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ABSTRACT 
This paper reviews the challenges associated with the 
development of tangible and multimodal interfaces and 
exposes our experiences with the development of three 
different software architectures to rapidly prototype such 
interfaces. The article first reviews the state of the art, and 
further compares existing systems with our approaches. 
Finally, the article stresses the major issues associated with 
the development of toolkits allowing the creation of 
multimodal and tangible interfaces, and presents our future 
objectives.   
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INTRODUCTION 
Tangible interfaces have shown much promise since the 
founding works of Ullmer and Ishii [11]. They have shown 
particularly interesting concepts when used to create user 
interfaces which mix tangible interaction with other 
modalities, such as speech or gesture based interaction (e.g. 
Papier-Mâché [13]). However the development of such 
multimodal interfaces remains a difficult task needing 
knowledge in various state-of-the-art domains like speech 
recognition, RFID hardware management or gesture 
tracking. Furthermore, the integration of natural 
communication means recognition systems and of 

synthesizers into an embedded application is no trivial task: 
multiple input modalities imply potential combinations of 
meaning, i.e. a need for a fusion engine; in particular, the 
management of synchronized input should be carefully 
handled. Likewise, multiple or “non-standard” available 
output modalities should lead to careful choice to return the 
information to the user, i.e. a need for a fission engine, 
depending on the context of use and/or on the user profile.  

Hence, tools giving access to parts of a multimodal system 
would relieve some of the tasks implied by the creation 
from the ground up of a full tangible and multimodal 
application. Such a tool could take different forms; from 
straightforward, but practical ones to far more developed 
ones. In this article, we will compare three different forms 
such a toolkit could take: a simple and rugged extension to 
a widely used GUI toolkit, an integrated tool driven by an 
internal finite state machine describing the user-machine 
dialog, and finally a pluggable toolkit allowing the control 
of various input modalities by means of an XML 
configuration file. 

This article first develops the problematic of time 
synchronization on the side of the input (fusion) and of the 
output (fission); it then reviews existing multimodal and 
tangible toolkits. The article further presents the three 
different architectures of toolkits we developed that could 
give rise to such multimodal applications development 
tools. Two of them have been derived from actual 
multimodal applications, and the last one is a toolkit 
currently in development. The article then compares these 
systems with state-of-the-art ones in a table, emphasizing 
on their major characteristics and on the trade-off between 
usability and expressiveness of a toolkit. Finally the article 
concludes with the major challenges of this work and a 
roadmap to achieve them. 

PROBLEMATIC OF TIME SYNCHRONIZATION 
As pointed out in the introduction, mixing tangible 
interaction with other modalities such as speech or gesture 
recognition involves taking into account time 
synchronization of modalities, i.e. fusion and fission of the 
modalities. In this section, standard fusion and fission 
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mechanisms will be detailed, in order to introduce the 
toolkits presented in the next sections.  

Fusion Mechanisms 
One of the main issues of multimodal design is the way 
fusion of multimodal human messages is performed to 
reach a robust interpretation. The root of the problem 
comes from the way input is managed in multimodal 
interfaces: in standard (WIMP) interfaces, the events, as 
mouse clicks or keyboard commands, can be processed one 
at a time, without having to deal with problems of 
references and co-references. In multimodal systems, not 
only do these problems arise, but they are in fact a core 
property of multimodal interaction. A classic example is 
Bolt’s synergic “Put that there” [3], in which a vocal 
command (“Put”) must be actively linked to a pair of 
pointing events, achieved in a spatially-aware modality. As 
a matter of fact, other complex problems appear beyond the 
“Put that there” example: users rarely input at the same 
exact time co-referenced events. Solving those problems of 
reference and co-reference is the subject of modality 
fusion, which we will now develop.  

Three main fusion levels are generally considered: data, 
feature and decision fusion. Data-level fusion is not per se 
an inter modality fusion mode, but is used when dealing 
with multiple signals coming from a similar type of source 
(e.g. two cameras). Feature-level fusion is the favourite 
type of fusion when tightly coupled and synchronised 
modalities are to be fused. Decision-level fusion is 
considered as the most used type of fusion in multimodal 
applications. The main reason is its ability to manage 
loosely-coupled modalities like, for example, pen and 
speech interaction.  

Decision-level fusion-based multimodal systems have been 
built following a number of different fusion mechanisms, 
some of which have appeared recently. All those 
mechanisms have as a common objective to solve fusion at 
the semantic level and thus to handle issues such as 
potentially erroneous interpretations coming from different 
modality channels, synchronisation and reference/co-
reference problems. Some examples of decision-level 
fusion mechanisms are the following ones: rules-based 
fusion, frame-based fusion, and hybrid symbolic-statistical 
architectures [6]. 

When attempting to mix tangible interaction with other 
modalities, decision-level fusion is preferred over data level 
and feature-level fusion, mostly because of the high-level 
interpretation achieved on data coming from sometimes 
very diverse input source.  

Fission techniques 
Fission techniques allow a multimodal application to adapt 
its output messages according to context and user profiles 
[18]. Technically speaking, fission consists of three tasks:  

• Message construction, where the information to be 
transmitted to the user is created; 

• Output channel selection, where relevant restitution 
interfaces are selected according to context and user 
profile; 

• Construction of a coherent and synchronized restitution. 
Less research has been done on multimodal fission than on 
fusion. Most applications use few output modalities and, 
consequently, employ straightforward fission mechanisms. 
Nonetheless, when multiple output modalities such as text-
to-speech synthesis, audio cues, visual cues or animated 
characters are available, output selection becomes a tricky 
task. An interesting example of fission strategy applied to 
multiple output modalities is shown in the SmartKom 
project [18], where a 3D animated character dialogues with 
the user: this involved synchronization of gestures of the 
character, lips of the character and spoken text.  

CARE properties 
CARE properties have been proposed by Coutaz & al. in 
their paper entitled “Four Easy Pieces for Assessing the 
Usability of Multimodal Interaction: The CARE properties” 
[7]. Four properties are introduced, to describe the potential 
relationships between different input modalities and their 
potential meaning in a multimodal system. These properties 
are:  

• Complementarity: multiple complementary modalities 
are necessary to grasp the desired meaning (e.g. “put that 
there” would need both pointing gestures and voice in 
order to be resolved); 

• Assignment: only one modality can lead to the desired 
meaning (e.g. the steering wheel of a car is the only way 
to direct the car); 

• Redundancy: multiple modalities, even used 
simultaneously, can be used individually to lead to the 
desired meaning (e.g. user utters a “play” speech 
command and pushes a button labeled “play”, but only 
one “play” command would be taken into account); 

• Equivalence: multiple modalities can all lead to the 
desired meaning, but only one can be used at a time (e.g. 
speech or keyboard can be used to write a text). 

Those CARE properties have revealed themselves as a tool 
used by a number of multimodal toolkits to help formalize 
relationships between different modalities.  

RELATED WORKS 
In this section we present a state of the art of tools and 
frameworks dedicated to the rapid creation of multimodal 
interfaces. Toolkits dedicated to creation of interfaces 
including multiple modalities, tangible or not, are covered 
in the first part. The second part of this section is dedicated 
to toolkits specifically geared toward creation of tangible 
interfaces. 
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A number of toolkits for creating tangible and/or embedded 
applications have seen the light since the founding works of 
Ullmer and Ishii. As shown by Mazalek [15], three main 
tendencies have been followed: hardware prototyping, 
groupware-focused and integrated application.  

Phidgets [10] and iStuff [1] are typical examples of the 
hardware prototyping approach, offering developers a set of 
hardware components, such as buttons, knobs or LEDs, and 
software drivers to use those components.  

Groupware-focused tools, such as SDGToolkit [17] offer 
tools allowing creation of group-oriented applications; 
examples of such groupware-focused tools also include 
multi-touch tables.  

Finally, researchers have begun to work on a mid-way, 
integrated application toolkit approach; examples include 
Papier-Mâché [13] and Synlab API [15].  

As interesting as these toolkits are, problems arise when 
you wish to mix them with other modalities such as speech: 
hardware components and groupware-oriented applications 
focus on their original tasks and generally do not provide 
opportunities to accept third party recognizers or an 
external data source. Hence, if we want to enrich tangible 
applications with other modalities, we need toolkits able to 
take into account data coming from very different sources, 
and still be able to fuse data coming from those sources. 

Since intensive work has begun on multimodal systems, the 
need for tools allowing the rapid creation of multimodal 
applications has grown. Hence, work has been achieved by 
researchers toward the creation of such tools. Krahnstoever 
and al. [14] proposed a framework using speech and 
gesture to create a natural interface. The output of their 
framework was to be used on large screen displays 
enabling multi-user interaction. Fusion was done using a 
unification-based method. Bourguet [5] endeavoured in the 
creation of a multimodal toolkit in which multimodal 
scenarios could be modelled using finite state machines. 
This multimodal toolkit was composed of two components, 
a graphical user interface named IMBuilder which 
interfaced the multimodal framework itself, named 
MEngine. Flippo and al. [8] also worked on the design of a 
multimodal framework, geared toward direct integration 
into a multimodal application. One of the most interesting 
aspects of their work is the use of a parallelisable 
application-independent fusion technique. The general 
framework architecture is based on agents, while the fusion 
technique itself uses frames. Lastly, Bouchet and al. [4] 
proposed a component-based approach called ICARE 
thoroughly based on the CARE [7] design space presented 
above. These components cover elementary tasks, 
modality-dependent tasks or generic tasks like fusion. 
Finally, communication between components is based on 
events. The components-based approach of ICARE has 
been used to create a comprehensive open-source toolkit 
called OpenInterface [2]. In its current state (v0.2), 
OpenInterface seems to inherit most of the architecture of 

ICARE. It is finally worth noting that the World Wide Web 
Consortium (W3C) has introduced its W3C multimodal 
interaction framework. This theoretical framework 
describes major components involved in multimodal 
interaction, as well as potential or existent markup 
languages used to relate those different components. While 
somewhat centered on web-based multimodal interaction, 
many elements described in this framework are of practical 
interest for multimodal HCI practitioners, such as the W3C 
EMMA markup language. 

THREE POSSIBLE ARCHITECTURES FOR TOOLKITS 
In this section we present three toolkits we implemented 
and experimented. The Java Swing MM extension proposes 
to extend Java Swing with other modalities so that 
programmers do not have to learn a new environment. The 
drawback of this approach lies in the multimodal 
expressiveness. The Service Counter System uses a finite 
state machine to enable multimodal fusion and as a way to 
program interaction scenarios, but at the expense of a lot of 
“hard-coding”. Finally, HephaisTK, currently under 
development, uses in its preliminary version a multi-agent 
architecture to enable an efficient communication between 
recognizers and the application created with help of the 
toolkit. Those three toolkits try to mix tangible interaction 
(coming respectively from Phidgets [10], Papier-Maché 
[13] or Reactivision [11]) with other forms of input. We 
present in this section each system, emphasizing on their 
major characteristics. The next section finally compares 
these systems with related works. 

Java Swing MM extension: usability 
A first attempt at providing an architecture to help creation 
of tangible and multimodal interfaces was achieved by 
extending the Java Swing GUI framework. The goal of the 
Java Swing MM extension was to come up with a simple 
and rugged solution toward rapid prototyping of 
multimodal and tangible interfaces, based on a standardized 
GUI framework.  

 

Figure 1. Java Swing MM Extension: MMIButton 

The choice of the Java Swing GUI framework as a basis 
was a default choice at the time we experimented with this 
approach: in fact, any sufficiently modular GUI framework 
should be able to be applied the same approach.  
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The Java Swing MM Extension provides a specific 
developers' design-pattern which improves any graphical 
component into a multimodal and/or tangible input 
component. The strength of this pattern lies in the 
separation of the different development tasks: 

• The GUI-Integrator, which builds new graphical 
components, does not have to know anything about the 
actual input recognizers used.  

• The Media-Integrator only has to implement the desired 
media-interface and does not have to know about fusion 
techniques. 

• The MMUI-Integrator only needs to extend the graphical 
component in order to integrate the desired media 
listener. The chosen fusion behavior is implemented 
there. 

Any developer can then use the multimodal components as 
the new components can be handled just as if they were 
standard GUI components. 

The proof of concept for the Input Extension was 
performed through the augmentation of the Swing JButton 
towards a MMIButton (The JButton is a simple graphical 
component provided by the Swing-Framework used in 
Java). 

The MMIButton component has been equipped with the 
possibility of being activated by keyboard, mouse, external 
Phidgets [9] hardware interface components (joystick, 
physical button, etc.) and voice. An application level fusion 
(most recent event counts) was used.  

The Output Extension provides another specific design-
pattern aiming for the same goal: fission at runtime, 
separation between the different integration development 
processes, straightforward usage of the designed output 
synthesizers. 

An architecture such as the one proposed by the Java Swing 
MM extension allows developers to quickly add 
multimodal and tangible input to an existing application, or 
develop such an application from the ground up with a 
minimum of new knowledge to grasp. Conversely, 
applications built using the Java Swing MM extension are 
limited to multimodal or tangible input mapped to specific 
commands. Regarding synchronicity of modalities, 
equivalence of modalities is offered right away (see CARE 
properties earlier in the article), as long as all modal or 
tangible commands lead to a specific action; however 
complementarity can be achieved only in specific cases, 
due to the clear separation between the multiple 
multimodally enhanced components.  

SCS, the Service Counter System: expressiveness  
The SCS is a toolkit addressing the design and 
implementation of multimodal user interfaces. It aims to 
solve the issue in a programmatic way, i.e. it helps the 
programmer creating a multimodal user interface. Towards 
this goal it provides:  

• An extensible object-oriented abstraction layer (or a 
framework) of existing input and output libraries. 

• A central state machine that can be used to model the 
interaction flows. 

Although designed to serve the design of a broad variety of 
multimodal user interfaces, the SCS was primarily created 
to be used for use-cases in which a clear and deterministic 
interaction flow can be extracted. Thus, it is particularly 
adapted, but not limited, to semi of fully embedded use-
cases such as modeling a rental service, an information 
desk, an interactive guide, etc. 

The SCS is articulated around a central state-machine. 
Using this automata-generator designed for multimodal 
interfaces the programmer can describe the human-
computer and computer-human interaction flows. In other 
words, she can design the system’s states and transitions. 
For instance, using the state-machine, one could enforce the 
fact that after authentication (i.e. after changing the state), a 
customer can either rent a DVD (first possible transition) or 
return it (second possible transition). As an example, Fig. 2 
represents the automata designed for the smart librarian use 
case that we will describe later. 

 

Figure 2. A sample automata modeling the interaction flow. 

As mentioned before, the SCS not only provides a way to 
design the interaction flows of the user interface but also 
offers to abstract the concerns related to the input and 
output channels. The abstraction layer is offered by the so 
called Input and Output drivers. They represent a uniform 
way for accessing the underlying components and libraries. 
Each concrete library used as input or output communicates 
with a SCS driver extending the InputDriver, respectively 
the Outputdriver class.  

This way the “phobs” of the Papier-Mâché [13] library, the 
“event handlers” of the Phidgets [10] or the “tags” of the 
Sphinx [19] speech recognition engine can be accessed in a 
uniform manner by the programmer. 

In terms of synchronization of modalities, the SCS enables 
equivalence of the input channels (see CARE model 
above). Thanks to the state-machine coupled to both the 
InputDrivers and the observer pattern, the end user can 
accomplish an action by sequentially choosing one of the 
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1..n different modalities activated in each state. This way, 
browsing the options of a menu bar can be operated first 
using the user’s voice (e.g. with the Sphinx SCS driver), 
then using a physical joystick (e.g. with the Phidget 
Joystick SCS driver), and eventually by tracing the user’s 
arms movements (e.g. with the Papier-Mâché SCS driver). 

Furthermore, the SCS offers multimodal fission 
functionalities. The system constructs a feedback to the 
user’s actions using various different output channels. As 
before, this is operated using the OuputDrivers architecture 
coupled with notification methods provided by the 
InputDrivers. 

 

Figure 3. The Smart Librarian use case. 

As use case, the Smart Librarian (see Fig. 3) project is a 
concrete multimodal and tangible application using the 
SCS toolkit. It models a self-service library. The idea 
behind it is to emphasize multimodality as a help towards 
more accessible application software and more natural 
human-computer interaction schemes. This is particularly 
important since the targeted user group of the Smart 
Librarian comprises people without exhaustive computer-
skills or disabled people. 

Thanks to the SCS architecture, the user can use the 
communication channel he feels to be the most adapted at 
each step. As an example consider the user wanting to 
borrow a book. In order to start this action he can either: 
talk to the system (saying something similar to “I want to 
borrow this book” or just “borrow”), use the physical 
widgets (joystick, button), dispose a book on the “out” zone 
(monitored by an RFID reader), or make a gesture towards 
the “out” zone (monitored by the video camera), etc. In 
order not to confuse the reader with all the activated 
channels for each state the Smart Librarian uses the fission 
mechanisms provided by the SCS to turn on signalization 
LEDs as well as icons on the display and vocal 
information. 

As opposed to the Java Swing MM extension, the SCS 
toolkit favours as much expressiveness as possible: the 
built-in state machine allows modelling complex human-

computer dialog schemes, and the input and output drivers 
offer extended versatility to the developer using the SCS 
toolkit. The price of this expressiveness is a tool asking 
extended expertise from the developer using it, and the 
necessity to fully integrate the SCS toolkit into one’s 
multimodal or tangible application. 

HephaisTK, an agent-based toolkit: looking for balance 
Following the experimentations achieved with the two 
toolkits surveyed above, the Java Swing MM extension and 
the SCS toolkit, a third toolkit named HephaisTK was 
created. This toolkit tries to balance expressiveness and 
usability. 

HephaisTK is intended to be a toolkit allowing rapid 
creation of multimodal interfaces, offering a predefined set 
of recognizers as well as the possibility to plug into the 
toolkit any other modality recognizer, as long as it complies 
with a given set of conditions, e.g. communication with the 
toolkit by means of the W3C EMMA language. HephaisTK 
is designed in the Java programming language, as a multi-
platform toolkit. HephaisTK will also offer different fusion 
mechanisms to allow meaning from incoming recognizers 
to be extracted, and passed to potential client applications. 
Finally, free use of HephaisTK by any interested person 
will be guaranteed and available through GPL licensing. 

 

Figure 4. Concept of the Smart Librarian use case. 

In its current state, HephaisTK is built upon a software 
agent system. Each time a new recognizer or synthesizer is 
plugged into the toolkit, an agent is dispatched to monitor 
it. Agents manage communication between the different 
parts of the framework, from the input recognizer to the 
meaning extraction engines to the output modules. Agents 
are also used because of their ability to transit from one 
platform to another. 

HephaisTK uses a central blackboard architecture (see Fig. 
5). A “postman” centralizes each message coming from the 
different input recognizers and stores it into a database. 
Agents interested in a specific type of message can 
subscribe to the postman, which will accordingly 
redistribute received messages. Fusion of input modalities 
is achieved through meaning frames. When a developer 
wants to use HephaisTK toolkit to monitor input 
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recognizers, he has to declare the toolkit by means of event 
listeners. The toolkit manages fusion of modalities, as well 
as user-machine dialog, by means of an internal finite state 
machine paradigm; if the general dialog scheme is fixed, 
behaviour of the fusion engine can be tuned by the 
developer to match the different CARE properties. The 
fusion and dialog managers of HephaisTK are scripted by 
means of a SMUIML (Synchronized Multimodal User 
Interfaces Modelling Language) XML file [8]. This 
language has been created as a means for the developers 
wishing to use HephaisTK to easily access the deeper 
functionalities of the toolkit without having to delve into 
the code. A typical SMUIML declares recognizers, triggers 
and actions, and the user-machine dialog in the form of a 
finite state machine calling those triggers and actions. 
CARE properties are fully integrated into SMUIML and 
can be used to specify the way modalities will have to be 
fused, for example in a parallel or complementary way. 

 

Figure 5. HephaisTK toolkit architecture. 

Finally, the support of W3C EMMA language allows 
plugging of any new human-machine communication 
means recognizer or synthesizer, able to manage 
communication via EMMA, in HephaisTK. 

This toolkit had to find a balance between usability and 
expressiveness for the user interfaces developer wishing to 
use it; in this regard, HephaisTK has been created as able to 
plug itself into an existing or new application without 
heavy modifications; the programming is done by means of 
an XML file able to describe rich interactions. This balance 
does not come for free, however: first, as the developer’s 
application and the toolkit are separated, the developer has 
to be careful that the toolkit and her application are in a 
same “state”; also, the toolkit is a bulky software, maybe 
too much bulky for simple use cases. 

Use cases 
In order to get a qualitative evaluation of the three 
architectures, we tried to model with these architectures 
two different, already existing multimodal applications. 

A first simple use case allowing control of a music player 
application via speech commands, standard WIMP 
interface elements and tangible RFID tagged objects has 
been implemented. This application allowed simple 
interactions, such as “play”, “pause”, or “next track” 
commands, and offered different ways to express the 
commands. For example, a user could input the desired 
with help of a tagged object while issuing a “play” 
command by voice.  

Such a simple use case could be easily modelled by means 
of the Java Swing MM extension: most of the commands 
were mapped to a given GUI element and to a set of 
tangible or vocal commands. HephaisTK toolkit could also 
model this application, provided some work to create the 
SMUIML script. Conversely, modelling this simple use 
case by means of the SCS toolkit needed a complete rewrite 
of the application. 

 

Figure 6. The XPaint drawing table. 

A more complex use case followed in the form of the 
XPaint drawing table (see Fig. 6). On this table, two 
physical artefacts allow the users to draw on the table a set 
of shapes or tools selected by means of RFID-tagged 
tangible objects. Commands can also be selected by means 
of vocal commands, recognized with help of the Sphinx 
speech recognition toolkit. Additionally, specific 
commands as selection of colour or line width are 
expressed through specific hardware input devices like 
Phidgets sliders.  

The XPaint table could not be modelled entirely using the 
Java Swing MM extension due to the numerous tight links 
between the different modalities used: lots of operations 
(such as painting a coloured shape, which needs speech, 
Phidgets and the physical artefacts) require complementary 
fusion of multiple inputs, which the Java Swing MM 
extension couldn’t achieve. Modelling the human-computer 
dialog could be achieved using the SCS toolkit, but 
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revealed itself a tedious work. In regard to this, the 
modelling by means of a SMUIML script proved easier to 
create, due to the level of abstraction provided by the 
HephaisTK scripting language. Most of the existing XPaint 
application code could be also re-used thanks to the clear 
application-HephaisTK separation, whereas an implemen-
tation by means of the SCS toolkit would have needed 
rewriting much of the program.  

SUMMARY AND MAJOR CHALLENGES 
Table 1 summarizes the different characteristics of the 
systems described either in the state of the art, or in the 
three architectures described above: extensible systems (i.e. 
toolkits) have the potential ability to add other input 
modalities in a practical way. Pluggability refers to the 
ability of a toolkit to insert itself into an architecture 
without having to rewrite everything. The other 
characteristics are self-explanatory. 

Regarding our three architectures, some interesting aspects 
have been discovered. The Java Swing MM Extension 
allows developers to create without much effort 
multimodally-enhanced interfaces, at the expense of 
dialogue capabilities: only a simple “one-command-to-one-
action” scheme is allowed.  

On its side, the SCS toolkit is still a prototype and a 
number of improvements would be required to make it 
more productive. However, the SCS proposes an original 
basis for a programmatic toolkit (or framework) to alleviate 
the implementation of multimodal interfaces for which a 
clear deterministic interaction flow can be extracted.  

OpenInterface and HephaisTK both offer modularity, one 
through a component-based approach, the second with help 

a software agents approach. Moreover, those toolkits give 
developers more genericity in the way synchronization of 
input modalities is expressed, compared to the Java Swing 
MM Extension or Service Counter System. They differ 
mainly in architecture and technical choices: OpenInterface 
is a complete multimodal toolkit managing every part of 
the design of a multimodal application, whereas 
HephaisTK focuses only on management and fusion of 
multiple inputs, presenting itself to a client application as a 
plug-in. 

FUTURE WORKS AND CONCLUSIONS 
Choosing a type of architecture for a given tangible and 
multimodal application heavily depends on the type of 
application itself. Giving some multimodal capabilities to a 
standard WIMP application does not necessarily require a 
high level architecture: as the Java Swing MM Extension 
shows, a simple layer built upon a widely available GUI 
library already gives interesting multimodal capabilities to 
an application. However, this type of add-on considers only 
equivalence/redundancy of modalities and not comple-
mentarity. 

In order to enable complementary usage of modalities, 
requiring proper synchronization and fusion mechanisms, 
one step further is to consider architectures built on finite 
state machines, like MEngine or the Service Counter 
System presented in this paper. This type of architecture 
allows the creation of multimodal interfaces with advanced 
user-machine dialog, but to the detriment of usability and 
readability. Also, the user will have to follow strictly the 
course of events described by the finite state machine.  

In the near future, we will concentrate most of our efforts 

Table 1. Comparison of different multimodal and tangibles toolkits and architectures. 
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Architecture traits            
Finite state machine   x       x x 
Components x x     x  x   
Software agents    x  x     x 
Fusion by frames     x      x 
Symbolic-statistical fusion      x      
Programming mechanisms            
Programming via “hard coding”     x x    x  
Programming via API    x   x x x   
Programming via configuration file           x 
Visual Programming tool x x x         
Characteristics            
Extensibility  x x x     x x x 
Pluggability       x  x  x 
Reusable components x x         x 
Open Source x x      x  x x 
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toward the enhancement of HephaisTK. We believe an 
approach striving to balance usability and expressiveness 
will be of greater interest to HCI practitioners than other 
approaches based solely on one of these two qualities. We 
hence plan to collect and integrate a wider range of 
available state-of-the-art recognizers and synthesizers, e.g. 
for pen or gesture tracking. Work will also continue on the 
SMUIML scripting language used in HephaisTK to model 
human-computer dialog. Further, we will explore novel 
fusion methods development as well as fission mechanisms 
taking into account the context and the user profile. During 
this work, two specific use cases will be considered: (1) a 
multimodally enhanced smart meeting room for business 
use case and (2) a smart living room for home use case. 
Finally, along the way, user evaluations will target the 
toolkit usability, and multimodality studies will focus on 
deeper studies on the usage of multimodality. 
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