
RESTifying Real-World Systems:
a Practical Case Study in RFID

Dominique Guinard, Mathias Mueller, Vlad Trifa

Abstract As networked sensors become increasingly connected to the Internet,
RFID or barcode-tagged objects are likely to follow the same trend. The EPC Net-
work is a set of standards to build a global network for such electronically tagged
goods and objects. Amongst these standards, the Electronic Product Code Informa-
tion Service (EPCIS) specifies interfaces to capture and query RFID events from
external applications. The query interface, implemented via SOAP-based Web ser-
vices, enables business applications to consume and share data beyond companies
borders and forms a global network of independent EPCIS instances. However, the
interface limits the application space to the rather powerful platforms which under-
stand WS-* Web services. In this chapter we introduce tools and patterns for Web-
enabling real-world information systems advertising WS-* interfaces. We describe
our approach to seamlessly integrate RFID information systems into the Web by de-
signing a RESTful (Representational State Transfer) architecture for the EPCIS. In
our solution, each query, tagged object, location or RFID reader gets a unique URL
that can be linked to, exchanged in emails, browsed for, bookmarked, etc. Addition-
ally, this enables Web languages such as HTML and JavaScript to directly use RFID
data to fast-prototype light-weight applications such as mobile applications or Web
mashups. We illustrate these benefits by describing a JavaScript mashup platform
that integrates with various several services on the Web (e.g., Twitter, Wikipedia,

Dominique Guinard
ETH Zurich, Switzerland, MIT Auto-ID Labs, USA
and SAP Research, Switzerland
e-mail: dguinard@ethz.ch

Mathias Mueller
Software Engineering Group, University of Fribourg, Switzerland

Vlad Trifa
Institute for Pervasive Computing, ETH Zurich, Switzerland

The original publication is available at www.springerlink.com published in the book: REST: From
Research to Practice, edited by E. Wilde and C. Pautasso.

1



2 Dominique Guinard, Mathias Mueller, Vlad Trifa

etc.) with RFID data to allow managers along the supply chain and customers to get
comprehensive data about their products.

1 Introduction

The EPC Network is composed of several standards addressing issues ranging from
the RFID (Radio Frequency Identification) tags themselves (EPC standard) to read-
ers infrastructure and the reading middleware [3]. These standards define how to
encode, read and aggregate data about tagged objects throughout the whole sup-
ply chain. Furthermore, to be able to query and use recorded RFID data (i.e.,
traces), the EPCIS standard (Electronic Product Code Information Services) acts
as a global track and trace sharing infrastructure with several, potentially intercon-
nected, EPCIS servers distributed around the world. The EPCIS provides a simple
and lightweight HTTP interface for recording EPC events. A different approach is
taken to querying for these traces by other applications because the EPCIS speci-
fies a standardized WS-* (i.e., SOAP, WSDL, etc.) interface. The WS-* integration
type has been successfully used to combine business applications [9, 10]. For ex-
ample, it can be used to integrate EPCIS data about the status of a shipment with an
Enterprise Resource Planning (ERP) application.

However, WS-* applications are complex systems with a high entry barrier as it
requires developer expertise in the domain. Hence, they are not optimal for more
lightweight and ad-hoc application scenarios [9]. Furthermore, the WS-* protocols
are known to be rather verbose. Moreover, they do not fully meet the requirements
of resource-constrained devices such as mobile phones and wireless sensor/actuator
networks often not providing WS-* server or even client stacks [12, 8]. As a con-
sequence, these shortcomings limit the type of applications built on top of EPCIS
servers to rather heavy-weight business applications fully supporting the WS-* pro-
tocols. This is unfortunate since track and trace applications are also relevant beyond
the desktop. As an example, providing an out-of-the-box mobile access to this data
might be beneficial for many users such as mobile workers. Similarly, providing
direct access to RFID traces to sensor and actuator networks could enable those to
react to RFID events. Finally, allowing lightweight Web applications (e.g., HTML,
JavaScript, PHP, etc.) to directly access these data would enable the vast community
of Web developers to create innovative applications using RFID traces.

In this chapter, we illustrate how a RESTful API (Application Programming In-
terface) for the EPCIS opens new design possibilities for RFID applications. First,
it lowers the entry barrier for developers and fosters rapid prototyping. Second,
it enables direct access to RFID data without any additional software other than
the EPCIS itself. Direct access to EPC events, allows to read, test, bookmarked,
exchange, share RFID-related data from any Web browser, a tool that is ubiqui-
tously available and understood by a vast number of people [7]. Finally, it enables
a more lightweight access to the data. This is particularly desirable for applications
that need to access EPCIS data from resource-constrained devices such as mobile



RESTifying Real-World Systems: a Practical Case Study in RFID 3

Fig. 1 Simplified view of the EPC Network and some of its main standards

phones or sensor nodes. REST is known to be more light-weight [12] than WS-
* services and many resource-constrained devices are REST-ready through simple
HTTP client libraries or higher-level REST client libraries.

The chapter is structured as a “cookbook” each section begins with some theo-
retical background (recipe) and is then applied (cooked) to the implementation of
the RESTful EPCIS. We start by briefly presenting the REST constraints. We then
propose two implementation patterns and describe tools that can greatly speed up
the development process of a RESTful enterprise system. We finally, illustrate how
REST fosters the “mashability“ of real-world information systems with the EPC
Mashup Dashboard. This Web mashup platform allows the exploration of EPC-
related data and gathering of timely information about tagged objects from various
Web services such as Twitter, Wikipedia or Google Maps. Product or supply chain
managers can use this tool as a business intelligence platform to better understand
and visualize the entire supply chain. Likewise, customers can better understand and
visualize where different come from, what other people think about them, and so on.

Before looking at the “RESTification” process, we briefly introduce the EPC
Network and summarize the basic concepts behind RESTful Web Services.



4 Dominique Guinard, Mathias Mueller, Vlad Trifa

1.1 An Introduction to the EPC Global Network

As illustrated on Figure 1, the EPC Network1 is a set of standards established by in-
dustrial key players towards a uniform platform for tracking and discovering RFID
tagged objects and goods. Fifteen standards are currently composing the EPC Net-
work addressing every step required from encoding data on RFID tags to reading
them and sharing their traces. We will focus on two of them as those are the most
relevant in the context of this paper.

The first standard is the EPC Tag Data Standard (TDS). It defines what an EPC
number is and how it is encoded on the tags themselves as shown on the product
box of Figure 1. An EPC is a world wide unique number. Rather than identify-
ing a product class, like most barcode standards do, it can be used to identify the
instance of a product. The TDS specifies eight encoding schemes for EPC tags.
They basically contain three types of information: the manufacturer, the product
class and a serial number. As an example in the tag (represented in its URI form):
urn:epc:id:gid:2808.64085.88828, 2808 is the manufacturer ID, 64085 represents
the type of product and 88828 an instance of the product.

One of the goals of the EPC Network is to allow sharing observed EPC traces.
Thus, the network specifies a standardized server-side EPCIS, in charge of manag-
ing and offering access to traces of EPCs events. Whenever a tag is read it goes
through a filtering process and is eventually stored in an EPCIS together with con-
textual data. In particular, these data deliver information about:

• The “what”: what tagged products (EPCs) were read.
• The “when”: at what time the products were read.
• The “where”: where the products were read, in terms of Business Location (e.g.,

“Floor B”).
• The “who”: what readers (Read Point) recorded this trace.
• The “which”: what was the business context (Business Step) recording the trace

(e.g., “Shipping”).

The goal of the EPCIS is to store these data to allow creating a global network
where participants can gain a shared view of these EPC traces. As such, the EPCIS
deals with historical data, allowing, for example, participants in a supply chain to
share the business data produced by their EPC-tagged objects.

Technically speaking, a standard EPCIS is an application that offers three core
features to client applications:

1. First it offers a way to capture, i.e., persist, EPC events.
2. Then, it offers an interface to query for EPC events.
3. Finally, it allows to subscribe to queries so that client applications can be in-

formed whenever the result of a query changes.

There exist several concrete implementations of EPCISs on the market. Most of
them are delivered by big software vendors such as IBM or SAP. However, the Fos-

1 http://epcglobalinc.org/standards/architecture



RESTifying Real-World Systems: a Practical Case Study in RFID 5

strak [3] project offers a comprehensive, Java-based, open-source implementation
of the EPCIS standard.

The great potential of the EPC network for researchers in the ubiquitous comput-
ing field has led to a number of initiatives trying to make it more accessible and open
for prototyping than it currently is. The authors of [3] initiated the Fosstrak project,
which is to date the most comprehensive open-source implementation of the EPC
standards. The Fosstrak EPCIS is an open-source implementation of a fully-featured
EPCIS. This project is suitable for prototyping [3] but it implements the standard
WS-* interface which closes the EPCIS to a number of interesting use cases such as
direct use from simple Web languages or usage on resource constrained devices.

To overcome these limitations, researchers started to create translation proxies
between the EPCIS and their applications. In [6] the authors present an implemen-
tation of such a proxy. The “Mobile IoT Toolkit” offers a Java servlet based solution
that allows to request some EPCIS data using URLs which are then translated by a
proxy into WS-* calls. This solution is a step towards our goal as it enables resource-
constrained clients such as mobile phones to access some data without the need for
using WS-* libraries. Nevertheless, the proxy is directly built on the core of Fos-
strak and thus does not offer a generic solution for all EPCIS compliant system.
Furthermore, the protocol used in this implementation as well as the data format is
proprietary which requires developers to learn it first.

In the “REST Binding” project2 a translation proxy is implemented, similarly
to [6] it proposes using URLs for accessing the EPCIS data but these data are pro-
vided using the XML format specified in the standard. While this is an important
improvement, the proposed protocol does not respect the REST principles but im-
plements what experts sometimes call a REST-RPC style [11]. As we will explain
in the next Section, the connectedness and uniform interface properties do not held.
Thus, an EPCIS using this interface is not truly integrated to the Web [10, 11]. To
better understand this, let us summarize some of the core notions of RESTful Web
Services.

2 RESTful Information Systems

REST is an architectural style, which means that it is not a specific set of technolo-
gies. For this paper, we focus on the specific technologies that implement the Web as
a RESTful system, and we propose how these can be applied to the Web of Things.
The central idea of REST revolves around the notion of resource as any compo-
nent of an application that needs to be used or addressed. Resources can include
physical objects (e.g., a temperature sensors, an RFID tagged object, etc.) abstract
concepts such as collections of objects, but also dynamic and transient concepts
such as server-side state or transactions. REST can be described in five constraints:

2 http://autoidlabs.mit.edu/CS/content/OpenSource.aspx



6 Dominique Guinard, Mathias Mueller, Vlad Trifa

• Resource Identification: the Web relies on Uniform Resource Identifiers (URI) to
identify resources, thus links to resources can be established using a well-known
identification scheme.

• Connectedness: (also known as: Hypermedia Driving Application State Clients
of RESTful services are supposed to follow links they find in resources to interact
with services. This allows clients to “explore” a service without the need for
dedicated discovery formats, and it allows clients to use standardized identifiers
and a well-defined media type discovery process for their exploration of services.
This constraint must be backed by resource representations (having well-defined
ways in which they expose links that can be followed.

• Uniform Interface: Resources should be available through a uniform inter-
face with well-defined interaction semantics, as is Hypertext Transfer Protocol
(HTTP). HTTP has a very small set of methods GET, PUT, POST, and DELETE
with different semantics (safe, idempotent, and others), which allows interactions
to be effectively optimized.

• Self-Describing Messages: Agreed-upon resource representation formats make it
much easier for a decentralized system of clients and servers to interact without
the need for individual negotiations. On the Web, media type support in HTTP
and the Hypertext Markup Language (HTML) allow peers to cooperate with-
out individual agreements. For machine-oriented services, media types such as
the Extensible Markup Language (XML) and JavaScript Object Notation (JSON)
have gained widespread support across services and client platforms. JSON is a
lightweight alternative to XML that is widely used in Web 2.0 applications and
directly parsable into JavaScript objects.

• Stateless Interactions: This requires requests from clients to be self-contained,
in the sense that all information to serve the request must be part of the re-
quest. HTTP implements this constraint because it has no concept beyond the
request/response interaction pattern; there is no concept of HTTP sessions or
transactions.

The design goals of RESTful systems and their advantages for a decentralized
and massive-scale service system align well the field of pervasive computing: mil-
lions to billions of available resources and loosely coupled clients, with potentially
millions of concurrent interactions with one service provider. Based on these obser-
vations, we argue that RESTful architectures are the most effective solution for the
global Web of Things [5], composed of smart appliances, sensor nodes and tagged
objects. Indeed these architectures scale better and are more robust than RPC-based
architectures like WS-* services.

2.1 Case Study: RESTifying the EPC Information Service

As mentioned before, in the EPCIS standard, most features are accessible through
a WS-* interface. To specify the architecture of the RESTful EPCIS we systemat-



RESTifying Real-World Systems: a Practical Case Study in RFID 7

ically took these WS-* features and applied the properties of a Resource Oriented
Architecture (ROA) we summarized in the previous section.

2.1.1 Resource Identification and Connectedness

All the services of a Resource Oriented Architecture are modeled with resources
which are components of an application worth being uniquely addressed and linked
to. Each resource gets a unique and resolvable address in the form of a URL. Thus,
the first step a ROA design is to identify the resources an EPCIS should be com-
posed of and to make them addressable. Looking at the EPCIS standard, we can
extract a dozen resources. We focus here on the four main types:

1. Locations (called “Business locations” in the EPCIS standard): those are loca-
tions where events can occur, e.g.,:“C Floor, Building B72”.

2. Readers (called “ReadPoints” in the standard): which are RFID readers regis-
tered in the EPCIS. Just as Business Locations, readers are usually represented as
URIs: e.g., urn:br:maxhavelaar:natal:shipyear:incoming but can
also be represented using free-form strings, e.g.,: “Reader Store Checkout”

3. Events: which are observations of RFID tags, at a Business Location by a specific
reader at a particular time.

4. EPCs: which are Electronic Product Codes identifying products (e.g., urn:epc:
id:sgtin:618018.820712.2001), types of products (e.g., urn:epc:id:
sgtin:618018.820712.*) or companies (e.g., urn:epc:id:sgtin:
618018.*).

We first define a hierarchical organization of resources based on the following
URI template:
location/businessLocation/reader/readPoint/time/eventTime
/event
More concretely, this means that the users begin by accessing the Location re-
sources. Accessing the URL http://.../location/ with the GET method
retrieves a list of all Locations currently registered in the EPCIS. From there, clients
can navigate to a particular Location where they will find a list of all Readers at this
place. From the Readers clients get access to Time resources which root is listing all
the Times at which Events occurred. By selecting a Time, the client finally accesses
a list of Events.

Each event contains information such as its type, event time, Business Location,
EPCs, etc. If a client is only interested about one specific field of an Event, he
can get this information by adding the desired information name as sub-path of the
Event URI. For example, EVENT URI/epcs lists only all the EPCs that were part
of that Event. The resulting tree structure is shown in Figure 2, and a sample Event
in Figure 3.

Furthermore, in a ROA all resources should be discoverable by browsing to fa-
cilitate the integration with the Web. Just as you can browse for Web pages, we
should be able to find RFID tagged objects and their traces by browsing. Each rep-



8 Dominique Guinard, Mathias Mueller, Vlad Trifa

Fig. 2 Hierarchical representation of the browsable RESTful EPCIS resources

resentation of resources should contain links to relevant resources such as parents,
descendants or simply related resources. This property of ROAs is known as “con-
nectedness”.

To ensure the connectedness of the RESTful EPCIS, each resource in the tree
links to the resources below or to related resources. The links allow users to browse
completely through the RESTful EPCIS where links act as the motor. Every avail-
able action is deduced by the set of links included. This way, people can directly
explore the EPCIS from any Web browser, simply by clicking on hyperlinks and
without requiring any prior knowledge of the EPCIS standard.

To ensure that the browsable EPCIS interface did not become too complicated,
we limited the number of available resources and parameters. For more complex
queries we provide a second, hierarchical, interface for which we map the EPCIS
WS-* query interface to uniquely identifiable URIs. Each query parameter can be
encoded and combined as a URI query parameter according to the following tem-
plate
/eventquery/result?param1=value1&...&paramN=valueN
Query parameters restrict the deduced result set of matching RFID events. The
RESTful EPCIS supports the building of such URIs with the help of an HTML form.
If for example a product manager from Max Havelaar is interested in the events that
were produced in Palmas, the following URL lists all events that occurred at this
business location:
http://.../eventquery/result?location=urn:br:maxhavelaar:
palmas:productionsite
To further limit possibly very long search results, the query URI can be more spe-
cific. The manager might be interested only about what happened on that production
site on the 4th of November 2009, which corresponds to the following URL:
http:/../eventquery/result?location=urn:br:maxhavelaar:
palmas:productionsite&time=2009-11-04T00:00:00.000Z,



RESTifying Real-World Systems: a Practical Case Study in RFID 9

2009-11-04T 23:59:59.000Z
The HTML representation of this resource is illustrated in Figure 3.

To keep the full connectedness of the RESTful EPCIS, both the browsable and
the query interface are interlinked. For example, the EPC urn:epc:id:sgtin:
0057000.123430.2025 included in the event of Figure 3, is also a link to the
query which asks the EPCIS for all events that contain this EPC.

We leverage the addressability property to allow a greater interaction with EP-
CIS data on the Web. As an example, since queries are now encapsulated in URLs,
we can simply bookmark them, exchange them in emails and consume them from
JavaScript applications. Furthermore, by implementing the connectedness property
we enable users to discover the EPCIS content in a simple, yet powerful manner.

2.1.2 Uniform Interface and Self-Describing Messages

Finally, in a ROA, the resources and their services should be accessible using a
standard interface defining the mechanisms of interaction. The Web implementation
of REST uses HTTP for this purpose.

Multiple Representation Formats A resource is representation agnostic and
hence should offer several representations (e.g., XML, HTML). HTTP provides a
way for clients to retrieve the most adapted one. The RESTful EPCIS supports mul-
tiple output formats to represent a resource. Each resource first offers an HTML rep-
resentation as shown in Figure 3 which is used by default for Web browser clients.

In addition to the HTML representation, each resource has also an XML and a
JSON (JavaScript Object Notation) representation, which all contain the same infor-
mation. The XML representation complies with the EPCIS standard and is intended
to be used mainly for business integration. The JSON representation can be directly
translated to JavaScript objects and is thus intended for mashups, mobile applica-
tions or embedded computers.

The choice of the representation to use in the response can be requested by
clients using the HTTP “content negotiation” mechanism3. Since content negoti-
ation is built into the uniform interface, clients and servers have standardized ways
to exchange information about available resource representations, and the negoti-
ation allows clients and servers to choose the representation that fits best a given
scenario.

A typical content negotiation procedure looks as follows. The client begins with
a GET request on http://.../location. It also sets the Accept header of
the HTTP request to a weighted list of media types it can understand, for example
to: application/json, application/xml;q=0.5. The RESTful EPCIS
then tries to serve the best possible format it knows about and describes it in the
Content-Type of the HTTP response. In this case, it will serve the results in the
JSON format as the client prefers it over XML (q=0.5).

3 http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html



10 Dominique Guinard, Mathias Mueller, Vlad Trifa

Fig. 3 HTML representation of an EPC event as rendered by a Web browser, every entry is also a
link to the sub-resources

Error Codes The EPCIS standard defines a number of exceptions that can oc-
cur while interacting with an EPCIS. HTTP offers a standard and universal way of
communicating errors to clients by means of “status codes”. Thus, to enable clients,
especially machines to make use of the exceptions defined by the EPCIS specifica-
tion, the RESTful EPCIS maps the exceptions to HTTP status codes. An exhaustive
list of error codes and their meanings for Resource Oriented Architectures can be
found in [11].

3 Syndication with Atom

In many cases, it would be useful to group tagged objects into collections accord-
ing to certain properties or scenarios (example collections would be “all the milk
bottles shipped today to rhode island” or “potatoes shipped to client no 3”), and be
able to monitor the state of collection through a syndication mechanism. The Atom
Syndication Format is an XML language specifying the syntax of Web feeds. With
Atom, the Web has a standardized and RESTful model for interacting with col-
lections, and the Atom Publishing Protocol (AtomPub) extends Atom’s read-only
interactions with methods for write access to collections. Because Atom is REST-
ful, interactions with Atom feeds can be based on simple GET operations which can
then be cached.



RESTifying Real-World Systems: a Practical Case Study in RFID 11

3.1 Case Study: Web-Enabling the Subscriptions

Standard EPCISs also offers an interface to subscribe to RFID events. Through a
WS-* operation, clients can send a query along with an endpoint (i.e., a URL) and
subscribe for updates. Every time the result of the query changes, an XML packet
containing the new results is sent to the endpoint. While this mechanism is practical,
it requires for clients to run a server with a tailored Web applications that listens to
the endpoint and thus cannot be used by all users or cannot be directly integrated to
a Web browser.

This makes the subscription interface an ideal candidate to apply the idea of Web
feeds with Atom. Thus, in the RESTful EPCIS, we propose an alternative Atom
module for producing the results of query subscriptions as shown on the leftmost
side of Figure 5. This way, end-users can formulate queries by browsing the REST-
ful EPCIS and get updates in the Atom format which most browsers can understand
and directly subscribe to.

As an example a product manager could create a feed in order to be automatically
notified in his browser or any feed reader whenever one of his products is ready to
be shipped from the warehouse. More concretely, this means sending an HTTP PUT
request to
http://.../eventquery/subscription?reader=urn:ch:migros:
stgallen:warehouse:expedition&epc=urn:epc:id:sgtin:
0057000.123430.*
Or, for a human client, clicking on the “subscribe’ link present at the top of each
HTML representation of query results. As a result, the RESTful EPCIS will create
an Atom feed corresponding to this query and add an entry (using AtomPub) to the
feed every time an event for the product category 123430 is generated by reader
urn:ch:migros:stgallen:warehouse:expedition.

The product manager can then use the URI of the feed in order to send it to
his most important customers, allowing them to follow the goods progress as well.
A simple but very useful interaction which would require a dedicated client to be
developed and installed by each customer in the case of the WS-* based EPCIS.

4 Implementing RESTful Information Systems

After the design of RESTful Services, comes their implementation. The recent in-
terest for RESTful services has led to a number of frameworks helping developers
in this step. In this section we will look at some of these frameworks, focusing on
their features and benefits when applying the constraints of RESTful architectures.
However, let us begin by looking at integration patterns at a higher level: given an
existing information system, what integration options do we have?



12 Dominique Guinard, Mathias Mueller, Vlad Trifa

Fig. 4 Integration patterns for adding a RESTful interface to a WS-* system

4.1 From WS-* to REST: Integration Patterns

When creating an information system from scratch, the constraints for RESTful ar-
chitectures are of great help in defining the data model. There are also no major con-
flicts between the REST paradigm and the Object Oriented paradigm. Indeed, Ob-
ject Oriented programming defines an internal, application centric, contract. REST,
on the other hand, defines a contract with the world outside the application (this
is why developers often speak about RESTful APIs) towards a distributed and re-
mote usage of its functionality. Thus, both can cohabit nicely to create a distributed
Web application, as long as they are designed together. However, adding a RESTful
architecture to an existing WS-* centric information system can be challenging as
both paradigms share the same basic goal: creating remotely re-usable services.

Woven REST

As shown on Figure 4, there are basically two ways of achieving an integration; First
(a) on Figure 4), the RESTful architecture can be directly woven into the existing
WS-* system. This may seems like a trivial solution at first, however the imple-
mentation of this solution is not entirely straightforward. While sharing a common
goal, WS-* and REST are rooted on very different paradigms. Thus, weaving clean
REST architecture into the core of the WS-* system almost always requires an al-
ternate data model. Having two data models for the same services ends up in rather
complicated architectures.



RESTifying Real-World Systems: a Practical Case Study in RFID 13

Fig. 5 Architecture of the RESTful EPCIS based on the Jersey RESTful framework and deployed
on top of the Fosstrak EPCIS.

REST Adapter

An alternative integration pattern is to design an external REST Adapter making use
of the WS-* interface, as shown in b) of Figure 4, REST Adapter. In this model, the
REST Adapter acts as a proxy, translating RESTful requests into WS-* requests.
This allows for a cleaner, REST centric architecture and preserves the legacy WS-*
system entirely intact. On the downside it hinders the performances of the RESTful
API but, as we will show in the case study, with a few simple measures, this can be
minimized to a level acceptable for most applications.

4.1.1 Case-study: RESTful EPCIS as a Module

For the RESTful EPCIS, we decided to create an independent REST Adapter, as it
delivers a clear advantage in this case: it allows the RESTful EPCIS to work on top
of any standard EPCIS implementation.

The resulting architecture is shown in Figure 5. The RESTful EPCIS is a module
which core is using the EPCIS WS-* standard interface. Just as a proxy, it translates
the incoming RESTful request into WS-* requests and returns results complying
with the constraints of RESTful architectures. As shown on the left of the picture,
the typical clients of the RESTful EPCIS are different from the business applications
traditionally connected to the EPCIS. The browser is the most prevalent of these
clients. It can either directly access the data by means of URL calls or indirectly
using scripted Web pages.



14 Dominique Guinard, Mathias Mueller, Vlad Trifa

Many Results Few Results Complex Query
0

50

100

150

200

250

300

350

RT
T+

Pr
oc

es
sin

g 
[m

s]

 

 

REST
WS

Fig. 6 Average RTT and processing time when using the WS-* interface and the REST interface
for three types of requests each run 100 times.

Performance Evaluation

As mentioned before, the translation between REST and WS-* (and vice-versa)
results in an overhead that we briefly evaluate here.

The experimental setup is composed of a Linux Ubuntu Intel dual-core PC 2.4
GHz with 2 GB of ram. We deploy Fosstrak and the RESTful EPCIS on the same
instance of Apache Tomcat with a heap size of 512 MB. We evaluate three types of
queries all returning the standard EPCIS XML representation.

The first query (Q1, “Many Results” in Figure 6) requests all events recorded by
the EPC, i.e., a small request returning a document of 30 KB with 22 events each
composed of about 10 EPCs. In the second test (Q2, “Few Results”), is a query
returning a document of 2.2 KB with only two results. The last test (Q3, “Complex
Query”) is a query containing a lot of parameters and returning 10 events. We test
each of these queries asking for the standard XML representation. All queries are
repeated 100 times from a client located on a machine one hop away from the server
with a Gigabit ethernet connectivity. The client application is programmed in Java
and uses a standard JAX-WS client for the WS-* calls and the standard Apache
HTTP Client and DOM (Document Object Model) library for the REST calls.

As shown on Figure 6, for Q1 the RESTful EPCIS has an average overhead of 30
ms due to the computational power required to translate the requests from REST to
WS-* and vice-versa. For Q2 and Q3 the REST requests are executed slightly faster
(about 20 ms) than the WS-*. This is explained by three factors. First, since there are
fewer results, the local WS-* request from the RESTful EPCIS is executed faster.
Then, REST packets are slightly smaller as there is no SOAP envelope [12]. Finally,
unmarshalling WS-* packets (using JAXB) on the client-side takes significantly
longer than for REST packets with DOM. For Q3, similar results are observed.
Overall, we can observe that the RESTful EPCIS creates a limited overhead of about



RESTifying Real-World Systems: a Practical Case Study in RFID 15

10% which is compensated in most cases by the relatively longer processing times of
WS-* replies. This becomes a particularly important point when considering devices
with limited capabilities such as mobile phones or sensor nodes as well as for client-
side (e.g., JavaScript) web applications.

It is worth mentioning that the WS-* protocol can be optimized in several ways
to better perform, for example by compressing the SOAP packets and optimizing
JAXB. However as the content of HTTP packets can also be compressed this is
unlikely to drastically change the results. Furthermore, because they encapsulate re-
quests in HTTP POST, WS-* services cannot be cached on the Web using standard
mechanisms. For the RESTful EPCIS however, all the queries are formulated as
HTTP GET requests and fully contained in the request URL. This allows to directly
leverage from standard Web caching mechanisms [2] which would importantly re-
duce the response times [12].

4.2 Understanding the Tools Galaxy in Java

Creating clients for RESTful Web Services is a rather straightforward task as it only
requires for the used language to support HTTP, which most modern programming
and scripting languages do. The implementation of a RESTful Web Services, on the
other hand, is a task that should not be underestimated. Indeed, even if the set of
REST constraints is seemingly small their implementation requires a careful soft-
ware design.

Most modern Web languages such as Ruby (especially in its Ruby on Rails form)
or Python offer out-of-the-box support for RESTful Web Services. Similarly, the
recent growing interest for lightweight service architectures based on REST has
given birth to a number of frameworks that simplify the development of RESTful
applications for enterprise-scale languages such as C# or Java.

4.2.1 JAX-RS: A Standard Java API for RESTful Web Services

The Java community is particularly interesting one since it is known as one of the
community with most WS-* tools and frameworks but also as one of the most eager
to develop tools around REST (perhaps due to some frustrations with the WS-* type
of services...).

In particular, the Java galaxy has its own higher-level industrial standard for
building RESTful Web Services: the JAX-RS API4 (also known as JSR 311). JAX-
RS is especially interesting since it was developed by a consortium of people who
are both Web-specialists and service developers. The result is a very lean API (well
described in [1]) that requires a good understanding of REST but offers straight-

4 http://jcp.org/en/jsr/detail?id=311



16 Dominique Guinard, Mathias Mueller, Vlad Trifa

forward solutions to implement in an elegant and efficient way most of the REST
constraints.

In short, JAX-RS is based on three main pillars. It first uses annotations of Java
classes to turn them into resources (e.g., @Path(‘‘/location’’), ensuring the
Resource Identification constraint. Annotations further help to define the resources’
Uniform Interface as it lets the developer specify allowed verbs (@GET, @POST)
and served representations (e.g., @Produces(MediaType.APPLICATION
JSON)). Beyond annotations, several framework classes make the developer life

easier. Connectedness is boosted by providing contextual URI Builders, letting
the developer easily link resources together across representation. Finally, the use
of the JAXB framework allows for Java Objects to be automatically serialized to an
(extensible) number of representations such as XML, HTML, JSON and Atom thus
making it easier to fulfill the constraint for Self-Describing Messages.

Besides Jersey5, the reference implementation of JAX-RS, several frameworks
such as RESTeasy, Apache Wink, Apache CFX and RESTlet are JAX-RS compliant
which makes it rather easy to move code from one framework to the other.

4.3 Case-study: Using JAX-RS, Jersey and Abdera

As shown in Figure 5, the core of the RESTful EPCIS is based on the JAX-RS
compliant, Jersey6 framework. Thus, it uses JAX-RS annotations and framework
classes. The example below serves the representation of a location resource.

1 @Path(\location\{businessLocationID})
@GET

3 @Produces({MediaType.APPLICATION_XML, MediaType.
APPLICATION_JSON, MediaType.APPLICATION_ATOM_XML,
MediaType.TEXT_HTML})

public Resource getSelectedBusinessLocation(@Context
UriInfo context, @PathParam("businessLocationID")
String businessLocation) {

5 QueryBusinessLogic logic = new QueryBusinessLogic();
return logic.getSelectedBusinessLocation(context,

businessLocation);
7 }

Line 1 of this listing sets the URI of the resource, where businessLocationID
is the location identifier which will be dynamically passed to the method
getSelectedBusinessLocation at runtime. @GET specifies the method al-
lowed on this resource, @Produces contains the representations that clients will
be able to obtain through content negotiation. Note that these contents will be au-
tomatically generated at runtime from the Resource Java Object by the JAXB
framework.

5 http://https://jersey.dev.java.net
6 https://jersey.dev.java.net



RESTifying Real-World Systems: a Practical Case Study in RFID 17

As we can see, the RESTful EPCIS uses Jersey for managing the resources’
representations and dispatching HTTP requests to the right resource depending on
the request URL. When correctly dispatched to the RESTful EPCIS Core, every
request on the querying or browsing interface is then translated to a WS-* request on
the EPCIS. This makes the RESTful EPCIS entirely decoupled from any particular
implementation of an EPCIS.

While JAX-RS offers serving Atom representation of resources on-the-fly, imple-
mentations of JAX-RS do not have to offer a fully-featured Atom-Pub server with
persistence. Thus, for the subscription interface we used Apache Abdera, which is
an open-source implementation of an Atom-Pub server integrating well with most
JAX-RS frameworks. Every time a client subscribes to a query, the RESTful EPCIS
checks whether this feed already exists by checking the query parameters, in any
order. If it is not the case it creates a query on the WS-* EPCIS and specifies the
address of the newly created feed. As a consequence every update of the query is
directly POSTed to the feed resource which creates a new entry using Abdera and
stores it in an embedded SQLite7 database.

Jersey, Abdera and SQLite are packaged with the RESTful EPCIS core in a WAR
(Web Application Archive) that can be deployed in any Java compliant Web or Ap-
plication Server. We tested it successfully on Glassfish8 and Apache Tomcat9 and
on the Grizzly embedded Web Server10.

5 REST and the Mashups

As RFID objects become part of the Web, applications using them can be developed
using popular Web languages (e.g. HTML, JavaScript, PHP, Python) and toolkits,
(e.g., DOJO, jQuery, Closure). This can significantly ease the developments on the
RFID middleware vendor’s side, since applications can be built on languages for
which a plethora of libraries and toolkits are available. Furthermore, the use of pop-
ular languages makes it easier to find adequate developers. Likewise, this also un-
veils the possibility for external developers to create innovative Web applications
making use of RFID data. Open APIs and communities of developers have long be-
come vital for service companies on the Web such as Facebook, Twitter, or Google.
This direction is also being taken upon by many electronic devices (sensor nodes,
appliances, etc.). New hardware on the market such as the Chumby alarm clock11

or the Squeezbox HiFi system12 already have significant communities of voluntary
Web developers creating dozens of small applications for each platform. Adding

7 http://www.sqlite.org
8 http://glassfish.org
9 http://tomcat.apache.org
10 http://grizzly.dev.java.net
11 http://www.chumby.com
12 http://www.logitechsqueezebox.com



18 Dominique Guinard, Mathias Mueller, Vlad Trifa

Fig. 7 The Product Buzz Widget extracts live opinions and information about particular products
(here Lindt Chocolate) from Twitter

a RESTful module to the EPCIS brings it one step closer to these promising op-
portunities, where the consumers become active actors, not just passive consumers.
Just as users create Web 2.0 mashups [13] by integrating several Web sites to create
new applications, companies buying RFID systems can re-use RFID events to cre-
ate ad-hoc, innovative applications in an easier manner. The EPCIS RESTful API
allows a wider range of developers, tech-savvy users (technologically skilled peo-
ple) or researchers to develop on top of the EPCIS and contributes to helping the
EPC Network developer community grow.

5.1 Case Study: The EPC Dashboard Mashup

To better illustrate the new type of applications the RESTful EPCIS unveils we
created the EPC Dashboard Mashup, a Web mashup, that helps product, supply
chain and store managers to have a live overview of their business at a glance. It can
further help consumers to better understand where the goods are coming from and
what other people think about them. The EPC Dashboard is based on the concept
of widgets in which the event data are visualized in a relational, spacial or temporal
manner.

The EPC Dashboard consumes data from the RESTful EPCIS. Usually these
data are hard to interpret and integrate. The dashboard makes it simple to browse
and visualize the EPC data. Furthermore, it integrates the data with multiple sources
on the Web such as Google Maps, Wikipedia, Twitter, etc.



RESTifying Real-World Systems: a Practical Case Study in RFID 19

Fig. 8 The Maps widget is following the route of the banana tagged with the EPC
urn:epc:id:sgtin:0057000.123430.2025

5.1.1 Mashup Architecture

The EPC Dashboard integrates several information sources. This information is en-
capsulated in small windows called widgets. The widgets combine services on the
Web with traces coming from the RESTful EPCIS. The EPC Dashboard Mashup
currently offers 12 widgets using different APIs and services. As an example, the
Map Widget is built using the Google Maps Web API (see Figure 8), the Product
Buzz Widget uses the Twitter RESTful API (Figure 7) and the Stock History Widget
uses the Google Visualization API.

All widgets are connected to each other which means that actions on a given one
can propagate the selection to the other widgets and changes their view accordingly.
As such, widgets listen to selections and can make selections. This interaction is
implemented using the observer pattern [4] where consumers (i.e., the widgets) reg-
ister to asynchronous updates of the currently selected Locations, Readers, Time or
EPCs. This architecture allows the creation and integration of other Web widgets
with very little effort. The EPC Dashboard itself is a JavaScript application built
using the Google Web Toolkit13, a framework to develop rich Web clients. This has
been possible because having a RESTful Interface upon the EPCIS which eases the
development of mashups.

13 http://code.google.com/intl/en/webtoolkit



20 Dominique Guinard, Mathias Mueller, Vlad Trifa

6 Summary

In this chapter we argue that RESTful architecture can greatly contribute to the suc-
cess of Information System. We further argue for thinking of these systems as Web
APIs rather than as applications. As an illustration we describe how we applied the
principles and constraints of RESTful architectures to the world of RFID for cre-
ating the RESTful EPCIS open-source project which is released as an open-source
module of the Fosstrak project, under the name of epcis-restadapter14.

RESTifying the EPCIS literally bring RFID traces to the Web, every tagged prod-
uct, reader, location, etc. become fully addressable resources. Using the HTTP pro-
tocol tagged objects can be directly searched for, indexed, bookmarked, exchanged
and feeds can be created by end-users. Furthermore, this enables exploring the EP-
CIS data simply by browsing them, which helps making sense of the data. We argue
that this adds more flexibility to the types of applications that can be built on top
of an EPCIS and opens the EPCIS API for fast-prototyping to the very large and
active community of Web and mobile developers. We further show that this added
flexibility does not necessarily have to hinder the overall performances, deploying
the RESTful EPCIS on the same machine as the WS-* EPCIS leads to satisfactory
results while preserving the EPCIS-vendor independence.

We finally illustrate the new application space the RESTful EPCIS unveils by
means of a JavaScript Mashup: the EPC Dashboard which is an easily extensible
business intelligence interface for managers that re-uses a number of Web APIs.

References

1. BILL BURKE. RESTful Java with Jax-RS. O’Reilly Media, 1st edition, November 2009.
2. ROY T. FIELDING and RICHARD N. TAYLOR. Principled design of the modern Web archi-

tecture. ACM Trans. Internet Techn., 2(2):115–150, 2002.
3. CHRISTIAN FLOERKEMEIER, MATTHIAS LAMPE, and CHRISTOF RODUNER. Facilitating

RFID Development with the Accada Prototyping Platform. In Proceedings of the Fifth IEEE
International Conference on Pervasive Computing and Communications Workshops, pages
495–500. IEEE Computer Society, 2007.

4. ERICH GAMMA, RICHARD HELM, RALPH JOHNSON, and JOHN M. VLISSIDES. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,
November 1994.

5. DOMINIQUE GUINARD, VLAD TRIFA, and ERIK WILDE. A Resource Oriented Architecture
for the Web of Things. In Proc. of IoT 2010 (IEEE International Conference on the Internet
of Things), Tokyo, Japan, November 2010.

6. DOMINIQUE GUINARD, FELIX VON REISCHACH, and FLORIAN MICHAHELLES. MobileIoT
Toolkit: Connecting the EPC Network to MobilePhones. In Proc. of Mobile Interaction with
the Real World at Mobile HCI (MIRW), Amsterdam, Netherlands, September 2008. The Uni-
versity of Oldenburg.

7. TIM KINDBERG, JOHN BARTON, JEFF MORGAN, GENE BECKER, DEBBIE CASWELL,
PHILIPPE DEBATY, GITA GOPAL, MARCOS FRID, VENKY KRISHNAN, HOWARD MOR-

14 http://www.webofthings.com/rfid



RESTifying Real-World Systems: a Practical Case Study in RFID 21

RIS, JOHN SCHETTINO, BILL SERRA, and MIRJANA SPASOJEVIC. People, places, things:
web presence for the real world. Mob. Netw. Appl., 7(5):365–376, 2002.

8. T. LUCKENBACH, P. GOBER, S. ARBANOWSKI, A. KOTSOPOULOS, and K. KIM. TinyREST
- A protocol for integrating sensor networks into the internet. In Proc. of the Workshop on
Real-World Wireless Sensor Network (SICS), Stockholm, Sweden, 2005.

9. CESARE PAUTASSO and ERIK WILDE. Why is the Web Loosely Coupled? A Multi-Faceted
Metric for Service Design. In Proc. of the 18th International World Wide Web Conference
(WWW’09), Madrid, Spain, April 2009.

10. CESARE PAUTASSO, OLAF ZIMMERMANN, and FRANK LEYMANN. Restful web services
vs. big web services: making the right architectural decision. In Proc. of the 17th international
conference on World Wide Web (WWW), pages 805–814, New York, NY, USA, 2008. ACM.

11. LEONARD RICHARDSON and SAM RUBY. RESTful Web Services. O’Reilly Media, Inc., May
2007.

12. DOGAN YAZAR and ADAM DUNKELS. Efficient Application Integration in IP-based Sensor
Networks. In Proc. ACM of the First ACM Workshop On Embedded Sensing Systems For
Energy-Efficiency In Buildings (BuildSys), Berkeley, CA, USA, November 2009.

13. JIN YU, BOUALEM BENATALLAH, FABIO CASATI, and FLORIAN DANIEL. Understanding
Mashup Development. IEEE Internet Computing, 12(5):44–52, 2008.


