
 1

Strengths and weaknesses of software architectures
for the rapid creation of tangible and multimodal interfaces

Bruno Dumas1, Denis Lalanne1, Dominique Guinard2, Reto Koenig1, Rolf Ingold1
1 DIVA research group
University of Fribourg

Boulevard de Pérolles 90
1700 Fribourg, Switzerland

{firstname.lastname}@unifr.ch

2 Information Management
ETH Zurich / SAP Research

Sonneggstrasse 63
8092 Zurich, Switzerland

dguinard@ethz.ch
ABSTRACT
This paper reviews the challenges associated with the
development of tangible and multimodal interfaces and
exposes our experiences with the development of three
different software architectures to rapidly prototype such
interfaces. The article first reviews the state of the art, and
further compares existing systems with our approaches.
Finally, the article stresses the major issues associated with
the development of toolkits allowing the creation of
multimodal and tangible interfaces, and presents our future
objectives.

Author Keywords
Multimodal and tangible interfaces, multimodal interaction,
software engineering.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces, Prototyping, Theory
and methods.

INTRODUCTION
Tangible interfaces have shown much promise since the
founding works of Ullmer and Ishii [11]. They have shown
particularly interesting concepts when used to create user
interfaces which mix tangible interaction with other
modalities, such as speech or gesture based interaction (e.g.
Papier-Mâché [13]). However the development of such
multimodal interfaces remains a difficult task needing
knowledge in various state-of-the-art domains like speech
recognition, RFID hardware management or gesture
tracking. Furthermore, the integration of natural
communication means recognition systems and of

synthesizers into an embedded application is no trivial task:
multiple input modalities imply potential combinations of
meaning, i.e. a need for a fusion engine; in particular, the
management of synchronized input should be carefully
handled. Likewise, multiple or “non-standard” available
output modalities should lead to careful choice to return the
information to the user, i.e. a need for a fission engine,
depending on the context of use and/or on the user profile.

Hence, tools giving access to parts of a multimodal system
would relieve some of the tasks implied by the creation
from the ground up of a full tangible and multimodal
application. Such a tool could take different forms; from
straightforward, but practical ones to far more developed
ones. In this article, we will compare three different forms
such a toolkit could take: a simple and rugged extension to
a widely used GUI toolkit, an integrated tool driven by an
internal finite state machine describing the user-machine
dialog, and finally a pluggable toolkit allowing the control
of various input modalities by means of an XML
configuration file.

This article first develops the problematic of time
synchronization on the side of the input (fusion) and of the
output (fission); it then reviews existing multimodal and
tangible toolkits. The article further presents the three
different architectures of toolkits we developed that could
give rise to such multimodal applications development
tools. Two of them have been derived from actual
multimodal applications, and the last one is a toolkit
currently in development. The article then compares these
systems with state-of-the-art ones in a table, emphasizing
on their major characteristics and on the trade-off between
usability and expressiveness of a toolkit. Finally the article
concludes with the major challenges of this work and a
roadmap to achieve them.

PROBLEMATIC OF TIME SYNCHRONIZATION
As pointed out in the introduction, mixing tangible
interaction with other modalities such as speech or gesture
recognition involves taking into account time
synchronization of modalities, i.e. fusion and fission of the
modalities. In this section, standard fusion and fission

 2

mechanisms will be detailed, in order to introduce the
toolkits presented in the next sections.

Fusion Mechanisms
One of the main issues of multimodal design is the way
fusion of multimodal human messages is performed to
reach a robust interpretation. The root of the problem
comes from the way input is managed in multimodal
interfaces: in standard (WIMP) interfaces, the events, as
mouse clicks or keyboard commands, can be processed one
at a time, without having to deal with problems of
references and co-references. In multimodal systems, not
only do these problems arise, but they are in fact a core
property of multimodal interaction. A classic example is
Bolt’s synergic “Put that there” [3], in which a vocal
command (“Put”) must be actively linked to a pair of
pointing events, achieved in a spatially-aware modality. As
a matter of fact, other complex problems appear beyond the
“Put that there” example: users rarely input at the same
exact time co-referenced events. Solving those problems of
reference and co-reference is the subject of modality
fusion, which we will now develop.

Three main fusion levels are generally considered: data,
feature and decision fusion. Data-level fusion is not per se
an inter modality fusion mode, but is used when dealing
with multiple signals coming from a similar type of source
(e.g. two cameras). Feature-level fusion is the favourite
type of fusion when tightly coupled and synchronised
modalities are to be fused. Decision-level fusion is
considered as the most used type of fusion in multimodal
applications. The main reason is its ability to manage
loosely-coupled modalities like, for example, pen and
speech interaction.

Decision-level fusion-based multimodal systems have been
built following a number of different fusion mechanisms,
some of which have appeared recently. All those
mechanisms have as a common objective to solve fusion at
the semantic level and thus to handle issues such as
potentially erroneous interpretations coming from different
modality channels, synchronisation and reference/co-
reference problems. Some examples of decision-level
fusion mechanisms are the following ones: rules-based
fusion, frame-based fusion, and hybrid symbolic-statistical
architectures [6].

When attempting to mix tangible interaction with other
modalities, decision-level fusion is preferred over data level
and feature-level fusion, mostly because of the high-level
interpretation achieved on data coming from sometimes
very diverse input source.

Fission techniques
Fission techniques allow a multimodal application to adapt
its output messages according to context and user profiles
[18]. Technically speaking, fission consists of three tasks:

• Message construction, where the information to be
transmitted to the user is created;

• Output channel selection, where relevant restitution
interfaces are selected according to context and user
profile;

• Construction of a coherent and synchronized restitution.
Less research has been done on multimodal fission than on
fusion. Most applications use few output modalities and,
consequently, employ straightforward fission mechanisms.
Nonetheless, when multiple output modalities such as text-
to-speech synthesis, audio cues, visual cues or animated
characters are available, output selection becomes a tricky
task. An interesting example of fission strategy applied to
multiple output modalities is shown in the SmartKom
project [18], where a 3D animated character dialogues with
the user: this involved synchronization of gestures of the
character, lips of the character and spoken text.

CARE properties
CARE properties have been proposed by Coutaz & al. in
their paper entitled “Four Easy Pieces for Assessing the
Usability of Multimodal Interaction: The CARE properties”
[7]. Four properties are introduced, to describe the potential
relationships between different input modalities and their
potential meaning in a multimodal system. These properties
are:

• Complementarity: multiple complementary modalities
are necessary to grasp the desired meaning (e.g. “put that
there” would need both pointing gestures and voice in
order to be resolved);

• Assignment: only one modality can lead to the desired
meaning (e.g. the steering wheel of a car is the only way
to direct the car);

• Redundancy: multiple modalities, even used
simultaneously, can be used individually to lead to the
desired meaning (e.g. user utters a “play” speech
command and pushes a button labeled “play”, but only
one “play” command would be taken into account);

• Equivalence: multiple modalities can all lead to the
desired meaning, but only one can be used at a time (e.g.
speech or keyboard can be used to write a text).

Those CARE properties have revealed themselves as a tool
used by a number of multimodal toolkits to help formalize
relationships between different modalities.

RELATED WORKS
In this section we present a state of the art of tools and
frameworks dedicated to the rapid creation of multimodal
interfaces. Toolkits dedicated to creation of interfaces
including multiple modalities, tangible or not, are covered
in the first part. The second part of this section is dedicated
to toolkits specifically geared toward creation of tangible
interfaces.

 3

A number of toolkits for creating tangible and/or embedded
applications have seen the light since the founding works of
Ullmer and Ishii. As shown by Mazalek [15], three main
tendencies have been followed: hardware prototyping,
groupware-focused and integrated application.

Phidgets [10] and iStuff [1] are typical examples of the
hardware prototyping approach, offering developers a set of
hardware components, such as buttons, knobs or LEDs, and
software drivers to use those components.

Groupware-focused tools, such as SDGToolkit [17] offer
tools allowing creation of group-oriented applications;
examples of such groupware-focused tools also include
multi-touch tables.

Finally, researchers have begun to work on a mid-way,
integrated application toolkit approach; examples include
Papier-Mâché [13] and Synlab API [15].

As interesting as these toolkits are, problems arise when
you wish to mix them with other modalities such as speech:
hardware components and groupware-oriented applications
focus on their original tasks and generally do not provide
opportunities to accept third party recognizers or an
external data source. Hence, if we want to enrich tangible
applications with other modalities, we need toolkits able to
take into account data coming from very different sources,
and still be able to fuse data coming from those sources.

Since intensive work has begun on multimodal systems, the
need for tools allowing the rapid creation of multimodal
applications has grown. Hence, work has been achieved by
researchers toward the creation of such tools. Krahnstoever
and al. [14] proposed a framework using speech and
gesture to create a natural interface. The output of their
framework was to be used on large screen displays
enabling multi-user interaction. Fusion was done using a
unification-based method. Bourguet [5] endeavoured in the
creation of a multimodal toolkit in which multimodal
scenarios could be modelled using finite state machines.
This multimodal toolkit was composed of two components,
a graphical user interface named IMBuilder which
interfaced the multimodal framework itself, named
MEngine. Flippo and al. [8] also worked on the design of a
multimodal framework, geared toward direct integration
into a multimodal application. One of the most interesting
aspects of their work is the use of a parallelisable
application-independent fusion technique. The general
framework architecture is based on agents, while the fusion
technique itself uses frames. Lastly, Bouchet and al. [4]
proposed a component-based approach called ICARE
thoroughly based on the CARE [7] design space presented
above. These components cover elementary tasks,
modality-dependent tasks or generic tasks like fusion.
Finally, communication between components is based on
events. The components-based approach of ICARE has
been used to create a comprehensive open-source toolkit
called OpenInterface [2]. In its current state (v0.2),
OpenInterface seems to inherit most of the architecture of

ICARE. It is finally worth noting that the World Wide Web
Consortium (W3C) has introduced its W3C multimodal
interaction framework. This theoretical framework
describes major components involved in multimodal
interaction, as well as potential or existent markup
languages used to relate those different components. While
somewhat centered on web-based multimodal interaction,
many elements described in this framework are of practical
interest for multimodal HCI practitioners, such as the W3C
EMMA markup language.

THREE POSSIBLE ARCHITECTURES FOR TOOLKITS
In this section we present three toolkits we implemented
and experimented. The Java Swing MM extension proposes
to extend Java Swing with other modalities so that
programmers do not have to learn a new environment. The
drawback of this approach lies in the multimodal
expressiveness. The Service Counter System uses a finite
state machine to enable multimodal fusion and as a way to
program interaction scenarios, but at the expense of a lot of
“hard-coding”. Finally, HephaisTK, currently under
development, uses in its preliminary version a multi-agent
architecture to enable an efficient communication between
recognizers and the application created with help of the
toolkit. Those three toolkits try to mix tangible interaction
(coming respectively from Phidgets [10], Papier-Maché
[13] or Reactivision [11]) with other forms of input. We
present in this section each system, emphasizing on their
major characteristics. The next section finally compares
these systems with related works.

Java Swing MM extension: usability
A first attempt at providing an architecture to help creation
of tangible and multimodal interfaces was achieved by
extending the Java Swing GUI framework. The goal of the
Java Swing MM extension was to come up with a simple
and rugged solution toward rapid prototyping of
multimodal and tangible interfaces, based on a standardized
GUI framework.

Figure 1. Java Swing MM Extension: MMIButton

The choice of the Java Swing GUI framework as a basis
was a default choice at the time we experimented with this
approach: in fact, any sufficiently modular GUI framework
should be able to be applied the same approach.

 4

The Java Swing MM Extension provides a specific
developers' design-pattern which improves any graphical
component into a multimodal and/or tangible input
component. The strength of this pattern lies in the
separation of the different development tasks:

• The GUI-Integrator, which builds new graphical
components, does not have to know anything about the
actual input recognizers used.

• The Media-Integrator only has to implement the desired
media-interface and does not have to know about fusion
techniques.

• The MMUI-Integrator only needs to extend the graphical
component in order to integrate the desired media
listener. The chosen fusion behavior is implemented
there.

Any developer can then use the multimodal components as
the new components can be handled just as if they were
standard GUI components.

The proof of concept for the Input Extension was
performed through the augmentation of the Swing JButton
towards a MMIButton (The JButton is a simple graphical
component provided by the Swing-Framework used in
Java).

The MMIButton component has been equipped with the
possibility of being activated by keyboard, mouse, external
Phidgets [9] hardware interface components (joystick,
physical button, etc.) and voice. An application level fusion
(most recent event counts) was used.

The Output Extension provides another specific design-
pattern aiming for the same goal: fission at runtime,
separation between the different integration development
processes, straightforward usage of the designed output
synthesizers.

An architecture such as the one proposed by the Java Swing
MM extension allows developers to quickly add
multimodal and tangible input to an existing application, or
develop such an application from the ground up with a
minimum of new knowledge to grasp. Conversely,
applications built using the Java Swing MM extension are
limited to multimodal or tangible input mapped to specific
commands. Regarding synchronicity of modalities,
equivalence of modalities is offered right away (see CARE
properties earlier in the article), as long as all modal or
tangible commands lead to a specific action; however
complementarity can be achieved only in specific cases,
due to the clear separation between the multiple
multimodally enhanced components.

SCS, the Service Counter System: expressiveness
The SCS is a toolkit addressing the design and
implementation of multimodal user interfaces. It aims to
solve the issue in a programmatic way, i.e. it helps the
programmer creating a multimodal user interface. Towards
this goal it provides:

• An extensible object-oriented abstraction layer (or a
framework) of existing input and output libraries.

• A central state machine that can be used to model the
interaction flows.

Although designed to serve the design of a broad variety of
multimodal user interfaces, the SCS was primarily created
to be used for use-cases in which a clear and deterministic
interaction flow can be extracted. Thus, it is particularly
adapted, but not limited, to semi of fully embedded use-
cases such as modeling a rental service, an information
desk, an interactive guide, etc.

The SCS is articulated around a central state-machine.
Using this automata-generator designed for multimodal
interfaces the programmer can describe the human-
computer and computer-human interaction flows. In other
words, she can design the system’s states and transitions.
For instance, using the state-machine, one could enforce the
fact that after authentication (i.e. after changing the state), a
customer can either rent a DVD (first possible transition) or
return it (second possible transition). As an example, Fig. 2
represents the automata designed for the smart librarian use
case that we will describe later.

Figure 2. A sample automata modeling the interaction flow.

As mentioned before, the SCS not only provides a way to
design the interaction flows of the user interface but also
offers to abstract the concerns related to the input and
output channels. The abstraction layer is offered by the so
called Input and Output drivers. They represent a uniform
way for accessing the underlying components and libraries.
Each concrete library used as input or output communicates
with a SCS driver extending the InputDriver, respectively
the Outputdriver class.

This way the “phobs” of the Papier-Mâché [13] library, the
“event handlers” of the Phidgets [10] or the “tags” of the
Sphinx [19] speech recognition engine can be accessed in a
uniform manner by the programmer.

In terms of synchronization of modalities, the SCS enables
equivalence of the input channels (see CARE model
above). Thanks to the state-machine coupled to both the
InputDrivers and the observer pattern, the end user can
accomplish an action by sequentially choosing one of the

 5

1..n different modalities activated in each state. This way,
browsing the options of a menu bar can be operated first
using the user’s voice (e.g. with the Sphinx SCS driver),
then using a physical joystick (e.g. with the Phidget
Joystick SCS driver), and eventually by tracing the user’s
arms movements (e.g. with the Papier-Mâché SCS driver).

Furthermore, the SCS offers multimodal fission
functionalities. The system constructs a feedback to the
user’s actions using various different output channels. As
before, this is operated using the OuputDrivers architecture
coupled with notification methods provided by the
InputDrivers.

Figure 3. The Smart Librarian use case.

As use case, the Smart Librarian (see Fig. 3) project is a
concrete multimodal and tangible application using the
SCS toolkit. It models a self-service library. The idea
behind it is to emphasize multimodality as a help towards
more accessible application software and more natural
human-computer interaction schemes. This is particularly
important since the targeted user group of the Smart
Librarian comprises people without exhaustive computer-
skills or disabled people.

Thanks to the SCS architecture, the user can use the
communication channel he feels to be the most adapted at
each step. As an example consider the user wanting to
borrow a book. In order to start this action he can either:
talk to the system (saying something similar to “I want to
borrow this book” or just “borrow”), use the physical
widgets (joystick, button), dispose a book on the “out” zone
(monitored by an RFID reader), or make a gesture towards
the “out” zone (monitored by the video camera), etc. In
order not to confuse the reader with all the activated
channels for each state the Smart Librarian uses the fission
mechanisms provided by the SCS to turn on signalization
LEDs as well as icons on the display and vocal
information.

As opposed to the Java Swing MM extension, the SCS
toolkit favours as much expressiveness as possible: the
built-in state machine allows modelling complex human-

computer dialog schemes, and the input and output drivers
offer extended versatility to the developer using the SCS
toolkit. The price of this expressiveness is a tool asking
extended expertise from the developer using it, and the
necessity to fully integrate the SCS toolkit into one’s
multimodal or tangible application.

HephaisTK, an agent-based toolkit: looking for balance
Following the experimentations achieved with the two
toolkits surveyed above, the Java Swing MM extension and
the SCS toolkit, a third toolkit named HephaisTK was
created. This toolkit tries to balance expressiveness and
usability.

HephaisTK is intended to be a toolkit allowing rapid
creation of multimodal interfaces, offering a predefined set
of recognizers as well as the possibility to plug into the
toolkit any other modality recognizer, as long as it complies
with a given set of conditions, e.g. communication with the
toolkit by means of the W3C EMMA language. HephaisTK
is designed in the Java programming language, as a multi-
platform toolkit. HephaisTK will also offer different fusion
mechanisms to allow meaning from incoming recognizers
to be extracted, and passed to potential client applications.
Finally, free use of HephaisTK by any interested person
will be guaranteed and available through GPL licensing.

Figure 4. Concept of the Smart Librarian use case.

In its current state, HephaisTK is built upon a software
agent system. Each time a new recognizer or synthesizer is
plugged into the toolkit, an agent is dispatched to monitor
it. Agents manage communication between the different
parts of the framework, from the input recognizer to the
meaning extraction engines to the output modules. Agents
are also used because of their ability to transit from one
platform to another.

HephaisTK uses a central blackboard architecture (see Fig.
5). A “postman” centralizes each message coming from the
different input recognizers and stores it into a database.
Agents interested in a specific type of message can
subscribe to the postman, which will accordingly
redistribute received messages. Fusion of input modalities
is achieved through meaning frames. When a developer
wants to use HephaisTK toolkit to monitor input

 6

recognizers, he has to declare the toolkit by means of event
listeners. The toolkit manages fusion of modalities, as well
as user-machine dialog, by means of an internal finite state
machine paradigm; if the general dialog scheme is fixed,
behaviour of the fusion engine can be tuned by the
developer to match the different CARE properties. The
fusion and dialog managers of HephaisTK are scripted by
means of a SMUIML (Synchronized Multimodal User
Interfaces Modelling Language) XML file [8]. This
language has been created as a means for the developers
wishing to use HephaisTK to easily access the deeper
functionalities of the toolkit without having to delve into
the code. A typical SMUIML declares recognizers, triggers
and actions, and the user-machine dialog in the form of a
finite state machine calling those triggers and actions.
CARE properties are fully integrated into SMUIML and
can be used to specify the way modalities will have to be
fused, for example in a parallel or complementary way.

Figure 5. HephaisTK toolkit architecture.

Finally, the support of W3C EMMA language allows
plugging of any new human-machine communication
means recognizer or synthesizer, able to manage
communication via EMMA, in HephaisTK.

This toolkit had to find a balance between usability and
expressiveness for the user interfaces developer wishing to
use it; in this regard, HephaisTK has been created as able to
plug itself into an existing or new application without
heavy modifications; the programming is done by means of
an XML file able to describe rich interactions. This balance
does not come for free, however: first, as the developer’s
application and the toolkit are separated, the developer has
to be careful that the toolkit and her application are in a
same “state”; also, the toolkit is a bulky software, maybe
too much bulky for simple use cases.

Use cases
In order to get a qualitative evaluation of the three
architectures, we tried to model with these architectures
two different, already existing multimodal applications.

A first simple use case allowing control of a music player
application via speech commands, standard WIMP
interface elements and tangible RFID tagged objects has
been implemented. This application allowed simple
interactions, such as “play”, “pause”, or “next track”
commands, and offered different ways to express the
commands. For example, a user could input the desired
with help of a tagged object while issuing a “play”
command by voice.

Such a simple use case could be easily modelled by means
of the Java Swing MM extension: most of the commands
were mapped to a given GUI element and to a set of
tangible or vocal commands. HephaisTK toolkit could also
model this application, provided some work to create the
SMUIML script. Conversely, modelling this simple use
case by means of the SCS toolkit needed a complete rewrite
of the application.

Figure 6. The XPaint drawing table.

A more complex use case followed in the form of the
XPaint drawing table (see Fig. 6). On this table, two
physical artefacts allow the users to draw on the table a set
of shapes or tools selected by means of RFID-tagged
tangible objects. Commands can also be selected by means
of vocal commands, recognized with help of the Sphinx
speech recognition toolkit. Additionally, specific
commands as selection of colour or line width are
expressed through specific hardware input devices like
Phidgets sliders.

The XPaint table could not be modelled entirely using the
Java Swing MM extension due to the numerous tight links
between the different modalities used: lots of operations
(such as painting a coloured shape, which needs speech,
Phidgets and the physical artefacts) require complementary
fusion of multiple inputs, which the Java Swing MM
extension couldn’t achieve. Modelling the human-computer
dialog could be achieved using the SCS toolkit, but

 7

revealed itself a tedious work. In regard to this, the
modelling by means of a SMUIML script proved easier to
create, due to the level of abstraction provided by the
HephaisTK scripting language. Most of the existing XPaint
application code could be also re-used thanks to the clear
application-HephaisTK separation, whereas an implemen-
tation by means of the SCS toolkit would have needed
rewriting much of the program.

SUMMARY AND MAJOR CHALLENGES
Table 1 summarizes the different characteristics of the
systems described either in the state of the art, or in the
three architectures described above: extensible systems (i.e.
toolkits) have the potential ability to add other input
modalities in a practical way. Pluggability refers to the
ability of a toolkit to insert itself into an architecture
without having to rewrite everything. The other
characteristics are self-explanatory.

Regarding our three architectures, some interesting aspects
have been discovered. The Java Swing MM Extension
allows developers to create without much effort
multimodally-enhanced interfaces, at the expense of
dialogue capabilities: only a simple “one-command-to-one-
action” scheme is allowed.

On its side, the SCS toolkit is still a prototype and a
number of improvements would be required to make it
more productive. However, the SCS proposes an original
basis for a programmatic toolkit (or framework) to alleviate
the implementation of multimodal interfaces for which a
clear deterministic interaction flow can be extracted.

OpenInterface and HephaisTK both offer modularity, one
through a component-based approach, the second with help

a software agents approach. Moreover, those toolkits give
developers more genericity in the way synchronization of
input modalities is expressed, compared to the Java Swing
MM Extension or Service Counter System. They differ
mainly in architecture and technical choices: OpenInterface
is a complete multimodal toolkit managing every part of
the design of a multimodal application, whereas
HephaisTK focuses only on management and fusion of
multiple inputs, presenting itself to a client application as a
plug-in.

FUTURE WORKS AND CONCLUSIONS
Choosing a type of architecture for a given tangible and
multimodal application heavily depends on the type of
application itself. Giving some multimodal capabilities to a
standard WIMP application does not necessarily require a
high level architecture: as the Java Swing MM Extension
shows, a simple layer built upon a widely available GUI
library already gives interesting multimodal capabilities to
an application. However, this type of add-on considers only
equivalence/redundancy of modalities and not comple-
mentarity.

In order to enable complementary usage of modalities,
requiring proper synchronization and fusion mechanisms,
one step further is to consider architectures built on finite
state machines, like MEngine or the Service Counter
System presented in this paper. This type of architecture
allows the creation of multimodal interfaces with advanced
user-machine dialog, but to the detriment of usability and
readability. Also, the user will have to follow strictly the
course of events described by the finite state machine.

In the near future, we will concentrate most of our efforts

Table 1. Comparison of different multimodal and tangibles toolkits and architectures.

IC
A

R
E

–
O

I [
7]

O
pe

nI
nt

er
fa

ce
 [2

]

IM
B

ui
ld

er
/

M
En

gi
ne

 [5
]

Fl
ip

po
 e

t a
l.

[8
]

K
ra

hn
st

oe
ve

r [
14

]

Q
ui

ck
se

t [
8]

Ph
id

ge
ts

 [8
]

Pa
pi

er
-M

âc
hé

 [8
]

Ja
va

 S
w

in
g

M
M

Ex

te
ns

io
n

Se
rv

ic
e

C
ou

nt
er

Sy

ste
m

H
ep

ha
is

TK

Architecture traits
Finite state machine x x x
Components x x x x
Software agents x x x
Fusion by frames x x
Symbolic-statistical fusion x
Programming mechanisms
Programming via “hard coding” x x x
Programming via API x x x x
Programming via configuration file x
Visual Programming tool x x x
Characteristics
Extensibility x x x x x x
Pluggability x x x
Reusable components x x x
Open Source x x x x x

 8

toward the enhancement of HephaisTK. We believe an
approach striving to balance usability and expressiveness
will be of greater interest to HCI practitioners than other
approaches based solely on one of these two qualities. We
hence plan to collect and integrate a wider range of
available state-of-the-art recognizers and synthesizers, e.g.
for pen or gesture tracking. Work will also continue on the
SMUIML scripting language used in HephaisTK to model
human-computer dialog. Further, we will explore novel
fusion methods development as well as fission mechanisms
taking into account the context and the user profile. During
this work, two specific use cases will be considered: (1) a
multimodally enhanced smart meeting room for business
use case and (2) a smart living room for home use case.
Finally, along the way, user evaluations will target the
toolkit usability, and multimodality studies will focus on
deeper studies on the usage of multimodality.

ACKNOWLEDGEMENTS
Thanks to Luca Zingg, Daniele Della Bruna and Yannick
Thiessoz for their work on the XPaint drawing table.
HephaisTK is funded by the Hasler Foundation
(http://www.haslerstiftung.ch) in the context of the
MeModules project (http://www.eif.ch/memodules), and by
the Swiss National Center of Competence in Research on
Interactive Multimodal Information Management – NCCR
IM2 project (http://www.im2.ch).

REFERENCES
1. Ballagas, R., Ringel, M., Stone, M., Brochers, J. iStuff:

A Physical User Interface Toolkit for Ubiquitous
Computing Envirnments. Proceedings of CHI’03, 2003.

2. Benoit, A., Bonnaud, L., Caplier, L., Damousis, I.,
Tzovaras, D., Jourde, F., Nigay, L., Serrano, M.,
Lawson, J.-Y. Multimodal Signal Processing and
Interaction for a Driving Simulator: Component-based
Architecture. Journal on Multimodal User Interfaces,
Vol 1, No 1 (2007).

3. Bolt, R. Put-that-there: voice and gesture at the graphics
interface. Computer Graphics, 14(3), 1980.

4. Bouchet, J., Nigay, L., and Ganille, T. ICARE Software
Components for Rapidly Developing Multimodal
Interfaces. Proceedings of ICMI'2004, State College,
Pennsylvania, USA, Oct. 2004.

5. Bourguet, M. L. A Toolkit for Creating and Testing
Multimodal Interface Designs. Proceedings of UIST'02,
Paris, Oct. 2002, pp. 29-30.

6. Cohen, P. R., Johnston, M., McGee, D., Oviatt, S.,
Pittman, J., Smith, I., Chen, L., Clow, J. QuickSet:
multimodal interaction for distributed applications. In
Proceedings of the Fifth ACM international Conference
on Multimedia, Seattle, USA, 1997.

7. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J.
and Young, R. Four Easy Pieces for Assessing the
Usability of Multimodal Interaction: The CARE
properties. Proceedings of INTERACT'95 conference,
Lillehammer, Norway, June 1995, pp. 115-120.

8. Dumas, B., Lalanne, D., Ingold, R. Prototyping
Multimodal Interfaces with the SMUIML Modeling
Language. To be published in Proc. of CHI 2008
workshop : User Interface Description Languages for
Next Generation User Interfaces (organizers: O. Shaer,
R. Jacob, M. Green, K. Luyten), Florence, Italy, 2008.

9. Flippo, F., Krebs, A. and Marsic, I. A Framework for
Rapid Development of Multimodal Interfaces. Proc. Of
ICMI'2003, Vancouver, BC, Nov. 5-7, 2003.

10. Greenberg, S., Fitchett, C. Phidgets: easy development
of physical interfaces through physical widgets. User
Interface Software & Technology, CHI Letters 2001.

11. Ishii, H., Ullmer, B. Tangible bits: toward seamless
interfaces between people, bits and atoms. Proceedings
of CHI’97, New York, USA, 1997.

12. Kaltenbrunner, M., Bencina, R. ReacTIVision: A
Computer-Vision Framework for Table-Based Tangible
Interaction. Proceedings of TEI’07. Baton Rouge,
Louisiana, 2007.

13. Klemmer, S. R., Li, J., Lin, J., and Landay, J. A. Papier-
Mâché: Toolkit Support for Tangible Input. CHI
Letters: CHI 2004. 6(1).

14. Krahnstoever, N., Kettebekov, S. and Yeasin, M. and
Sharma, R. A real-time framework for natural
multimodal interaction with large screen displays. Proc.
of ICMI 2002, Pittsburgh, PA, USA, Oct. 2002.

15. Mazalek, A. Tangible Toolkits: Integrating Application
Development across Diverse Multi-User and Tangible
Interaction Platforms. Let's Get Physical Workshop,
DCC’06, Eindhoven, Netherlands, July 2006.

16. Nigay, L., Coutaz, J. A design space for multimodal
interfaces: concurrent processing and data fusion. Proc.
INTERCHI 1993 Human Factors in Computing Systems
Amsterdam.

17. Tse, E., Greenberg, S. Rapidly prototyping Single
Display Groupware through the SDGToolkit.
Proceedings of the Fifth Conference on Australasian
User interfaces (AUIC’04). Dunedin, NZ, 2004.

18. Wahlster, W. SmartKom: Fusion and Fission of Speech,
Gestures, and Facial Expressions. Proc. of the 1st
International Workshop on Man-Machine Symbiotic
Systems, Kyoto, Japan, 2002. p. 213-225.

19. Walker, W., Lamere, P., Kwok P., Raj, B., Singh, R.,
Gouvea, E., Wolf, P., and Woelfel, J. Sphinx-4: A
flexible open source framework for speech recognition.
Sun Microsystems, Tech. Rep. TR-2004-139, 2004.

