performance discussion of symbol error detection,
where the selection of parameters has an impact on the performance.
Precision indicates how many of the identified corrupted symbols are
indeed corrupted. Recall indicates how many of the overall corrupted
symbols are identified. (e) Symbol Error Rate (SER): is the number of
corrupted symbols over the total number of symbols in a received packet.

4.6.1 System Performance
We expose CrossZig first to single active interferers at di↵erent distances.
The interferers are located first at location L1, then L2, and L3 (see
Figure 4.12). Second, we consider interference generated from multiple
simultaneous sources. Figure 4.13 shows the evaluation results achieved
by the following recovery schemes: RS-coding with fixed redundancy of
30 Byte, our adaptive coding scheme which selects a redundancy between
0 and 30 Byte based on the average observed SER in the 500 ms window of
observations (irrespective of the PRR in the channel), packet merging, and
finally CrossZig which combines our cross-layer based packet merging
and our adaptive RS-coding scheme.

The error patterns caused by interferers vary as we change the
interference types. Therefore, di↵erent experiment settings yield varying
performance in terms of goodput ratio, packet recovery ratio, and
redundancy overhead. The RS-fixed scheme achieves the highest packet
recovery ratio, but this comes with a fixed 30 Byte redundancy per packet,
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Figure 4.14: The implication of applying fixed levels of redundancy under
CTI. The gray-colored area depicts the ranges for recovery ratio under varying
interferers per technology.

regardless of channel conditions. This has a negative impact on goodput.
This overhead exacerbates for good quality channel conditions which we
did not consider in this study. This results in higher in-air time and
increased processing for decoding at the receiver side, which are both
undesirable for low-power devices. The RS-fixed scheme evaluated in
Figure 4.13 considers 30 Byte redundancy. Figure 4.14 depicts the recovery
ratio at di↵erent fixed redundancy levels. With a redundancy higher than
20 Byte we do not observe a notable improvement of the recovery ratio.
Note that increasing the redundancy has the side-e↵ect of increasing the
probability of overlap with interference, hence, reducing the e↵ectiveness.
With our RS-adaptive scheme, we observe a similar packet recovery ratio
as with the fixed strategy, but at a lower overhead (in average 15 Byte
for each packet). This yields a higher goodput. Packet Merging comes
with no FEC overhead because it simply works on the received signal of
incoming packets. Its recovery ratio is modest in most cases, except in the
presence of multiple interferers, because Packet Merging is particularly
e↵ective at higher SER levels.

CrossZig improves RS-adaptive coding which relies only on the
observed SER rates for adaptation. In addition, CrossZig recovers
long error bursts using Packet Merging and is able to keep its
cost low under sparse interference. We reach an average packet
recovery ratio of 23% overall and up to 50%, for the multiple-3 setup.
This is about half of the average packet recovery ratio achieved with the
aggressive RS-fixed (40%) over all cases. However, the overall overhead
of CrossZig is by a factor of 4.6 lower than the other schemes and reaches
up to a factor of about 20 for the case of WiFi-light. As a result, CrossZig
achieves the highest goodput ratios in most scenarios. Note that for
fairness we did not compare the performance of CrossZig to the case
of no active interferer, where goodput falls drastically for RS-fixed and
improves to even higher values for CrossZig.
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Figure 4.15: Error ratio in discerning the type of interference between CTI
and 802.15.4 achieved by the SV-based method (SV) and the correlation-based
method (CCF).

Conclusion. We show that performing timely adaptation to match
induced error patterns from external interference is possible with the
help of physical layer hints. With this timely adaptation, we can achieve
better goodput and avoid excessive redundancy which comes at a high
price for low-power devices.

4.6.2 Dive in CrossZig
We carry out an o✏ine micro-benchmark analysis of CrossZig to quantify
the performance of its individual components independently. Our traces
for this evaluation include the complex signal of 35,875 packets corrupted
by interference.

4.6.2.1 CTI Detection

We now discuss the performance of our CTI detection scheme introduced
in Section 4.3. We estimate the e↵ectiveness of our scheme in detecting
the occurrence of Intra- and Cross-Technology Interference. Figure 4.15
shows the detection error ratio for both the SV-based and correlation
based detection mechanisms. For low SINR ranges under -2 dB, both
mechanisms perform well with error rates below 5%. SV-based detection
performs well at low SINR because in the case of intra-technology
interference, the interfering signal can be demodulated by the receiver
and this is reflected in lower variations of the soft values. As SV-based
detection is the cheaper mechanism, we rely on it for SINR under -
2 dB. As the SINR increases (weaker interferer), detecting the source
of interference is more challenging. The accuracy of the SV-based scheme
degrades sharply, while the correlation-based detection still yields error
rates below 10%. Therefore, for SINR greater or equal to -2 dB, we use
correlation-based detection. Note that for SINR ranges above 3 dB, the
interference signal is very weak and, hence, the target signal is decodable.
Consequently, CTI detection is not required for these SINR ranges.
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Figure 4.16: Precision-Recall analysis for symbol error estimation with Power
(PW), Hamming Distance (HD), and combination of both (PW_HD). Precision
indicates how many of the identified corrupted symbols are indeed corrupted.
Recall indicates how many of the overall corrupted symbols are identified.

In our system, we select the threshold parameters to balance false
positives and false negatives in a reasonable way. We use threshold
values ⌧sv = 0.15 for SINR lower than -15 dB and ⌧sv = 0.3 otherwise.
Figure 4.15 shows the detection performance using these thresholds. Note
that misclassification of 802.15.4 communication as CTI can trigger CTI-
recovery for Intra-technology Interference. On the other hand, detecting CTI
as internal would translate to the default behavior of current systems.
Thus, no further harm is introduced. Therefore, the thresholds are
selected to balance the precision and recall with the goal of higher
accuracy in detecting 802.15.4 communication. The average false positive
ratio (802.15.4 interference mistaken as CTI) is 0.16 and the average false
negative ratio (missing to detect a CTI) is 0.23. Thus, the interference type
detector is su�ciently accurate for our purpose. Note that this analysis
considers per packet detection.

4.6.2.2 Symbol Error Localization

We now discuss the performance of our error localization algorithm
introduced in Section 4.2. Figure 4.16 shows the precision and recall
of the symbol error detection mechanism using signal power only,
decoding Hamming distance only, and using them jointly. This result
is aggregated over all the collected traces. The line corresponds to
precision and recall for various thresholds (⌧l, ⌧h, and ⌧s). For our
system, we select the thresholds that yield a good balance between
precision and recall in the micro analysis, ⌧l=4, ⌧h=10, and ⌧s=4.
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Figure 4.17: Simulation performance of Diversity Combining (C) for 802.15.4
signals (S1 and S2) averaging over 1k independent cases subject to Gaussian
random interference (GRN), QPSK interference, and 802.15.4 interference.

By combining power and Hamming distance, our symbol error detection
approach yields a stable performance with a precision and recall of 82%
and 92%, respectively. The average achieved accuracy is 94.3% ± 2.4.

4.6.2.3 Diversity Combining under CTI

In this section, we investigate variables that impact MRC performance
under CTI which is utilized in our CPM. Moreover, we investigate to
what extent MRC can increase the symbol error recovery probability and
put this into the context of recovering packets with bursty errors. In
the context of this work, we exploit time-diversity by combining two
interfered copies of the same signal received in di↵erent instants of time.
We employ the MRC technique for combining the signals. MRC amplifies
the SNR of the target signal. The SNR of the combined signal yc is by
factor 2 higher. Therefore, the theoretical SNR gain is 3 dB.

To understand the impact of the interference on the performance of
MRC, we first carry out simulations in Matlab. Figure 4.17 plots the
Bit Error Rate (BER) vs. SINR for an interfered 802.15.4 signal before
and after MRC. We consider three types of interference here: QPSK
signal representing CTI, 802.15.4 representing internal interference, and
Gaussian random interference. The time diversity gain from MRC is
reflected in the BER drops. As we can see, the MRC gain varies with
respect to the type of interference signal. Under interference, the gain
can exceed the 3 dB expected gain. MRC performs better when the
interference signal has an underlying modulation scheme as opposed
to noise.

This observation is aligned with our empirical results carried out with
the trace-based evaluation. There, the MRC gain for the wireless camera
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Figure 4.18: Our cross-layer based packet merging mechanism reduces the
average SER per packet to 0.11.

and 802.11 is higher than that for the microwave oven (which is noise
radiation). In practice, with MRC we can increase the recovery chance of
a symbol by up to 15% which is 2.5x times higher than the random guess.
To see how this is reflected in our cross-layer based packet merging, we
extend our evaluation to packet level. Figure 4.18 shows the results of
CPM applied to 2 consecutive corrupted transmissions of a packet in our
traces. The outcome shows that the mean SER of combined packets is
reduced to 0.11 which has good chances to be recovered by low FEC
coding on top. Our cross-layer based packet merging can achieve an
overall gain of up to 0.34 in SER.

4.7 Related Work
Wireless interference is (and has long been) an important topic in
wireless communication research. Recent years have seen significant
and fundamental contributions to the state-of-the-art interference
management, for instance by techniques like interference alignment [27]
or joint/coordinated transmission [57, 52]. Nevertheless, these approaches
typically require significant computational complexity and/or significant
coordination bandwidths, which hinder them applicable for low-power,
low-complexity devices of interest in this dissertation. Hence, in the
following we focus on interference mitigation in the unlicensed bands
and work related to CrossZig.

Physical Layer Information. This work is not the first to use physical
layer information. This information has been used for various purposes
such as rate adaptation [153, 125], interference boundary detection [54],
and packet recovery [56, 85], to mention few examples. To the best of our
knowledge, this work is the first to utilize this information for interference
type detection.
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Interference Avoidance. Research in this direction aims at detecting and
avoiding interfering signals in space, time, or frequency. The most common
avoidance approach is to employ frequency-based isolation by employing
spectrum sensing to identify interference-free channels [126, 162] or
adaptive frequency fragmentation [29, 162]. The lack of interference-
free channels and the fast and unpredictable changes in the occupancy
state of frequency bands make the sampling overhead of these approaches
high, particularly for resource-constrained devices. Huang et al. [80] and
Boano et al. [21] proposed approaches to avoid interference in time by
learning transmission characteristics and the idle cycles of interferers.
Radunović et al. [123] proposed an adaptive preamble design to increase
the probability of detecting low-power transmissions by high-power
competing technologies.

Packet Recovery. Research in this direction aims at increasing resilience
against interference by bracing PHY and data-link layers with auxiliary
mechanisms. For instance, Liang et al. [96] studied the interplay between
802.11 and 802.15.4 and applied a resilience forward error coding scheme
against interference. Analogously, some solutions focused on exploiting
the temporal e↵ects of interference induced on PHY hints, such as
variations in soft errors (softPHY) [85, 159] or RSSI variations [66] to
localize interfered segments, hence, adapt standard ARQ to retransmit
only the interfered segments.

Interference Cancellation. Further physical layer solutions, such as
Interference Cancellation, have been considered to combat interfer-
ence [36, 90, 56]. Here the receiver, with minimal or no coordination from
the sender, attempts to recover the signal of interest from interference.
Halperin et al. [62] utilized Successive Interference Cancellation (SIC) to
recover from collisions. The key idea of SIC is that interference signal
and target signal are decoded successively. First, the receiver decodes
the interference signal, i.e., the signal with larger power, afterward the
interference signal is stripped away from the aggregately received signal
to get the target signal. Note that these techniques require knowledge
about the interfering signal modulation scheme, which makes them not
suitable for CTI. Gollakota et al. [54] proposed TIMO, a MIMO design that
enables 802.11n to communicate in the presence of CTI. TIMO exploits
MIMO capabilities to cancel the interference signal. However, low-
power wireless devices are typically single antenna devices, where such
approaches are not applicable.

Collision vs. Fading. Several recent schemes have been proposed
to recognize the type of losses in the channel between fading and
collision [136, 71, 129, 153, 66]. Many of these mechanisms have been
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utilized to boost the performance of loss-based rate adaptation schemes.
In COLLIE [129], the transmitter distinguishes between a fading by
analyzing the patterns of bit errors in received packets. SoftRate [153]
utilizes SoftPHY to distinguish between collision and fading for rate
adaptation. AccuRater [136] compares constellation dispersions of the
preamble and postamble to detect a collision.

Interference Classification and Signal Detection. Research in this
direction aims at identifying the type of interference technology. The lack of
interference-free channels led researchers to work on novel classification
approaches that make networks aware of the type of the existing
interference [130, 68, 78, 34]. It has been shown that when the interference
source is known, specialized mitigation approaches can improve the
network performance. Researchers explored signal properties by
employing signal classification techniques [93] or featuring distinct
interferer’s patterns on corrupted packets [68] to build interference
classification tools. It is not clear though how these classifiers can be
utilized in a systematic way to combat interference. In the previous
chapter, we address this limitation and propose a system that employs
a lightweight machine learning classifier to map the current channel
signature to a coexistence strategy. However, this approach requires
prior training of the adaptation algorithm which might not always be
feasible. Analogously, signal detection techniques [78, 50] for spectrum
sensing are important requirements in cognitive radio networks. These
techniques enable detection of unused spectrum and sharing of it without
causing harm to primary users. This direction has been widely explored
in cognitive networks with the focus on detecting known signals in noise.
On the contrary, in this work we focus on detecting the type of signal in
interfered segments of the packets. Hence, the focus is on signal detection
in mixed signals (i.e., interfered signals) where the target signal is mixed
with an unknown signal.

Exploiting CTI in Low-power Networks. Recent research e↵orts focused
on exploring opportunities in CTI. For instance [137, 55] harness CTI
to beneficially provide security and privacy-preserving counting [98].
Others [164, 87] harness channel overlapping between 802.15.4 and
802.11, to allow cross-talk to dispense the role of a dedicated gateway
to interconnect these two technologies. CTI is inevitable, hence, utilizing
it to provide additional services will enhance spectrum usability. This
direction of research is orthogonal to interference mitigation, which is the
focus of this work.

Our Approach. Analogously, our work features physical layer hints
to infer and recognize interference patterns and harness this to adapt
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the recovery mechanism. We propose a solution that neither requires
interactions with the interfered technology nor depends on any prior
training of the adaptation algorithm and is agnostic to the interference
type. Finally, our system is related to prior work on cross-layer wireless
design [162, 54, 115, 153, 85]. However, our system is optimized to address
CTI in low-power and low-complexity radios.

4.8 Summary
Operating in dense and diverse spectral environments demand wireless
systems to attain a high degree of flexibility and be perceptive to the
changes in their environment. By their nature, wireless signals encode
rich information that can be harnessed to better understand the RF
ambient. In this chapter, we investigate how to exploit fine-grained
physical-layer information to increase receiver’s cognition of the channel
dynamics. Consequently, better reason and adapt parameters to recover
from CTI in a low-power environment. This chapter presents CrossZig,
a CTI-aware adaptive recovery mechanism. Our system combines
interference detection, error localization, and an adaptive error recovery
mechanism. We do not restrain ourselves with o↵-the-shelf radios and
resort to SDR for our prototype implementation. Experimental results
show that our approach can substantially improve the goodput of 802.15.4
links under various CTI patterns. Moreover, we anticipate that the
analysis, insights, and discussions carried out in this chapter can inspire
further work to address low-power coexistence unconstrained by current
chip designs.



5
Wireless Coexistence

Experimentation
Wireless networks deployed in indoor environments are susceptible to
link quality deterioration due to changes in their environments. One
major hazard a↵ecting wireless link quality today is interference. In
the recent years, we have witnessed a rapid surge in wireless data
tra�c congesting the unlicensed bands. This tra�c is generated from
heterogeneous radios that follow di↵erent protocols and communication
primitives. To date, the 2.4 GHz ISM band is by far the most congested
segment of the radio spectrum. Networks operating in this band
have to compete with co-located transmissions from WiFi (IEEE 802.11),
Bluetooth, IEEE 802.15.4, 2.4 GHz cordless phones, surveillance cameras,
game controllers, and 2.4 GHz RFID, as well as with noise generated
by the microwave ovens. Several independent academic and industrial
studies [7, 76, 54, 103, 155] show that wireless networks and RF-
based systems operating in this band experience serious performance
degradation due to interference.

As an increasing number of devices share the unlicensed bands [92],
it is crucial to understand how interference impacts the performance
of wireless networks and emerging pervasive RF-based services,
such as indoor localization [165, 4, 137] and activity recognition
systems [122, 154]. Particularly as we find more deployments of
wireless networks and services in critical domains such as the health
sector [89, 10, 5], and smart grids [25]. Developers cannot provide
useable health solutions if their functionality is dependent on the
state of the uncontrolled radio interference in their surroundings.
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Controlled Interference Generation 
CIG 

Embedded Computer 

Record & Playback 

SDR HW 

BLE WiFi Zigbee Radios Software 
Implementation 

Ethernet 

Radio Chipsets  

Testbed 

Figure 5.1: Schematic of our Controlled Interference Generation (CIG)
framework, facilitating advanced wireless coexistence experimentation.

Patients wearing body sensors that monitor their vital functions cannot
rely on instant alarms of their medical state if sensors are blocked by
nearby radio communications.

Considering that radio interference has a non-negligible impact on the
dependability of wireless networks. It is important that system designers
attain a detailed understanding of how heterogeneous wireless systems
and networks coexist and operate in the crowded unlicensed spectrum.
The lack of proper testbed infrastructures that support generating
repeatable and realistic interference patterns makes it challenging for
researchers to test the robustness of their wireless protocols in the
presence of interference. Hence, the goal of this chapter is to design
and develop low-cost experimental facilities that allow researchers and
system designers to replay realistic interference patterns in a simple and
e�cient way, consequently facilitate research in this direction.

Challenges. The impact of interference is highly stochastic in nature,
and largely depends on the surrounding environment (e.g., on interferer
location, tra�c patterns, device manufacturer, and the number of active
devices). Researchers working on wireless coexistence, typically use
analytical models and simulation [84, 109], which are often abstract,
less accurate, and fall short on capturing the complexity of the involved
physical aspects, or alternatively use interference generated from actual
wireless devices [54, 77, 71]. While the latter approach is more realistic, it
is costly, labor intensive, and impractical as some of these devices can not
be controlled in a systematic way (e.g., microwave oven, analog phone,
etc.), especially when experiments are run in remote testbeds. Recently
researchers have been working on augmenting testbeds with commodity
hardware that is dedicated to generating controllable interference.
For instance, Jamlab [20] is a recent approach, which makes use of
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commodity hardware by utilizing a subset of the nodes in the testbed to
generate controllable interference patterns. However, such systems have
shortcomings in accuracy and the range of interference types they can
support. Due to hardware limitations, such approaches are restricted to
the fixed modulation schemes supported by the nodes used in the testbed
and limited to the rate at which frequency hopping can be performed.

Contributions and Roadmap. In this chapter, we present Controlled
Interference Generation (CIG), a Software Defined Radio (SDR) based
solution for controlled interference generation, which can facilitate
augmenting current testbeds with repeatable and realistic interference
pattern generation (see Figure 5.1). CIG provides three modules for
interference generation: (i) Record and Playback; this module features high
precision record and playback. It can be used to record and playback
various interferer patterns, but is particularly interesting for devices
that are not feasible to be implemented in SDR, such as microwave
ovens, and proprietary radios where we lack the know-how on their
physical layer implementation. (ii) Radio Software Implementation; this
module allows generation of interference from radios (i.e., the physical
layer) implemented in software. For this, we implement or port the
implementation of software radio of a set of prevalent interferers using
GNU Radio and Universal Software Radio Peripheral (USRP). This set
includes commercially available analog cordless phones, digital FHSS
phones, security cameras, baby monitors, WiFi, and ZigBee devices.
(iii) Commercial Radio Chipsets; this module allows the generation of
interference patterns from a subset of commercial radio chipsets that are
interfaced with an embedded computer within CIG. This further allows
us to cover commercial software and hardware artifacts of di↵erent radio
chipsets.

CIG is not bound to the set of interferer technologies presented
in this chapter, and each of its modules can be extended to include
new technologies. We provide a unified, simple to use interface for
controlling CIG. We perform an initial validation of the generated
interference patterns by correlating the generated and real interference
in time and frequency domains. Furthermore, we analyze the impact of
CIG generated interference on low-power networks to ensure accuracy
and resemblance to the interference generated by actual RF interferers.
Moreover, we provide insights on limitations and challenges of bringing
some commercial radios to SDR.

In light of our contributions, Section 5.1 and 5.2 present the design
and realization of CIG, Section 5.3 presents the system validation, and
Section 4.8 provides brief concluding remarks. This chapter is based on
the contributions made in [72].
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Figure 5.2: Architecture of CIG. Users can connect and control CIG from a remote
host. The Software Radio Implementations and Record and Playback modules of CIG
reside on USRP N210. The third module resides on a single board computer that
enables the generation of interference from o↵-the-shelf radio dongles.

5.1 CIG Design Overview
We now present a high-level design overview of CIG, as illustrated in
Figure 5.2. CIG consists of three modules for generating controllable
interference. In the current prototype of CIG, we focus on incorporating
a set of interferer technologies that are prevalent in the unlicensed bands.
Our considered set of interferers covers low/high power, narrow/wide
band, analog/digital, and channel hopping/fixed frequency interferers.
This set represents common underlying properties adopted by most radio
technologies.

Record and Playback. This module of CIG is realized on SDR and allows
recording temporal and spectral patterns of a particular interference and
playing back these patterns as energy pulses emitted in the spectrum. For
a large body of interference mitigation research, particularly solutions
residing in MAC and upper layers (e.g., clear channel assessment,
interference avoidance, channel sampling for free channel discovery,
and channel occupancy patterns for opportunistic MAC scheduling) it is
su�cient to focus on temporal and spectral characteristics of interferers.
The modulated signal type thereby is of less relevance. Moreover,
interferers that are not inherently RF radios, such as microwave ovens
or closed radios, which cannot be implemented on SDR, are appropriate
candidates to be represented through the playback module of CIG.
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Software Radio Implementations. This module allows interference
generation of a set of prevalent interferers. We enable this by
implementing physical layers of these interferers in software while aiming
to achieve an authentic physical layer behavior. This module can be
used while developing interference mitigation schemes where the type of
modulated interfering signal is relevant. This is particularly relevant to
physical layer solutions, such as interference source classification [78],
interference suppression, and cancellation [54]. Moreover, it allows
verifying whether emerging radios [100] and wireless systems can cause
harm for competing technologies and quantify the impact.

Commercial Radio Chipsets. Reaching hardware-like e�ciency and
predictability with the software implementation of radios on SDRs is
challenging and not always feasible. With this module, we have the
possibility of generating interference from standard o↵-the-shelf radio
chipsets. Thus, it allows covering the impact of commercial software and
hardware artifacts of di↵erent radio chipsets and overcoming limitations
of the SDR platform. The restrictions of the class of SDR platforms
we employ in CIG are twofold: (i) Due to strict timing requirements,
carrier sensing is hard to implement in software (e.g., 802.11 backo↵).
(ii) Due to strict frequency tuning capabilities, it is hard to achieve high
frequency hopping rate in software (e.g., Bluetooth exhibits a hopping rate
of 1600 hops/s). Note that more a↵ordable and capable SDR platforms
are populating the radio market every year. Therefore, we anticipate
that future generations of a↵ordable SDR platforms will overcome these
limitations.

5.2 Realization
In this section, we elaborate on CIG’s hardware and software architecture.
We first give a brief overview of our platform and then discuss
implementation aspects of the modules.

5.2.1 Platform
The hardware platform of CIG consists of two main components (see
Figure 5.2). The software defined radio based component, is where the
Record and Playback and Software Radio Implementations modules of CIG are
realized. The second component is a low-power computer that controls
the Commercial Radio Chipsets. We provide a unified interface in the form
of extendable scripts that interact with the corresponding CIG component
to generate interference. Users can use the interface to connect and control
a remote CIG instance, located in a testbed.
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Software Radio. For the SDR hardware, we rely on the Ettus USRP
N210 [44], which is equipped with 100 M samples/s 14-bit ADCs and
400 M samples/s 16-bit DACs. It is connected to a host computer
via a Gigabit Ethernet port and can stream up to 25 M samples/s
to/from host applications. For the RF front-end, we use the SBX radio
daughterboard [43]. The SBX board incorporates a wide band transceiver
that operates from 400 MHz to 4400 MHz. It provides up to 40 MHz of
instantaneous bandwidth and up to 100 mW of transmission power.

For development, we rely on GNU Radio [53], an open source
software toolkit for building software radios. GNU Radio provides
libraries for signal processing blocks to implement software-defined
radios that can be coupled with generic radio platforms. In order to
build a typical wireless radio stack, flow graphs, composed of a sequence
of Digital Signal Processing (DSP) blocks, are created (see Figure 5.3).
Moreover, a state machine selects the corresponding flow graph to
process incoming samples. These DSP blocks are created in C++ and
connected in a python wrapper to build the flow graphs. For example,
the receiver of a DSSS analog phone has blocks for clock synchronization,
channel equalization, Costas loop for phase and frequency correction,
BPSK demodulator, symbol to constellation mapper, and direct-sequence
despreader. Di↵erent blocks are integrated into separate flow graphs,
each addressing di↵erent communication tasks, such as acknowledgment
packets, and inbound and outbound communication. In the last step, the
flow graphs are assembled into a DSSS cordless phone receiver state
machine.

Embedded Computer Board. We use a Raspberry Pi as a single-
board embedded computer which hosts a quad-core ARM Cortex-A7
controller [128]. It serves as a low cost and small form factor Linux
platform to interface with o↵-the-shelf radio chipsets, as illustrated in
Figure 5.2.

5.2.2 Record and Playback
Now we describe how to conduct RF record and playback using USRPs.

Interferers. The Record and Playback module is not bound to any specific
interferer. This module can be used to record and playback RF radio
technologies or playback (third party) recorded files or synthesized RF
signals. We record RF signals of three interfering technologies operating
in the unlicensed bands, namely: (i) Microwave oven (Clatronic MWG
758 oven), (ii) Analog DSSS cordless phone (Vtech GZ2456 cordless
handset system [152]), and (iii) Wireless camera (Philips SCD 603 digital
video baby monitor [117]). We refer to Table 5.1 for technical details
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Figure 5.3: Simplified USRP block diagram to signal flow graph mapping. As
an example, USRP implementation of the wireless camera is indicated by DSP
blocks connected with gray arrows.

about the interferer devices used in this project. We select these
particular technologies, representing three typical CTI behaviors, namely:
frequency sweeping, frequency static, and high rate frequency hopping,
respectively, to analyze the system’s record and playback capabilities.

Record. We record 50 million samples by configuring the USRP to tune to
the respective device’s operational bandwidth and center frequency ( fc),
as listed in Table 5.1. We perform the recording in an o�ce environment.
However, to maximize the correlation between the recorded and the actual
signal, the recording can be performed in an anechoic chamber, which
ousts the impact of nearby interfering signals on the recorded signal.

While the center frequency and the bandwidth need to be adjusted
according to the wireless radio specifications of the interferer, the receive
gain parameter needs to be adjusted according to the peak power of
received signal and the SDR hardware specifications (i.e., the supported
ADC range). The receive gain influences the accuracy of recorded signal,
thus need to be adjusted to attain a unit amplitude of the recorded
baseband signal, in order to use the full range of the 14-bits ADC without
clipping. This does not necessarily correspond to the highest gain. For
instance, recording a high-power microwave oven at 1 m distance, with
the maximum gain of SBX (31.5 dB), results into signal clipping. Hence,
it is necessary to select the receive gain in such a way that the clipping
is avoided. For example for the microwave oven used in this project, the
receive gain of 25 dB avoids clipping at 1 m distance.
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Playback. The recorded signals are stored as 16 bit I/Q data samples.
During playback, the recorded raw baseband data is sent to the USRP,
which converts it to analog signal. The analog signal is then transmitted
by the USRP by up-converting it to the RF signal. We configure the USRP’s
data rate (i.e., the rate of reading the recorded file) to match the recording
sampling rate. The fc is set according to the device specifications. The
SBX daughter board has a nonlinear gain response when operating in a
wide bandwidth [42]. Therefore, it is challenging to regenerate the wide-
band recorded signal at the accurate power level, as the down-converted
baseband signal does not match the actual transmit power specifications
of the device. Hence, during playback, we set the transmit gain value to
match the average power level and the peak power to the specified signal
power (according to device specifications).

The accuracy of the playback signal is dependent upon hardware
limitations of USRP, particularly the sampling rate, maximum transmit
power, frequency tuning and settling time, and latency in the hopping
rate imposed by the OS scheduling and Ethernet transmission time. We
observe that the Record and Playback module is more suitable for narrow
band interferers occupying static frequency channels, e.g., the DSSS
cordless phone [14], provided that adequate device specifications are
available to set the recording parameters. It is also suitable for frequency
sweeping microwave ovens where the sweep to the next frequency
channel typically occurs after 10-15 ms which provides su�cient time for
retuning and settling to the next frequency. We observe that our platform
can accurately capture the ON and OFF patterns of the microwave oven,
over 40 MHz of bandwidth. However, for frequency hopping interferers,
such as wireless cameras where the typical hopping rate is 400-600 hops/s,
the frequency synthesizer is not able to capture all the packets, switch and
settle to the next hop frequency in a bounded time to accurately represent
the device specific frequency hopping nature.

5.2.3 Software Radio Implementations
We implement the physical layer (PHY) of five commercially available
wireless interferers, operating in the unlicensed bands. We use the
GNU Radio [53] framework to build the signal processing blocks
and construct flow graphs of the considered radios. In the case of
proprietary technologies, we implement the physical layer according to
the description in the devices manuals with the support of our spectral
analysis of the target device. Figure 5.3 shows the implemented flow
graph of the wireless camera, as an example. Additionally, we implement
a CRC generator in the sender software radio and a CRC checker in the
receiver software radio; this enables the users to collect statistics about the
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performance of active transmissions. Hence, researchers can additionally
quantify the harm their wireless solutions introduce on other competing
devices, such as wireless cameras where so far it is not trivial to quantify
this impact. In the following, we elaborate on the implemented software
radios we consider in this prototype of CIG:

Analog Cordless Phone. Our analog cordless handset [13] operates in a
narrow frequency band [2410.2 - 2418.9] MHz. The user can configure the
device to operate on one of the 30 supported channels, each 100 kHz wide.
The phone uses DSSS to spread the BPSK modulated data. We use a vector
source to generate bit streams followed by the spread spectrum block and
connect the output to a BPSK modulator. We set the center frequency
of the USRP sink block to match the fc of the first supported channel
(2.417 GHz). The user, however, can change channel configurations
through the CIG’s host software.

DSSS Cordless Phone. The phone base and the handset [14]
communicate using digital spread spectrum and operate in the frequency
band [2.407 - 2.478] GHz. The phone supports 28 possible channels,
each 3 MHz wide, and shifts the operational channel automatically upon
sensing interference. In our implementation, we provide the channel
selection option to the user. The phone uses a data rate of 1.366 Mbit/s [54],
employs digital spread spectrum, and transmits the data over GFSK
modulation. We use the rational resampler block to achieve the specified
data rate. The interpolation and decimation values can be derived from
Equation 5.1 where the desired bit rate depends on the DAC sampling
rate and the number of Samples per Symbol (SPS). We further connect
this block to the DSSS block and GFSK modulator.

Bit Rate = DAC Rate/(Interpolation ⇥ SPS) (5.1)

Wireless Camera. We include two wireless cameras [117, 51] in our
platform. The first is a wireless baby monitor [117]. It communicates
with the video receiver using frequency hopping over 61 channels, each
of which has a bandwidth of 1.125 MHz and uses BPSK modulation
scheme. The second is a wireless monitoring camera [51]. It supports four
di↵erent channels (2.414 GHz, 2.432 GHz, 2.450 GHz, and 2.468 GHz) and
occupies a wide bandwidth of 16 MHz. We perform spectral analysis of
these technologies to examine the on-air packet time, hopping sequence,
and hopping rate. For the Philips baby monitor, we observe an average
packet on-air time of 2.2 ms with a hopping rate of 450 hops/s.

We use respective blocks to generate packets and modulate
them as specified in the device specifications. We connect
the modulated output to the frequency hopping block.
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The USRP N210 has two stages of frequency tuning: (i) RF front-
end which translates between the RF and the intermediate frequency
(IF), and tunes the frequency as close as possible to fc. (ii) DSP, which
translates from the IF to the baseband, accounts for the error in frequency
tuning, and digitally sets the necessary o↵set to tune to the desired fc.
To achieve faster-hopping rates in the order of 2 ms tuning time, we
fix the RF front-end frequency at the center of the band and hop via
shifting in the FPGA only by using timed transactions and tune request
objects [45]. We generate the signal at baseband and use the FPGA to
convert the signal digitally to the correct frequency. We also schedule the
frequency changes and streaming commands a priori to hop faster and
deterministically, using timed transactions. We set the channel changes
to cover all the channels specified within the operational bandwidth. The
time is set to achieve the maximum number of hops possible through our
implementation which is 280 hops/s.

FHSS Cordless Phone. The phone base and handset [150] communicate
using FHSS, hopping over 90 channels in the range [2.4075 - 2.472] GHz,
with a channel width of 800 kHz and GFSK modulation. The discussion
we provided on the wireless camera implementation applies here, given
that both technologies employ the same underlying signal spreading
scheme, i.e., frequency hopping, only with slight changes in channel
bandwidth and hopping rate.

5.2.4 Commercial Radio Chipsets
Additionally, we enable interference generation from o↵-the-shelf radio
dongles for a set of prevalent wireless communication standards. We
attach to our platform radio chipsets of various technologies, such as IEEE
802.11 (b/g/n) [158], Bluetooth class 2 [19], Bluetooth Low Energy [146],
and ZigBee [160]. The transmission power, channel number, and data
tra�c parameters can be configured by the user via the host software to
emulate various application tra�c patterns.

5.3 Validation
To quantify to what extent one can rely on CIG for resembling interference
in wireless experimentation, we conduct two types of analysis: (i) Spectral
analysis; we perform a quantitative spectral analysis to validate CIG’s
accuracy in the time and frequency domains. (ii) Network impact analysis;
we subject a small 802.15.4 network to interference generated by CIG
and latter to interference generated by genuine interferer sources.
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We then compare their impact on the network performance.
We focus our cross-validation on the SDR modules of CIG and
assume that the implementations of the o↵-the-shelf module to be
inherently correct. Our experimental setup consists of two instances
of CIG, the discussed interferer technologies and a pair of low-power
sensor nodes (TelosB motes).

5.3.1 Temporal Accuracy
We analyze the temporal characteristics of interference generated by
CIG and compare it to that of the represented interference source. For
this, we record the interference signal from CIG and the corresponding
interferer device. Afterward, we compare the pulse duration and number
of pulses in a given time period for each technology. For instance, as
depicted in 5.4(a) and 5.4(e) for the microwave oven, we observe an
equal number of pulses and similar timing behavior. In order to quantify
CIG time accuracy, we compute the correlation coe�cient between the
regenerated signal and the originally recorded signal. For this we
represent the original and regenerated signals as binary series x(i) and y(i)
with i = 1, . . . ,N and N as the number of samples considered in the
correlation (N = [1, 106]). The series take 0 value for clear channel and 1
for a busy channel, given a threshold of -45 dBm (typical clear channel
assessment threshold for 802.15.4).

For the microwave oven, where the signal exhibits an ON and OFF
pattern, the average cross-correlation coe�cient over the length of the
samples is 0.926 with a standard deviation of 0.0764. This high accuracy
is due to the good performance of the SDR hardware in playing back the
recorded samples without a noticeable jitter. In the case of analog DSSS
phone, we observe a high cross-correlation value of 0.998. The wireless
camera uses frequency hopping. Hence, to validate its temporal behavior,
we compare the on-air packet time and the number of packets generated
in a given time frame. Figures 5.4(c) and 5.4(g) visualize the general
trend. We observe an average cross-correlation coe�cient of 0.930 for
each packet. However, we reach only 62.2% of the required hopping rate
which is due to hardware limitations of the used SDR platform; we have
elaborated more on this issue in Section 5.2.

5.3.2 Spectral Accuracy
In order to quantify the spectral accuracy of CIG, we consider aspects
representing particular spectral patterns of the considered interferers.
That is the static frequency behavior of analog phone where the
signal peak lies at the center frequency of the selected channel,
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the frequency sweeping behavior of microwave ovens where the
sweeping occurs within the second half of the ISM band, and frequency
hopping behavior of the wireless camera. We analyze the power spectral
density and consider 95% occupied bandwidth for comparison. We
compare the center frequency of the signal in case of the analog phone
which lies at 2.417 GHz in both cases (see Figure 5.4(b) and 5.4(f)).
The occupied bandwidth is 100 kHz for the actual phone and 107 kHz
for CIG showing a reasonable accuracy for the analog phone. In
the case of microwave oven, we validate the frequency sweeping
behavior by comparing the spectrograms of the actual microwave
oven and that generated by CIG for microwave oven, depicted in
Figure 5.4(d) and 5.4(h). We observe a high energy present on the
channel corresponding to microwave ON cycles for both of the cases. The
average bandwidth occupied by the ON cycle amounts to approximately
284 kHz for the actual microwave and the generated signal by CIG. For
the wireless camera, it is more challenging to compare and validate the
channel switching pattern used in frequency hopping due to the absence
of a particular sequence. Hence, we only compare the average bandwidth
occupied by each packet which is 2.22 MHz for actual camera signal and
2.38 MHz for CIG generated signal.

5.3.3 Impact on the Communication Link
In the following, we study the impact of interference on the performance
of an 802.15.4 link subjected to interference generated by original
interferers and as compared to that generated by CIG. For the
communication link, we use a pair of TelosB nodes. We evaluate various
setups, but highlight here the following setup: The transmitter sends 1000
packets, each with a length of 50 bytes and CCA enabled at a transmit
power of 0 dBm with an interval of 100 ms to a receiver placed 4 m away.

The transmitter logs CCA status before each transmission. The
receiver logs statistics about received packets including RSSI, LQI reading,
and the induced power level on the channel. We select the communication
channel to overlap with the channel used by the interference source, or
the one within the interferer used frequency hopping sequence.

In our experiments, interference generated by CIG exhibits in most
cases similar impact on the communication link as interference generated
by original interferers. The Packet Reception Rate (PRR) obtained for
CIG’s microwave oven, is 6.2% lower than the original oven. This is
due to USRP’s transmit power adjustment during signal playback which
results in an increased noise level at the OFF periods of the microwave
oven operational cycle. This consequently leads to slightly higher
packet losses for receivers at distances a↵ected by the residual noise.
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Similarly, we observe a lower Link Quality Indicator (LQI) (indicating bad
link quality) and higher noise readings, which only vary within 2 dBm.

In the case of the analog phone, the 802.15.4 transmitter kept
backing o↵ thus communication was not possible. This is because the
phone continuously emits energy in the medium, thus monopolizing it
completely. For both CIG phone and the phone device, we measure
similar noise levels and LQI values. While disabling CCA (as we explored
in Chapter 2 to allow communication during persistent interference), CIG
results into a similar performance as the original device. Hereby, the PRR
remains almost the same, showing a reasonable accuracy for analog phone
interferer.

For the wireless camera, the PPR is 13.3% higher for CIG generated
interference. This is due to the hopping rate limitations and consequently
lower packet transmission rate. The average LQI and noise values for
both interference sources are, however, in the same range. Moreover, we
measure similar average RSSI values (variance of ±2 dBm) during packet
reception, in both cases.

5.4 Summary
The number of wireless technologies operating in the unlicensed bands is
significantly surging. This phenomenon brings unprecedented challenges
for services and applications depending on the wireless medium for
communication. A clear understanding of the specifics of radio spectrum
sharing is important for the design and verification of wireless systems
and protocols. To facilitate wireless systems and protocols testing
and verification under heterogeneous interference patterns, we need to
augment testbeds and experimental environments with tools that are
capable of generating realistic and repeatable interference patterns, and
yet easy to access and use.

In this chapter, we introduce CIG, a software-defined radio based
controlled interference generator. CIG embodies a set of prevalent
radio interferers in one device that can be installed in remote testbeds.
CIG design incorporates playback capabilities to regenerate recorded
interference patterns, as well as software radio implementation of a
set of prevalent interferers operating in the unlicensed band. CIG
is easy to use, install, and configure. We validate the spectral and
temporal accuracy of the interference generated by CIG. In the design
of CIG, we focus on emulating the physical properties of the interfering
signals. Although CIG is not flawless, it is a competitive alternative
solution in terms of fidelity, usability, extendability, and a↵ordability.
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In the design of CIG, we focus on reflecting on one dimension of
interference generating, namely, reproducing the interfering physical
signal (i.e., radio signal’s physical properties) with high fidelity. For
CIG to be comprehensive, we need to consider reflecting on other aspects
of the interferer, such as location, orientation, and mobility.

For many interference mitigation solutions, reproducing the exact
physical signal of the interfering source can be superfluous for testing.
This particularly applies to solutions residing in MAC and upper
layers (e.g., clear channel assessment, interference avoidance, channel
sampling for free channel discovery, and channel occupancy patterns for
opportunistic MAC scheduling). For testing this class of solutions, it is
su�cient to focus on replicating the temporal and spectral characteristics
of the interferers. In the design of CIG, we consider digitally
implementing the exact coding and modulation schemes (PHY layer) of
the interfering technologies. This allows researchers to test interference
solutions that reside in the physical layer in addition to MAC and upper
layers. CIG, hence, caters for an automated testing of a larger body of
coexistence solutions.

This chapter is dedicated to designing a solution that can help
researchers test the dependability of wireless networks deployed
in indoor environments rich of radio interference. The numerous
unanticipated hours we spent in conducting the experiments presented in
this dissertation, led us to work on CIG, believing that researcher’s time
should be better invested fabricating novel solutions rather than racking
with the ill-supported available experimental environments. We hope
that the shared insights and design decisions presented in this chapter
can help to design better experiment tools for radio coexistence research.
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Conclusions and Outlook

To date, much of the devised radio frequency interference solutions
have been focusing on resolving interference between devices of the
same technology. As a consequence, current wireless systems are short
of mechanisms to identify and adapt to dynamic sources of external
interference. Utilizing non-overlapping segments of the spectrum has
been the natural solution to avoid/tackle interference between di↵erent
technologies. However, as the density of radio devices continue to
increase, this solution will no longer su�ce. Therefore, it is necessary
to pursue alternative avenues to overcome the coexistence challenge
in the scarce spectrum. This dissertation advocates for an alternative
architecture that builds around mechanisms for wireless coexistence, and
in its essence, focuses on designing radios that understand interference
better and can reliably operate in occupied channels. The mechanisms and
systems presented in this dissertation deliver essential building blocks for
wireless networks to improve throughput and reliability in interference
rich environments.

We now conclude this dissertation with a brief summary of our
contributions and a discussion of directions for future work.

6.1 Contributions
In this dissertation, we argued that there are su�cient unutilized
opportunities for low-power systems to coexist in shared channels.
Hence, to alleviate the spectrum scarcity consequences, we need
to revise current wireless designs to leverage these opportunities.
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The systems presented in this dissertation adopt machine learning
techniques and a cross-layer approach to increase radio’s cognition of their
environments. In particular, they exploit richer physical layer information
and devise algorithms that automatically identify, calibrate, and correct
for variations due to Cross-Technology Interference in the channel. To
support our argument, this dissertation introduced three new systems:
TIIM, CrossZig, and CIG that contribute to wireless systems coexistence.

TIIM. In this work, we have presented the problem of cross-technology
interference, focusing on its implications on low-power wireless
networks. We have shown that cross-technology interference has a
non-negligible impact on the performance and availability of low-power
wireless networks. Due to the heterogeneity and dynamicity of CTI,
there is no one-size-fits-all solution to combat CTI. Correspondingly,
we argued and showed that understanding the type and nature of
interference is crucial for deciding how to mitigate it best. To seamlessly
realize this, we developed a lightweight classifier that is trained to
recognize channel fingerprints at which a particular coexistence solution
can work best. In Chapter 3, we presented the design of TIIM,
a lightweight Technology-Independent Interference Mitigation system that
identifies, quantifies, and reacts to CTI in real-time. In the design of TIIM,
we followed an unorthodox approach, where we employed machine
learning to assist wireless nodes in recovering from interference. TIIM
employs a lightweight machine learning classifier to (i) decide whether the
communication is viable over the interfered link and (ii) characterize the
ambient conditions and dynamically apply the best coexistence mitigation
strategy. We developed a prototype of TIIM based on an o↵-the-shelf
802.15.4 radio platform. Our evaluation showed that TIIM, while exposed
to extensive and heterogeneous interference, can achieve a total packet
reception rate gain of 30% with an additional transmission overhead of
5.6%.

CrossZig. Current wireless designs still largely impose layer isolation,
where the lower layers deliver fully correct packets for upper layers.
Given this, conventional approaches to tackle wireless performance has
focused on separately optimizing di↵erent layers of the networking stack.
This rigid design fails to harness correctly received bits within corrupted
packets and is oblivious of the rich ambient information embedded in the
physical signals. Hence, reliability solutions developed for this design
model are typically suboptimal. In recent years, cross-layer optimizations
were profoundly advocated in the wireless community. This has been
coupled with rapid developments in software defined radios that made
it possible to demonstrate the potentials of cross-layer designs. In this
dissertation, we showed how physical layer information and primitives
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can be coupled with link layer to enhance low-power wireless systems
coexistence and performance under interference. Notably, we showed
that passing fine-grained physical layer information to upper layers
enables the link layer to make more informed and intelligent decisions
when reacting to interference. In Chapter 4, we presented CrossZig,
a cross-layer wireless system design, that enables low-power wireless
networks to exploit fine-grained information from the physical layer
to make informed and intelligent decisions that can help them recover
from varying sources of interference. CrossZig utilizes physical layer
information to detect the presence of CTI in a corrupted packet and to
apply an adaptive packet recovery which incorporates a novel cross-
layer based packet merging scheme and an adaptive channel coding. We
implemented a prototype of CrossZig for the low-power IEEE 802.15.4
in a software-defined radio platform. We showed the adaptability and
the performance gain of CrossZig through experimental evaluation of the
system performance under various interference patterns.

CIG. Wireless research testbed infrastructures often lack proper tools
for enabling repeatable playback of realistic radio interference commonly
found in real-world deployments. This can make it harder for researchers
to benchmark their wireless coexistence solutions in remote testbeds.
To tackle this challenge, we developed CIG, a tool that can extend
current testbed infrastructures with capabilities to (re)run experiments
under identical interference patterns. In Chapter 5, we presented CIG,
a Controlled Interference Generator (CIG) framework that facilitates
wireless coexistence research experimentation. In the design of CIG,
we adopted a unified approach that incorporates a careful selection of
interferer technologies (implemented in software), to expose networks
to realistic interference patterns. We validated the resemblance of
interference generated by CIG and interference from represented radio
devices, by showing its accuracy in temporal and spectral domains.

This dissertation builds the above ideas into practical systems,
integrates them within the IEEE 802.15.4 protocol stack, and provides
prototype implementations of the proposed designs. Further, we
evaluated them in wireless testbeds, demonstrating large gains in
throughput and reliability in practice. This work demonstrate the benefits
of alternative wireless network designs that can better coexist in shared
channels.

6.2 Remaining Challenges & Future Directions
The systems in this dissertation addressed the challenges involved in
low-power wireless systems coexistence in dense and diverse spectral
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environments. The building blocks presented in this dissertation provide
sound means necessary for better coexistence in the crowded spectrum.
Nevertheless, the contributions described in this dissertation do not
represent a universal solution to the uncoordinated wireless coexistence
challenge. In this section, we first discuss possible directions for future
research based on the work presented in this dissertation and then give a
broader view on future work in low-power wireless systems coexistence.

Coexistence (TIIM and CrossZig). The work on coexistence presented
in this dissertation can be extended to act on the following aspects.

• Low-power Wireless Technologies: For the contributions presented
in this dissertation, we discussed, analyzed, and provided prototypes
that comply with the IEEE 802.15.4 standard. However, most of the
observations can be projected to analogous wireless technologies, such
as 802.11 radios. We believe that TIIM’s and CrossZig’s building blocks
can be beneficial to the coexistence of comparable radio technologies,
provided that the underlying mechanisms leveraged by our systems are
ported and adjusted in accordance with the physical layer details of the
target wireless technology. We leave further investigations for future
work.

• Highly Mobile and Multi-hop Wireless Networks: Some low-power
wireless system’s applications can be highly mobile in nature. The
operation of the adaptive schemes presented in this dissertation is not
optimized for networks that rapidly change as a result of mobility.
Variations in such settings can occur at a pace higher than what our
systems can cope with, hence, a↵ect the system’s stability inversely.
Furthermore, TIIM and CrossZig are link-based solutions, ultimately
directed at enhancing the link performance under interference. Therefore
most of the experiments conducted in this dissertation target one-hop
communication links. However, TIIM and CrossZig can be optimized for
multi-hop networks. One possible direction is to allow propagation of the
selected mitigation along consecutive hops and only trigger the search for
a new mitigation scheme if the currently chosen scheme is not e↵ective or
begins to endure high cost. This can help minimizing the delay induced
by TIIM and CrossZig across the network. We leave further investigations
on this direction for future work.

• Other Uses of the Physical Information: Conventional Low Power
Listening (LPL) mechanisms are susceptible to interference, this is
mainly because they employ CCA to check the channel state. Current
implementations of CCA rely on energy level to detect activities in
the channel. Energy detection fails to di↵erentiate between channel
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activities arising from interference and those arising from target signals;
this can consequently extrapolate the false wakeup problem. This has
a considerable impact on Radio Duty Cycle’s (RDC) performance and,
hence, energy e�ciency. Potential future work can focus on enhanced
cross-layer MAC protocol designs, by optimizing the underlying CCA
mechanism. Hereby, spectrum sensing techniques that are robust to CTI
should be alternatively considered. For instance, combining the energy
detection- with correlation-based detectors, which aims at detecting
signals that have the modulation and spreading characteristics of the
target signal. Moreover, soft values as we have examined in this
dissertation can be a good indicator of the signal type, and can be an
e�cient alternative to energy detection. These approaches are however
more power hungry than energy detection in general, but can deliver
better overall energy e�ciency for environments rich of interference.
Moreover, scheduling algorithms used in multichannel MAC protocols
such as TSCH can benefit further from a cross-layer design, where
scheduling algorithms can adapt better to congestion. We leave further
investigations of cross-layer optimizations for LPL and TSCH for future
work.

• Resource Asymmetry in Low-power IoT Networks: In this work, we
assume that resources are symmetric in the transmitter and receiver.
Introduced solutions were designed to consider the constrained nature
of the devices symmetrically. This is typically the case for networks
with homogenous hardware resources (i.e., WSN). However, for IoT
applications, hardware resources are commonly asymmetric, such that
sensors are embedded in appliances, wearables, and within bodies and
transmit their data to an unconstraint device referred to as the gateway.
For combating CTI in such settings, one can take advantage of this
inherent asymmetry. This asymmetry can be leveraged to enhance
wireless coexistence, by porting the computationally expensive state of
the art solutions to the unconstrained device to manage spectrum usage
and assist constrained devices in deriving the adequate countermeasure.

• Spectrum Utilization: In this dissertation, we focused on enhancing
spectrum utilization by employing mechanisms that harness opportuni-
ties that arise from variations in spectral occupancy across time. Similar
opportunities can arise due to variations in spectral occupancy and
channel conditions across space and frequency. For opportunities arising
from space diversity, directionality o↵ered by antenna beam steering
can be harnessed to avoid interfering with a co-located interferer that
simultaneously utilizes the same channel. Analogously, in multi-path
networks, nodes can route packets to alternative paths that are less
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a↵ected by interference (i.e., exploit spatial diversity). Moreover, our
systems have a narrow view of the radio spectrum that is limited to the
802.15.4 channel width. They focus on increasing the spectral e�ciency
over interfered channels, unacquainted of the state of the rest of the
spectrum. Thus, our system lacks a comprehensive view of the radio
spectrum to decide whether communication over an interfered channel
is preferred over channel switching. To overcome the limitation of
narrow spectrum perception in narrow-band channels, solutions such as
cyclostationary analysis for bandwidth estimation of interfering signals,
agile radios, and adaptive spectrum access can be employed. However,
these approaches are not yet viable for constrained wireless systems. One
possible solution is to outsource this task to a central entity that can be
queried about the spectrum status, or if communication occurs between
devices with asymmetric resources the more capable device takes this
responsibility.

• Fairness and Coexistence: With the existing power asymmetry in the
shared unlicensed bands, where low-power radios typically transmit at
0 dBm (several times lower than other radios), there is a large region
where low-power transmitters can sense transmission from a high power
interferer but not vice versa. Hence, low-power nodes unnecessarily
abstain from transmitting and thus, su↵er from starvation. To contain
this e↵ect, there is a need to rethink how the current CTI-oblivious CSMA
protocol works (i.e., trigger devices to abstain transmissions without a
good assessment of the potential harm a transmission can cause). This
particularly applies for links subject to CTI, where using the default
CCA can cause high false negatives. Access modalities that can allow
opportunistic access to the interfered channel and, hence, allow utilization
of frequency holes due to sparse frequency access and time variant
characteristics of interferers can lead to a better utilization of the scarce
spectrum. CTI-aware recovery mechanisms such as the one introduced
in this dissertation can then help to alleviate the potential CTI damages.
Experimentation (CIG). In the design of CIG, much of our focus has
been on emulating the physical properties of the interfering signals. We
focus on reflecting on one dimension of interference generation, namely,
reproducing the interfering physical signal (i.e., radio signal’s physical
properties) with high fidelity. For CIG to be comprehensive, we need
however to consider reflecting on other aspects of the interferer source,
such as realistically emulating location, orientation, and mobility patterns
of the target interferers in future prototypes. Moreover, the current
CIG design allows users to configure application tra�c patterns and
content manually. However, this requires the user to be knowledgeable
about these aspects of the interference which can be cumbersome.
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Therefore, providing support of realistic tra�c pattern models is a feature
we plan to address in future prototypes of CIG. Finally, integrating CIG in
a public testbed is the natural next step for testing CIG (e.g., Flocklab [97],
Indriya [37]).

Further Directions. With the number of wireless devices surging in the
unlicensed bands, the coexistence challenge will become more pressing.
E↵orts have already started with exploring alternative means beyond
utilizing the increasingly crowded unlicensed radio spectrum. For
instance, resorting to visible light communication instead of radio waves,
leveraging white spaces, or alternative licensed bands are some promising
alternatives for low-power wireless systems. Pursuing the latter direction
requires the development of e�cient mechanisms for spectrum sensing,
in order to increase the chances for low-power systems to coexist in
these deserted bands. Furthermore, in this dissertation we advocate for
bringing miniaturized intelligence into radios to address the complexity
of the CTI problem. The concept of bringing intelligence to radios is
not new. Communication concepts, such as cognitive radio, promise
integration of intelligence into radios, such that they can sense, learn
from, and adapt to their environment. To date, most of cognitive radio
research focuses on licensed bands and has been restricted to policy-
based radios that are hard-coded with rules on how to react in certain
scenarios. Devising radios that utilize machine learning techniques, i.e.,
a learning-based cognitive radio, is a relatively unchartered research
area. This dissertation shed light on the potential of using machine
learning in one wireless communication application, namely automating
countermeasure selection in the presence of interference. Interference
in the unlicensed band is primarily from communication systems that
follow systematic protocols which can be learned and exploited for better
coexistence. However, the scope of machine learning applications in
wireless communication is wide and needs further research exploration.
The need of learning components in radios is more evident now, as the
rise of active wireless devices implies that more RF optimizations and
tuning is needed.

As the density and diversity of wireless devices populating the
unlicensed spectrum continue to increase, there is an urgent need to
rethink current wireless designs. Designing agile wireless protocols that
can exploit opportunities that arise from variations in spectral occupancy
across time, space, and frequency is inevitable for better utilization of
the scarce spectrum. This dissertation demonstrates practical wireless
systems that realize this by incorporating machine learning techniques
and cross-layer algorithms to enhance low-power wireless systems
coexistence in occupied channels.
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