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Prototype tabs, pads and boards are just the beginning

of ubiquitous computing. The real power of the concept

comes not from any one of these devices; it emerges

from the interaction of all of them.

Mark Weiser
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I am also indebted to Jakub Ratajsky, Löıc Pfister, and Jörg Himmelreich for their
support. Jörg Himmelreich read parts of my dissertation and provided valuable insights
from the perspective of an architect (I considered all of his comments except his com-
plaints about the small amount of footnotes). Nick Bell was so kind as to read my thesis,
and provided input regarding orthography, grammar, and style. I would like to thank
him for his efforts.

My family has always been a constant source of understanding and never-ending moral
support. I know I can never repay them, but I would like to seize the opportunity to
thank my family for all it has given to me.

I thank God.

iii



iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 7
2.1 The Vision of Pervasive Computing . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Technological Foundations . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Economic Developments . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Smart Everyday Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 What is a Smart Everyday Object? . . . . . . . . . . . . . . . . . 15
2.2.2 Augmenting Everyday Objects . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Tagging Technology . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Context-Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Infrastructural Support for Context-Awareness . . . . . . . . . . . 36

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Cooperation among Smart Everyday Objects 45
3.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Why Smart Objects should Cooperate with Each Other . . . . . . 46
3.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Solution Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 SICL – A Description Language for Context-Aware Services . . . . . . . 51

3.3.1 The Structure of an SICL Program . . . . . . . . . . . . . . . . . 52
3.3.2 A Programming Abstraction for Collaborative Context-Aware Ser-

vices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Basic SICL Programming Constructs . . . . . . . . . . . . . . . . 56
3.3.4 Improving the Effectiveness of Tuple Transformations . . . . . . . 59

3.4 The Context Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.3 Tuple Transformations . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.4 Adaptation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.5 Improving Rule Evaluations . . . . . . . . . . . . . . . . . . . . . 68
3.4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Tuplespace-Based Inter-Object Collaboration . . . . . . . . . . . . . . . . 76

v



3.5.1 Tuplespace-Based Collaboration . . . . . . . . . . . . . . . . . . . 77
3.5.2 Efficiency Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Context-Aware Communication Services . . . . . . . . . . . . . . . . . . 96
3.6.1 Basic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.6.2 Linking Communication and Context Layer . . . . . . . . . . . . 99
3.6.3 Context-Aware Device Discovery . . . . . . . . . . . . . . . . . . 100
3.6.4 Context-Aware Topology Construction . . . . . . . . . . . . . . . 102

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Cooperation with Handheld Devices 107
4.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.1 Why Handhelds and Smart Objects should Cooperate . . . . . . . 108
4.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Solution Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3 Characteristics and Roles of Handhelds . . . . . . . . . . . . . . . . . . . 111
4.4 Role Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 Mobile infrastructure access point . . . . . . . . . . . . . . . . . . 115
4.4.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.3 Remote Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.4 Mobile Storage Medium . . . . . . . . . . . . . . . . . . . . . . . 126
4.4.5 Remote Resource Provider . . . . . . . . . . . . . . . . . . . . . . 127
4.4.6 Weak User Identifier . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 Integrating Handhelds into Smart Environments . . . . . . . . . . . . . . 129
4.5.1 Basic Concepts and Architecture Overview . . . . . . . . . . . . . 129
4.5.2 The Smoblet Programming Framework . . . . . . . . . . . . . . . 131
4.5.3 The Smoblet Front- and Backend . . . . . . . . . . . . . . . . . . 133
4.5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.6.1 Smart Object—Human Interaction: as Easy as Making Phone Calls 136
4.6.2 The Smart Medicine Cabinet . . . . . . . . . . . . . . . . . . . . 138
4.6.3 The Smart Blister Pack . . . . . . . . . . . . . . . . . . . . . . . 140
4.6.4 Object Tracking and Monitoring . . . . . . . . . . . . . . . . . . . 142
4.6.5 Collaborative Context Recognition and Streaming Data . . . . . . 143
4.6.6 Training Assistant – Outsourcing Java User Interfaces to Handheld

Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Conclusions and Future Work 149
5.1 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2 Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A SICL Syntax 169

B Energy Characteristics of Active Tags 173

C Curriculum Vitae 175

vi



Abstract

Pervasive Computing envisions the seamless integration of computation into everyday
environments in order to support people in their daily activities. Due to recent tech-
nological advances, the computing devices that can be used to enrich our environments
with computation have become increasingly smaller and less obtrusive, so that it is pos-
sible to embed them into mundane everyday things. Such smart everyday objects have
the ability to communicate with peers, perceive their environment through sensors, and
provide context-aware services to nearby people. However, the severe resource restric-
tions and limited user interfaces of smart objects make it difficult for them to realize
services on their own. Instead, in order to implement context-aware services and because
of their limited user interfaces, smart objects need to interact with other computing de-
vices to make use of these devices’ sensors and input/output capabilities. In consequence,
there is an urgent need to facilitate cooperation between computational entities in smart
environments.

This dissertation addresses the problem of cooperation from the perspective of smart
everyday objects. Its main contribution is to illustrate how augmented items can make
up for their limited resources by cooperating with nearby computing devices. For this
purpose, we concentrate on two aspects of cooperation: interaction between smart objects
and cooperation between smart objects and mobile user devices.

The first part of this dissertation focuses on how smart objects can provide services
in cooperation with other augmented artifacts. In the proposed solution, a programming
abstraction facilitates the design of collaborative context-aware services for smart objects.
This abstraction groups nodes into sets of cooperating objects that bundle their resources
and appear to an application as a single entity. Based on this approach, we present a
software framework for realizing cooperative services on smart objects. It consists of (1) a
description language for context-aware services, (2) a context recognition layer for smart
objects, (3) an infrastructure layer for distributing data among cooperating artifacts,
and (4) a communication layer that adapts networking structures to correspond to the
real-world environment of smart objects. To evaluate the proposed concepts, we present
an implementation on an embedded sensor node platform, the BTnodes.

The second part of this dissertation focuses on cooperation between smart objects
and mobile user devices as an example of how augmented artifacts can benefit from
the heterogeneity of smart environments. In this respect, our contribution is to identify
recurring usage patterns that describe how smart objects can make use of handheld
devices: (1) as mobile infrastructure access points, (2) as user interfaces, (3) as remote
sensors, (4) as mobile storage media, (5) as remote resource providers, and (6) as user
identifiers. We describe these usage patterns, report on experiences with prototypical
implementations, and present several application scenarios illustrating the applicability
of the proposed concepts.
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Zusammenfassung

Aufgrund des bereits seit einigen Jahrzehnten anhaltenden rasanten technologischen Fort-
schrittes in der Informations- und Kommunikationstechnik werden Computer immer
kleiner, schneller und bei gleicher Leistung auch zunehmend billiger. Vor dem Hinter-
grund dieser Entwicklung untersucht das Forschungsgebiet des

”
Pervasive Computing“,

wie Kleinstcomputer in unsere alltägliche Umwelt integriert werden können, um Anwen-
dern in Alltagssituationen neuartige Dienste zur Verfügung zu stellen. Mittlerweile haben
diese Kleinstcomputer sogar Formgrössen erreicht, die es erlauben, sie unaufdringlich –
vom Standpunkt eines Anwenders scheinbar unsichtbar – in beinahe beliebige Dinge
zu integrieren. Solche mit Informationstechnologie ausgestattete so genannte smarte All-
tagsgegenstände haben die Fähigkeit, mit anderen smarten Dingen zu kommunizieren, sie
können ihre Umgebung mittels Sensoren wahrnehmen und Anwendern kontextbewusste
Dienste zur Verfügung stellen.

Allerdings können smarte Alltagsgegenstände aufgrund ihrer sehr ausgeprägten Res-
sourcenbeschränkungen sowie begrenzten Benutzerschnittstellen Anwendungen im All-
gemeinen nicht autonom und ohne externe Unterstützung realisieren. Stattdessen ergibt
sich für sie oft die Notwendigkeit, mit in ihre Umgebung integrierter Informationstech-
nik interagieren zu müssen, um auf entfernte Sensoren und externe Nutzerschnittstellen
zugreifen zu können. Als Konsequenz kommt der Kooperation in smarten Umgebungen
eine grosse Bedeutung zu, weil die Zusammenarbeit mit anderen Geräten smarten Dingen
helfen kann, die ihnen inhärenten Beschränkungen zumindest teilweise zu kompensieren.

Die vorliegende Dissertation widmet sich dem Thema Kooperation in smarten Um-
gebungen unter besonderer Berücksichtigung ressourcenbeschränkter smarter Alltagsge-
genstände. Der Hauptbeitrag dieser Arbeit ist es aufzuzeigen, wie smarte Dinge trotz
der ihnen eigenen limitierten Ressourcen komplexe Dienste realisieren können, indem
sie mit anderer in ihrer Umgebung integrierter Informationstechnik kooperieren. Dabei
konzentriert sich die Arbeit auf zwei Teilaspekte der Kooperation mit smarten Alltags-
gegenständen: (1) die Interaktion von smarten Dingen untereinander und (2) die Koope-
ration von smarten Alltagsgegenständen mit mobilen Nutzergeräten.

Der erste Teil dieser Arbeit befasst sich damit, wie um Informationstechnologie er-
weiterte Alltagsgegenstände Dienste in Zusammenarbeit mit anderen smarten Dingen
realisieren können. Im vorgestellten Lösungsansatz erleichtert ein Programmiermodell die
Erstellung kollaborativer kontextbewusster Dienste. Dabei werden miteinander interagie-
rende smarte Dinge zu einer Gruppe zusammengefasst, deren Teilnehmer ihre Ressour-
cen bündeln und daher aus der Sicht eines Anwendungsprogrammierers als ein einziger,
hinsichtlich Ressourcen mächtigerer Knoten erscheinen. Basierend auf diesem Grundan-
satz wird eine Softwarearchitektur zur Realisierung kooperativer Dienste auf smarten
Alltagsgegenständen vorgestellt. Sie besteht aus (1) einer Beschreibungssprache für kon-
textbewusste Dienste, (2) einer Softwareschicht für die kollaborative Kontexterkennung,
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(3) einer Infrastrukturschicht, die für die Verteilung von Daten zwischen kooperierenden
Objekten verantwortlich ist und (4) einer Kommunikationsschicht, die Netzwerkparame-
ter in Abhängigkeit von der momentanen Situation eines smarten Objektes in der realen
Welt anpasst. Die vorgestellten Konzepte werden auf der Basis einer prototypischen Im-
plementierung auf eingebetteten Sensorknoten, den BTnodes, evaluiert.

Der zweite Teil dieser Arbeit widmet sich der Kooperation von smarten Dingen mit
mobilen Nutzergeräten im Hinblick darauf, wie um Informationstechnologie erweiterte
Dinge von der Heterogenität in smarten Umgebungen – d.h. von der Präsenz verschie-
denartigster Geräte mit unterschiedlichen Eigenschaften und Fähigkeiten – profitieren
können. In diesem Zusammenhang besteht der wesentliche Beitrag dieser Arbeit darin,
wiederkehrende Benutzungsmuster zu identifizieren, die aufzeigen, wie smarte Dinge die
Fähigkeiten von Handhelds für ihre Zwecke nutzen können. Mobile Nutzergeräte können
dabei unter verschiedenen Aspekten von smarten Alltagsgegenständen benutzt werden:
(1) als mobiler Zugriffspunkt zu einer Hintergrundinfrastruktur, (2) als externes Benut-
zerinterface, (3) als externer Sensor, (4) als mobiler Datenspeicher, (5) als Bereitsteller
von Rechenressourcen und (6) zur Identifikation von Anwendern. Diese Benutzungsmuster
werden detailliert beschrieben, es wird auf Erfahrungen mit prototypischen Implemen-
tierungen eingegangen, und es werden verschiedene Anwendungsszenarien einschliesslich
deren exemplarischer Realisierung vorgestellt, um die Eignung der vorgestellten Konzepte
in smarten Umgebungen zu illustrieren.
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Chapter 1

Introduction

1.1 Motivation

As pointed out by Weiser and Brown [WB96], Pervasive Computing1 “is fundamen-
tally characterized by the connection of things in the world with computation.” Smart
everyday objects exemplify this vision of Pervasive Computing because they link mun-
dane everyday things with information technology by augmenting ordinary objects with
small sensor-based computing platforms (cf. Fig. 1.1). A smart object can perceive
its environment through sensors and communicates wirelessly with other objects in its
vicinity. Given these capabilities, smart objects can collaboratively determine the situa-
tional context of nearby users and adapt application behavior accordingly. By providing
such context-aware services, smart objects have the potential to revolutionize the way in
which people deal with objects in their everyday environment.

However, the resource restrictions of smart objects and their limited user interfaces
severely hinder their ability to realize useful applications. In fact, because of their inherent
resource restrictions, which result from the necessity to keep the computing platforms of
smart objects small and unobtrusive, it is difficult to tap the full potential of augmented
items to the extent that would be desirable. As a result, in today’s applications involving
augmented items, services associated with them are often entirely realized by background
infrastructure services. The only functionality provided by smart objects themselves is
thereby to transmit an identity or raw sensory data to a nearby stationary server that
realizes services on their behalf. With the proliferation of active sensor nodes that can
be integrated into everyday things, however, smart objects can take more responsibility
for realizing their own services.

In this dissertation, we argue that cooperation with nearby computing devices is a
key concept for enabling smart objects to overcome their resource restrictions and hence
to realize more sophisticated services. To support this argumentation, we deal with two
types of cooperation that are of special importance in smart environments: (1) coop-
eration among different smart objects and (2) cooperation between smart objects and
mobile user devices. We chose to investigate these two aspects of cooperation because
they show how augmented items can exploit two key properties of Pervasive Comput-
ing environments – ubiquity of computation and heterogeneity. Both, heterogeneity and
the abundance of computing devices present in smart environments allow smart objects

1Weiser and Brown used the term Ubiquitous Computing in the paper cited. The term Pervasive
Computing was introduced later and made popular by companies such as IBM. Today, the two expressions
are usually used interchangeably.

1



2 CHAPTER 1. INTRODUCTION

to rely on other nearby computing devices when carrying out computations or realizing
interactions with users. Regarding cooperation between smart objects, ubiquity of com-
putation implies that in smart environments many – albeit computationally weak – smart
objects are likely to be in range of each other. Cooperation among these objects is there-
fore a suitable means to bundle their resources in order to realize more complex services.
In contrast, the cooperation with handheld devices illustrates how smart objects can
benefit from the heterogeneity of smart environments. Heterogeneity implies that smart
environments are populated with computing devices with many different capabilities and
various means to support interactions with users. Cooperation is therefore an important
tool for smart objects to make use of other devices’ capabilities and to integrate their
features into their own applications.

Figure 1.1: A smart object: an everyday item augmented with a sensor-based computing
platform.

Cooperation with other computing devices in smart environments helps smart objects
to implement their services for several reasons. The most prominent one is context-
awareness. In smart environments, people expect applications to automatically adapt to
their current situation, which requires smart objects to obtain information about their
real-world environment and that of nearby users. The problem is that a single object can
only perceive a small subset of its environment with its own local sensors, and therefore
often needs to cooperate with other objects to more accurately derive context information.
Another reason for cooperation is that the resources of smart objects are restricted as
regards memory capacity and processing power. In order to carry out computationally
expensive algorithms or to store large amounts of data, smart objects need to cooperate
with other entities. Last but not least, the computing platforms attached to objects need
to be as unobtrusive as possible when augmenting everyday things with computation.
In fact, prospective users should not even be aware of the integrated technology, and it
must not hinder the way in which people normally use their items. Consequently, smart
objects often have no sophisticated input/output interfaces such as displays or keys. This
means that when a smart object wants to provide services that rely on such interfaces,
it needs to cooperate with other computing devices – handhelds or mobile phones for
example – that provide such user interfaces.



1.2. CONTRIBUTIONS 3

1.2 Contributions

The main thesis of this dissertation is that cooperation with nearby computing devices
helps smart objects to realize services for people in smart environments. We support
this thesis in two ways. First, it is shown how nearby smart objects can bundle their
resources and cooperatively implement context-aware services. Second, we focus on the
cooperation between smart objects and nearby handheld devices as an example of how
augmented items can interact with different kinds of computing devices and access their
resources. As a result, the main contribution of this dissertation is to illustrate how
smart objects can make up for their limited resources and restricted user interfaces by
cooperating with other smart objects and mobile user devices; and to show how they can
make use of the capabilities provided by other computing devices and integrate them into
their own applications.

In the following, we list the core contributions of this dissertation in more detail:

• Context-aware collaboration among smart everyday objects. We have
designed and built a software platform for realizing and executing context-aware
services in collections of cooperating smart everyday objects. The platform con-
sists of (1) a programming language for describing context-aware services, (2) a
compiler for this language that maps a description of a context recognition process
onto instructions for the context-layer of smart objects, and (3) a tuplespace-based
infrastructure layer for distributing data among collaborating entities. Please refer
to Chap. 3 for a detailed description of these concepts.

• Context-aware communication services. We call communication services con-
text-aware if they adapt networking parameters according to the situational context
of smart everyday objects. Our argumentation for context-aware communication
services is as follows: Smart objects usually provide context-aware applications,
which adapt themselves according to the real-world situation of nearby users and
that of smart objects. Consequently, there is a narrowing gap between virtual and
real worlds, i.e., what happens to a smart object in the real world (e.g., where
it is, whether it is used, etc.) has an increasing effect on its communication in
the virtual world. Therefore, we suggest considering the real-world environment of
smart objects in networking services in order to construct networking structures
that are more suitable for context-aware applications. This idea and corresponding
examples are presented in more detail in Sect. 3.6.

• The value of handhelds for smart everyday objects. In this dissertation,
we present several usage patterns that describe how smart objects can make use
of nearby handheld devices. These usage patterns are: (1) mobile infrastructure
access point, (2) user interface, (3) remote sensor, (4) mobile storage medium, (5)
remote resource provider, and (6) weak user identifier. In this respect, our main
contributions are that having identified these usage patterns, we give directions
for their realization, report on our experiences with a concrete implementation on
an embedded device platform, and show their applicability by means of several
example scenarios (cf. Chap. 4).

• Smoblets – integrating handheld devices into environments of cooper-
ating smart objects. The purpose of the Smoblet system is to enable smart
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objects to dynamically access the computational resources and user interfaces of
handheld devices such as PDAs (Personal Digital Assistants) and mobile phones.
The handhelds thereby participate in a distributed data structure shared by coop-
erating objects, which makes the location where code is executed transparent for
collaborating entities. This enables smart objects to outsource code to handhelds
that has previously been stored on smart objects for this purpose. This code is
then executed on the computationally more powerful handheld, can utilize its user
interfaces, and has access to the data of smart objects by means of the shared data
space. Besides introducing and evaluating the underlying concepts, our contribu-
tion includes a prototypical implementation on an embedded device platform. Sect.
4.5 contains more details about this.

• Embedding smart everyday objects into the everyday communication
infrastructure. Smart objects not only need to cooperate with each other and
nearby handheld devices, but also with remote services that must be accessed over a
background infrastructure. For example, it is desirable for smart objects to access
data on a distant backend server, or to make services available to remote users.
Interaction with remote objects, remote users, and backend services requires smart
objects to be embedded into existing communication infrastructures such as the
Internet or mobile phone networks. In this dissertation, we present ways in which
augmented artifacts can communicate with remote servers and how they can provide
services to distant users by means of such everyday communication infrastructures
as cellular phone networks and the Internet. For more information about this see
Sect. 4.4.1 and 4.4.2.

• Translating established interaction patterns to smart everyday objects.
Well-established interaction patterns such as making phone calls, writing SMS mes-
sages, or handling calendar entries on a PDA have the advantage of being widely
accepted by a large number of users. Translating these interaction patterns to smart
everyday objects might therefore be an opportunity to make it easier for people to
deal with this new type of technology. This dissertation presents ideas that illus-
trate how such an approach can be realized. Our approach was to assign phone
numbers to smart everyday objects in order to enable users to “call” their personal
items or to communicate with them by means of SMS messages. We have also
investigated forms of implicit user interactions that aim at making the handling of
smart objects easier. More information on this topic can be found in Sect. 4.4.2,
Sect. 4.6.1, and Sect. 4.6.2.

• Applications. We have prototypically implemented several application scenarios
to illustrate the applicability as well as the limitations of our concepts. The applica-
tions include several “smart” things: a smart egg carton, a smart medicine cabinet,
an object tracking and inventory monitoring application, and a smart training as-
sistant (cf. Sect. 4.6).

1.3 Organization

The rest of this dissertation is organized as follows: Chap. 2 provides background in-
formation. First, it discusses the foundations of Pervasive Computing, and considers
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the trends that speak for and against the vision of omnipresent information technology
embedded into our everyday environments. Second, we show how objects can be made
“smart” and present a survey of state-of-the-art tagging technologies. Third, the intro-
ductory chapter deals with the notion of context and gives an overview of approaches and
systems for deriving context in smart environments. Context is an important concept in
the scope of this dissertation because context recognition is one of the core reasons for
smart objects to cooperate with each other.

Chap. 3 focuses on the cooperation between smart objects. Its main purpose is to
show how smart objects can come to terms with their resource restrictions by realizing
services in cooperation with other augmented items in the vicinity. The chapter starts
with a short rationale and an overview of our proposed solution. Then, a description
language is presented that helps programmers in realizing collaborative context-aware
services. The chapter then introduces a software architecture for augmented artifacts that
allows them to execute context-aware services involving multiple objects. This software
architecture consists of a context layer, a layer facilitating the data exchange among
cooperating objects, and a communication layer. The remainder of the chapter describes
these in greater detail.

Chap. 4 deals with the cooperation between smart objects and mobile user devices.
Its main purpose it to show how smart objects can dynamically access the resources of
nearby handheld devices. After discussing the underlying problem and presenting an
overview of the proposed solution, the chapter identifies usage patterns which illustrate
how smart objects can actually make use of handheld devices. The chapter then describes
these usage patterns in more detail and reports on our experiences with implementations
on an embedded sensor node platform. Afterwards, six application scenarios and corre-
sponding prototypical implementations are presented that illustrate the suitability of the
proposed concepts. The application scenarios also show how different usage patterns can
be combined in a single application.

Chap. 5 concludes this dissertation by summarizing its main contributions. It dis-
cusses the limitations of our work as well as the main lessons learnt, and gives directions
for future work.
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Chapter 2

Background and Related Work

This chapter presents background information on Pervasive Computing and smart every-
day objects, and reviews related work carried out by other researchers. We start with a
look at the research field of Pervasive Computing, its motivation and underlying vision,
and try to assess whether it is reasonable to believe that it will ever fulfil the expecta-
tions associated with it. Second, we deal with the term smart everyday object and give
an overview of today’s tagging technology, which can be used to integrate computation
into everyday things. Third, the chapter reviews work in the field of collaborative con-
text recognition. The term context is of central importance for this dissertation, because
context recognition is one of the main reasons for smart objects to interact with each
other. We review how other researchers deal with the topic of deriving context in smart
environments, and show that their approaches are mainly based on centralized systems
or powerful computers in a backend infrastructure; smart objects often merely provide
raw sensory data without actually being involved in the process of combining sensory
data from multiple sources.

2.1 The Vision of Pervasive Computing

Pervasive Computing envisions a world of omnipresent information technology in which
computation is seamlessly integrated into the environment in order to support people in
their everyday activities. Enriching everyday surroundings with information technology
is thereby done in such a way that computers become omnipresent but at the same time
also invisible for prospective users. Invisible computers are meant to disappear into the
background, and to become such integral parts of the environment that people might not
even be able to identify the abundant information technology surrounding them.

A paramount motivation behind this vision of Pervasive Computing is the observation
that general-purpose computers such as laptops and PCs are not well suited to naturally
supporting people in their daily activities. Instead, working with laptops and PCs is very
technology-centered: a substantial initial overhead involved in learning to use computers,
their high complexity, and unintuitive usage patterns make people adapt to what a com-
puter program expects of them and not the other way around. What makes Pervasive
Computing different is that it is inherently human-centered. Computers embedded into
the everyday environment are supposed to sense the context of people and adapt their
application behavior automatically based on a user’s current surroundings. This means
that information technology becomes unobtrusive and interaction with smart environ-
ments implicit. Consequently, Pervasive Computing aims at making it easier for people

7
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to benefit from information technology, and requires significantly less previous knowledge
and fewer computer skills.

First steps towards realizing the vision of Pervasive Computing have been the de-
velopment of information appliances such as tabs, pads, and board-sized writing and
display surfaces [Gel04, Wei91, Wei93]. In contrast to general-purpose computers, infor-
mation appliances are tailored towards the needs of a specific application domain, such
as telephony or data communication. Consequently, they are better suited to supporting
people in a restricted set of activities, easier to use than general-purpose computers, and
are often also smaller and lighter because they only have to support a restricted set of
functions. Prominent examples of information appliances are today’s cellular phones,
which already have a much greater market penetration than PCs. Paramount reasons
for this development are that mobile phones as an information appliance are easy to use,
small, designed for a specific purpose, and handy, and are therefore better accepted by
users.

But information appliances are not the final stage of the broader vision of Pervasive
Computing. As pointed out by Mark Weiser – an influential pioneer in the research field
of Pervasive Computing – “prototype tabs, pads, and boards are just the beginning of
Ubiquitous Computing” [Wei91]. Recent research therefore goes one step further and
strives to enrich mundane everyday objects with information technology. Given recent
advances in hardware and communication technologies, mainly in the area of miniaturiza-
tion and wireless communication, such an approach seems to have become more and more
feasible. Also, many application scenarios – for example in the medical or insurance sector
– suggest that there are actually many sensible cases for the use of pervasive technology.
On the other hand, there are still many obstacles to overcome and open issues that have
not yet been solved. The question, for example, of whether the social implications of
pervasive technology regarding personal privacy will be accepted, or technological issues
such as how to provide a sustainable energy supply for smart objects, remain largely
open. As a result, the question of whether the vision of Pervasive Computing can ever be
truly realized remains a matter of speculation. In the following, we briefly discuss some
of the most dominant issues which are currently influencing the development towards the
vision of Pervasive Computing, in order to shed light on this question.

2.1.1 Technological Foundations

This section discusses the technological foundations of Pervasive Computing. In this
respect, Mattern [Mat01, Mat02, Mat04] distinguishes between the following technolog-
ical “reasons” for the development towards a world of computer-augmented everyday
artifacts: (1) Moore’s law [Moo65, RCN02], (2) new materials, (3) progress in communi-
cation technologies, and (4) better sensors. However, regarding smart everyday objects
that are augmented with active sensor nodes, there are also considerable technological
problems which make the deployment of augmented artifacts difficult. As an example,
we describe the problem of finding a sustainable energy supply for smart objects, and
discuss current advances in energy scavenging and harvesting.

Moore’s Law

In 1965, Gordon E. Moore observed that the number of components per integrated circuit
increases at an exponential rate, doubling approximately every year [Moo65]. Although
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he predicted that this trend was likely to subsist over the next decade – i.e., until 1975 –
his observation of exponential growth, admittedly at a slightly slower speed, has proven
to be valid for almost 40 years now. This development has led to the formulation of
Moore’s law, which predicts that the effectiveness of semiconductor technology doubles
roughly every 18 months. It is believed by experts in the semiconductor industry that
Moore’s law will continue to hold true at least until the end of this decade [Moo04].
Moore’s law not only applies to the number of transistors per integrated circuit, but in
addition the storage capacity of discs, the bandwidth of communication networks and
computation speed are increasing at an exponential rate, doubling every one to three
years [Mat02]. As a result, computer hardware is becoming smaller, faster and also
cheaper, which is a precondition for integrating large amounts of computing devices into
everyday environments.

New Materials

Embedding computation into everyday things not only requires computers that are small,
fast, and cheap, but also calls for new mechanisms to integrate computation into our
surroundings and new means to interact with information technology. Whereas Moore’s
law predicts that it will be possible to integrate standard processors and communication
chips into things, new materials open up entirely new ways for integrating computation
into everyday objects.

A prominent example of such new materials are semiconducting organic polymers
[Moo02], which might one day enable companies to print electronic circuits, to produce
electronic paper, or to develop novel forms of graphic displays. New materials also help
to make computation less obtrusive and more pervasive. Electronic paper, for exam-
ple, combines the acceptance of conventional paper with the advantages of information
technologies: the same sheet of paper can be reused several times, text passages can be
easily edited, and smart pens can store entire documents. Smart paper also epitomizes
one important aspect of smart everyday objects: It is not the goal of smart things to
change interaction patterns that have proven to be useful. Instead, smart everyday ob-
jects strive to improve the way in which users deal with everyday things by providing
additional services that enrich existing interaction patterns.

Many of these new technologies such as smart paper and plastic displays are still
in their infancy. However, several prototypes underline their potential in the Pervasive
Computing domain [Xer04a, Xer04b].

Communication Technologies

Over the past years, the bandwidth of communication technologies has increased at an
exponential rate. This is true for both wired and wireless networks. Whereas wired net-
works constitute the backbone of today’s Internet with data rates of up to several Gb/s,
wireless communication technologies are tailored towards the needs of mobile computing
systems and offer typical data rates in the range of several kb/s up to a few Mb/s. Effi-
cient wireless communication is therefore indispensable for integrating computation into
mobile everyday objects, and a powerful backbone is necessary to enable smart objects to
communicate with background infrastructure services. In fact, wireless communication is
the basic foundation for any cooperation between augmented items and their interaction
with surrounding background infrastructure services or mobile user devices. In the scope
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of this dissertation, it is therefore important that the protocols for cooperation between
smart everyday objects can be mapped onto efficient networking structures (cf. Sect.
3.6).

There is a wide range of wireless communication technologies that are of potential
interest in Pervasive Computing settings, e.g., IrDA, Bluetooth, Zigbee, WLAN, GSM,
UMTS, custom RF protocols, optical communication, RFID protocols, powerline com-
munications, or body area networks. Because optical communication and infrared-based
technologies require line-of-sight for communication, they are not always suitable for
augmenting everyday objects. Especially if manual alignment is necessary in order to
enable devices to communicate with each other, such technologies are not adequate for
augmenting everyday things because they require continuous user attention. In contrast,
radio technologies do not have this drawback as radio waves penetrate clothes and walls.
Radio technologies, on the other hand, can require substantially more power, especially
when communication needs to take place over long distances. As a result, the energy
restrictions of smart objects often render long-range wireless radio technologies – such as
GSM, or UMTS – unusable for augmenting everyday things.

In order to save energy, smart objects, mobile user devices, or low-power sensor nodes
are sometimes equipped with two different communication technologies. Of these tech-
nologies, one is highly energy-efficient but relatively slow and rather unreliable, whereas
the other consumes more energy but transmits at high data rates. In this case, the
low-power communication chip listens for incoming requests while the high-quality com-
munication module is switched off. The high-quality module is only turned on when
large amounts of data have to be transmitted in a small time frame. This idea has been
successfully applied for saving energy on PDAs [SBS02]. Similar approaches are used
in low-power radio design [RAK+02] for wireless sensor nodes; the third revision of the
BTnode sensor node platform is also equipped with two communication technologies to
decrease the energy consumption of communications [Btn04].

Sensors

Sensors are the basic foundation for any context-adaptive behavior in smart environ-
ments. In order to provide context-aware services, smart everyday objects must be able
to perceive their environment and to share their observations with other objects. Sensors
therefore need to be so small that they can be embedded into everyday objects, they must
be so cheap that they can be used in large quantities, and they must be energy-efficient.
Fortunately, recent advances in sensing technologies and the overall trend described by
Moore’s law make it seem likely that all these demands can be met in the not so distant
future.

The rapid development of sensing technologies can best be illustrated considering
the research field of wireless sensor networks, where small-scale wireless sensor nodes
are used in application areas such as ecosystem monitoring and contaminant transport.
The main challenge in these applications is to deploy autonomous wireless sensor nodes
to enable highly accurate, in-situ monitoring of environmental parameters. The use of
small sensor nodes in the above mentioned application domains has several advantages
regarding price and usability. Considering the monitoring of vibrations in buildings as an
example, Pscovitz [Pes04] and Rabaey [Rab03] report that traditional sensor nodes used
in this application domain cost about USD 8000, were relatively large, and connected
by wires. As a result, such sensor nodes were only used sporadically, which reduced the
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accuracy of measurements. Today, experiments are under way using sensor nodes that
are around 100 times cheaper (about USD 80), communicate wirelessly, and can therefore
be utilized in larger quantities to produce more accurate results. Although current prices
of around USD 80 are still too expensive, if prices continue to fall at the present rate
it could become feasible to integrate such sensor nodes into everyday things in a few
years time. In summary, there is a trend towards smaller and cheaper sensing equipment
and wirelessly communicating sensor nodes that makes it at least technically feasible to
embed such technology into everyday things.

Advances in sensing technologies have also made sensors more energy efficient. There
are, for example, temperature sensors that can harvest the entire energy needed for their
operation from the surrounding environment. On the other hand, relatively complex
sensors such as cameras and fingerprint sensors have been made so small that they can
be embedded into mobile phones and PDAs. Smart everyday objects can then benefit
from such sensors by cooperating with the devices carrying them (cf. Chap. 4).

Energy Supply for Smart Objects

A major concern in developing ubiquitous networks of wirelessly communicating smart
everyday objects is energy consumption. This is because the energy consumption of
processors, communication modules, and sensors – despite the previously mentioned
technological advances in data processing, communication, and sensing technologies –
has unfortunately remained relatively high. However, smart everyday objects must be
supplied with energy from an energy source that lasts all their life, because it is not rea-
sonable to expect users to continuously change the batteries of all the computing devices
embedded into smart environments. Basically, there are four methods to approach the
energy problem: (1) higher energy capacity of conventional batteries, (2) alternatives
to conventional batteries such as fuel cells or micro heat engines, (3) energy scavenging
and harvesting, and (4) external power supply through electromagnetic fields emitted by
special reader devices.

The energy capacity of conventional batteries is unfortunately not increasing at the
same rate as processing power and bandwidth. It is therefore not experiencing the kind
of development predicted by Moore’s law. According to [ECPS02], the energy capacity
of AA nickel alkaline batteries increased from 0.4 Ah to a mere 1.2 Ah in 20 years. As
a result, recent research has concentrated on more enduring alternative energy supplies
such as small fuel cells or micro heat engines [MZA+00].

However, these technologies still require manual recharging, which contradicts Per-
vasive Computing’s vision of invisible and unobtrusive computation embedded into our
environments. A possible solution to the problem of manual recharging is to harvest en-
ergy from the surrounding environment or to scavenge ambient power resources [ECPS02,
RWR03]. This would theoretically enable the lifetime of a smart object to become in-
finite. Potential sources of ambient power are daylight, vibrations, acoustic noise, and
temperature gradients. There are also technologies that can scavenge power from airflows
or body movements [KKPG98, MM71, Sta03].

Another approach to solving the energy problem is that of passive tagging technolo-
gies, such as passive RFID labels or visual codes, which can be used to augment everyday
objects computationally. In this solution, passive tags usually provide a simple identi-
fication of the object they are attached to, which is associated with a service in the
surrounding computing infrastructure. Passive RFID tags are externally powered, i.e.,
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they receive the energy needed for their operation from an electromagnetic field issued
by a special reader device. In contrast, visual codes such as standard barcodes, which
are present on virtually every product in a supermarket, do not carry out any computa-
tion on their own, but provide identification through their visual structure. A barcode
scanner or a camera is needed to transform the visual layout of the tag into identifying
information. Barcode scanners and RFID reader devices are often stationary and can
be powered by the standard power supply system. Smart objects with a passive tagging
system do not need a local power supply.

2.1.2 Economic Developments

Emerging commercial applications are a major driver for Pervasive Computing. Today,
these applications primarily deal with passive RFID labels for remote identification. The
former Auto-ID center [Aut04], a consortium including both leading research institutions
and companies, actively promoted the usage of RFID labels for tagging items such as
the products in a supermarket. Its broader goal was to design “an open standard archi-
tecture for creating a seamless global network of physical objects” and an “Internet of
things” [Aut04]. Although the Auto-ID center is now closed, it has been superseded by
the Auto-ID labs [Aut04], a research oriented network of six universities at the time of
writing, and EPCglobal [EPC04], which works towards globally accepted standards and
the commercial adoption of the work initiated by the Auto-ID center.

Potential application domains for RFID technology are manifold. They range from
healthcare [Bro02], control systems [McF02] and manufacturing [CGS+03] to the au-
tomotive industry [SF03b]. Regarding healthcare, RFID systems can improve patient
compliance by monitoring the medicine a patient is taking, they can be used for tracking
medical instruments in a hospital, or for the validation of drugs [McF02]. The best-
researched application field for ubiquitous tagging, however, is supply chain management
[ZWA+02]. This is because RFID labels can provide accurate and timely information
about a tagged product. For example, RFID tags make it possible for a company to find
out precisely where their products are at any given point in time: they can provide infor-
mation about inventory levels, the order status of a product, or delivery times. They can
even help retailers to detect when a product is being stolen. All this enables companies
to adapt dynamically and respond in a timely way to unpredictable events affecting their
supply chain. The potential cost reduction of such an approach is immense.

The above scenarios mainly focus on passive RFID labels because they are externally
powered and relatively cheap (the current goal is to produce RFID tags at a price of 5
cents per piece). However, although the tags themselves are cheap, the external reader
devices necessary to read out the tags are costly. It is also difficult to tag items that are
made of metal or contain fluids, such as coke cans and water bottles. In such cases, active
RFID tags, which have an autonomous power supply, can be used used to identify items.
Furthermore, pallets and boxes, which contain larger quantities of objects, are often aug-
mented with tags instead of individual items. Active tags can also be equipped with
sensors to monitor the state of products continuously during transport [KH01, Par04].
Other potential application areas of active sensor tags, beside remote identification, in-
clude location-aware services, the networking of smart objects over the Internet, and new
kinds of interaction patterns with smart things that make it easier for people to handle
their personal belongings [VMKA03].
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2.1.3 Privacy

Although Pervasive Computing technologies are extremely versatile, enabling a wide
range of new applications, they are also a source of major concerns regarding personal
privacy. Besides energy consumption, threats to privacy are probably the main impedi-
ment to realizing the vision of Pervasive Computing. The privacy problem stems from an
intrinsic property of Pervasive Computing called invisible or implicit human-computer
interaction. In this respect, Weiser and Brown [WB96] have also coined the term calm
technology, meaning that computation disappears into the background, anticipates user
needs, and interacts with people in a non-intrusive way. Some researchers also speak of
invisible computing [EHAB99].

As mentioned above, the capacity to adapt automatically is a desirable property of
Pervasive Computing environments. This is because as computation becomes pervasive,
explicit interactions, as with today’s PCs, become impractical. Imagine hundreds or
thousands of computers embedded into our daily surroundings that would try to “share”
one user and would continuously require explicit actions from nearby people to tell them
what to do. Imagine the hundreds or thousands of different actions that would be neces-
sary to interact with these computers explicitly. Calm technology, in contrast, tries to put
computers in the background where they only disturb users when the current situation
requires it.

Calm computing is a potential threat to privacy because computers must be aware of a
user’s situation in order to react automatically according to this situation. In other words,
computers need to know something about us and our environment in order to adapt
automatically to our current needs; but often this is something that people feel only they
should know. The fact that computers can store such information for unpredictable time
periods and make it accessible via global networks further aggravates privacy concerns.

A good example of the privacy problems caused by Pervasive Computing is context-
aware profile selection for mobile phones. To allow this profile selection, mobile phones are
equipped with sensors that can derive the current situation of a person in cooperation with
other nearby computing devices. As a result, the mobile phone can then automatically
choose an appropriate phone profile based on this context information. For example, when
the phone derives the context meeting, no calls are forwarded to the mobile terminal, or
at least no acoustical ring tone is issued. Another approach is to determine the current
context of a user and to share this information with prospective callers by means of
a backend infrastructure server [STM00]. Callers can then access information about
the situation of the person they want to contact, and decide themselves whether they
really want to make the call or not. Here, the problem with privacy stems from the
fact that the user can lose control over personal data: as the mobile phone cooperates
with other computing devices to derive context information and possibly exchanges this
information with a background infrastructure, it becomes more difficult to ensure that
no unauthorized party can access personal data. Furthermore, by allowing the mobile
phone to act automatically on behalf of a user, he or she might not even be aware of
what the phone is actually doing and which state it is in. In general, giving autonomy
to computers also means that they could do things we do not want and which we cannot
control.

Collaboration among autonomous smart objects, which is the focus of this disser-
tation, can considerably aggravate the problem of privacy. Considering the previous
example of context-aware profile selection, if the mobile phone cooperates with its en-
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vironment to determine the user’s current context, this might imply that not only the
mobile phone itself knows the current situation of its owner, but also other smart objects
in the room. Hence, nearby smart objects could analyze that data and share the results
with third parties and thereby distribute personal information about a user. In collabo-
rative environments, therefore, all participating objects must accept, conform to, and act
in accordance with a user’s privacy settings. Ensuring privacy therefore becomes more
complex, especially in dynamic environments where devices know only little about each
other and do not have access to background infrastructure services to obtain information
about other entities from a reliable source.

Recent suggestions to approaching the privacy problem could not be more diverse.
Some people think that increased privacy concerns can be ignored. A famous example of
this point of view is a statement by Scott McNealy, a co-founder of Sun Microsystems,
who told reporters: “We have zero privacy anyway – get over it.” In an opinion article for
the Washington Post [McN03], McNealy also warns against exaggerated privacy concerns:
“Privacy is not always desirable – and absolute privacy is a disaster waiting to happen.”
Other researchers take the problem more seriously [Lan01]. A possible approach to
dealing with privacy issues is by means of anonymization [KS03] or personal profiles that
specify what kind of data people are willing to make publicly available in certain situations
[Lan02]. The latter approach has its roots in the Platform for Privacy Preferences Project
(P3P) of the World Wide Web Consortium, where it was initially designed for applications
such as online shopping. Whether the relatively complex XML-based protocols used in
the Internet are suitable for resource-restricted smart everyday objects remains open to
question. Personal profiles can also cause increased annoyances if people must manually
allow smart objects to collect data. With many smart objects in the vicinity, this can
contradict the idea of calm technology. However, the use of personal profiles restricting
the exchange of personalized data with smart environments is a promising approach to
tackling privacy issues. At the same time, efforts must be made to ensure that the
amount of user input necessary to negotiate privacy settings is kept to a minimum; the
settings specified in a user’s personal profile should be sufficient to carry out negotiations
automatically in most cases [Lan02].

Another approach to alleviating privacy concerns in connection with smart objects is
to deploy sensors that make it difficult to derive a person’s identity. For example, there
are digital cameras that blur the faces of people in recordings. If a smart object shares
only such unpersonalized data with its environment, it reduces the probability of privacy
intrusions.

2.2 Smart Everyday Objects

As pointed out by Weiser and Brown [WB96], Pervasive Computing can be “fundamen-
tally characterized by the connection of things in the real world with computation.”
Smart everyday objects epitomize this vision of Pervasive Computing in that they com-
bine ordinary everyday things and information technology. They are therefore a central
concept in the research field of Pervasive Computing. In the following, we try to con-
tribute to a deeper understanding of the term smart everyday object, review means to link
computation with everyday things, and give an overview of current tagging technologies.
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2.2.1 What is a Smart Everyday Object?

A smart everyday object is an arbitrary item from our everyday environment – such as a
chair, a hammer, a car, or an umbrella – augmented with information technology. Such
augmentation must meet these requirements:

• Unobtrusiveness. The computation embedded into an object must not distract
people from carrying out the task originally associated with it. The information
technology should be either embedded in the design of an object or completely
invisible – and not just a bulky add-on getting in the user’s way.

• Integrity. People using a smart everyday object should perceive it as a single con-
sistent unit. There should be a clear connection between the original purpose of the
everyday object and the additional services provided by the embedded technology.

Information technology can either be directly integrated into the object itself, be
available in a supporting background infrastructure, or both. If computation is provided
by the environment rather than by the object itself, there must be a mechanism to link
the object to a corresponding background infrastructure service that processes data and
communicates with peers on behalf of the object.

The terms smart object and smart everyday object are used interchangeably through-
out this thesis. However, considering definitions from the literature, there are significant
differences between these two terms. Kintzig et al. [KPPF03], for example, defines a
smart object as a “physical device equipped with a processor, memory, at least one net-
work connection, and various sensors/actuators, some of which may correspond to human
interfaces.” According to their definition, electronic tags and wireless-enabled PDAs are
all smart objects in their own right. This constitutes a major difference to our under-
standing of smart everyday objects: A smart everyday object always consists of both an
everyday thing and information technology that augments it. PDAs and mobile phones
themselves are therefore not smart everyday objects.

In the work presented in this thesis we concentrate on everyday things that are aug-
mented by active sensor-based computing platforms. Such smart objects are able to
perceive their environment through sensors, can carry out local computations, and can
collaborate with other objects in their vicinity by means of wireless communication tech-
nologies. Furthermore, they possess an autonomous power supply and hence do not rely
on external reader devices to supply energy.

Besides sensor-based computing platforms there are several alternative ways to link
things with computation. Achieving this linkage usually requires some sort of electronic
tag that is attached to ordinary objects. In the next section we present an overview of
such tagging technologies, review how related projects augment everyday objects, and
compare their work to the tagging approach underlying our work.

2.2.2 Augmenting Everyday Objects

Considering recent research, there are three main approaches to adding computation to
everyday objects:

• Referencing. The information technology integrated into an everyday object pro-
vides a unique identification to external reader devices, which is used to address a
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representative in the computing infrastructure. This representative processes data
and implements interactions with users on behalf of the augmented object. Apart
from the provision of a unique identification, the computing devices integrated into
everyday things do not contribute to the smart behavior of an augmented item.

• Physical integration. Sensor-based computing platforms are directly integrated
into everyday objects. They provide an object with the ability to sense its envi-
ronment, to autonomously communicate with peers, and to process data locally.
Smart objects do not rely on background infrastructure services, but can instead
realize services on their own and in cooperation with other smart objects. They
do not usually depend on external reader devices because they are often equipped
with an autonomous power supply.

• Hybrid approaches. The technology embedded into an object can sense its en-
vironment and process inputs autonomously, but also collaborates with backend
services when infrastructure access is available. A unique identification is used to
address a background infrastructure service that helps an object to realize appli-
cations. Hence, both smart object and background service substantially contribute
to the smart behavior of an augmented artifact.

Referencing

In the referencing approach, the only functionality of an augmented object is to provide a
unique identification to a computing infrastructure. The identification of an augmented
item is usually retrieved by external reader or scanner devices, and used to address a
service in the backend infrastructure – the smart object’s data shadow [Bei02] or virtual
counterpart [RMDS02]. This infrastructure service carries out computations on behalf of
augmented artifacts and communicates with virtual counterparts of other smart objects.
Hence, the referencing approach merely links everyday objects with a representation in
the virtual world; a smart object does not itself possess the computing resources necessary
to interact directly with other objects or users.

The core advantage of the referencing approach is that the technology embedded
into or attached to an object can be kept relatively simple because it only needs to
provide an identification. The tags used for this purpose are therefore relatively cheap
and small, which facilitates unobtrusive augmentation of everyday things. Furthermore,
tags providing only identification often require no batteries, but are powered by external
reader devices. The energy supply does not constitute a severe problem in these cases.

On the other hand, the referencing approach often depends on external reader devices
that process IDs and establish the link between objects and their virtual representations.
If there is no adequate infrastructure of such reader devices, the referencing approach
becomes ineffective. Furthermore, as smart objects only emit an identification code, it
is not so easy to infer other more complex information about an object, which in turn
reduces the amount of potential applications. In fact, further information about an object
can only be provided by external reader devices. This works well for location information
because the location of a reader device approximates the location of a scanned tag. But
deriving more sophisticated contextual information about an object, such as its moving
pattern, how it is used, or its current status often requires sensors on the object itself.
Another problem with respect to the referencing approach is obsolete and inaccurate
information about tagged items. In the previous example of location estimation, an
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object’s position can be accurately determined when there is a reader device nearby. But
what happens if the object moves to a place where no reader device is in range? Also,
as the range of reader devices increases, it becomes more difficult to assure that physical
parameters measured at the reader are also valid for a scanned object. With respect
to collaboration, in the referencing approach smart objects do not directly cooperate
with each other, but their virtual representations. This results in an additional layer of
indirection, making it necessary for the reader devices to relay all the information related
to an object to its virtual counterpart. A problem here is that counterparts can operate
on old and obsolete data if the objects are not frequently scanned.

In summary, the applicability of the reference approach depends to a large extent on
a dense infrastructure of tag readers. As readers are relatively expensive (the price of
a mid-range RFID tag reader is in the range of several hundred US dollars), it remains
uncertain whether such an infrastructure is feasible in everyday environments. The price
of reader devices, however, largely depends on the concrete tagging technology used to
identify objects. Using optical markers, for example, the price of reader devices can be
much lower than in the case of RFID (cf. Sect. 2.2.3). As smart objects only provide
an identification code in the referencing approach, more detailed information about an
augmented item, such as its location or temperature, is inferred from the location of, or
the temperature at, a tag reader. This introduces an additional level of indirection and
can lead to inaccuracies. Furthermore, there is no direct collaboration between smart
objects, but only between their virtual representations.

Physical integration

The approach of physical integration attempts to embed sensors, communication, and
processing power directly into everyday objects. This allows smart objects to become
more independent of backend infrastructure services and external reader devices. Fur-
thermore, the augmented artifacts can directly collaborate with other objects in their
vicinity, exchange information, and autonomously process data. Because sensors are
directly integrated into everyday objects, they can also better monitor the state of an
object, and can derive more accurate information about its environment. Derived in-
formation about smart objects reflects their current status because sensory data can be
accessed continuously and not only in the presence of external reader devices.

Physical integration leaves the vast majority of tasks involved in implementing an
application to the smart object itself, instead of transferring them to a background in-
frastructure representative. Smart objects can therefore also provide their services even
when no infrastructure access is currently available. However, a disadvantage is that
the sensor-based computing platforms integrated into everyday objects typically rely on
some form of active power supply – e.g., a battery or a mechanism to harvest or scavenge
energy from the environment. Furthermore, the tags attached to everyday objects or the
type of technology integrated into them becomes more complex, which makes the tags
bigger, more expensive, and more difficult to hide them from users.

Hybrid approaches

Smart objects that only provide identification to external reader devices leave all data pro-
cessing and issues related to interaction with users to the backend infrastructure, whereas
in the the physical integration approach a smart object processes data autonomously and
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in cooperation with other augmented items. However, even if a sensor-based computing
platform is directly integrated into an everyday thing, it can benefit substantially from
background services when infrastructure access is possible. Smart objects can therefore
use nearby access points to interact with more powerful infrastructure services that help
them to process and store data. This makes it possible for an augmented item to col-
laborate with other smart objects that are not in its physical communication range but
can be reached through the backend. Also, parts of applications realized by augmented
items can be outsourced to services that represent smart objects in the infrastructure. It
thus becomes possible for these backend services to take over responsibility for realizing
applications for smart objects and for handling user interactions. This is, however, only
necessary if a user cannot access an object directly; if direct access is possible people
interact with smart objects and not their virtual representations (see Sect. 4.4.1).

2.2.3 Tagging Technology

In this section, we will give an overview of technologies available for augmenting every-
day objects. We call this kind of technology, that aims at enriching everyday things with
computation, “tagging technology,” and refer to the corresponding computing devices as
“tags.” The use of the term tag stems from the fact that the augmentation of every-
day objects today usually takes place in a post-hoc fashion: i.e., information processing
capabilities are not incorporated into an everyday object during its design process, but
instead attached to it later on. This has purely practical reasons. If smart everyday
objects are to be used on a larger scale, it would of course be desirable to embed the
technology into everyday things during the production process.

Tagging 
technology

Passive tags Active tags

Optically
sensed tags Passive RF tags Infrared tags Active RF tags Passive-optical 

tags

2D bar codes Passive 
sensor tags

Data glyphs1D bar codes
Passive RFID

tags
Active 

sensor tags
Active RFID

tags

Contact tags

Figure 2.1: Overview of tagging technologies.

Fig. 2.1 depicts a classification of tagging technologies. At the highest level, we dis-
tinguish between active and passive tags. Active tags have an integrated power supply,
which allows them to carry out computations autonomously without depending on ex-
ternal devices to supply the tag with energy. Active tags therefore have some kind of
battery, can harvest energy, or scavenge ambient energy resources. As opposed to passive
tags, they do not depend on external reader or scanner devices to access their data, but
can broadcast data into their environment and collaborate with other augmented arti-
facts in the vicinity whenever they deem it appropriate. Furthermore, passive tags are
usually much simpler than active tags. In the case of bar codes, for example, passive tags
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do not even have a processor or other processing capabilities and therefore do not need
energy for their own operation.

In the following, we present different passive and active tagging systems in more detail.

Passive Tags

There are three main groups of passive tagging systems: visible graphical tags (also called
optically sensed tags [BK01]), passive RFID tags, and contact tags. The main application
area of passive tags is to link an everyday object with its virtual representation in a
background infrastructure – called the virtual counterpart, data shadow, virtual entity,
or digital counterpart of a smart object. The identification stored on a tag is used to
establish a connection to this representation. The purpose of the virtual representation is
to provide additional functionality tailored towards the specific properties of an everyday
object. A simple example is that the virtual representation of a book could open a
Web page with customer comments about it when a passive tag attached to the book
is scanned. Another application scenario is to attach digital content to physical objects.
Here, the digital content is associated with an item and can be retrieved by a user in
other physical environments. A user could, for example, attach information about other
works by the same author to the tagged book from the previous example. Independently
of the user’s local environment (e.g., whether she is in a library or at home) she can
then use the tagged book to access the associated information by scanning its tag. The
corresponding information could then, for example, be displayed in a Web browser on her
mobile phone or PDA. By using passive tags that simply store an identification code, it
also becomes possible to translate interaction patterns from the virtual world – such as the
predominant copy and paste – to physical environments. Barton and Kindberg [BK01]
call this approach copy and paste in the real world. Here, digital content is associated
with tagged items, which are carried to other places where the associated information can
be “copied” to other objects. As passive tags can only store a simple identification, all
data associated with an object is actually handled by its virtual representation. However,
this is transparent for a user; from a user perspective it seems as if the tagged object
itself were providing services on its own.

Visible Graphical Tags. Visible graphical tags can be classified into 1D bar codes,
2D bar codes, and glyphs, which are described in more detail in the following subsections.

1D Bar Codes. Optically sensed tags can be broadly classified into bar codes and
glyphs (cf. Fig. 2.1). The simplest form of bar codes, the so called 1D bar codes, can
be found on almost every product in today’s supermarkets, where they are used for the
mapping between products and prices at the checkout counter. Such bar codes contain
a standardized Universal Product Code (UPC) identification number. Standard 1D bar
codes usually require special scanner or reader devices that transform the bar code into
a sequence of decoded bits. According to [Bar04] there are around 300 different types of
bar codes, which differ mainly in the way spaces and bars are arranged on the tag. The
main advantages of bar codes are that they can be easily produced by printing them on
ordinary printers, and that they do not require a power supply on the tag.

1D bar codes have been extensively used in Pervasive Computing related research
projects to link physical objects with virtual entities. WebStickers [LH99, LRH00], for
example, are small bar code tags that can be attached to arbitrary objects, and thereby
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serve as physical hyperlinks to documents on the World Wide Web (WWW). This allows
Web pages to be associated with physical objects; when the physical object is scanned,
the corresponding page is displayed in a web browser on a nearby computer screen.

Barrett and Maglio [BM98] propose using bar codes or other forms of tags to ascer-
tain the identity of a physical object in order to manage information associated with it.
In this solution, interactions in the real world affecting a smart object are mapped to
corresponding instructions for its virtual representation. For example, by scanning the
bar code on a diary, a graphical interface on a nearby computer screen could allow a
user to add files or calendar entries to it. When in another physical environment – in
the office, in a library, or at home – the object can be scanned again and the associated
information is again made available on a nearby computer. In this way, real-world ac-
tions with the physical object (taking it from the office to another place) are mapped
to corresponding actions affecting the attached information (copy data from the office to
my home computer).

The Palette system [NIPA99] supports people in giving presentations by means of bar
codes that are printed on index cards and refer to slides in a presentation. In order to
switch to a specific slide, the corresponding index card, which contains the barcode as
well as a thumbnail of the slide and additional comments, must be swept over a laser
scanner. The broader goal of the Palette system is to simplify the process of handling
technical equipment by using bar code augmented paper.

In the ETHOC system [RB03], bar codes are used as physical hyperlinks in a smart
campus environment. Handouts for students, lecture announcements, posters, and even
lecture halls are augmented with bar codes so that students and lecturers can access
associated online content with their handheld devices or laptop computers. For example,
students can scan the bar code printed on a sheet of paper containing the homework for
the next seminar in order to get background information and help – such as access to
research papers related to the given tasks. The goal is to provide students with easier
access to information related to their university studies.

2D Bar Codes. 2D bar codes, which are also often called two-dimensional visual
codes, can store data with a higher density than 1D bar codes. In other words, a 2D
bar code usually contains more information than a 1D bar code of the same size. This is
because 2D bar codes store information horizontally along a tag as well as vertically; as
opposed to 1D bar codes, which can be cut off vertically without losing information.
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Figure 2.2: Examples of visual tagging systems: (1) a 1D bar code and (2) a 2D bar
code.

Two-dimensional visual codes such as the CyberCode [RA00] were designed to be
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recognized by low-cost CCD or CMOS cameras. This opens up new application domains
in the field of Pervasive Computing because low-cost cameras can be deployed in large
quantities as sensors throughout the environment in order to provide information about
nearby tagged objects. The CyberCode system can also determine the position of an
augmented item. TRIP [dIMH02] is another two-dimensional visual code system that
is used for locating people in a smart environment. Rohs and Gfeller [RG04] focus on
applications of 2D bar codes in connection with low-cost cameras integrated into mobile
phones.

Glyphs. Like 1D and 2D bar codes, glyphs belong in the category of visual codes.
However, the core characteristic of glyphs is that they are integrated into images in such
a way that from the perspective of a user the embedded code becomes indistinguishable
from the image itself. According to [Hec01], glyphs have approximately the same data
density as 2D bar codes. However, they do not need blank space reserved on a picture but
can be directly integrated into it. As people do not perceive images containing glyphs
as tags, interactions with objects augmented by glyphs are usually implicit. Whereas
users must often explicitly scan codes in other visual tagging systems, in the case of
glyphs an image processing system in the background would read out glyphs and initiate
interactions with users. The users do not necessarily need to know where the corre-
sponding information comes from. Glyphs are an opportunity to tag objects without the
sometimes disturbing and visually distracting 1D and 2D bar codes, and can hence make
augmentation more unobtrusive.

Table 2.1: Properties of passive tagging systems.

Visual tags Passive RF tags Contact tags

Battery no no no
Manufacturing simple medium–hard hard

(printable)
Interaction mainly explicit mainly implicit explicit
Unobtrusiveness medium high low

(high for glyphs)
Line-of-sight required not required required
Sensors no possible possible
Data density low low low–high
Applications tagging of consumer

products, identifi-
cation, positioning
[dIMH02], physical
hyperlinks [Kin02],
price comparison
[BG99], product
recommendation
[Kon02]

tagging of consumer
products, object
identification, phys-
ical hyperlinks
[Kin02], supply
chain management
[ZWA+02], manu-
facturing [CGS+03]

product monitor-
ing, authorisation,
authentification



22 CHAPTER 2. BACKGROUND AND RELATED WORK

Passive RF tags. Passive RF (Radio Frequency) tags consist in their basic form of
a small silicon chip and an antenna. Remote reader devices supply the tag with energy
through an electromagnetic field and access the tag’s data. Passive RF tags do not
therefore require an on-board power supply, but are powered by external reader or scanner
devices. We distinguish between passive RFID and passive sensor tags (see Fig. 2.1). In
the case of RFID tags, the electromagnetic field issued by the reader is used to power the
silicon chip on the tag and to access an internally stored identification code. The same
mechanism can also be used to power a sensor integrated into the tag, which is read out
and the result transmitted to the reader. In the latter case, we speak of passive sensor
tags instead of passive RFID tags.

The size of RFID labels is largely influenced by the size of the antenna integrated
into the tag. The antenna determines the maximum reading distance, i.e., the maximum
distance a reader can be away from a tag and still access the data stored on it. The
µ-chip [Hit04], for example, has the size of a dust grain without an extra antenna on the
tag, being approximately 0.4 mm high and 0.4 mm wide. However, with antennas RFID
tags are usually the size of bar codes or playing cards.

Besides 1D bar codes, RFID tags are probably the most widespread tagging technol-
ogy. Compared to visual graphical tags, the advantages of RFID labels are (1) that they
do not require line-of-sight to be read out and (2) that they are rewritable. The last
property, rewriteability, is not supported by all types of RFID tags; some of them are
read-only and are programmed only once during the production process. Disadvantages
of RFID labels are that they are not so easy to produce as bar codes and are therefore
more expensive. However, RFID labels open up entirely new application domains for
tagging technologies. In Sect. 2.1.2 we have already described application areas of RFID
tags in the fields of manufacturing, production, and supply chain management. We have
also pointed out some of the security issues and privacy concerns that emerge from a
widespread use of RFID labels.

With respect to the augmentation of everyday objects, Want et al. [WFGH99] first
reported on the advantages of RFID tags for bridging physical and virtual worlds. Among
these advantages are their unobtrusiveness, robustness, and aesthetics. The fact that
RFID labels do not have the line-of-sight restrictions of visual tagging systems largely
contributes to their unobtrusiveness. As a result, the interaction between an augmented
object and its surrounding environment can be implicit and does not require explicit user
attention. An example of an application with smart objects that have been augmented
with passive RFID tags is the RFID chef [LMRV00]. The RFID chef suggests recipes
given a number of ingredients currently available. For example, when a user returns from
shopping she can put the shopping bag with all the ingredients just bought on the kitchen
table. The kitchen table, which has an RFID reader integrated, scans the items in the
bag and makes suggestions for the next meal on a nearby computer screen, based on the
ingredients currently available.

Contact Tags. Contact tags such as the iButtons [iBu04] do also not require an au-
tonomous power supply, but are supplied with energy by means of direct electrical contact
with a reader device. This usually implies that a contact tag must be explicitly put into a
special casing to ensure contact between tag and reader. As opposed to previously men-
tioned tagging systems, which aim at making the interactions with augmented entities
as implicit as possible, the explicit actions necessary to operate contact tags are required
in security-related applications. Contact tags often have an embedded and unchangeable
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unique address, which can be used for identification purposes. Some tags are equipped
with small discs that can be used to store significantly more data than barcodes or RFID
labels; some contact tags even have integrated sensors. The Context Toolkit [DSA01]
uses contact tags for sensing the presence and identity of people. Based on such sensory
data, it derives information about the situation of users, e.g., the start of a meeting.

Active Tags

The defining characteristic of active tagging systems is that they do not depend on ex-
ternal reader devices to supply tags with energy. Instead, they are equipped with an
autonomous power supply, meaning that they have a much higher degree of autonomy
than passive tags, and are able to interact with their environment proactively. In other
words: whereas passive tags are only operational when external readers are nearby to
query the tags, active tags can interact with their environment whenever they deem it
appropriate. Active tags draw their energy from an on-board battery, harvest ambient
energy sources, or scavenge it from their surrounding environment. They usually consist
of a microcontroller, communication modules, a power supply, and – optionally – a set
of sensors. This makes them similar to sensor nodes. In fact, most of the sensor node
platforms developed within the research domain of wireless sensor networks can also be
used as computing platforms to augment everyday objects. The term active tag suggests
a specific application domain of such sensor nodes, namely the augmentation of every-
day items with computation. In contrast, the main drivers for sensor network research
are military applications (e.g., the tracking of troops) and monitoring applications like
habitat monitoring, monitoring of the structural integrity of buildings, and contaminant
transport monitoring.

Although active tags can be classified by a wide range of different criteria, the wireless
communication technology incorporated into tags is an outstanding characteristic that
has far-reaching implications for both the tag design and prospective application areas.
In the following, we therefore distinguish between infrared, active RF, and passive-optical
tags depending on whether infrared, radio frequency, or passive optical communication
is used by the tag to interact with its environment (see Fig. 2.1).

Infrared Tags. A typical application domain for infrared tags is the use of electronic
badges for tracking people in office buildings or hospitals. In this context, examples
of infrared tags are the Active Badge location system [WHFG92] and the SmartBadge
[BMS97]. Although the term badge implies that such systems are mainly used for tracking
people, in theory, the same technology can be used to track objects as well. The advantage
of using infrared communication for determining the indoor location of people or objects
is that infrared signals do not penetrate walls. Hence, when an infrared receiver is
mounted onto the ceiling of a room and receives a signal from an infrared badge, it can
be concluded with high probability that the person wearing the badge – or an object
that has been augmented with this badge – is in the same room as the infrared receiver.
Other advantages of infrared transmitters, which explain their frequent use in the last
decade, are that they are relatively small, cheap, and easy to obtain.

To determine the indoor location of people, an Active Badge transmits a short iden-
tification (a so-called beacon) at regular time intervals to a nearby receiver station in
order to advertise a person’s presence. The SmartBadge has a similar behavior, but is
also equipped with sensors for measuring acceleration, temperature, humidity, and light
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levels. These sensors are used to monitor the environment of a person wearing a badge
and to adapt services according to that person’s current situation. Although the main
application of badges is to “tag” people, Maguire [MSB98] states that a badge is a “tag
for each object whose location or environment is important.” However, because of the
line-of-sight restriction of infrared tags, unobtrusive augmentation of everyday objects
with infrared tags might not always be possible; instead, if manual alignment of objects
is necessary to ensure communication with a base station, it is more appropriate to use
active RF than infrared tags.

A prominent example of an everyday object that has been augmented with an active
sensor-based infrared tag is the MediaCup [BGS01]. The MediaCup is a computer-
augmented everyday artifact consisting of an ordinary coffee cup with an integrated
sensor-based infrared tag. Using the built-in sensors, the MediaCup knows when it is
being used (by measuring its current activity status by means of acceleration sensors),
whether it is hot or cold (through temperature sensors), and where it is currently located
(based on infrared localization). Information about the status of a MediaCup is shared
with its surrounding computing environment, which can use this information to provide
situation-aware services. As an example, Gellersen et al. [GBK99] reports on “colleague
awareness applications” that use MediaCups and other sensors in a user’s environment
to track everyday activities. In these applications, cooperation among MediaCups makes
it possible to derive more accurate and more detailed information about the current
situation of a user. For example, the presence of many hot cups in a room could imply
that a meeting is currently taking place in this room. By sharing such information with
the surrounding environment, nearby mobile phones could automatically select a phone
profile most appropriate for the current situation. As a result, a cell phone would just
vibrate to announce an incoming call instead of issuing a loud ring tone, which would
disturb the meeting.

Active RF tags. Although the line-of-sight restriction of infrared-based communica-
tion has advantages in some localization applications, it is generally difficult to ensure
that infrared tags embedded into everyday objects can communicate with each other.
Often, this requires manual alignment of tags and therefore full user attention, which is
not feasible when there are large numbers of tags in a room that are supposed to com-
municate with each other autonomously. Considering the presented application domains
of infrared tags, reliability of communication seems to be of only limited importance.
Instead, most of the mentioned applications can tolerate lost packets or periods when no
communication is possible. In case of the Active Badge system, for example, lost packets
are not critical because beacons are sent out periodically. Should a beacon not reach its
destination because of obstacles or other objects blocking sight, the next beacon is likely
to be transmitted successfully when the user or the tagged object moves. The same is
true for the MediaCup, where information about the status of a cup is also transmitted
periodically to a stationary access point.

Because of the above-mentioned restrictions of infrared-based tags, today’s sensor-
based computing platforms are primarily equipped with radio frequency (RF) communi-
cation modules. RF communication offers the advantage of more robust and reliable data
transmission, does not have the line-of-sight restriction, and therefore does not require
additional user attention. Consequently, RF tags can be more unobtrusively integrated
into everyday objects.

In the following, we give a short overview of computing systems that can be used
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as active RF tags. Early hardware platforms that integrated RF communication with
computing capabilities on a small board include the prototypes developed within the
Prototype Embedded Networking (PEN) and Piconet projects [BCE+97]. Girling et al.
[GWOS00] reports on a custom low-power protocol stack for these devices that ensures
energy-efficient communication. The Smart-Its hardware platforms [BG03, BZK+03] were
explicitly designed to be attached to everyday objects. Besides an autonomous power
supply, computing capabilities, and RF communication modules they also contain sensors
to perceive a smart object’s environment. In addition, a wide range of small RF-based
sensor nodes have been developed in the research field of wireless sensor networks. They
can be used not only in the typical application domains of wireless sensor networks
such as military surveillance and habitat monitoring, but also for augmenting everyday
objects with computation and sensing capabilities. To name just a few, examples of
sensor node platforms include the Berkeley Motes [Mot04], the sensor nodes developed
in the European EYES project [Eye04], the “MANTIS hardware nymph” [ABC+03], the
Medusa nodes [SS02] and the WINS sensor nodes [MAC+99]. Within the PicoRadio
project [Pic04] an RF transmit beacon was developed that completely relies on ambient
energy resources, namely solar energy and ambient vibrations [ROC+03]. It illustrates a
promising approach to the question of how smart objects could be supplied with energy
over long time periods without requiring users to change batteries. The Bat wireless tag
device [ACH+01] is part of a 3D ultrasonic localization system that uses radio links to
synchronize tags with a surrounding communication infrastructure and ultrasonic signals
for localization. Bats can be worn by persons or attached to everyday objects to obtain
their position.
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Figure 2.3: Examples of active RF tags: (1) a Smart-Its particle board and (2) a BTnode.

Considering the above-mentioned platforms, communication among tags is usually
based upon custom radio protocols that strive to reduce the energy consumption of nodes.
However, although custom communication protocols often do result in increased energy
savings, they can limit the ability of smart objects to cooperate with other computing de-
vices. This is because customized communication protocols are often supported only by a
small subset of devices. Hence, problems with interoperability can arise if environments
are populated by many different types of computing devices – as is often the case in Per-
vasive Computing settings. In order to ensure interoperability in smart environments, we
therefore focus on active tags that are built around a standardized radio technology. In
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this respect, the short-range communication technology Bluetooth has recently received
considerable attention in the building of resource-restricted device platforms designed
for smart environments and wireless sensor networks. Examples include the BTnodes
[BKM+04], the sensor node platform built at the University of Karlsruhe [BHHZ03], the
iBadge [PLS+02], the Intel Mote [Int04], and Bluetooth-enabled wireless microservers
[HSR02]. Regarding cooperation, the main advantage of Bluetooth is that it is supported
by a wide range of today’s computing devices, including mobile phones, personal digi-
tal assistants (PDAs), laptops, digital cameras, and stationary PCs. Bluetooth-enabled
smart objects can therefore be integrated into smart environments more easily, and it is
becoming easier for them to cooperate with other computing devices.

Passive-Optical Tags. Integrated hardware platforms that are built around infrared
or radio frequency communication modules are by far the most common active tagging
systems. However, future sensor node generations such as the one envisioned by the
Smart Dust project [KKP00, KKP99, Sma04a, WLLP01] could also be used to augment
everyday objects. As such sensor nodes are supposed to be a mere 1 mm3 in size, they
could be distributed in large quantities over everyday objects without influencing their
general appearance. Smart Dust nodes are envisioned to interact with base stations using
passive optical communication: the base-station transmitter sends an optical beam to the
Smart Dust node, which reflects a modulated beam back to the base station. The node
does not need an active transmitter, which saves energy.

Comparison. Tab. 2.2 lists properties of selected active tagging systems and shows
typical application domains. This information underlines the fact that some active tag-
ging systems closely resemble each other with respect to their choice of a microcontroller
unit and their communication subsystem.

Sensor Boards

In order to provide context-aware services, smart objects are usually equipped with local
sensors that allow them to perceive their environment and to derive information about
nearby users. A major design decision when augmenting everyday objects with sensor-
based tags is the location of these sensors. In early hardware prototypes, sensors were
usually integrated into the same board as the microprocessor and communication module.
Several of today’s sensor node platforms, however, aim for greater flexibility by deploying
external sensor boards. In these solutions the core board – sometimes also referred to as
communication board – contains a microprocessor, a communication module, a battery
carrier, and connectors for one or more sensor boards; the sensor boards contain either a
customized set of selected sensors required by a specific application, or a large number of
various sensor types in order to ease the prototyping of new services. The main advantage
of external sensor boards is that the same type of core board can be reused in different
applications by connecting different sensor boards to it.

Integrated and Non-Integrated Sensor Boards. Generally, there are two main
types of sensor boards: (1) integrated sensor boards with an extra microcontroller to
provide a unified sensor interface and (2) sensor boards that only contain sensors and
must therefore be accessed directly from the core board. The aim of integrated sensor
boards is to provide a unified sensor interface for core boards to address sensors. In order
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Table 2.2: Properties of selected active tagging systems.

Active
Tag

Size
(in mm)

Sensors Processor Communi-
cation

Applications

SmartBadge I
[MSB98]

85 × 55 yes,
on-board

PIC16C74,
5 MIPS

infrared,
4m range

University
education,
location
dependent
services

Smart-Its
(particle core
board)
[Sma04c]

33 × 17
(without
battery)

no,
external
sensor
boards

PIC18F6720,
20 MHz (25
MHz and up
to 10 MIPS
according to
data sheet)

custom
RF, soft-
ware
adaptable
trans-
mission
range

Tagging of
everyday
objects,
positioning,
context
computing

Berkeley motes
(MICA2DOT)
[Mot04]

25 (di-
ameter)
× 6

tempera-
ture sensor
on-board,
external
sensor
boards

ATmega
128L up to
8 MIPS at 8
MHz

custom
RF, range
up to
300 m
outdoors

Sensor
network ap-
plications,
environ-
mental
monitoring

Intel Mote
[Int04,
WKK03]

30 × 30
(without
battery)

no,
external
sensor
boards

ARM pro-
cessor inte-
grated into
Bluetooth
module, no
extra CPU

Bluetooth,
10m range

sensor
network ap-
plications,
environ-
mental
monitoring

iBadge
[CMY+02,
PLS+02]

70 × 55
× 18

yes,
on-board

ATmega
103L up to
4 MIPS at 4
MHz

Bluetooth,
10m range

Childhood
education,
position-
ing, speech
processing

BTnodes
(rev 2)
[BKM+04]

60 × 40
× 5
(without
battery)

no,
external
sensor
boards

ATmega
128L up to
8 MIPS at 8
MHz

Bluetooth,
10m range

Tagging of
everyday
objects,
prototyp-
ing sensor
networks,
university
education
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to achieve this goal, they are usually equipped with an additional microcontroller that
maps proprietary sensor protocols to a simpler sensor or perception API. In contrast,
non-integrated sensor boards merely provide a set of sensors that must be interfaced
directly by the microcontroller on the communication board.

To make the underlying design decisions of both approaches clearer, we consider
the sensor node platforms developed in the Smart-Its project [Sma04b] as an example.
Within the scope of this project, several communication and sensor boards were designed
and built. The most elaborate of the sensor boards, which was developed at the TecO
in Karlsruhe, contains a digital temperature sensor, a pressure sensor, a microphone,
an accelerometer, a light sensor and a loudspeaker serving as an actuator. From the
perspective of an application programmer, the problem is that most of these sensors im-
plement different proprietary protocols: the digital temperature sensor, for example, is
addressed through an I2C bus interface [I2C00], whereas the acceleration sensor is read
out by sampling one of its pins and transforming the corresponding samples into an ac-
celeration value according to a proprietary equation. In order to ease the communication
with sensor boards, a small extra microcontroller on the sensor board encapsulates all
these different sensor protocols and provides a unified interface to access sensors via the
I2C bus from the core board. This approach offers great flexibility for deploying sen-
sor boards together with different core boards. In fact, the above-mentioned Smart-Its
sensor board has been used together with different platforms. Our experiences with the
BTnode embedded device platform [BKM+04] and several sensor boards has shown that
integrated sensor boards make it much easier to access sensors. Furthermore, the pro-
gramming statements for sampling ports and for accessing analog to digital converters
differ considerably between different microcontroller families, even if the same language –
such as C – is used. As a result, when a non-integrated sensor board is used together with
different core boards, considerable parts of the sensor protocols must be re-implemented.

2

1 3

Figure 2.4: Examples of sensor boards: non-integrated sensor board (1) and integrated
sensor boards with separate microcontroller (2 and 3); all sensor boards have been de-
veloped by the TecO research group in Karlsruhe.
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Asynchronous Sensor Access. Besides greater flexibility and simpler deployment,
integrated core boards offer another – maybe even more important – advantage: they
make it easier to decouple sensor processing, such as sensor sampling and feature extrac-
tion, from communication. Using non-integrated sensor boards, a smart everyday object
must carefully schedule sensor access and communication in such a way that the two
tasks do not interfere with each other. Although sensor processing is not a significant
problem as long as sensor access windows are short and sensor access sporadic, it can
become increasingly difficult in case of streaming sensory data and if complex feature
extractions are necessary to obtain information about the environment and nearby users.
When local feature extractions are blocking other program executions, this would imply
that no communication and hence no cooperation with other objects is possible during
that time.

The advantage of integrated sensor boards is that they make it easier to implement
asynchronous sensor access. A request for a sensor sample – or, more commonly, for a
certain feature extracted from a stream of sensory data – is issued by the core board and
transmitted to the sensor board. As the core board does not directly accesses sensors,
it can continue with program execution while waiting for the result from the sensor
board. During that time it can therefore still process incoming data requests. After the
sensor board has finished the sensor-data processing, it triggers an interrupt on the core
board, which can then conveniently access the result of the previously issued request.
The implied advantages of such an approach are twofold: (1) the environment can be
monitored more reliably because sensor access is not interrupted by other tasks of the
microcontroller such as communication, and (2) collaboration among different nodes is
faster because they are not blocked while accessing sensors. The latter aspect becomes
especially important when there are many cooperating objects because a delay at a single
node adds to the delay of an operation on many smart objects.

1-Processor, 2-Processor, and 3-Processor Tagging Systems

Active tags generally aim at having as few components as possible because every compo-
nent will eventually consume energy. For the same reason, application programmers often
have the opportunity to switch off components dynamically during program executions.
Regarding the number of components, we distinguish between 1-processor, 2-processor,
and 3-processor tagging systems. Besides multiple processor solutions, tags have also
been built which contain more than one communication module – such as the third re-
vision of the BTnodes, which are equipped with both a Bluetooth and a simpler RF
communication chip [Btn04].

The Berkeley motes [Mot04] have only one microcontroller unit (MCU), which handles
everything from communication and general processing to sensor access. Sensor boards
used in connection with Berkeley motes are usually non-integrated, i.e., they are not
equipped with a separate processor [Cro04b]. Berkeley motes are therefore a 1-processor
tagging system.

In contrast, the BTnodes [BKM+04] possess two MCUs. One processor – an Atmel
ATmega128L (cf. Tab. 2.2) – carries out the actual applications, deals with the higher
layers of the Bluetooth protocol stack, and executes the basic system software. The other
MCU – an ARM processor – is integrated into the Bluetooth communication module and
handles lower-layer communication issues. A tagging system that incorporates a BTnode
and a non-integrated sensor board is therefore a 2-processor tagging system. Deploying
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BTnodes together with an integrated sensor board constitutes a 3-processor system.

A slightly different approach is taken by the Intel motes [Int04]. The Intel motes,
whose communication is also based on Bluetooth, reuse the microcontroller integrated in
the Bluetooth modules for executing applications. As a result, only one instead of two
processors is needed on the core board, which can save considerable amounts of energy.
However, the downside of this approach is that obtaining the right to change code directly
on the processor of the Bluetooth module is difficult and expensive. Furthermore, it hin-
ders the exchange of program code in the research community because of accompanying
legal issues.

The decision whether to use a 1-processor, 2-processor, or 3-processor tagging system
is important in any project that deals with active tags. It is also largely influenced by
economic factors. As already pointed out, more processors usually result in increased
energy consumption. Integrating all tasks on a single microcontroller is therefore de-
sirable, and it is likely that future active tagging systems will strive in this direction.
Especially in the prototyping phase of a research project, however, it can be beneficial to
combine different sensor and communication boards that contain their own processors.
As integrated sensor boards, for example, hide the complexity of accessing sensors by
exporting a unified software interface, this can result in higher flexibility and lead to a
simpler deployment of different sensor boards.

Energy Considerations

In Sect. 2.1.1 we have already discussed why low energy consumption is a precondition for
successfully deploying active tagging systems. However, it is not always clear what energy
efficiency really means in connection with the envisioned applications. Is it measured
based on the energy dissipated per transmitted bit, the overall energy consumed over
a certain time period of low or high activity, the energy consumption of a single node,
or that of the whole network? The overall lifetime of the network is typically the most
important criterion in wireless sensor networks. However, in this application domain,
networks are usually more homogeneous than in Pervasive Computing settings, where
the lifetime of some single nodes – for example those that cannot be easily recharged –
might be more significant than that of others. In the following, we give an overview of
the energy consumption of selected active tagging systems.

When evaluating the power consumption of an active tag, communication is usually
the determining factor, above computation. For example, Park et al. [PLS+02] reports
that for the Bluetooth-based iBadge system, the energy dissipation per transmitted bit
amounts to 1.3 × 10−5J compared to 3.9 × 10−8J per instruction carried out on the
integrated microcontroller. However, according to their equation the power consumption
of the main processor running at 4 MHz is 47.8 mA × 3.3 V compared with 26 mA ×
3.3 V for the Bluetooth modules, which puts the above mentioned figures in a slightly
different perspective. With respect to the Berkeley motes, these figures differ even more
significantly. According to the data sheet of the MICA2DOT motes [Cro04a], the current
draw of the microcontroller on this platform is 8 mA in active mode, compared to 25 mA
and 8 mA for the communication module during transmission with maximum power and
reception.

Several papers deal with the energy performance of active tagging systems. Leopold
et al. [LDB03] states that the power consumption of the MCU on the BTnodes (running
at a rate lower than the maximum clock frequency) is about 46 mW. When switching on
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the Bluetooth modules and setting them into a state where they are ready for connection
establishment, a BTnode consumes about 89 mW, whereas 136 mW are necessary to
maintain connections, and an additional 65 mW are needed when transferring data with
6 KiB/s. Hence, Leopold et al. [LDB03] reports that a BTnode consumes about 50
mW in idle mode and 285 mW when communicating. It is also argued that the energy
per communicated bit on a BTnode is about 5.5 µJ/bit at a data rate of 6 KiB/s. With
respect to the energy per transmitted bit, this is comparable to the Berkeley motes, where
the energy per bit amounts to 4 µJ/bit or 15 µJ/bit, depending on the researchers who
measured it [HSW+00, LDB03].

Table 2.3: Energy characteristics of selected active tagging systems.

Berkeley mote (MICA2DOT) [Cro04a]

Processor
Active mode 8 mA
Sleep mode < 15 µA

Radio
Transmit with maximum power 25 mA
Receive 8 mA
Sleep < 1 µA

Berkeley mote – early version [HSW+00]

Overall power consumption in active mode (without LEDs) 60 mW
Overall power consumption in active mode (with LEDs) 100 mW
Overall current draw in sleep mode 10 µA
Energy per bit during transmission ≈ 4 µJ
Energy per bit during reception ≈ 2 µJ
BTnodes – revision 2 [LDB03]

Overall power consumption in idle mode 50 mW
Overall power consumption while communicating 285 mW
Energy consumption per bit 5.5 µJ/bit
Smart-Its sensor board [BZK+03]

Capacitive microphone and amplifier 8 mW
Pressure sensor 16 µW
Temperature sensor 2.3 mW

However, such comparisons between BTnodes and Berkeley motes should be con-
sidered carefully. As Min and Chandrakasan point out in their paper titled “Top Five
Myths about the Energy Consumption of Wireless Communication” [MC03], latency is
often traded against reduced energy consumption. Furthermore, the dissipated energy
per bit often decreases as the data rate increases. For example, according to Min and
Chandrakasan [MC03] the energy per bit for an RFM TR 1000 module (a communica-
tion module similar to those used on the Berkeley motes) sending at 2.4 Kbps is 14 µJ ,
whereas it is only 372 nJ when the module is sending at 115.2 Kbps. Also, the energy
per bit for a Cisco Aironet 350 WLAN card is 236 nJ at 11 Mbps, which is even smaller.
However, because of the high static energy consumption and the nature of the envisioned
applications, WLAN cards might not be a good choice for active tagging systems. With
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respect to Bluetooth, it should be kept in mind that although the application data rate
might be only 6 KiB/s – as in the experiments of Leopold et al. [LDB03] – the data
rate for transmitting data over the air is still the standard Bluetooth rate of 1 Mb/s.
The required energy to transmit a single bit seems to be a good criterion only if the
underlying applications really need the high data rate provided by the communication
modules. Hence, supported data rate and desired application throughput should match
in order to achieve good energy performance.

With respect to the energy performance of infrared tagging systems, an early version
of the SmartBadge, the SmartBadge I, has an overall average current draw of 98 mA
[MSB98]. Regarding passive-optical tags, Kahn et al. [KKP00] points out that opti-
cal data transmission requires significantly less energy that RF-based communication.
Besides communication and data processing, the energy required to sample sensors is
another important issue when choosing an appropriate tagging technology for smart en-
vironments. Beigl et al. [BZK+03] gives a thorough analysis of the power consumption
of several sensor types. The authors show that power consumption can vary significantly
between different sensor types, and they conclude that it is sometimes not negligible,
compared to that of the communication and processing subsystems.

Tab. 2.3 compares the energy characteristics of selected active tagging systems found
in the literature; the energy consumption of the processing, the communication, and the
sensing subsystem are all considered.

Besides the general energy characteristics of major hardware components, the over-
all energy consumption of an active tag also depends on communication protocols and
strategies for accessing sensors. MAC (medium access control) protocols for wireless
sensor nodes, for example, strive to save energy by reducing the amount of time a com-
munication module has to listen for incoming data. By reducing the time for idle listening,
the number of packet collisions, overhearing, and the number of control packets, the en-
ergy consumption of a sensor node can be decreased considerably [YHE02]. The energy
consumption of a microcontroller can be reduced by active power management. Here, the
clock frequency of a processor can be reduced by an application in times of low activity in
order to save energy. Other strategies for power management are discussed in [RSPS02].

Other Tagging Systems

Besides the active and passive tagging systems presented here, it is also possible to use
chemical or biological methods to tag everyday objects [Cap04]. Certain chemical com-
pounds and radioactive substances can be mixed into other materials or attached to
objects and thereby serve as chemical tags. In the case of biological tags, it has recently
become possible to synthetically encode digital information into biological molecules.
Chemical and biological tags are often used to uniquely identify goods such as medicine
or high-quality products. As a result, protection against counterfeiting, i.e. brand pro-
tection, is the core application area for these tagging systems. However, there are also
applications in which chemical tags are used to track animals, and DNA-based tags for
identifying cars involved in road accidents.
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2.3 Context-Awareness

2.3.1 Context

In the scope of this dissertation, context is an important concept because context recog-
nition is one of the core reasons for smart objects to cooperate with each other. This is
because the “smart” behavior of smart objects usually stems from the fact that they can
perceive their environment, derive information about the situation of nearby people, and
adapt application behavior accordingly. As a single object alone can only perceive a small
subset of its environment, it is often forced to interact with other devices within range
of it, in order to obtain more detailed information about the situation of nearby users.
Regarding the nature of context, there are several approaches in the literature to define
the term context, which alone indicates that the notion of context or context-awareness
is not easy to grasp and formalize. This section tries to identify the core aspects behind
previous definitions put forward by other researchers, and aims to explain why the term
context is so important for the emerging field of Pervasive Computing.

General Usage of the Word Context

A reason for the different approaches to defining context in Pervasive Computing might be
that many people have a – slightly different, slightly more or less complex – individual un-
derstanding of context. This in turn might be due to the fact that the term context plays
a role in several disciplines of science, and specifically in other sub-areas of computing
such as compiler construction (e.g., context conditions, context-free grammars), artificial
intelligence (e.g., contextual reasoning), or operating systems (e.g., context switch).

The Oxford Advanced Learners Dictionary [Hor00] provides two definitions of context:
(1) the situation in which something happens and that helps you to understand it and
(2) the words that come just before and after a word, phrase or statement and help you
to understand its meaning. When comparing these two definitions, the core message
of context seems to be that it provides a more detailed understanding of something by
considering it as integrated into and influenced by its surroundings; not as isolated, self-
explaining, or self-contained.

Linguistics

This is also how the notion of context is used in linguistics, where context information
helps to dissolve the ambiguities of words or phrases. The meaning of a word often
becomes clear only in the context of a sentence or paragraph. In this connection, linguists
distinguish between the syntactical, semantic, and pragmatic dimensions of language.
Whereas the syntactical dimension of a word is self-explanatory, determining the meaning
(semantic dimension) or even the implicit requests for actions embedded into words or
phrases (pragmatic dimension) requires an increased level of knowledge that cannot be
inferred from a word or text alone. The English word “board,” for example, has several
different meanings, such as piece of wood (as in floorboard or hardboard), tool used in
sports (surfboard, snowboard), and group of people (the board of directors, academic
board). Hence, the semantics of the word “board” only become clear at the phrase,
sentence, or paragraph level. Deriving the pragmatic dimension of a phrase requires even
more knowledge that is not restricted to the text itself, for example knowledge about the
situation of people participating in a conversation. The pragmatic dimension of “Frank,
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you don’t need to get up; I’ll get you a beer.” might imply just what it is saying if Frank
has a broken leg. But it could also be pure sarcasm, criticizing the subject’s laziness.
For a computer, it is easy to understand the syntax of words, but extremely difficult
to interpret the semantic and pragmatic dimension of language because this requires
additional information about the surrounding context or the situation of people.

Context in Pervasive Computing

To understand the use of the term context in Pervasive Computing, it is important to
realize that the interactions between humans take place at different levels that roughly
correspond to the dimensions of language. If smart objects want to provide “smart”
behavior that automatically adapts to the needs of nearby users, it is necessary for aug-
mented items to obtain information about the situation of people, instead of processing
only explicit and self-explanatory user input.

In the age of mainframes and PCs, it was difficult to recognize the situation of peo-
ple, which made human-computer interaction more technology- than human-centered.
Computer applications merely considered explicit input from users that had to be fed to
information systems by means of conventional input devices such as keyboards, mice, and
buttons. Explicit input can be compared to the syntactic dimension of language in that
it must be completely self-explanatory; it does not require computer systems to monitor
the current situation of users because any instructions the computer can carry out are
controlled by explicit actions. However, as computing technology becomes pervasive, in-
teraction with computer systems based purely on explicit actions becomes inappropriate.
This is because there are so many computing devices, and because much of the technol-
ogy will be invisible from a user perspective. Consider, for example, a tour guide in a
museum – a favorite application domain for experimenting with context-aware applica-
tions. Usually, a visitor has to input a number on a mobile device to get information
about an exhibit. In a simple version of such a system a user would always get the
same amount of information independently of her situation and independently of how
she has behaved previously. In contrast, a context-aware application would also consider
her surroundings, how long she had been standing in front of other exhibits and whether
she is visiting the museum together with other people, in order to adapt the amount of
information and the way in which it is presented. Of course, the information about a
user’s situation could also be embedded into explicit actions, e.g., by requiring additional
input specifying the desired amount of information about an exhibit. However, this does
not suit the way in which humans interact with each other, becomes increasingly complex
with an increasing number of devices and options, and is therefore not a human-centered
approach to interacting with computers or smart environments. Context-aware applica-
tions aim to be more receptive to users’ needs by considering their current situation and
by automatically adapting their application behavior accordingly.

In the early days of computer science, context-aware applications were difficult to
implement because information about the situation of users was difficult to obtain. With
the vision of Pervasive Computing, however, this has changed dramatically: omnipresent
information technology embedded into everyday environments allows us to retrieve infor-
mation about the situation of people with unprecedented accuracy. This information can
be used to provide more natural user interfaces to smart objects and smart environments
in general. Omnipresent computation and the need for a more user-centered approach
to interactions with computers are among to the core reasons why context and context-
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awareness have become of paramount interest for the field of Pervasive Computing.

Context in Other Areas of Computer Science

The term context plays also an important role in the field of compiler construction,
which deals with the concepts of context-free grammars, context-sensitive grammars,
and context conditions. Crowley et al. [CCRR02] reports on the usage of context in
artificial intelligence and computer vision.

What all these different usages of context have in common is that they try to get a
more detailed understanding of something by considering how it is affected by its sur-
roundings. The paramount message of context is that it aims to provide a more detailed
understanding of something by considering it as integrated into and influenced by its
environment. This is exactly the way context is used in Pervasive Computing: by ob-
serving the current surroundings of people, which becomes possible through information
technology embedded into everyday environments, we get a more detailed understanding
about their intentions and can offer human-centered services that take their real-world
environment into account.

Definitions of Context

A detailed review of how researchers have used and defined the term context can be
found in several papers by Dey [DA00, Dey00, Dey01, DSA01]. Schmidt [Sch02] also
provides an extensive discussion of the evolution of the term and its usage in the field of
mobile and ubiquitous computing. Dey and Schmidt point out that initial definitions of
context merely listed examples to explain its meaning. Schilit and Theimer [ST94] for
example, who originally introduced the term “context-aware” refer to context as location,
collections of people and objects in an application’s environment, and changes to those
objects over time. Several researchers have provided synonyms for context to explain its
meaning. Here, context is regarded as either the user’s or the application’s environment
or situation [DA00, Dey00, Dey01, DSA01, Sch02]. In Schilit et al. [SAW94], context
is considered more generally by identifying three core aspects of it: where you are, who
you are with, and what resources are nearby. This approach also tries to define context
more broadly and independently of the concept of location. Context is thereby not only
restricted to properties derived from the location of objects and people, but instead also
includes network connectivity, communication costs, and the social situation of people.

In connection with the Context Toolkit [Dey04], Dey refers to context as “environ-
mental information that is part of an application’s operating environment and that can
be sensed by the application.” The most widely accepted definition of context today has
been put forward by Dey and Abowd [DA00]: “Context is any information that can be
used to characterize the situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an application, including the
user and applications themselves.”

Whereas in this definition context is any information relevant for characterizing the
situation of an entity, Chen and Kotz [CK00] distinguish between the characteristics that
determine the behavior of an application and those that are relevant but not critical.
In their definition “context is the set of environmental states and settings that either
determines an application’s behavior or in which an application event occurs and is
interesting to the user” [CK00].
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Schilit [Sch95] defines context-aware computing as “the ability of a mobile user’s
applications to discover and react to changes in the context in which they are sit-
uated.” Context-aware applications adapt to a constantly changing execution envi-
ronment, where the environment can be classified into three subcategories: (1) the
computing environment, (2) the user environment, and (3) the physical environment
[DA00, Dey00, Dey01, DSA01]. The computing environment can be characterized by
virtual-world parameters such as the current bandwidth and throughput of communica-
tion technologies, the amount of available memory, the processor load, the identity of
connected devices, or the number of available input/output devices. Virtual-world pa-
rameters describe the inherent properties of a computer system and the aspects that have
a direct impact on data processing and data communications, but do not consider the
real-world surroundings of a computer system. In other words, virtual-world parameters
describe the classical self-contained properties of computing systems. In contrast to the
computing environment, the user environment identifies the situation of people partici-
pating in a particular context-aware application. It can be characterized by parameters
such as their current location or social situation (e.g., whether a user is currently together
with friends or family members, or whether she is having a meeting with her boss). The
physical environment describes the real-world surroundings that influence an application.
Light or noise levels, the current temperature and humidity are parameters that define
an application’s or a user’s physical environment.

With respect to this classification, this thesis distinguishes between virtual-world
contexts and real-world contexts (sometimes also referred to as situational contexts).
Virtual-world context refers to the current computing environment, e.g., the amount of
computing resources available, whereas real-world context describes the situation of an
entity in the real world. Real-world context therefore corresponds to the above-mentioned
user environment and physical settings. Furthermore, in the scope of this thesis, it makes
sense not only to regard the real-world surroundings of a user as relevant but also the
real world situation of smart objects. We therefore suggest an artifact-based approach
to context, where not only the user environment but also the real-world situation of
computer-augmented artifacts becomes important (cf. Sect. 3.6).

2.3.2 Infrastructural Support for Context-Awareness

The definitions presented in the previous section do not introduce a formal model of
context. The questions of how context is represented in a computer system, and how
concrete applications can derive context information in typical Pervasive Computing set-
tings are also left open. In this section, we give an overview of selected frameworks and
infrastructural components for deriving context, which all have a specific approach to
representing context and different formalized or semi-formalized models of it.

The Context Toolkit

The Context Toolkit by Anind K. Dey is a framework that facilitates the design and
the rapid prototyping of context-aware applications [DSA01, SDA99]. The framework
provides support for persistently storing context data, facilitates resource discovery, and
introduces three core abstractions for handling context information: context widgets,
interpreters, and aggregators.

Context widgets hide the low-level details of accessing sensors, and deal with the
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general low-level handling of sensory data. The underlying concept stems from GUI
(Graphical User Interface) widgets, which are abstractions that make it easier for appli-
cation programmers to process user input in graphical applications. In such situations,
GUI widgets encapsulate implementation details of GUI elements such as buttons and
menu bars, are able to capture mouse clicks or key strokes destined for these elements,
and automatically translate user input into corresponding application events. Using GUI
widgets, it becomes irrelevant whether a keyboard or a mouse is being used to press a
button, for example. Instead, a widget automatically captures input and communicates
with an application by means of button pressed or button released events, which frees
the application programmer to continuously monitor the status of a GUI element. In this
respect, context widgets pursue similar goals:

1. Context widgets hide the complexities of sensors. From the perspective of an appli-
cation programmer it thereby becomes transparent what specific sensors are used to
measure a certain physical property as long as the widget adheres to a well-defined
interface. Hence, it is possible to substitute sensors without changing application
code.

2. Widgets provide context data in a way that makes it easier for an application to
handle context. For example, context widgets can automatically notify an applica-
tion about certain context changes, can be polled for sensory data, or queried.

3. Context widgets can be reused in other applications.

Interpreters transform context data from one form into another. For example, an
interpreter that is associated with a widget providing the identity of a person in form
of a simple ID number could map the ID onto the real name of the identified person.
Interpreters can also transform physical coordinates into symbolic location information,
e.g., GPS (Global Positioning System) coordinates into the name of a town or a street.
Aggregators collect low-level context information from multiple distributed sources and
transform it into a high-level form more meaningful to applications.

With respect to smart everyday objects, the major drawback of the Context Toolkit
is that it is designed for relatively powerful computers. The current implementation of
the toolkit is written in Java, which makes it less suitable for smart everyday objects that
are usually faced with severe resource restrictions and programmed in C. Furthermore,
communication in the context toolkit is based on XML (eXtensible Markup Language),
which inflates the amount of data that needs to be transmitted. As we will argue in
Sect. 3.5, however, compact communication protocols are of paramount importance in
environments of wirelessly communicating smart everyday objects. Conceptually, the
framework aggregates sensory data from different sources, but this aggregation is done in
a background infrastructure on powerful computers with powerful networking interfaces
and practically unlimited energy resources. In contrast, our approach to deriving context
focuses on environments where many resource-restricted devices need to derive high-
level context in dynamic groups of cooperating entities without constant background
infrastructure access (see Chap. 3).

XML-Based Representations

XML-based representations of context have the benefit that they present information
in a human-readable format that can be automatically processed by computer systems.
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Furthermore, there are various tools that can process, display, and transform XML doc-
uments, which makes it comfortable to work with this data format. XML is also one of
the most influential standards for representing data on the World Wide Web (WWW).
Considering all these advantages, XML seems to be a natural choice for representing con-
text information. However, when evaluating XML for the purpose of exchanging context
information among resource-restricted smart everyday objects, it must be kept in mind
that because XML aims to be a human-readable format, it can significantly inflate the
size of context descriptions. This is because XML is based on simple text, i.e., a seven
digit number in XML needs 7 bytes if ASCII or UTF-8 is used as an encoding standard.
In contrast, a simple binary encoding of such a number would require only 3 bytes. Also,
the structure of XML files with nested human-readable tags increases the size of data
representations. Although XML-based context descriptions could be compressed before
they are exchanged between smart objects, which would require additional processing,
a more compact description format for context would be likely to lead to less commu-
nication overhead. In Sect. 3.5, we will argue that wireless ad-hoc communication is
a bottleneck for cooperation between smart everyday objects. A compact representa-
tion for context is therefore important in these settings; hence, XML might introduce
too significant an overhead for exchanging context information. However, when context
data needs to be transmitted in the background infrastructure, XML is a good choice for
representing context information because of the above mentioned advantages.

In the following, some approaches to embedding context information into XML docu-
ments are presented. Brown et al. [BBC97, Bro96] introduces an SGML-based language
for specifying context. SGML, the Standard Generalized Markup Language, is a super-
set of XML, which at the time Brown published his results was not yet an official W3C
(World Wide Web Consortium) standard. The goal of using an SGML-based syntax
was to facilitate the development of context-aware applications by making the process
of specifying context-awareness as easy as designing Web pages. As Web documents are
written in HTML (Hypertext Markup Language), which is widely accepted by program-
mers and is also a subset of SGML, it is argued that an SGML-based representation
of context simplifies the creation of context-aware applications. The specification of
context-aware behavior takes place in documents called stick-e notes, which consist of
a context description and a body. Regarding the context description, Brown introduces
an extensible mechanism for specifying context conditions and syntactic constructs for
describing time, place, user orientation, and user presence. The body of a stick-e note is
executed whenever the corresponding context condition is matched. Schmidt [Sch00] ex-
tends Brown’s notation by adding more sophisticated mechanisms for grouping contexts
and for triggering actions associated with them. Although Schmidt’s notation conforms
to the XML standard, it is explicitly stated that for resource-restricted devices a different
implementation language is used to actually realize a context-aware application.

PML Core [FAOH03], the Physical Markup Language Core, is a recommendation of
the Auto-ID center that specifies an XML format for the exchange of sensory data between
components of an Auto-ID infrastructure. It focuses on the representation of such sensory
data, which could theoretically be regarded as low-level context information, but leaves
open how such data are aggregated and forwarded or used by applications. As a data
exchange format, PML is more suitable for powerful backend infrastructures because
of the considerable size of data representations. There are also other standardization
attempts that specify data exchange formats for business applications based on XML
[Ros04, XML04].
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The Semantic Web initiative [Sem04] designed a framework for sharing machine-
readable data on the Web. In this framework, RDF XML, the XML-based format of
the Resource Description Framework (RDF), is the standard format for data exchange.
By using the ontology and interference language DAML+OIL (DARPA Agent Markup
Language + Ontology Interface Layer), which is based on RDF, it becomes possible to
derive complex data [Hor02]. The tools provided by the Semantic Web can be used to
specify context information as well as adaptive application behavior. In fact, the W3C
provides its own definition of context [BL03]. Wang et al. [WGZP04] and Gu et al.
[GWPZ04] present a context ontology in OWL (Web Ontology Language). It is shown
how logic reasoning can be used to derive higher-level context data, and it is possible to
check the consistency of context models in their approach. As already mentioned, the
Context Toolkit also deploys a communication model that is based on XML.

Context Representations based on First-Order Predicate Calculus

First order predicate calculus is a powerful tool for modeling context because it can be
used to describe contextual states and facilitates automatic reasoning about contextual
information. The expressive power of the predicate calculus in this respect has been illus-
trated in the Gaia project [Gai04, RHC+02a, RHC+02b]. The Gaia context infrastructure
introduces a notation for context information and a mechanism for deriving higher-level
context data based on first-order predicate calculus [RC03, RCRM02].

In the GAIA context model, low-level context information is represented as first-
order predicates. The name of a predicate determines the type of context it represents.
A predicate usually has three attributes that reflect the subject-verb-object structure of
simple English sentences. Regarding the context “location,” for example, the predicate
Location(Frank, in, Room D41.2) would express that the subject Frank is currently in
room D41.2. It is argued that most other types of simple contexts can be expressed in a
similar three-attribute predicate. The naming and overall structure of these predicates is
specified in an ontology that was defined using the Web ontology language DAML+OIL
[Hor02]. More complex context types are generated by connecting context expressions
with Boolean operators such as negation and conjunction, or by parameterizing context
expressions with quantifiers like ∀ and ∃. Using the predicate calculus it also becomes
possible to deduce new contexts or to fuse sensory data. For example, Location(Frank, in,
Room D41.2) ∧ Sound(Room D41.2, <, 40 dB) ⇒ EmployeeStatus(Frank, hardworking)
would mean that Frank is hardworking when he is in room D41.2 and is not talking or
listening to music. In Gaia’s context infrastructure several infrastructural components
such as context providers, context synthesizers and context history services are respon-
sible for collecting, processing, and storing context information. Applications can query
context providers that evaluate these queries using a Prolog reasoning engine. The rules
that describe how high-level contexts are derived from basic sensor percepts are coded in
Prolog-like logic programs.

First-order predicate calculus is an interesting tool for handling context. However,
on resource-restricted smart everyday objects it is questionable whether Prolog-like logic
programs can be executed with adequate efficiency and carried out in an acceptable time.
The presented approach again assumes that there is a powerful background infrastructure
available that carries out all reasoning-related tasks. However, a core idea of smart every-
day objects is that they are autonomous and able to provide context-aware applications
themselves. This results in new requirements for building context-aware applications in
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smart environments.

Context Frameworks for Resource-Restricted Smart Devices

As cooperation among resource-restricted smart everyday objects is a main focus of this
dissertation, we now give an overview of two context frameworks that were explicitly
designed for computing devices with limited amounts of resources. These frameworks
are (1) the context architecture for building smart appliances developed in the TEA
project [GSB02, SL01, TEA04], and (2) the context architecture proposed by Malm et
al. [MKVA03].

With respect to the context infrastructure proposed in the TEA project, Schmidt and
Laerhoven [SL01] introduces a four-layered architecture for implementing context-aware
applications consisting of sensors, cues, contexts, and an application layer. The cue layer
hides implementation-specific details of sensors from upper layers and can also carry
out limited preprocessing of sensory data. In their terminology, cues are characteristic
features extracted from a set of sensory data. For example, the average of a list of sensor
samples and the first derivative of sensor values obtained over a certain amount of time
are called cues. The context layer then derives information about the current situation
of people or devices based on these cues and makes context information available to
applications. What is especially notable about the TEA project is that it resulted in
the design of a smart mobile phone augmented with an active sensor tag. The active
tag attached to this phone was the major platform involved in the context-recognition
process. However, the authors do not report on experiences about collaborative context
recognition among sets of cooperating devices.

Malm et al. [MKVA03] suggests adjusting the main concepts proposed in the Con-
text Toolkit (cf. Sec. 2.3.2) to the requirements of resource-restricted active tagging
systems. The main components of their architecture are context widgets, aggregators,
and discoverers. As in the Context Toolkit, context widgets hide the details of accessing
sensors, and aggregators can refine low-level context information provided by widgets
or other sources. Discoverers search for services on remote devices and advertise local
sensor sources. So far, there is unfortunately no report available on the experiences with
such a system. It is also hard to predict whether the concepts of the Context Toolkit
suit the needs of smart everyday objects. For example, the Context Toolkit is based on
Java, which, due to its object-oriented nature, provides comfortable ways to deal with
high-level programming concepts such as widgets and aggregators, and makes it eas-
ier to reuse code. Furthermore, the Context Toolkit does not address the complicated
communication-related issues involved in deriving context among cooperating smart ob-
jects, but instead relies on high-level communication abstractions that are not available
in environments of resource-restricted augmented artifacts.

A Semi-Formal Model of Context for Perceptive Computing

Crowley et al. [CCRR02] introduces a semi-formal model of context and presents an
operational theory of context awareness. Context is thereby modeled as a set of roles and
relations. A role describes the specific functions of entities, i.e., the specific roles entities
can assume in a certain environment. An entity can have different roles associated with
it; e.g., a pen can serve as a writing tool or as a pointer. Here, pen is an entity, and
writing tool and pointer are roles. Relations are predicates describing the properties of
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entities. For example, “looking at” is a relation between entities, which could contain the
tuple (Alice, Alice’s pen) when Alice looks at her pen. In the proposed model, context
determines which roles and relations need to be observed by a context-aware application.
Only in a certain situation can tuples of entities be assigned to relations and roles to
specific entities (e.g., in one situation a pen can be used as a writing tool and in another
as a pointer). This model of context and situation was prototypically implemented based
on federations of observational processes that visually track entities in an environment
and provide derived context information to applications.

Graphical notations for representing context

Henricksen et al. [HIR02] proposes a graphical notation for modeling context that is
related to UML (Unified Modeling Language) and Entity-Relationship diagrams, known
from the fields of software engineering and database research. The notation is claimed to
be especially suited for modeling specific aspects of context such as context imperfections,
temporal characteristics of context, and dynamic context changes. The basic components
of the proposed context model are entities, associations between them, and attributes that
describe certain properties of entities. The special needs of context-aware applications
are addressed by introducing a range of specific associations (such as static or temporal
associations) for the representation of context and the interrelations between entities.

The concepts behind the Semantic Web [Sem04] are also suitable for modeling con-
text and dependencies between objects in context-aware applications (the Semantic Web
introduces yet another definition of the term context). The Resource Description Frame-
work (RDF), which plays an important role in this regard, also has a graphical notation.
Müller [Mül97] uses conceptual graphs previously introduced by Sowa [Sow04] to model
context in a particular application involving electronic patient records.

Shortcomings of Previous Approaches for Handling Context

Tab. 2.4 compares some of the previously presented approaches for building context-
aware applications. It can be seen that they primarily focus on environments where
contextual information is processed and aggregated in a powerful backend infrastruc-
ture. These approaches assume that although computational resources are distributed
throughout the environment, resource-restricted low-end devices merely provide sensory
data or object identifications to infrastructure components, which handle computations
and human-computer interaction related tasks on behalf of the entire environment. The
reason for this prevalent assumption is that until recently smart objects have been re-
garded as just powerful enough to accumulate and forward data to backend servers.
Furthermore, many smart objects were augmented with passive tagging systems (cf.
Sec. 2.2.3), which implies that such augmented items cannot provide applications au-
tonomously. Instead, another kind of computing system, e.g. a backend infrastructure
server or a nearby handheld device, had to implement the actual services on behalf of
smart objects. In other words, augmented items were merely the fingertips of larger
computing systems, supplied them with sensory data, and completely relied on backend
infrastructure services to realize applications.

This changed with the development of more sophisticated active tagging technologies,
which provide smart objects with a considerably greater amount of autonomy. Although
more complex functions still need to be outsourced to a backend infrastructure, it is
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becoming possible for smart objects to offer services to nearby users directly. This has
several advantages:

• Autonomy. Smart objects do not depend on a permanently available communi-
cation link to a backend infrastructure. As active tagging technologies are based
on short-range communication technologies because of energy restrictions, this al-
lows for significantly higher flexibility: smart objects can be used and can provide
services almost everywhere as they do not rely on nearby access points.

• Convenient interaction. More powerful everyday items can provide more so-
phisticated services to their users. A critical issue in this connection is implicit
human-computer interaction. Objects augmented with active tags are much better
suited to triggering interactions without requiring explicit user input because they
can autonomously observe their environment and act according to the situation of
nearby people.

Taking advantage of these properties requires that smart objects can derive context
information more autonomously – i.e., without constant access to backend infrastructure
services. Furthermore, the severe resource-restrictions of smart objects and their wireless
ad hoc communication interfaces must be taken into account when realizing context-aware
applications on smart objects. In Chap. 3 we approach some of these issues and show
how smart objects can realize context-aware applications in cooperation with each other
without requiring backend infrastructure access. The context infrastructure developed
in the TEA project (cf. Tab. 2.4) is closest to the solution we desire, but it is vague
regarding inter-object interaction and focuses on the context recognition process on single
devices.

Table 2.4: Comparison of selected toolkits for building context-aware applications.

Context Toolkit GAIA Context
Infrastructure

Semantic Web
Context

Infrastructure

TEA Context
System

Basic
concepts

Context
widgets,
aggregators,
interpreters

First order predi-
cate calculus and
logic programs

OWL and first
order logic

Cues, cue ag-
gregation

Degree of
formal-
ization

Low High High Low

Resource
demands

Medium
(Java code +
XML)

High
(Prolog like logic
programs)

High
(semantic web
toolkits)

Low
(C code)

Context
computa-
tion

In backend in-
frastructure

In backend infras-
tructure

In backend in-
frastructure

In backend
infrastructure
and on
smart objects
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2.4 Summary

Briefly stated, Pervasive Computing envisions a world in which computation is seamlessly
integrated into everyday environments in order to support people in their daily activi-
ties. In the first part of this chapter, we dealt with this vision of Pervasive Computing,
reasoned about its technical feasibility, and discussed economic as well as social implica-
tions. In our argumentation, we started with the technological foundations of Pervasive
Computing, such as Moore’s law and recent advances in wireless communications, and
reported on technological problems. We then discussed the economic relevance of Perva-
sive Computing and presented selected application scenarios. These application scenarios
showed that Pervasive Computing is already having an impact on economic processes; for
example in the field of supply chain management, where it facilitates the realtime track-
ing of products. Last but not least, we discussed concerns regarding personal privacy,
which arise with an increasing adoption of Pervasive Computing technologies.

The second part of this chapter dealt with smart everyday objects. We provided
a definition of the term and identified different approaches for adding computation to
everyday things. We then gave a thorough overview of tagging technologies, and discussed
how these tagging technologies affect cooperation among smart objects.

The third part of this chapter focused on context and context awareness because
context recognition is one of the core reasons for smart objects to cooperate with each
other. We reviewed definitions of context, gave an overview of frameworks for deriving
context information, and discussed their suitability for environments of cooperating smart
everyday objects.
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Chapter 3

Cooperation among Smart Everyday
Objects

In our effort to support the main thesis of this dissertation stating that cooperation
helps smart objects in realizing services for people in smart environments, this chapter
focuses on the cooperation between different augmented artifacts. The goal is to show
how smart objects, which are all faced with the same kind of severe resource restrictions,
can implement sophisticated services by bundling their resources and capabilities.

The solution of choice to achieve this goal is to form groups of cooperating objects
according to their real-world context and application specific information. Nodes in a
group exchange sensory data by means of a distributed data structure that hides the ac-
tual location of resources, and hence, appear to applications as a single node accumulating
the resources of collaborating entities. Based on this infrastructure layer, we present a
description language for the design of collaborative context-aware services. The language
helps application designers to clearly distinguish between the core concerns of context-
aware applications, and thus to write more structured and legible code than would be
possible in the predominant C programming language. Our language also supports pro-
grammers in describing how high-level context information is derived from simple sensor
samples, especially when this involves sensory data from multiple smart objects. We
then present a compiler for this description language that transforms context-recognition
statements into actual instructions for smart objects, and into corresponding instruc-
tions operating on the previously mentioned distributed data structure. In addition, it
is shown how the operations of this distributed data structure can be efficiently mapped
onto the primitives of the underlying wireless communication technology. The last core
aspect covered in this chapter deals with wireless communication and how it affects the
cooperation between smart objects. Ad hoc wireless communication between augmented
artifacts is likely to be a bottleneck for realizing efficient inter-object collaboration be-
cause of the many objects potentially in range of each other and their severe resource
restrictions. As a possible solution to alleviate this problem, we propose considering the
real-world situation of smart objects in order to establish networking structures that are
more suitable for context-aware applications.

The rest of this chapter is organized as follows. The next section gives a short overview
of related work, and explains why it is beneficial for smart objects to cooperate with each
other. In Sect. 3.2, we sketch out our approach for realizing collaborative services on
smart objects; and present a software architecture allowing augmented items to provide
collaborative context-aware services. In the remaining sections we then describe the
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individual layers of this architecture: the application layer, the context layer, an infras-
tructure layer supporting inter-object cooperation, and the communication layer. Sect.
3.3 starts with the application layer and presents the above-mentioned description lan-
guage for context-aware services. Sect. 3.4 focuses on the context layer and shows how a
concrete description of a context-aware service is mapped onto instructions for retrieving
and merging sensory data. Sect. 3.5 describes the layer for inter-object cooperation,
which is responsible for hiding the exchange of sensory data and contextual informa-
tion between cooperating smart objects. Sect. 3.6 deals with the communication layer
and elaborates on our approach to adapt networking parameters according to context
information. The main results of this chapter are summarized in Sect. 3.7.

3.1 Motivation and Background

3.1.1 Why Smart Objects should Cooperate with Each Other

The severe resource restrictions of computer-augmented everyday artifacts imply sub-
stantial problems for the design of applications in smart environments. In the following,
we argue that these problems can in part be overcome if smart objects are able to co-
operate with other augmented artifacts in their vicinity. Cooperation can make it easier
for smart objects to realize their services chiefly for two reasons: (1) According to the
vision of pervasive computation embedded into everyday environments, there are likely
to be many augmented artifacts in range of each other. Nearby smart objects therefore
constitute a reliable source of computing resources for any augmented item. (2) People
in smart environments expect services offered by smart objects to be context-aware. In
other words, augmented artifacts must be able to determine the real-world situation of
users and adapt their services accordingly. Context recognition often requires coopera-
tion because the sensors of a single object can perceive only a limited subset of peoples’
real-world environment. Considering sensory data from other objects during the context
recognition process can therefore considerably increase the accuracy of its outcome.

In summary, the limited amount of computational resources (e.g., a highly restricted
memory capacity) and the necessity to provide context-aware services force smart objects
to cooperate with each other. Cooperation between augmented items exploits the envi-
sioned presence of ubiquitous computation in Pervasive Computing environments; in the
next chapter it is shown how smart objects can make use of the heterogeneity inherent
in such settings by cooperating with other kinds of computing devices.

3.1.2 Background

The work presented in this chapter is largely influenced by the ideas put forward in the
MediaCup [Med04] and TEA [TEA04] projects, and was carried out while the author was
working in the Smart-Its [Sma04b] project. All of these projects have in common that
active sensor-based tags are attached to objects in order to realize context-aware services.
This is also the scope of our work: we assume that smart environments are populated
by many smart objects that have previously been augmented with active sensor-based
computing platforms. Such smart objects can perceive their environment through sen-
sors, act autonomously because they have an independent power supply, and cooperate
with other smart objects by means of short-range wireless communication technologies.
Based on these capabilities, smart objects can provide services to nearby people on their
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own, without relying on a backend infrastructure. Consequently, augmented items (al-
though they can – and, in fact, should – cooperate with backend services) have the main
responsibility for realizing services associated with an augmented everyday thing. This
is the major difference to other work on smart objects. In [Coo04, FFK+02, WFGH99],
for example, smart objects merely provide an identification to background infrastructure
services, which then implement the application logic and the interactions with users on
behalf of augmented items.

In the following, we present background information on each of the separate layers of
our architecture for providing collaborative context-aware services: the application layer,
the context layer, the layer for inter-object cooperation, and the communication layer.

Programming Models. Several context frameworks (see Sect. 2.3.2) provide pro-
gramming abstractions for processing sensory data and context information stemming
from different data sources. For example, the Context Toolkit [SDA99] provides aggre-
gators, interpreters, and context widgets for dealing with context. In the Gaia context
infrastructure [RC03, RCRM02] first order predicate calculus is used to describe the
processing of sensory data. Other researchers, e.g. Brown [Bro96], describe context-
aware applications in the form of XML files. These approaches, however, are difficult
to translate to smart everyday objects, whose resource-restricted sensor node platforms
are usually programmed in the low-level programming language C. Any form of program
description must therefore eventually be transformed into a C file for a smart object’s mi-
crocontroller. Using XML files, program descriptions would easily become complex and
difficult for an application programmer to understand. Prolog interpreters, as they are
used in the Gaia context infrastructure, generally have high resource demands. Program-
ming abstractions proposed in the Context Toolkit, such as aggregators and interpreters,
could be realized in C but would be more difficult to use compared to implementations
in Java. Additionally, programs would be entirely written in C, which does not provide
high-level programming constructs like object-oriented programming languages such as
Java. This is a major difference to our work, where parts of an application – dealing
with the context recognition process or access to sensors – are not specified in C, but
in a higher-level description language. The goal is to help programmers in realizing the
context recognition process and to automatically generate low-level C code for a smart
object’s microcontroller.

In a recent paper, Whitehouse et al. [WSBC04] propose a neighborhood program-
ming abstraction for sensor networks that allows sensor nodes to share their state with
a number of previously selected nodes. It is shown that based on this programming ab-
straction, distributed algorithms that operate on a set of tightly-coupled sensor nodes
can be expressed in a more compact form requiring fewer lines of code. In our work, we
also group cooperating entities and enable them to share and access each other’s data.
However, the programming concept presented as part of our work is tailored towards the
needs of context-aware applications. Cooperating nodes appear to applications as a single
entity, and the origin of data and resources can be entirely hidden from applications.

Context. As already mentioned, context recognition is one of the core reasons for
smart objects to cooperate with each other. Section 2.3 gives a short survey of today’s
approaches to deriving and modeling context. Regarding the scope of our work, the
shortcomings of these approaches are that they either rely on a constantly available
backend infrastructure to perform the actual context recognition or derive context on
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a single embedded device. In contrast, the work presented in this chapter focuses on
context recognition that involves collections of resource-restricted smart objects. With
respect to other work on context recognition with smart objects, it tries to be more
general in that it covers all the major layers that are necessary to realize context-aware
services, from low-level communication issues to a programming model.

Shared Data Spaces. In our approach, shared data spaces – such as tuplespaces –
play an important role for cooperating objects because they provide a platform for the
exchange of sensory data and context information. Tuplespaces were originally used in
the field of parallel programming, where they serve as centralized data storage accessible
by various parallel processes. Such processes write tuples to and read data from the
space. The tuplespace helps to coordinate different processes on a single computer system
and decouples inter-process communication in time and space [GC92]. Because of the
latter properties, the tuplespace model is also of significance in distributed systems.
Distributed tuplespaces distribute the originally centralized tuplespace structure among
different nodes. There are distributed tuplespace implementations, such as L2imbo, that
operate on fast IP-based networks. In contrast, our implementation focuses on embedded
devices with severe resource-restrictions and dynamic networks that run on top of short-
range wireless networking protocols.

The Stanford Interactive Workspaces [JF01] project introduces a tuplespace based
infrastructure layer for coordinating smart objects in a room. This tuplespace is central-
ized and runs on a server in range of smart objects, whereas we distribute the tuplespace
among smart objects and do not assume that there is always a stationary server in wireless
transmission range.

Context-Aware Communication. Katz [Kat94] points out that “mobile systems
must be able to detect their transmission environment and exploit knowledge about their
current situation to improve the quality of communications.” The variety of sensors
carried by smart objects makes it possible to determine the current situation in which
communications take place with unprecedented accuracy. By considering such context
information in the design of communication algorithms, they become more aware of their
environment, and are therefore better suited for computing settings where the real-world
surrounding of nodes affects their communication.

Information about the location of nodes improves the performance of routing proto-
cols in mobile ad hoc networks [BCSW98]. Such location information is usually derived
on each single unit autonomously (e.g., by means of a single GPS sensor attached to it).
Consequently, determining the location of nodes requires no or only little data exchange,
whereas we concentrate on cooperative environments where the process of deriving con-
text information requires tight collaboration.

Beigl et. al [BKZ+03] reports on a networking protocol stack for context commu-
nication, and suggests considering situational context in order to improve its efficiency.
In their approach, contexts such as the battery level, the current processor load, and
link quality serve as indicators for adapting networking parameters. We do not focus
on such virtual-world parameters, but are more interested in adaptiveness based on the
real-world situation of objects. Furthermore, we concentrate on providing the distributed
infrastructure and high-level services that allow for this kind of adaptiveness.
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3.2 Solution Outline

The goal of this chapter is to show how smart objects can provide context-aware services
in cooperation with other augmented items in their vicinity. The solution of choice to
achieve this goal is to form groups of collaborating nodes that share each other’s resources
by means of an infrastructure layer for inter-object cooperation. This infrastructure layer
hides the distribution of sensory data between collaborating objects so that they appear
to applications as a single node accumulating the resources of all participating smart
objects. Grouping is not only a logic concept for writing applications, but has also its
physical representation on the networking layer. In other words, grouping serves as a
logic programming abstraction to ease implementation, but cooperating nodes are also
physically arranged into networking clusters. This considerably increases the efficiency
of cooperation because ad hoc communication – regarding both energy consumption and
time – is often the dominating cost factor in carrying out collaborative services. In our
approach, we group collaborating smart objects in one networking cluster in which nodes
communicate on a distinct broadcast channel. The main criteria for organizing smart
objects into clusters are their real-world context and application specific information. By
considering the context of smart objects in clustering nodes, the underlying networking
structures can better meet the requirements of context-aware applications. Figure 3.1
illustrates our idea of grouping collaborating nodes into distinct networking clusters.

1

2

3

Figure 3.1: Grouping of cooperating nodes: (1) cooperating nodes in a network of loosely-
coupled smart objects are (2) organized into distinct networking clusters. (3) Nodes in a
cluster bundle their resources and make them available for each other’s applications.

To realize collaborative context-aware services in the envisioned environments, we
present a software architecture for smart everyday objects consisting of a communication
layer, a layer for inter-object cooperation, a context layer, and an application layer. The
main tasks of these layers are (1) to help programmers in implementing collaborative
context-aware services, (2) to automatically generate code for smart objects from a high-
level description of context-aware applications, (3) to facilitate the exchange of sensory
data between smart objects, and (4) to provide efficient networking structures for context-
aware applications. Fig. 3.2 shows how these tasks have been addressed in our software
architecture. In the following, we give a more detailed overview of the different layers of
our architecture, and show how they influence the design of collaborative context-aware
services.
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Application
- basic application behavior
- adaptive application behavior 

Context and Perception
- access local sensors
- derive high-level context 

Context-Aware Communication
- context-based adaptiveness
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- SICL (Smart-Its Context Language)
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collaborating objects
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Figure 3.2: A software architecture for smart objects and its implementation.

Application Layer

The application layer supports programmers in implementing context-aware services.
Generally, context-aware applications have four parts: (1) basic application behavior,
i.e., functionality that does not depend on context changes, (2) adaptive application
behavior, which describes how an application reacts to changing situational context, (3)
a section that specifies how to derive context from local and remote sensor readings,
and (4) a part that specifies how to access sensors. We have implemented the Smart-Its
Context Language (SICL), which separates these concerns and encourages programmers
to write more legible and structured code (cf. Fig. 3.2). Given a description of the four
main parts of a context-aware service in SICL, a compiler automatically generates low-
level C-code for an embedded platform. The context recognition part of an application
specified in SICL usually operates on a set of cooperating objects, not on a single device.
As a result, an application programmer does not have to worry about how to retrieve data
from other objects or how to exchange context information. Instead, the programming
model provided by SICL hides these issues.

Context and Perception Layer

The context and perception layer derives the current situational context of a smart object
or that of a nearby person. How to access sensors and how to derive context information is
specified in SICL as part of an application. Given an SICL description, the SICL-compiler
then generates the actual code for the context and perception subsystem of smart objects.
The context layer is also responsible for providing information about an object’s context
to the application layer, which is then able to adapt according to this information (cf.
Fig. 3.2). In our current implementation, context information is represented as tuples
and the derivation of higher-level context information as tuple transformations. Tuples
representing sensory data or contextual information might originate from other smart
objects, and the results of a tuple operation might be of potential interest to other smart
objects nearby. The challenge is therefore to implement multi-sensor context awareness
on sets of cooperating smart objects.
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Support for Inter-Object Collaboration

We address this challenge of multi-sensor context awareness with an infrastructure layer
providing cooperating entities with a distributed data space (cf. Fig. 3.2). This data
space allows smart objects to share data as well as resources, and to fuse sensory data
originating from different smart objects. The data space has been implemented as a
distributed tuplespace. Its main purpose is to hide low-level communication issues from
higher layers, and it also provides a means to group cooperating objects. As the usefulness
of sensory data for deriving context usually decreases with increasing distance from the
data source – e.g., a sensor that is only two meters away from a user is usually much
better suited for deriving his/her context than a sensor that is 20 meters away – smart
objects that collaborate to determine a certain context are often in close proximity of
each other, for example in the same room or vicinity of a user. Cooperating objects can
therefore be grouped into a tuplespace that operates on a dedicated wireless channel,
which significantly increases the efficiency of tuplespace operations (cf. Sect. 3.5).

Communication Layer

The communication layer is responsible for low-level communication issues, such as de-
vice discovery, topology construction, connection establishment, and data transfer. As
a Bluetooth-enabled device platform [BKM+04] is used in our prototypical implementa-
tion, the communication layer consists in its basic form of a Bluetooth protocol stack.
Our platform for context-aware communication considerably extends this protocol stack
with mechanisms that adapt networking parameters according to results from the context
layer. Here, communication services contain rules for the context layer that describe how
to derive contexts relevant in communication protocols, and how to change communica-
tion parameters accordingly. For example, when smart objects find out that they are in
the same room (information that is derived by the context layer), the wireless network
topology can be automatically changed so that communication between these devices is
more efficient (cf. Sect. 3.6). We call communication services that take input from the
context layer into account context-aware.

We have prototypically implemented the presented software architecture for cooper-
ating smart objects on an embedded sensor node platform, the BTnodes, in order to
evaluate its effectiveness on the basis of concrete experiments. In the next sections, we
describe the individual components of our architecture and their interrelations in more
detail.

3.3 SICL – A Description Language for Context-Aware

Services

Developing context-aware services in a language that natively supports embedded plat-
forms (usually C) often leads to unnecessarily complex and error-prone code. To address
this issue, we have designed a high-level description language – the Smart-Its Context
Language (SICL) – which facilitates the development of context-aware services and ap-
plications. SICL programs usually operate on a set of cooperating objects, but hide much
of the complexity caused by such cooperations. In the following, we describe SICL and
its underlying concepts in greater detail.
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3.3.1 The Structure of an SICL Program

While developing a range of context-aware applications on embedded sensor node plat-
forms [BKM+04, SF03a], we found that they all have a similar recurrent structure. This
structure consists of four parts: (1) basic application behavior, (2) adaptive application
behavior, (3) access to local sensors, and (4) context recognition. By basic application be-
havior, we understand the subset of a context-aware application that does not depend on
context changes. For example, basic communication subroutines, code implementing sen-
sor protocols, and code for storing data in internal data structures belong in the category
of basic application behavior. In contrast, adaptive application behavior describes the
context-aware adaptiveness of an application, i.e. how an application reacts to context
changes. The third category deals with access to local sensors. It contains sensor access
strategies describing at what intervals or in reaction to which external events what kinds
of sensors are read out. Finally, context recognition makes up a substantial part of every
context-aware application, especially when it involves sensory data from many different
sources. The subset of an application responsible for recognizing context describes the
steps that are necessary to derive high-level context information from low-level sensory
data.

Unfortunately, the C programming language – which is the predominant language
for programming embedded platforms – does not encourage application programmers
to clearly separate the different concerns of context-aware applications identified above,
which often leads to illegible, unstructured and error-prone code. Furthermore, C does
not provide high-level programming constructs for describing how to derive context in-
formation from basic sensory data. As a result, C code often becomes unnecessarily
complex, and tends to distract programmers from concentrating on the core aspects of
recognizing context in cooperation with other nodes. On the other hand, C is a good
choice for implementing the basic application behavior of a context-aware service. This
is because C as a low-level programming language is well suited to manipulating internal
data structures on embedded platforms. Application components encapsulating sensor
protocols and access to communication primitives can also be more easily realized in a
language like C.

For the above reasons, we decided to design the description language SICL, which
aims at supporting programmers in the design of collaborative context-aware applications.
Given a description of a context-aware service in SICL, a compiler automatically generates
C code for smart objects. The description language SICL simplifies the implementation
of a context-aware application in the following ways:

• It separates basic application behavior from adaptive application behavior and
therefore leads to better structured code for context-aware applications.

• It allows an application programmer to specify the context-recognition process in
a clear and legible way in the form of simple tuple transformations.

• It provides a concise syntax for fusing sensory data from multiple smart objects.
In fact, the location of sensory data can be completely transparent for application
programmers.

• The adaptive part of an application, that is, how the application reacts to results
from the context recognition process, can be clearly formulated.
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smart object name;

%{
C declarations
%}

/* sensor access */
8: define [search policy] [location specifier] sensor name {

tuple type declaration;
sensor access function;
sensor access strategy;

};

/* context recognition */
15: func1(arg11, . . . , arg1m1 ), . . . , funcn(argn1, . . . , argnmn )

tup1 < field11, . . . , field1p1 > + . . . + tupq < fieldq1, . . . , fieldqpq >
→ tupq+1 < field(q+1)1, . . . , field(q+1)pq+1 >;

/* adaptive application behavior */
20: tup < field1, . . . , fieldp >→ func(arg1, . . . , argn);

%%

/* basic application behavior */
25: C code

Figure 3.3: The basic structure of an SICL program.

• SICL enables a programmer to specify how to access sensors.

Fig. 3.3 gives an overview of the main programming constructs of SICL, and shows
how they correspond to the previously identified subparts of context-aware applications:
(1) sensor access (cf. line 8 in Fig. 3.3), (2) context recognition (cf. line 15 in Fig. 3.3),
(3) adaptive application behavior (cf. line 20 in Fig. 3.3), and basic application behavior
(cf. line 25 in Fig. 3.3).

As mentioned above, SICL aims at hiding much of the complexity involved in realizing
cooperative context-aware service from an application programmer. The SICL program
depicted in Fig. 3.4, for example, consists in its original form – i.e., including the code
blocks for the basic application behavior omitted in Fig. 3.4 – of 40 lines of code. The
SICL compiler, however, generates 540 lines of C code from the given SICL program.
This indicates that on the communication and context recognition levels, the evaluation
of context recognition rules operating on a set of cooperating objects and the implemen-
tation of different sensor access strategies can get complicated. Of course, it would be
possible to reduce some of the complexity involved by implementing C library functions
that hide some of these lower level issues. However, an application programmer would
still have to deal with the internal data structures used to represent context information
and with many of the error conditions that can occur when smart objects cooperate with
each other. We would therefore like to argue that SICL provides a concise description of
the context recognition process operating on a collection of cooperating objects. This has
also been the main rationale for designing the SICL language: based on our own expe-
rience in implementing context-aware applications [SF03a], handling the representations
of context information and communication issues using C code can be highly complex.
Introducing a description language such as SICL is therefore meant to make it easier for
application programmers to realize collaborative context-aware services.
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smart object egg_box;

%{

#include "sensor.h"

#include "gsm.h"

%}

8: define callback sensor acceleration {

<type, subt, leng, accX, accY>;

void get_and_write_accel();

/* read out as often as possible */

best effort;

};

15: eggs_damaged(x,y)

=============================================

acceleration<t, s, l, x, y> => damaged<x, y>;

19: damaged<x, y>’ -> send_damaged_message_to_phone(x, y);

%%

23: void send_damaged_message_to_phone(s32* accel_x, s32* accel_y) {

...

}

Figure 3.4: A very simple SICL program that monitors the state of a smart product by
means of an acceleration sensor and sends a message to a mobile phone when the product
has been damaged.

Example Application. Fig. 3.4 depicts a concrete example of an SICL program;
this example is also used in the remainder of this chapter to illustrate further SICL
concepts. The purpose of the underlying application scenario is to monitor the state
of a smart product during transport and storage, and to notify its owner by sending a
message to the owner’s mobile phone when the product has been damaged (cf. Chap.
4 for a detailed description of how smart objects can access the capabilities of nearby
mobile user devices). In order to better illustrate the basic idea of our application, we
have chosen an egg carton as an example of a fragile product whose status needs to be
monitored. Products are augmented with active sensor-based computing platforms that
are equipped with accelerometers to detect when a product is damaged (cf. Fig. 1.1).
In SICL, sensor access statements (cf. Fig. 3.4 line 8) specify when and how to read
out sensors. In the example, accelerometers are accessed in a best effort strategy, i.e.,
they are sampled as often as possible. Because sensory data and context information
are represented as tuples, the context recognition process is specified in the form of tuple
transformations. Tuple transformations describe how context information is derived from
sensory data and low-level context information. In Fig. 3.4 line 15, for example, the
context damaged is derived from an acceleration sample if the measured acceleration
values exceed a previously defined threshold. An adaptation rule (see Fig. 3.4 line 19)
describes the adaptive part of our application and specifies an application’s reaction to
context changes. Here, a message is sent to a mobile phone when the context damaged
has been derived. Functionality that does not depend on context changes – i.e., the
basic application behavior – is given in ordinary C code. In the example application, the
function for sending a message to a mobile phone is part of the basic application behavior
(cf. Fig. 3.4 line 23).
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3.3.2 A Programming Abstraction for Collaborative Context-
Aware Services

Collaborative context recognition requires sensory data and contextual information to be
retrieved from remote objects. For example, if a smart artifact is interested in a certain
context but is not equipped with all the sensors necessary for detecting this context on
its own, it must obtain corresponding sensory data from nearby objects. The description
language SICL hides the distribution of sensory data, and hence allows programmers to
abstract from the communication issues underlying a collaborative context recognition
process. Using SICL, the locations at which sensory data are stored and retrieved can
become completely transparent for application programmers.

Figure 3.5: Cooperation in SICL: smart objects embed sensory data into tuples and put
them into their local tuplespaces; an SICL program operates on a federation of such
spaces – the distributed tuplespace established by cooperating smart objects.

This is achieved as follows. The rules of an SICL program describing the context
recognition process (see Fig. 3.4 line 15) operate on tuples that represent sensory data
and context information. When evaluating these rules, matching tuples are by default not
only searched for on the local node carrying out the transformation, but are retrieved from
a data structure shared by all the nodes it cooperates with. Sensor access statements
not only describe when to read out sensors, but also specify how sensor samples are
embedded into tuples and stored in the shared data space. This ensures that sensory
data are accessible from all cooperating nodes (see Fig. 3.5). Considering again the
example in Fig. 3.4, sensory data used for deriving the context damaged could also
be retrieved from other nearby objects. The status of the product could, for example,
also depend on the temperature of the room it is currently in. If the product itself is
not equipped with a temperature sensor, but there is another smart object nearby that
can provide the desired information, the following rule would automatically consider the
temperature reading of the remote node:

eggs_temperature_damaged(temp, status)

======================================

temperature<temp> => damaged<status>;

The shared data structure from which sensor tuples are retrieved has been imple-
mented as a distributed tuplespace that is established by cooperating objects. Each node
contributes a subset of its local memory to the shared data space and allows cooperating
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objects to store and retrieve data from it. This local space is called the local tuplespace of
that node. The shared data space is a confederation of these local spaces, and operations
on the shared data space involve all local spaces.

3.3.3 Basic SICL Programming Constructs

Sensor Access

Raw sensory data constitute the basic input for every context recognition process. In
SICL, sensor access statements describe how to deal with local and remote sensors. The
basic syntax of a sensor access statement is as follows:

define [search policy] [location specifier] sensor name {
tuple type declaration;
sensor access function;
sensor access strategy;

};

The location specifier in a sensor statement can be used to distinguish between local
and remote sensors. In case of remote sensors, a sensor access statement only contains a
tuple type declaration, and no access function or access strategy. However, the type of
both local and remote sensors must be explicitly specified in order for the SICL compiler
to ensure type safety. If the location specifier is omitted, a sensor is assumed to be local.

In our programming model, sensor readings are embedded into tuples and used in
transformations to derive new tuples that eventually represent higher-level context infor-
mation. The search policy specifies which sensor tuples are considered in tuple transfor-
mations. In the program in Fig. 3.4, for example, the keyword callback indicates that
only the most recently generated acceleration tuple is used in tuple transformations.

As sensor tuples are not generated in tuple transformations, their type – i.e., the
type of every field in a sensor tuple – must be explicitly specified. This allows the SICL
compiler to check for type safety in transformation rules, and to automatically derive
type information for newly generated tuples. The tuple type declaration in a sensor
access statement lists the types of all the components in a sensor tuple.

Following the type declaration of a sensor tuple, a function must be named that is
called in the program generated from an SICL description in order to actually access the
sensor. As low-level drivers for sensors are written using the C programming language,
this is a C function that has three main responsibilities: (1) it reads out the sensor, (2)
it embeds the sensory data in a tuple conforming to the type specified, and (3) it writes
the tuple into the data space in order to share the embedded sensory data with other
nodes.

As the last component of a sensor access statement, sensor access strategies determine
when to read out sensors. With respect to the time period between consecutive samplings
and the time at which to access sensors, we distinguish between the following strategies:

1. Best effort. Some sensors, for example accelerometers and microphones, monitor
environmental parameters that can change rapidly in relatively short time frames.
In such cases, the best effort strategy allows an application to access sensors as
often as technically feasible in order to monitor environmental changes accurately.
The above-mentioned function for reading out a sensor is thereby called whenever
possible.
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2. Fixed. In this sensor access strategy, there is a fixed time period between con-
secutive sensor samplings. For example, the statement every 2000 ms means that
the corresponding sensor access function is scheduled to be called every two sec-
onds. There are two ways to implement the fixed strategy on a microcontroller.
The first, and more precise one, is to use a timer and to access the sensor from
the corresponding interrupt handler. This ensures that an application accurately
conforms to the given time interval. In our prototypical implementation, however,
we have implemented a scheduler that repeatedly checks for functions that need to
be executed. The accuracy of such an approach is influenced by the execution time
of other scheduled functions.

3. Random interval. In order to avoid unwanted synchronization effects between
nodes, it is sometimes necessary to vary the time period between consecutive sensor
accesses. Such a behavior is supported by the random interval strategy, where a
time interval is specified out of which a value is randomly chosen. The statement
random [1000, 2000] ms is an example of this where the time between consecutive
readings is randomly distributed between one and two seconds.

4. Event-driven. In contrast to the need for regular sensor access, some sensors only
need to be read out under special circumstances – i.e., in case of certain internal
or external events. Event-driven sensor access can considerably reduce the number
of times a sensor needs to be sampled. It can therefore contribute towards reduced
energy consumption, as the process of sampling sensors often consumes significant
amounts of energy (cf. Tab. 2.3). Hence, especially when designed for resource
restricted smart objects, applications should aim at accessing sensors as seldom as
possible. Event-driven sensor access is specified using adaptation rules, and not
directly in sensor access statements.

The resource restrictions of smart objects play an important role in scheduling the
access to sensors. It should be kept in mind that reading out sensors needs both energy
and time. The energy consumption can be reduced using the previously mentioned event-
driven strategy for sampling sensors. But the time constraints on embedded platforms
can also make an accurate monitoring of environmental parameters difficult. Especially
if sensors need to be read out frequently with high sampling rates, smart objects may not
have sufficient time to communicate with other objects. This can impair the performance
of collaboration protocols if they depend on responses from all devices cooperating with
each other. A solution to this problem is to use two-processor tagging technologies (cf.
Sect. 2.2.3), where communication and sensor related tasks are handled by two separate
microcontrollers. From the perspective of an application, sensor sampling on such sys-
tems can be carried out asynchronously. Consequently, an application can issue a request
for sensory data that is transmitted to and executed by the microcontroller responsible
for sampling sensors. As requests for sensory data are carried out on a different micro-
controller than the application, it can still react to communication requests while sensors
are sampled. This is a significant advantage for collaborating smart objects because co-
operation naturally requires nodes to communicate with each other. With respect to the
performance of collaboration protocols it is therefore a considerable drawback if nodes
must wait for responses from other objects because they are blocked while reading out
sensors. However, the time needed to retrieve a single sensor sample is usually very short,
so that it does not significantly affect the performance of communication protocols. The
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problems increase if sensors have to be sampled at high rates of frequency over long time
periods in order to extract characteristic features from a data stream. In Sect. 3.6.4, we
discuss an example where microphones are read out at 40 kHz over time periods of one
second in order to extract a sensor feature indicating the level of noise in a room. Here,
it is advantageous that the application does not block while obtaining the sensor feature.

The BTnodes together with the TecO sensor boards [BZK+03], which were used in
our experiments, are a two-processor tagging technology. Hence, both the BTnodes and
the sensor boards are equipped with an individual microcontroller. The main part of the
application logic resides on the microcontroller of a BTnode.

Context Recognition

Context recognition in SICL is expressed in the form of tuple transformations. Tuple
transformations describe how tuples are transformed and new tuples are created. This
reflects the process of deriving high-level context information by fusing sensory data from
different nodes. In SICL, it does not matter at which specific smart object a tuple has
been created because the infrastructure layer for inter-object collaboration makes tuples
available to all collaborating nodes. That is, the context recognition process operates on
a shared data structure established by cooperating objects; newly generated sensory data
and derived context information are embedded into tuples and shared by means of this
distributed data space. The basic structure of a transformation rule is as follows:

func1(arg11, . . . , arg1m1), . . . , funcn(argn1, . . . , argnmn)

tup1〈field11, . . . , f ield1p1〉+ . . . + tupq〈fieldq1, . . . , f ieldqpq〉
→ tupq+1〈field(q+1)1, . . . , f ield(q+1)pq+1〉;

Let us first consider the expression under the horizontal separator line. The left-hand
side of this expression lists the tuples that must be available for the rule to be executed,
and the right-hand side specifies the tuple that is generated when the rule fires. More
specifically, the given tuples are tuple templates which are substituted by matching tuples
during the evaluation of a rule. By means of this substitution, the fields of tuples on the
left-hand side are given concrete values, which are used to generate the tuple on the
right-hand side.

Above the horizontal separator, a set of restricting functions can be specified that
operate on the fields of left-hand side tuples. Restricting functions serve two purposes:
First, the tuple transformation is only carried out for a concrete set of left-hand side
tuples if all of these functions return true. Second, the given functions, which must later
be provided in C code, can be used to calculate new fields for the tuple on the right-hand
side. If no functions are given, a transformation rule is executed whenever matching
tuples for the templates on the left-hand side are available.

The following is an example of a transformation rule in SICL:

is_critical(x, y, c, status)

=========================================================

acceleration<x, y> + criticalAccel<c> => damaged<status>;

The example belongs to the application introduced at the beginning of this section,
and is designed to calculate the status of a product based on accelerometer measure-
ments. In the above rule, a tuple representing the context damaged is derived out of



3.3. A DESCRIPTION LANGUAGE FOR CONTEXT-AWARE SERVICES 59

a criticalAccel tuple and an acceleration tuple. How acceleration tuples are generated is
specified by sensor access statements; the criticalAccel tuple contains only one field repre-
senting an upper bound for acceleration values and is written into the shared data space
during initialization. If acceleration measurements are above the criticalAccel value, the
tagged product has been damaged. The function is critical is a C function returning a
boolean value and checks if the measured acceleration is above the threshold. The tuple
transformation rule only fires if is critical returns true. The function also generates a
new field, status, that is used in the newly generated result tuple. The variable status
could for example indicate the level of damage inflicted on the augmented product.

The program generated from an SICL description continuously evaluates rules. As
a result, the problem arises that if a rule fires once, it will also fire in all consecutive
evaluations. To address this problem, SICL offers a syntax to mark tuples that are to be
deleted after a rule has been successfully executed.

The types of all tuple templates in transformation rules must be given either implic-
itly or explicitly. The type of tuples can be explicitly declared either in sensor access
statements or in tuple type declarations (see appendix A for a complete syntax of SICL).
If the type of a tuple is not explicitly declared, it must be possible for the SICL compiler
to derive type information from other tuples in a transformation rule. Otherwise, the
SICL compiler will not accept a program because it does not conform to the context
conditions of SICL.

Adaptive Application Behavior

Adaptation rules represent the adaptive part of a context-aware application in that they
describe how an application reacts to context changes. An adaptation rule consists of a
tuple template on the left hand side, which stands for a certain situational context, and a
function on the right hand side that is executed when a corresponding context is derived:

tup〈field1, . . . , f ieldp〉 → func(arg1, . . . , argn);

Basic Application Behavior

The basic application behavior of a smart object is provided in form of ordinary C code.
SICL allows programmers to embed corresponding C declarations and definitions into an
SICL program. The SICL compiler generates C code from the other parts of an SICL
description, which is then compiled and linked with the C code representing the basic
application behavior.

3.3.4 Improving the Effectiveness of Tuple Transformations

SICL provides programming concepts for accelerating the evaluation of transformation
rules. In the following, we consider two mechanisms to improve the efficiency of such
rule evaluations: (1) reducing the search space for tuples, and (2) push-based reception
of tuples.

Reducing the search space

The search space for tuples can be reduced by restricting the scope of tuple declarations
to the local tuplespace of the node carrying out an SICL program. As a result, when
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a transformation rule is evaluated, tuples are only searched for on the local node. As
we will see in Sect. 3.4, this has two core advantages: First, it reduces the amount of
communication and therefore saves energy. Second, it accelerates rule transformations
because the time needed for local tuplespace operations is significantly lower than the
time needed for operations on a distributed tuplespace.

Restricting the search scope is particularly sensible with respect to certain types of
sensory data. Accelerometer samples, for instance, are useful to characterize the situation
of the object they are attached to, but are less meaningful for remote objects. The egg
carton application introduced above is an example of this observation because only local
accelerometer samples are useful to detect the current status of the augmented egg box.
Whether it is reasonable to restrict the search space for tuples therefore largely depends
on the specific application and the kind of sensors used. In the case of temperature
sensors or microphones, for example, samples measured at remote nodes might be as
valuable as local sensor readings.

The scope of tuples in SICL can be restricted in individual tuple type declarations
and in sensor access statements. The keyword private indicates that the scope of a tuple
is bounded to the local tuplespace:

define private sensor acceleration { <accX, accY>; ... };

define private tuple criticalAccel { <Trsh>; };

Push-based reception of tuples

By default, transformation rules are continuously evaluated by substituting tuple tem-
plates from the left-hand side of a rule with matching tuples from the distributed data
structure. After substitution a check is made as to whether the rule conditions hold,
i.e., whether all restricting functions return true for a given set of instantiated tuples.
Repeated requests for tuples on the shared data space can thereby cause an unnecessary
communication overhead if matching tuples change rarely. This is because consecutive
requests would repeatedly return the same or no results.

To address this issue, we introduced the concept of callback tuples. If a tuple is de-
clared as a callback tuple, the node carrying out an SICL program registers a callback
for the given tuple template at all the nodes it cooperates with. If a tuple of the spec-
ified type is then remotely generated, it is automatically sent to the node that initially
registered the callback. As a result, callback tuples are especially useful for sensory data
or context information that is generated or changes rarely. Here, they can considerably
reduce the amount of communication necessary to evaluate a transformation rule, be-
cause a node executing an SICL program does not need to query for such tuples actively.
On the other hand, if callback tuples are generated frequently, remote nodes could send
matching tuples with such high rates that it would be difficult for a smart object to
process the corresponding data. If a tuple is declared as a callback tuple, only the most
recently received instance of a matching tuple is considered in a transformation rule. This
is another major difference to non-callback tuples. The following depicts an example of
declaring callback tuples:

define callback tuple criticalAccel { <Trsh>; };

private callback accelAlarm;
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In line 1, criticalAccel is declared as a callback tuple because the threshold for accel-
eration measurements above which an augmented product is damaged usually changes
rarely. Consequently, in a tuple transformation involving a criticalAccel tuple, it would
not make sense to waste energy by searching repeatedly for a matching tuple in the
shared data structure. As can be seen in line 2 of the above example, private and callback
declarations can also be combined with each other. As a result, the callback for a private
tuple is only registered on the local tuplespace of the smart object carrying out the SICL
program.

3.4 The Context Layer

The context recognition process described in an SICL program must be translated into
code that is executed on smart objects. The context layer is then responsible for actually
accessing sensors and for carrying out the tuple transformations previously specified in
SICL. It manages the retrieval of sensory data and contextual information from remote
nodes, derives new contexts, and schedules the access to local sensors. In this section, we
will show how context descriptions in SICL are transformed into actual instructions for
the context layer of smart objects.

3.4.1 Preliminaries

In our description of the context layer we use the following notations. N = {n1, . . . , nm}
is a set of cooperating smart objects with m ∈ N and m ≥ 2. We refer to the local
tuplespace of a node n ∈ N as L(n), and to the distributed tuplespace shared by all nodes
in N as D(N). A tuplespace T is a multiset of tuples. A tuple t = (f1, . . . , fp), p ∈ N,
p ≥ 1 is an array of typed fields. A typed field f = (t, v) ∈ N×N is a pair consisting of a
type and a value. Furthermore, type : N×N → N is a function that returns the type of a
field, and value : N×N → N a function that returns the value of a field. If f = (t, v) is a
field, then value(f) = v and type(f) = t. A field f is formal if and only if value(f) = 0.
A tuple t = (f1, . . . , fp) is formal if and only if ∃i ∈ {1, . . . , p} : value(fi) = 0. Formal
tuples are also referred to as tuple templates. A non-formal tuple t1 = (f11, . . . , f1p1)
matches a tuple template t2 = (f21, . . . , f2p2) if and only if p1 = p2 ∧ ∀i ∈ {1, . . . , p1} :
(type(f1i) = type(f2i) ∧ (value(f2i) = 0 ∨ value(f1i) = value(f2i))).

We distinguish between the following operations on a tuplespace: scan, count, write,
take, read, and consumingScan. The function scanT (templ) returns all tuples match-
ing the given tuple template templ on the tuplespace T . scanT (templ) = {t ∈ T : t
matches templ ∧ t is not formal}. scanT returns a multiset, i.e., elements can occur
more than once. countT (templ) returns the number of tuples in T matching the template
templ. countT (templ) = |scanT (templ)|, where again multiple occurrences are separately
counted. writeT (tuple) stores the tuple tuple into the tuplespace T : T := T ∪ {tuple}.
Remember that T is a multiset and that therefore multiple occurrences are relevant.
takeT (template) removes one tuple matching template from the shared data structure T
and returns the matching tuple as result; if there is no matching tuple, takeT (template)
does not have any effect on the data structure T . readT (template) returns exactly one
tuple matching template from the data space T if there is at least one matching tuple
in T . consumingScanT (templ) has the same effect as scanT (templ) but also removes all
tuples found from the data structure T .
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In the following, we present the algorithms for evaluating tuple transformation and
adaptation rules as they are carried out by the context layer. The input for the context
layer consists of (1) a list of tuple transformation rules, (2) a list of adaptation rules,
and (3) the sensor access strategies previously specified in an SICL program. The SICL
compiler is responsible for translating the description of a context recognition process
given in SICL into instructions for the context layer of a smart object (cf. Fig. 3.6). We
refer to the list of tuple transformation rules as (r1, . . . , rp), p ∈ N, p ≥ 1. A transfor-
mation rule rk, k ∈ {1, . . . , p} has the form rk = tk1 + . . . + tkqk

→ tk,qk+1, qk ∈ N and a
list of associated restricting functions Fk = (fk1, . . . , fk,sk

), sk ∈ N. The list of restricting
functions Fk for a rule rk can be empty.

The context layer also possesses information about the type of tuples, and can there-
fore determine whether a tuple has been declared as a private or callback tuple. The
SICL compiler ensures that the type information of all tuple fields are known. For any
transformation rule t1, . . . , tq → tq+1 the context layer therefore knows the types of all
fields in t1, . . . , tq+1. It can hence use these tuples as tuple templates to issue queries on
the underlying shared data structure. The same is true for adaptation rules.

Besides type information, the context layer also knows about the field identifiers used
in transformation rules to describe which fields of left-hand side elements are used to
generate resulting tuples. Consider the following simple SICL example:

define tuple temperature { <temp>; };

define tuple acceleration { <accx, accy>; };

temperature<t> + acceleration<x,y> => temp_accel_pair<t, x>

Here, t, x, and y are field identifiers. They determine how the fields of a concrete
temperature and acceleration tuple are used to generate a temp accel pair tuple. It is
important to understand the difference between field identifiers and type information.
Type information is either explicitly given in tuple declarations, or implicitly derived
by the SICL compiler. In the above example, the type information of temperature and
acceleration tuples is explicitly stated in lines 1 and 2. If there is no explicit declaration
of the tuple temp accel pair, its type information would be generated from the types of
temperature and acceleration. As a result, the deduced type for temp accel pair would
be 〈temp, accx〉.

In the following, a node n ∈ N is the node carrying out the SICL program that
we consider; each of the cooperating nodes in N , however, can execute its own SICL
program.

Context recognition 
in SICL

SICL 
compiler

Instructions for the 
context layer in C

Microcontroller 
program

Basic application 
behavior in C

C compiler
and linker

Figure 3.6: Given a description of a context-aware service in SICL, the SICL compiler
generates C code that is translated into a program for a smart object’s microcontroller.
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3.4.2 Initialization

Before a smart object starts evaluating tuple transformation and adaptation rules, it ini-
tializes its context layer. A core responsibility of the initialization routine is to register
callbacks on the shared data structure for all tuples that have been previously specified
as callback tuples in SICL (see algorithm 1). As a result, whenever a matching tuple
is generated at one of the cooperating smart objects, this tuple is transmitted to the
augmented item that registered the callback. For every callback tuple there is an inter-
nal data structure that contains a copy of the last occurrence of a tuple matching the
callback template. In other words, the callback function associated with a callback tem-
plate merely copies matching tuples received from other objects into this internal data
structure.

During initialization, the context layer also registers functions for accessing sensors at
the scheduler of a smart object. The scheduler is responsible for invoking functions at the
time specified (e.g., every 2000 milliseconds) or as often as possible. This functionality
is used to implement the previously-introduced sensor access strategies.

Algorithm 1: Initialize callbacks
Input:

(r1, . . . , rp): list of tuple transformation rules
N: set of cooperating nodes
n ∈ N : node carrying out the SICL program

for k := 1 to p do
for i := 1 to qk do

if tki is a callback tuple then
if tki is a private tuple then
register callback for tki at local tuplespace L(n);

else
register callback for tki at tuplespace D(N);

end if
end if

end for
end for

3.4.3 Tuple Transformations

After initialization, the context layer continuously evaluates the tuple transformations
and adaptation rules contained in an SICL program. Rules are evaluated in the same
order as they are given in the SICL description.

The algorithm responsible for evaluating transformation rules (see algorithm 2) first
classifies the tuples of a rule into three different categories: callback tuples, private tu-
ples, and tuples that are neither private nor callback tuples. Afterwards, it first searches
for matching callback tuples, second for private tuples, and only then does it consider
the remaining tuples. The reason for this approach is that the effort required for search-
ing matching tuples increases from category to category: When tuples associated with
a registered callback are generated at any of the cooperating nodes, a copy of these
tuples is transmitted to the object carrying out the SICL program and stored in its
above-mentioned local data structure. Hence, during rule evaluation only this internal



64 CHAPTER 3. COOPERATION AMONG SMART EVERYDAY OBJECTS

data structure needs to be checked, which takes place very quickly and does not require
additional communication.

Algorithm 2: Evaluate tuple transformation rule
Input:

t1 + . . . + tq → tq+1: tuple transformation rule
F = (f1, . . . , fs): list of restricting functions
N: set of cooperating nodes
n ∈ N : node carrying out the SICL program

Output:
R: set of generated tuples
R := ∅; A := ∅; B := ∅; C := ∅;
for i := 1 to q do

if ti is callback tuple then
A := A ∪ ti;

else if ti is private tuple then
B := B ∪ ti;

else
C := C ∪ ti;

end if
end for
for all t ∈ A do

if callback routine for t has not been called then
return;

else
Mt := most recently received tuple matching t

end if
end for
for all t ∈ B do

if F is empty then
20: Mt := readT (n)(t);

else
22: Mt := scanT (n)(t);

end if
if Mt = ∅ then

return;
end if

end for
for all t ∈ C do

if F is empty then
30: Mt := readT (N)(t);

else
32: Mt := scanT (N)(t);

end if
if Mt = ∅ then

return;
end if

end for
R := create tuples(Mt1 , . . . ,Mtq);
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Searching for data matching a given private tuple also causes little time overhaed, but
requires the local tuplespace to be searched. The most costly operations for searching
tuples are those executed on the shared data structure, i.e., operations that involve all
cooperating objects. The algorithm for evaluating rule transformations therefore only
carries out such operations if tuples matching all local and callback tuples have already
been found. This helps to reduce the amount of communication necessary to check rules.

As a result, private tuples and callback tuples can also be exploited deliberately by
application programmers to reduce the communication overhead and hence the energy
consumption induced by rule evaluations. As long as there is a private tuple in a transfor-
mation rule with no matching tuple currently in the local tuplespace, no communication
with other nodes is carried out to evaluate the rule. As callback tuples are transmitted by
means of a callback mechanism, at least there is no necessity for communication during
rule evaluations.

When matching tuples for all tuple templates on the left-hand side of a rule have
been found, result tuples as specified by the right-hand side of a transformation rule
can eventually be generated (see algorithm 3). Afterwards, result tuples are written
into the local tuplespace L(n), and are therefore shared by means of the federation of
local spaces D(N) with other objects. An SICL rule determines exactly how result tuples
are created. This process is also more formally described in algorithms 3 and 4, which
generate result tuples from a list of sets M1, . . . ,Mq containing the previously-retrieved
matches for left-hand side tuples of a transformation rule.

Algorithm 3 generates all possible combinations of matching tuples, tests whether a
combination satisfies all restricting functions, and generates a result tuple if the test was
successful. Equal results are filtered out by the algorithm. However, every combination of
tuples in M1, . . . ,Mq can potentially create a different result. An application programmer
should keep in mind that this means that as many as

∏
i=1...q |Mi| results can potentially

be generated in a single successful transformation. Due to the resource restrictions of
smart objects, this can be a serious problem because it can cause nodes to run out of
memory, which might lead to the silent deletion of tuples. To cope with this problem,
the context layer provides the following concepts: (1) callback tuples, (2) restricting
functions, and (3) mechanisms for reducing the number of matching tuples.

• Callback tuples. If there are many matches for a left-hand side tuple in the
shared data space, such tuples can be declared as callback. This means that only
the most recently generated tuple of that form is considered in a transformation.
For a tuple ti that is declared as callback the cardinality of Mi is therefore always
either zero or one.

• Restricting functions. Alternatively, the amount of tuples generated can be
reduced by restricting functions. If a transformation rule has conditional functions,
the context layer always checks whether a combination of left-hand side tuples
satisfies all of these functions. If this is not the case, no new tuple is generated for
a given combination.

• Reducing the number of matching tuples. If there are no restricting functions
associated with a rule (F is empty), the context layer retrieves only a single match
for every left-hand side tuple of a transformation rule. This can be seen in algorithm
2 lines 20, 22, 30, and 32, where the read instead of the scan operation is called if
the set of restricting functions is empty. Hence, for all tuples ti from the left-hand
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side of a transformation rule, Mi contains at most one element. Consequently, when
the transformation rule fires, only one result tuple is generated. We have made this
design decision because of the memory constraints of smart objects, and in order
to reduce the amount of generated tuples. Another reason is the communication
overhead involved in retrieving multiple tuples from remote nodes.

Algorithm 3: create tuples
Input:

t1 + . . . + tq → tq+1: tuple transformation rule
F = (f1, . . . , fs): list of restricting functions
M1, . . . ,Mq: lists of tuples matching t1, . . . , tq

Output:
R: set of generated tuples

R := ∅;
for j := 1 to q do

currentCombination[j] := 0;
end for
do forever

changeNext := true;
i := 1;
while changeNext = true do

currentCombination[i] := currentCombination[i] + 1;
if (currentCombination[i] ≥ |Mi| then

if i = q then
return R;

else
currentCombination[i] := 0;
changeNext := true;

end if
else

changeNext = false;
end if
if satisfies funcs(F , M1[currentCombination[1]], . . . ,

Mq[currentCombination[q]]) do
t = create tuple(F , M1[currentCombination[1]], . . . ,

Mq[currentCombination[q]]);
R := R ∪ {t};

end if
i := i + 1;

end while
end forever

Algorithm 4 shows how a concrete combination of left-hand side tuples is used to
generate a result tuple. It starts by copying the template of the resulting tuple. How
to set the values of fields in the result tuple is specified by the field identifiers used in
transformation rules. If the field identifier of a left-hand side tuple is equal to a field
identifier of the resulting tuple, the value of the field in the result tuple is assigned the
value of the field of the corresponding tuple in the current tuple combination. For the sake
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of conciseness, algorithm 3 neglects the role of restricting functions in tuple generations.
In our prototypical implementation, the values of fields of a resulting tuple can also be
generated by a restricting function. In this case, the arguments for calling restricting
functions are determined in a similar fashion by substituting function arguments with
field values of tuples in the current tuple combination. Which fields are used for which
arguments is again determined by comparing field identifiers.

Algorithm 4: create tuple
Input:

t1 + . . . + tq → tq+1: tuple transformation rule
m1, . . . ,mq: current set of tuples matching t1, . . . , tq
∀i ∈ {1, . . . , q + 1} : fidi1, . . . , f idipi

:
field identifiers for tuple ti as given in SICL program

Output:
t: newly generated tuple

t := copy(tq+1);
for i := 1 to pq+1 do

for j := 1 to q do
for k := 1 to pk do

if fidjk = fidq+1,i then
set value of ith field in t to value of kth field in mj;

end if
end for

end for
end for

3.4.4 Adaptation Rules

Adaptation rules describe how a smart object reacts to context changes. They consist
of a tuple template, typically representing a certain context, on the left-hand side of a
rule and a function on the right-hand side. The context layer evaluates adaptation rules
continuously in that it repeatedly searches for tuples matching the left-hand side tuple. If
a matching tuple has been found, the field values of this tuple are used as arguments for
calling the function on the right-hand side of the rule. The values of which fields are used
as arguments in a function call are again determined by comparing field and argument
identifiers. The adaptation rule below has been taken from the example introduced in
Sect. 3.3.1. It states that when a damaged tuple is generated, the value of its first field
is used as the first argument and the value of its second field as the second argument in
a call to the send damaged message to phone function. This is because of the matching
identifiers x and y on both sides of the adaptation rule. The SICL compiler ensures
that all arguments necessary to call the function on the right-hand side can be obtained
from left-hand side tuples. In order to prevent adaptation rules from being continuously
executed, SICL provides a syntax to automatically delete tuples after a rule has been
successfully evaluated. (This is the semantics of the apostrophe in the example below.)

damaged<x, y>’ -> send_damaged_message_to_phone(x, y);
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3.4.5 Improving Rule Evaluations

With respect to the context layer, a major concern is to keep the cost of rule evaluations
as low as possible. In Sect. 3.4.3, we have already shown how an application program-
mer can decrease the communication overhead by using callback or private tuples, and
transformation rules without restricting functions. To further decrease the amount of
communication required to evaluate rules, our prototype implementation for the BTnode
embedded device platform tries to reduce the number of scan operations carried out on
the shared data structure by replacing them with count and read operations if possible.
This is because – as shown by the evaluation in Sect. 3.5.4 – scan operations are on
average more expensive than count and read operations.

For example, in algorithm 2 lines 22 and 32 the context layer searches for matching
tuples on the whole shared data structure using the scan operation. However, the scan
method does not have to be called immediately. Instead, we first check by means of the
count method whether the tuples necessary to execute a transformation rule are currently
in the distributed tuplespace. Only after it is clear that all required tuples are available are
the tuples actually retrieved. The reason for such an approach is that in most cases rules
are evaluated much more frequently than they are executed. Our approach decreases the
communication overhead for checking whether a rule can be executed because the count
operation does not actually retrieve matching tuples (such as the scan operation) but
merely the number of matching tuples. However, the presented variation for evaluating
rules can also be counterproductive if rules are frequently executed. This is because in the
presented approach both scan and count operations must be carried out in a successful
rule evaluation.

Another improvement of the initial algorithm is not to search for tuples repeatedly
that have been already found in a previous unsuccessful rule evaluation. To illustrate
this approach, consider a transformation rule t1 + t2 → t3 that depends on two non-
private and non-callback tuples t1 and t2. Now, if a matching tuple for t1 has been
found during a previous evaluation of the rule but there was no match for t2, the context
layer only searches for tuples matching t2 in consecutive evaluations. The goal is to
prevent the context layer from searching successfully for the same tuple again and again.
However, the downside of this approach is that if all tuples have been found after several
evaluations, it must be ensured that tuples that have been previously found are still in
the shared data structure. The approach is therefore only beneficial if rules are evaluated
much more frequently than they are actually executed.

Other mechanisms to decrease the effort for rule evaluations are hidden in the low-
level protocols for querying the distributed data structure. Sect. 3.5 contains an in-depth
description of these protocols and their evaluation.

3.4.6 Performance Evaluation

In this section we present an experimental evaluation of the context recognition layer.

Experimental Setup and Restrictions

The experimental data presented in this section were obtained based on an implementa-
tion of the context layer for the BTnode embedded device platform [BKM+04]. BTnodes
communicate with each other using the Bluetooth communication standard. Nearby
Bluetooth units can form a piconet, which is a network with a star topology of at most 8



3.4. THE CONTEXT LAYER 69

active nodes. Furthermore, Bluetooth distinguishes master and slave roles. The master
of a piconet is the node in the center of the star topology; slaves cannot communicate di-
rectly with each other but only via the master. The master also determines the frequency
hopping pattern of a piconet and implements a TDD (time division duplex) scheme for
communicating with slaves. Consequently, a slave can only transmit data when it was
previously addressed by the master, and only the master can broadcast data to all units
in a piconet. The frequency hopping pattern of a piconet implements a dedicated chan-
nel. As a result, multiple piconets can coexist with each other in the same area with
only little interference. Multiple piconets can form so-called scatternets. In a scatternet,
bridge nodes participate in more than one piconet and switch between piconet chan-
nels in a time division multiplex (TDM) scheme. The Bluetooth standard specifies a
host controller interface (HCI) that can be used to access the capabilities of Bluetooth
communication modules from a microcontroller. Above this layer there is a suite of pro-
tocols that deal with the transmission of data between Bluetooth devices, for example
the L2CAP (Logical Link Control and Adaptation Protocol) and RFCOMM protocols.
The L2CAP protocol provides connectionless and connection-oriented data services, and
is responsible for data segmentation and reassembly. The RFCOMM protocol emulates
a serial connection between Bluetooth devices. In the scope of this dissertation, we have
prototypically implemented a Bluetooth protocol stack for the BTnodes.

1

2

Figure 3.7: The experimental setup: a subset of the BTnodes (1) and sensor boards (2)
used in our experiments.

In our experiments regarding the context layer, BTnodes that want to cooperate with
each other are grouped into a single cluster. Sect. 3.5 and Sect. 3.6 explain this approach
with respect to smart environments and present a corresponding algorithm for grouping
nodes. As the implementation of scatternets on the BTnode revision we used is rather
unreliable, producing many lost packets and unpredictable disconnections, we consider
only piconet topologies in the evaluation of the context layer. As a result, cooperating
nodes communicate with each other over at most two hops. Piconet topologies also have
a restriction regarding the number of nodes that can participate in them. With respect to
the BTnodes, only seven nodes can reliably communicate in such a topology – although
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according to the Bluetooth standard a piconet can have up to eight active devices. The
Bluetooth modules on the BTnodes also have other practical restrictions. For example,
packets that are sent via broadcasts to other nodes in a piconet are transmitted five
times; mechanisms to change that behavior are not supported by the Bluetooth modules
used in our experiments although they are specified in the Bluetooth standard.

Another important restriction is that the speed of the serial line on a BTnode limits
the throughput of the communication technology. Although Bluetooth modules transmit
data over the air at 1 Mb/s, if the microcontroller does not send the data to the Bluetooth
module at that speed, this limits throughput. On the BTnode platform, we have used a
maximum speed for the serial interface of 230.4 kbit/s in our experiments. Furthermore
– as also reported by other researchers [LDB03]– the general throughput of the BTnodes
using small L2CAP packets is significantly below the theoretically achievable throughput.
If data are streamed, we achieve data rates of about 37.4 kbit/s with our implementation.
Considering all these issues, it should be kept in mind that the measurements in this
section present results from a concrete practical system. (Please refer to Sect. 3.5 for a
comparison of experimental results with results from simulation experiments.) Figure 3.7
depicts our experimental setup, i.e., BTnodes and sensor boards that are the foundation
for the experiments described in this chapter.

Initialization

During initialization, every smart object participating in the context recognition process
registers callbacks at the data space shared by cooperating objects. This is done for all
the callback tuples in the SICL program the smart object is executing. In the case of
dynamic groups, these callbacks must be removed from nodes leaving the shared data
structure and registered at objects joining the group. Fig. 3.8 depicts the amount of time
needed for registering a single callback tuple at the shared data space. As can be seen, the
effort required for this operation depends on the number of objects currently cooperating
with each other as well as the size of the tuple template for which a callback is registered.
Because of our choice of the BTnodes as the device platform for our experiments, the
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amount of time needed for registering callbacks also depends on the type of node issuing
an operation. This is because Bluetooth is a communication technology that distinguishes
between two types of nodes: masters and slaves. The master node is the device in the
center of a piconet topology; the other nodes are slaves. As the master can reach all
of its slaves in a single hop but slaves need two hops to reach all nodes in a piconet,
registering callbacks is more efficient for masters. The time difference in registering
callback tuples from master and slave nodes is shown in Fig. 3.8. It can also be seen
that local operations account for only a small fraction of the overall time required by the
initialization procedure: if there is only one device present, registering a callback tuple
is almost instantaneous. This is because operations that are executed on the local data
structure are very efficient as a result of the severe memory constraints of smart objects.
As only a relatively small number of tuples can be stored in the local tuplespace, search
operations for tuples and the removal of tuples of a specified type can be realized very
effectively.

In the above experiment, a single smart object issued the operation for registering a
callback template and the other nodes served its requests. However, in practice all nodes
access the underlying distributed data structure simultaneously in order to evaluate the
context recognition rules specified in their own SICL programs. In order to take account
of these practical constraints, we conducted an experiment where each of the cooperating
nodes continuously registers and deletes callback tuples. Fig. 3.9 depicts the number of
such operations that can be carried out on the underlying data structure in one minute.
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Figure 3.9: Number of register and delete callback calls carried out by all cooperating
nodes in t = 1 min versus the number of nodes cooperating with each other.

With respect to cooperation, the master node coordinates the requests of other nodes
and ensures fairness among cooperating entities. I.e., if all nodes continuously access
the shared data space, every node can carry out an equal number of operations. In
our prototypical implementation, the master executes the requests from all its slaves in
a round-robin-like fashion. As the master node carries out an SICL program itself, it
ensures that slaves can interrupt its own program by means of adaptive fairness slots.
Fairness slots determine how many slots a master node waits for requests from remote
nodes before starting a new operation itself. In Bluetooth, the master node is predestined
as coordinator because all operations in a piconet topology involve the master. This is
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because a piconet is a star topology with the master in the center, and slave nodes must
therefore route packets via the master in order to reach other slaves.

The Cost of Rule Evaluations

In the following, we try to estimate the effort for evaluating tuple transformation rules
of the form t1 + . . . + tq → tq+1.

Private tuples. When estimating the cost of tuple transformations, the effort re-
quired for carrying out operations locally can be neglected compared to operations that
involve communication. This is because the access to local tuples is relatively fast (usu-
ally in the range of a few milliseconds) as a result of the severe memory restrictions of
smart objects. Hence, operations that involve private tuples contribute only a very small
fraction to the overall costs of tuple transformations.

In our implementation, the time needed to search for matching private tuples depends
on the amount of tuples stored in the local tuplespace and their similarity to the tuple
template they are matched against (if tuples resemble each other but do not completely
match, in general more tuple fields have to be compared with each other). In an exper-
iment, a local data space with a capacity of 100 tuples and a maximum of 600 fields –
amounting to a size for the local space of approximately 8.5 kB – was used to collect data
about the performance of operations with private tuples. In order to estimate the worst-
case scenario for searching the data space, the time needed for a scan(templ) operation
was measured using the local tuplespace filled with 90 matching tuples. The template
templ had 6 fields, the scan(templ) operation therefore returned an array with 90 tuples
with 6 fields per tuple. Under these – worst-case – circumstances the average time for a
scan operation is about 14 ms. A more realistic scenario with 10 matching tuples led to
time consumption of 1.5 ms per scan operation. In our discussion about how to improve
rule evaluations (cf. Sect. 3.4.5), we mentioned that other operations than scan can be
used to check for tuples in the shared data space. Considering again the previous ex-
perimental setup (10 matching tuples), read and take operations for private tuples take
only 0.1 ms on average. These figures confirm our assumption that local operations are
insignificant compared to operations involving communication.

Callback tuples. When a smart object in a group of cooperating smart artifacts
generates context information or sensory data matching a callback tuple, this data is
transmitted to the object that registered the callback. In other words, if any of the
tuples t1, . . . , tq is a callback tuple, corresponding context or sensory data are transferred
in a push-based fashion. The time needed for transmitting callback tuples in such a
way depends on the number of nodes cooperating with each other as well as on the
number of hops over which a matching tuple has to be transmitted. As a piconet is a
two hop topology, data is sent over at most two hops. In Fig. 3.10 it is shown how
the number of collaborating nodes and the number of hops affect the time for delivering
callback tuples from the smart object generating context data to the node that registered
a corresponding callback. In our implementation, we have realized a protocol where
the reception of callback tuples is acknowledged. While this implementation is useful
to evaluate the effectiveness of callback tuples, the protocol could be streamlined for
better performance. For instance, as the Bluetooth modules themselves should provide a
reliable data delivery service, it should not be necessary to acknowledge the reception of
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Figure 3.10: Average time for delivering callback tuples over one and two hops vs. the
number of cooperating nodes.

application data packets. Such improvements could be realized in a system beyond the
scope of our research prototype.

Non-private and non-callback tuples. If one of the templates t1, . . . , tq is neither
a callback nor a private tuple, the context layer must search for matching data on the
entire shared data structure. The evaluation of transformation rules containing such
tuples therefore requires communication among cooperating nodes.

Fig. 3.11 depicts the amount of time required to search for non-private and non-
callback tuples on the shared data space. In the underlying experiment, we embedded
context data into a tuple with 3 fields and distributed tuples on remote nodes in such a
way that there was always exactly one matching tuple on exactly one of the remote nodes.
Furthermore, the operations were issued directly by the coordinator node. It can be seen
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that the read and countN functions outperform the scan operation under the described
circumstances (i.e., even if there is only one matching tuple). Sect. 3.5 contains a thor-
ough description end evaluation of the underlying communication protocols. However,
with respect to our evaluation of tuple transformations, it is only important that the
scan operation consumes more time than calls to read and countN . This performance
difference also increases with an increasing number of matching tuples found on remote
nodes because a scan operation always retrieves all matching tuples. In order to illus-
trate this effect, we have more closely investigated the performance of a scan operation
by distributing up to 2 matching tuples on every one of 7 remote nodes. Fig. 3.12 shows
how the time required by a single scan operation depends on the number of matching
remote tuples. The effect of an increased effort with an increased number of matching
tuples is considerably aggravated if matching tuples are not equally distributed on nodes
(cf. Sect. 3.5).

 

0

 200

 400

 600

 800

 1000

N
u

m
b

er
 o

f c
o

u
n

tN
 c

al
ls

Number of devices
2 3 4 5 6 7

Figure 3.13: Number of countN operations executed on a set of cooperating objects in
t = 1 min vs. the number of cooperating nodes.



3.4. THE CONTEXT LAYER 75

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7

T
im

e
 f

o
r 

co
u

n
tN

 o
p

e
ra

tio
n

 in
 m

s

Number of cooperating nodes

master issues  operation
s lave issues  operation

theoretical average
measured average

Figure 3.14: Difference between the weighted average time needed for searching tuples
and the time needed for such an operation if all cooperating nodes simultaneously access
the shared data space.

In consequence, context information or sensory data matching non-private and non-
callback tuples should only be retrieved if absolutely necessary. This is the case after the
context layer has made sure that a transformation rule can actually be executed – i.e.,
that there are matches for all left-hand side tuples t1, . . . , tq in the shared data space. It
is therefore sensible to check for matching tuples using the read and countN operations
because their performance does not depend on the number of matching remote tuples.
Tuples are then only retrieved after it is clear that there are matches for all tuples needed
to execute a transformation rule. However, in the case of tuple transformations with
restricting functions, all matching remote tuples must eventually be retrieved in order
to check which combination of tuples satisfies the restricting functions. Here, previous
searches for matching tuples using an additional operation can introduce an overhead if
transformation rules are executed frequently.

A question central to our evaluation is how cooperation and simultaneous access to the
shared data space by many different nodes affects the efficiency of the context recognition
process. Regarding the search for tuples in rule evaluations, the surprising answer to that
question is that if multiple objects search for tuples simultaneously this does not increase
the average time needed for such an operation (see Fig. 3.14). Given the results from
the measurements in Fig. 3.13, it is possible to calculate the average execution time of a
single countN operation. For example, when seven objects cooperate with each other, we
measured an average execution time for a countN operation of 105 ms if the operation is
issued by the coordinator, and of 235 ms if it is issued by slaves. Hence, the theoretical
average time for this operation is 6∗235ms+105ms

7
≈ 216ms. Considering the results from

the experiment where all cooperating nodes search for tuples (see Fig. 3.13), however,
281 operations are carried out in 1 minute, which results in an average time of 214 ms per
operation. Although at first this seems like a surprising result, this behavior is caused by
the mechanism by which Bluetooth schedules master/slave transmissions. Furthermore,
the master of a piconet can ensure fairness between nodes without requiring additional
commands to be sent over the air. As already pointed out, we ensure fairness between
nodes by means of adaptive fairness slots. Fairness slots determine how long a master
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Figure 3.15: Number of operations executed on the shared data structure during the
context-recognition process under heavy load in t = 3 min.

waits for remote requests before carrying out an operation on its own.
As the last major aspect in our evaluation of the context-recognition layer, we have

tested its performance based on concrete SICL programs. Here, we have created SICL
descriptions and uploaded the code generated from these descriptions to smart objects in
such a way that every node continually tries to access the entire shared data structure.
This is a worst-case scenario because the appropriate use of private and callback tuples
usually absolves nodes of the need to constantly query other smart objects. The results
of our experiments are depicted in Fig. 3.15; In the experiment every node executes its
own SICL program and evaluates its own context rules. When comparing Fig. 3.15 with
the results in Fig. 3.13, it can be seen that fewer operations on the entire shared data
structure are carried out in the same amount of time. However, the performance of tuple
transformations in our last experiment scales better with respect to an increasing number
of nodes. This is because we have realized and experimented with different communi-
cation protocols for implementing inter-object cooperation, and used a broadcast-based
version of our protocols in the most recent experiments. The next section deals with
these low-level communication protocols for realizing cooperation between collections of
smart objects.

3.5 Tuplespace-Based Inter-Object Collaboration

In order to realize collaborative context-aware services, smart objects need a platform
for disseminating information to other nodes, for accessing sensors at various augmented
artifacts, and for processing retrieved sensory data. This section describes the infrastruc-
ture component that facilitates this kind of cooperation among smart everyday objects: a
distributed tuplespace on context-based broadcast groups. In our approach, smart objects
are grouped according to their real-world context and collaborate on distinct broadcast
channels. We argue, that this is an efficient means to support inter-object cooperation
in smart environments for several reasons: First, many RF-based active tagging sys-
tems – e.g., the Berkeley motes as well as all Bluetooth-enabled tags – support multiple
channels. By organizing cooperating objects on distinct channels for cooperation, the



3.5. TUPLESPACE-BASED INTER-OBJECT COLLABORATION 77

interference between nodes can be reduced and communication protocols can become
more effective (cf. Sect. 3.5.4). Second, in order to derive context information about
a user, sensory data from smart objects that are in the vicinity of this user are usually
most suited to characterize her/his real-world situation. Hence, in order to derive con-
text information, nodes usually need to cooperate that are in close proximity to each
other. Third, because of their energy constraints, smart objects generally support only
short-range communication technologies, which usually have the characteristic feature
that receiving data is approximately as costly as sending data. As a result, augmented
artifacts do not save energy by sending data to another smart object over multiple hops
if they can reach this object directly. Consequently, we can group nodes in range of each
other according to their current real-world context without considering their distance.
Finally, cooperation by means of a distributed tuplespace is only effective if there is an
efficient way to multicast data to nodes participating in the distributed data structure.
Because of the above-mentioned aspects, we can multicast data between cooperating ob-
jects by simply broadcasting data on a distinct channel. As wireless RF communications
are broadcast-based by themselves – i.e., every data packet is automatically sent to all
nodes in transmission range – such broadcasts are an extremely efficient way to multicast
data. In the following, we describe our concepts for enabling cooperation among smart
everyday objects in greater detail.

3.5.1 Tuplespace-Based Collaboration

Basic Approach

Cooperation requires smart objects to communicate with each other in order to access
each other’s data and resources. In our approach, a distributed tuplespace handles all
basic communication-related issues required for inter-object collaboration. It hides low-
level communication issues from higher layers (i.e., context and application layers) and
serves as a shared data structure for cooperating smart objects. In order to realize a
shared data space, every object provides a certain amount of memory for storing tuples,
and the tuplespace implementation deals with the distribution of data among nodes.
The context layer (cf. Sect. 3.4) accesses local sensors and embeds the corresponding
data into tuples, which are written into the space and are therefore accessible from all
smart objects participating in the distributed data structure. Thus, the actual location
at which sensory data has been generated – i.e., the smart object from which the sensory
data actually stems – becomes transparent for higher layers as long as this information
is not explicitly embedded into a tuple. Hence, higher layers can operate on those sensor
values as if they were derived from local sources. The tuplespace also serves as a grouping
concept in that a set of sensor nodes participating in a distributed tuplespace appears to
higher layers as a single node accumulating the resources of cooperating objects. From
the perspective of an application programmer, this can simplify the implementation of
context-aware services.

We extend the basic concept of distributed tuplespaces by grouping nodes into a space
according to their current real-world context, and by assigning such groups to a dedicated
broadcast channel for communication (cf. Fig. 3.16). For example, nodes that are located
in the same office can be automatically grouped into one distributed tuplespace. We argue
that such networking structures, which take the real-world context of smart objects into
account, are better suited for the demands of context-aware applications. Sect. 3.6
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addresses this claim in greater detail and presents a concrete example of how nodes
can be grouped according to their current situation in the real-world. The grouping of
nodes can also take application specific information or history information into account.
Depending on the specific application setting, it might become necessary for nodes to
communicate with objects that are not on the same broadcast channel – for example, if
nodes are too far away from each other, or if smart objects belong to different distributed
tuplespaces. In this case, multi-hop communication is required for nodes to interact
with each other. Sect. 3.5.4 illustrates the effect of multihop communications on the
cooperation between computer-augmented everyday artifacts.

...
...

Channel 1

Channel n

Figure 3.16: Grouping of collaborating smart objects into distributed tuplespaces that
operate on different communication channels.

However, we argue that in typical Pervasive Computing environments nodes in the
same distributed tuplespace can communicate on a dedicated wireless channel most of
the time. This is because networks of omnipresent smart objects are likely to be dense,
and cooperating nodes are likely to be close to each other in the case of context-aware
applications. Cooperation on a dedicated wireless channel reduces the amount of colli-
sions with other nodes in the same area and considerably improves the effectiveness of
tuplespace operations (cf. Sect. 3.5.4). In the case of frequency-hopping spread spec-
trum technologies, such as Bluetooth, a channel is defined by a unique frequency hopping
pattern. For multi-frequency communication modules, a channel is usually defined by a
single frequency. The communication modules used on the Berkeley Motes [Mot04], for
example, support multiple frequencies but do not themselves implement frequency hop-
ping patterns.

Using the Tuplespace Concept

A distributed tuplespace serves as a shared data structure for cooperating smart objects
and hides low-level communication issues from an application. In the following, we de-
scribe how such a distributed data structure can facilitate close cooperation in smart
environments. We also give an overview of a prototypical implementation that is used to
evaluate the infrastructure layer for inter-object cooperation presented in this section.

A tuplespace [CG89] is an associative, content-addressable memory where data is
stored in form of tuples. Because the underlying concept focusses on content, tuples are
accessed by their form or type rather than by memory addresses. As a content-addressable
memory, a tuplespace is suited to supporting cooperation in an ad hoc environment
since access to shared data is possible without knowledge of specific memory locations or
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service interfaces of particular nodes. A tuplespace decouples the processes producing and
consuming data. Furthermore, the physical storage locations of tuples are transparent,
which facilitates anonymous cooperation. These are useful properties for dynamic settings
such as smart environments of cooperating augmented artifacts. A distributed tuplespace
stores tuples not at a single, predefined location, but distributes tuples between different
storage locations. Thus, the storage locations of tuples can be adapted dynamically
according to the current computing environment. With respect to smart environments,
the distribution of tuples among different computing devices is often necessary because
of the severe memory restrictions of smart objects; the distribution of tuples in a shared
data space also allows smart objects to easily access data at multiple nodes with a single
tuplespace operation. A distributed tuplespace also hides low-level communication issues
because the corresponding tuplespace API encapsulates the distribution of tuples among
smart objects and the underlying memory management for tuples.

In our tuplespace implementation for the BTnode embedded device platform, each
node has its own local tuplespace, i.e., a subset of its local memory where local processes
can store and retrieve tuples. If a set of nodes want to cooperate with each other, they
establish a distributed tuplespace. Such a shared data medium then consists of the
interconnected local spaces of all participating entities, and provides operations that
consider tuples on all nodes. For example, a distributed read(templ) operation not
only searches for the specified tuple template templ on a single node but on all entities
cooperating with each other.

The distributed tuplespace for the BTnodes does not only support the standard tu-
plespace operations read, write and take, but also provides more sophisticated functions
that operate on sets of tuples. countN(templ) returns the number of tuples that match
the given template templ; scan(templ) returns all matching tuples; consumingScan(templ)
behaves like scan but also removes all tuples found from the shared data structure. In our
implementation, there are always three versions of these functions: one that operates on
the local tuplespace of a smart object, one that operates on the tuplespace of a distinct
remote node, and one that operates on a whole set of cooperating objects. In addition to
the basic tuplespace operations, callbacks are supported as an event mechanism. Here,
so-called callback templates together with associated callback functions can be registered
at the distributed data structure. If a new tuple is afterwards written into the tuplespace
that matches the registered template, the corresponding callback function is executed at
the node that registered the callback.

3.5.2 Efficiency Discussion

Energy-Efficient Clustering

The question arises whether our approach of clustering cooperating nodes into broadcast
groups according to their current real-world situation can be effective with respect to the
energy consumption of smart objects. In fact, this is not the case for general wireless
networks because energy-efficient clustering must consider the distance between devices
[RM98]. Hence, the position of wireless nodes is usually the determining factor when
creating energy-efficient network topologies.

This is primarily because of an inherent property of RF communication technologies
which states that the received signal power decreases exponentially with increasing dis-
tance: P ∼ 1/dn, n ≥ 2, where d denotes the distance from a transmitting unit and n
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CBA

Figure 3.17: Energy-efficient communication over multiple hops.

is typically between 2 and 4. (The constant amount of energy required to receive data
and to operate the transmitter modules also affects the energy consumption of nodes,
especially in case of short-range communication technologies; this is discussed in greater
detail in the next subsection.) Let us consider an example where three similar nodes A,
B, and C are positioned on a straight line (cf. Fig. 3.17). The distance between nodes
A and C shall be d meters; node B lies in the middle of A and C such that its distance
from both nodes is d/2 meters. Furthermore, nodes A, B, and C successfully receive
a packet only if its corresponding signal power at their receivers is above a threshold t.
Consequently, if A wants to send data to node C, the signal power at the transmitter
A must be at least PAC = tdn. What happens, if A does not send the packet directly
to C but over the intermediate node B? In this case, A must send the data with signal
power PAB = t(d

2
)n to B, which relays it with the same signal power PBC = t(d

2
)n to

the destination node C. It is now important to understand that the power invested in
the actual radio signal PAC for sending a packet directly from A to C is greater than
PAB accumulated with PBC . I.e., PAC > PAB + PBC ⇔ dn > dn

2n−1 ⇔ 1 > 1
2n−1 . As

n ≥ 2 it is easy to see that the last inequality holds. As a result, sending data from A
to C via the intermediate node B is more efficient than sending it directly from A to
C. As a consequence of this result, the distance of nodes is the determining factor for
energy-efficient clustering.

With respect to our problem, if A, B, and C are smart objects and A and C need to
cooperate with each other it would not be energy efficient to cluster nodes A and C on a
single wireless channel. This is because nodes in a single channel communicate with each
other by simply broadcasting data, and therefore reach each other directly. Instead, in
order for A and C to cooperate, we would have to relay data over node B. This implies
that multi-hop communication is necessary to exchange data between cooperating nodes
and that there is no simple multicast mechanism to reach all collaborating objects. This
would considerably decrease the performance of tuplespace-based operations.

Clustering in Pervasive Computing Settings

In the following, we argue that our approach to grouping nodes is efficient in typical
Pervasive Computing environments. This is true for several reasons. The most prominent
one is that the above considerations neglect the energy required to receive data and the
energy required to operate the circuitry of the transmitter modules. This is justified if
the amount of energy invested in the actual radio signal is significantly higher than the
constant amount of energy consumed by the receiver and transmitter modules. This can
often be observed in typical long-range communication technologies: as the power of the
transmitted radio signal grows exponentially with increasing distance, the signal power
is the dominating factor in the energy consumption of communication modules if the
distance between sender and receiver is large. However, in short-range communication
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technologies a totally different picture emerges. Here, the energy required to operate
the sender and transmitter circuitry dominates energy consumption. In fact, in many
short-range communication technologies, the energy required for sending is approximately
as high as that for receiving data. For example, the Berkeley motes consume about
2µJ during reception and 4µJ during transmission – with a relatively high constant
component that does not depend on the actual transmission range [HSW+00]. The
BTnodes also consume about the same amount of energy during data reception and
transmission [BKR+03]. It is immediately clear that under such circumstances it does
not make sense to relay packets over intermediate nodes. Instead, if two nodes can
reach each other directly they also should exchange data directly between each other.
Because of the energy constraints of smart objects, active tagging technologies usually
support only short-range communication technologies. As a result, we can cluster smart
objects that are in range of each other according to other characteristics – e.g., context
information and application specific information – without regarding their distance.

There is another property of cooperating smart objects that is important for justifying
our approach to grouping nodes. This is the observation that smart objects often collab-
orate in order to implement context-aware services. Determining the real-world context
of nearby people is therefore one of the core reasons for smart objects to communicate
with each other. As a result, there is usually tight cooperation between adjacent nodes.
This is because sensor readings originating from smart objects that are in close proximity
to a user are likely to provide the most accurate information for characterizing the user’s
situation. Therefore, in order to realize context-aware applications, it is primarily objects
that are in close proximity of each other that need to exchange sensory data and context
information. Consequently, cooperating smart objects are often in direct transmission
range of each other.

Multicasts between Cooperating Smart Objects

Our concept for realizing context-aware services is based on the idea that smart objects
group their resources, and thereby appear to applications as a single, more powerful node.
The tight cooperation that is required to achieve such behavior is only possible if there is
an efficient way to multicast data between cooperating smart objects. In other words, the
distributed tuplespace that is responsible for disseminating data between smart objects
depends on an efficient multicast mechanism.

We argue that efficient multicasts are made possible through our approach to clus-
tering nodes. Here, two characteristics of smart objects and context-aware applications
are exploited: (1) As previously mentioned, cooperating smart objects are often in direct
transmission range of each other and do not save energy by sending data via intermediate
smart objects. (2) Several active tagging technologies support multiple channels.

As a result, we can organize nodes that need to cooperate with each other on a single
channel. Consequently, by broadcasting data, they automatically reach all objects in
their group. As radio communication is itself broadcast based, this is one of the most
efficient multicast mechanisms imaginable. The nodes on a single broadcast channel can
now establish a distributed tuplespace that can disseminate data between cooperating
smart objects using simple broadcasts. As context information can be used to group
nodes (cf. Sect. 3.6), we refer to such a tuplespace as a distributed tuplespace operating
on context-based broadcast groups.
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3.5.3 Implementation

In the following, we describe an implementation of such a distributed tuplespace on
context-based broadcast groups for the BTnode device platform [BKM+04].

BTnodes communicate with each other using the Bluetooth communication standard.
Nearby Bluetooth units can form a piconet, which is a network with a star topology of at
most 8 active nodes. Furthermore, the Bluetooth standard distinguishes master and slave
roles. The master of a piconet is the node in the center of the star topology; slaves cannot
communicate directly with each other but need to relay data via the master. The master
also determines the frequency hopping pattern of a piconet and implements a TDD (time
division duplex) scheme for communicating with slaves. Consequently, a slave can only
transmit data when it was previously addressed by the master, and only the master can
broadcast data to all units in a piconet. The frequency hopping pattern of a piconet
implements a dedicated wireless channel, and as a result, different piconets can coexist
within the same area. Multiple piconets can form so called scatternets. In a scatternet,
bridge nodes participate in more than one piconet and switch between piconet channels
in a time division multiplex (TDM) scheme.

Smart object
Memory

Tuples

      Local 
tuplespace

Smart object
Smart object

Smart object Broadcast 

DTS operation

Broadcast DTS 
operation Broadcast DTS 

operation

Return result

Memory provided for 
DTS implementation

Figure 3.18: Overview of the distributed tuplespace (DTS) implementation: multiple
local tuplespaces are connected to form a distributed tuplespace.

Our implementation tries to group collaborating smart objects into one piconet. This
corresponds to the aim of grouping tightly cooperating objects so that they can exchange
data on a dedicated broadcast channel. Because of its pseudo-random frequency hopping
pattern, a piconet constitutes such a dedicated channel on which the master can broadcast
data. As Bluetooth nodes in a piconet can be as much as 20m away from each other,
in the envisioned settings cooperating objects can be grouped into a piconet most of the
time. However, due to the low number of nodes in a piconet, it might become necessary
to organize nodes into a scatternet.

Every smart object provides a certain amount of memory for the distributed tu-
plespace implementation (cf. Fig. 3.18). As embedded systems often do not provide a
reliable dynamic memory allocation mechanism, the memory for the tuplespace is stat-
ically allocated. We have implemented our own memory management mechanism for
tuples, which poses some restrictions on storing data. Because of the memory restric-
tions of embedded systems, for example, tuple fields always have a predefined size. That
is, although a tuple may consist of an arbitrary number of fields, the type information and
the actual value of a field have a restricted size. Our implementation also supports tuples
with flexible length, so-called flex tuples. Flex tuples are a useful concept because of the
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size restriction of fields: if field data becomes too large to fit into the predefined size of a
field, an additional field can be created to carry the remaining data. This is sometimes
necessary for strings. The memory constraints of smart objects also imply that after a
time – especially when sensors are read out often – the tuplespace will be full. In this
case, the oldest tuples are deleted in order to allow for new tuples to be stored. However,
it is also possible to protect tuples that should not be automatically deleted. We call
such tuples owned; they have to be manually removed from the tuplespace.

The distributed tuplespace on the BTnodes implements typical tuplespace operations
such as write, read, or take, but also offers functions such as scan, consumingScan,
and count, which originate from other widely-used tuplespace implementations. In our
implementation, there are different versions of these functions that operate on different
spaces: the tuplespace local to an object, an explicitly specified remote tuplespace, or
the distributed tuplespace as a whole.

In the following, we focus on functions that operate on all nodes in a distributed
tuplespace and describe the underlying protocol based on an example of a read(templ)
operation.

First, we describe a read that is initiated by the master of a piconet. In this case, the
master broadcasts a ready? message to all nodes on the broadcast channel and waits for
their responses. After all nodes have acknowledged the request, the master broadcasts
the actual operation identifier together with all necessary parameters to its slaves and
awaits the results (cf. Fig. 3.19 (1)). In case of a read(templ) operation, the master
transmits an identifier for read together with the template templ. The slaves respond
with a tuple matching templ if such a tuple is in their local tuplespace.

MasterSlave Slave Unicast
BroadcastReady?

Ready

Operation

Result

Ready?

Ready

Operation

Result

MasterSlave Slave

Operation

Result

Operation

Result

1 2

Figure 3.19: The basic protocols of distributed tuplespace operations issued by the mas-
ter: (1) two-phase protocol with extra ready? message, and (2) the fast version of the
protocol.

We have decided to implement a two phase protocol in which the master asks its
slaves whether they are ready to receive operation parameters because broadcast traffic
in wireless networks is generally unacknowleged; this is also true for Bluetooth. With
the first ready? message we therefore ensure that all slaves are ready for the reception
of the parameters of a tuplespace operation. The goal is to reduce the probability of
lost operation parameters. Another reason for the proposed protocol design is that the
protocol with an extra ready? message is easier to debug. However, for evaluation
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purposes we have also implemented a fast version of our protocol that does not send the
extra ready? message (cf. Fig. 3.19 (2)).

If a slave wants to execute a read operation on the distributed tuplespace, it must first
send the request to the master of its piconet. We have again implemented a two phase
protocol in this step – although the communication from slave to master is not broadcast-
based and therefore acknowledged. Consequently, the slave first asks the master whether
it is ready to receive a new operation by sending a short ready? message. Only if the
master positively acknowledges this request does the slave send an operation identifier
and the operation parameters to its master. After the master has then carried out the
requested operation using the protocol described previously, it sends the result per unicast
to the slave that issued the request (see Fig. 3.20). There are several reasons why we
implemented a two-phase protocol: For our prototype we wanted a reliable protocol where
higher-layer data packets are additionally acknowledged by higher layers. Furthermore,
the extra ready? message prevents the master from being overwhelmed with data from
slaves; masters at first receive only short ready? messages. Although we have, of course,
implemented a flow control mechanism to prevent discarding of data packets, the extra
phase also makes the protocol easier to debug. In a system beyond the scope of our
research prototype that is based upon more sophisticated Bluetooth modules, it would
be possible to get rid of the extra protocol phase.

MasterSlave Slave

Unicast
Broadcast

Ready

Result

Ready?

request
result

Operation

Master DTS protocol

Figure 3.20: The basic protocol layout for distributed tuplespace operations when they
are issued by slaves.

We would like to emphasize that the concepts of our implementation are not restricted
to a specific communication standard. In fact, porting our code to other device platforms,
as for example the Berkeley motes [Mot04], would be possible because they also support
multiple communication channels.

3.5.4 Evaluation

By discussing the results of several performance measurements, this section evaluates
the presented concepts for enabling cooperation between smart objects based on a dis-
tributed tuplespace. We justify our design decisions regarding the basic communication
protocols, argue that a platform for inter-object cooperation must consider the properties
of the underlying communication technology, and show by examples how the properties
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of Bluetooth affect the performance of our distributed tuplespace implementation. The
performance measurements are based on experiments with simple 2-hop as well as with
multihop topologies. What is more, our experiments were carried out on the BTnode
embedded device platform, and are not just based on simulations. However, we also sim-
ulated parts of the underlying tuplespace protocols in order to evaluate how the practical
constraints of the BTnodes affect the outcome of our experiments.

Fundamental BTnode Performance Measurements

The experimental setup for obtaining the results presented in this section is similar to
the one described in Sect. 3.4.6. Most notably, the BTnodes are again used as tagging
technology for augmenting everyday objects, and hence Bluetooth is the communica-
tion standard upon which our experiments are based. Recently, Bluetooth has received
considerable attention in connection with building resource-restricted device platforms
designed for smart environments and wireless sensor networks. Among others, the Intel
Motes [Int04], the BTnodes [BKM+04], smart Bluetooth badges [PLS+02], and the sen-
sor node platform built at the University of Karlsruhe [BHHZ03] all use Bluetooth for
communication. It is therefore interesting to see how the properties of Bluetooth affect
the performance of our protocols. However, many conclusions that we draw from our ex-
periments are more general, and are not limited to a specific communication technology.
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Figure 3.21: Execution time of a unicast ping operation versus the number of smart
objects in a piconet.

In order to correctly assess the results of our experiments, we first measured the time
needed for simple unicast- and broadcast-based ping operations (cf. Fig. 3.21, Fig. 3.22,
and Fig. 3.23). The ping operation was always issued by a master node. A unicast ping
consists of a simple message exchange between the master of a piconet and one of its
slaves. The master sends one data packet to the slave which sends a response message
back, which also fits in a single packet. In the case of a broadcast-based ping operation,
the master broadcasts a data packet to all of its slaves and waits until it has received a
response packet from each of them. We describe these operations because they are the
fundamental building blocks of our tuplespace protocols.
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Figure 3.22: Execution time of a unicast ping operation with respect to the length of
ping packets.

Unicast-Based Ping. Fig. 3.21 illustrates the dependency of the unicast-based ping
operation on the number of smart objects sharing a communication channel – i.e., on
the number of devices in a single piconet. The packet sent from the master to the slave
and the response message consist of exactly one byte of application data. It can be seen
that there is a linear dependency between the execution time of a unicast ping and the
number of nodes sharing a Bluetooth channel. This is a result of Bluetooth’s TDD (Time
Division Duplex) scheme for scheduling transmissions. As Bluetooth has a collision-free
MAC (Medium Access Control) layer, the master of a piconet polls a slave before the
slave can send data back to the master. The access to slaves is slotted with a slot time
of exactly 625 µs1. The master sends one data packet to one of its slaves, and this slave
can then respond by sending a packet back to the master. Bluetooth supports different
kinds of packet types, some of which can occupy multiple slots (either 1, 3, or 5 slots).
In the following, we assume that the master polls its slaves in a simple round-robin like
fashion, i.e., it assigns identifiers to all its slaves and polls them repeatedly one after the
other.

Under these circumstances, the question arises why the time difference between a
unicast-based ping in a piconet of 2 nodes and in a piconet of 7 nodes is as much as 25
ms (cf. Fig. 3.21). This has mainly two reasons: (1) If the master sends a ping message
to a slave, this slave cannot send the result message back in the immediately following
time slot. This is because the slave device first has to process the received ping message.
In order to do so, the microcontroller of a BTnode receives the Bluetooth data via a serial
interface, the packet is passed through the different layers of our Bluetooth protocol stack,
and is then finally handed over to the application layer. This takes time, and the slave
can therefore respond to the ping message at the earliest the next time it is polled by the
master. As the master polls slaves one after the other, the time between two consecutive
pollings depends on the number of slaves. (2) The BTnodes have a much lower data
rate than the theoretical Bluetooth data rate of 1 Mb/s if application data is sent in

1In the inquiry substate, in which Bluetooth units actively search for other devices, a slot is only
312.5 µs long.
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short L2CAP packets. (L2CAP, the Logical Link Control and Adaptation Protocol, is a
Bluetooth protocol layer that is responsible, among other things, for data segmentation
and reassembly.) This behavior of the BTnodes has also been noticed by other researchers
[LDB03]. Furthermore, the Bluetooth module is connected to the microcontroller of a
BTnode by means of a serial interface that has a lower data throughput than Bluetooth’s
maximum data rate. This is likely to be the reason for the relatively large amount of
time – about 35 ms – that is required for a unicast ping in a piconet of only 2 nodes
(cf. Fig. 3.21). Unfortunately, the lower Bluetooth protocol layers encapsulated by the
Bluetooth modules are proprietary. We did not therefore have the opportunity to look
into the corresponding program code and can only speculate about the side effects of this
proprietary implementation.

In another experiment, we tested whether the performance of a unicast ping operation
depends on the size of ping packets. It is intuitively clear that as long as the ping packet
fits in one Bluetooth data packet, the length of the packet should not influence the
performance of the unicast ping protocol. Our experiments (cf. Fig. 3.22) confirm these
expectations.

Broadcast-Based Ping. In a broadcast-based ping operation, the master of a piconet
broadcasts a ping packet and collects responses from all of its slaves. In contrast to a
unicast ping, the performance of broadcast-based pings does depend on the length of ping
packets – even if they fit into a single lower-layer Bluetooth packet (cf. Fig. 3.23).
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Figure 3.23: Execution time of a broadcast ping operation versus the length of ping
packets.

There are two main reasons for this behavior: (1) In Bluetooth as well as in other
wireless communication standards broadcast traffic is unacknowledged. This is in order to
reduce the amount of traffic after broadcasts, because all nodes in range of a sender would
simultaneously start to acknowledge broadcast packets. Hence, there is no guarantee for a
master node that all of its slaves actually successfully received the broadcast packet. The
Bluetooth standard addresses this problem by retransmitting broadcast packets several
times. There is a command specified in the Bluetooth standard that allows application
programmers to adapt the number of retransmissions, which is unfortunately not sup-
ported by the Bluetooth modules of the BTnodes. As a result, the BTnodes always
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transmit broadcast packets five times. This is also the reason why the general perfor-
mance of the broadcast-based ping operation is relatively poor compared to that of a
unicast ping. (2) The Bluetooth modules on the BTnodes seem to segment broadcast
data even if they would fit into a single lower-layer Bluetooth packet and transmit packet
segments separately. The fact that broadcast packets are sent 5 times is the cause of the
step-like curve depicted in Fig. 3.23. So, why does the Bluetooth module segment ping
packets? It seems that this is because of the previously-mentioned fact that the serial
connection between microcontroller and Bluetooth module on the BTnode carries data at
a data rate of only 230.4 kbit/s. Hence, in a single Bluetooth slot of 625 µs only 18 bytes
can be transmitted from the microcontroller to the Bluetooth transmitter. The Bluetooth
module waits one slot for incoming data and then transmits them over the air. Although
such behavior makes sense in the unicast case, it significantly decreases the performance
of broadcasts because broadcast packets are transmitted 5 times. Unfortunately, we can
only speculate about how broadcasts have been implemented by the Bluetooth modules.
However, the fact that the length of the individual steps in Fig. 3.23 is 17 bytes clearly
supports our theory.

We would like to conclude our evaluation of the broadcast-based ping operation with
the remark that the implementation of broadcasts on the Bluetooth modules seems to
be rather preliminary. Newer Bluetooth modules should provide a significantly better
broadcast performance.
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Figure 3.24: The effect of simulated and real broadcast messages on the performance of
a distributed read operation.

Simulated Broadcast Messages. Although the performance of the broadcast-based
ping operation is relatively poor on the BTnodes, broadcasts are still a major component
of our protocols for enabling cooperation between smart objects. Using the BTnodes,
however, it makes sense to simulate broadcasts in order to achieve a better protocol
performance. In a simulated broadcast, the master of a piconet transmits the packet
that needs to be broadcast to each of its slaves per unicast. It is important here that the
BTnode must not wait for response messages before it has finished sending the broadcast
message to all of its slaves. If the master polls slaves in a round-robin like fashion, only
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one round is then needed to transmit the broadcast packet to all slaves. On the BTnode
device platform, simulated broadcasts are faster than real broadcasts. This is, however,
not the case for Bluetooth in general.

We have carried out an experiment to determine the effect of simulated and real
broadcast messages on the performance of distributed tuplespace operations. In the
experiment, we tested two different versions of a distributed read(templ) operation. The
read implementation is based on the protocol design that does not send ready? messages
at the beginning of new tuplespace operation. In this case, the read operation is similar
to a broadcast-based ping in that the master broadcasts a tuple template and the slaves
respond by sending a matching tuple back. In our experiment, read operations are only
issued by the master, and there is always exactly one matching tuple at one of the slaves.
As can be seen in Fig. 3.24, simulated broadcasts clearly outperform real broadcast
messages in the case of the BTnodes.

Distributed Tuplespace Operations

In the following, we evaluate different strategies for realizing distributed tuplespace op-
erations, report on the major design decisions affecting the underlying implementation,
and show how the performance of tuplespace operations depends on specific properties
of Bluetooth.

We distinguish between three different methods for realizing distributed tuplespace
operations: (1) a parallel, (2) a sequential, and (3) a selective scheme.

• The parallel scheme. In the parallel scheme, a master transmits an operation
identifier and operation parameters per broadcast to all of its slaves. The slaves
carry out the requested operation on their local tuplespaces and send results back to
the master without further requests. As slaves send result tuples simultaneously, the
master must be able to receive results from different nodes in parallel. Thus, it can
happen that the master receives more results than it actually needs. For example,
a read(templ) operation returns only one tuple matching the given template templ.
However, if all slaves have a matching tuple, each of them sends a tuple back to
the master in the parallel strategy. The master must therefore discard results that
are not needed. In case of consuming tuplespace operations – such as take and
consumingScan – this problem poses another difficulty. For example, take(templ)
removes only one tuple matching templ from the distributed tuplespace and returns
this tuple as result. After receiving the parameter template of a take operation the
slaves can therefore not decide whether to remove a matching tuple or not, and
hence, can only send back result tuples without removing them from their local
spaces. After the master has received the result tuples from slaves, it discards the
ones not needed, and must ensure that the selected tuple – and only the selected
tuple – is removed from the distributed tuplespace. This requires an additional
message that is transmitted to the slave that is allowed to remove the selected
tuple from its local space, and a corresponding acknowledgement.

• The sequential scheme. In the sequential strategy, operations are carried out
successively with one slave after the other. Operation identifiers and parameters
are sent per unicast from the master to the slave that is currently executing an
operation. This has the advantage that no unnecessary results are transmitted
from slaves that would need to be discarded by the master (as in the parallel



90 CHAPTER 3. COOPERATION AMONG SMART EVERYDAY OBJECTS

strategy). For a read operation, for example, this means that if the master receives
a result from one slave it does not need to contact other nodes. The sequential
strategy does therefore not necessarily require that a master contacts all of its slaves.
Furthermore, in the case of consuming operations – take and consumingScan for
example – no additional message is necessary that requests nodes to actually delete
previously sent tuples.

• The selective scheme. The selective strategy is a variant of the parallel scheme.
Its goal is to reduce the number of superfluous result tuples sent from slaves to
a master. Upon receiving an operation identifier and operation parameters per
broadcast, slaves do not respond with result tuples but merely send a packet back
to the master containing the number of results in their local tuplespaces. The
master then selects slaves and requests them per unicast to send their results.

In the following, we evaluate the impact of the parallel, sequential, and selective
strategies on the performance of tuplespace operations. In our evaluations, we thereby
use the two-phase protocol for transmitting operation parameters to slaves (cf. Sect.
3.5.3) and real broadcast messages. Although these versions of our protocols are slower,
they are easier to handle for practical reasons (above all, they are easier to debug).
Different protocol variants for evaluation purposes were therefore implemented based on
these protocol versions.
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Figure 3.25: Effect of the sequential, parallel, and selective strategies on the performance
of a read operation in a piconet of 7 smart objects.

Read. The read(templ) operation searches the distributed tuplespace for exactly one
tuple matching the given template templ. As the distributed tuplespace that we imple-
mented is a federation of local tuplespaces provided by individual smart objects, the read
operation needs to query these local tuplespaces for a matching tuple. In our implemen-
tation, the distributed read operation first tries to find a matching tuple by querying its
local tuplespace. If such a tuple is found in the local space, no communication with other
smart objects is necessary because the read operation must return only one result tuple.
Only if it does not find a match locally does it query other nodes.
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Figure 3.26: Effect of the sequential, parallel, and selective strategies on the performance
of a read operation if there is no result on any of the nodes in the piconet.

Fig. 3.25 depicts the impact of the parallel, sequential, and selective strategy on the
performance of a read operation with respect to the number of nodes carrying a result
tuple. In the underlying experiment, operations were always issued by the master node,
and the result tuples fitted in a single lower-layer Bluetooth packet. Furthermore, in
order to take into account a changing number of slaves with a result tuple, we measured
the time for a read operation for all possible distributions of result tuples and calculated
the average. As can be seen in Fig. 3.25, the parallel scheme clearly outperforms the
sequential strategy with a decreasing number of slaves carrying a result tuple. This
is mainly because of Bluetooth’s TDD (Time Devision Duplex) scheme for handling
master-slave transmissions. In the sequential strategy, the master executes a remote
read operation sequentially with one slave after the other until it finds a result tuple.
The problem is that on a lower level the Bluetooth module still polls slaves in a round-
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operation in a piconet of 7 devices.



92 CHAPTER 3. COOPERATION AMONG SMART EVERYDAY OBJECTS

robin-like fashion. Hence, when a slave is finally ready to send the result of a remote
read operation to a master, it must wait until it is polled again by the master. As the
other slaves are not involved in this particular remote read operation (other slaves are
only queried after the current remote read operation is finished), this results in many
unnecessary polling attempts, and therefore reduces the performance of the sequential
approach.

In Fig. 3.25 and Fig. 3.26 it can also be seen that the parallel strategy beats the selec-
tive strategy in the investigated scenario. This is because of the additional unicast-based
data exchange necessary in the selective strategy. Furthermore, the result tuples in our
experiment fit in a single lower-level Bluetooth packet. Consequently, the transmission
of a single byte indicating the number of result tuples found by a slave is approximately
as fast as the transmission of an entire result tuple. Clearly, the selective strategy only
outperforms the parallel strategy if result tuples are so large that they have to be split
and transmitted in multiple packets.

Take. Like the read(templ) operation, the take(templ) operation searches for a tuple
matching the given template templ and returns it as a result. Additionally, however, a
take also removes the result tuple from the distributed tuplespace. Using the parallel
strategy, superfluous tuples received from the slaves can therefore not simply be discarded
by the master. Instead, the master must explicitly inform the slave whose tuple is chosen
as the result of the take operation so that this slave can remove the tuple from its local
tuplespace. This is done by means of an additional unicast-based message exchange.
Fig. 3.27 shows how the parallel and sequential scheme affect the performance of a take
operation. As the additional message exchange required in the parallel scheme is not
necessary in the sequential scheme, the sequential scheme performs slightly better than
in the read operation. However, if there is no matching tuple or if there are matching
tuples at only one of the slaves, the parallel scheme still outperforms the sequential
strategy.
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Figure 3.28: The effect of the sequential and parallel scheme on the performance of a
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Scan. In contrast to a read, a scan(templ) operation returns all tuples in a distributed
tuplespace matching the given template templ. Consequently, both the sequential and
the parallel strategy must access all nodes in order to retrieve all matching tuples. This
deprives the sequential strategy of one of its most important advantages. (Remember
that a read or take operation using the sequential scheme is finished as soon as it finds
a matching tuple at a single remote node.) Fig. 3.28 shows how the sequential and
parallel strategies affect the performance of a scan operation returning 10 result tuples.
In our experiment, a result tuple fitted into a single lower-layer Bluetooth packet, and
the scan operation was issued by the master of a piconet. Furthermore, the depicted
measurements consider all possible distributions of result tuples among slaves.

The performance of a scan operation using the parallel scheme is considerably in-
fluenced by the distribution of result tuples on remote nodes (cf. Fig. 3.29). This is
because of Bluetooth’s TDD scheme for scheduling transmissions. If matching tuples are
equally distributed, a master almost never polls a slave without receiving a tuple as re-
sult. Consequently, in a piconet with 6 slaves it makes almost no difference whether 1-6,
7-12, or 13-18 tuples are received, provided that they are equally distributed. Because
the Bluetooth modules on the BTnodes seem to poll nodes in a simple round-robin-like
fashion, a master node sequentially accesses one slave after the other; it therefore needs
i rounds to receive 6 ∗ (i− 1) + 1 to 6 ∗ i results if the results are equally distributed. In
contrast, when all matching tuples are on a single node, i rounds are required to retrieve
i results. These considerations also explain the step-like curve in Fig. 3.29.
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Figure 3.29: The effect of different tuple distributions on the performance of a scan
operation using the parallel scheme.

Simulation Results

The practical constraints of the BTnode device platform influence the outcome of the
previously-presented experiments. Especially the relatively slow serial connection be-
tween the Bluetooth module and the microcontroller of a BTnode, and the fact that
broadcast packets are transmitted five times, have considerable side effects. In order to
assess these side effects, we have simulated some of the distributed tuplespace opera-
tions presented above. Here, the network simulator ns-2 [NS04] together with Blueware
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[Blu04] – an additional package that supports lower-level Bluetooth protocols in ns-2 –
constitute the basis for our simulation experiments. Unfortunately, Bluetooth protocols
are still not natively supported by ns-2; and even with Blueware, several changes to lower
Bluetooth protocol layers were necessary before the actual tuplespace operations could
be simulated.
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Figure 3.30: The effect of the sequential and parallel scheme on a distributed read oper-
ation. The results were obtained using the network simulator ns-2.

Fig. 3.30 and 3.31 show the results of our simulation experiments. They indicate that
the superiority of the parallel strategy becomes even more dominant without the restric-
tions of the BTnodes. In the simulation experiments, broadcast packets were transmitted
only once, and a result tuple fitted in a single Bluetooth packet. The simulator was also
adapted in such a way that more than 8 active nodes could participate in a single piconet.
In case of an increasing number of nodes sharing a single Bluetooth channel it becomes
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Figure 3.31: The effect of the sequential and parallel scheme on a distributed scan
operation. The results were obtained using the network simulator ns-2.
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clearer that the increase in the execution time of a tuplespace operation is only linear in
the parallel scheme.

Using the sequential strategy, the increase is not linear. This is for the following
reason: Given that the master uses a simple round-robin mechanism for polling nodes,
the master needs more than one full round to request matching tuples from a single slave.
As the master addresses its n slaves consecutively in the sequential strategy, at least n
rounds are required to receive the results in the case of a scan operation. (For a read
operation, a master only contacts half of its slaves on average.) Hence, at least n full
rounds are necessary to complete an operation in the sequential strategy. As the master
polls all of its n slaves in one round, the time complexity of a distributed scan operation
using the sequential scheme is therefore in O(n2).

Multihop Communication

In the design of the tuplespace-based infrastructure layer for inter-object collaboration,
we argued that efficient multicasts are a precondition for effectively exchanging data be-
tween cooperating smart objects. Because of the presented approach to cluster smart
objects on context-based broadcast channels, it became possible to disseminate packets
using simple 1-hop broadcasts, which is a very efficient way to multicast data. In our
implementation of this concept on the BTnodes, this meant that the master node can
reach all cooperating nodes with a single transmission. Because of the underlying Blue-
tooth protocols, only slaves have to communicate over multiple hops with other smart
objects in the same piconet. In contention-based wireless networks, however, all nodes
can usually broadcast data. Hence, multihop communication on a single channel is a
special property of Bluetooth. In general, multihop communication only becomes neces-
sary if cooperating nodes are listening at different channels or if they are too far away
from each other. In Bluetooth, this corresponds to a scenario in which cooperating nodes
participate in different piconets that form a so-called scatternet. In a scatternet, piconets
are connected by means of bridge nodes that switch between piconets in a time division
multiplex (TDM) scheme.

Based on an experiment with the BTnodes, we evaluated the impact of scatternets
on distributed tuplespace operations. The core question is how the performance of the
distributed tuplespace decreases if a master node cannot simply broadcast data to all
cooperating objects, but must instead use a multihop multicast scheme. Regarding scat-
ternets, the BTnodes unfortunately have the restriction that they support only simple
tree topologies. This implies that a node cannot be slave in two piconets. Rather, bridge
nodes – which mediate between two piconets – must be master in one piconet and slave
in the other. Furthermore, the 1-hop broadcast mechanism of the BTnodes is very un-
reliable if nodes are organized into scatternets. The experiments on multihop topologies
are therefore based on simulated broadcast messages. We described simulated broadcasts
at the beginning of this section and showed that they are faster than real broadcasts.

Fig. 3.32 shows how the performance of a read operation is affected by multihop
topologies. It can also be seen how the BTnodes were organized into scatternets; the
read operation was always issued by the black node in Fig. 3.32. In our experiment, the
issuing node first tries to find a tuple matching the read request in its own piconet. In this
first step, the issuing master can still reach other nodes by simply broadcasting data. The
lower curve in Fig. 3.32 depicts the performance of a read operation that is successful
in the piconet of the issuing node versus the number of nodes in the entire multihop
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Figure 3.32: The effect of multihop multicasts on the efficiency of distributed tuplespace
operations.

topology. Remember that a read operation is finished as soon as a single matching tuple
is found. If the master finds a tuple in its own piconet, therefore, it does not need to
query other nodes in the multihop topology. The upper curve in Fig. 3.32 describes the
performance of a read operation that is not successful in the local piconet. In this case,
the issuing node does not have a simple mechanism to multicast requests to cooperating
smart objects but must instead communicate over multiple hops with nodes in the other
piconet. Fig. 3.32 clearly shows that this considerably decreases the performance of
distributed tuplespace operations. The mechanism presented for clustering cooperating
nodes is therefore a major building block of efficient cooperation protocols. This is
because the clustering mechanism ensures that cooperating nodes can reach each other
by means of a simple multicast mechanism.

3.6 Context-Aware Communication Services

Context-aware communication services are low-level communication services that take a
smart object’s current situational context into account and adapt networking structures
accordingly. In this section, we argue that such communication services are well suited for
Pervasive Computing environments. Here, the main motivation behind our approach is as
follows: As Pervasive Computing envisions the seamless integration of computation into
everyday environments, there is a narrowing gap between the real world (in which people
interact with physical objects) and the virtual world (in which computers communicate).
In other words, the actions that affect a smart object in the real world – e.g., whether
it is currently being used, how it is used, where it is, etc. – have an increasing impact
on its communication in the virtual world. By considering the real world environment
of smart objects in the design of networking services, we can thus construct networking
structures that are more suitable for the demands of context-aware applications.

In the following, we present our approach to context-aware communication in greater
detail, and describe how we linked the communication and context layers in order to
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enable communication services to access and process context information. We also present
two examples of context-aware communication services.

3.6.1 Basic Approach

As pointed out in the previous sections, ad hoc communication can be a critical bottle-
neck affecting the cooperation between smart objects. Because of the memory restrictions
of augmented artifacts, local data processing is relatively fast; however, communication
between smart objects – which is a fundamental requirement for cooperation – delays
operations involving different artifacts and often dominates a smart object’s energy con-
sumption. Improving the effectiveness of low-level communications between smart ob-
jects is therefore of paramount importance for realizing the vision of cooperating smart
artifacts.

Managing ad hoc communication between smart everyday objects is a very difficult
task for several reasons: smart objects might be mobile and are often faced with distinct
resource restrictions, communication is dynamic, takes place in a highly heterogeneous
environment, and must not rely on a constantly available supporting background infras-
tructure. Furthermore, as the term Pervasive Computing suggests, there are potentially
huge numbers of smart objects in communication range of each other, which further
aggravates the problem of keeping communication efficient.

As a result, the question arises whether there is a specific property shared by smart ob-
jects that can be used to improve ad hoc wireless communications in Pervasive Computing
settings. In this section, we will argue that context-awareness – i.e., the environmental
awareness of augmented artifacts – is such a property. Our approach is therefore to con-
sider the real-world context of smart objects in the design of communication services. The
underlying motivation is that with the integration of computation into everyday items,
the real-world situation of smart objects increasingly affects their communications in the
virtual world. Thus, everything that happens to an object in the real world (whether and
how, when and how often it is used, its current location and whether there are potential
users in range) might influence its behavior in the virtual world.

Location-based routing protocols [BCSW98] already consider sensory information to
improve the effectiveness of networking services. Also, Katz [Kat94] points out that mo-
bile systems must be able to “exploit knowledge about their current situation to improve
the quality of communications.” Context-aware communication services, however, take
such adaptiveness to a new level, because the variety of sensors carried by smart objects
makes it possible to determine their current situation with unprecedented accuracy. In
context-aware environments, changes in the real-world situation of smart objects also
increasingly affect their behavior in the virtual world.

Beigl et. al [BKZ+03] reports on a networking protocol stack for context communi-
cation, and suggests considering situational context in order to improve its efficiency. In
the work of Beigl, contexts such as the battery level, the current processor load, and the
link quality serve as indicators for adapting networking parameters. We do not focus
on such virtual-world parameters, but are more interested in adaptiveness based on the
real-world situation of objects. Furthermore, we concentrate on providing the distributed
infrastructure and high-level services that allow such adaptiveness.

In order to achieve these goals, we use the infrastructure layers (see also Fig. 3.33)
presented in this chapter to design and implement context-aware communication ser-
vices. The description language SICL supports programmers in realizing context-aware
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communication services and in linking communication and context layers. The context
layer derives information about the real-world environment of a smart object, which is
the basis for adapting networking structures.

Application layer

Infrastructure for 
inter-object collaboration

Communication layer

Context layer

Figure 3.33: Cross-layer optimization: the communication layer accesses services provided
by the context layer, which is conceptually above the communication layer.

There are three core properties that can be used to characterize context-aware com-
munication services:

1. Cross-layer optimization. Context-aware communication aims at improving the
effectiveness of networking services by considering the results derived in the con-
text layer (cf. Fig. 3.33). In this respect, we speak of cross-layer optimization
because the context layer lies conceptually above the communication layer. Ac-
cessing services from higher layers constitutes a fundamental difference to typical
layered architectures, where higher layers use the services provided by lower layers,
but not the other way around. For example, the application layer in our architec-
ture accesses the context layer in order to adapt application behavior according to
contextual information. Lower layers, on the other hand, do typically not depend
on the services provided by higher layers. With respect to the previous example,
the ability of the context layer to obtain and fuse sensory data does not depend on a
concrete application. The advantage of a classical layered architecture is that lower
layers are completely independent from higher layers, and can therefore be replaced
by other implementations without affecting other parts of the architecture. How-
ever, as already motivated, higher layers might possess information that is valuable
for lower layers. The real-world environment of a smart object, for example, can
have a significant impact on how the object needs to interact with other augmented
artifacts and nearby users. Cross-layer optimization is therefore an opportunity to
consider the information derived by higher layers in the design of communication
services.

2. Proactiveness. Context-aware communication services are proactive because they
can react to changes in the real-world environment of a smart object before these
changes affect the performance of networking services. For example, a context-
aware device discovery service can start an inquiry for new devices at the moment
the context layer deduces the context “object is moving.” It thereby anticipates
that the smart object is likely to enter a new environment in which communication
and cooperation with previously-unknown objects are likely to become necessary.
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This reduces the amount of time it would take to find and establish connections
to other smart objects when an application finally needs to communicate with
previously-unknown objects.

3. Object-centered. In general, context-aware applications consider the real-world
situation of a nearby person in order to provide services that better correspond
to this person’s current needs. In contrast, context-aware communication services
adapt their behavior according to the context of augmented artifacts rather than
the context of nearby people. This is because at the time context-aware communi-
cation services adapt networking parameters, there are often no users in range of
smart objects. Instead, context-aware communication services try to anticipate net-
working structures that are most suitable for context-aware applications by taking
into account the current situation of smart objects. For example, the context-aware
topology construction algorithm presented in Sect. 3.6.4 organizes nodes into clus-
ters according to their current symbolic location. The underlying rationale is that
nodes sharing a certain context – for example, nodes that are in the same room – are
more likely to cooperate with each other to realize a context-aware application that
is executed when people actually enter the smart object’s environment. However,
at the time smart objects create the networking topology, there do not necessarily
have to be people in range of the smart objects. As a consequence, context-aware
communication services usually consider the context of smart objects.

3.6.2 Linking Communication and Context Layer

Accessing the Communication Subsystem from the Context Layer. We de-
signed the context-aware communication layer with the aim of being able to realize
context-aware communication services in the same way as other context-aware appli-
cations. The first step towards this goal is to think of a communication module as a
sensor. A sensor monitors its environment and provides information about its surround-
ings. In this respect, a communication module does not differ from acceleration sensors
or microphones, because it can provide information about what other smart objects are
currently in its environment. Therefore, we can export certain aspects of a communica-
tion module, for example its device discovery functionality, as a sensor statement in our
description language SICL (cf. Fig. 3.34). Here, the sensor statement specifies when
to read out the communication module – i.e., when to check for other objects in range
– and implicitly makes this information available to all other objects by means of the
infrastructure layer for inter-object collaboration. Consequently, a tuple that contains
the address of a discovered module must also contain the address of the module that ac-
tually found it. This can be seen in Fig. 3.34, where the tuple generated by the “sensor”
contains the lower and upper address part of the inquiring unit (lapi and uapi) as well
as the corresponding information for the discovered module (lapd and uapd).

Considering communication modules as sensors enables the context layer to integrate
the output of communication modules into the general context-recognition process.

Relaying Context Information to Communication Primitives. As already men-
tioned, one of our major goals is to implement context-aware communication services in
the same way as other context-aware applications – i.e., by using the layered architecture
presented in this chapter. Context-aware communication services are therefore specified
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define sensor communication_module {

<lapi, uapi, lapd, uapd>;

void start_inquiry();

random interval [40000, 60000] ms;

};

Figure 3.34: Linking communication and context layer by treating communication mod-
ules as sensors: sensor statement for a communication module in SICL.

in SICL. Using adaptation rules in SICL, communication services can adapt their behav-
ior according to context changes, and parameters derived during the context-recognition
process can be passed to communication primitives. To clarify this approach, Fig. 3.35
depicts a simple example of a context-aware communication service. In the example, an
inquiry for new devices is started when the smart object moves. The context “moved” is
determined by a local accelerometer. In Fig. 3.35 line 11 the communication primitive
for starting a discovery is called when the context “moved” is derived by the context
layer. Additionally, left-hand side parameters could be passed to the function on the
right-hand side; for example, the parameters x and y could be used as a parameter in
the call of the start inquiry function. In this way, additional information derived during
the context recognition process can be relayed to communication primitives.

define private callback sensor acceleration {

<accx, accy>;

void get_acceleration();

best effort;

};

moved(x, y, status)

==================================

acceleration<x, y> => moved<status>;

11: moved<status>’ -> start_inquiry();

Figure 3.35: A simple context-aware device discovery service. Context information is
relayed to communication services by means of adaptation statements in SICL.

By linking communication and context layer in the above-mentioned way, context-
aware communication services can take full advantage of all the services and infrastruc-
tural components presented in this chapter. As a result, they can easily access derived
context information and sensor readings from collaborating objects. It is therefore pos-
sible to implement context-aware communication services in a similar way to general
context-aware applications.

3.6.3 Context-Aware Device Discovery

In some communication technologies, device discovery can be extremely slow. Especially
in frequency-hopping technologies – such as Bluetooth – where there is no dedicated
frequency at which devices can advertise their presence, a lengthy discovery phase is a
major drawback. This problem can be addressed by cooperative approaches to device
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discovery that are still based on the conventional Bluetooth discovery mechanism [SR03],
or by completely substituting this conventional mechanism with a context-aware commu-
nication service. In the following solution, the context-aware discovery mechanism does
not use the discovery mechanism of the communication module at all.

smart object door;

...

define callback sensor rfid {

/* lower address part (lap) and

upper address part (uap) of Bluetooth

device address */

<lap, uap>;

void read_device_address_from_rfid();

best effort;

};

object_already_in_room(lap, uap, olap, ouap)

============================================

rfid<lap, uap>’ => old<olap, ouap>;

object_not_in_room(lap, uap, nlap, nuap)

========================================

rfid<lap, uap>’ => new<nlap, nuap>;

old<lap, uap>’ -> remove(lap, uap);

new<lap, uap>’ -> join(lap,uap);

Figure 3.36: Subset of the code for the smart door in SICL.

In the smart door scenario, a door is augmented with a BTnode and an attached RFID
reader, which serves as a sensor for the BTnode. Other smart objects have an RFID
tag attached that contains their actual device address – in our example the Bluetooth
address of the BTnode integrated into a smart object. When smart objects enter a
room through the smart door, their device address is read out of the tag by means of
the RFID reader and made available to other objects in the room through the previously
presented infrastructure layer for inter-object cooperation (cf. Sect. 3.5). In our case, the
infrastructure layer is a distributed tuplespace shared by all objects inside the room. The
smart door should also try to include the arriving object into the distributed tuplespace
shared by augmented artifacts in the room. The corresponding code for the smart door
is depicted in Fig. 3.36.

The technology break of using another technology for device discovery is of course an
overhead because it requires that every object is additionally equipped with an RFID tag.
On the other hand, the presented approach can be faster than conventional Bluetooth
device discovery. It is also possible to combine our RFID-based approach with the con-
ventional device discovery mechanism. In this case, discovery results from the ordinary
discovery procedure could be enriched with context information.
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3.6.4 Context-Aware Topology Construction

As already discussed in Sect. 3.5, it is a goal of the infrastructure layer for inter-object
collaboration to group smart objects according to their current context. The underlying
motivation of this approach is to create a network topology where nodes that are likely to
cooperate with each other are grouped on a single channel (in Bluetooth, this corresponds
to organizing cooperating nodes into the same piconet). As smart objects provide context-
aware services to nearby users, the recognition of the user’s context is one of the main
reasons for communication when a user is present. Consequently, nodes that are in
the same room are more likely to cooperate because their sensory data are often better
suited for characterizing the situation of a nearby person. In contrast, collaboration
across room borders is less likely because sensor readings originating from another room
are often not appropriate to determine a user’s current situation. The context-aware
service for topology construction presented in this section therefore organizes nodes that
share the same symbolic location into the same cluster. Our goal is to illustrate how
the infrastructure layers presented in this chapter support the implementation of such a
service.
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Figure 3.37: Audio output of a microphone sensor (in this example sampled with approx-
imately 5 kHz) and the basic principle for determining the audio feature that is shared
among cooperating smart objects.

At first, the context-aware communication service for topology construction assumes
that nearby smart objects participate in a single distributed tuplespace. In our im-
plementation, the location of smart objects is determined by audio input from a small
microphone attached to every smart object. Every smart object in the distributed tu-
plespace reads out its microphone once every minute. In our experiment, a sampling
rate of about 40 kHz for the duration of about one second was used for querying the
microphones (cf. Fig. 3.37). As the access to the microphones has to be synchronized
for all objects in the shared data space – i.e., it has to take place at the same time – a
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node triggers the sampling by writing a special tuple in the distributed data structure.
As a result, the microphone is then simultaneously read out at every augmented artifact.

The corresponding results are again made available to all participating nodes via the
infrastructure for inter-object collaboration. Unfortunately, accessing microphones at a
sampling rate of 40 kHz generates such a large amount of data that it is impractical to
transmit the whole microphone data stream to other devices. Instead, a small number of
features are extracted from the audio stream, which are embedded into tuples, written
into the space, and thereby shared with other nodes. The extracted features consume
significantly less memory than the original data stream, but still carry the information
necessary for the context recognition process – i.e., the extracted audio features can still be
used to find out which objects are in the same room. In our prototypical implementation,
we use the number of crossings through the average audio sample as a feature (cf. Fig.
3.37). The number of crossings indicate the level of activity at a certain location and are
the basis for the context-recognition process. However, because a single extracted feature
provides only limited information and synchronization problems can lead to inaccurate
information, one sensor feature alone is not sufficient to reliably deduce which objects
are in the same room. Instead, only after several sensor accesses is it possible to draw
a conclusion about the location of a node. The cluster head – in Bluetooth the master
node – accesses the history of features by querying the distributed tuplespace and, if
necessary, issues a command for organizing nodes into different clusters. Fig. 3.38 shows
features that have been extracted by four smart objects over a time frame of about 1
hour. It can be seen that the features of nodes that are in the same room are correlated,
i.e., they tend to decrease and increase simultaneously. This characteristic is used in the
context-recognition process.
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Figure 3.38: Audio features extracted by four smart objects; two of these four devices are
in one room and two in another, adjacent room; it can be seen that the audio features of
smart objects in the same room are correlated, i.e., they tend to decrease and increase
simultaneously.
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3.7 Summary

This chapter focused on the cooperation among smart everyday objects. Its major goal
was to illustrate how resource-restricted smart objects can benefit from the abundance of
information technology embedded into smart environments by forming groups of smart
artifacts that bundle their capabilities and realize services collaboratively. In order to
discuss the benefits of cooperation, we focused on everyday objects that have been aug-
mented with active sensor-based tagging technologies, and interact with each other with-
out the support of a background infrastructure.

The chapter introduced, described, and evaluated a software platform for smart ob-
jects that aims at facilitating the design and implementation of collaborative context-
aware services in smart environments. This software platform consists of four main
parts: (1) a description language for collaborative context-aware services, (2) a context
layer that obtains sensory data from remote smart objects and derives context informa-
tion in cooperation with other augmented artifacts, (3) a tuplespace-based infrastructure
layer for inter-object collaboration, and (4) context-aware communication services. The
concepts presented have been prototypically implemented on an embedded sensor node
platform, the BTnodes. This implementation is also the basis for the extensive evalua-
tions presented in this chapter.

SILC. The description language SICL aims at helping application designers to build
context-aware applications in collaborative environments. The approach taken to achieve
this goal involves the following steps. First, SICL provides a high-level notation for de-
scribing context recognition in terms of tuple transformations. Second, it offers a pro-
gramming abstraction for dealing with collections of smart objects that allows program-
mers to abstract from the distribution of sensory data among cooperating nodes. The
notation introduced, together with this programming abstraction, can lead to more com-
pact code compared to programs purely written in the C programming language. When
realizing collaborative context-aware services in SICL, programmers can concentrate on
the fusion of sensory data instead of low-level communication issues. Third, SICL en-
courages programmers to write modular code and to distinguish between the different
core concerns of context-aware applications. This can contribute to better structured
programs.

The Context Layer. The SICL compiler transforms a description of a context-
aware service in SICL into instructions that are eventually executed on smart objects.
The context layer is responsible for executing the transformation rules for deriving context
that were previously specified in SICL. It assembles sensory data and context information
from other nodes, derives new context information from this data basis, and shares the
results again with other smart objects. In short, the context layer is responsible for
realizing the context recognition process in cooperation with other augmented artifacts.

Infrastructure Layer for Inter-Object Cooperation. The infrastructure layer
for inter-object cooperation is a shared data space that is establish by cooperating smart
objects. By means of this data space, smart objects gain access to each others’ resources,
and can easily exchange data and context information between each other. The shared
data space is also the fundamental infrastructure layer for grouping nodes, and for hiding
low-level communication issues from higher layers. It makes it possible that a collection



3.7. SUMMARY 105

of smart objects appears to an application as a single node accumulating the resources
of its participants. In our approach, the shared data space has been implemented as
a distributed tuple space on context-based broadcast groups. We argued that efficient
cooperation requires an effective mechanism for multicasting data among collaborating
smart objects, and showed how such a mechanism can be realized in multi-channel short-
range communication technologies.

Context-Aware Communication. Wireless ad hoc communication is a funda-
mental requirement for smart objects to cooperate with each other. Unfortunately, ad
hoc communication between smart objects is very difficult to manage because smart
objects might be mobile, because there are potentially many augmented items within
communication range of each other, and because smart objects are usually faced with
severe resource restrictions. The question therefore arises whether there is a property
shared by smart objects that can be used to improve low-level communications. In this
chapter, we argued that the environmental awareness of smart items is such a property,
and showed how context-aware communication services can be realized on the basis of
the presented software platform.
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Chapter 4

Cooperation with Handheld Devices

The main contribution of this dissertation is to show how smart objects can dynamically
exploit the capabilities of computing devices present in their local surroundings in order
to provide more sophisticated services to people in smart environments. The previous
chapter illustrated how smart objects can achieve this goal by cooperating with other
smart objects in their vicinity. In this chapter, we focus on the cooperation between
smart objects and handheld devices. Our goal is to show how augmented items can
exploit the heterogeneity inherent in smart environments by accessing the computational
capabilities of other kinds of computing devices.

Smart objects can benefit from interactions with handhelds because of the severe re-
source restrictions and limited user interfaces of computer-augmented everyday artifacts,
which imply substantial problems for the design of applications in smart environments.
Some of these problems can be overcome if smart objects are able to exploit the re-
sources, I/O interfaces, and computing capabilities of nearby mobile user devices in an
ad-hoc fashion. Handheld devices such as mobile phones and personal digital assistants
(PDAs) are especially suited as cooperation partners for smart objects because of their
complementary capabilities: while there are potentially many smart objects present in
a smart environment that can collaboratively provide detailed information about their
surroundings and the context of a user, handheld devices are equipped with powerful
storage mediums and have elaborate input and display interfaces. In this chapter, we
will argue that the heterogeneity inherent in smart environments (i.e., the presence of
many different kinds of computing devices) can help smart objects to cope with their
resource restrictions in that it allows them to spontaneously access the resources and
different capabilities of other types of devices. We identify recurring usage patterns that
describe how smart objects can make use of nearby handhelds in their own applications,
show how these patterns can be realized, and present concrete applications in order to
illustrate their applicability.

The chapter is organized as follows. The next section explains the reasons for coop-
erating with handheld devices from a smart object’s perspective, and distinguishes our
approach from that of other researchers. Sect. 4.3 identifies a set of characteristics shared
by mobile user devices that underline why handhelds are such valuable cooperation part-
ners for augmented items. Based on these characteristics, we identify recurring usage
patterns that describe how smart objects can make use of handhelds. These patterns
together with directions for their implementation are described in Sect. 4.4. Sect. 4.5 fo-
cuses on the integration of handhelds into sets of cooperating smart objects. It presents a
framework for outsourcing computations to nearby handheld devices and a corresponding
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prototypical implementation on an embedded sensor node platform. Sect. 4.6 presents
example applications that illustrate the applicability of the described concepts. Sect. 4.7
concludes the chapter by summarizing the lessons learned from our applications.

4.1 Motivation and Background

4.1.1 Why Handhelds and Smart Objects should Cooperate
with Each Other

According to the vision of Pervasive Computing, our everyday environments will be pop-
ulated by vast amounts of computing devices that provide services supporting people in
their daily activities. As Pervasive Computing follows a human-centered approach, the
computing technology necessary to achieve such a level of user support will be as multi-
faceted as human activity itself. As a result, handheld devices such as PDAs or mobile
phones, computer-augmented everyday artifacts, RFID-enabled consumer products, and
wall-sized displays are only some of the devices that are likely to play a role in future
smart environments. Consequently, heterogeneity is an inherent property of Pervasive
Computing settings, and a core challenge in smart environments is therefore to exploit
their heterogeneity by building applications that make use of and combine the specific
capabilities provided by different types of computing devices.

Table 4.1: Characteristic properties of handhelds and smart everyday objects.

Handheld devices Smart everyday objects

Pervasiveness low high
(none – few handhelds (many objects embedded

per person) into environment)
Sensors none – few none – many
Energy resources medium severely limited

(regular recharging) (recharging difficult)
Computing capabilities medium severely limited
User interfaces sophisticated severely limited
Mobility medium stationary – high mobility

(carried by users)

This challenge becomes even more important in connection with smart everyday ob-
jects, which possess only severely limited amounts of resources and offer only very re-
stricted, if any, conventional user interfaces. A smart object can therefore achieve very
little on its own and must rely on remote resources to realize its services. Handheld
devices are well suited as cooperation partners and resource providers for smart objects
because of their complementary capabilities (cf. Tab. 4.1): In contrast to smart objects,
handheld devices have relatively large amounts of resources (e.g., powerful processors,
batteries with high capacity and energy density, and large storage mediums), and offer
sophisticated means for interacting with people. In contrast, the computational capabili-
ties of smart objects are very limited because their computing platforms need to be small
and unobtrusive; they do not possess conventional I/O interfaces such as keyboards or
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displays, which restricts the interaction with users; and finally, because of their limited
energy resources, smart objects support only short-range communication technologies,
which makes it difficult to access background infrastructure services.

Combined, all these limitations cause severe problems for the design of applications in
environments of smart objects. In this chapter, we argue that most of these problems can
be overcome if smart objects can spontaneously access the capabilities of nearby handheld
devices. In smart environments, people move around who carry their personal devices
with them. By exploiting the features of nearby handhelds in an ad hoc fashion, new
possibilities for the design of applications on smart objects evolve. Handhelds can enrich
the interactions between smart objects, users, and background infrastructure services (cf.
Fig. 4.1): Mobile user devices facilitate the ad hoc interaction between smart objects and
background services by serving as a mobile access point to the backend infrastructure. A
handheld’s input and display capabilities enable new forms of user interactions with smart
objects. And finally, the cooperation among smart objects themselves can be improved
by utilizing handheld devices as resource providers and mediators between smart objects.

Figure 4.1: Handhelds as mediators in smart environments: handheld devices enrich the
interaction between different smart objects, between smart objects and their users, and
between smart objects and background infrastructure services.

4.1.2 Background

Previous work on the interaction with smart objects by means of handheld devices (e.g.,
[Kon02], [FFK+02], [BG99], and [BR01]) focuses on smart objects that have been aug-
mented with passive tagging technologies or active RFID tags. The sole functionality of
such smart objects consists in providing a unique identification for a tagged item. Hence,
although handheld devices equipped with barcode scanners or RFID readers are used
to read out the ID of a smart object, the actual application associated with an aug-
mented item cannot be implemented by the smart object itself. Instead, the handheld
device accesses the identification stored on an object’s tag and relays this information
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to a background infrastructure service – the virtual counterpart of the smart object.
The actual application and user interaction is then handled between the handheld device
and this infrastructure service – usually without further involvement of the augmented
item itself. The “cooperation” between smart objects and handheld devices is therefore
restricted to the simple operation of obtaining the object’s identification. This is the
fundamental difference to our approach: as the everyday objects that we investigate are
augmented with active sensor-based computing platforms, they can implement applica-
tions on their own without the need of a supporting backend infrastructure. In our work,
smart objects can provide their services more independently from background services,
access resources of nearby handhelds whenever they deem it appropriate and not only
when they are triggered by external reader devices, and finally, people use their handhelds
to interact directly with a smart object, not a virtual representation.

Hartwig et al. [HSR02] integrates small Web servers into active Bluetooth-enabled
tags, attaches them to physical objects, and controls augmented items with nearby
Bluetooth-enabled phones by means of a Wireless Application Protocol (WAP) inter-
face. Interacting with smart objects based on WAP interfaces displayed on handheld
devices is one of several possibilities presented in this chapter to exploit the user inter-
face capabilities of mobile user devices (cf. Sect. 4.4.2). As opposed to the approach
proposed in Hartwig et al. [HSR02], we show how WAP interfaces can be used for local as
well as remote interactions with smart objects. Besides a handheld’s role as a remote user
interface, this chapter also identifies several other means by which mobile user devices
can help smart objects to realize applications. We particularly focus on the integration
of handhelds into sets of cooperating objects, not only on the interaction with a single
augmented item.

Gellersen et al. [GSB02] proposes integrating low-cost sensors into everyday objects
and mobile user devices in order to facilitate the development of context-aware applica-
tions. In their MediaCup project [BGS01], active sensor tags are embedded into coffee
cups to derive and provide services based on the situational context of users. For ex-
ample, the context “meeting” can be inferred from the presence of many hot cups in
a meeting room. However, their work assumes stationary access points within range of
smart objects as well as background infrastructure services that coordinate the cooper-
ation between active artifacts and process sensory data originating from multiple smart
objects. In contrast, we explicitly focus on utilizing nearby handheld devices in an ad
hoc fashion as mediators between smart objects, users, and background infrastructure
services. Augmented items do not have to relay sensory data to a backend service re-
sponsible for context processing, but can derive context information in direct cooperation
with other smart objects and nearby handhelds.

In the TEA project [TEA04], mobile phones are augmented with sensors in order to
enrich phone calls with context information; the goal is to provide cellphones with an
increased awareness of the current situation a user is in. As opposed to the Calls.calm
[Ped01] and Context-Call [Sch00] applications, a mobile phone can thus automatically
– i.e., without explicit user interaction – determine whether to accept or reject a call
considering local sensor readings [GSB02]. The difference to our work is that we leave
handheld devices unchanged, because the necessary context information will be derived
by a collection of smart artifacts in the user’s environment.
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4.2 Solution Outline

The goal of this chapter is to show how smart objects can come to terms with their
resource restrictions by cooperating with nearby handheld devices. In order to achieve
this goal, we start by identifying a set of characteristics shared by mobile user devices
in smart environments. Based on these characteristics, we then derive six usage patterns
that describe how smart objects can make use of nearby handhelds. These usage patterns
– in the following also called roles because every usage pattern focuses on a specific aspect
of handheld devices – are: (1) mobile infrastructure access point, (2) user interface,
(3) remote sensor, (4) mobile storage medium, (5) remote resource provider, and (6)
weak user identifier. We then describe these roles in more detail and give directions for
their implementation. In this step, we also report on our experiences with prototypical
implementations of the mentioned usage patterns for Bluetooth-enabled mobile phones
and PDAs, which cooperate with smart objects that are augmented with an active sensor-
node platform, the BTnodes [BKM+04].

Among all the above-mentioned usage patterns for accessing the capabilities of hand-
held devices, the role of remote resource provider is of special interest in the scope of
this dissertation because it describes how handhelds can be integrated into collections
of cooperating smart everyday objects. In this case, mobile user devices serve as media-
tors between different smart objects and facilitate cooperation among these entities. In
the approach we present in this chapter, smart objects are enabled to utilize a nearby
handheld device as a remote resource provider by outsourcing computations to it. This
is achieved by combining two concepts: distributed shared data access and mobile code.
First, cooperating smart objects establish a distributed data structure for processing data
collaboratively as well as for sharing information and resources (see also Sect. 3.5). As
a result, it becomes irrelevant at which of the cooperating nodes program code is exe-
cuted as long as the program retrieves data by calling functions operating on the shared
data space and writes results back to it. Hence, nearby handheld devices can now join
the distributed data space and can serve as an execution platform for code from smart
objects. We illustrate our approach with a programming framework and runtime en-
vironment called Smoblets, which has again been prototypically implemented using the
BTnode device platform.

Having described the above-mentioned patterns for making use of handheld devices
in smart environments, we present several application scenarios and corresponding pro-
totypical implementations that illustrate their applicability. The scenarios include an
application supporting remote interactions with smart objects, a smart medicine cabi-
net, an object tracking and monitoring application, and a smart training assistant. Our
goal in prototypically implementing these scenarios was to illustrate the versatility and
reusability of the identified usage patterns in different settings.

4.3 Characteristics and Roles of Handhelds

The roles of handheld devices in environments of computer augmented everyday artifacts
are manifold. Handhelds can serve as a primary user interface, they can be a mobile
infrastructure access point, provide mobile data storage, act as a user identifier, sup-
ply energy and computational resources, or offer sensing capabilities. In this section we
identify the main reasons for this versatility. We start by naming important character-
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istics of handheld devices and from these derive the major roles of handhelds in smart
environments.

Habitual presence

As mobile phones, PDAs, and other handheld devices are habitually carried around by
their owners, they are likely to be in range of a smart object when a physical interaction
with it is about to take place. This is especially important because smart objects them-
selves generally do not have access to resources beyond their peers, and handheld devices
are often the only local devices able to provide powerful resources and sophisticated ser-
vices. The habitual presence of handheld devices during physical interactions with smart
objects is a fundamental characteristic that allows smart objects to rely – to a certain
degree – on the presence of more powerful computational resources in their neighborhood.
It entails a handheld’s general function as a mediator between smart objects, users, and
background infrastructure services, and is a basic precondition for the roles of handhelds
presented in the remainder of this section.

Wireless network diversity

Mobile phones and PDAs usually support both short-range as well as long-range wireless
communication technologies, such as Bluetooth, IrDA, WLAN, GSM, or UMTS. This
enables handhelds to not only interact with smart objects directly via short-range com-
munication standards, but also to relay data from augmented items to powerful computers
in an infrastructure far away. The characteristic of wireless network diversity makes it
possible for handhelds to serve as mobile infrastructure access points.

User interface and input capabilities

Tags attached to everyday objects have to be small, unobtrusive and are ideally invisible
to human users. Consequently, they do not possess conventional buttons, keyboards, or
screens. Interaction with augmented objects therefore has to take place either implicitly
by considering the sensory data of smart objects, or explicitly by using the input and
display capabilities of other devices [SF03a]. As people are usually familiar with the
features provided by their handhelds, interactions with smart objects that are based on
these well-known interfaces should imply a more comfortable and easier usage of smart
objects. As a result, handhelds often serve as the primary user interface for smart objects.

Perception

Handheld devices can serve as remote sensors for a smart object, which then accesses
sensory data wirelessly using a communication technology supported by all participating
devices (i.e., supported by the handhelds as well as the augmented artifact). The way in
which handheld devices perceive their environment strongly depends on their functional-
ity. Cellular phones, for example, know to what cell they currently belong and can serve
as remote location sensors for augmented items. Other sensors that are often integrated
or attached to PDAs and mobile phones range from barcode scanners and RFID readers
to digital cameras. Many of these sensors are difficult to integrate into smart objects
because they are either too complex and obtrusive to be embedded into everyday things
(e.g. digital cameras) or draw too much energy (such as RFID readers). Cooperation
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with handheld devices is therefore often the only possibility for smart objects to obtain
environmental information from such complex sensors.

Mobility

Active tags can transfer data such as how to reach a smart object from remote locations to
a handheld device, where it is permanently stored and accessible for users independently
of their current location. Thus, although handhelds are mobile, information stored on
them from a smart object remains accessible for users most of the time. This feature
can be used in services provided by augmented items, in which handhelds then serve as
a mobile storage medium for smart objects.

Computational resources and regularly refilled mobile energy reservoirs

Although the energy consumption of a handheld device such as a cellular phone should be
as small as possible, people are used to recharging its battery at regular intervals. PDAs
are often shipped with a cradle that offers both host access to the device and automatic
recharging. A similar procedure, however, is not feasible for smart objects because there
are just too many of them. As a result, smart objects may exploit the energy resources of
handheld devices in range, for example by carrying out complex and energy consuming
computations on them. Because of regularly renewed energy resources, handhelds can
also offer more powerful resources regarding memory and bandwidth, which allows smart
objects to use them as remote resource providers.

Personalization

PDAs and mobile phones are most often personalized, i.e., they belong to a certain
person who uses the device exclusively. Smart devices can therefore adapt their behavior
according to the current handheld devices in range and thereby offer functions tailored
towards certain persons. Handheld devices also offer means for user authentication and
authorization such as PIN numbers or fingerprint sensors. In this context, handhelds can
serve as weak user identifiers for services provided by smart objects.

Table 4.2: The roles of handhelds in smart environments and the underlying character-
istics that entail these roles.

Handheld’s role Underlying characteristic

Mobile infrastructure access point Wireless network diversity
User interface Input and display capabilities
Remote sensor Perception
Mobile storage medium Mobility
Remote resource provider Computational resources

Regularly refilled mobile energy reservoirs
Weak user identifier Personalization

The relationship between the described characteristics of handheld devices and the
roles we derived from these characteristics are summarized in Tab. 4.2.
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4.4 Role Descriptions

After having identified the major roles of handhelds in smart environments on a more
conceptual level (cf. Tab. 4.2), we now describe these roles in more detail, report on the
concepts underlying their realization, and present prototypical implementations. Prac-
tical issues are illustrated on the basis of a concrete implementation for the BTnode
embedded device platform (cf. Fig. 4.2). BTnodes are small computing devices, con-
sisting of a microcontroller, Bluetooth communication modules, an autonomous power
supply, and externally attached sensor boards. As Bluetooth is integrated into an in-
creasing number of consumer devices, BTnodes are suitable for illustrating the roles of
handhelds in smart environments. Further advantages of Bluetooth in this context are
that it is (1) an open standard and (2) does not require manual user interaction. The
latter point becomes clear by comparing Bluetooth with IrDA, the quasi-standard com-
munication technology embedded into almost every mobile phone and PDA: whereas
infrared technologies require users to align devices to ensure line-of-sight for communi-
cation, Bluetooth requires much less attention from the user side. In fact, interaction
between handheld devices and Bluetooth-enabled smart objects can take place without
any supervision by human users.

Bluetooth 
module Connectors for

sensor boards

Connector for 
power supply

Microcontroller
on rear side

4 
cm

6 cm

Figure 4.2: BTnodes serve as a device platform for making everyday objects “smart”;
prototypical implementations for the BTnodes and Bluetooth-enabled handhelds are used
to illustrate the concepts presented in this chapter.

However, besides these advantages of Bluetooth, the basic concepts and usage sce-
narios of handheld devices presented in this chapter neither depend on an actual device
platform nor on the incorporated communication standard. Our choice of Bluetooth-
enabled tags to illustrate the previously identified roles of handhelds mainly reflects the
fact that Bluetooth modules are integrated into an increasing number of commodity
devices and therefore facilitate easy integration of handhelds into smart environments.
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4.4.1 Mobile infrastructure access point

Basic Concept

Because of their wireless network diversity – i.e., their support of short-range as well as
long-range communication technologies – handheld devices can serve as mobile gateways
to background infrastructure services. Technically, this is achieved by establishing a
local short-range connection from a smart object to a handheld device, and a long-range
communication link from the handheld to a background infrastructure server (cf. Fig.
4.3). The wireless technology used to build up the long-range connection to the backend
infrastructure depends on the capabilities of the handheld device. In the case of PDAs
this might be an IEEE 802.11 link to a base station, and a GSM (Global System for
Mobile Communication) or GPRS (General Packet Radio Service) connection in the case
of mobile phones.

Figure 4.3: Mobile access points: smart objects use nearby handheld devices to commu-
nicate with background infrastructure services in an ad hoc fashion.

Motivation

The advantage of using handhelds as mobile infrastructure access points is that smart
everyday objects can exchange data with backend services without relying on fixed, sta-
tionary installed, and often expensive access points within range. Furthermore, people
usually use the services provided by smart objects when they are in close proximity of
these objects, for example, during or after physically interacting with them. In this case,
mobile phones and PDAs, which are usually carried around by their users, are an inter-
esting alternative to stationary access points because they are likely to be in range of a
smart object when it needs to access backend services. To illustrate this aspect, let us
consider a cabinet that keeps track of its contents as an example of a smart object. Here,
the state of the cabinet relevant for an application changes only when people withdraw
items or put additional things inside the cabinet. Consequently, mobile phones carried
by the cabinet’s users are sufficient for the smart object to send application-relevant data
to backend services because application-relevant data are only generated when people
physically interact with the cabinet.

The alternatives to using handhelds for accessing backend infrastructure services are
dense infrastructures of fixed access points that must be in direct transmission range of
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smart objects, and multihop communication with remote fixed access points. Infrastruc-
tures of fixed access points are complex and costly because stationary access points need
to be as close to the smart objects as possible in order to ensure communication and to
save energy. This is because an inherent property of radio-based communications states
that the power of a transmitted radio signal P is inversely proportional to the nth power
of the distance from the transmitter – P ∼ 1

rn with n ≥ 2. As a consequence, smart
objects usually support only short-range communication technologies. Thus, many sta-
tionary access points would be necessary to ensure background infrastructure access for
smart objects. The downside of the second alternative – multihop communication with
remote access points – also results from the energy consumption of nodes. In particular,
it has been shown that nodes in close proximity of a base station consume significantly
more energy than nodes farther away, because they have to relay data from other objects.
This can lead to a shorter lifetime of the smart objects that are in direct transmission
range of an access point. Considering the above mentioned issues, from the perspective
of smart objects, infrastructure access by means of handheld devices is advantageous
because handhelds are likely to be very close. As a result, the transmit power levels of
smart objects can be very low, which can considerably extend their lifetime. Because of
the mentioned property of radio-based communications (P ∼ 1

rn with n ≥ 2) and the
severe energy restrictions of smart objects, it also seems to be a fundamental property
of radio-based tags that they cannot communicate with remote backend servers on their
own. Optical tags, however, can exchange data with remote servers more efficiently, but
have other disadvantages such as their line-of-sight restrictions (cf. Sect. 2.2.3).

Disconnected Operations

A problem with mobile infrastructure access points can arise if the internal state or envi-
ronmental parameters meaningful in the context of a smart object’s application change
when no people are nearby. In this case, smart objects operate in a disconnected mode
as long as there is no handheld device in vicinity. Considering the memory restrictions
of smart objects, this can pose difficulties because it requires that augmented items must
buffer data until a connection with the backend infrastructure can be established. Fur-
thermore, if people want to interact with an augmented item from remote locations,
their requests cannot address the smart object directly as there is no direct connectiv-
ity. A similar problem arises if smart objects that are far away from each other want to
communicate via the backend infrastructure.

Our approach to dealing with disconnected operations is to associate a smart object
with a backend service that represents the augmented item continuously. We call this
service the background infrastructure representative (BIRT) of a smart object. Whenever
there is connectivity by means of a nearby handheld, a smart object synchronizes its state
with its BIRT, and vice versa. On the other hand, when there is no connectivity and
people or other devices want to communicate with the object, the BIRT buffers these
data and transmits them to the object during the next synchronization. The BIRT can
also emulate the services provided by a smart object based on the data it received during
the last synchronization (see Fig. 4.4). Please see Sect. 4.6.2 for an example of using
BIRTs in a concrete application scenario.
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Figure 4.4: Disconnected operations: if a mobile access point is in range of a smart
object, it synchronizes its state with its BIRT (1); if there is no direct connectivity to
the smart object, requests from remote users and other augmented artifacts address the
BIRT of the smart object (2).

Implementation

The following illustrates how a handheld’s role as a mobile infrastructure access point
can be realized. In order to demonstrate implementation specific issues with a concrete
example, we have chosen mobile phones as handheld devices and BTnodes as tags for
augmenting everyday objects. In general, using a cellular phone as a mobile access point
for a smart object involves three steps: (1) the smart object creates a local Bluetooth
connection to the phone, (2) the smart object transmits a command sequence to the
mobile phone in order to establish a long-range connection from the handheld to a backend
server, and (3) the mobile phone relays data originating from the smart object to the
backend server and vice versa (cf. Fig. 4.5). With respect to our choice of Bluetooth-
enabled mobile phones and BTnodes, all of these steps can be taken without changing
the functionality of or uploading additional software to the user’s mobile phone.

Step (1), the establishment of the local Bluetooth connection to the handheld, is
carried out after a smart object has discovered a new handheld in its environment. If un-
known, the Bluetooth service discovery protocol (SDP) can be used to query for appropri-
ate parameters that are then used during the actual connection establishment procedure.
As we connect to a service of the mobile phone that allows smart objects to establish
long-range connections (which therefore results in costs for the owner), a smart object
must be authenticated to use this service. The necessary data for creating authenticated
connections are determined during a previous Bluetooth pairing procedure. Although the
pairing procedure must be completed only once, it requires explicit user input in form of
a PIN number.
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Figure 4.5: Deploying nearby cellular phones as mobile infrastructure access points.

Given the local Bluetooth link, the smart object establishes a connection from the
handheld to the backend server. This backend server is connected to a second mobile
phone that serves as a GSM gateway. The smart object can therefore establish a long-
range connection between its local mobile access point and the remote server by calling
the GSM gateway of the remote server. This is done by sending AT commands over the
local Bluetooth link from the smart object to the mobile phone that serves as its mobile
infrastructure access point. There is a standardized set of AT commands supported by
all GSM-enabled mobile phones, which ensures that this can be done with virtually all
of today’s cellular phones in Europe.

Given the short-range Bluetooth connection to the access point and the long-range
link to the backend server, arbitrary data can be exchanged between the smart object
and the background server. Besides using explicitly established GSM data connections
between the mobile access point and the infrastructure server, it is also possible for smart
objects to embed data into SMS (Short Message Service) messages. SMS messages are
transmitted via the GSM infrastructure to the backend server, which in turn responds by
sending SMS messages back. As this approach does not require the overhead of GSM data
connection establishment, we have prototypically implemented this SMS-based approach.
It is also the preferred way to exchange data with a background infrastructure server in
our applications (see Sect. 4.6). In a recent student thesis supervised by Oliver Kasten, a
handheld’s role as a mobile infrastructure access point has also been implemented using
explicitly established GSM data connections.

4.4.2 User Interface

Basic Concept

The user input and output capabilities of handheld devices can be exploited by smart
objects for realizing interactions with nearby people based on a graphical user interface.
Mobile phones and PDAs offer several popular features by means of which such an in-
teraction can be realized. They range from custom alarms, SMS messages, WAP pages,
calendar entries, and business cards to whole Java user interfaces that can be downloaded
over a local connection from a smart object to a handheld device. Realizing user inter-
faces is one of the core reasons for smart objects to cooperate with handheld devices
because the input and display capabilities of augmented items themselves are usually
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severely limited. By realizing interactions with smart objects based on widely-accepted
usage patterns people associate with their handheld devices (e.g., making phone calls or
writing SMS messages), it can become easier for people to deal with Pervasive Computing
technologies.

Motivation

The computing platforms embedded into everyday objects need to be small and unob-
trusive. Consequently, active and passive tagging technologies generally do not possess
screens, buttons, or any other means to process explicit user input and to display out-
put. The tags are ideally invisible to users and unobtrusive to such a degree that they
do not disturb the way in which people would normally use these objects if they were
not augmented with information technology. In other words, intelligent tags should add
functionality to everyday objects without changing their appearance. But if augmented
items have such severely limited input and output interfaces, how do users actually in-
teract with smart objects?

To address this question, we classify user interactions with smart objects into three
categories: (1) implicit interaction (sometimes also called invisible interaction), (2) ex-
plicit interaction, and (3) hybrid approaches to interaction [SF03a].

Implicit Interaction. Implicit interaction is an interaction paradigm where people do
not use explicit actions to communicate with the information technology embedded into
everyday objects. Instead, based on their ability to sense their environment, augmented
items monitor the behavior of nearby people and the way in which they deal with smart
artifacts in order to derive instructions for a smart object’s behavior. The people do
not control smart objects explicitly but through side effects of their ordinary behavior:
although users’ actions are not intended to control a smart object, an augmented item
does draw conclusions for its own behavior from these actions. A simple example of
implicit interactions are automatic doors, which can be regarded as everyday objects
augmented with small movement sensors. Interactions with automatic doors are implicit
because users do not need to carry out explicit actions to open them. Instead, the doors
monitor their immediate environment, and automatically derive instructions from the
behavior of nearby people. That is, when people approach an automatic door it opens
automatically. Regarding implicit interactions, users might not be aware of the effects
their behavior is having on a smart object because the intention of their actions is not to
interact with augmented artifacts. With respect to our example, the action that opens an
automatic door, for instance, is not associated with the door itself, but simply reflects a
person’s intention to enter a building. The action approaching the entrance of a building
is mapped by the smart object onto an instruction to open the door, without requiring
explicit input from the user. Considering this example, it becomes clear that in order to
take part in implicit interactions smart objects must be able to derive their situational
context and that of nearby people. In Chap. 3 we have already shown how smart objects
can obtain information about their environment by cooperating with other objects. The
approaches presented can be used to realize implicit interactions in smart environments.

Explicit Interaction. Explicit interaction is the predominant interaction paradigm
with today’s personal computers and, as the name implies, is based on explicit user input.
By pressing buttons, by moving a computer mouse, and by using other pointing devices or
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speech processing software, people interact with computing devices and explicitly trigger
their actions. This has the advantage that users remain in full control of their computing
devices, can easily influence their behavior, and better understand their actions. In
contrast, implicit interactions might result in annoying and unwanted actions taken by
computing devices if they misinterpret the instructions hidden in a user’s behavior. For
example, automatic light switches turn on a lamp without requiring users to search for a
switch in the dark and without explicit actions, which certainly is a nice feature. However,
if a user wants to say goodbye to his girlfriend (in which case darkness is quite desirable)
automatic light switches can also become quite annoying. Implicit interactions can also
pose considerable privacy concerns if smart objects do what they think is appropriate
without explicit feedback from users. On the other hand, if everyday environments are
populated with hundreds or even thousands of computing devices, many of which might
be invisible from a user perspective, explicit interactions are likely to become impractical.
In such settings it seems not to be feasible to demand explicit actions from nearby users
to control every aspect of smart objects’ behavior.

Hybrid Approaches. Hybrid approaches to interaction try to combine the advantages
of both previously-mentioned interaction paradigms. In the concept of invisible preselec-
tion, for example, which we have proposed in [SF03a], people continue to interact with
smart objects based on explicit user inputs. However, in a preselection phase, implicit
interaction is used to choose interaction partners.

In summary, both explicit and implicit interaction should be supported by smart ob-
jects in order to cover a broad range of application scenarios. While Chap. 3 illustrated
how to derive environmental context that facilitates implicit interactions, nearby hand-
helds can be used by smart objects for realizing explicit user interfaces. As augmented
items do not possess user interface capabilities on their own, cooperation with other types
of computing devices is the only way to access such user interfaces. One advantage of
handhelds in this respect is again their high availability – i.e. people can access their
handhelds at almost any time, independent of their current location. Another, even
more important benefit is that most people know how to operate mobile phones and
PDAs even though they often run into problems with other more complex computing
devices. If smart objects provide services that draw upon the user interface capabilities
of handhelds, people might find it easier to deal with smart environments.

Implementation

Handheld devices such as mobile phones and PDAs offer a wide range of features that can
be exploited by smart objects to realize user interfaces. These features include (1) custom
alarms, (2) SMS messages, (3) WAP pages, (4) calendar entries and business cards, and
(5) whole Java user interfaces that can be downloaded over a local connection from a
smart object to a handheld device. We have evaluated and prototypically implemented
all these different means to facilitate user interaction with smart objects. BTnodes have
been used as a prototyping platform for augmenting everyday objects, and Bluetooth-
enabled mobile phones and PDAs as handheld devices.

Custom Alarms. Custom alarms as they are supported by many of today’s mobile
phones can be used to remind people about actions associated with a smart object. For
example in the scenario presented in Sect. 4.6.2, a smart medicine cabinet automatically
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stores an alarm in the mobile phone of a patient in order to remind her to take the
medicine she has recently removed from the cabinet. Custom alarms have the disadvan-
tage that they often do not display a message when the alarm is triggered. Such additional
functionality, however, is provided by calendar entries. With respect to our prototypical
implementation, alarms are written to a cellular phone by transmitting standardized AT
commands from a smart object over a local Bluetooth connection to the phone. Thus,
smart objects first need to establish a local Bluetooth link to the mobile phone, retrieve
the phone’s local time in a second step, and then send the time at which the alarm is to
be triggered (cf. Fig. 4.6). As previously mentioned, the transmission of AT commands
to a mobile phone requires an authenticated connection.

Figure 4.6: Using nearby handhelds for reminding people about actions associated with
a smart object: a smart object (1) establishes a Bluetooth link, (2) requests the hand-
held’s local time by sending appropriate AT commands, (3) receives the local time of
the handheld, and (4) schedules an alarm by transmitting AT commands over the local
Bluetooth connection.

Calendar Entries and Business Cards. Calendar entries and business cards can be
exchanged via Bluetooth OBEX (Bluetooth Object Exchange Protocol) with Bluetooth-
enabled mobile phones and PDAs in range of a smart object. Calendar entries are an
interesting alternative to custom alarms (see previous paragraph). Their advantage is that
they not only trigger an acoustic alarm at the time specified but also display information
associated with the alarm on the handheld’s screen. In contrast to calendar entries,
business cards are useful for sending small amounts of information to a nearby handheld
device that are immediately displayed on the handheld’s screen. The benefit of business
cards is that the local Bluetooth link over which they are transmitted does not necessarily
need to be authenticated. Fig. 4.7 depicts examples of calendar entries and business cards
that have been sent by a smart object to a Bluetooth-enabled mobile phone.

SMS-based Interaction. According to forecasts by GSM world [GSM04], 547.5 bil-
lion SMS messages are going to be sent in the year 2004. Such figures underline the
overwhelming economic success of the short message service and its broad acceptance by
today’s mobile phone users. Motivated by these facts, we investigated how the short mes-
sage service can be used to enrich interactions with smart objects. Due to their limited
text-based interface, SMS messages as they are supported by virtually all of today’s mo-
bile phones are most suited for transmitting short notifications. However, they also allow
more complex interactions that involve consecutive messages exchanged between smart
objects and users. The basic idea for realizing SMS-based interactions is to assign phone
numbers to smart objects. Using these phone numbers as an addressing scheme, aug-
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Figure 4.7: Using calendar entries and business cards in interactions with smart objects:
a calendar entry stored into a mobile phone from a smart object to remind a patient to
take the medicine Zyrtec (top), and a business card with basic information about a smart
object (bottom).

mented items cannot only trigger the transmission of text messages but can also receive
response messages from users.

Figure 4.8: Sending SMS messages to remote users.

The implementation setup for supporting SMS-based interactions depends on whether
the user is in direct transmission range of an object or at a remote location. We will first
describe how augmented items can communicate with remote handhelds (cf. Fig. 4.8). In
this case, smart objects initiate the exchange of SMS messages with remote users by send-
ing AT commands to a nearby access point over an authenticated short-range Bluetooth
connection. The access point can be stationary, but it can also be a nearby cellular phone
that serves as a mobile infrastructure access point. Our prototypical implementation for
the BTnodes supports both alternatives. The access point is responsible for transmitting
the SMS message to the remote user’s mobile phone via the public GSM infrastructure.
Having received the message, the user can access the embedded information and send a
response message back to the smart object. The phone number to which to send this
message is implicitly given because it is the number the first message originated from.
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The user can therefore respond by simply replying to the first message. Technically, the
response SMS message is sent back to the access point in range of the augmented items,
which relays the incoming message to the appropriate smart object. As an access point
potentially serves many different smart objects, it must analyze the content of messages
in order to determine the intended receiver.

Figure 4.9: Sending SMS messages to local users.

If people are in direct transmission range of a smart object, interaction based on
the short message service is possible without the access point necessary in the previously
described approach. As can be seen in Fig. 4.9 a smart object initiates the transmission of
an SMS message by sending AT commands directly to the user’s mobile phone. However,
the message sent cannot be directly displayed on the handheld but must be passed over
the public GSM infrastructure. This implies that although the interaction appears to
be local from the point of view of a user, it nevertheless relies on an infrastructure and
results in costs imposed on the user. There are two possibilities for sending the message
via the GSM infrastructure. The first is to simply echo the message, meaning that the
smart object sends an SMS from the user’s mobile phone to the user’s mobile phone. The
second solution involves a background infrastructure server with a GSM gateway. Here,
the augmented item would send a notification message to the backend server that responds
by sending an SMS back to the user’s mobile phone. The advantage of this approach
is that the response message from the backend need not be the same as the notification
message sent by the smart object, but could be enriched with more information by the
backend.

The drawbacks of using an SMS-based approach for user interactions with smart ob-
jects are the costs of transmitting messages via the GSM infrastructure and the necessity
of authenticated connections. With respect to the costs of sending SMS messages, we
would like to argue that prices are likely to fall in the future. This is because new multi-
media services and new generations of mobile phones will eventually decrease the cost of
transmitting small amounts of data over mobile phone networks. On the other hand, the
costs incurred by transmitting SMS messages could even be used to charge for services
provided by smart objects. In our prototypical implementation, local Bluetooth links
need to be authenticated in order to prevent arbitrary objects from sending messages
at the expense of mobile phone users. Here, the disadvantage of authenticated connec-
tions is that people must explicitly establish a trust relationship with every smart object
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they want to interact with. As there are potentially vast amounts of objects in a user’s
environment, this can cause an unacceptable overhead for the user. However, after a
relationship between an object and a mobile phone has been established once, consecu-
tive connection establishments do not require manual interactions. Furthermore, there
are several techniques for passing trust relationships existing between two entities on to
other devices [Roh03, Sta00, Sta02]. Using such approaches, it would not be necessary to
manually establish such a relationship between a handheld device and every smart object
it needs to cooperate with. Instead, trust relationships could for example be transitive,
meaning that if a handheld H trusts a smart object O1 and O1 trusts another object O2,
a trust relationship between H and O2 could automatically be deduced. There are also
other, more user-friendly ways for coupling devices that do not require the input of pin
numbers. Holmquist et al. [HMS+01], for example, suggests establishing a relationship
between smart objects by shaking them together.

WAP Interfaces. User interaction with smart objects can also take place based on
WAP (Wireless Application Protocol) interfaces. In our implementation, user interaction
with WAP relies on a background infrastructure service, the background infrastructure
representative (BIRT) of a smart object. As previously described, a BIRT mirrors the
state of a smart object and can therefore represent an object in the backend infrastructure
in case there is no direct connectivity to the augmented item itself. Another application
domain of BIRTs is to exchange data between the smart objects they represent and other
entities (e.g., other smart objects, handheld devices, or users) that want to interact with
them. The BIRT can transform data it received from a smart object into a more legible
format that is easily accessible for people. In case of WAP user interfaces, the BIRT
transforms data from smart objects into WML (Wireless Markup Language) pages that
are displayed on a user’s handheld device.

Figure 4.10: WAP-based interaction.

The setup for realizing WAP-based user interfaces for interactions with augmented
items is as follows. As can be seen in Fig. 4.10, smart objects synchronize their state
with that of their BIRT whenever it becomes necessary – i.e., whenever their application
status changes. If this is not possible because of temporary disconnections, augmented
items should buffer data until a new link with the backend server hosting the BIRT
can be established. The BIRT is responsible for transforming data provided by a smart
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object into a WAP format, i.e., into WML (Wireless Markup Language) pages. For
this purpose, we have implemented a BIRT as a Servlet [Ser04] that cooperates with
a Web server running on the same machine. If a user wants to interact with a smart
object, she opens a URI (Uniform Resource Identifier) associated with that object in a
WAP browser on her mobile phone. As a result, the Web server running on the backend
infrastructure server receives a request, whereupon the BIRT of the addressed object
dynamically generates a WML page containing the requested information. This WML
page is then displayed on the user’s mobile phone.

The mechanism presented not only allows people to retrieve information about an
object, but also allows users to send information back to it. In our approach, a BIRT
generates WML pages containing form fields that can be used to input data. These data
are transmitted back to the BIRT, which relays them to the smart object. In this way,
the behavior of a smart object can be controlled with a WAP-based user interface.

Java User Interfaces. Finally, we have also developed concepts for supporting more
elaborate interactions with smart objects. Here, Java classes that represent graphical
user interfaces are directly stored on smart objects. People can select augmented items
in their environment using their handheld device and download code containing the user
interface from the selected object. Using Java programs, more sophisticated graphical
user interfaces containing widgets such as menu bars and drop-down boxes can be realized.
The concepts underlying this approach are described in more detail in Sect. 4.5.

Applicability

Tab. 4.3 compares the described approaches for realizing user interactions with smart
objects. Its goal is to present the properties that most significantly influence the choice
for an appropriate interaction mechanism when designing applications for smart environ-
ments. As can be seen, SMS messages and WAP interfaces are suitable for implementing
interactions with objects at remote locations, whereas business cards, for example, are
usually exchanged with people that are in close proximity of a smart object. Further-
more, some of the interaction concepts presented are uni-directional. Custom alarms
and calendar entries, for instance, are very effective for notifying and reminding people,
but they are not suited for sending information back to the smart object and do not,
therefore, support information exchange. In contrast, with a WAP interface data can be
sent from a smart object to a user and vice versa. Tab. 4.3 also shows if authenticated
connections are necessary to realize the presented interaction concepts.

4.4.3 Remote Sensor

Basic Concept

The percepts of handheld devices are of potential interest for smart objects, which often
simply do not have sufficient resources to deploy sophisticated sensors. Mobile RFID-
readers, for example, consume significant amounts of energy and are therefore difficult
to integrate into mobile everyday objects. Barcode scanners and digital cameras are also
often attached to or integrated into handheld devices because their complexity and size
makes it difficult to embed them into everyday things. Besides smart objects’ resource
restrictions, there is also another reason why sensory data from mobile user devices might
be valuable for augmented items. This reason is that handhelds are usually in close
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Table 4.3: Comparison of the approaches for accessing handheld’s user interfaces from
smart objects.

Approach Remote interaction Interaction Authentication

Alarms no one-way required
Business cards no two-way not required

Calendar entries no one-way required
SMS yes two-way required
WAP yes two-way, required

user-initiated
Java user no two-way not required
interfaces

proximity of their owners and can therefore provide more accurate information about
them. Sensory data originating from smart objects that are farther away from users
than the handheld devices they carry might be less suited for characterizing their current
situation. In the TEA project [TEA04], for example, sensors have been attached to a
mobile phone in order to determine the current situational context of its owner. Sensory
data from a handheld device are thereby well suited to determine the current context of
people, and enable smart objects to provide better customized context-aware services.

Implementation

In the following, we describe how smart objects that have been augmented with BTnodes
can use ordinary mobile phones as remote location sensors. For this purpose we exploit
the cellular topology of GSM networks and the fact that mobile phones know which
cell they currently belong to (i.e., to which base station they are currently assigned).
When BTnodes want to determine their approximate position, they try to establish
an authenticated Bluetooth connection to a nearby mobile phone, and retrieve its cell
identifier by exchanging AT commands on top of the local Bluetooth communication link.
As a GSM cell can cover several square kilometers but the Bluetooth transmission range
is only several meters, both the smart object and the handheld device are typically in
the same cell. Hence, the location information provided by the handheld can be used to
characterize the location of the smart object. Sect. 4.6.4 describes an application where
handhelds serve as location sensors for smart objects.

Smart objects can also access sensory data from handheld devices using a similar
approach to that presented in Chap. 3. Here, mobile user devices join a distributed data
structure established by smart objects, and exchange sensor values by means of this data
structure. In our implementation, both, PDAs and smart objects can participate in a
distributed tuplespace, which allows them to exchange sensory data in this way.

4.4.4 Mobile Storage Medium

Basic Concept

Data transmitted from a smart object to a handheld device are available to users inde-
pendent of their current location and their overall situational context. This is because



4.4. ROLE DESCRIPTIONS 127

handhelds (especially mobile phones) are carried around by their owners, who can there-
fore access data stored on them at almost any place and any time. This feature can be
exploited in applications that rely on remote interactions with smart objects. In such
applications, one of the main difficulties is to address a specific smart object that is not
available for physical interaction because it is at a remote location. Laser pointers to
select objects over small distances [Rin02] or techniques that use physical contact to ini-
tiate interactions are therefore not applicable in these settings. In our applications (cf.
Sect. 4.6) we solve this problem by using handheld devices as mobile storage mediums for
so-called interaction stubs from smart everyday objects. In this solution, smart objects
that offer services which can be accessed remotely store their contact information on
users’ handhelds when the users are in range of these objects. When people afterwards
want to access services from remote locations, they can establish a connection with the
corresponding smart object using the data stored on their handhelds. In our approach,
we tried to store contact information in a format that reflects the basic functionality
of the mobile user device. For example, in the case of mobile phones we store contact
information for smart objects in the form of phone book entries.

Implementation

In the following, it is shown how we have prototypically implemented the role mobile
storage medium using mobile phones as handhelds and BTnodes as tagging technology.
When cellular phones serve as handheld devices, the question arises in which data format
smart objects can actually store information on them. To enable easy accessibility from
a user perspective and in order to support a broad range of mobile phones, we chose to
store information on mobile phones as phone book entries and SMS templates. Using
phone book entries, people can establish a connection to a smart object that can be
addressed using a phone number (cf. Sect. 4.6.1); an SMS template can contain arbitrary
textual data from a smart object. In our implementation, smart objects establish an
authenticated Bluetooth connection to a nearby mobile phone when they need to store
information on it. Afterwards, AT commands are transferred over the just-established
local Bluetooth link to store and retrieve data from the handheld device. Afterwards,
the smart object shuts down the Bluetooth connection.

4.4.5 Remote Resource Provider

The resource restrictions of smart everyday objects are a core motivation for augmented
items to cooperate with handheld devices. If handhelds serve as remote resource providers,
they make their computational resources available to collections of nearby smart objects
and help them to implement computationally more demanding services. Because the
mechanisms for integrating handhelds into sets of cooperating objects are relatively com-
plex, we have devoted an entire section to this issue (cf. Sect. 4.5). In the following, we
only present the basic concepts underlying our approach.

Basic Concepts

The central purpose of handheld devices in the previously described usage patterns is
to mediate between smart objects and their users, or between smart objects and back-
ground infrastructure services. As remote resource provider, however, a handheld primar-
ily enriches the interaction among different smart objects in that it provides a platform
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for outsourcing complex computations and offers sophisticated data storage capabilities.
Our goal was to spontaneously integrate handheld devices into already existing groups
of collaborating smart objects.

This goal is achieved by introducing an infrastructure layer facilitating the collabora-
tion between different computational entities. This layer has been realized as a distributed
tuplespace [DWFB97, Gel85] for smart objects and handheld devices, which is a part of
our prototypical implementation. Smart objects that want to collaborate establish a tu-
plespace and write their sensory data into the space. When a handheld device comes
into the range of collaborating objects, it also joins this distributed tuplespace. As a
result, smart objects can instantaneously make use of the memory resources of handheld
devices on the basis of resource-aware tuplespace operations. Resource-aware tuplespace
operations try to identify the most suitable place to store sensor tuples. As the actual
location of a tuple becomes transparent through the shared data structure, tuples are
stored on the device having the largest amount of spare resources – which is often the
handheld.

The most important reason for introducing the tuplespace abstraction, however, is
that it becomes transparent where program code is executed. This is because all devices
operate on the same data basis of the shared data space. Smart objects can therefore
transfer code for complex and energy-consuming computations to a nearby handheld
device participating in the same tuplespace and thereby exploit its computational re-
sources. In our implementation of this concept, Java classes are stored on a smart object
and transmitted to nearby handheld devices when a handheld joins the shared data space
(cf. Sect. 4.5).

4.4.6 Weak User Identifier

Basic Concept

A smart everyday object usually implements context-aware services, which adapt accord-
ing to the situation of nearby people in order to provide functionality tailored towards
their current needs. Knowledge about the identities of nearby users helps smart objects
in realizing personalized services. The identity of a user is also a core aspect of context
and often plays an important role in context-aware applications.

Handheld devices can help smart objects to determine the identity of nearby persons
in several ways. First, the mere presence of a particular handheld is often sufficient to
determine who is currently in range of a smart object. This requires a simple one-to-one
mapping between the addresses of mobile user devices and the names of known persons.
Although such a mapping exists for most handheld devices because they often belong to
one person exclusively, it is easy for an adversary to assume the identity of other users.
This is also the reason why we speak of weak user identification. Second, handheld devices
offer several mechanisms for user identification, for example PINs or finger print sensors.
If users must be authenticated based on these mechanisms in order to operate handheld
devices, it is much safer to infer the identity of a nearby person from the presence of a
handheld device. However, from the perspective of a smart object, the downside of using
an external identification mechanism is the necessity to trust in the handheld’s correct
operation (and in the user to keep the PIN secret). Third, wireless communication
technologies such as Bluetooth offer mechanisms to authenticate connections. These
mechanisms involve both the smart object and the handheld device and rely not only on
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the presence of other devices (i.e., the presence of devices with certain MAC addresses)
but also check whether devices are the ones they pretend to be.

Implementation

The software package we developed for the BTnodes to illustrate the roles of handhelds in
smart environments supports authentication using PIN codes as part of the implemented
Bluetooth protocols. Identification based on the mere presence of other devices is easy
to implement as it just requires a mapping from handhelds’ Bluetooth device addresses
to user names. Bluetooth-enabled handheld devices in range of a smart object can be
found using the Bluetooth inquiry procedure.

4.5 Integrating Handhelds into Environments of Co-

operating Smart Everyday Objects

This section focuses on a handheld’s role as remote resource provider, and presents tech-
niques that allow smart objects to dynamically access the computational capabilities of
mobile user devices. The computational abilities of handhelds (especially their process-
ing power and data storage capabilities) thereby facilitate the cooperation between smart
objects by providing a powerful computing platform for augmented items. Our goal is
to integrate handheld devices into collections of cooperating smart everyday objects, not
the interaction with a single augmented item. In the proposed approach, handhelds join
a distributed data structure shared by cooperating smart objects, which makes the lo-
cation where data are stored transparent for applications. Smart objects then outsource
computations to handhelds and thereby gain access to their resources. As a result, this
allows smart items to transfer a graphical user interface to a nearby mobile user device,
and facilitates the collaborative processing of sensory data because of the more elaborate
storage and processing capabilities of handhelds. In order to evaluate the applicability of
our approach, we present a prototypical implementation of our concepts on an embedded
sensor node platform, the BTnodes.

4.5.1 Basic Concepts and Architecture Overview

In our vision, smart environments are populated by smart objects that provide context-
aware applications to nearby users. Due to their resource restrictions, smart objects
thereby need to cooperate with other objects, for example during the context-recognition
process, in order to exchange and fuse sensory data. To enable cooperation among
different devices, smart objects establish a shared data space for exchanging sensor values
and for accessing remote resources. We have implemented such a shared data structure as
a distributed tuplespace for the BTnode embedded device platform and handheld devices
[KS04]. Here, each node contributes a small subset of its local memory to the distributed
tuplespace implementation. Using the tuplespace as an infrastructure layer for accessing
data, the actual location where data is stored becomes transparent for applications. The
data space hides the location of data, and tuples can be retrieved from all objects that
cooperate with each other. Consequently, an application that operates on data in the
distributed tuplespace can be executed on every device participating in that shared data
structure. The actual node at which it is executed becomes irrelevant. Hence, when a
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handheld device joins the distributed tuplespace shared by cooperating smart objects,
applications developed for a specific smart item can also be executed on the handheld
device.

We have realized our concepts for integrating handhelds into environments of coop-
erating smart objects in a software framework called Smoblets. The term Smoblet is
composed of the words smart object and Applet, reflecting that in our approach active
Java code is downloaded from smart objects in a similar way to that in which an Applet
is downloaded from a remote Web server. Fig. 4.11 depicts the main components of the
Smoblet system: (1) a set of Java classes – the actual Smoblets – stored in the program
memory of smart objects, (2) a Smoblet frontend that enables users to initiate interac-
tions with nearby items, (3) a Smoblet runtime environment for executing Smoblets on
a mobile user device, and (4) a distributed tuplespace implementation for smart objects
and handheld devices.
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Figure 4.11: Overview of the Smoblet system.

Smoblets. The code that is transferred to a nearby user device – in the following
referred to as Smoblet – consists of Java classes that are developed on an ordinary PC
during the design of a smart object. However, as the smart objects themselves cannot
execute Java code, Smoblets encapsulate computations that are designed to run on a more
powerful device while still operating on the data basis of the smart object that provided
the code. The sole reason for storing Smoblets in the program memory of augmented
artifacts is the memory architecture of many active tagging systems, which often have
significantly more program memory than data memory. The BTnodes, for example, offer
128kB of program and 64kB of data memory. Only about half of the program memory
on the BTnodes is occupied by typical programs, which leaves ample space for storing
additional Java code.

Front- and Backend. The Smoblet backend is responsible for executing downloaded
code on a handheld device. It also protects the user device from malicious programs
and enables downloaded Java classes to access data on other platforms by providing an
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interface to the distributed tuplespace implementation. In contrast, the Smoblet frontend
helps users to search for smart objects in the vicinity, to explicitly initiate downloads,
and to customize the behavior of the Smoblet backend system.

Distributed Tuplespace. The distributed tuplespace is the core component for in-
tegrating handhelds into collections of cooperating objects. Its main purpose is to hide
the actual location of data from an application, which makes it possible to execute code
on each of the cooperating nodes. Hence, it is possible to design applications that are
executed on a handheld device but still operate on the data basis of the smart object
the code originates from. The distributed tuplespace also allows cooperating objects to
share their resources and sensors. The memory of other objects, for example, can be used
to store local data, and it is possible to access remote sensor values. In our application
model, smart objects specify how to read out sensors and write the corresponding sensor
samples as tuples into the distributed data structure, thereby sharing them with other
objects. Please refer to Sect. 3.5 and [Sie04] for a more detailed description and an
evaluation of our tuplespace implementation for the BTnodes. In order to build a run-
ning Smoblet system, we have ported our implementation to Windows CE. This allows
handheld devices to participate in the shared data structure.

4.5.2 The Smoblet Programming Framework

Besides the components for exchanging and executing Smoblets, the Smoblet program-
ming framework supports application developers in realizing the corresponding code for
smart objects. Deploying Smoblets involves four steps (cf. Fig. 4.12): (1) using a set of
helper classes, Java code containing the computations to be outsourced is implemented
on an ordinary PC, (2) the resulting class files are embedded into C code and (3) linked
with the code for the basic application running on the embedded sensor node, and (4)
the resulting file is uploaded to the smart object’s program memory.

Develop Smoblet 
on PC

Embed code into 
C files

Compile and 
link files

Sensor node 
application files

Upload to 
microcontroller

Figure 4.12: The process of deploying a Smoblet on a sensor node.

In the following, we concentrate on the development of the actual code that is out-
sourced to a nearby mobile user device. This is done on an ordinary PC using Java and
a set of supporting classes provided by our framework. Among other things, the frame-
work provides classes for retrieving information about the current execution environment
of a Smoblet, for controlling its execution state, and for exchanging data with nearby
smart objects. We distinguish between two application domains for Smoblets: applica-
tions in which smart objects transfer whole user interfaces to nearby handhelds in order
to facilitate user interaction, and applications for outsourcing computations in order to
exploit a handheld’s computational abilities, without requiring user interaction. These
two application domains are represented by the GraphicalSmoblet and BasicSmoblet
classes, which directly inherit from the superclass Smoblet. All user-defined code that is
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to be outsourced to a nearby handheld must inherit from these classes. This can be seen
in Fig. 4.13, which shows selected parts of a Smoblet for collecting microphone samples
from nearby smart objects.

import smoblet.*;

public class MicCollector extends BasicSmoblet {

5: public String getSmobletName() {
return “MicCollector”;

}

public boolean isAutoStart() {
return true;

11: }

13: public boolean onInit() { . . . }

public boolean onRun() {
while (extractFeatures) {

17: res = consumingScanTupleDts(micFeature, 20);
Thread.sleep(2000);

}
return true;

21: }

23: public void onHomeDeviceLost() { . . . }
}

Figure 4.13: Selected methods from a Smoblet without graphical user interface.

There are four basic categories of methods provided by the Smoblet class and its
subclasses: (1) informational methods, (2) methods for controlling the execution state of
a Smoblet, (3) event reporting functions, and (4) functions for accessing data in the dis-
tributed tuplespace. Informational methods provide information about the environment
of a Smoblet and about the Smoblet itself – for example its name, a user-friendly descrip-
tion of its functionality, information about its requirements regarding a host platform,
and whether it should be automatically started after download to a handheld device (cf.
Fig. 4.13 lines 5-11). These informational methods are mainly used by the tool that
embeds Smoblets into C code for storage on a smart object. This tool for converting
Java files loads Smoblet classes, retrieves their informational parameters, and stores this
information in addition to the encoded class files on a sensor node. This has the advan-
tage that the sensor node can easily access this data and disseminate it to other nodes.
Consequently, when a user wants to lookup Smoblets on a particular smart object, it is
not necessary to download the complete Smoblet to get information about its require-
ments and other characteristic parameters. Instead, smart objects share these data with
nearby handhelds by means of the distributed data structure.

The methods controlling a Smoblet’s execution state are executed by the runtime
environment on a mobile user device after the code has been successfully downloaded
from a smart object. The onInit method, for example, is executed immediately after a
Smoblet has been started, followed by the onRun, onAbort or onExit methods (cf. lines
13-21 in Fig. 4.13). Every Smoblet is executed in a separate Java thread.

Event reporting functions are executed after certain events on the handheld or in its
environment have occurred. For example, when the device the code stems from leaves the
communication range of the handheld or when new devices come into wireless transmis-
sion range, an event is triggered and the corresponding method executed (cf. line 23 in
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Fig. 4.13). Event reporting functions are also used to handle callbacks registered on the
shared data space. A handheld participating in the space can specify tuple templates and
register them with the distributed tuplespace. When data matching the given template
is then written into the space, an event reporting function having the matching tuple as
an argument is invoked on the handheld.

The last category of methods provided by the Smoblet class are methods for accessing
the shared data structure. These come in three variants: operations for accessing the
local data store, i.e. the local tuplespace; operations for accessing the tuplespace on a
single remote device; and functions operating on the tuplespaces of a set of cooperating
smart objects. The MicCollector Smoblet, for example, retrieves microphone tuples from
all nodes participating in the shared data space (cf. line 17 in Fig. 4.13). It thus relieves
resource-restricted sensor nodes from storing microphone samples by putting them in its
own memory.

Besides the Smoblet class and its subclasses, our programming framework also pro-
vides a range of other classes that support application programmers in implementing
Smoblets.

4.5.3 The Smoblet Front- and Backend

The Smoblet frontend (cf. Fig. 4.14) is a graphical user interface that is executed on a
user’s handheld device; it can be used to search for Smoblets provided by nearby smart
objects, for adapting security parameters, for retrieving information about downloaded
code and its execution state, and for manually downloading as well as starting Smoblets.
However, if the user permits it, a handheld device can also serve as an execution platform
for nearby smart objects without requiring manual interaction. In this case, the mobile
user device continually searches for Smoblets on nearby smart objects, and downloads
as well as executes Smoblets whose informational parameters indicate that they can be
automatically started.

Figure 4.14: The Smoblet Manager: the tool for searching Smoblets and restricting access
to a handheld’s resources.

Especially for Smoblets that offer a graphical user interface and therefore provide
interactive services, the time needed to discover nearby devices can significantly reduce
usability. This is especially true for Bluetooth because of its relatively poor device discov-
ery performance (a Bluetooth inquiry can take more than 10 s) [SR03]. In the following,
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we therefore shortly discuss how the Smoblet frontend can speed up the process of find-
ing new Smoblets by providing an alternative approach to selecting smart objects for
interaction. As a possible solution, we propose an explicit selection mechanism based on
passive RFID tags to determine the device address of a smart item. In this approach, a
passive tag is attached to a smart object containing the device address of the BTnode
integrated into that object. Also, a small-range RFID reader is attached to the mobile
user device. A user can then explicitly select an object by holding the RFID reader
close to it, thereby retrieving the corresponding BTnode’s device address. Having this
information, Smoblets from this object can be immediately downloaded to the handheld
device and their graphical user interface can be started. To experiment with such ex-
plicit selection mechanisms for triggering interactions with smart objects, we connected a
small-size (8cm × 8cm) RFID reader over serial line to a PDA. PDAs served as handheld
devices in our implementation of the Smoblet framework.

In contrast to the frontend, the Smoblet backend is responsible for providing the actual
Smoblet runtime environment and for accessing the distributed data structure shared by
cooperating objects. It also handles the download of code, protects the handheld device
from malicious code fragments, regularly searches for new devices in range, and forwards
events to Smoblets while they are being executed.

4.5.4 Evaluation

In this section we evaluate our prototype implementation together with the underlying
concepts. In particular, we discuss time constraints for downloading code, demands
on the underlying communication technology, and the performance overhead caused by
cooperating with multiple smart objects.
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Figure 4.15: Time needed for downloading Smoblets from smart everyday objects.

Fig. 4.15 shows the time needed for downloading code in the realized prototype. It
can be seen that the throughput achieved is about 37.4 kbit per second, which is relatively
poor compared to the theoretical data rate of Bluetooth but compares well to data rates
measured by other researchers in connection with Bluetooth-enabled embedded device
platforms [LDB03]. However, Bluetooth itself is not the limiting factor when downloading
code from a smart object, but thread synchronization issues on the mobile user device.
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As code is usually downloaded in the background, several threads are executed simulta-
neously during the download: Java threads, threads belonging to the Bluetooth stack,
and threads that are used to continuously query for devices in range and for accessing the
shared data structure. The thesis that Bluetooth is not the dominating factor is also sup-
ported by the experimental results depicted in Fig. 4.15 because the time for downloads
does not depend on the number of nodes that share a Bluetooth channel. Because of the
TDD (time division duplex) scheme in which Bluetooth schedules transmissions and the
fact that the Bluetooth modules used seem to apply a simple round-robin mechanism for
polling nodes, an increased number of devices sharing a channel would imply decreased
performance, which cannot be observed in our case. However, besides the relatively low
throughput, even Smoblets that offer graphical user interfaces are typically downloaded
in a few seconds. This is because class files and pictures are compressed before they are
stored on a smart object. Typical compression rates for code are around 40-50% but
less for pictures because they are usually already in a compact format. For example, the
interactive Smoblet presented in Sect. 4.6.6 has a code size of around 26.9 kB and a size
of 15.2 kB after compression. Therefore it takes only about 3.5 s to download the code
from a smart object to a handheld.
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Figure 4.16: Time needed for a scan operation on the shared data structure.

As previously discussed, a core concept for integrating handhelds into sets of cooper-
ating smart objects is to make the location where data are stored transparent for mobile
code. Hence, as long as Smoblets search and exchange data by means of the distributed
tuplespace, they can be executed on every node participating in that data structure with-
out change. For example, in Fig. 4.13 line 17, the MicCollector Smoblet scans for all
microphone samples in the distributed data structure and thereby relieves all collaborat-
ing nodes from storing that data in their local tuplespaces. The same program could be
theoretically executed on every device participating in the data structure, always having
the same effect. Fig. 4.16 shows the time needed for a scan operation on the distributed
tuplespace with respect to the number of tuples returned and the number of cooperating
smart objects. In the underlying experiment, all smart objects are members of a single
piconet; the scan operation returns all tuples in the distributed tuplespace matching a
given template. As can be seen, the performance for retrieving data depends on the
distribution of tuples on the remote devices. This is also a consequence of Bluetooth’s
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TDD scheme for scheduling transmissions.
We would like to conclude this evaluation with a discussion about the overhead caused

by cooperating with collections of remote smart objects. In our approach only code and no
data are shipped from a smart object to a mobile device during migration. This is because
Smoblets usually operate not only on data from the smart object that provided the code,
but on data from multiple cooperating devices. As can be seen in Fig. 4.16, tuplespace
operations on multiple remote nodes are thereby almost as efficient as operations on a
single device but offer the advantage of operating simultaneously on many objects.

4.6 Applications

The thesis formulated at the beginning of this chapter was that smart objects can realize
increasingly sophisticated services if they are able to cooperate with nearby handheld
devices in an ad-hoc fashion. In this section, we support this thesis by presenting several
application scenarios and corresponding prototypical implementations. Their purpose is
to illustrate the previously identified roles of handhelds in smart environments, and to
evaluate their applicability in concrete example scenarios. In these scenarios, handhelds
often assume different roles in different subparts of an application, which allows us to
illustrate how the isolated roles identified previously can be combined in order to develop
their full potential. Our goal is to show what kinds of applications become technically
feasible in cooperative smart environments; we explicitly do not focus on user studies,
but on the technical and infrastructural foundations for deploying handhelds in Pervasive
Computing settings.

4.6.1 Smart Object—Human Interaction: as Easy as Making
Phone Calls

The application scenario presented in this section demonstrates how mobile user devices
can serve as mobile storage medium, weak user identifier, and as user interface. Its
purpose is to show how users can interact with remote objects by means of their handheld
devices.

People usually associate a specific type of handheld device with a specific way to
interact with communication partners: teenagers write SMS messages to arrange a fun
meeting using their mobile phones, and business people organize their appointments
with PDAs. Adopting device specific behavior to smart environments while maintaining
interaction patterns people expect from their handheld devices is a key approach for
successfully integrating handhelds into smart environments. In the following, we illustrate
how device specific interaction patterns like making phone calls can be used as a metaphor
for implementing remote interactions with smart objects.

Enabling remote interactions is a two step process: (1) when a user is in the proximity
of a smart object, it stores interaction stubs in the user’s handheld device; (2) later, when
not in the vicinity of the object, a user selects a suitable interaction stub stored on the
handheld to trigger a remote interaction with an augmented item (cf. Fig. 4.17). The
interaction stubs are the key mechanism to establish the remote communication link.
They consist of a human readable name for a smart object, a set of commands that can
be executed by it, and its address. In our current implementation, mobile phones serve as
handhelds and the actual communication with a smart object takes place by exchanging
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Figure 4.17: Remote interaction with smart objects using handheld devices: when people
are in range of smart objects, handhelds serve as a mobile storage medium for interaction
stubs (1); when far away, interaction stubs are executed to trigger interactions with
remote objects using the handheld as a user interface (2).

SMS messages. Here, an interaction stub is composed of a phone book entry for the smart
object and an SMS template. The phone book entry indicates the human readable name
and the object’s address, which is a telephone number in this case. The SMS template
contains a range of predefined commands that can be activated and sent to the smart
object (cf. Fig. 4.18).

We illustrate our approach with an office room as an example of a (rather large)
smart object. The “smart office” knows who is currently working in it and can determine
the current noise level inside it. A BTnode equipped with several sensors, such as a
microphone, is placed in the office and provides information about the noise level inside
(cf. [BG03] for a description of the sensor boards used). Furthermore, according to the
concept of weak identification we can infer from a handheld’s presence who is currently

Figure 4.18: Interaction stubs transmitted from smart objects to a mobile phone (phone
book entries (1), SMS templates (2)), an edited SMS template with activated command
(3), and the corresponding reply from a remote smart object (4).
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in the room, and utilize the handheld as a weak user identifier. Given these capabilities,
the smart office can keep track of entering and leaving persons, maintain a short history
of events, and could also derive its current situational context (e.g., an ongoing meeting).
Based on this information, interaction stubs (phone book entries and SMS templates)
are transmitted to a user’s handheld device. For example, the person most frequently in
the office is given a special stub that allows her to remotely interact with the office after
hours.

Interaction stubs (phone book entries and SMS templates) are transferred over a
short-range wireless link between smart object and handheld (cf. Sect. 4.4.2). These
transmissions are completely transparent to the user and are initiated by a smart ob-
ject based on its current context and history information. Later, when people want to
remotely interact with the smart office, they select the corresponding phone book entry
from their phone book and compose a new SMS message using the appropriate SMS tem-
plate. The SMS message is received by a stationary access point with a GSM gateway
and relayed to the corresponding smart object in range of the access point. The smart
object then executes the embedded commands and returns a message to the user’s mobile
phone (cf. Fig. 4.18). Consecutive messages can be exchanged between user and smart
object.

Direct remote interaction with a smart object requires a nearby stationary access
point. The next section shows how we can get rid of this stationary gateway by using
nearby handheld devices as mobile infrastructure access points.

4.6.2 The Smart Medicine Cabinet

The smart medicine cabinet illustrates a handheld’s role as mobile infrastructure access
point, mobile storage medium, weak user identifier, and user interface. It was designed
to improve the drug compliance of patients with chronic diseases by reminding them to
take their medicine. It also knows about its contents and can be queried remotely with
a WAP-enabled mobile phone. Interaction with the information technology inside the
cabinet is implicit – i.e., transparent for the patients – who might not even know that
the cabinet is “smart.”

Several technologies are necessary to implement the interaction with a patient, and
to augment the medicine inside the cabinet and the cabinet itself: (1) passive RFID tags
are attached to the folding boxes that contain the actual medicine, (2) an RFID reader
is mounted to the back of an ordinary medicine cabinet, and (3) a BTnode processes
the information from the RFID reader and communicates via Bluetooth with (4) the
patient’s mobile phone (cf. Fig. 4.19).

By using small RFID tags attached to the folding boxes and an off-the-shelf medicine
cabinet equipped with a BTnode connected to an RFID reader, the information technol-
ogy becomes completely invisible to the users (cf. Fig. 4.19). When a patient removes a
certain kind of medicine she needs to take during the day, the active tag in the cabinet
establishes a connection through the user’s Bluetooth-enabled mobile phone to a back-
ground infrastructure service, querying it about prescription information concerning this
medicine. In this situation, the mobile phone serves as a mobile infrastructure access
point for the BTnode within the cabinet. As the backend service identifies patients based
on their phone numbers, the mobile phone also serves as a weak user identifier. Subse-
quently, the active tag utilizes the user’s mobile phone as a mobile storage medium and
stores an alarm on it according to the prescription information previously obtained from
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Figure 4.19: The smart medicine cabinet.

the background infrastructure service. Hence, at the time scheduled, the mobile phone
issues an alarm that reminds the patient to take the medicine.

A WAP-based interface allows patients to remotely interact with the smart medicine
cabinet – or its representation in the background infrastructure, the background infras-
tructure representative (BIRT) of the cabinet. Since the patient’s mobile phone serves as
a mobile infrastructure access point for the cabinet, it operates in a disconnected mode
whenever there is no mobile phone present. It hence requires a BIRT in the background
infrastructure that represents the medicine cabinet continuously. Whenever a mobile
phone is in the vicinity of the medicine cabinet and provides connectivity, the cabinet
synchronizes its state with the BIRT. Afterwards, remote WAP-based queries need to
address the BIRT of the cabinet. Information displayed on WAP pages regarding the
contents of the cabinet and recently taken medicine therefore reflect the status of the
cabinet during the last synchronization (cf. Fig. 4.20).

An actual use case would be the following: A patient approaches the smart medicine
cabinet and takes a package out of the cabinet. The active tag (i.e., the BTnode) in the
cabinet notices that a box of medicine has disappeared and connects to a background
service (the BIRT of the cabinet). Here, the patient’s mobile phone acts as a mobile
infrastructure access point to the cellular phone network for the smart object, and no
stationary access point is required near the cabinet. The Bluetooth-enabled active tag in
the cabinet queries the BIRT about when the patient has to take the medicine. It then
stores a corresponding alarm in her mobile phone that reminds the patient to take the
medicine during the day. While there is a connection to the background infrastructure
through the patient’s mobile phone, the cabinet also synchronizes its state with that of
the BIRT, which provides WAP pages based on this information. When the patient visits
a pharmacist, the WAP interface can be used to query the contents of the cabinet (cf.
Fig. 4.21). This information is a good basis for the pharmacist to decide whether another
kind of medicine is compatible to that in the smart cabinet.

The concept of a medicine cabinet augmented by information technology has been
demonstrated previously by Wan [Wan99], who integrated a personal computer, an LCD
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Figure 4.20: When the patient is in range of the cabinet her mobile phone serves as a
mobile access point to the background infrastructure server (1), when not in range of the
cabinet she interacts with the background infrastructure representative of the cabinet
using the handheld as a user interface (2).

screen and a broadband Internet connection into a medicine cabinet. The medicine
cabinet presented as part of this work, however, was designed with the goal of leaving
the medicine cabinet practically unmodified from a user perspective.

4.6.3 The Smart Blister Pack

The smart blister pack [FS03] is an application developed by Christian Floerkemeier, and
makes use of our software package for interfacing handheld devices from smart objects.
It is described here as an example of how other researchers can apply the described usage
patterns for handhelds in their work. The smart blister pack also illustrates a handheld’s
role as mobile infrastructure access point and user interface.

As in the smart medicine cabinet scenario, the main goal of the smart blister pack is to
improve the drug compliance of patients. It monitors how patients take their medicine and
compares their actual drug intake with a prescribed treatment. The main application area
for which the smart blister pack was designed is clinical trials, where it is very important
for pharmaceutical companies to ensure that patients take a new drug according to a
scheduled treatment.

In order to monitor the drug intake of patients, an ordinary blister pack is augmented
with small metal stripes that are destroyed when a pill is removed from the blister.
When a patient needs to take a pill, she attaches the augmented blister pack to a small
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Figure 4.21: The WAP interface to the smart medicine cabinet.

casing containing a BTnode (cf. Fig. 4.22). Here, the augmented blister pack serves
as a sensor for the BTnode, which notices when a pill is removed. When such a pill
removal event occurs, an SMS message is automatically sent to a backend infrastructure
service informing the pharmaceutical company that the pill has been taken. The patient’s
mobile phone serves as mobile infrastructure access point for the smart blister pack. The
advantage of this approach is that it does not require any manual input from the patient.
Instead, the connection to the phone is established automatically and people do not have
to input further data. Should a patient forget to take her medication, the backend service
sends an SMS message as a reminder to her mobile phone. The handheld thereby serves
as a user interface.

Casing containing
BTnode

Augmented blister
pack

Figure 4.22: The smart blister pack.
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4.6.4 Object Tracking and Monitoring

The application presented in this section illustrates a handheld’s role as remote sensor,
mobile infrastructure access point, and user interface. Its goal is to monitor the state
of goods during transport and storage in such a way that the owner of a product can
query the product’s state and is notified whenever it is damaged. The difference to other
approaches to product monitoring (e.g. [Par04]) is that goods are monitored continuously
without relying on extra stationary installed hardware. Instead, smart products use
mobile user devices (e.g., the mobile phone of a driver) to communicate with backend
services, to obtain location information, and to notify remote users.

Figure 4.23: The main components of the monitoring application: (1) a smart product,
(2) a BTnode with an attached (3) sensor board, and a (4) mobile phone.

A product is augmented with an active sensor-based tag that monitors its state contin-
uously (cf. Fig. 4.23) – in our prototypical implementation, BTnodes connected to sensor
boards serve as tags (see Beigl et al. [BZK+03] for a detailed description of the sensor
boards used). The tags are equipped with acceleration sensors to derive the product’s
current status and to determine the reason why a product has been damaged. When
a product is destroyed, the attached BTnode tries to notify the owner of the product
by sending an SMS message through a nearby access point. In our exploratory imple-
mentation, background infrastructure access takes place using nearby Bluetooth-enabled
mobile phones as access points. In reality, this could for example be a handheld device
carried by the driver of a truck. When a handheld is in range of augmented products,
they use it as mobile access point for communicating with a background infrastructure
service, the background infrastructure representative (BIRT) of the product. The BIRT
can be informed if the product’s status changes or has changed while no infrastructure
access has been possible.

Additionally, the mobile phone is used as a remote location sensor. When a product
is damaged, the corresponding BTnode obtains the current cell id and location area code
from the mobile phone (cf. Sect. 4.4.3). The information about where an event occurred
(i.e., where a product is damaged or destroyed) is then embedded into a message sent to
the BIRT of the product.

The user interaction consists of a WAP interface for querying the status of a product.
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Figure 4.24: The WAP interface for checking the status and location of products.

The WAP interface is provided by the BIRT of a product, which has again been imple-
mented as a Servlet. The BIRT generates WAP pages containing information about the
product’s current state based on the messages transmitted by the BTnode attached to
the product (cf. Figure 4.24).

4.6.5 Collaborative Context Recognition and Streaming Data

The applications presented in this and the following section deal with a handheld’s role
as remote resource provider, and are used to illustrate the applicability of the Smoblet
framework (cf. Sect. 4.5). There are two major application domains for Smoblets:
(1) exploiting the computational resources of handheld devices in order to facilitate col-
laborative context recognition in smart environments and (2) enabling graphical user
interaction with smart objects by outsourcing user interfaces to nearby handhelds. In
this section, we present an example of the first of these two application areas, and show
how handhelds can help collections of smart everyday objects to collaboratively derive
context information.

In order to provide context-aware services, smart objects must be able to determine
their own situational context and that of nearby people. This usually requires cooper-
ation with other objects and the ability to process local sensor readings together with
sensory data provided by remote nodes. A significant problem that often arises in these
settings are streaming data, e.g. from microphones and accelerometers, which are diffi-
cult to exchange between and difficult to store on smart objects because of their resource
restrictions. For example, it is nearly impossible for smart objects to store microphone
data sampled over longer periods as a result of their limited data storage capacities.
This is because of the high microphone sampling rates (often above 5 kHz), which are
necessary to extract context information from a microphone data stream. In the case of
accelerometers, Lester et al. [LHB04] reports that a sampling rate of 20 Hz is sufficient to
extract features relevant to human activity. However, considering that an accelerometer
sample for one dimension on the adxl202 accelerometer used on the TecO sensor boards
[BZK+03] is 2 Bytes long, it becomes clear that a node such as the BTnode with 64kBytes
of RAM (much of which is already occupied) cannot store accelerometer samples for long
time periods even at sample rates of 20 Hz.

Basically, there are three options for dealing with large amounts of sensory data: (1)
process streaming data on the fly, i.e. compute context information from sensory data
without storing them, (2) extract characteristic features from a data stream, which are
smaller in size but still carry the relevant information required in the context recognition
process, and (3) transmit sensory data to other devices with more resources. Depending
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Figure 4.25: Collaborative context recognition with handheld devices: (1) if handhelds
serve as intermediate data store for sensory data, the smart object calculating context
information transmits sensory data to the handheld and must afterwards retrieve them
in smaller parts for processing; (2) if the handheld both stores sensory data and processes
them locally, the object interested in a certain context does not have to retrieve sensory
data from the handheld, which can significantly decrease the communication overhead.

on the context processing routine, option (1) is not always feasible. Option (2) has the
disadvantage that even extracted features might consume too much memory if they need
to be stored for long time periods. The drawback of option (3) is that it requires constant
communication, and can therefore consume significant amounts of energy. Although
collaborative context recognition is always based on communication, in option (3) sensory
data must be transmitted twice. First, the sensory data are transmitted for intermediate
storage to the more powerful computer. But since the context recognition routine is
still carried out by a smart object, the relevant data must again be retrieved from the
intermediate data storage in a second step. Both steps involve communication, which
is the dominating factor in a smart object’s overall energy consumption. A possible
solution to this problem is to outsource the context recognition routine together with the
sensory data to a nearby handheld device. As the handheld then carries out the context
recognition itself, fewer sensory data have to be transmitted between cooperating nodes
(cf. Fig. 4.25). This effect becomes even more significant with an increasing number
of cooperating devices because more devices generally generate more sensory data that
must be stored on an intermediate storage medium. The cost for outsourcing the context
recognition routine to a handheld device (which itself requires communication) is in such
cases likely to be lower than the cost for repeatedly transmitting sensory data.

Based on the Smoblet framework presented in section 4.5, we now show how nearby
handheld devices can help smart objects in handling large amounts of sensory data during
the collaborative context recognition process. As an example, we have implemented a
Smoblet for retrieving and processing microphone data samples from different smart
objects. The Smoblet evaluates which smart objects are in the same room and can be
used for finding out what is happening at a specific location. The data for the context
recognition process are retrieved from low-cost microphones attached to smart objects
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Figure 4.26: Small subset of the data assembled by the MicCollector Smoblet; the de-
picted data are the microphone measurements of four remote smart objects retrieved by
the handheld carrying out the MicCollector Smoblet.

(for our experiments we have used the sensor boards described in Beigl and Gellersen
[BG03]).

Usually, a smart object that is interested in context information indicating what ob-
jects are in the same room would have to collect microphone data from nearby augmented
items and process these data itself. In our case, we assume that there is currently a hand-
held device in range of the smart object (for example, a person could be working nearby
who carries a handheld) and that the microphones generate too many sensor samples for
the smart object to store locally. In order to cope with the latter problem, the smart
object automatically transmits a MicCollector Smoblet (cf. Fig. 4.13) to the nearby
handheld device, where the Smoblet is automatically started. In our implementation,
smart objects continuously sample their microphones at approximately 40 kHz and ex-
tract a feature from these sensor readings indicating the level of activity in their room.
In this concrete example, we sample microphones continuously for approximately 500 ms
and use the number of crossings through the average microphone sample as a feature.
The MicCollector Smoblet that has been outsourced from one of the smart objects to the
handheld retrieves these features from all augmented items in range, thereby relieving
them from storing these data. After several readings, the MicCollector Smoblet can de-
rive the location of smart objects (i.e., whether they are in the same room) and determine
what is happening in a room. Because of the more sophisticated computational capa-
bilities of handhelds, the Smoblet can thereby carry out more demanding algorithms for
evaluating sensory data. Furthermore, the Smoblet relieves smart objects from storing
sensory data, and as sensor features are processed on the handheld (i.e., at the same
location at which the sensor features are stored), they do not have to be retransmitted
between smart objects and mobile user device.

Fig. 4.26 shows the microphone features collected by the MicCollector Smoblet from
four remote smart objects. In the figure we have filled the area between sensor features
from smart objects in the same room. As can be seen, the features of augmented items in
the same room are correlated, meaning that they decrease and increase simultaneously.
This fact is exploited during the context recognition process. This context recognition
process is encapsulated in a Smoblet which has been outsourced from one of the smart
objects to a handheld device.
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4.6.6 Training Assistant – Outsourcing Java User Interfaces to
Handheld Devices

Besides supporting smart objects during the context recognition process, the Smoblet
concept (cf. Sect. 4.5) also allows augmented items to provide complex graphical user
interfaces to nearby people. As a proof of concept, we present in the following an ap-
plication that helps sportsmen in evaluating their training: a Smoblet encapsulates a
graphical interface that is transmitted from a smart object monitoring training progress
to a user’s handheld device. The Training Assistant application illustrates a handheld’s
role as remote resource provider and user interface.

BTnode Heart rate 
monitor belt

Coil

Voltage
comparator

Figure 4.27: (a) A BTnode with an attached heart rate sensor; (b) the user interface
downloaded from the BTnode to visualize the pulse data collected during the last training.

In our prototypical implementation, we have augmented an ordinary heart rate mon-
itor belt with a BTnode that records the electromagnetic pulses generated by the belt
during a training session (cf. Fig. 4.27). Technically the belt serves as a sensor for the
BTnode, which can therefore access pulse measurements and exchange them wirelessly
with other computing devices in range. During an ongoing training session, the BTnode
buffers pulse measurements. When an athlete wants to evaluate the data recorded dur-
ing a training session, she uses the Smoblet frontend to search for Smoblets provided by
nearby smart objects. As a result, a list containing all Smoblets found is displayed on
her handheld. The user can then select as well as start the Training Assistant Smoblet,
whereupon a Java graphical user interface is downloaded from the augmented heart rate
monitor belt and displayed on her PDA (cf. Fig. 4.27). Access to the heart rate data
is possible by means of the distributed tuplespace that is established by cooperating de-
vices. The Smoblet that is executed on the user’s handheld can therefore retrieve the
heart rate data and display them on the mobile user device.

In a more sophisticated version of the Training Assistant (which we do not describe
here in detail), it is also possible to configure the behavior of the augmented heart rate
monitor belt. Here, another BTnode with a small loudspeaker is used to notify the
athlete during a training session when her pulse exceeds previously set thresholds. The
user interface provided by the Smoblet can be used to set the corresponding thresholds.
User input is embedded into tuples, transferred to the smart objects, and stored in their
local tuplespaces so that the handheld does not have to be carried during a training
session.
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4.7 Summary

With respect to the overall argumentation of this dissertation, this chapter showed how
smart objects can benefit from the heterogeneity of smart environments by accessing the
capabilities of other kinds of computing devices. The chapter focused on the interaction
between smart objects and handhelds, and formulated as well as supported the hypothesis
that smart objects can provide increasingly sophisticated services to people in smart
environments if they are able to exploit the capabilities of nearby handheld devices in an
ad hoc fashion.

First, this chapter argued that handheld devices are well suited for cooperation with
smart objects because of their complementary capabilities regarding user interfaces, pro-
cessing power, and their ability to sense the environment. In specific terms, the following
reasons were identified to explain why handheld devices are such valuable cooperation
partners: (1) their habitual presence during physical interactions with smart objects, (2)
their wireless network diversity, (3) their user interface capabilities, (4) their ability to
perceive their environment with complex sensors, (5) their high availability and acces-
sibility for users, (6) their computational resources and regularly refilled mobile energy
reservoirs, and (7) the fact that they are most often personalized.

Table 4.4: The roles of handhelds in the applications presented in this chapter.

Application Handheld’s role

Remote interaction Mobile storage medium,
user interface,
weak user identifier

Smart medicine cabinet Mobile infrastructure access point,
mobile storage medium,
user interface,
weak user identifier

Smart blister pack Mobile infrastructure access point,
user interface

Object tracking Mobile infrastructure access point,
remote sensor,
user interface

Collaborative context recognition Remote resource provider
Training assistant Remote resource provider,

user interface

Second, we presented several usage patterns describing how smart objects can make
use of handheld devices: (1) as a mobile infrastructure access point, (2) as a user inter-
face, (3) as a remote sensor, (4) as a mobile storage medium, (5) as a remote resource
provider, and (6) as a weak user identifier. We gave a detailed presentation of these
usage patterns, containing descriptions of the underlying concepts as well as directions
for their implementation. The BTnodes as examples of active sensor-based tags, together
with mobile phones and PDAs, were used to present prototypical implementations of the
identified usage patterns.
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Third, the chapter dealt with the problem of integrating handhelds into collections
of cooperating smart everyday objects. Here, the proposed solution was to establish a
shared data structure among cooperating objects and handheld devices, and to outsource
code for complex and energy-consuming computations from smart objects to handhelds.
In order to evaluate the applicability of the proposed concepts, we again presented a
prototypical implementation of these concepts on an embedded sensor-node platform,
the BTnodes.

Fourth, we illustrated the applicability of the presented concepts with six applications:
(1) a remote interaction scenario, (2) a smart medicine cabinet, (3) a smart blister pack,
(4) an object tracking application, (5) an application for collaboratively deriving context
information, and (6) a training assistant. These applications showed how the individual
usage patterns identified previously can be combined in concrete application scenarios in
order to develop their full potential. Table 4.4 summarizes the roles of handhelds in the
presented applications.



Chapter 5

Conclusions and Future Work

In this chapter, we conclude this dissertation by (1) summarizing its main contributions
and (2) suggesting directions for future work.

We would also like to point out that extracts of this thesis have been published in
[BKM+04, BKR+03, FS03, SF03a, SFV04, Sie02a, Sie02b, Sie04, SK04a, SK04b, SR03,
SSB+03]. Several student projects and master’s theses, which were supervised within the
scope of this dissertation, also dealt with concepts presented in the previous chapters. Of
especial relevance to the interested reader might be [Dea03, Kel03, Kel04, Kra04, Sch03].

5.1 Main Contribution

Pervasive Computing envisions the seamless integration of computation into everyday
environments in order to support people in their daily activities. Due to recent develop-
ments, such a level of integration of technology into our daily surroundings has become
feasible at least from a technological perspective. Sensor-based computing platforms, for
example, have become so small that it is possible to embed them into arbitrary every-
day things. Such computationally-augmented things – so-called smart everyday objects
– have the ability to perceive their environment through sensors and can communicate
with peers by means of short-range communication technologies.

However, smart everyday objects are usually faced with severe resource restrictions
and can therefore only provide limited services to people in smart environments. As
the computing platforms of smart objects need to be small in order to be unobtrusively
integrated into everyday things, they do not usually possess conventional user interfaces.
Furthermore, smart objects often provide context-aware services that adapt application
behavior according to the current situation of nearby people. Sensor readings from a
single object alone are thereby usually not sufficient to obtain enough information about
a user’s context. Together, all these constraints considerably restrict a smart object’s
ability to realize services in smart environments.

With respect to these problems, the core contribution of this dissertation is to show
how smart objects can cope with the above-mentioned restrictions by cooperating with
other computing devices in their vicinity. Cooperation with other devices enables aug-
mented artifacts to exploit two key properties of smart environments: (1) pervasiveness
of computation and (2) heterogeneity.

Chap. 3 illustrated how smart objects can benefit from the pervasiveness of com-
putation in smart environments by cooperating with other augmented artifacts. In the
presented approach, smart objects bundle their resources and appear to applications as

149



150 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

a single node accumulating the capabilities of cooperating artifacts. The chapter also
described a software architecture for smart objects that aims at facilitating the design of
collaborative context-aware services in smart environments.

Chap. 4 focused on the cooperation of smart objects with handheld devices. Its major
goal was to show how augmented artifacts can benefit from the heterogeneity of smart
environments by accessing the capabilities of other types of computing devices. The
chapter presented several usage patterns that illustrated how smart objects can make
use of nearby handhelds, described prototypical implementations of these usage patterns,
and illustrated their applicability with several example applications.

5.2 Other Contributions

In the following, we list the main contributions of this dissertation individually:

• Context-aware collaboration. In Chap. 3, we have presented a software plat-
form that enables smart objects to realize services in cooperation with other aug-
mented artifacts. The software platform consists of (1) a description language for
collaborative context-aware services – called SICL, (2) a context layer for deriv-
ing contextual information from multiple sensor sources, (3) an infrastructure layer
for inter-object cooperation that allows smart objects to share their resources, and
(4) context-aware communication services. We have described a prototypical im-
plementation of this software platform on embedded sensor nodes, and thoroughly
evaluated the presented concepts. The evaluation was based upon experiments with
real sensor nodes as well as simulations.

• Programming abstraction for collaborative services. To overcome the re-
source restrictions and limited sensing capabilities of individual smart objects, we
suggested grouping cooperating augmented artifacts. Nodes in a group bundle their
resources and appear to an application as a single more powerful object accumulat-
ing the resources of the group’s participants. As the distribution of data between
nodes in a group is hidden in the lower layers of our software platform, an applica-
tion programmer can disregard these issues and deal with the whole group as if it
were a single node. In order to effectively realize this concept, we suggested cluster-
ing collaborating nodes on a distinct broadcast channel. As shown in Sect. 3.5.4,
this results in an efficient mechanism for multicasting data among the participants
of a group and therefore enables efficient cooperation.

• Context-aware communication services. Networks of cooperating smart ob-
jects are difficult to manage for several reasons (cf. Sect. 3.6). However, as com-
munication is a precondition for cooperation, we asked whether there is a property
shared by smart objects that could be used to improve wireless communications. In
Sect. 3.6 we argued that context-awareness is such a property because in context-
aware applications the real-world surroundings of smart objects have an increasing
impact on their communication in the virtual world – i.e. their interaction with
other computing devices. In this dissertation, we showed how context-aware com-
munication services can be used to proactively construct networking structures
according to the demands of context-aware applications. It has also been shown
how the previously presented software platform for collaborative services can be
used to realize context-aware communication services.
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• Accessing the capabilities of handheld devices from smart objects. In
Chap. 4 we presented several usage patterns that described how resource-restricted
smart objects can exploit the capabilities of handheld devices. These usage patterns
are: (1) mobile infrastructure access point, (2) user interface, (3) remote sensor, (4)
mobile storage medium, (5) remote resource provider, and (6) weak user identifier.

• Smoblets – integrating handheld devices into environments of cooperat-
ing smart objects. The Smoblet system (cf. Sect. 4.5) allows smart objects to
dynamically exploit the computational resources and user interfaces of handheld
devices. In our concept, handhelds join a shared data space established between
cooperating smart objects. Thus, the location where program code is executed
becomes transparent for objects in the shared data space. As a result, augmented
items can outsource complex and energy consuming computations to nearby hand-
held devices. We presented a prototypical implementation of the Smoblet system,
and evaluated its applicability in two example scenarios (cf. Sect. 4.6.5 and Sect.
4.6.6).

• Embedding smart objects into the everyday communication infrastruc-
ture. Smart objects not only need to cooperate with nearby computing devices, but
also with services in a backend infrastructure. Furthermore, remote users and smart
objects that are not in the local environment of an augmented artifact can also only
be reached by means of a powerful communication infrastructure. To enable smart
objects to interact with remote users and background infrastructure services, we
described how augmented items can be embedded in and make use of the everyday
communication infrastructure. In Chap. 4 we described how the Internet and the
mobile phone network, as two examples, can be used for this purpose.

• Translating established interaction patterns to smart everyday objects.
As smart objects do usually not possess conventional user interfaces such as buttons
or displays, the question arises how people can actually interact with them. With
respect to this problem, we suggested adapting well-established interaction patters
– like making phone calls or writing SMS messages – to smart environments. Es-
tablished interaction patterns have the advantage that they are accepted by many
users and can therefore make it easier for people to deal with smart objects. In
our approach, phone numbers are assigned to smart everyday objects in order to
enable users to “call” their items or to communicate with them by means of SMS
messages (cf. Sect. 4.4.2, Sect. 4.6.1, and Sect. 4.6.2).

• Applications. In the scope of this thesis, several application scenarios have been
prototypically implemented that illustrate the applicability as well as the limits
of our concepts. On the basis of concrete examples, we wanted to show how a
smart object can realize novel kinds of services if it is able to cooperate with other
computing devices. The presented applications (cf. Sect. 4.6) include a smart
training assistant, a smart medicine cabinet, an object tracking, and an inventory
monitoring application.
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5.3 Future Work

This thesis focused on the infrastructural foundations for enabling smart everyday objects
to cooperate with other computing devices present in smart environments. The general
topic of cooperation in smart environments, however, is so extensive that we could only
address a small subset of the problems associated with it. In the following, we identify
some further research problems in this domain and present directions for future work.

In the scope of this dissertation, the BTnode embedded device platform has been
used to build prototypical implementations. Although the BTnodes are suitable as a
prototyping platform, they have the disadvantage that Bluetooth is given as a predefined
communication standard. (This will change in new revisions of the BTnode platform,
which will be equipped with two communication modules. The BTnodes will then support
an additional communication technology besides Bluetooth.) The major problem with
Bluetooth for research is that we did not have access to lower communication layers, which
makes it practically impossible to tweak parameter settings on this level. It would be
interesting to implement and evaluate the presented protocols for inter-object cooperation
on other multi-channel communication technologies. In this respect, it could also be
investigated how a contention-based instead of a polling-based MAC layer influences the
performance of protocols for cooperation.

In Chap. 3 we presented a software platform that enables smart objects to realize
services in cooperation with other augmented artifacts. In Sect. 4.5 we then showed
how handheld devices can participate in groups of cooperating objects. This allows
augmented items to benefit from the computational capabilities of handhelds and to
outsource complex computations. In the same way, also a stationary computer could join
groups of smart objects and make its resources available to them. As our prototypical
implementation runs on handhelds and an embedded sensor node platform, some software
adaptations would be necessary to port our system to stationary computers. If there is
a stationary computer in range of cooperating objects, the question arises of how smart
objects could further benefit from its resources.

In Chap. 4 we have investigated different options for people to interact with smart
objects. In our work, we primarily focused on explicit user interactions with augmented
items by means of handheld devices. However, in environments populated by large
amounts of smart objects, implicit forms of interactions become increasingly important.
With respect to this thesis, the question arises to what extent the software platform
presented for realizing collaborative context-aware services can be used to facilitate such
implicit interactions in smart environments.

In this dissertation, we have argued that cooperation helps smart objects to gain access
to the resources they need for realizing sophisticated services. To take this approach to
a new level, it is also possible to argue that because of the abundance of computation
in Pervasive Computing settings, cooperation enables smart objects to access even more
resources than they actually require. This results in an interesting research question,
namely how the abundance of computing resources can lead to the implementation of
more reliable services. For example, data could be stored redundantly on collaborating
objects in order to achieve a higher degree of reliability in case of data losses.

As we have already emphasized in our motivation (cf. Chap. 2), cooperating smart
objects that exchange sensory data and context information about nearby persons can be
a cause for increased privacy concerns. Ensuring personal privacy in smart environments
is certainly a problem of major political and scientific interest. The constraints of the
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investigated settings – i.e., the presence of many devices with severe resource restrictions
that might not always be able to access backend services – make it even more difficult
to find an appropriate solution. Although there are approaches to tackling the privacy
problem – which are, for example, based upon privacy profiles and sensors that disguise
the identity of people – privacy will remain an important topic for future research.
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Appendix A

SICL Syntax

program:

app_stmt stmt_lst

| app_stmt c_decls stmt_lst c_funcs

|

;

app_stmt:

SMART OBJECT IDENTIFIER ’;’

;

stmt_lst:

stmt ’;’ stmt_lst

|

;

stmt:

def_sensor_stmt

| tuple_decl_stmt

| search_policy_stmt

| tuple_stmt

| actuator_stmt

;

def_sensor_stmt:

DEFINE search_policy_keywords location_specifier

SENSOR IDENTIFIER ’{’ selements ’}’

;

location_specifier:

LOCAL

| REMOTE

|

;
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selements:

tuple_def ’;’ classifiers

;

classifiers:

classifier ’;’ classifiers

|

;

tuple_def:

’<’ tuple_fields ’>’

;

type_decl:

IDENTIFIER

;

tuple_fields:

type_decl

| type_decl ’,’ tuple_fields

;

classifier:

qos

| getter_fnc

;

qos:

EVERY UNSIGNED_INT MS

| BEST EFFORT

| random_interval

;

random_interval:

RANDOM INTERVAL ’[’ UNSIGNED_INT ’,’ UNSIGNED_INT ’]’ MS

;

getter_fnc:

IDENTIFIER IDENTIFIER ’(’ ’)’

tuple_decl_stmt:

DEFINE search_policy_keywords TUPLE IDENTIFIER ’{’ tuple_def ’;’ ’}’

;

search_policy_stmt:

search_policy_keyword search_policy_keywords tuple_name_list

;
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tuple_name_list:

IDENTIFIER

| tuple_name_list ’,’ IDENTIFIER

;

search_policy_keywords:

search_policy_keyword search_policy_keywords

|

;

search_policy_keyword:

PRIVATE

| NON_PRIVATE

| CALLBACK

| NON_CALLBACK

;

tuple_stmt:

func_lst LINE tuple_exp TRANSFORM tuple

| tuple_exp TRANSFORM tuple

;

tuple_exp:

simple_tuple_exp

| tuple_add_exp

;

simple_tuple_exp:

tuple

| unary_tuple_exp

;

unary_tuple_exp:

tuple ’\’’

;

tuple_add_exp:

simple_tuple_exp ’+’ non_empty_tuple_add_exp

;

non_empty_tuple_add_exp:

simple_tuple_exp

| simple_tuple_exp ’+’ non_empty_tuple_add_exp

;

tuple:

IDENTIFIER ’<’ id_lst ’>’

;
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id_lst:

non_empty_id_lst

|

;

non_empty_id_lst:

IDENTIFIER

| IDENTIFIER ’,’ non_empty_id_lst

;

func_lst:

non_empty_func_lst

|

;

func:

IDENTIFIER ’(’ id_lst ’)’

;

non_empty_func_lst:

func

| func ’,’ non_empty_func_lst

;

actuator_stmt:

simple_tuple_exp EXECUTE func

;

c_decls:

CDECLS

c_funcs:

CCODE



Appendix B

Energy Characteristics of Active
Tagging Systems

In Tab. 2.3 in Sect. 2.2.3 we have compared the energy consumption of different active
tagging systems. However, existing tagging technologies are equipped with a fixed set
of components for sensing the environment, data processing, and communication. When
comparing concrete solutions with each other, it is therefore not so easy to see which
components contribute to low energy consumption. For this reason, Tab. B.1 compares
the energy characteristics of commonly used components for the processing and commu-
nication subsystems of active tags.

Table B.1: Energy characteristics of core components of active tagging systems.

Data processing

ATmega128L (according to data sheet)
Idle, 4 MHz, 4 MIPS, 3 V 2.5 mA
Active, 8 MHz, 8 MIPS, 5V 19 mA

PIC16F876 [BZK+03]
Idle, 20 MHz, 5 MIPS, 3 V 2.3 mA
Idle, 20 MHz, 5 MIPS, 5 V 4.7 mA
Idle, 4 MHz, 1 MIPS, 3 V 0.4 mA

Communication

TR1001 [vH03]
Receive 14.4 mJ/s
Transmit 20 mJ/s

Chipcon CC1000 (according to data sheet)
Receive, 868 MHz 9.6 mA
Transmit, 868 MHz, 1 mW 16.5 mA
Transmit, 868 MHz, 3 mW 25.4 mA

Bluetooth Zeevo TC2000 (according to data sheet)
Inquiry/Page 15 mA
Connection 35 mA

The ATmega128L processor is a core component of the Berkeley Motes [Mot04], the
BTnodes [Btn04], and the nodes built in the scope of the Smart Kindergarten project
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[PLS+02]. The Smart-Its hardware platforms built by the TecO institute in Karlsruhe
are usually equipped with PIC processors. According to [BZK+03], in the case of the
PIC16F876 microcontroller (cf. Tab. B.1) the difference in energy consumption between
idle and active mode is negligible.

With respect to communication, the TR1001 modules are used on some of the Smart-Its
modules developed by the TecO institute in Karlsruhe [Sma04c], early versions of the
Berkeley motes, and the sensor nodes developed in the EYES project [Eye04]. Newer
versions of the Berkeley motes and BTnodes are equipped with Chipcon CC1000 commu-
nication modules. The BTnodes (revision 3) and the Intel motes [Int04] deploy Bluetooth
communication modules similar to the TC2000. In Tab. B.1, the energy consumption
of the Bluetooth modules is given for the connection state in general. It is difficult to
distinguish between transmit and receive modes since Bluetooth deploys a polling mech-
anism for scheduling data transmissions. In Bluetooth, each transmission by a master is
followed by the reception of a data packet from a slave.
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